WO2017163582A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2017163582A1
WO2017163582A1 PCT/JP2017/002306 JP2017002306W WO2017163582A1 WO 2017163582 A1 WO2017163582 A1 WO 2017163582A1 JP 2017002306 W JP2017002306 W JP 2017002306W WO 2017163582 A1 WO2017163582 A1 WO 2017163582A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
automatic analyzer
liquid
probe
capacitance
Prior art date
Application number
PCT/JP2017/002306
Other languages
English (en)
French (fr)
Inventor
英嗣 田上
洋一郎 鈴木
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US16/086,699 priority Critical patent/US10884009B2/en
Priority to EP17769629.1A priority patent/EP3435093B1/en
Priority to JP2018507073A priority patent/JP6563114B2/ja
Priority to CN201780017723.4A priority patent/CN108780109B/zh
Publication of WO2017163582A1 publication Critical patent/WO2017163582A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to an automatic analyzer for performing qualitative and quantitative analysis of biological samples such as blood and urine.
  • Patent Document 1 discloses collecting liquid from the liquid storage container held by the sampler. A probe and an arm for holding the probe, detecting a change in capacitance between the probe and the liquid when the probe is inserted into the liquid container, and detecting the liquid liquid based on the detection result. A liquid level detection device for detecting a surface is described.
  • an automatic analyzer When performing qualitative and quantitative analysis of target components in biological samples such as blood and urine, there is an automatic analyzer that measures the concentration by adding a reagent to the sample (sample) and causing a biochemical reaction .
  • This automatic analyzer is widely used in large hospitals, inspection centers and the like because it can improve the reproducibility of measurement results and speed up the measurement.
  • the automatic analyzer incorporates a dispensing mechanism that can automatically dispense samples and reagents necessary for biochemical reactions and antigen-antibody reactions with high accuracy and speed compared to conventional methods. It is mentioned.
  • the liquid level is detected by a sensor, the amount of probe entering the reagent or sample is controlled, and dispensing is performed with high accuracy and speed, A method for efficiently cleaning the inner and outer walls of the probe is known.
  • the dispensing probe is used as an electrode for detecting the liquid level, and the other electrode is used as a container holding frame, and the capacitance between these electrodes is changed.
  • a sensor using a capacitance method for detecting a liquid level in a container is described.
  • the automatic analyzer is provided with a plurality of cleaning tanks.
  • an automatic analyzer provided with a cleaning liquid supply port for cleaning the probe.
  • the reliability of the analysis result is improved by confirming whether the probe tip is in contact with the cleaning liquid by using a liquid level detection sensor to confirm whether the cleaning is performed reliably. Yes.
  • a plurality of probes may be simultaneously contacted with the cleaning liquid at the cleaning liquid supply port.
  • the probes are directly electrically connected with the conductive cleaning liquid and interference between the capacitance detectors occurs.
  • the probes can be directly and electrically supplied through piping for transporting the cleaning liquid to the cleaning liquid supply port and the cleaning liquid discarded from the cleaning liquid supply port into the cleaning tank. It is conceivable that interference occurs between the capacitance detectors due to the connection.
  • the present invention includes a plurality of means for solving the above-mentioned problems.
  • an automatic analyzer that dispenses and reacts a sample and a reagent in a reaction vessel and measures the reacted liquid.
  • a plurality of dispensing probes for dispensing a reagent or a sample to be analyzed into a reaction container, a supply port for storing a conductive liquid in contact with the dispensing probe, and a flow path connected to the supply port.
  • a conductive liquid supply part for supplying the conductive liquid to the supply port via the plurality of dispensing probes, and a contact between the tip of the dispensing probe and the liquid level of the conductive liquid.
  • a liquid surface contact determination unit that determines the capacitance based on a change in capacitance between the tip and the device housing, and a capacitance of the dispensing probe provided between the conductive liquid and the device housing.
  • a charge storage unit having the above capacitance And wherein the door.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of a dispensing probe in the automatic analyzer according to the first embodiment.
  • FIG. 3 is a diagram illustrating an outline of a configuration of members related to a cleaning tank in the automatic analyzer according to the first embodiment.
  • FIG. 6 is a diagram showing an outline of a configuration of members related to a cleaning tank in an automatic analyzer of Example 3.
  • FIG. It is a figure which shows the outline of a structure of the member relevant to the washing tank in the automatic analyzer of Example 5.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a dispensing probe in the automatic analyzer according to the first embodiment.
  • FIG. 3 is a diagram illustrating an outline of a configuration of members related to a cleaning tank in the automatic analyzer according to the first embodiment.
  • FIG. 1 is a structural example of an automatic analyzer according to the present embodiment
  • FIG. 2 is a diagram illustrating a configuration example of a dispensing probe.
  • the automatic analyzer 100 is a device that dispenses and reacts a sample and a reagent in a reaction vessel 104, and measures the reacted mixture.
  • the moving mechanism holding unit 105, the first x-direction moving mechanism 106, the second x-direction moving mechanism 107, the reagent disk 108, the detector 109, the washing tank 110, the control unit 130, and the like are included.
  • reaction vessels 104 are arranged in a circle.
  • the reaction container 104 is a container for storing a mixed solution obtained by mixing the sample 102 and the reagent, and a plurality of reaction containers 104 are arranged on the reaction disk 103.
  • a sample probe 101 that can be rotated and moved up and down is disposed.
  • the sample probe 101 sucks the sample 102 and dispenses it into the reaction container 104 on the reaction disk 103.
  • a plurality of sample probes 101 can be provided.
  • the reagent disk 108 can mount a plurality of reagent bottles 112, first reagent bottles 113, second reagent bottles 114, third reagent bottles 115, and fourth reagent bottles 116 each containing a reagent in a circle. It is a storage. The reagent disk 108 is kept cold.
  • reaction disk 103 and the reagent disk 108 it is configured to be able to rotate and move in the horizontal direction and to dispense the reagent from the reagent bottle 112 or the like to the reaction container 104 as shown in FIG.
  • the first reagent probe 204 and the second reagent probe 214 are installed.
  • the first reagent probe 204 is held by the first reagent probe holding unit 122 and can be lowered by the first z-direction moving mechanism 121.
  • the second reagent probe 214 is held by the second reagent probe holding unit 128 and can be lowered by the second z-direction moving mechanism 126.
  • the first z-direction moving mechanism 121 is moved by the first x-direction moving mechanism 106 on the x-moving mechanism holding unit 105
  • the second z-direction moving mechanism 126 is moved by the second x-direction moving mechanism 107 on the x moving mechanism holding unit 105
  • the first reagent probe holding unit 122 holds the first liquid level contact determination unit 201, and the first reagent probe 204 and the first liquid level contact determination unit 201 are electrically connected by the wiring 203.
  • the second reagent probe holding unit 128 holds a second liquid level contact determination unit 211, and the second reagent probe 214 and the second liquid level contact determination unit 211 are electrically connected by a wiring 213.
  • the first liquid level contact determination unit 201 determines contact between the tip of the first reagent probe 204 and the reagent in the reagent bottle 112 or the like by a change in capacitance between the tip and the housing of the automatic analyzer. To do.
  • the second liquid level contact determination unit 211 determines the contact between the tip of the second reagent probe 214 and the reagent in the reagent bottle 112 or the like based on a change in capacitance between the tip and the housing of the automatic analyzer. To do.
  • the detector 109 is a unit for detecting a signal amount corresponding to the concentration of the target substance in the mixed solution reacted in the reaction vessel 104.
  • the control unit 130 is configured by a computer or the like, and controls the operation of each mechanism in the automatic analyzer and performs arithmetic processing for obtaining the concentration of a predetermined component in the sample.
  • the above is the general configuration of the automatic analyzer 100.
  • the analysis processing of the sample 102 by the automatic analyzer 100 as described above is generally performed in the following order.
  • the sample 102 near the reaction disk 103 is dispensed into the reaction vessel 104 on the reaction disk 103 by the sample probe 101.
  • the reagent used for the analysis is the reaction container 104 in which the sample 102 is first dispensed from the first reagent bottle 113 and the second reagent bottle 114 on the reagent disk 108 by the first reagent probe 204 and the second reagent probe 214. Dispense to.
  • the first reagent probe 204 is moved to the upper part of the first reagent bottle 113 and the second reagent bottle 114 by the first x-direction moving mechanism 106, the first reagent probe 204 is lowered by the first z-direction moving mechanism 121.
