WO2017163546A1 - Genetically-modified crop detection method - Google Patents

Genetically-modified crop detection method Download PDF

Info

Publication number
WO2017163546A1
WO2017163546A1 PCT/JP2017/000885 JP2017000885W WO2017163546A1 WO 2017163546 A1 WO2017163546 A1 WO 2017163546A1 JP 2017000885 W JP2017000885 W JP 2017000885W WO 2017163546 A1 WO2017163546 A1 WO 2017163546A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
base sequence
seq
set forth
detecting
Prior art date
Application number
PCT/JP2017/000885
Other languages
French (fr)
Japanese (ja)
Inventor
聡 野間
洋介 菊池
真名美 西
聖子 宮武
Original Assignee
株式会社日清製粉グループ本社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日清製粉グループ本社 filed Critical 株式会社日清製粉グループ本社
Priority to JP2018507059A priority Critical patent/JP7091237B2/en
Priority to CN201780007479.3A priority patent/CN108474045A/en
Publication of WO2017163546A1 publication Critical patent/WO2017163546A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a method for detecting a genetically modified crop and a reagent kit for detecting a genetically modified crop.
  • Genetically modified crops that have been developed using genetically modified technology are used as food.
  • many genetically modified crops such as corn, soybeans, rapeseed, cottonseed (cotton), potatoes, etc. are approved for import and sale after a safety review.
  • a labeling system is provided for genetically modified crops and foods made from them, and labeling is mandatory for designated genetically modified crops and processed foods thereof (Non-Patent Documents 1 and 2).
  • genetically modified crops and non-genetically modified crops may be cultivated in nearby places or used in the same processing plant. Therefore, even if a small amount of genetically modified crops and processed foods derived from them are mixed and processed foods using only non-genetically modified crop ingredients and non-genetically modified crops, recombinant DNA derived from genetically modified crops May be detected.
  • Methods for detecting genetically modified crops in test samples such as agricultural products and foods using the same include methods for detecting recombinant DNA by polymerase chain reaction (hereinafter referred to as “PCR”) and enzyme-linked immunosorbent methods. Although there are methods for detecting recombinant proteins, etc., detection by PCR is generally performed, and Non-Patent Document 3 also describes inspection analysis of genetically modified crops using PCR. In order to examine whether or not a genetically modified crop is mixed in a test sample by PCR, a method of amplifying a partial base sequence of recombinant DNA introduced by a genetic recombination technique is common.
  • DREB Dehydration Responsive Element Binding Protein
  • the present invention provides the following (1) to (4).
  • a method for detecting a genetically modified crop by PCR which can specifically amplify a partial sequence of a DREB gene derived from soybean using a nucleic acid in a test sample or a nucleic acid extracted from the test sample as a template.
  • a method for detecting a genetically modified crop (hereinafter referred to as the first method), which comprises a step of amplifying a nucleic acid having a partial sequence of the DREB gene derived from soybean and a step of detecting the amplified nucleic acid, using a simple primer pair.
  • the term invention refers to this invention).
  • a method for detecting a genetically modified crop by PCR which can specifically amplify a partial sequence of the DREB gene derived from cotton using a nucleic acid in a test sample or a nucleic acid extracted from the test sample as a template
  • a method for detecting a genetically modified crop comprising a step of amplifying a nucleic acid having a partial sequence of the DREB gene derived from cotton using a simple primer pair, and a step of detecting the amplified nucleic acid.
  • second a method for detecting a genetically modified crop (hereinafter referred to as “second”), comprising a step of amplifying a nucleic acid having a partial sequence of the DREB gene derived from cotton using a simple primer pair, and a step of detecting the amplified nucleic acid.
  • the term invention refers to this invention).
  • a reagent kit for detecting or quantifying a genetically modified crop introduced with soybean-derived DREB gene by PCR comprising a nucleic acid comprising the base sequence set forth in SEQ ID NO: 1, the sequence set forth in SEQ ID NO: 1 A nucleic acid containing at least 80% of the base sequence in the base sequence, or a nucleic acid hybridizing to a nucleic acid containing the base sequence shown in SEQ ID NO: 3 and a nucleic acid containing the base sequence shown in SEQ ID NO: 2, SEQ ID NO: 2
  • a reagent kit comprising a primer pair consisting of a nucleic acid comprising at least 80% of the continuous nucleotide sequence in the nucleotide sequence described in the above, or a nucleic acid hybridizing to the nucleic acid comprising the nucleotide sequence described in SEQ ID NO: 4 (Three inventions refer to this invention).
  • a reagent kit for detecting or quantifying a genetically modified crop introduced with a cotton-derived DREB gene by PCR comprising a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 6, A nucleic acid containing at least 80% of the base sequence in the base sequence, or a nucleic acid hybridizing to a nucleic acid containing the base sequence shown in SEQ ID NO: 8, and a nucleic acid containing the base sequence shown in SEQ ID NO: 7, SEQ ID NO: 7
  • a reagent kit comprising a primer pair consisting of a nucleic acid comprising at least 80% of the base sequence described in the above, or a nucleic acid hybridizing to a nucleic acid comprising the base sequence described in SEQ ID NO: 9
  • the term “four inventions” means this invention).
  • Patent Document 1 also does not describe a method for specifically detecting the DREB gene.
  • an object of the present invention is to provide a method and a reagent kit that can detect a genetically modified crop introduced with a DREB gene with high reliability and practicality.
  • the present invention is a method for detecting a genetically modified crop. That is, a genetically modified crop introduced with recombinant DNA contained in a test sample such as a plant crop, a food material obtained from the crop, or a processed food obtained using the crop or food material is detected. It is a method to do. Examples of plant crops include cereal grains, potatoes, sugar beets, and pineapples.
  • Grain grains include, for example, wheat (wheat, barley, oats, rye, barley, etc.), rice, corn, milo, millet, millet, and other legumes, soybeans, red beans, peanuts, peas, kidney beans, and other beans.
  • the seed of a family plant is mentioned, It is especially preferable that it is wheat.
  • Examples of food materials obtained from the crop include wheat flour, medium flour, whole grain flour, quasi-strong flour, strong flour, durum wheat flour, and rye flour when the crop is a grain other than wheat. , Rice flour and the like.
  • Examples of processed foods obtained using crops and food materials obtained from the crops include tofu and the like when the crop is wheat, bread and noodles, and when the crop is soybean.
  • the recombinant DNA detected in the present invention is the DREB gene.
  • the DREB gene can improve the environmental stress tolerance of crops, and it is expected that the production of genetically modified crops into which the DREB gene has been introduced will be expanded in the future. Therefore, if the DREB gene is used for detection of genetically modified crops in the future, it may be possible to detect genetically modified crops relatively easily.
  • the soybean-derived DREB gene in the test sample is detected by PCR.
  • This detection is carried out by PCR using a primer pair that can specifically amplify a partial sequence of the DREB gene derived from soybean, using the nucleic acid in the sample or the nucleic acid extracted from the sample as a template.
  • a nucleic acid having a partial sequence of the DREB gene is amplified, and the amplified nucleic acid is detected or quantified.
  • the cotton-derived DREB gene in the test sample is detected by PCR.
  • This detection is performed by PCR using a primer pair that can specifically amplify a partial sequence of the DREB gene derived from cotton using a nucleic acid in the test sample or a nucleic acid extracted from the test sample as a template.
  • a nucleic acid having a partial sequence of the DREB gene is amplified, and the amplified nucleic acid is detected or quantified.
  • FIG. 1 shows part of the DNA sequence of each of the DREB gene derived from soybean and the DREB gene derived from cotton.
  • the DNA sequence of the soybean-derived DREB gene is similar to that of the cotton-derived DREB gene.
  • a primer is designed, and in the second invention, it is preferable to design a primer in a DNA sequence portion specific to the cotton-derived DREB gene.
  • preferred primer pairs are the following (1) to (3).
  • the base sequence described in SEQ ID NO: 1 is the base sequence of the region indicated by R1 in FIG. 1 in the entire base sequence of the soybean-derived DREB gene described in SEQ ID NO: 13, and the base sequence described in SEQ ID NO: 2 is It is the base sequence of the complementary strand of the region indicated by R2 in FIG. 1 in the entire base sequence of the soybean-derived DREB gene described in SEQ ID NO: 13.
  • a nucleic acid that hybridizes under stringent conditions to the base sequence described in SEQ ID NO: 3 that is complementary to the base sequence described in SEQ ID NO: 1, and a sequence number that is complementary to the base sequence described in SEQ ID NO: 2 A nucleic acid that hybridizes to the base sequence according to 4 under stringent conditions.
  • the present invention relates to a genetically modified crop in which a soybean-derived or cotton-derived DREB gene is introduced by PCR using a primer pair that specifically and simultaneously amplifies soybean-derived DREB gene and cotton-derived DREB gene. You may detect or quantify.
  • a nucleic acid comprising the base sequence described in SEQ ID NO: 1 in the primer pair of (1) above, comprising at least 80% of the continuous base sequence in the base sequence described in SEQ ID NO: 1 in the primer pair of (2) above.
  • the nucleic acid and the nucleic acid that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO: 3 that is complementary to the nucleotide sequence of SEQ ID NO: 1 in the primer pair of (3) above are any of them.
  • nucleic acid comprising the base sequence described in SEQ ID NO: 2 in the primer pair of (1) above, and at least 80% continuous in the base sequence described in SEQ ID NO: 2 in the primer pair of (2) above
  • nucleic acid comprising the base sequence described above and the base sequence described in SEQ ID NO: 4 that is complementary to the base sequence described in SEQ ID NO: 2 in the primer pair of (3) above May be used in combination with stringent any one or more of the hybridizing nucleic acids under conditions. Expressions such as claims 2 and 8 of the present application include primer pairs composed of such combinations.
  • preferred primer pairs are the following (4) to (6).
  • the base sequence described in SEQ ID NO: 6 is the base sequence of the region indicated by R6 in FIG. 1 in the entire base sequence of the cotton-derived DREB gene described in SEQ ID NO: 14, and the base sequence described in SEQ ID NO: 7 is It is the base sequence of the complementary strand of the region indicated by R7 in FIG. 1 in the base sequence of the cotton-derived DREB gene described in SEQ ID NO: 14.
  • nucleic acid consisting of a nucleic acid comprising at least 80% continuous base sequence in the base sequence described in SEQ ID NO: 6 and a nucleic acid comprising at least 80% continuous base sequence in the base sequence described in SEQ ID NO: 7.
  • (6) A nucleic acid that hybridizes under stringent conditions to the base sequence described in SEQ ID NO: 8 that is complementary to the base sequence described in SEQ ID NO: 6, and a sequence number that is complementary to the base sequence described in SEQ ID NO: 7
  • a nucleic acid comprising the base sequence described in SEQ ID NO: 6 in the primer pair of (4) above, and at least 80% of the contiguous base sequence in the base sequence described in SEQ ID NO: 6 in the primer pair of (5) above.
  • the nucleic acid and the nucleic acid that hybridizes under stringent conditions to the base sequence set forth in SEQ ID NO: 8 that is complementary to the base sequence set forth in SEQ ID NO: 6 in the primer pair of (6) above are any of them.
  • nucleic acid comprising the base sequence described in SEQ ID NO: 7 in the primer pair of (4) above, and at least 80% continuous in the base sequence described in SEQ ID NO: 7 in the primer pair of (5) above
