WO2017162169A1 - 尿苷类磷酰胺前药、其制备方法及其在医药上的应用 - Google Patents

尿苷类磷酰胺前药、其制备方法及其在医药上的应用 Download PDF

Info

Publication number
WO2017162169A1
WO2017162169A1 PCT/CN2017/077693 CN2017077693W WO2017162169A1 WO 2017162169 A1 WO2017162169 A1 WO 2017162169A1 CN 2017077693 W CN2017077693 W CN 2017077693W WO 2017162169 A1 WO2017162169 A1 WO 2017162169A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
prodrug
substituted
hydrocarbon group
Prior art date
Application number
PCT/CN2017/077693
Other languages
English (en)
French (fr)
Inventor
王国成
吴会敏
Original Assignee
江苏天士力帝益药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天士力帝益药业有限公司 filed Critical 江苏天士力帝益药业有限公司
Priority to US16/072,647 priority Critical patent/US10745434B2/en
Priority to CA3010462A priority patent/CA3010462A1/en
Priority to AU2017239338A priority patent/AU2017239338B2/en
Priority to JP2018545307A priority patent/JP6890132B2/ja
Priority to EP17769446.0A priority patent/EP3434685B1/en
Priority to KR1020187024563A priority patent/KR20180122333A/ko
Priority to RU2018125748A priority patent/RU2740760C2/ru
Priority to CN201780018366.3A priority patent/CN109071588B/zh
Publication of WO2017162169A1 publication Critical patent/WO2017162169A1/zh
Priority to IL261193A priority patent/IL261193B/en
Priority to HK19101469.9A priority patent/HK1258984A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives

Definitions

  • the invention relates to a novel uridine-based phosphoramide prodrug or an isomer thereof, a pharmaceutically acceptable salt, a hydrate and a solvate thereof, a preparation method thereof and the use thereof in medicine.
  • Hepatitis C is a global epidemic disease, with more than 200 million patients, including tens of millions of Chinese patients.
  • the NS5B inhibitor is a polymerase inhibitor that interferes with viral replication by binding to NS5B RNA-dependent RNA polymerase.
  • nucleoside inhibitors are active site inhibitors, and the natural substrate pretending to be a polymerase is inserted into the RNA strand, interrupting RNA replication. Therefore, these drugs can fight HCV infection of all genotypes, and the virus is also very resistant to it.
  • 2-fluoro-2-methyldeoxyuridine triphosphate is an intracellular potent NS5B inhibitor, but it cannot be transported to the lesion in vivo.
  • a strategy of adding a masking group to a phosphate group to form a prodrug in which a compound in which a masking group forms a phosphoramide structure with a phosphate group and another group forms a phosphate ester with a phosphate group is confirmed to have a liver.
  • the ester-forming group includes the use of various aromatic and aromatic heterocycles on tenofovir prodrugs, especially phenol esters (CN201310041647.4, WO02082841), but the ester-forming groups are relatively non-toxic benzyl or natural Prodrugs of 2-fluoro-2-methyldeoxyuridine monophosphate of alcohol or sugar or vitamin have not been reported for synthesis and biological activity studies.
  • the object of the present invention is to provide a novel uridine monophosphoramide prodrug compound, a preparation method thereof and use thereof for preparing a medicament for treating viral infectious diseases, so as to simultaneously improve liver targeting and bioavailability of the medicament, Thereby improving the efficacy of the drug, reducing the amount of the drug and reducing the toxicity.
  • the inventors have invented a class of uridine-based phosphoramide prodrug compounds, which can be efficiently metabolized and phosphorylated in the liver to form the active product 2-fluoro-2-methyl deoxyuridine three after intragastric administration in rats.
  • Phosphoric acid, and the compound of the present invention is more stable in plasma than the prior art, and its active metabolite 2-fluoro-2-methyl deoxyuridine triphosphate is completely undetectable in plasma, thereby reducing plasma Metabolism causes systemic toxic side effects caused by the presence of active metabolites in non-target organs.