  • the second reagent probe 214 is moved to the upper part of the first reagent bottle 113 and the second reagent bottle 114 by the second x-direction moving mechanism 107, the second reagent probe 214 is lowered by the second z-direction moving mechanism 126.
  • the first z-direction moving mechanism 121 operates when the first reagent probe 204 comes into contact with the liquid level of the reagent in the first reagent bottle 113 or the second reagent bottle 114 and the first liquid level contact determination unit 201 detects the liquid. Stop and aspirate the reagent.
  • the second z-direction moving mechanism 126 comes into contact with the liquid level of the reagent in the first reagent bottle 113 or the second reagent bottle 114 and detects the liquid by the second liquid level contact determination unit 211. Stop operation and aspirate reagent.
  • the first reagent probe 204 is raised by the first z-direction moving mechanism 121, then moved to the reaction disk 103 by the first x-direction moving mechanism 106, and the reagent is discharged to the reaction vessel 104.
  • the second reagent probe 214 is raised by the second z-direction moving mechanism 126, the second reagent probe 214 is moved onto the reaction disk 103 by the second x-direction moving mechanism 107 and discharges the reagent to the reaction container 104.
  • the sample 102 and the reagent are reacted in the reaction vessel 104 for a predetermined time.
  • the detector 109 detects a signal amount corresponding to the concentration of the target substance in the mixed liquid after the reaction, and the control unit 130 performs calculation processing to obtain the concentration of the predetermined component in the sample 102.
  • a plurality of reagent bottles 112 are installed in the reagent disk 108.
  • the reagent disk 108 is rotated on the trajectory of the first x-direction moving mechanism 106 and the second x-direction moving mechanism 107.
  • the first reagent probe 204 and the second reagent probe 214 can suck the reagent from the arbitrary reagent bottle 112.
  • the first reagent probe 204 and the second reagent probe 214 in the washing tank 110 are used. After washing the inside and outside of the bottle with distilled water last time, aspirate.
  • FIG. 3 is a diagram showing an outline of the configuration of members related to the cleaning tank 110
  • FIG. 4 is a diagram showing an electrical equivalent circuit of the configuration of FIG.
  • FIG. 3 shows cross sections of the first reagent probe 204 and the second reagent probe 214.
  • the first reagent probe 204 is a pipe that can accommodate a liquid therein, and is made of a conductive member such as SUS.
  • the first liquid level contact determination unit 201 is equipped with a capacitance sensor, and detects a change in capacitance between the wiring 202 connected to the device GND potential and the wiring 203 by the capacitance sensor.
  • a change in electrostatic capacitance between the tip 207 of the first reagent probe 204 and the apparatus housing 243 is detected, and the liquid contact between the cleaning liquid 208 and the tip 207 of the first reagent probe 204 is determined. Yes.
  • the first liquid level contact determination unit 201 detects a change in electrostatic capacitance between the wiring 202 and the device casing 243 having the same potential as the GND by connecting the wiring 203 to the first reagent probe 204. It is possible.
  • the volume resistance of the conductive liquid (see FIG. 4 is changed by the capacitance (C1 in FIG. 4) between the surface of the container containing the conductive liquid and the housing.
  • the capacitance between the surface of the container that stores the conductive liquid and the housing is several pF.
  • the first reagent can be detected by detecting that the capacitance exceeding a specified threshold of 1 pF has increased. It can be determined whether or not the conductive cleaning liquid 208 is in contact with the tip 207 of the probe 204.
  • the conductive liquid is the cleaning liquid 208 for cleaning the tip 207 of the first reagent probe 204.
  • the conductive liquid only needs to be conductive, and the reagent bottle 112 as described above. It is possible to obtain a sample 102 in which a plurality of sample probes 101 are used as analysis reagents or dispensing probes contained in the reaction contained in the sample.
  • the inner diameter of the tube is as narrow as 1 mm in diameter.
  • the pipe length needs to be 10 cm or more.
  • the cleaning liquid supply port for storing the cleaning liquid 208 to bring the cleaning liquid 208 into contact with the tip 207 of the first reagent probe 204 includes partition walls 209, 210, 221 and 223 made of a conductive material, a waste liquid pipe 228, and a pipe 229. It consists of.
  • the top opening of the first reagent probe 204 at the cleaning liquid supply port for access by the upper side holds the cleaning liquid 208 by the partition wall 209 and the partition wall 210, and approaches the front end of the first reagent probe 204 approaching by descending operation from above.
  • Any shape may be used as long as it has an opening that allows the cleaning liquid 208 to come into contact with 207, and the partition 209 and the partition 210 may be part of the same cylinder.
  • the cleaning liquid supply port has a structure in which a flow path is connected to the cleaning liquid supply port through a pipe 229 as shown in FIG. 3 in order to continuously supply the cleaning liquid 208.
  • the cleaning liquid 208 requires the cleaning liquid 239 in the syringe 234 through the pipe 237 from the cleaning liquid bottle 238 containing the cleaning liquid 239 by pulling the syringe 235 with the on-off valve 236 opened and the on-off valve 232 closed. Accommodate a large amount.
  • the cleaning liquid 239 can be supplied to the cleaning liquid supply port as the cleaning liquid 208 through the pipe 231 and the pipe 229.
  • the piping 231, the on-off valve 232, the syringe 235, the on-off valve 236, the piping 237, and the cleaning liquid bottle 238 constitute a cleaning liquid supply unit.
  • the second reagent probe 214 that is the second reagent probe 218 also has a cleaning liquid supply port 218 at the same time in order to improve the dispensing processing capacity. May be washed in contact with. This case will be described. First, the second reagent probe 214 and related configurations will be described. Although the case of two reagent probes will be described, even if the number of reagent probes is two or more, there is basically no difference in structure or operation.
  • the second reagent probe 214 is a pipe that can accommodate a liquid therein, and is made of a conductive member such as SUS.
  • the second liquid level contact determination unit 211 is equipped with a capacitance sensor, and detects a change in capacitance between the wiring 212 connected to the device GND potential and the wiring 213 by the capacitance sensor.
  • a change in capacitance between the tip 217 of the second reagent probe 214 and the device housing 243 is detected, and the liquid between the cleaning liquid 218 and the tip 217 of the second reagent probe 214 is detected. It is the structure which determines a contact.
  • the second liquid level contact determination unit 211 detects a change in capacitance between the wiring 212 and the device housing 243 having the same potential as the GND by connecting the wiring 213 to the second reagent probe 214. It is possible.
  • the second reagent probe 214 is also shielded by a conductor 216 having a GND potential through the dielectric 215 except for the tip 217 to which the cleaning liquid 218 comes into contact, and the capacitance is stabilized. When not touching, the capacitance (Cp2 in FIG. 4) of the second reagent probe 214 is stabilized at about several tens of pF.
  • the cleaning liquid supply port of the second reagent probe 214 that stores the cleaning liquid 218 in order to bring the cleaning liquid 218 into contact with the tip 217 of the second reagent probe 214 includes partition walls 220, 219, and 223 made of a conductive material, and a pipe 230. Is done. Similarly to the pipe 229, the pipe 230 is configured to supply the cleaning liquid 239 from the syringe 234 as the cleaning liquid 218 to the cleaning liquid supply port through the pipe 231.
  • the cleaning liquid 239 is pushed out from the syringe 235 to push out the cleaning liquid from the partition walls 209, 210, 220, and 219.
  • a waste liquid pipe 228 is provided. The extruded cleaning liquid 208 or cleaning liquid 218 is discarded from the waste liquid pipe 228 through the spaces 225, 226, and 227 formed by the partition walls 222 and 221 made of a conductive material.
  • the cleaning liquid supply port is a separate opening for the first reagent probe 204 and the second reagent probe 214
  • the cleaning liquid supply port is an equivalent circuit as shown in FIG. If there is one opening, it may be one. However, in order to save the cleaning liquid that is in contact with the liquid at a time, it is desirable that the cleaning liquid supply port is a separate supply port that is an opening having a size only around the tip 207 or the tip 217.
  • the timing at which the first reagent probe 204 contacts the cleaning liquid 208 and the timing at which the second reagent probe 214 contacts the cleaning liquid 218 are the same regardless of whether the cleaning liquid supply port is single or plural. Consider the case.
  • the contact of the second reagent probe 214 can be expressed by the switch SWp2, and is electrically connected to the volume resistance R1 of the cleaning liquid 208 by the volume resistance R2 of the cleaning liquid 218.
  • the first liquid level contact determination unit 201 and the second liquid level contact determination unit 211 are directly connected in a circuit.
  • the capacitance sensor provided in the first liquid level contact determination unit 201 or the second liquid level contact determination unit 211 changes the constant voltage or current to the capacitance of the detection target.
  • the capacitance is recognized by measuring the response amount. For this reason, when each electrostatic capacity sensor is directly connected to the circuit, the other sensor responds to the electrostatic capacity applied by the one sensor, and interference occurs where the response cannot be obtained.