  • nucleic acid comprising the base sequence described above and the base sequence described in SEQ ID NO: 9 that is complementary to the base sequence described in SEQ ID NO: 7 in the primer pair of (6) above May be used in combination with stringent any one or more of the hybridizing nucleic acids under conditions. Expressions such as claims 5 and 10 of the present application include primer pairs composed of such combinations.
  • Each nucleic acid containing at least 80% of the continuous base sequence in the base sequence described in SEQ ID NO: 1, 3, 6 or 8 is 85 in the base sequence described in SEQ ID NO: 1, 3, 6 or 8. It is preferable that the nucleic acid contains a continuous base sequence of at least 90%, more preferably a nucleic acid containing 90% or more of the continuous base sequence in the base sequence described in SEQ ID NO: 1, 3, 6 or 8.
  • the nucleic acid used as a primer preferably has 10 or more bases, more preferably 12 or more, and still more preferably 15 or more.
  • the primer pair (3) or (6) under stringent conditions, a specific hybrid is formed with the DNA sequence to be amplified, and a non-specific hybrid is not formed with the DNA sequence that is not the amplification target.
  • the pair of nucleic acids constituting the primer pair of (3) or (6) functions as a primer in a state where it is hybridized to a complementary base sequence.
  • Stringent conditions can be readily determined by those skilled in the art based on the length of the DNA, for example. Those skilled in the art can easily determine the appropriate conditions for the selected primer based on the common knowledge of various primer design methods and hybridization conditions known in the art, and empirical rules obtained through commonly used experimental means. Can be found and implemented.
  • the partial sequence shown in SEQ ID NO: 11 (see FIG. 2) of the DNA sequence of the soybean-derived DREB gene shown in FIG.
  • the partial sequence described in SEQ ID NO: 12 (see FIG. 3) of the cotton-derived DREB gene DNA sequence shown in FIG. 1 can be specifically amplified. It can.
  • the term "specific" as used herein means that only the partial sequence in the soybean-derived DREB gene is amplified in the first and third inventions, and in the second and fourth inventions, in the cotton-derived DREB gene. Means that only a partial sequence of is amplified.
  • the partial sequence to be amplified in the first and third inventions is preferably SEQ ID NO: 11, but is not limited thereto, and other regions of the DNA sequence of the DREB gene derived from soybean may be amplified. Good.
  • the partial sequence to be amplified in the second and fourth inventions is also preferably SEQ ID NO: 12, but is not limited thereto, and other regions of the cotton-derived DREB gene may be amplified. Good.
  • the test sample may be subjected to nucleic acid extraction, for example, as it is or after being pulverized, or may be washed, dried, crushed and subjected to nucleic acid extraction.
  • the nucleic acid extracted from the test sample and used for analysis is usually DNA.
  • DNA may be extracted by any known method, but many DNA extraction kits are commercially available and can be extracted using these. For example, using DNeasy Plant Maxi kit (manufactured by QIAGEN), using the method of Kopell et al. (Kopell, E. et al .; DNA may be extracted from the test sample.
  • the extracted DNA is preferably used after calculating its concentration by measuring absorbance and diluting it to a concentration suitable for PCR.
  • PCR can be performed according to a conventional method in consideration of the primer and DNA polymerase to be used.
  • reagents such as a PCR buffer, dNTP, and MgCl 2 may be prepared, or a commercially available PCR kit may be used.
  • PCR conditions can be used, for example, at 95 ° C. for 15 seconds, 60 ° C. for 30 seconds, and 72 ° C. for 30 seconds for 35 cycles, and finally at 72 ° C. for 7 minutes as the end reaction.
  • the Tm value, the length of the region to be amplified, the concentration of the template DNA, and the like can be changed as appropriate.
  • the amplified nucleic acid (hereinafter referred to as “PCR product”) can be detected by any method for identifying a specific DNA fragment. Examples of the identification method include agarose gel electrophoresis, acrylamide gel electrophoresis, capillary electrophoresis, hybridization, and immunological methods. In general, PCR products are identified by electrophoresis patterns. For example, electrophoresis using 0.8% agarose gel containing ethidium bromide may be performed to detect the PCR product as a band.
  • the PCR product can also be identified in the process of PCR amplification by performing real-time PCR in the presence of a primer pair and a nucleic acid probe.
  • a nucleic acid probe used in real-time PCR fluorescent label, radioactive substance label, and biotin-labeled probe can be used.
  • the nucleic acid probe used in the present invention is, for example, modified with FAM using the 5 ′ end of an oligonucleotide having the base sequence described in SEQ ID NO: 5 or SEQ ID NO: 10 as a fluorescent substance, and TAMRA or MGB using the 3 ′ end as a quencher.
  • nucleic acid probe consisting of a base sequence complementary to the base sequence described in SEQ ID NO: 5 or SEQ ID NO: 10, SEQ ID NO: 5 or SEQ ID NO: 10 or these
  • a nucleic acid probe comprising a nucleotide sequence having a homology of 80% or more, more preferably 85% or more, more preferably 90% or more, and a fluorescent label, radioactive substance label or biotin label It can also be used.
  • the third invention and the fourth invention are reagent kits including the primer pairs used in the first invention and the second invention, respectively.
  • the nucleic acid constituting the primer pair can be produced according to a conventional method.
  • the reagent kit may contain a primer pair and another reagent.
  • the reagent kit may include dNTP, MgCl 2 , DNA polymerase (eg, Taq DNA polymerase), buffer (eg, Tris-HCl), glycerol, DMSO, positive control DNA, negative control DNA, distilled water, and the like. Good.
  • the reagent kit may include a fluorescent probe, a radioactive substance label, or a biotin-labeled nucleic acid probe for use in the detection or quantification of the nucleic acid of the amplification product by PCR.
  • Reagents contained in the reagent kit may be individually packed, or may be packed after being mixed. There are no particular limitations on the concentration of each reagent in the reagent kit, and any concentration range can be used as long as PCR according to the present invention can be performed. Further, information such as suitable PCR conditions may be further attached to the reagent kit.
  • Example 1 Detection of soybean-derived and cotton-derived DREB genes by PCR and agarose gel electrophoresis
  • Method PCR was carried out using the DNA extracted from each of the following three test samples as a template and using the following primer pairs. Thereafter, the presence or absence of amplification in each sample was examined by agarose gel electrophoresis.
  • Wheat Domestic wheat Soybean: Dry domestic seeds of commercially available soybeans
  • Cotton Dry seeds of commercially available cotton After each sample was crushed with Multi Beads Shocker (Yasui Kikai Co., Ltd.), DNeasy Plant Maxi kit (QIAGEN) was used. DNA was extracted.
  • Primer pair In order to design primers used for PCR, a gene sequence database (National Center for Biotechnology Information) (http://www.ncbi.nlm.nih.gov/) was used. Using accession number AF514908 (SEQ ID NO: 13) as the DNA sequence of the DREB gene derived from soybean, a primer pair consisting of a nucleic acid having the base sequence described in SEQ ID NO: 1 and a nucleic acid having the base sequence described in SEQ ID NO: 2 Designed.
  • accession number AF509502 (SEQ ID NO: 14) as the DNA sequence of the DREB gene derived from cotton
  • a primer pair comprising a nucleic acid having the base sequence described in SEQ ID NO: 6 and a nucleic acid having the base sequence described in SEQ ID NO: 7 Designed. Primer synthesis was outsourced to Operon.
  • PCR was performed using DNA extracted from each sample as a template. Primers of SEQ ID NO: 1 and SEQ ID NO: 2 were used for detection of the DREB gene derived from soybean. In addition, primers of SEQ ID NO: 6 and SEQ ID NO: 7 were used for detection of the cotton-derived DREB gene. The PCR reaction mix was adjusted for each of the three test samples.
  • the detection result of the soybean-derived DREB gene is shown in FIG. As shown in FIG. 2, a band of the expected length (91 bp) was detected only for DNA extracted from soybean, and no band was detected for DNA extracted from cotton and wheat. Furthermore, the DNA sequence of the band detected in soybean was the sequence of the amplified region of the DREB gene derived from soybean. The detection result of cotton-derived DREB gene is shown in FIG. As shown in FIG. 3, a band of the expected length (94 bp) was detected only for DNA extracted from cotton, and no band was detected for DNA extracted from soybean and wheat. Furthermore, the DNA sequence of the band detected in cotton was the sequence of the amplified region of the cotton-derived DREB gene. Note that “4.TE” in FIGS. 2 and 3 is a negative control.
  • the DREB genes derived from soybean and cotton can be specifically amplified by PCR using the primer pairs of SEQ ID NOs: 1, 2 and SEQ ID NOs: 6, 7. Therefore, if these primer pairs are used, genetically modified crops other than soybean and cotton other than soybean introduced with soybean-derived and cotton-derived DREB genes can be detected. Moreover, since these primer pairs are not amplified in wheat, it is possible to detect genetically modified wheat introduced with soybean-derived and cotton-derived DREB genes.
  • Example 2 Detection of soybean-derived and cotton-derived DREB genes by real-time PCR
  • Method 2 Real-time PCR was performed using DNA extracted from the same three types of test samples as used in Example 1 as templates and using the following primer pairs and nucleic acid probes.
  • Primer pair For the DREB gene derived from soybean, a primer pair consisting of a nucleic acid having the base sequence described in SEQ ID NOs: 1 and 2 used in Example 1 was used.
  • a primer pair consisting of nucleic acids having the base sequences described in SEQ ID NOs: 6 and 7 used in Example 1 was used.
  • nucleic acid probe For the soybean-derived DREB gene, the nucleic acid probe of SEQ ID NO: 5 was designed in the DNA sequence between the primer pair (SEQ ID NOs: 1, 2). This nucleic acid probe was labeled with FAM at the 5 ′ end and modified with TAMRA using the 3 ′ end as a quencher.
  • a nucleic acid probe of SEQ ID NO: 10 was designed in the DNA sequence between the primer pair (SEQ ID NOs: 6, 7). This nucleic acid probe was labeled with FAM at the 5 ′ end and modified with MGB using the 3 ′ end as a quencher. The synthesis of the nucleic acid probe was outsourced to Applied Biosystems.
  • Real-time PCR was performed using DNA extracted from each sample as a template.
  • a fluorescently labeled nucleic acid probe containing the primers of SEQ ID NO: 1 and SEQ ID NO: 2 and the oligonucleotide of SEQ ID NO: 5 was used.
  • a fluorescently labeled nucleic acid probe containing the primers of SEQ ID NO: 6 and SEQ ID NO: 7 and the oligonucleotide of SEQ ID NO: 10 was used.
  • a real-time PCR reaction mix was prepared for each of the three test samples.
  • the detection result of the soybean-derived DREB gene is shown in FIG. As shown in FIG. 4, the fluorescence intensity increased exponentially only with DNA extracted from soybean, but not with DNA extracted from cotton and wheat. The detection result of cotton-derived DREB gene is shown in FIG. As shown in FIG. 5, the fluorescence intensity increased exponentially only with DNA extracted from cotton, but not with DNA extracted from soybean and wheat.
  • the fluorescently labeled nucleic acid probe containing the primer pair of SEQ ID NO: 1 and 2 and the oligonucleotide of SEQ ID NO: 5 and the fluorescently labeled nucleic acid probe containing the primer pair of SEQ ID NO: 6, 7 and the oligonucleotide of SEQ ID NO: 10 were labeled. It was found that the DREB gene derived from soybean and cotton can be specifically detected by performing real-time PCR using the nucleic acid probe. Therefore, if these primer pairs and nucleic acid probe sets are used, it is possible to detect genetically modified crops other than soybean and cotton other than soybean and cotton-derived DREB genes introduced in real-time PCR, respectively. . Moreover, since these primer pairs and nucleic acid probe sets are not amplified in wheat, it is possible to detect genetically modified wheat introduced with soybean-derived and cotton-derived DREB genes.
  • a genetically modified crop introduced with a DREB gene which is contained in a test sample such as an agricultural product or a food using the same, has high reliability and It can be detected with practicality.