  • An object of the present invention is to provide an antiviral uridine-based phosphoramide prodrug which is a compound of the formula I or an optical isomer thereof or a pharmaceutically acceptable salt thereof,
  • R is independently selected from substituted or unsubstituted benzyl groups, substituted or unsubstituted C 5 -C 50 linear or cyclic natural product fragments, or selected from semi-synthetic or fully synthetic sugars, vitamins, An alcohol, and an analog fragment obtained by structural modification or modification thereof;
  • R 1 , R 2 , R 3 are each independently selected from H, a substituted or unsubstituted C 1 -C 10 linear hydrocarbon group, a C 3 -C 10 branched hydrocarbon group, a C 3 -C 10 cyclic hydrocarbon group, a C 6 -C 10 Aromatic hydrocarbon or heteroaryl, wherein said substitution is one to three heteroatoms independently selected from O, S, N, Se, or R 1 and R 2 , R 1 and R 3 , R 2 and R 3 Forming a substituted or unsubstituted 3-8 membered ring together with the moiety linking them;
  • Z is independently selected from O, S, Se, -NH- or -CH 2 -;
  • the prodrug further includes a solvate of the compound of the formula I or a pharmaceutically acceptable salt thereof, and an optical isomer thereof.
  • R is independently selected from a substituted or unsubstituted benzyl group, or a linear or cyclic natural product fragment having a parent core of C 3 -C 8 , or a semi-synthetic or fully synthetic sugar, Vitamins, alcohols, and analog fragments obtained by structural modification or modification thereof;
  • R 1 , R 2 , R 3 are each independently selected from H, a substituted or unsubstituted C 1 -C 10 linear hydrocarbon group, a C 3 -C 10 branched hydrocarbon group, a C 3 -C 10 cyclic hydrocarbon group, a C 6 -C 10 Aromatic hydrocarbon or heteroaryl, wherein said substitution is one to three heteroatoms independently selected from O, S, N, Se, or R 1 and R 2 , R 1 and R 3 , R 2 and R 3 Forming a substituted or unsubstituted 3-8 membered ring together with the moiety linking them;
  • Z is selected from O, S, Se, -NH- or -CH 2 -.
  • the prodrug of the present invention is further preferably wherein:
  • R is independently selected from a substituted or unsubstituted benzyl group, or a natural product selected from the group consisting of C 3 -C 8 , which is selected from various monosaccharides or analog fragments thereof, or From various polysaccharides or fragments thereof, or selected from fat-soluble vitamins, or selected from natural alcohols or analogs thereof;
  • R 1, R 2, R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 10 straight chain hydrocarbon, C 3 -C 10 branched chain hydrocarbon groups, C 3 -C 10 cycloalkyl, C 6 -C 10 Aromatic hydrocarbon or heteroaryl, wherein said substitution is one to three heteroatoms independently selected from O, S, N, Se, or R 1 and R 2 , R 1 and R 3 , R 2 and R 3 Forming a substituted or unsubstituted 3-8 membered ring together with the moiety linking them;
  • Z is selected from O, S, Se, -NH- or -CH 2 -.
  • the prodrug of the present invention is further preferably wherein:
  • R is independently selected from a substituted or unsubstituted benzyl group, or a natural product selected from the group consisting of C 3 -C 8 , which is selected from various monosaccharides or analog fragments thereof, or From various polysaccharides or fragments thereof, or selected from fat-soluble vitamins, or selected from natural alcohols or analogs thereof;
  • R 1 , R 2 , R 3 are each independently selected from H, a substituted or unsubstituted C 1 -C 10 linear hydrocarbon group, a C 3 -C 10 branched hydrocarbon group, a C 3 -C 10 cyclic hydrocarbon group, a C 6 -C 10 Aromatic hydrocarbon or heteroaryl, wherein said substitution is one to three heteroatoms independently selected from O, S, N, Se, or R 1 and R 2 , R 1 and R 3 , R 2 and R 3 Forming a substituted or unsubstituted 3-8 membered ring together with the moiety linking them;
  • Z is O or S.