  • the electrostatic capacitance C2 cannot be detected correctly, that is, the liquid contact cannot be determined.
  • a wiring is provided between the conductive partition wall 222 electrically connected to the cleaning liquids 208 and 218 and the apparatus housing 243.
  • Charge storage having an auxiliary capacitance having a capacitance value comparable to or higher than the probe capacitance Cp1 of the first reagent probe 204 or the probe capacitance Cp2 of the second reagent probe 214 via the wiring 242 and the wiring 242
  • a portion 240 (corresponding to Cs in FIG. 4) is provided.
  • this charge storage unit 240 By providing this charge storage unit 240, it is possible to avoid a situation in which a very small amount of capacitance due to interference cannot be detected. More specifically, even if each electrostatic capacity sensor is directly connected to the circuit, when the other sensor responds to the electrostatic capacity applied by one sensor, the electrostatic capacity stored in the charge storage unit 240 is stored. Since the charge corresponding to the capacity responds preferentially, the minute capacitance C1 between the partition wall 223 and the apparatus housing 243, which changes when the tip 207 contacts the cleaning liquid 208, or the tip 217 contacts the cleaning liquid 218. It is prevented that the measurement of the minute electrostatic capacitance C2 that changes at the time is affected, and interference does not occur.
  • the reagent probe has a capacitance of several tens of pF
  • a circuit element such as a ceramic capacitor or a chemical capacitor having a capacitance of several tens of pF for the charge storage unit 240. What is necessary is just to be able to ensure a capacity value.
  • a structure in which a conductor plate faces and a dielectric is provided between them may be used.
  • connection destination of the wiring 241 is the partition 222 in FIG. 3, but it is sufficient that the equivalent circuit shown in FIG. 4 is satisfied. For this reason, it can be connected to any location of the partition 221, the partition 209, the partition 210, the partition 220, the partition 219, the partition 223, the piping 229, and the piping 230 that are electrically connected to the cleaning liquid.
  • the above-described automatic analyzer 100 according to the first embodiment of the present invention is provided between the supply port made of a conductive material electrically connected to the cleaning liquids 208 and 218 and the apparatus housing 243, and includes a first reagent probe. 204, a charge storage unit 240 having a capacitance greater than that of the second reagent probe 214 is provided.
  • the charge accumulation unit 240 can electrically separate the capacitive liquid level contact detection circuit provided for each of the first reagent probe 204 and the second reagent probe 214 in terms of operation. Even if the reagent probe 204 and the second reagent probe 214 are simultaneously in contact with the cleaning liquid, it is possible to correctly determine the liquid contact. Therefore, an automatic analyzer capable of quick and highly reliable dispensing is obtained.
  • FIG. 5 is a diagram showing an outline of the configuration of members related to the cleaning tank in the automatic analyzer of this embodiment.
  • symbol is shown to the same structure as FIGS. 1-4, and description is abbreviate
  • all of the partition walls constituting the supply port 251 and the supply port 253 are made of resin or non-conductive members for the purpose of reducing the cost by using a molded product such as a resin material. Is.
  • the cleaning liquid 252 and the cleaning liquid 254 are electrically connected through the cleaning liquid in the pipe 255. Therefore, instead of the charge storage unit 240, the first conductive member 256 is installed in the supply port 253 so as to come into contact with the cleaning liquid 254.
  • an auxiliary device having a capacitance value similar to or higher than the probe capacitance Cp ⁇ b> 1 or the probe capacitance Cp ⁇ b> 2 between the first conductive member 256 and the apparatus housing 260.
  • a charge storage portion 257 (corresponding to Cs in FIG. 4) having a static capacitance is connected by the wiring 258 and the wiring 259.
  • the automatic analyzer according to the second embodiment of the present invention further including a first conductive member 256 that is in contact with the cleaning liquid 254, and a charge storage unit 257 provided between the first conductive member 256 and the apparatus housing 260.
  • substantially the same effect as that of the above-described automatic analyzer of the first embodiment that is, it is possible to correctly determine the liquid contact even when a plurality of probes simultaneously contact the cleaning liquid.
  • the first conductive member 256 can be installed so as to come into contact with the cleaning liquid 252 in the supply port 251.
  • FIG. 6 is a diagram showing an outline of the configuration of members related to the cleaning tank in the automatic analyzer of this embodiment.
  • the automatic analyzer of the present embodiment is also provided with partition walls constituting the supply port 261 and the supply port 263 for the purpose of reducing the cost by using a molded product such as a resin material.
  • partition walls constituting the supply port 261 and the supply port 263 for the purpose of reducing the cost by using a molded product such as a resin material.
  • the cleaning liquid 262 and the cleaning liquid 264 are electrically connected through the cleaning liquid 271 in the pipe 265. Therefore, in place of the charge storage unit 240, the second conductive member 266 made of a conductive material is installed in the middle of the pipe 265 made of a nonconductive material so as to come into contact with the cleaning liquid 271 in the pipe 265.
  • auxiliary capacitance having a capacitance value comparable to or higher than the probe capacitance Cp ⁇ b> 1 or the probe capacitance Cp ⁇ b> 2 between the second conductive member 266 and the apparatus housing 270.
  • a charge storage portion 267 (corresponding to Cs in FIG. 4) having a sufficient capacitance is connected by a wiring 268 and a wiring 269.
  • a second conductive member 266 that is provided in the pipe 265 of the cleaning liquid supply unit and is in contact with the cleaning liquids 262 and 264 is further provided, and a charge storage unit 267 is provided between the second conductive member 266 and the apparatus housing 270.
  • the second conductive member 266 can be installed at a location where the cleaning liquid supply port 261 contacts the cleaning liquid 262 or a location where the cleaning liquid supply port 263 contacts the cleaning liquid 264. Even in these cases, the same effect can be obtained. can get.
  • FIG. 7 is a diagram showing an outline of the configuration of members related to the cleaning tank in the automatic analyzer of this embodiment.
  • the automatic analyzer of the present embodiment also has the supply port 301 and the supply port 303 for the purpose of reducing the cost by using a molded product such as a resin material. All the partition walls are made of resin or non-conductive members.
  • the cleaning liquid 302 and the cleaning liquid 304 are electrically connected through the cleaning liquid in the pipe 305.
  • a conductor 308 having the same potential as the apparatus housing provided in parallel to the supply ports 301 and 303, and a conductor 308 provided between the conductor 308 and the supply ports 301 and 303 are provided.
  • a charge accumulating portion including the dielectric 307 is provided.
  • the charge storage unit is an auxiliary capacitance having a capacitance value (corresponding to Cs in FIG. 4) of the same level as or higher than the probe capacitance Cp1 or the probe capacitance Cp2.
  • the charge storage unit may have any shape and material as long as the capacitance can be secured, but a dielectric 307 is used in order to secure the capacitance stably.
  • the relative dielectric constant is about 1 to 10 for a plastic film or an aluminum oxide film.
  • the dielectric 307 a dielectric having a thickness of about 0.1 mm between conductors 308 having a length of 20 mm and a width of 40 mm is used.
  • the dielectric constant 5 it is possible to obtain a charge storage unit having an electrostatic capacity of about 300 pF in an ideal state.
  • substantially the same effect as the automatic analyzer according to the first embodiment can be obtained.
  • a dielectric 310 and an electrode 309 having the same potential as that of the housing can be further added.
  • FIG. 8 is a diagram showing an outline of the configuration of members related to the cleaning tank in the automatic analyzer of this embodiment.
  • the automatic analyzer of the present embodiment also has the supply port 311 and the supply port 313 for the purpose of reducing the cost by using a molded product such as a resin material. All the partition walls are made of resin or non-conductive members.
  • the cleaning liquid 312 and the cleaning liquid 314 are electrically connected through the cleaning liquid 317 in the non-conductive pipe 315.
  • a conductor 318 having the same potential as that of the device casing provided in parallel to the non-conductive pipe 315 is provided, and the non-conductive pipe 315 itself acts as a dielectric, whereby the device Between the conductor 318 having the same potential as that of the housing and a part of the cleaning liquid 317 of the non-conductive pipe 315, the capacitance value is equal to or higher than the probe capacitance Cp1 or the probe capacitance Cp2 (Cs in FIG. 4). Is provided with a charge accumulating portion.
  • the cleaning liquid supply unit includes a non-conductive pipe 315, and the charge storage unit includes the non-conductive pipe 315 and a conductor 318 having the same potential as the apparatus housing provided in parallel to the non-conductive pipe 315.
  • the automatic analyzer of the fifth embodiment substantially the same effect as the automatic analyzer of the first embodiment described above can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