Abstract

The genetically-modified crop detection method is for detecting a genetically-modified crop using a polymerase chain reaction, and comprises: a step for amplifying a nucleic acid having a partial sequence of a soybean-derived DREB gene, by using a nucleic acid in a sample to be tested or a nucleic acid extracted from the sample to be tested as a template, and a primer pair which can be used to specifically amplify the partial sequence of the soybean-derived DREB gene; and a step for detecting or quantifying the amplified nucleic acid. The present invention also provides a reagent kit for detecting or quantifying a genetically-modified crop having an introduced soybean-derived DREB gene using a polymerase chain reaction.

Description

遺伝子組換え作物の検出方法Method for detecting genetically modified crops
 本発明は、遺伝子組換え作物の検出方法及び遺伝子組換え作物検出用の試薬キットに関する。 The present invention relates to a method for detecting a genetically modified crop and a reagent kit for detecting a genetically modified crop.
 遺伝子組換え技術を利用して開発された遺伝子組換え作物が食品として利用されるようになっている。日本においても、トウモロコシ、ダイズ、ナタネ、綿実(ワタ)、ジャガイモ等の多くの遺伝子組換え作物について、安全性審査を経て、輸入や販売が認められている。また、遺伝子組換え作物やそれを原料とする食品について表示制度が設けられており、指定された遺伝子組換え作物及びその加工食品については、その表示が義務づけられている(非特許文献1,2)。
 他方、海外においては、遺伝子組換え作物と非遺伝子組換え作物が近い場所で栽培される、または同じ加工工場内で使用される場合がある。そのため、微量の遺伝子組換え作物及びそれ由来の加工食品が混入し、非遺伝子組換え作物の原料及び非遺伝子組換え作物のみを使用した加工食品であっても遺伝子組換え作物由来の組換えDNAが検出される可能性がある。
Genetically modified crops that have been developed using genetically modified technology are used as food. In Japan as well, many genetically modified crops such as corn, soybeans, rapeseed, cottonseed (cotton), potatoes, etc. are approved for import and sale after a safety review. In addition, a labeling system is provided for genetically modified crops and foods made from them, and labeling is mandatory for designated genetically modified crops and processed foods thereof (Non-Patent Documents 1 and 2). ).
On the other hand, in overseas, genetically modified crops and non-genetically modified crops may be cultivated in nearby places or used in the same processing plant. Therefore, even if a small amount of genetically modified crops and processed foods derived from them are mixed and processed foods using only non-genetically modified crop ingredients and non-genetically modified crops, recombinant DNA derived from genetically modified crops May be detected.
 農産物やそれを使用した食品等の被検試料中の遺伝子組換え作物の検出方法としては、ポリメラーゼ連鎖反応(以下「PCR」という)によって組換えDNAを検出する方法や、酵素結合免疫吸着法によって組換え蛋白質を検出する方法等があるが、一般的にPCRによる検出が行われており、非特許文献3にも、PCRを用いた遺伝子組換え作物の検査分析が記載されている。
 PCRで被検試料中に遺伝子組換え作物が混入しているか否かを調べるには、遺伝子組換え技術によって導入された組換えDNAの部分塩基配列を増幅する方法が一般的であるが、導入された組換えDNAの種類が不明である場合、標的とする組換えDNAを代えて複数回PCRを行い、遺伝子組換え作物が含まれていないことを確認する必要がある。しかし、そのような方法は手間がかかり、実用的ではない。
 そのため、農産物やそれを使用した食品等について、遺伝子組換え作物が含まれるか否かに関する表示を適切に行うためには、信頼性と実用性の高い遺伝子組換え作物の検出技術の開発が望まれる。
Methods for detecting genetically modified crops in test samples such as agricultural products and foods using the same include methods for detecting recombinant DNA by polymerase chain reaction (hereinafter referred to as “PCR”) and enzyme-linked immunosorbent methods. Although there are methods for detecting recombinant proteins, etc., detection by PCR is generally performed, and Non-Patent Document 3 also describes inspection analysis of genetically modified crops using PCR.
In order to examine whether or not a genetically modified crop is mixed in a test sample by PCR, a method of amplifying a partial base sequence of recombinant DNA introduced by a genetic recombination technique is common. When the type of the recombinant DNA thus obtained is unknown, it is necessary to perform PCR a plurality of times in place of the target recombinant DNA to confirm that no genetically modified crop is contained. However, such a method is time consuming and impractical.
For this reason, it is desirable to develop a technology for detecting genetically modified crops with high reliability and practicality in order to appropriately indicate whether or not genetically modified crops are included in agricultural products and foods that use them. It is.
 また、遺伝子組換え技術により農産物に導入する外来遺伝子として、環境ストレス耐性に必要な遺伝子群の発現を制御するDehydration responsive element binding protein(以下「DREB」という)遺伝子が知られている。このDREB遺伝子を農産物内で過剰発現させることにより、乾燥、塩、低温等の環境ストレスに対する耐性が向上することが報告されている。例えば、特許文献1には、低温等のストレス耐性を形質導入するために有用な新規のポリヌクレオチド(構造遺伝子領域およびその発現制御領域)が開示されている。 Also, as a foreign gene to be introduced into agricultural products by gene recombination technology, a Dehydration Responsive Element Binding Protein (hereinafter referred to as “DREB”) gene that controls the expression of genes required for environmental stress tolerance is known. It has been reported that by overexpressing the DREB gene in agricultural products, resistance to environmental stresses such as drought, salt, and low temperature is improved. For example, Patent Document 1 discloses a novel polynucleotide (structural gene region and its expression control region) useful for transducing stress tolerance such as low temperature.
特開2002-223757号公報JP 2002-223757 A
 本発明は、以下の(1)~(4)を提供するものである。
(1)遺伝子組換え作物をPCRによって検出する方法であって、被検試料中の核酸又は前記被検試料から抽出した核酸を鋳型とし、ダイズ由来のDREB遺伝子の部分配列を特異的に増幅可能なプライマーペアを用いて、前記ダイズ由来のDREB遺伝子の部分配列を有する核酸を増幅する工程と、前記増幅された核酸を検出する工程と、を含む遺伝子組換え作物の検出方法(以下、第1発明というときはこの発明をいう)。
(2)遺伝子組換え作物をPCRによって検出する方法であって、被検試料中の核酸又は前記被検試料から抽出した核酸を鋳型とし、ワタ由来のDREB遺伝子の部分配列を特異的に増幅可能なプライマーペアを用いて、前記ワタ由来のDREB遺伝子の部分配列を有する核酸を増幅する工程と、前記増幅された核酸を検出する工程と、を含む遺伝子組換え作物の検出方法(以下、第2発明というときはこの発明をいう)。
The present invention provides the following (1) to (4).
(1) A method for detecting a genetically modified crop by PCR, which can specifically amplify a partial sequence of a DREB gene derived from soybean using a nucleic acid in a test sample or a nucleic acid extracted from the test sample as a template. A method for detecting a genetically modified crop (hereinafter referred to as the first method), which comprises a step of amplifying a nucleic acid having a partial sequence of the DREB gene derived from soybean and a step of detecting the amplified nucleic acid, using a simple primer pair. The term invention refers to this invention).
(2) A method for detecting a genetically modified crop by PCR, which can specifically amplify a partial sequence of the DREB gene derived from cotton using a nucleic acid in a test sample or a nucleic acid extracted from the test sample as a template A method for detecting a genetically modified crop (hereinafter referred to as “second”), comprising a step of amplifying a nucleic acid having a partial sequence of the DREB gene derived from cotton using a simple primer pair, and a step of detecting the amplified nucleic acid. The term invention refers to this invention).
(3)ダイズ由来のDREB遺伝子が導入された遺伝子組換え作物を、PCRによって検出又は定量するための試薬キットであって、配列番号1に記載の塩基配列を含む核酸、配列番号1に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は配列番号3に記載の塩基配列を含む核酸にハイブリダイズする核酸と、配列番号2に記載の塩基配列を含む核酸、配列番号2に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は配列番号4に記載の塩基配列を含む核酸にハイブリダイズする核酸とからなるプライマーペアを含む、試薬キット(以下、第3発明というときはこの発明をいう)。
(4)ワタ由来のDREB遺伝子が導入された遺伝子組換え作物を、PCRによって検出又は定量するための試薬キットであって、配列番号6に記載の塩基配列を含む核酸、配列番号6に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は配列番号8に記載の塩基配列を含む核酸にハイブリダイズする核酸と、配列番号7に記載の塩基配列を含む核酸、配列番号7に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は配列番号9に記載の塩基配列を含む核酸にハイブリダイズする核酸とからなるプライマーペアを含む、試薬キット(以下、第4発明というときはこの発明をいう)。
(3) A reagent kit for detecting or quantifying a genetically modified crop introduced with soybean-derived DREB gene by PCR, comprising a nucleic acid comprising the base sequence set forth in SEQ ID NO: 1, the sequence set forth in SEQ ID NO: 1 A nucleic acid containing at least 80% of the base sequence in the base sequence, or a nucleic acid hybridizing to a nucleic acid containing the base sequence shown in SEQ ID NO: 3 and a nucleic acid containing the base sequence shown in SEQ ID NO: 2, SEQ ID NO: 2 A reagent kit comprising a primer pair consisting of a nucleic acid comprising at least 80% of the continuous nucleotide sequence in the nucleotide sequence described in the above, or a nucleic acid hybridizing to the nucleic acid comprising the nucleotide sequence described in SEQ ID NO: 4 (Three inventions refer to this invention).
(4) A reagent kit for detecting or quantifying a genetically modified crop introduced with a cotton-derived DREB gene by PCR, comprising a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 6, A nucleic acid containing at least 80% of the base sequence in the base sequence, or a nucleic acid hybridizing to a nucleic acid containing the base sequence shown in SEQ ID NO: 8, and a nucleic acid containing the base sequence shown in SEQ ID NO: 7, SEQ ID NO: 7 A reagent kit comprising a primer pair consisting of a nucleic acid comprising at least 80% of the base sequence described in the above, or a nucleic acid hybridizing to a nucleic acid comprising the base sequence described in SEQ ID NO: 9 The term “four inventions” means this invention).
ダイズ由来のDREB遺伝子及びワタ由来のDREB遺伝子それぞれのDNA配列の一部を並べた図である。It is the figure which arranged a part of DNA sequence of each of the DREB gene derived from soybean and the DREB gene derived from cotton. 本発明の実施例1の結果を示す図である。It is a figure which shows the result of Example 1 of this invention. 本発明の実施例1の結果を示す図である。It is a figure which shows the result of Example 1 of this invention. 本発明の実施例2の結果を示す図である。It is a figure which shows the result of Example 2 of this invention. 本発明の実施例2の結果を示す図である。It is a figure which shows the result of Example 2 of this invention.
発明の詳細な説明Detailed Description of the Invention
 現在、DREB遺伝子等を活用した環境ストレスに強い作物の開発が世界的に行われており、今後DREB遺伝子が導入された遺伝子組換え作物の生産が拡大することが予想される。したがって、DREB遺伝子が導入された遺伝子組換え作物の検出技術が重要となる。しかし、DREB遺伝子が導入された遺伝子組換え作物を、高い信頼性と実用性を持って検出可能な方法は未だ提供されていなかった。特許文献1にも、DREB遺伝子を特異的に検出する方法については記載されていない。 Currently, the development of crops that are resistant to environmental stress using the DREB gene and the like is underway worldwide, and it is expected that the production of genetically modified crops into which the DREB gene has been introduced will be expanded in the future. Therefore, a technique for detecting a genetically modified crop into which the DREB gene has been introduced becomes important. However, there has not yet been provided a method that can detect a genetically modified crop into which the DREB gene has been introduced with high reliability and practicality. Patent Document 1 also does not describe a method for specifically detecting the DREB gene.
 したがって、本発明の目的は、DREB遺伝子が導入された遺伝子組換え作物を、高い信頼性と実用性を持って検出可能な方法及び試薬キットを提供することにある。 Therefore, an object of the present invention is to provide a method and a reagent kit that can detect a genetically modified crop introduced with a DREB gene with high reliability and practicality.
 以下、本発明をその好ましい実施形態に基づいて説明する。
 本発明(第1及び第2発明)は、遺伝子組換え作物を検出する方法である。即ち、植物である作物、その作物から得られる食品素材、又は作物や食品素材を用いて得られる加工食品等の被検試料中に含まれる、組換えDNAが導入された遺伝子組換え作物を検出する方法である。
 植物である作物としては、穀物粒、ジャガイモ、てんさい、パイナップル等が挙げられる。穀物粒としては、例えば、麦類(小麦、大麦、エンバク、ライ麦、ハトムギ等)、コメ、トウモロコシ、マイロ、アワ、ヒエ等のイネ科植物、ダイズ、小豆、落花生、エンドウマメ、インゲンマメ等のマメ科植物の種子が挙げられ、特に麦類であることが好ましい。その作物から得られる食品素材としては、作物が小麦である場合、薄力粉、中力粉、全粒粉、準強力粉、強力粉、デュラム小麦粉等が挙げられ、作物が小麦以外の穀物粒である場合、ライ麦粉、米粉等が挙げられる。作物やその作物から得られる食品素材を使用して得られる加工食品としては、作物が小麦である場合、パンや麺類、作物がダイズである場合、豆腐等が挙げられる。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The present invention (first and second inventions) is a method for detecting a genetically modified crop. That is, a genetically modified crop introduced with recombinant DNA contained in a test sample such as a plant crop, a food material obtained from the crop, or a processed food obtained using the crop or food material is detected. It is a method to do.