  • the prodrug of the present invention is further preferred, wherein:
  • R is independently selected from an unsubstituted benzyl group on the phenyl ring; or an unsubstituted benzyl group on the methylene group; or the substituent on the phenyl ring is independently selected from an ortho or para substituted C 1 -C 10 straight chain hydrocarbon, OC 1 -C 10 hydrocarbyl alkoxy, C 3 -C 10 branched chain hydrocarbon groups, C 3 -C 10 cycloalkyl, benzyl group, C 6 -C 10 aromatic hydrocarbon group or heteroaryl group; or an alkylene
  • the substituent on the methyl group is independently selected from a C 1 -C 10 linear hydrocarbon group, an OC 1 -C 10 alkoxy hydrocarbon group, a C 3 -C 10 branched hydrocarbon group, a C 3 -C 10 cyclic hydrocarbon group, a C 6 -C 10 aromatic group.
  • a benzyl group of a hydrocarbyl or heteroaryl group or a fragment selected from various monosaccharides or analogs thereof having a core of C 3 -C 8 or selected from various polysaccharides or analogs thereof, or selected From a fat-soluble vitamin, or from a natural alcohol or an analogue thereof;
  • R 1 , R 2 , R 3 are each independently selected from H, a substituted or unsubstituted C 1 -C 10 linear hydrocarbon group, a C 3 -C 10 branched hydrocarbon group, a C 3 -C 10 cyclic hydrocarbon group, a C 6 -C 10 Aromatic hydrocarbon or heteroaryl, wherein said substitution is one to three heteroatoms independently selected from O, S, N, Se, or R 1 and R 2 , R 1 and R 3 , R 2 and R 3 Forming a substituted or unsubstituted 3-8 membered ring together with the moiety linking them;
  • Z is O or S.
  • the prodrug of the present invention is further preferred, wherein:
  • R is independently selected from: an unsubstituted benzyl group on the phenyl ring; or an unsubstituted benzyl group on the methylene group; or a benzyl group on which the substituent on the phenyl ring is independently selected from methyl or/and methoxy a substituent; or a substituent on the methylene group is independently selected from a C 1 -C 10 linear hydrocarbon group, an OC 1 -C 10 alkoxy hydrocarbon group, a C 3 -C 10 branched hydrocarbon group, a C 3 -C 10 cyclic hydrocarbon group, a benzyl group of a C 6 -C 10 aromatic hydrocarbon group or a heteroaryl group, wherein the substituent is a non-methyl group when the benzylbenzene ring has only one substituent and is in the ortho position;
  • R 1 is an isopropyl group
  • R 2 is a methyl group, and the carbon atom to be attached is configured as R or S;
  • R 3 is H
  • the prodrug of the present invention is further preferred, wherein:
  • R is independently selected from an unsubstituted benzyl group on the phenyl ring, or a benzyl group in which the substituent group selected from the benzene ring is a methyl group or/and a methoxy group, when there is only one substitution on the benzylbenzene ring And in the ortho position, the substituent is a non-methyl group;
  • R 1 is an isopropyl group
  • R 2 is a methyl group, and the carbon atom to be attached is configured as R or S;
  • R 3 is H
  • R is independently selected from an unsubstituted benzyl group on the phenyl ring, or a benzyl group in which the substituent group selected from the benzene ring is a methyl group or/and a methoxy group, when there is only one substitution on the benzylbenzene ring And in the ortho position, the substituent is a non-methyl group;
  • R 1 is an isopropyl group
  • R 2 is a methyl group, and the carbon atom to be attached is configured in the S configuration
  • R 3 is H
  • the prodrug of the present invention is particularly preferably a compound of the following structure or an optical isomer thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof, or a compound thereof or an optical isomer thereof a solvate of the three types of compounds of the formula or a pharmaceutically acceptable salt thereof:
  • a prodrug of the present invention wherein the pharmaceutically acceptable salt of the compound of the formula (I) comprises a salt formed with a mineral acid such as hydrochloric acid or sulfuric acid, and an organic acid such as acetic acid, trifluoroacetic acid, citric acid or malay a salt formed by acid, oxalic acid, succinic acid, benzoic acid, tartaric acid, fumaric acid, mandelic acid, ascorbic acid or malic acid, and a salt formed by an amino acid such as alanine, aspartic acid, lysine or with a sulfonic acid
  • a salt formed by methanesulfonic acid or p-toluenesulfonic acid for example, a salt formed by methanesulfonic acid or p-toluenesulfonic acid.