自動分析装置100は、第1試薬プローブ204が洗浄液208に接触するタイミングと、第2試薬プローブ214が洗浄液218に接触するタイミングとが同時となる場合に備え、洗浄液208,218と電気的に導通している導電性材料からなる供給口と装置筐体243との間に設けられ、第1試薬プローブ204,第2試薬プローブ214の静電容量以上の静電容量を有する電荷蓄積部240を備えている。これにより、複数プローブ間の液面接触判定部どうしの干渉を防ぐことができる。

Description

自動分析装置
 本発明は、血液,尿等の生体試料の定性,定量分析を行う自動分析装置に関する。
 分注動作に伴うプローブ挿入時における液体収容容器の保持機構や収容容器自体等の周囲環境に起因した静電容量変化と、プローブと液体試料との間の静電容量変化とを識別し、そのプローブと液体試料との間の静電容量変化に基づいて正確に液体試料の液面を検知することを目的として、特許文献1には、サンプラーにより保持された液体収容容器内から液体を採取するプローブと、このプローブを保持するアームとを備え、プローブを液体収容容器内へ挿入させていくときのプローブと液体との間の静電容量変化を検知し、この検知結果に基づいて液体の液面を検知するようにした液面検知装置が記載されている。
特開平8-122126号公報
 血液,尿等の生体由来試料中の対象成分の定性・定量分析を行う際に、試料(サンプル)に試薬を添加し、生化学的な反応をさせることによって濃度を測定する自動分析装置がある。この自動分析装置は、測定結果の再現性向上,測定の迅速化が図れるため、大病院,検査センタ等に普及している。その理由の一つとして、自動分析装置には、用手法と比較して生化学的反応や抗原抗体反応に必要なサンプルと試薬とを高精度かつ迅速に自動分注可能な分注機構が組み込まれていることが挙げられる。
 ここで、試薬、サンプルあるいは洗浄試薬等の液体を捕捉する場合、それらのプローブ外壁と内壁への付着量のばらつきが生じると、分注先容器、あるいは次回以降のサンプル容器への確率的な持ち込みが生じることになる。このような持ち込みが生じると、プローブ外壁洗浄不足などを引き起こし、分析再現性のばらつき量増大やサンプル間のクロスコンタミネーション増大を引き起こすことが懸念される。
 そこで、プローブ外壁と内壁への試薬等の付着を低減するため、液面をセンサによって検知し、プローブの試薬あるいはサンプルへの突入量を制御して高精度かつ迅速に分注を行う方法や、プローブ内外壁を効率的に洗浄を行う方法が知られている。
 液面を検知するセンサの例として、上述した特許文献1では、分注プローブを液面検知するための電極とし、もう一方の電極を容器保持架台として、これらの電極間静電容量の変化により容器内の液面を検知する静電容量方式を用いたセンサが記載されている。
 プローブ内外壁を洗浄するために、自動分析装置には洗浄槽が複数設けられている。例えば、プローブを洗浄するための洗浄液供給口を供えた自動分析装置がある。
 このような自動分析装置では、プローブ先端が洗浄液に接触しているかどうかを液面検知センサによって確認することで確実な洗浄が行われているかを確認することで分析結果の信頼性向上を図っている。
 ここで、高精度かつ迅速な分注を目的として、複数プローブを洗浄液供給口の洗浄液に同時に接触する場合がある。この場合、プローブ同士が導電性の洗浄液で直接電気的に接続し、静電容量検知器同士の干渉が発生してしまうことが考えられる。また、複数プローブをそれぞれ別の洗浄液供給口の洗浄液に接触させた場合においても、洗浄液供給口への洗浄液輸送のための配管や、洗浄液供給口から洗浄槽内に廃棄した洗浄液を通して直接電気的に接続し、静電容量検知器同士の干渉が発生してしまうことが考えられる。
 この干渉が発生すると、液面にプローブ先端が接触したか否かを判別することができなくなるため、確実な洗浄を行うためには干渉を防止することがより重要となっていることが分かった。
 本発明は、複数プローブ間の液面接触判定部どうしの干渉を防ぐことができる自動分析装置を提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、反応容器に試料と試薬を各々分注して反応させ、この反応させた液体を測定する自動分析装置であって、試薬や分析対象の試料を反応容器に分注する複数の分注プローブと、前記分注プローブが接触する導電性液体を貯留する供給口と、前記供給口へと繋がる流路を介して前記供給口へ前記導電性液体を供給する導電性液体供給部と、前記複数の分注プローブそれぞれに設けられており、前記分注プローブの先端と前記導電性液体の液面との接触を前記先端と装置筐体との間の静電容量の変化により判定する液面接触判定部と、前記導電性液体と前記装置筐体との間に設けられ、前記分注プローブの静電容量以上の静電容量を有する電荷蓄積部と、を備えたことを特徴とする。
 本発明によれば、複数プローブ間の液面接触判定部どうしの干渉を防ぐことができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。
本発明の実施例1の自動分析装置の構成の概略を示す図である。 実施例1の自動分析装置における分注プローブの構成の概略の一例を示す図である。 実施例1の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。 図3の構成の電気的等価回路を示す図である。 実施例2の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。 実施例3の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。 実施例4の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。 実施例5の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。
 以下に本発明の自動分析装置の実施例を、図面を用いて説明する。
 <実施例1> 
 本発明の自動分析装置の実施例1を、図1乃至図4を用いて説明する。まず自動分析装置の概要について図1および図2を用いて説明する。図1は本実施例における自動分析装置の構造例、図2は分注プローブの構成例を示した図である。
 自動分析装置100は、反応容器104にサンプルと試薬を各々分注して反応させ、反応させた混合液を測定する装置であり、図1に示すように、サンプルプローブ101、反応ディスク103、x移動機構保持部105、第1x方向移動機構106、第2x方向移動機構107、試薬ディスク108、検出器109、洗浄槽110、制御部130等から構成される。
 反応ディスク103には、反応容器104が円周状に並んでいる。反応容器104はサンプル102と試薬とを混合させた混合液を収容するための容器であり、反応ディスク103上に複数並べられている。
 反応ディスク103とサンプル102との間には、回転および上下動可能なサンプルプローブ101が配置されている。サンプルプローブ101はサンプル102を吸引し、反応ディスク103上の反応容器104に分注する。なお、サンプルプローブ101が一本の場合を図示したが、サンプルプローブ101は複数本設けることができる。
 試薬ディスク108は、その中に試薬を収容した試薬ボトル112、第1試薬ボトル113、第2試薬ボトル114、第3試薬ボトル115、第4試薬ボトル116を複数個円周上に載置可能となっている保管庫である。試薬ディスク108は保冷されている。
 反応ディスク103と試薬ディスク108との間には、水平方向への回転移動および上下動作が可能に構成され、図2に示すような、試薬ボトル112等から反応容器104に試薬を分注するための第1試薬プローブ204,第2試薬プローブ214が設置されている。
 図2に示すように、第1試薬プローブ204は第1試薬プローブ保持部122に保持されており、第1z方向移動機構121によって下降動作が可能となっている。第2試薬プローブ214は第2試薬プローブ保持部128に保持されており、第2z方向移動機構126によって下降動作が可能となっている。