Examples of plant crops include cereal grains, potatoes, sugar beets, and pineapples. Grain grains include, for example, wheat (wheat, barley, oats, rye, barley, etc.), rice, corn, milo, millet, millet, and other legumes, soybeans, red beans, peanuts, peas, kidney beans, and other beans. The seed of a family plant is mentioned, It is especially preferable that it is wheat. Examples of food materials obtained from the crop include wheat flour, medium flour, whole grain flour, quasi-strong flour, strong flour, durum wheat flour, and rye flour when the crop is a grain other than wheat. , Rice flour and the like. Examples of processed foods obtained using crops and food materials obtained from the crops include tofu and the like when the crop is wheat, bread and noodles, and when the crop is soybean.
 本発明において検出する組換えDNAは、DREB遺伝子である。DREB遺伝子は、作物の環境ストレス耐性を向上させ得るものであり、今後DREB遺伝子が導入された遺伝子組換え作物の生産が拡大することが予想される。したがって、今後、遺伝子組換え作物の検出にDREB遺伝子を使用すれば、比較的簡便に遺伝子組換え作物を検出できるようになる可能性がある。なお、遺伝子組換え作物であるか否かの判定に、DREB遺伝子の検査に加えて、DREB遺伝子以外の組換えDNAの検査を行うことも好ましい。 The recombinant DNA detected in the present invention is the DREB gene. The DREB gene can improve the environmental stress tolerance of crops, and it is expected that the production of genetically modified crops into which the DREB gene has been introduced will be expanded in the future. Therefore, if the DREB gene is used for detection of genetically modified crops in the future, it may be possible to detect genetically modified crops relatively easily. In addition to determining the DREB gene, it is also preferable to test a recombinant DNA other than the DREB gene in determining whether the plant is a genetically modified crop.
 第1発明においては、被検試料中のダイズ由来のDREB遺伝子をPCRによって検出する。この検出は、被検試料中の核酸又は前記被検試料から抽出した核酸を鋳型とし、ダイズ由来のDREB遺伝子の部分配列を特異的に増幅可能なプライマーペアを用いて、PCRにより、ダイズ由来のDREB遺伝子の部分配列を有する核酸を増幅し、その増幅された核酸を検出又は定量する。
 第2発明においては、被検試料中のワタ由来のDREB遺伝子をPCRによって検出する。この検出は、被検試料中の核酸又は前記被検試料から抽出した核酸を鋳型とし、ワタ由来のDREB遺伝子の部分配列を特異的に増幅可能なプライマーペアを用いて、PCRにより、ワタ由来のDREB遺伝子の部分配列を有する核酸を増幅し、その増幅された核酸を検出又は定量する。
In the first invention, the soybean-derived DREB gene in the test sample is detected by PCR. This detection is carried out by PCR using a primer pair that can specifically amplify a partial sequence of the DREB gene derived from soybean, using the nucleic acid in the sample or the nucleic acid extracted from the sample as a template. A nucleic acid having a partial sequence of the DREB gene is amplified, and the amplified nucleic acid is detected or quantified.
In the second invention, the cotton-derived DREB gene in the test sample is detected by PCR. This detection is performed by PCR using a primer pair that can specifically amplify a partial sequence of the DREB gene derived from cotton using a nucleic acid in the test sample or a nucleic acid extracted from the test sample as a template. A nucleic acid having a partial sequence of the DREB gene is amplified, and the amplified nucleic acid is detected or quantified.
 図1に、ダイズ由来のDREB遺伝子及びワタ由来のDREB遺伝子それぞれのDNA配列の一部を並べて示した。
 図1に示すように、DREB遺伝子は、ダイズ由来のDREB遺伝子とワタ由来のDREB遺伝子のDNA配列が似ているため、第1発明においては、ダイズ由来のDREB遺伝子に特異的なDNA配列部分にプライマーを設計し、第2発明においては、ワタ由来のDREB遺伝子に特異的なDNA配列部分にプライマーを設計することが好ましい。
FIG. 1 shows part of the DNA sequence of each of the DREB gene derived from soybean and the DREB gene derived from cotton.
As shown in FIG. 1, in the DREB gene, the DNA sequence of the soybean-derived DREB gene is similar to that of the cotton-derived DREB gene. A primer is designed, and in the second invention, it is preferable to design a primer in a DNA sequence portion specific to the cotton-derived DREB gene.
 したがって、第1及び第3発明において、好ましいプライマーペアは、以下の(1)~(3)である。
(1)配列番号1に記載の塩基配列を含む核酸と、配列番号2に記載の塩基配列を含む核酸とからなるもの。配列番号1に記載の塩基配列は、配列番号13に記載のダイズ由来のDREB遺伝子の全塩基配列中、図1にR1で示す領域の塩基配列であり、配列番号2に記載の塩基配列は、配列番号13に記載のダイズ由来のDREB遺伝子の全塩基配列中、図1にR2で示す領域の相補鎖の塩基配列である。
(2)配列番号1に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸と、配列番号2に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸とからなるもの。
(3)配列番号1に記載の塩基配列と相補である配列番号3に記載の塩基配列にストリンジェントな条件下でハイブリダイズする核酸と、配列番号2に記載の塩基配列と相補である配列番号4に記載の塩基配列にストリンジェントな条件下でハイブリダイズする核酸とからなるもの。
Therefore, in the first and third inventions, preferred primer pairs are the following (1) to (3).
(1) A nucleic acid comprising the nucleic acid comprising the base sequence described in SEQ ID NO: 1 and the nucleic acid comprising the base sequence described in SEQ ID NO: 2. The base sequence described in SEQ ID NO: 1 is the base sequence of the region indicated by R1 in FIG. 1 in the entire base sequence of the soybean-derived DREB gene described in SEQ ID NO: 13, and the base sequence described in SEQ ID NO: 2 is It is the base sequence of the complementary strand of the region indicated by R2 in FIG. 1 in the entire base sequence of the soybean-derived DREB gene described in SEQ ID NO: 13.
(2) consisting of a nucleic acid containing at least 80% continuous base sequence in the base sequence described in SEQ ID NO: 1 and a nucleic acid containing at least 80% continuous base sequence in the base sequence shown in SEQ ID NO: 2 thing.
(3) a nucleic acid that hybridizes under stringent conditions to the base sequence described in SEQ ID NO: 3 that is complementary to the base sequence described in SEQ ID NO: 1, and a sequence number that is complementary to the base sequence described in SEQ ID NO: 2 A nucleic acid that hybridizes to the base sequence according to 4 under stringent conditions.
 また、ダイズ由来のDREB遺伝子とワタ由来のDREB遺伝子に共通なDNA配列部分にプライマーを設計することで、ダイズ由来及びワタ由来のDREB遺伝子の部分配列を有する核酸を同時に増幅することも可能である。本発明は、ダイズ由来のDREB遺伝子及びワタ由来のDREB遺伝子をそれぞれ特異的に、かつ同時に増幅させるプライマーペアを用いたPCRによって、ダイズ由来又はワタ由来のDREB遺伝子が導入された遺伝子組換え作物を検出又は定量するものであってもよい。 It is also possible to simultaneously amplify a nucleic acid having a partial sequence of soybean-derived and cotton-derived DREB genes by designing a primer in a DNA sequence portion common to soybean-derived DREB gene and cotton-derived DREB gene. . The present invention relates to a genetically modified crop in which a soybean-derived or cotton-derived DREB gene is introduced by PCR using a primer pair that specifically and simultaneously amplifies soybean-derived DREB gene and cotton-derived DREB gene. You may detect or quantify.
 上記(1)のプライマーペアにおける、配列番号1に記載の塩基配列を含む核酸、上記(2)のプライマーペアにおける、配列番号1に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、及び上記(3)のプライマーペアにおける、配列番号1に記載の塩基配列と相補である配列番号3に記載の塩基配列にストリンジェントな条件下でハイブリダイズする核酸は、それらのうちの何れか1以上と、上記(1)のプライマーペアにおける、配列番号2に記載の塩基配列を含む核酸、上記(2)のプライマーペアにおける、配列番号2に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、及び上記(3)のプライマーペアにおける、配列番号2に記載の塩基配列と相補である配列番号4に記載の塩基配列にストリンジェントな条件下でハイブリダイズする核酸のうちの何れか1以上とを組み合わせて用いることもできる。本願の請求項2,8等の表現には、このような組み合わせからなるプライマーペアも含まれる。 A nucleic acid comprising the base sequence described in SEQ ID NO: 1 in the primer pair of (1) above, comprising at least 80% of the continuous base sequence in the base sequence described in SEQ ID NO: 1 in the primer pair of (2) above The nucleic acid and the nucleic acid that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO: 3 that is complementary to the nucleotide sequence of SEQ ID NO: 1 in the primer pair of (3) above are any of them. 1 or more and a nucleic acid comprising the base sequence described in SEQ ID NO: 2 in the primer pair of (1) above, and at least 80% continuous in the base sequence described in SEQ ID NO: 2 in the primer pair of (2) above The nucleic acid comprising the base sequence described above and the base sequence described in SEQ ID NO: 4 that is complementary to the base sequence described in SEQ ID NO: 2 in the primer pair of (3) above May be used in combination with stringent any one or more of the hybridizing nucleic acids under conditions. Expressions such as claims 2 and 8 of the present application include primer pairs composed of such combinations.
 同様に、第2及び第4発明において、好ましいプライマーペアは、以下の(4)~(6)である。
(4)配列番号6に記載の塩基配列を含む核酸と、配列番号7に記載の塩基配列を含む核酸とからなるもの。配列番号6に記載の塩基配列は、配列番号14に記載のワタ由来のDREB遺伝子の全塩基配列中、図1にR6で示す領域の塩基配列であり、配列番号7に記載の塩基配列は、配列番号14に記載のワタ由来のDREB遺伝子の塩基配列中、図1にR7で示す領域の相補鎖の塩基配列である。
(5)配列番号6に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸と、配列番号7に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸とからなるもの。
(6)配列番号6に記載の塩基配列と相補である配列番号8に記載の塩基配列にストリンジェントな条件下でハイブリダイズする核酸と、配列番号7に記載の塩基配列と相補である配列番号9に記載の塩基配列にストリンジェントな条件下でハイブリダイズする核酸とからなるもの。
Similarly, in the second and fourth inventions, preferred primer pairs are the following (4) to (6).
(4) A nucleic acid comprising the nucleic acid comprising the base sequence described in SEQ ID NO: 6 and the nucleic acid comprising the base sequence described in SEQ ID NO: 7. The base sequence described in SEQ ID NO: 6 is the base sequence of the region indicated by R6 in FIG. 1 in the entire base sequence of the cotton-derived DREB gene described in SEQ ID NO: 14, and the base sequence described in SEQ ID NO: 7 is It is the base sequence of the complementary strand of the region indicated by R7 in FIG. 1 in the base sequence of the cotton-derived DREB gene described in SEQ ID NO: 14.
(5) consisting of a nucleic acid comprising at least 80% continuous base sequence in the base sequence described in SEQ ID NO: 6 and a nucleic acid comprising at least 80% continuous base sequence in the base sequence described in SEQ ID NO: 7. thing.
(6) A nucleic acid that hybridizes under stringent conditions to the base sequence described in SEQ ID NO: 8 that is complementary to the base sequence described in SEQ ID NO: 6, and a sequence number that is complementary to the base sequence described in SEQ ID NO: 7 A nucleic acid that hybridizes to the base sequence according to 9 under stringent conditions.
 上記(4)のプライマーペアにおける、配列番号6に記載の塩基配列を含む核酸、上記(5)のプライマーペアにおける、配列番号6に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、及び上記(6)のプライマーペアにおける、配列番号6に記載の塩基配列と相補である配列番号8に記載の塩基配列にストリンジェントな条件下でハイブリダイズする核酸は、それらのうちの何れか1以上と、上記(4)のプライマーペアにおける、配列番号7に記載の塩基配列を含む核酸、上記(5)のプライマーペアにおける、配列番号7に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、及び上記(6)のプライマーペアにおける、配列番号7に記載の塩基配列と相補である配列番号9に記載の塩基配列にストリンジェントな条件下でハイブリダイズする核酸のうちの何れか1以上とを組み合わせて用いることもできる。本願の請求項5,10等の表現には、このような組み合わせからなるプライマーペアも含まれる。 A nucleic acid comprising the base sequence described in SEQ ID NO: 6 in the primer pair of (4) above, and at least 80% of the contiguous base sequence in the base sequence described in SEQ ID NO: 6 in the primer pair of (5) above The nucleic acid and the nucleic acid that hybridizes under stringent conditions to the base sequence set forth in SEQ ID NO: 8 that is complementary to the base sequence set forth in SEQ ID NO: 6 in the primer pair of (6) above are any of them. 1 or more and a nucleic acid comprising the base sequence described in SEQ ID NO: 7 in the primer pair of (4) above, and at least 80% continuous in the base sequence described in SEQ ID NO: 7 in the primer pair of (5) above The nucleic acid comprising the base sequence described above and the base sequence described in SEQ ID NO: 9 that is complementary to the base sequence described in SEQ ID NO: 7 in the primer pair of (6) above May be used in combination with stringent any one or more of the hybridizing nucleic acids under conditions. Expressions such as claims 5 and 10 of the present application include primer pairs composed of such combinations.