  • alkali metal salt an alkaline earth metal salt, a silver salt, a phosphonium salt or the like, such as a potassium salt, a sodium salt, an ammonium salt, a calcium salt or a magnesium salt, according to the nature of the compound and the nature of the compound.
  • the compounds of the formula (I) of the present invention may also exist in the form of solvates (e.g., hydrates), and therefore, such solvates (e.g., hydrates) are also included in the compounds of the present invention.
  • solvates e.g., hydrates
  • the invention further includes a method for preparing the prodrug, wherein one of the methods has the following reaction formula:
  • Phosphorus oxychloride is reacted with a hydroxyl group-containing alcohol or a saccharide or a benzyl group-containing compound under the action of a base, and then reacted with an amino acid ester and a benzene ring-containing active aromatic reagent to obtain an active phosphoester intermediate;
  • Y is an O atom or an S atom or a Se atom, and R 4 is a hydrogen atom or an optional leaving group containing silicon or fluorine.
  • W is an arbitrary halogen atom or a nitro group, and n is an arbitrary integer of 0-5.
  • the base is an inorganic base or an organic base, preferably an organic base, and further preferably the organic base is an amine compound such as, but not limited to, diisopropylethylamine, triethylamine, tert-butylamine, diethylamine, and the like;
  • the benzyl group-containing compound means various substituted or unsubstituted benzyl or benzyl alcohol halides, more preferably various substituted or unsubstituted benzyl bromides or various substituted or unsubstituted benzyl alcohols;
  • step 1.2 :
  • the base is an inorganic base or an organic base, preferably an organic base, and further preferably the organic base is an amine compound such as, but not limited to, diisopropylethylamine, triethylamine, tert-butylamine, diethylamine and the like.
  • the second reaction formula of the method is as follows:
  • uridine monophosphate compound 34 reacts with a hydroxyl group-containing alcohol or saccharide or a compound having a benzyl group under the action of a base to obtain a uridine monophosphate intermediate;
  • the uridine monophosphonate intermediate reacts with a cyclic compound containing a -NH- group in the molecule of the terminal NH-containing group in the presence of a base under the action of a condensing agent to form a uridine as shown in Formula I Phosphorus prodrugs.
  • the base is an inorganic base or an organic base, preferably an organic base, and further preferably the organic base is an amine compound such as, but not limited to, diisopropylethylamine, triethylamine, tert-butylamine, diethylamine, and the like;
  • the compound having a benzyl group is various substituted or unsubstituted benzyl or benzyl alcohol halides, preferably various substituted or unsubstituted benzyl bromides or various substituted or unsubstituted benzyl alcohols;
  • the base is an inorganic base or an organic base, preferably an organic base, and further preferably the organic base is an amine compound such as, but not limited to, diisopropylethylamine, triethylamine, tert-butylamine, diethylamine and the like.
  • the invention further includes a method for chiral separation of the compound, HPLC preparative column separation or chiral column separation to collect the eluate for each retention time, and drying to obtain each chiral isomer.
  • the invention further encompasses a pharmaceutical composition comprising a prodrug of the invention and a pharmaceutically acceptable carrier.