 第1z方向移動機構121はx移動機構保持部105上の第1x方向移動機構106によって移動し、第2z方向移動機構126はx移動機構保持部105上の第2x方向移動機構107によって移動し、反応ディスク103上と回転する試薬ディスク108によって任意の箇所に位置する試薬ボトル112上などとの間を移動することができる。
 第1試薬プローブ保持部122には第1液面接触判定部201が保持されており、第1試薬プローブ204と第1液面接触判定部201とは配線203で電気的に接続されている。第2試薬プローブ保持部128には第2液面接触判定部211が保持されており、第2試薬プローブ214と第2液面接触判定部211とは配線213で電気的に接続されている。
 第1液面接触判定部201は、第1試薬プローブ204の先端と試薬ボトル112等内の試薬との接触を、その先端と自動分析装置の筐体との間の静電容量の変化により判定する。第2液面接触判定部211は、第2試薬プローブ214の先端と試薬ボトル112等内の試薬との接触を、その先端と自動分析装置の筐体との間の静電容量の変化により判定する。
 検出器109は、反応容器104で反応させた混合液中の対象物質濃度に応じた信号量を検出するためのユニットである。
 制御部130は、コンピュータ等から構成され、自動分析装置内の各機構の動作を制御するとともに、サンプル中の所定の成分の濃度を求める演算処理を行う。
 以上が自動分析装置100の一般的な構成である。
 上述のような自動分析装置100によるサンプル102の分析処理は、一般的に以下の順に従い実行される。
 まず、反応ディスク103近くのサンプル102を、サンプルプローブ101により反応ディスク103上の反応容器104へと分注する。
 次に、分析に使用する試薬を、試薬ディスク108上の第1試薬ボトル113、第2試薬ボトル114から第1試薬プローブ204、第2試薬プローブ214により先にサンプル102を分注した反応容器104に対して分注する。
 より具体的には、第1試薬プローブ204は第1x方向移動機構106によって第1試薬ボトル113、第2試薬ボトル114の上部へ移動した後、第1z方向移動機構121によって下降動作する。第2x方向移動機構107によって第2試薬プローブ214は第1試薬ボトル113、第2試薬ボトル114の上部へ移動した後、第2z方向移動機構126によって下降動作する。
 第1試薬プローブ204が第1試薬ボトル113や第2試薬ボトル114内の試薬の液面に接触し、第1液面接触判定部201によって液を検知した時点で第1z方向移動機構121は動作停止し、試薬を吸引する。第2試薬プローブ214では、第1試薬ボトル113や第2試薬ボトル114内の試薬の液面に接触し、第2液面接触判定部211によって液を検知した時点で第2z方向移動機構126は動作停止し、試薬を吸引する。
 試薬を吸引後、第1試薬プローブ204は第1z方向移動機構121によって上昇した後、第1x方向移動機構106によって反応ディスク103上に移動し、反応容器104へ試薬を吐出する。第2試薬プローブ214は第2z方向移動機構126によって上昇した後、第2x方向移動機構107によって反応ディスク103上に移動し、反応容器104へ試薬を吐出する。
 続いて、反応容器104内でサンプル102と試薬とを一定時間反応させる。
 その後、検出器109によって反応後の混合液中の対象物質濃度に応じた信号量を検出し、制御部130によって演算処理を行うことでサンプル102中の所定成分の濃度を求める。
 上述のように、試薬ボトル112は試薬ディスク108内に複数本設置されており、自動分析装置100では、第1x方向移動機構106、第2x方向移動機構107の軌道上に試薬ディスク108を回転させて任意の試薬ボトル112を移動させることによって、第1試薬プローブ204、第2試薬プローブ214による任意の試薬ボトル112からの試薬の吸引を可能としている。
 分析の際に第3試薬ボトル115や第4試薬ボトル116から試薬を吸引する場合、あるいは次のサンプル102の分析を行う場合には、洗浄槽110において第1試薬プローブ204および第2試薬プローブ214の内外を蒸留水で前回試薬を洗い流すことで洗浄した後、吸引を行う。
 特に異なる試薬ボトル間で試薬の吸引を行う場合、蒸留水では洗浄効率が悪く、前回吸引試薬を今回吸引試薬に持ち越すことで分析結果の信頼性が損なわれることが懸念される場合がある。この場合、第1試薬プローブ204および第2試薬プローブ214の試薬吸引を行った先端に専用の洗浄液を接触させることで洗浄効率を向上させることが行われる。その洗浄槽110の詳細な構成について、図3および図4を用いて説明する。図3は洗浄槽110と関連する部材の構成の概略を示す図、図4は図3の構成の電気的等価回路を示す図である。
 まず、第1試薬プローブ204や第2試薬プローブ214の先端に液が接触したかどうかを判定する構成について説明する。なお、図3では第1試薬プローブ204や第2試薬プローブ214の断面を示している。
 図3において、第1試薬プローブ204は液体を内部に収容可能な配管となっており、SUS等の導電性部材でできている。第1液面接触判定部201は、静電容量センサを搭載しており、装置GND電位に接続した配線202と、配線203との間の静電容量の変化を静電容量センサにて検出することで、第1試薬プローブ204の先端207と装置筐体243との静電容量の変化を検出して、洗浄液208と第1試薬プローブ204の先端207との液接触を判定する構成となっている。
 第1液面接触判定部201では、配線203を第1試薬プローブ204と接続することで、配線202と同電位のGND電位としている装置筐体243との間の静電容量の変化を検出することが可能となっている。
 第1試薬プローブ204の先端207が導電性の液体である洗浄液208に接触した場合(すなわち、図4での等価回路スイッチSWp1が閉じた場合に相当する)、導電性の液体の体積抵抗(図4中のR1)を通して導電性の液体を収容する容器表面と筐体との間の静電容量(図4中のC1)分だけ変化する。導電性の液体を収容する容器表面と筐体との間の静電容量は数pFであるが、例えば1pFの規定の閾値以上の静電容量が増加したことを検出することで、第1試薬プローブ204の先端207に導電性の洗浄液208が接触しているかどうかを判別することができる。
 なお、上述の説明では、導電性液体を、第1試薬プローブ204の先端207を洗浄するための洗浄液208としたが、導電性の液体は導電性であればよく、上述したような試薬ボトル112等に収容された反応に用いる分析試薬や、分注プローブを複数のサンプルプローブ101としたサンプル102とすることができる。
 ここで、第1試薬プローブ204は、微量な分量の試薬の分注を実施することから、管の内径が直径1mm以内と細くなっている。その場合、例えば配管内に100μl程度の収容液量を確保するためには、配管長は10cm以上確保する必要がある。第1試薬プローブ204の表面が露出している場合、第1試薬プローブ204の移動を伴った試薬吸引時において筐体周辺構造物との間の静電容量変化が不安定になる。そこで、第1試薬プローブ204の洗浄液208が接触する先端207以外は誘電体205を介してGND電位とした導電体206でシールドし、静電容量の安定化を行い、第1試薬プローブ204が液に接触していないときは第1試薬プローブ204の静電容量(図4中のCp1)を数十pF程度で安定させることとしている。
 また、洗浄液208を第1試薬プローブ204の先端207に接触させるために洗浄液208を貯留する洗浄液供給口は、導電性材料からなる隔壁209,210,221,223と、廃液管228と、配管229とで構成される。
 なお、洗浄液供給口の第1試薬プローブ204の先端207がアクセスするための上部側開口は、隔壁209と隔壁210により洗浄液208を保持し、上方より下降動作で接近する第1試薬プローブ204の先端207に洗浄液208を接触させることができる開口を持った構造であればどのような形状のものでもよく、隔壁209と隔壁210は同一の筒を構成する一部分としてもよい。