 上述した、配列番号1,3,6又は8に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む各核酸は、配列番号1,3,6又は8に記載の塩基配列中の85%以上の連続した塩基配列を含む核酸であることが好ましく、配列番号1,3,6又は8に記載の塩基配列中の90%以上の連続した塩基配列を含む核酸であることが更に好ましい。
 また、プライマーとして用いる核酸は、塩基数が10以上であることが好ましく、12以上であることがより好ましく、15以上が更に好ましい。
Each nucleic acid containing at least 80% of the continuous base sequence in the base sequence described in SEQ ID NO: 1, 3, 6 or 8 is 85 in the base sequence described in SEQ ID NO: 1, 3, 6 or 8. It is preferable that the nucleic acid contains a continuous base sequence of at least 90%, more preferably a nucleic acid containing 90% or more of the continuous base sequence in the base sequence described in SEQ ID NO: 1, 3, 6 or 8.
The nucleic acid used as a primer preferably has 10 or more bases, more preferably 12 or more, and still more preferably 15 or more.
 上記(3)又は(6)のプライマーペアに関し、ストリンジェントな条件下とは、増幅対象のDNA配列と特異的なハイブリッドが形成され、かつ増幅対象でないDNA配列と非特異的なハイブリッドが形成されない条件をいう。また、(3)又は(6)のプライマーペアを構成する一対の核酸は、それぞれ相補の塩基配列にハイブリダイズした状態でプライマーとして機能する。ストリンジェントな条件は、例えば、DNAの長さに基づき、一般の技術を有する当業者によって、容易に決定することが可能である。当業者であれば、当該技術分野において公知の各種プライマー設計方法及びハイブリダイゼーション条件に関する技術常識、並びに通常用いられる実験手段を通じて得られる経験則を基に、選択されたプライマーに適切な条件を容易に見つけ出し、実施することができる。 With regard to the primer pair (3) or (6) above, under stringent conditions, a specific hybrid is formed with the DNA sequence to be amplified, and a non-specific hybrid is not formed with the DNA sequence that is not the amplification target. Say conditions. In addition, the pair of nucleic acids constituting the primer pair of (3) or (6) functions as a primer in a state where it is hybridized to a complementary base sequence. Stringent conditions can be readily determined by those skilled in the art based on the length of the DNA, for example. Those skilled in the art can easily determine the appropriate conditions for the selected primer based on the common knowledge of various primer design methods and hybridization conditions known in the art, and empirical rules obtained through commonly used experimental means. Can be found and implemented.
 このようなプライマーペアを用いてPCRを行うことにより、第1発明においては、図1に示すダイズ由来のDREB遺伝子のDNA配列のうち、配列番号11に記載の部分配列(図2参照)を特異的に増幅させることができ、第2発明においては、図1に示すワタ由来のDREB遺伝子のDNA配列のうち、配列番号12(図3参照)に記載の部分配列を特異的に増幅させることができる。
 ここでいう特異的とは、第1及び第3発明においては、ダイズ由来のDREB遺伝子中の部分配列のみを増幅させることを意味し、第2及び第4発明においては、ワタ由来のDREB遺伝子中の部分配列のみを増幅させることを意味する。したがって、被験試料に含まれる、ダイズ由来のDREB遺伝子が導入されたダイズ以外の遺伝子組換え作物又はワタ由来のDREB遺伝子が導入されたワタ以外の遺伝子組換え作物をそれぞれ特異的に検出することができる。なお、第1及び第3発明において増幅させる部分配列は、配列番号11であることが好ましいが、それに制限されるものではなく、ダイズ由来のDREB遺伝子のDNA配列の他の領域を増幅させてもよい。また、第2及び第4発明において増幅させる部分配列も、配列番号12であることが好ましいが、それに制限されるものではなく、ワタ由来のDREB遺伝子のDNA配列の他の領域を増幅させてもよい。
By carrying out PCR using such a primer pair, in the first invention, the partial sequence shown in SEQ ID NO: 11 (see FIG. 2) of the DNA sequence of the soybean-derived DREB gene shown in FIG. In the second invention, the partial sequence described in SEQ ID NO: 12 (see FIG. 3) of the cotton-derived DREB gene DNA sequence shown in FIG. 1 can be specifically amplified. it can.
The term "specific" as used herein means that only the partial sequence in the soybean-derived DREB gene is amplified in the first and third inventions, and in the second and fourth inventions, in the cotton-derived DREB gene. Means that only a partial sequence of is amplified. Therefore, it is possible to specifically detect a genetically modified crop other than soybean introduced with a soybean-derived DREB gene or a genetically modified crop other than cotton introduced with a cotton-derived DREB gene, respectively, contained in a test sample. it can. Note that the partial sequence to be amplified in the first and third inventions is preferably SEQ ID NO: 11, but is not limited thereto, and other regions of the DNA sequence of the DREB gene derived from soybean may be amplified. Good. The partial sequence to be amplified in the second and fourth inventions is also preferably SEQ ID NO: 12, but is not limited thereto, and other regions of the cotton-derived DREB gene may be amplified. Good.
 本発明において、被検試料は、例えばそのまま又は粉砕して核酸抽出に供してもよく、洗浄し乾燥させた後破砕して核酸抽出に供してもよい。被検試料から抽出して分析に用いる核酸は、通常はDNAである。DNAは公知の任意の方法によって抽出してもよいが、現在は多数のDNA抽出キットが市販されており、これらを用いて抽出することができる。例えばDNeasy Plant Maxi kit(QIAGEN社製)を用いて、Kopellらの方法(Kopell, E. et al.; Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene, 88, 164、出版社:Neukomm & Zimmermann)にしたがって、被検試料からDNAを抽出してもよい。抽出したDNAは、吸光度の測定などにより濃度を算出し、PCRに好適な濃度まで希釈して用いることが好ましい。 In the present invention, the test sample may be subjected to nucleic acid extraction, for example, as it is or after being pulverized, or may be washed, dried, crushed and subjected to nucleic acid extraction. The nucleic acid extracted from the test sample and used for analysis is usually DNA. DNA may be extracted by any known method, but many DNA extraction kits are commercially available and can be extracted using these. For example, using DNeasy Plant Maxi kit (manufactured by QIAGEN), using the method of Kopell et al. (Kopell, E. et al .; DNA may be extracted from the test sample. The extracted DNA is preferably used after calculating its concentration by measuring absorbance and diluting it to a concentration suitable for PCR.
 本発明において、PCRは、使用するプライマーやDNAポリメラーゼを考慮して、常法にしたがって行うことができる。その際に、PCR緩衝液、dNTP、及びMgCl2等の試薬は調製してもよいし、市販のPCRキットを用いてもよい。また、PCR条件は、例えば95℃15秒、60℃30秒、及び72℃30秒を1サイクルとして35サイクル行い、最後に終了反応として72℃7分間という条件が使用可能であるが、用いるプライマーのTm値、増幅すべき領域の長さ、及び鋳型DNAの濃度等を考慮して、適宜変更することができる。 In the present invention, PCR can be performed according to a conventional method in consideration of the primer and DNA polymerase to be used. At that time, reagents such as a PCR buffer, dNTP, and MgCl 2 may be prepared, or a commercially available PCR kit may be used. In addition, PCR conditions can be used, for example, at 95 ° C. for 15 seconds, 60 ° C. for 30 seconds, and 72 ° C. for 30 seconds for 35 cycles, and finally at 72 ° C. for 7 minutes as the end reaction. The Tm value, the length of the region to be amplified, the concentration of the template DNA, and the like can be changed as appropriate.
 増幅された核酸(以下「PCR産物」という)は、特定のDNA断片を同定する任意の方法で検出できる。同定する方法としては、例えばアガロースゲル電気泳動、アクリルアミドゲル電気泳動、キャピラリー電気泳動、ハイブリダイゼーション、及び免疫学的方法等がある。一般的に、PCR産物は電気泳動パターンによって同定される。例えばエチジウムブロミドを含む0.8%のアガロースゲルによる電気泳動を行い、PCR産物をバンドとして検出してもよい。 The amplified nucleic acid (hereinafter referred to as “PCR product”) can be detected by any method for identifying a specific DNA fragment. Examples of the identification method include agarose gel electrophoresis, acrylamide gel electrophoresis, capillary electrophoresis, hybridization, and immunological methods. In general, PCR products are identified by electrophoresis patterns. For example, electrophoresis using 0.8% agarose gel containing ethidium bromide may be performed to detect the PCR product as a band.
 また、PCR産物は、プライマーペア及び核酸プローブの存在下でリアルタイムPCRを行い、PCR増幅の過程で同定することもできる。また、リアルタイムPCRで使用する核酸プローブは蛍光標識、放射性物質標識、及びビオチン標識されたものを用いることができる。本発明で使用する核酸プローブは、例えば、配列番号5又は配列番号10に記載の塩基配列からなるオリゴヌクレオチドの5’末端を蛍光物質としてFAMで修飾し、3’末端をクエンチャーとしてTAMRA又はMGBで修飾したものである。また、配列番号5又は配列番号10に記載の塩基配列に代えて、配列番号5又は配列番号10に記載の塩基配列と相補の塩基配列からなる核酸プローブや、配列番号5若しくは配列番号10又はこれらと相補の塩基配列に対して80%以上、より好ましくは85%以上、更に好ましくは90%以上の相同性を有する塩基配列を含み、蛍光標識、放射性物質標識又はビオチン標識されている核酸プローブを用いることもできる。 The PCR product can also be identified in the process of PCR amplification by performing real-time PCR in the presence of a primer pair and a nucleic acid probe. In addition, as a nucleic acid probe used in real-time PCR, fluorescent label, radioactive substance label, and biotin-labeled probe can be used. The nucleic acid probe used in the present invention is, for example, modified with FAM using the 5 ′ end of an oligonucleotide having the base sequence described in SEQ ID NO: 5 or SEQ ID NO: 10 as a fluorescent substance, and TAMRA or MGB using the 3 ′ end as a quencher. It is modified with Further, in place of the base sequence described in SEQ ID NO: 5 or SEQ ID NO: 10, a nucleic acid probe consisting of a base sequence complementary to the base sequence described in SEQ ID NO: 5 or SEQ ID NO: 10, SEQ ID NO: 5 or SEQ ID NO: 10 or these A nucleic acid probe comprising a nucleotide sequence having a homology of 80% or more, more preferably 85% or more, more preferably 90% or more, and a fluorescent label, radioactive substance label or biotin label It can also be used.
 第3発明及び第4発明は、それぞれ第1発明及び第2発明で使用したプライマーペアを含む試薬キットである。プライマーペアを構成する核酸は常法にしたがって製造することができる。また、試薬キットはプライマーペアと他の試薬とを含んでいてもよい。例えば、試薬キットはdNTP、MgCl2、DNAポリメラーゼ(例えばTaqDNAポリメラーゼ)、緩衝液(例えばTris-HCl)、グリセロール、DMSO、ポジティブコントロール用DNA、ネガティブコントロール用DNA、及び蒸留水等を包含してもよい。試薬キットは、PCRによる増幅産物の核酸の検出又は定量に使用するための、蛍光標識、放射性物質標識又はビオチン標識されている核酸プローブを含んでいてもよい。試薬キットに含まれる試薬は、それぞれ独立に梱包されていてもよいし、混合された上で梱包されていてもよい。試薬キット中のそれぞれの試薬濃度に特に制限はなく、本発明に係るPCRが実施可能な濃度範囲であればよい。また、試薬キットには、好適なPCR条件等の情報がさらに添付されていてもよい。 The third invention and the fourth invention are reagent kits including the primer pairs used in the first invention and the second invention, respectively. The nucleic acid constituting the primer pair can be produced according to a conventional method. The reagent kit may contain a primer pair and another reagent. For example, the reagent kit may include dNTP, MgCl 2 , DNA polymerase (eg, Taq DNA polymerase), buffer (eg, Tris-HCl), glycerol, DMSO, positive control DNA, negative control DNA, distilled water, and the like. Good. The reagent kit may include a fluorescent probe, a radioactive substance label, or a biotin-labeled nucleic acid probe for use in the detection or quantification of the nucleic acid of the amplification product by PCR. Reagents contained in the reagent kit may be individually packed, or may be packed after being mixed. There are no particular limitations on the concentration of each reagent in the reagent kit, and any concentration range can be used as long as PCR according to the present invention can be performed. Further, information such as suitable PCR conditions may be further attached to the reagent kit.
 以下、実施例により本発明を更に詳細に説明する。本発明は、以下の実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited in any way by the following examples.
〔実施例1:PCR及びアガロースゲル電気泳動によるダイズ由来及びワタ由来のDREB遺伝子の検出〕
(方法)
 下記の3種の被検試料からそれぞれ抽出したDNAを鋳型とし、下記のプライマーペアを用いてPCRを行った。その後、アガロースゲル電気泳動により各試料における増幅の有無を調べた。
(試料)
 小麦:国内産小麦
 ダイズ:市販の国内産ダイズの乾燥種子
 ワタ:市販のワタの乾燥種子
 各試料をMulti Beads Shocker(安井器械株式会社)で破砕した後、DNeasy Plant Maxi kit(QIAGEN社製)を用いてDNAを抽出した。
[Example 1: Detection of soybean-derived and cotton-derived DREB genes by PCR and agarose gel electrophoresis]
(Method)
PCR was carried out using the DNA extracted from each of the following three test samples as a template and using the following primer pairs. Thereafter, the presence or absence of amplification in each sample was examined by agarose gel electrophoresis.
(sample)
Wheat: Domestic wheat Soybean: Dry domestic seeds of commercially available soybeans Cotton: Dry seeds of commercially available cotton After each sample was crushed with Multi Beads Shocker (Yasui Kikai Co., Ltd.), DNeasy Plant Maxi kit (QIAGEN) was used. DNA was extracted.
(プライマーペア)
 PCRに使用するプライマーを設計するために、遺伝子配列データベース(National Center for Biotechnology Information)(http://www.ncbi.nlm.nih.gov/)を使用した。
 ダイズ由来のDREB遺伝子のDNA配列としてaccession number AF514908(配列番号13)を使用し、配列番号1に記載の塩基配列を有する核酸と配列番号2に記載の塩基配列を有する核酸とからなるプライマーペアを設計した。