  • the prodrugs can treat diseases caused by viral infectious diseases such as hepatitis C or hepatitis C virus.
  • the pharmaceutical composition of the present invention is preferably in the form of a unit dose of a pharmaceutical preparation which can be made into a pharmaceutical preparation.
  • Any pharmaceutically acceptable dosage form selected from the group consisting of: tablets, sugar-coated tablets, film-coated tablets, enteric coated tablets, capsules, hard capsules, soft capsules, oral liquids, buccal agents, granules , suspensions, solutions, injections, suppositories, ointments, plasters, creams, sprays, patches.
  • Preferred are oral formulations, and tablets and capsules are most preferred.
  • composition of the present invention further comprises a pharmaceutically acceptable carrier.
  • the pharmaceutical preparation can be prepared by conventional techniques of formulation, such as the novel uridine-phosphoramide prodrug compound of the present invention, or a hydrate thereof, or a solvate thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof
  • the single isomer is mixed with a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier includes, but is not limited to, mannitol, sorbitol, sorbic acid or potassium salt, sodium metabisulfite, sodium hydrogen sulfite, sodium thiosulfate, cysteine hydrochloride, thioglycolic acid, methionine, vitamins A, vitamin C, vitamin E, vitamin D, azone, EDTA disodium, EDTA calcium sodium, monovalent alkali metal carbonate, acetate, phosphate or its aqueous solution, hydrochloric acid, acetic acid, sulfuric acid, phosphoric acid, amino acid , sodium chloride, potassium chloride, sodium lactate, xylitol, maltose, glucose, fructose, dextran, glycine, starch, sucrose, lactose, mannitol, silicon derivatives, cellulose and its derivatives, alginic acid Salt, gelatin, polyvinylpyrrolidone, glycerin, propylene glyco
  • a unit dose of the medicament may contain 0.1 to 1000 mg of the pharmaceutically active substance of the present invention, and the balance is a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier may be from 0.1 to 99.9% by weight based on the total weight of the formulation.
  • the pharmaceutical composition of the present invention determines the usage amount according to the condition of the patient at the time of use.
  • the monosaccharide or analog thereof includes, but not limited to, ribose, deoxyribose, arabinose, allose, furanose, xylose, rhamnose, glucose, mannose, etc.;
  • polysaccharide or an analog thereof such as, but not limited to, sucrose, lactose, maltose, cellobiose, etc.;
  • the fat-soluble vitamin refers to a vitamin that is insoluble in water and soluble in fat and organic solvents, including vitamin A, vitamin D, vitamin E, and vitamin K;
  • the natural alcohol or analog thereof such as, but not limited to, resveratrol, flavonol, menthol, and the like.
  • the phenyl group in the sofosbuvir structure is replaced by a less toxic benzyl group or a natural alcohol or a natural sugar or a vitamin to form a metabolic fragment from neurotoxicity compared with the sofosbuvir structure.
  • the relatively toxic phenol with a relatively non-toxic benzyl alcohol or natural alcohol or natural sugar or vitamin compound;
  • the compound provided by the invention can be effectively metabolized and phosphorylated in the liver to form the active product 2-fluoro-2-methyl deoxyuridine triphosphate, and the active metabolite is in the blood. Not fully detected.
  • the compounds provided by the present invention are more stable in human plasma than the prior art, thereby reducing the systemic toxic side effects caused by the presence of active metabolites in non-target organs due to plasma metabolism while maintaining the biological activity of the compounds.
  • the preparation method is the same as the first method of Example 6, wherein the compound 21 is replaced with the compound 22.
  • the yield was 54.2%.
  • Method 2 is the same as Example 2, Method 2, in which compound 41 is replaced with compound 42 (see starting material 42 in Scheme 2). The yield was 30.6%.
  • the preparation method is the same as the method of Example 6, wherein Compound 21 is replaced with Compound 23.
  • the yield was 48.3%.
  • Method 2 is the same as Example 2, Method 2, wherein compound 41 is replaced with compound 43 (see starting material 43 in Scheme 2). The yield was 28.9%.