 洗浄液供給口では、連続的に洗浄液208を供給するために、図3で示すように洗浄液供給口に配管229で流路接続する構造となっている。洗浄液208は、開閉弁236を開放して開閉弁232を閉じた状態でシリンジ235を引くことで、洗浄液239を収容している洗浄液ボトル238から配管237を介してシリンジ内234に洗浄液239を必要な量収容する。次に開閉弁236を閉じて開閉弁232を開放した状態でシリンジ235を押すことで、配管231、配管229を通して洗浄液239を洗浄液供給口に洗浄液208として供給することができる。これら配管231、開閉弁232、シリンジ235、開閉弁236、配管237、洗浄液ボトル238により、洗浄液供給部は構成される。
 また、図3に示すように、第1試薬プローブ204に加えて、自動分析装置100では、2本目である第2試薬プローブ214についても分注処理能力向上のため、同時に洗浄液供給口の洗浄液218と接触させ洗浄を行うことがある。この場合について説明する。まず第2試薬プローブ214および関連する構成について説明する。なお、2本の試薬プローブの場合を説明するが、試薬プローブの数が2以上であっても、構造や動作等は基本的に違いはない。
 図3に示すように、第2試薬プローブ214は液体を内部に収容可能な配管となっており、SUS等の導電性部材でできている。第2液面接触判定部211は、静電容量センサを搭載しており、装置GND電位に接続した配線212と、配線213との間の静電容量の変化を静電容量センサにて検出することで、複数の分注プローブのそれぞれにおいて第2試薬プローブ214の先端217と装置筐体243との静電容量の変化を検出して、洗浄液218と第2試薬プローブ214の先端217との液接触を判定する構成となっている。
 第2液面接触判定部211では、配線213を第2試薬プローブ214と接続することで、配線212と同電位のGND電位としている装置筐体243との間の静電容量の変化を検出することが可能となっている。第2試薬プローブ214についても、洗浄液218が接触する先端217以外は誘電体215を介してGND電位とした導電体216でシールドし、静電容量の安定化を行い、第2試薬プローブ214が液に接触していないときは第2試薬プローブ214の静電容量(図4中のCp2)を数十pF程度で安定させることとしている。
 洗浄液218を第2試薬プローブ214の先端217に接触させるために洗浄液218を貯留する第2試薬プローブ214の洗浄液供給口は、導電性材料からなる隔壁220,219,223と、配管230とで構成される。配管230は配管229と同様に配管231を通してシリンジ内234から洗浄液239を洗浄液218として洗浄液供給口へ供給することができるよう構成されている。
 第1試薬プローブ204への洗浄液208および第2試薬プローブ214への洗浄液218を新しい洗浄液に置換する場合、シリンジ235から洗浄液239を押しだすことで隔壁209,210,220,219から洗浄液を押し出すことを実施する。そのために廃液管228が設けられている。押し出された洗浄液208もしくは洗浄液218は、導電性材料からなる隔壁222,221で構成された空間225,226,227を通して廃液管228から廃棄される。
 なお、洗浄液供給口が、第1試薬プローブ204と第2試薬プローブ214に対してそれぞれ別々の開口としている場合について説明しているが、図4で示されるような等価回路となる洗浄液供給口であれば、開口が一つでもよい。ただし、一度に接液させる洗浄液を節約するため、洗浄液供給口は先端207や先端217のわずかな周辺のみの大きさとする開口としたそれぞれ別とした供給口とすることが望ましい。
 ここで、洗浄液供給口が一つであるか複数であるかに関わらず、第1試薬プローブ204が洗浄液208に接触するタイミングと、第2試薬プローブ214が洗浄液218に接触するタイミングとが同時となる場合を考える。
 この場合、等価回路は図4で示すように、第2試薬プローブ214の接触はスイッチSWp2で表現でき、洗浄液218の体積抵抗R2によって洗浄液208の体積抵抗R1と電気的に接続する。
 このような状態では、第1液面接触判定部201と第2液面接触判定部211とが直接回路的に接続することになる。ここで、上述のように、第1液面接触判定部201や第2液面接触判定部211内に設けられている静電容量センサは、一定の電圧もしくは電流を検知対象の静電容量に対して印加して、応答量を測定することで静電容量を認識するものである。このため、それぞれの静電容量センサが直接回路接続すると、一方のセンサが印加する静電容量を他方のセンサが応答してしまい、応答が得られなくなる干渉が起こる。このような状態となると、先端207が洗浄液208に接触することで変化する隔壁223と装置筐体243間の微少な静電容量C1、もしくは先端217が洗浄液218に接触することで変化する微少な静電容量C2を正しく検出することができない、つまりは液接触を判定することができなくなってしまう。
 そこで、本実施例の洗浄槽110では、図4に示す等価回路で示すように、洗浄液208,218と電気的に導通している導電性の隔壁222と装置筐体243との間に、配線241および配線242を介して第1試薬プローブ204のプローブ容量Cp1もしくは第2試薬プローブ214のプローブ容量Cp2と同程度かそれ以上の静電容量値をもった補助的な静電容量を有する電荷蓄積部240(図4中のCsに相当)を設けている。
 この電荷蓄積部240を設けることにより、干渉発生による微量の静電容量を検知できない事態を回避することが可能となる。より具体的には、それぞれの静電容量センサが直接回路接続したとしても、一方のセンサによって印加された静電容量を他方のセンサが応答する際に、電荷蓄積部240に蓄積される静電容量分の電荷が優先して応答するため、先端207が洗浄液208に接触することで変化する隔壁223と装置筐体243間の微少な静電容量C1、もしくは先端217が洗浄液218に接触することで変化する微少な静電容量C2の測定に影響が及ぶことが防止され、干渉が生じなくなる。
 試薬プローブの静電容量は数十pFであることから、電荷蓄積部240は数十pFの静電容量を有するセラミックコンデンサやケミカルコンデンサ等の回路素子を用いることが望ましいが、物理的に静電容量値を確保できるものであればよい。例えば、導体板を対面させ、その間に誘電体を設ける構造を用いることでもよい。
 配線241の接続先は図3では隔壁222としているが、図4に示す等価回路を満たす状態とできればよい。このため、洗浄液と電気的に接続している、隔壁221、隔壁209、隔壁210、隔壁220、隔壁219、隔壁223および配管229、配管230のいずれの場所に接続することができる。
 次に、本実施例の効果について説明する。
 上述した本発明の実施例1の自動分析装置100は、洗浄液208,218と電気的に導通している導電性材料からなる供給口と装置筐体243との間に設けられ、第1試薬プローブ204,第2試薬プローブ214の静電容量以上の静電容量を有する電荷蓄積部240を備えている。
 本構成により、電荷蓄積部240によって、第1試薬プローブ204,第2試薬プローブ214ごとに設けられた静電容量方式の液面接触検出回路を動作上電気的に独立させることができ、第1試薬プローブ204,第2試薬プローブ214が同時に洗浄液に接触したとしても、液接触を正しく判定することができる。従って、迅速かつ高信頼性の分注が可能な自動分析装置となる。
 そのうえ、洗浄用洗浄液を収容した試薬ボトル内の洗浄試薬を使いきり、ボトルを交換するときに誤って泡がプローブ内の配管の内に混入することがある。このとき洗浄液供給口に洗浄液が十分満たされず、プローブ先端の洗浄液に接触せず洗浄液吸引を行ってしまう懸念があるが、本実施例の自動分析装置であれば、このような懸念が生じることも防止することができる。
 <実施例2> 
 本発明の実施例2の自動分析装置を図5を用いて説明する。図5は本実施例の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。なお、図1乃至図4と同じ構成には同一の符号を示し、説明は省略する。以下の実施例においても同様とする。
 本実施例の自動分析装置では、樹脂材料等の成型品を用いることでコスト低減を行うことを目的として、供給口251や供給口253を構成する隔壁を全て樹脂もしくは非導電性の部材としたものである。