 ワタ由来のDREB遺伝子のDNA配列としてaccession number AF509502(配列番号14)を使用し、配列番号6に記載の塩基配列を有する核酸と配列番号7に記載の塩基配列を有する核酸とからなるプライマーペアを設計した。
 プライマーの合成は、Operon社に委託した。
(Primer pair)
In order to design primers used for PCR, a gene sequence database (National Center for Biotechnology Information) (http://www.ncbi.nlm.nih.gov/) was used.
Using accession number AF514908 (SEQ ID NO: 13) as the DNA sequence of the DREB gene derived from soybean, a primer pair consisting of a nucleic acid having the base sequence described in SEQ ID NO: 1 and a nucleic acid having the base sequence described in SEQ ID NO: 2 Designed.
Using accession number AF509502 (SEQ ID NO: 14) as the DNA sequence of the DREB gene derived from cotton, a primer pair comprising a nucleic acid having the base sequence described in SEQ ID NO: 6 and a nucleic acid having the base sequence described in SEQ ID NO: 7 Designed.
Primer synthesis was outsourced to Operon.
(PCRによるダイズ由来及びワタ由来のDREB遺伝子の検出)
 各試料から抽出したDNAを鋳型にPCRを行った。ダイズ由来のDREB遺伝子の検出には配列番号1及び配列番号2のプライマーを使用した。また、ワタ由来のDREB遺伝子の検出には配列番号6及び配列番号7のプライマーを使用した。
 3種の被験試料のそれぞれについて、PCRの反応ミックスを調整した。1μlのDNA(20 ng/μl)、0.5μl(2.5U)のAmpliTaq Gold(Applied Biosystems)、2.5μlの2 mM dNTP、2.5μlの25 mM MgCl2、0.15μlの50μM各プライマー、2.5μlの10×PCR Buffer IIを添加し、さらに、反応ミックスの液量が25μlとなるよう、蒸留水を添加した。
 PCRにおいては、95℃10分のDNAポリメラーゼ活性化ステップを実施した後、95℃15秒の変性ステップ、60℃30秒のアニーリングステップ及び72℃30秒のDNA伸長ステップを含むサイクルを35回繰り返し、その後、72℃5分のDNA伸長最終ステップを行った。
(Detection of DREB genes derived from soybean and cotton by PCR)
PCR was performed using DNA extracted from each sample as a template. Primers of SEQ ID NO: 1 and SEQ ID NO: 2 were used for detection of the DREB gene derived from soybean. In addition, primers of SEQ ID NO: 6 and SEQ ID NO: 7 were used for detection of the cotton-derived DREB gene.
The PCR reaction mix was adjusted for each of the three test samples. 1 μl DNA (20 ng / μl), 0.5 μl (2.5 U) AmpliTaq Gold (Applied Biosystems), 2.5 μl 2 mM dNTP, 2.5 μl 25 mM MgCl 2 , 0.15 μl 50 μM each primer Then, 2.5 μl of 10 × PCR Buffer II was added, and distilled water was further added so that the volume of the reaction mix was 25 μl.
In PCR, after performing a DNA polymerase activation step at 95 ° C. for 10 minutes, a cycle including a denaturation step at 95 ° C. for 15 seconds, an annealing step at 60 ° C. for 30 seconds and a DNA extension step at 72 ° C. for 30 seconds is repeated 35 times. Thereafter, a final DNA extension step at 72 ° C. for 5 minutes was performed.
 PCR終了後、PCR反応溶液5μlをE-Gel EX(インビトロジェン)にて電気泳動を行い、UVで増幅を確認した。
 増幅が確認されたPCR産物を精製した後、BigDye Terminators v1.1 Cycle Sequencing Kit(ライフテクノロジーズジャパン)を使用してサイクルシーケンス反応を行った。シーケンス反応物を精製した後、Applied Biosystems3500ジェネティックアナライザ(ライフテクノロジーズジャパン)にてDNA配列を調べた。
After completion of PCR, 5 μl of the PCR reaction solution was electrophoresed with E-Gel EX (Invitrogen), and amplification was confirmed by UV.
After the PCR product confirmed to be amplified was purified, a cycle sequence reaction was performed using BigDye Terminators v1.1 Cycle Sequencing Kit (Life Technologies Japan). After purifying the sequencing reaction product, the DNA sequence was examined with Applied Biosystems 3500 Genetic Analyzer (Life Technologies Japan).
(結果)
 ダイズ由来のDREB遺伝子の検出結果を図2に示した。図2に示すように、ダイズから抽出したDNAのみ予想された長さ(91bp)のバンドが検出され、ワタ及び小麦から抽出したDNAではバンドは検出されなかった。さらに、ダイズで検出されたバンドのDNA配列は、ダイズ由来のDREB遺伝子の増幅領域の配列であった。
 ワタ由来のDREB遺伝子の検出結果を図3に示した。図3に示すように、ワタから抽出したDNAのみ予想された長さ(94bp)のバンドが検出され、ダイズ及び小麦から抽出したDNAではバンドは検出されなかった。さらに、ワタで検出されたバンドのDNA配列は、ワタ由来のDREB遺伝子の増幅領域の配列であった。なお、図2及び図3の「4.TE」はネガティブコントロールである。
(result)
The detection result of the soybean-derived DREB gene is shown in FIG. As shown in FIG. 2, a band of the expected length (91 bp) was detected only for DNA extracted from soybean, and no band was detected for DNA extracted from cotton and wheat. Furthermore, the DNA sequence of the band detected in soybean was the sequence of the amplified region of the DREB gene derived from soybean.
The detection result of cotton-derived DREB gene is shown in FIG. As shown in FIG. 3, a band of the expected length (94 bp) was detected only for DNA extracted from cotton, and no band was detected for DNA extracted from soybean and wheat. Furthermore, the DNA sequence of the band detected in cotton was the sequence of the amplified region of the cotton-derived DREB gene. Note that “4.TE” in FIGS. 2 and 3 is a negative control.
 これらの結果より、配列番号1、2及び配列番号6、7のプライマーペアを用いてPCRを行うことで、ダイズ由来及びワタ由来のDREB遺伝子をそれぞれ特異的に増幅できることがわかった。したがって、これらのプライマーペアを使用すれば、それぞれダイズ由来及びワタ由来のDREB遺伝子が導入された、ダイズ以外及びワタ以外の遺伝子組換え作物を検出することができる。また、これらのプライマーペアは小麦では増幅しないことから、ダイズ由来及びワタ由来のDREB遺伝子が導入された遺伝子組換え小麦を検出することができる。 From these results, it was found that the DREB genes derived from soybean and cotton can be specifically amplified by PCR using the primer pairs of SEQ ID NOs: 1, 2 and SEQ ID NOs: 6, 7. Therefore, if these primer pairs are used, genetically modified crops other than soybean and cotton other than soybean introduced with soybean-derived and cotton-derived DREB genes can be detected. Moreover, since these primer pairs are not amplified in wheat, it is possible to detect genetically modified wheat introduced with soybean-derived and cotton-derived DREB genes.
〔実施例2:リアルタイムPCRによるダイズ由来及びワタ由来のDREB遺伝子の検出〕
(方法)
 実施例1で使用したものと同じ3種の被検試料からそれぞれ抽出したDNAを鋳型とし、下記のプライマーペア及び核酸プローブを用いてリアルタイムPCRを行った。
(プライマーペア)
 ダイズ由来のDREB遺伝子においては、実施例1で使用した配列番号1、2に記載の塩基配列を有する核酸からなるプライマーペアを用いた。
 ワタ由来のDREB遺伝子においては、実施例1で使用した配列番号6、7に記載の塩基配列を有する核酸からなるプライマーペアを用いた。
(核酸プローブ)
 ダイズ由来のDREB遺伝子においては、プライマーペア(配列番号1、2)の間のDNA配列に配列番号5の核酸プローブを設計した。この核酸プローブは5’末端をFAMで標識、3’末端をクエンチャーとしてTAMRAで修飾した。
 ワタ由来のDREB遺伝子においては、プライマーペア(配列番号6、7)の間のDNA配列に配列番号10の核酸プローブを設計した。この核酸プローブは5’末端をFAMで標識、3’末端をクエンチャーとしてMGBで修飾した。
 核酸プローブの合成は、Applied Biosystems社に委託した。
[Example 2: Detection of soybean-derived and cotton-derived DREB genes by real-time PCR]
(Method)
Real-time PCR was performed using DNA extracted from the same three types of test samples as used in Example 1 as templates and using the following primer pairs and nucleic acid probes.
(Primer pair)
For the DREB gene derived from soybean, a primer pair consisting of a nucleic acid having the base sequence described in SEQ ID NOs: 1 and 2 used in Example 1 was used.
In the cotton-derived DREB gene, a primer pair consisting of nucleic acids having the base sequences described in SEQ ID NOs: 6 and 7 used in Example 1 was used.
(Nucleic acid probe)
For the soybean-derived DREB gene, the nucleic acid probe of SEQ ID NO: 5 was designed in the DNA sequence between the primer pair (SEQ ID NOs: 1, 2). This nucleic acid probe was labeled with FAM at the 5 ′ end and modified with TAMRA using the 3 ′ end as a quencher.
For the cotton-derived DREB gene, a nucleic acid probe of SEQ ID NO: 10 was designed in the DNA sequence between the primer pair (SEQ ID NOs: 6, 7). This nucleic acid probe was labeled with FAM at the 5 ′ end and modified with MGB using the 3 ′ end as a quencher.
The synthesis of the nucleic acid probe was outsourced to Applied Biosystems.
(リアルタイムPCRによるダイズ由来及びワタ由来のDREB遺伝子の検出)
 各試料から抽出したDNAを鋳型にリアルタイムPCRを行った。ダイズ由来のDREB遺伝子の検出には配列番号1及び配列番号2のプライマー、配列番号5のオリゴヌクレオチドを含む蛍光標識された核酸プローブを使用した。また、ワタ由来のDREB遺伝子の検出には配列番号6及び配列番号7のプライマー、配列番号10のオリゴヌクレオチドを含む蛍光標識された核酸プローブを使用した。3種の被験試料のそれぞれについて、リアルタイムPCRの反応ミックスを調整した。2.5μlのDNA(20 ng/μl)、12.5μlのTaqMan Universal PCR Master Mix(Applied Biosystems)、0.25μlの50μM各プライマー、0.5μlの10μM核酸プローブを添加し、さらに、反応ミックスの液量が25μlとなるよう、蒸留水を添加した。
 リアルタイムPCRにおいては、7900HT Fast Real-Time PCR System(Applied Biosystems)を使用した。50℃2分に続いて95℃10分の変性ステップを実施した後、95℃15秒の変性ステップ及び60℃1分のアニーリング及びDNA伸長ステップを含むサイクルを45サイクル繰り返した。
 リアルタイムPCR終了後、各試料において、FAM由来の蛍光強度が指数関数的に増加しているか確認した。
(Detection of soybean and cotton-derived DREB genes by real-time PCR)
Real-time PCR was performed using DNA extracted from each sample as a template. For detection of soybean-derived DREB gene, a fluorescently labeled nucleic acid probe containing the primers of SEQ ID NO: 1 and SEQ ID NO: 2 and the oligonucleotide of SEQ ID NO: 5 was used. For detection of the cotton-derived DREB gene, a fluorescently labeled nucleic acid probe containing the primers of SEQ ID NO: 6 and SEQ ID NO: 7 and the oligonucleotide of SEQ ID NO: 10 was used. A real-time PCR reaction mix was prepared for each of the three test samples. 2.5 μl of DNA (20 ng / μl), 12.5 μl of TaqMan Universal PCR Master Mix (Applied Biosystems), 0.25 μl of 50 μM each primer, 0.5 μl of 10 μM nucleic acid probe were added, and the reaction mix Distilled water was added so that the liquid volume was 25 μl.
For real-time PCR, 7900HT Fast Real-Time PCR System (Applied Biosystems) was used. After performing a denaturation step at 95 ° C. for 10 minutes following 50 ° C. for 2 minutes, a cycle including a denaturation step at 95 ° C. for 15 seconds and an annealing and DNA extension step at 60 ° C. for 1 minute was repeated 45 cycles.
After completion of real-time PCR, it was confirmed in each sample whether the fluorescence intensity derived from FAM increased exponentially.
(結果)
 ダイズ由来のDREB遺伝子の検出結果を図4に示した。図4に示すように、ダイズから抽出したDNAのみ指数関数的に増加した蛍光強度が検出され、ワタ及び小麦から抽出したDNAでは検出されなかった。
 ワタ由来のDREB遺伝子の検出結果を図5に示した。図5に示すように、ワタから抽出したDNAのみ指数関数的に増加した蛍光強度が検出され、ダイズ及び小麦から抽出したDNAでは検出されなかった。
(result)
The detection result of the soybean-derived DREB gene is shown in FIG. As shown in FIG. 4, the fluorescence intensity increased exponentially only with DNA extracted from soybean, but not with DNA extracted from cotton and wheat.
The detection result of cotton-derived DREB gene is shown in FIG. As shown in FIG. 5, the fluorescence intensity increased exponentially only with DNA extracted from cotton, but not with DNA extracted from soybean and wheat.
 これらの結果より、配列番号1、2のプライマーペアと配列番号5のオリゴヌクレオチドを含む蛍光標識された核酸プローブ、及び配列番号6、7のプライマーペアと配列番号10のオリゴヌクレオチドを含む蛍光標識された核酸プローブを用いてリアルタイムPCRを行うことで、ダイズ由来及びワタ由来のDREB遺伝子をそれぞれ特異的に検出できることがわかった。したがって、これらのプライマーペア及び核酸プローブのセットを使用すれば、リアルタイムPCRにおいてもそれぞれダイズ由来及びワタ由来のDREB遺伝子が導入された、ダイズ以外及びワタ以外の遺伝子組換え作物を検出することができる。また、これらのプライマーペア及び核酸プローブのセットは小麦では増幅しないことから、ダイズ由来及びワタ由来のDREB遺伝子が導入された遺伝子組換え小麦を検出することができる。 From these results, the fluorescently labeled nucleic acid probe containing the primer pair of SEQ ID NO: 1 and 2 and the oligonucleotide of SEQ ID NO: 5 and the fluorescently labeled nucleic acid probe containing the primer pair of SEQ ID NO: 6, 7 and the oligonucleotide of SEQ ID NO: 10 were labeled. It was found that the DREB gene derived from soybean and cotton can be specifically detected by performing real-time PCR using the nucleic acid probe. Therefore, if these primer pairs and nucleic acid probe sets are used, it is possible to detect genetically modified crops other than soybean and cotton other than soybean and cotton-derived DREB genes introduced in real-time PCR, respectively. . Moreover, since these primer pairs and nucleic acid probe sets are not amplified in wheat, it is possible to detect genetically modified wheat introduced with soybean-derived and cotton-derived DREB genes.
 本発明の遺伝子組換え作物の検出方法及び試薬キットによれば、農産物やそれを使用した食品等の被検試料中に含まれる、DREB遺伝子が導入された遺伝子組換え作物を、高い信頼性及び実用性を持って検出可能である。 According to the method and reagent kit for detecting a genetically modified crop of the present invention, a genetically modified crop introduced with a DREB gene, which is contained in a test sample such as an agricultural product or a food using the same, has high reliability and It can be detected with practicality.