  • the preparation method is the same as the first method of Example 6, wherein the compound 21 is replaced with the compound 24.
  • the yield was 52.9%.
  • Method 2 is the same as Example 2, Method 2, wherein compound 41 is replaced with compound 44 (see starting material 44 in Scheme 2). The yield was 25.3%.
  • the preparation method is the same as the first method of Example 6, wherein the compound 21 is replaced with the compound 25.
  • the yield was 57.3%.
  • Method 2 is the same as Example 2, Method 2, wherein compound 41 is replaced with compound 45 (see starting material 45 in Scheme 2). The yield was 22.5%.
  • Example 11 Separation and preparation of a single chiral compound
  • HPLC reversed-phase column separation Compound 01 of Example 6 was separated by HPLC (preparation column: Diamonsil C18, 5 ⁇ m, 150 ⁇ 21.1 mm; mobile phase: 20% aqueous acetonitrile (V/V)) The peak order was followed by the compounds 01b and 01a.
  • the most critical is the stability of the prodrug in the non-target organ system and the metabolic activity in the target organ part.
  • the higher the stability in the system e.g., gastrointestinal tract, blood, etc.
  • the higher the amount of the active compound metabolized in the target organ such as the liver in the present invention
  • the prodrugs such as the compound of the present invention and the reference compound were metabolized into the active metabolite uridine triphosphate to exert an anti-HCV action.
  • prodrug compounds of the presently similar structure are CN101918424A (Application No. 200880103023.8), the compound disclosed in Example 25 (abbreviated as Patent Compound 06 in 2008), and its single chiral isomer disclosed in CN102459299A (Application No.
  • 201080032541.2 Referred to as the 2010 patent compound 06a, 2010 patent compound 06b), and the compound disclosed in US9156874 (see the right column of the second and third compounds on page 39 of claim 15 in the publication of the publication, the compounds before the separation of the two , referred to as the 2013 patent compound unresolved enantiomer 02), these compounds have the same parent drug structure as the compound of the present invention 2-fluoro-2-methyl deoxyuridine and active metabolite 2-fluoro-2- Methyl deoxyuridine triphosphate, but different liver targeting fragments.
  • the compounds of the present invention are advantageous in that the activity is comparable or higher or because the structure is more stable in the blood system and the system is less toxic.
  • the benzoic acid compound produced by the compound of the present invention is relatively safe, overcomes the defect that the patent compound 06 releases toxic phenol in 2008, and has lower toxicity when the activity is superior.
  • the non-o-methyl substituted benzyl group in the liver targeting fragment of the compound of the present invention is more stable than the o-methylbenzyl group, and is metabolized in the blood esterase.
  • the benzyl detachment activity is low, so the active parent drug in the blood is relatively reduced, and the active metabolite in the liver is relatively increased, thereby exhibiting better activity.
  • the benzyl group of the present invention has less toxicity after detachment, has better system stability and lower toxicity, and these speculations are supported and verified by data in actual research. Specifically, the test examples are as follows:
  • Test Example 1 Comparison of anti-HBV activity and cytotoxicity at the cellular level
  • HCV genotype (GT) 1b stable replicon cell line system was used to determine the inhibitory activity of the compound against HCV GT1b replicon.
  • compound 06a GS-7977 was used as a reference compound. , monitor the quality of the experiment.
  • test compound is the compound 01, 03, 04, 05 listed in the examples of the present invention;
  • the reference compound is the 2008 patent compound 06, the 2010 patent compound 06a, and the 2013 patent compound unparsed enantiomer 02.
  • HCV-1b replicon cells (8,000 cells/well) were seeded in the above 96-well cell plates, and then cultured at 37 ° C for 3 days in a 5% CO 2 incubator.