 この場合においても、図5に示すように、洗浄液252と洗浄液254とは、配管255内の洗浄液を通して電気的に接続している。このため、電荷蓄積部240に替わって、供給口253に第1導電性部材256を洗浄液254と接触するよう設置する。その上で、図5に示すように、この第1導電性部材256と装置筐体260との間に、プローブ容量Cp1もしくはプローブ容量Cp2と同程度かそれ以上の静電容量値をもった補助的な静電容量を有する電荷蓄積部257(図4中のCsに相当)を配線258と配線259とで接続する。
 その他の構成・動作は前述した実施例1の自動分析装置と略同じ構成・動作であり、詳細は省略する。
 洗浄液254と接触している第1導電性部材256を更に備え、電荷蓄積部257が第1導電性部材256と装置筐体260との間に設けられた本発明の実施例2の自動分析装置においても、前述した実施例1の自動分析装置とほぼ同様な効果、すなわち、複数のプローブが同時に洗浄液に接触しても液接触を正しく判定することが可能である、との効果が得られる。
 なお、第1導電性部材256は、供給口251内の洗浄液252と接触するように設置することができる。
 <実施例3> 
 本発明の自動分析装置の実施例3を図6を用いて説明する。図6は本実施例の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。
 本実施例の自動分析装置も、実施例2の自動分析装置と同様に、樹脂材料等の成型品を用いることでコスト低減を行うことを目的として、供給口261や供給口263を構成する隔壁を全て樹脂もしくは非導電性の部材としたものである。
 この場合においても、図6に示すように、洗浄液262と洗浄液264とは、配管265内の洗浄液271を通して電気的に接続している。このため、電荷蓄積部240に替わって、非導電性材料からなる配管265の途中に、導電性材料からなる第2導電性部材266を配管265内の洗浄液271と接触するよう設置する。その上で、図6に示すように、第2導電性部材266と装置筐体270との間に、プローブ容量Cp1もしくはプローブ容量Cp2と同程度かそれ以上の静電容量値をもった補助的な静電容量を有する電荷蓄積部267(図4中のCsに相当)を配線268と配線269とで接続する。
 その他の構成・動作は前述した実施例1の自動分析装置と略同じ構成・動作であり、詳細は省略する。
 洗浄液供給部の配管265に設けられ、洗浄液262,264と接触している第2導電性部材266を更に備え、電荷蓄積部267が第2導電性部材266と装置筐体270との間に設けられた本発明の実施例3の自動分析装置においても、前述した実施例1の自動分析装置とほぼ同様な効果が得られる。
 なお、第2導電性部材266は、洗浄液供給口261の洗浄液262と接触する箇所、若しくは洗浄液供給口263の洗浄液264と接触する箇所に設置することができ、これらの場合でも、同様の効果が得られる。
 <実施例4> 
 本発明の実施例4の自動分析装置を図7を用いて説明する。図7は本実施例の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。
 本実施例の自動分析装置も、実施例2,3の自動分析装置と同様に、樹脂材料等の成型品を用いることでコスト低減を行うことを目的として、供給口301や供給口303を構成する隔壁を全て樹脂もしくは非導電性の部材としたものである。
 この場合においても、図7に示すように、洗浄液302と洗浄液304とは、配管305内の洗浄液を通して電気的に接続している。このため、電荷蓄積部240に替わって、供給口301,303に平行に設けられた装置筐体と同電位とした導体308と、この導体308と供給口301,303との間に設けられた誘電体307とからなる電荷蓄積部を設ける。電荷蓄積部は、プローブ容量Cp1もしくはプローブ容量Cp2と同程度かそれ以上の静電容量値(図4中のCsに相当)をもった補助的な静電容量とする。この電荷蓄積部は、静電容量を確保できればどのような形状・材質でもよいが、安定して静電容量を確保するために、誘電体307を用いている。例えば比誘電率はプラスチックフィルムや酸化アルミ膜で1~10程度であることが知られているが、誘電体307として、縦20mm横40mmの導体308間に厚さ0.1mm程度の誘電体(比誘電率5)を使用した場合、理想状態で静電容量が300pF程度の電荷蓄積部とすることが可能である。
 その他の構成・動作は前述した実施例1の自動分析装置と略同じ構成・動作であり、詳細は省略する。
 電荷蓄積部として、供給口301,303に平行に設けられた装置筐体と同電位の導体308と、導体308と供給口301,303との間に設けられた誘電体307と、を設ける本発明の実施例4の自動分析装置においても、前述した実施例1の自動分析装置とほぼ同様な効果が得られる。
 なお、電荷蓄積部の静電容量をさらに増やしたい場合は、図7に示すように、誘電体310と、筐体と同電位として電極309とを更に加えることができる。
 <実施例5> 
 本発明の実施例5の自動分析装置を図8を用いて説明する。図8は本実施例の自動分析装置における洗浄槽と関連する部材の構成の概略を示す図である。
 本実施例の自動分析装置も、実施例2-4の自動分析装置と同様に、樹脂材料等の成型品を用いることでコスト低減を行うことを目的として、供給口311や供給口313を構成する隔壁を全て樹脂もしくは非導電性の部材としたものである。
 この場合においても、図8に示すように、洗浄液312と洗浄液314とは、非導電性配管315内の洗浄液317を通して電気的に接続している。このため、電荷蓄積部240に替わって、非導電性配管315に平行に設けられた装置筐体と同電位の導体318を設け、非導電性配管315自体を誘電体として作用させることで、装置筐体と同電位とした導体318と非導電性配管315の一部の洗浄液317との間に、プローブ容量Cp1もしくはプローブ容量Cp2と同程度かそれ以上の静電容量値(図4中のCsに相当)をもった電荷蓄積部を設ける。
 その他の構成・動作は前述した実施例1の自動分析装置と略同じ構成・動作であり、詳細は省略する。
 洗浄液供給部は非導電性配管315からなり、電荷蓄積部が、非導電性配管315と、非導電性配管315に平行に設けられた装置筐体と同電位の導体318と、からなる本発明の実施例5の自動分析装置においても、前述した実施例1の自動分析装置とほぼ同様な効果が得られる。
 <その他> 
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
100…自動分析装置
101…サンプルプローブ
102…サンプル
103…反応ディスク
104…反応容器
105…x移動機構保持部
106…第1x方向移動機構
107…第2x方向移動機構
108…試薬ディスク
109…検出器
110…洗浄槽
112…試薬ボトル
113…第1試薬ボトル
114…第2試薬ボトル
115…第3試薬ボトル
116…第4試薬ボトル
121…第1z方向移動機構
122…第1試薬プローブ保持部
126…第2z方向移動機構
128…第2試薬プローブ保持部
130…制御部
201…第1液面接触判定部
202,203,212,213…配線
204…第1試薬プローブ
205,215…誘電体
206,216…導電体
207,217…先端
208,218,234,239,252,254,262,264,271,302,304,312,314,317…洗浄液
209,210,219,220,221,222,223…隔壁
211…第2液面接触判定部
214…第2試薬プローブ
225,226,227…空間
228…廃液管
229,230,231,237…配管
232,236…開閉弁
235…シリンジ
238…洗浄液ボトル
240,257,267…電荷蓄積部
241,242,258,259,268,269…配線
243,260,270…装置筐体
251,253,261,263,301,303,311,313…供給口
255,265,305…配管
256…第1導電性部材
266…第2導電性部材
307,310…誘電体
308,318…導体
309…電極
315…非導電性配管