Claims (12)

  1.  遺伝子組換え作物をポリメラーゼ連鎖反応によって検出する遺伝子組換え作物の検出方法であって、
     被検試料中の核酸又は前記被検試料から抽出した核酸を鋳型とし、ダイズ由来のDREB遺伝子の部分配列を特異的に増幅可能なプライマーペアを用いて、前記ダイズ由来のDREB遺伝子の部分配列を有する核酸を増幅する工程と、
     前記増幅された核酸を検出又は定量する工程と、
     を含む遺伝子組換え作物の検出方法。
    A method for detecting a genetically modified crop by detecting a genetically modified crop by polymerase chain reaction,
    Using a nucleic acid in a test sample or a nucleic acid extracted from the test sample as a template, and using a primer pair that can specifically amplify a partial sequence of the soybean-derived DREB gene, the partial sequence of the soybean-derived DREB gene Amplifying the nucleic acid possessed;
    Detecting or quantifying the amplified nucleic acid;
    A method for detecting a genetically modified crop comprising
  2.  前記プライマーペアが、
     配列番号1に記載の塩基配列を含む核酸、
     配列番号1に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は 配列番号3に記載の塩基配列を含む核酸にハイブリダイズする核酸と、
     配列番号2に記載の塩基配列を含む核酸、
     配列番号2に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は 配列番号4に記載の塩基配列を含む核酸にハイブリダイズする核酸とからなる、請求項1に記載の遺伝子組換え作物の検出方法。
    The primer pair is
    A nucleic acid comprising the base sequence set forth in SEQ ID NO: 1,
    A nucleic acid containing at least 80% of the continuous base sequence in the base sequence shown in SEQ ID NO: 1, or a nucleic acid hybridizing to a nucleic acid containing the base sequence shown in SEQ ID NO: 3,
    A nucleic acid comprising the base sequence set forth in SEQ ID NO: 2,
    The gene according to claim 1, comprising a nucleic acid containing at least 80% of the continuous base sequence of the base sequence shown in SEQ ID NO: 2 or a nucleic acid hybridizing to a nucleic acid containing the base sequence shown in SEQ ID NO: 4. Method for detecting recombinant crops.
  3.  前記増幅された核酸の検出又は定量に、配列番号5に記載の塩基配列、該塩基配列と相補の塩基配列又はこれらの何れかの塩基配列に対して80%以上の相同性を有する塩基配列を含み、蛍光標識、放射性物質標識又はビオチン標識されている核酸プローブを用いる、請求項1又は2に記載の遺伝子組換え作物の検出方法。 For detection or quantification of the amplified nucleic acid, the base sequence set forth in SEQ ID NO: 5, the base sequence complementary to the base sequence, or a base sequence having 80% or more homology with any of these base sequences The method for detecting a genetically modified crop according to claim 1 or 2, wherein a nucleic acid probe containing a fluorescent label, a radioactive substance label or a biotin label is used.
  4.  遺伝子組換え作物をポリメラーゼ連鎖反応によって検出する遺伝子組換え作物の検出方法であって、
     被検試料中の核酸又は前記被検試料から抽出した核酸を鋳型とし、ワタ由来のDREB遺伝子の部分配列を特異的に増幅可能なプライマーペアを用いて、前記ワタ由来のDREB遺伝子の部分配列を有する核酸を増幅する工程と、
     前記増幅された核酸を検出又は定量する工程と、
     を含む遺伝子組換え作物の検出方法。
    A method for detecting a genetically modified crop by detecting a genetically modified crop by polymerase chain reaction,
    Using a nucleic acid in a test sample or a nucleic acid extracted from the test sample as a template, and using a primer pair that can specifically amplify a partial sequence of a cotton-derived DREB gene, a partial sequence of the cotton-derived DREB gene Amplifying the nucleic acid possessed;
    Detecting or quantifying the amplified nucleic acid;
    A method for detecting a genetically modified crop comprising
  5.  前記プライマーペアが、
     配列番号6に記載の塩基配列を含む核酸、
     配列番号6に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は 配列番号8に記載の塩基配列を含む核酸にハイブリダイズする核酸と、
     配列番号7に記載の塩基配列を含む核酸、
     配列番号7に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は 配列番号9に記載の塩基配列を含む核酸にハイブリダイズする核酸とからなる、請求項4に記載の遺伝子組換え作物の検出方法。
    The primer pair is
    A nucleic acid comprising the base sequence set forth in SEQ ID NO: 6,
    A nucleic acid containing at least 80% of the continuous base sequence in the base sequence shown in SEQ ID NO: 6 or a nucleic acid hybridizing to a nucleic acid containing the base sequence shown in SEQ ID NO: 8,
    A nucleic acid comprising the base sequence set forth in SEQ ID NO: 7,
    The gene according to claim 4, comprising a nucleic acid containing at least 80% of the continuous base sequence of the base sequence shown in SEQ ID NO: 7 or a nucleic acid hybridizing to a nucleic acid containing the base sequence shown in SEQ ID NO: 9. Method for detecting recombinant crops.
  6.  前記増幅された核酸の検出又は定量に、配列番号10に記載の塩基配列、該塩基配列と相補の塩基配列又はこれらの何れかの塩基配列に対して80%以上の相同性を有する塩基配列を含み、蛍光標識、放射性物質標識又はビオチン標識されている核酸プローブを用いる、請求項4又は5に記載の遺伝子組換え作物の検出方法。 For detection or quantification of the amplified nucleic acid, a base sequence represented by SEQ ID NO: 10, a base sequence complementary to the base sequence, or a base sequence having 80% or more homology with any of these base sequences The method for detecting a genetically modified crop according to claim 4 or 5, wherein a nucleic acid probe containing a fluorescent label, a radioactive substance label or a biotin label is used.
  7.  前記遺伝子組換え作物が小麦である、請求項1~6の何れか1項に記載の遺伝子組換え作物の検出方法。 The method for detecting a genetically modified crop according to any one of claims 1 to 6, wherein the genetically modified crop is wheat.
  8.  ダイズ由来のDREB遺伝子が導入された遺伝子組換え作物を、ポリメラーゼ連鎖反応によって検出又は定量するための試薬キットであって、
     配列番号1に記載の塩基配列を含む核酸、配列番号1に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は配列番号3に記載の塩基配列を含む核酸にハイブリダイズする核酸と、
     配列番号2に記載の塩基配列を含む核酸、配列番号2に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は配列番号4に記載の塩基配列を含む核酸にハイブリダイズする核酸とからなるプライマーペアを含む、試薬キット。
    A reagent kit for detecting or quantifying a genetically modified crop introduced with soybean-derived DREB gene by polymerase chain reaction,
    Hybridizes to a nucleic acid comprising the base sequence set forth in SEQ ID NO: 1, a nucleic acid comprising at least 80% of the contiguous base sequence in the base sequence set forth in SEQ ID NO: 1, or a nucleic acid comprising the base sequence set forth in SEQ ID NO: 3. Nucleic acids,
    It hybridizes to a nucleic acid comprising the base sequence set forth in SEQ ID NO: 2, a nucleic acid comprising at least 80% continuous base sequence in the base sequence set forth in SEQ ID NO: 2, or a nucleic acid comprising the base sequence set forth in SEQ ID NO: 4. A reagent kit comprising a primer pair consisting of a nucleic acid.
  9.  配列番号5に記載の塩基配列、該塩基配列と相補の塩基配列又はこれらの何れかの塩基配列に対して80%以上の相同性を有する塩基配列を含み、蛍光標識、放射性物質標識又はビオチン標識されている核酸プローブを更に含む、請求項8に記載の試薬キット。 Including a nucleotide sequence set forth in SEQ ID NO: 5, a nucleotide sequence complementary to the nucleotide sequence, or a nucleotide sequence having 80% or more homology with any of these nucleotide sequences, and a fluorescent label, radioactive substance label, or biotin label The reagent kit according to claim 8, further comprising a nucleic acid probe.
  10.  ワタ由来のDREB遺伝子が導入された遺伝子組換え作物を、ポリメラーゼ連鎖反応によって検出又は定量するための試薬キットであって、
     配列番号6に記載の塩基配列を含む核酸、配列番号6に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は配列番号8に記載の塩基配列を含む核酸にハイブリダイズする核酸と、
     配列番号7に記載の塩基配列を含む核酸、配列番号7に記載の塩基配列中の少なくとも80%の連続した塩基配列を含む核酸、又は配列番号9に記載の塩基配列を含む核酸にハイブリダイズする核酸とからなるプライマーペアを含む、試薬キット。
    A reagent kit for detecting or quantifying a genetically modified crop introduced with cotton-derived DREB gene by polymerase chain reaction,
    It hybridizes to a nucleic acid comprising the base sequence set forth in SEQ ID NO: 6, a nucleic acid comprising at least 80% of the contiguous base sequence in the base sequence set forth in SEQ ID NO: 6, or a nucleic acid comprising the base sequence set forth in SEQ ID NO: 8. Nucleic acids,
    It hybridizes to a nucleic acid comprising the base sequence set forth in SEQ ID NO: 7, a nucleic acid comprising at least 80% continuous base sequence in the base sequence set forth in SEQ ID NO: 7, or a nucleic acid comprising the base sequence set forth in SEQ ID NO: 9. A reagent kit comprising a primer pair consisting of a nucleic acid.
  11.  配列番号10に記載の塩基配列、該塩基配列と相補の塩基配列又はこれらの何れかの塩基配列に対して80%以上の相同性を有する塩基配列を含み、蛍光標識、放射性物質標識又はビオチン標識されている核酸プローブを更に含む、請求項10に記載の試薬キット。 Including a nucleotide sequence set forth in SEQ ID NO: 10, a nucleotide sequence complementary to the nucleotide sequence, or a nucleotide sequence having 80% or more homology with any of these nucleotide sequences, and a fluorescent label, radioactive substance label, or biotin label The reagent kit according to claim 10, further comprising a nucleic acid probe.
  12.  前記遺伝子組換え作物が小麦である、請求項8~11の何れか1項に記載の試薬キット。 The reagent kit according to any one of claims 8 to 11, wherein the genetically modified crop is wheat.
PCT/JP2017/000885 2016-03-24 2017-01-12 Genetically-modified crop detection method WO2017163546A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018507059A JP7091237B2 (en) 2016-03-24 2017-01-12 Detection method of genetically modified crops
CN201780007479.3A CN108474045A (en) 2016-03-24 2017-01-12 The detection method of genetically modified crops