Claims (6)

  1.  反応容器に試料と試薬を各々分注して反応させ、この反応させた液体を測定する自動分析装置であって、
     試薬や分析対象の試料を反応容器に分注する複数の分注プローブと、
     前記分注プローブが接触する導電性液体を貯留する供給口と、
     前記供給口へと繋がる流路を介して前記供給口へ前記導電性液体を供給する導電性液体供給部と、
     前記複数の分注プローブそれぞれに設けられており、前記分注プローブの先端と前記導電性液体の液面との接触を前記先端と装置筐体との間の静電容量の変化により判定する液面接触判定部と、
     前記導電性液体と前記装置筐体との間に設けられ、前記分注プローブの静電容量以上の静電容量を有する電荷蓄積部と、を備えた
     ことを特徴とする自動分析装置。
  2.  請求項1に記載の自動分析装置において、
     前記供給口は導電性材料からなり、
     前記電荷蓄積部は、前記導電性液体と電気的に導通している前記供給口と前記装置筐体との間に設けられた
     ことを特徴とする自動分析装置。
  3.  請求項1に記載の自動分析装置において、
     前記導電性液体と接触している第1導電性部材を更に備え、
     前記電荷蓄積部は、前記第1導電性部材と前記装置筐体との間に設けられた
     ことを特徴とする自動分析装置。
  4.  請求項1に記載の自動分析装置において、
     前記供給口または前記導電性液体供給部に設けられ、前記導電性液体と接触している第2導電性部材を更に備え、
     前記電荷蓄積部は、前記第2導電性部材と前記装置筐体との間に設けられた
     ことを特徴とする自動分析装置。
  5.  請求項1に記載の自動分析装置において、
     前記電荷蓄積部は、前記供給口に平行に設けられた前記装置筐体と同電位の導体と、この導体と前記供給口との間に設けられた誘電体と、からなる
     ことを特徴とする自動分析装置。
  6.  請求項1に記載の自動分析装置において、
     前記導電性液体供給部は非導電性部材からなり、
     前記電荷蓄積部は、前記導電性液体供給部と、前記導電性液体供給部に平行に設けられた前記装置筐体と同電位の導体と、からなる
     ことを特徴とする自動分析装置。
PCT/JP2017/002306 2016-03-24 2017-01-24 自動分析装置 WO2017163582A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/086,699 US10884009B2 (en) 2016-03-24 2017-01-24 Automated analyzer
EP17769629.1A EP3435093B1 (en) 2016-03-24 2017-01-24 Automated analyzer
JP2018507073A JP6563114B2 (ja) 2016-03-24 2017-01-24 自動分析装置
CN201780017723.4A CN108780109B (zh) 2016-03-24 2017-01-24 自动分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-060068 2016-03-24
JP2016060068 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163582A1 true WO2017163582A1 (ja) 2017-09-28

Family

ID=59899964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002306 WO2017163582A1 (ja) 2016-03-24 2017-01-24 自動分析装置

Country Status (5)

Country Link
US (1) US10884009B2 (ja)
EP (1) EP3435093B1 (ja)
JP (1) JP6563114B2 (ja)
CN (1) CN108780109B (ja)
WO (1) WO2017163582A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199432A1 (ja) * 2016-05-20 2017-11-23 株式会社島津製作所 前処理装置及びその前処理装置を備えた分析システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322286A (ja) * 2006-06-01 2007-12-13 Olympus Corp 分注装置
JP2008309777A (ja) * 2007-05-15 2008-12-25 Hitachi High-Technologies Corp 液体分注装置
US20110102004A1 (en) * 2009-11-02 2011-05-05 Schoeni Markus Method for testing a laboratory device and correspondingly equipped laboratory device
WO2012105398A1 (ja) * 2011-01-31 2012-08-09 株式会社日立ハイテクノロジーズ 自動分析装置
JP2016014578A (ja) * 2014-07-02 2016-01-28 株式会社日立ハイテクノロジーズ 自動分析装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122126A (ja) 1994-10-20 1996-05-17 Toshiba Corp 液面検知装置
JP3158054B2 (ja) * 1996-07-19 2001-04-23 株式会社日立製作所 液体採取装置
EP0913671A1 (de) * 1997-10-29 1999-05-06 Roche Diagnostics GmbH Verfahren und Vorrichtung zum Flüssigkeitstransfer mit einem Analysegerät
US20070166194A1 (en) * 2003-08-27 2007-07-19 Koichi Wakatake Automatic blood analyzer
JP2007114192A (ja) * 2005-09-26 2007-05-10 Fujifilm Corp 液面検知装置
JP2010216954A (ja) * 2009-03-16 2010-09-30 Toshiba Corp 吸引装置および分析装置
EP2746777A3 (en) * 2010-07-23 2014-08-27 Beckman Coulter, Inc. System or method of including analytical units
CH705108A2 (de) * 2011-06-03 2012-12-14 Tecan Trading Ag Verfahren und Vorrichtung zum Prüfen einer kapazitiv arbeitenden Messvorrichtung, die für die Detektion von Phasengrenzen ausgelegt ist, und entsprechend ausgestattetes Laborgerät.
EP2741087B1 (en) 2012-12-04 2019-10-02 F. Hoffmann-La Roche AG Method and system for fluid surface detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322286A (ja) * 2006-06-01 2007-12-13 Olympus Corp 分注装置
JP2008309777A (ja) * 2007-05-15 2008-12-25 Hitachi High-Technologies Corp 液体分注装置
US20110102004A1 (en) * 2009-11-02 2011-05-05 Schoeni Markus Method for testing a laboratory device and correspondingly equipped laboratory device
WO2012105398A1 (ja) * 2011-01-31 2012-08-09 株式会社日立ハイテクノロジーズ 自動分析装置
JP2016014578A (ja) * 2014-07-02 2016-01-28 株式会社日立ハイテクノロジーズ 自動分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435093A4 *

Also Published As

Publication number Publication date
US10884009B2 (en) 2021-01-05
EP3435093B1 (en) 2022-03-09
EP3435093A1 (en) 2019-01-30
JPWO2017163582A1 (ja) 2018-12-27
US20190107549A1 (en) 2019-04-11
JP6563114B2 (ja) 2019-08-21
CN108780109B (zh) 2022-03-08
CN108780109A (zh) 2018-11-09
EP3435093A4 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
US7150190B2 (en) Method and apparatus for capacitively determining the uppermost level of a liquid in a container
JP4938082B2 (ja) 洗浄装置、吸引ノズルの詰り検知方法及び自動分析装置
EP0819942B1 (en) Apparatus for transferring liquid having liquid level sensing function
US9733115B2 (en) Analyzer, and method of detection liquid level in an analyzer
CN101377520B (zh) 自动分析装置
US11311872B2 (en) Pipetting device comprising a fluid volume sensor and fluid processing system
JP4938083B2 (ja) 洗浄装置、洗浄ノズルの詰り検知方法及び自動分析装置
JP4373427B2 (ja) 電気的滴下監視
US9213011B2 (en) Method and system for discriminating bulk liquid from foam and residuals of the bulk liquid
US11291988B2 (en) Pipette tip for an automated pipetting device
EP2726884B1 (en) Low carryover liquid handling probe for an automated analyzer
JPH0510958A (ja) 分析装置
JP2010071765A (ja) 分注プローブ洗浄方法および自動分析装置
JP6563114B2 (ja) 自動分析装置
JP5231186B2 (ja) 検体分注方法および分析装置
US11471876B2 (en) Pipetting apparatus with a pipette tube and method for detecting a liquid within an intermediate section of a pipette tube
JP3200048B2 (ja) 液面検出装置
JP2001004641A (ja) 液面検出機能を備えた自動分析装置
US20230168268A1 (en) Leakage test
CN112534270B (zh) 操作实验室仪器的方法
JPH01216268A (ja) 液体分注装置
JPH0577765U (ja) 自動化学分析装置のサンプリング装置
JP2009281877A (ja) 分注装置
CN112534270A (zh) 操作实验室仪器的方法
JP2002055111A (ja) 試薬の分取ミス検知装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507073

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017769629

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769629

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769629

Country of ref document: EP

Kind code of ref document: A1