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016060669 2016-03-24
JP2016-060669 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163546A1 true WO2017163546A1 (en) 2017-09-28

Family

ID=59899896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000885 WO2017163546A1 (en) 2016-03-24 2017-01-12 Genetically-modified crop detection method

Country Status (3)

Country Link
JP (1) JP7091237B2 (en)
CN (1) CN108474045A (en)
WO (1) WO2017163546A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151307B (en) * 2021-06-11 2022-09-30 云南中烟工业有限责任公司 Gene related to tobacco ethylene response transcription factor and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475497A (en) * 2002-08-16 2004-02-18 清华大学 Transcription factor for regulating and controlling dry land cotton anti contrary property and its coded gene and application
CN1477109A (en) * 2002-08-19 2004-02-25 清华大学 Transcription factor capable of regulating and controlling soybean adverse resistance, its coding gene and application
CN105017392A (en) * 2014-04-24 2015-11-04 中国科学院遗传与发育生物学研究所 Application of plant transcription factor GmDREBL in cultivating stress tolerant plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475497A (en) * 2002-08-16 2004-02-18 清华大学 Transcription factor for regulating and controlling dry land cotton anti contrary property and its coded gene and application
CN1477109A (en) * 2002-08-19 2004-02-25 清华大学 Transcription factor capable of regulating and controlling soybean adverse resistance, its coding gene and application
CN105017392A (en) * 2014-04-24 2015-11-04 中国科学院遗传与发育生物学研究所 Application of plant transcription factor GmDREBL in cultivating stress tolerant plant

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Genomics for Agricultural Innovation: DREB Idenshi To o Katsuyo shita Kankyo Stress ni Tsuyoi Sakumotsu no Kaihatsu", GENOMICS FOR AGRICULTURAL INNOVATION, vol. 518, 2014, pages 1 - 44 *
GLYCINE MAX DEHYDRATION RESPONSIVE ELEMENT BINDING PROTEIN (DREB1) MRNA, 2 June 2003 (2003-06-02), Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/nuccore/AF514908>> [retrieved on 20170327] *
GOSSYPIUM HIRSUTUM DEHYDRATION RESPONSIVE ELEMENT BINDING PROTEIN (DREB) MRNA, 1 August 2003 (2003-08-01), Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/nuccore/AF509502> [retrieved on 20170327] *
HUANG, J.-G. ET AL.: "GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis", PLANT, CELL AND ENVIRONMENT, vol. 32, 2009, pages 1132 - 1145, ISSN: 1365-3040 *
HUBER, I. ET AL.: "Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed", J. AGRIC. FOOD CHEM, vol. 61, 2013, pages 10293 - 10301, ISSN: 0021-8561 *
IMAI, S. ET AL.: "An endogenous reference gene of common and durum wheat for detection of genetically modified wheat", FOOD HYG. SAF. SCI., vol. 53, no. 5, 2012, pages 203 - 210, XP055058501, ISSN: 1882-1006, Retrieved from the Internet <URL:doi:10.3358/shokueishi.53.203> *
MANO, J. ET AL.: "Real-time PCR array as a universal platform for the detection of genetically modified crops and its application in identifying unapproved genetically modified crops in Japan", J. AGRIC. FOOD CHEM., vol. 57, 2009, pages 26 - 37, ISSN: 0021-8561 *

Also Published As

Publication number Publication date
CN108474045A (en) 2018-08-31
JP7091237B2 (en) 2022-06-27
JPWO2017163546A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
Fernandes et al. A survey on genetically modified maize in foods commercialised in Portugal
KR20120107475A (en) Method for detection and quantification of wheat endogenous gene
Di Rienzo et al. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques
KR101154761B1 (en) Method of detecting and quantifying wheat endogenous dna sequence
Kim et al. A portable detection assay for apple stem pitting virus using reverse transcription-recombinase polymerase amplification
US8865433B2 (en) Method for qualitative and quantitative detection of common wheat
WO2017163546A1 (en) Genetically-modified crop detection method
Chen et al. GmoDetector: An accurate and efficient GMO identification approach and its applications
JP3903044B2 (en) Wheat inspection method
JP2007174973A (en) Method for variety identification by multiplex pcr using ssr primer
JP2018512121A5 (en)
Deepa et al. Molecular technologies for the early detection of fungal phytopathogens associated with cereal crops
JP4059851B2 (en) Food inspection method
CN108251551A (en) Using the joint inspection of RPA-DNA test strips to transgenic paddy rice PA110-15 event-specific detection methods
JP4899180B2 (en) Primer set for nucleic acid test, test kit and test method using the same
Ponzoni et al. Traceback identification of plant components in commercial compound feed through an oligonucleotide microarray based on tubulin intron polymorphism
Markoulatos et al. Qualitative and quantitative detection of protein and genetic traits in genetically modified food
JP4925941B2 (en) Wheat detection method using PCR method and primer pair and nucleic acid probe used therefor
KR20150057681A (en) Primer and probe for fusarium head blight and detecting method using the same
Bufflier et al. Detection of Aspergillus carbonarius and other black aspergilli from grapes by DNA OLISA™ microarray
CN111100943B (en) Single-tube nested PCR (polymerase chain reaction) primer pair for detecting sugarcane ophiocordyceps dorsalis and detection method
KR101355918B1 (en) Kits for Detecting Genetically Modified Corn MON863 and MON810
Ali Development of a qPCR method for detection and quantification of Ustilago nuda and COX1 gene in Barley seeds
KR20230150062A (en) Real-time PCR primer sets for detection of genetically modified rice and uses thereof
KR101208732B1 (en) Kits for Detecting Genetically Modified Corn MON863 and MON810

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769593

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769593

Country of ref document: EP

Kind code of ref document: A1