  • Cell viability assay Cell growth fluorescent titration detection reagent was added to each well. After incubating the cells for 1 hour at 37 ° C in a 5% CO 2 incubator, the Fluorescence signal value was detected by spectrophotometer detection system Envision, and the raw data (RFU) was used for Compound cytotoxicity calculation.
  • step 1.4 The raw data (RLU) of step 1.4 is treated as a percent inhibition using the following formula:
  • HPE 100% effective control well signal value, only DMEM culture medium in the well;
  • ZPE Zero percent effect: Ineffective control cell signal value, with 0.5% DMSO instead of compound.
  • Table 1 compound having anti-HCV replicon activity and the replicon EC 50 values cytotoxicity CC 50 values for HCV GTlb
  • Test compound 01 and control compound 06 showed better inhibition of HCV GT1b replication activity, EC 50 value below 10 ⁇ M, compound 01 activity was superior to control compound 06, test compound 04 and control compound 02 (2013 patent unopened enantiomer 02)
  • the activity of inhibiting HCV GT1b replication is relatively weak, with an EC 50 value between 10 ⁇ M and 20 ⁇ M; two other test compounds 03 and 05 inhibit the active EC of HCV GT1b replication.
  • the 50 value is higher than the maximum test concentration of 20 ⁇ M.
  • the compounds 01, 03, 04, and 05 of the present invention are similar in structure to the control compounds 02 and 06, and thus have similar pharmacodynamic effects, wherein the compound 01 inhibits the replication of HCV GT1b slightly better than the 2008 patent compound 06 and the 2013 patent.
  • the activity of Compound 02, Compound 04 was slightly better than that of the 2013 patented unparsed enantiomer 02. Comparing the activity of single chiral enantiomeric compounds 01a, 01b, 06a of compounds 01 and 06, it was found that the activity of single chiral isomer 01a to inhibit HCV GT1b replication was slightly better than that of compound 2010 compound 06a.
  • Compound 01 has higher gastrointestinal and hemodilological metabolic stability than Compound 02 and 06, resulting in lower concentration of non-lesion and higher drug concentration in the lesion, indicating Compound 01 and 2013 patents.
  • the compound unresolved enantiomer 02, 2008 patent compound 06 has better liver targeting and lower systemic toxicity in vivo.
  • CHO cells stably expressing hERG potassium channels were obtained from AViva Biosciences, and the cells were incubated at 37 ° C, 5% CO 2 , constant humidity.
  • the compound and the positive control compound amitriptyline (Amitriptyline, Sigma-Aldrich, BCBJ8594V) were diluted in 100% dimethyl sulfoxide (DMSO) and the final concentration of DMSO in the extracellular fluid was not higher than 0.30%. Stand by at -20 °C.
  • the compounds were tested on a Multiclamp patch-clamp amplifier at room temperature using whole-cell patch clamp technique.
  • the output signals were digitized using a DIgiDAta 1440A/D-D/A plate, and the Pclamp10 software was used for recording control.
  • the minimum sealing resistance was set to 500 MOhms and the minimum specific hERG current was 0.4 nA for quality control.
  • Sample collection protocol Blood and liver tissues were taken at 1h, 2h, 3h, 6h, 12h and 24h after intragastric administration.
  • the sample was stored at -70 ° C, 30 ⁇ L of the supernatant was taken, 30 ⁇ L of water was added, vortexed and centrifuged at 4 ° C, and 5 ⁇ L of the supernatant was injected for LC/MS/MS analysis.
  • Liver tissue sample processing method Take a mouse tissue sample and place it in a plastic EP tube, and add a solution of 5 times (w:v) of 1.75 mL MeOH and 5 ⁇ L of 50% KOH aqueous solution and 0.75 mL of 268 mM EDTA solution, and mix well. After taking 60 ⁇ L sample, add 240 ⁇ L of internal standard solution, vortex for 2 min, centrifuge for 10 min (13000 rpm, 4 ° C), take 30 ⁇ L of supernatant, add 30 ⁇ L of water, vortex and mix at 4 ° C, then take the supernatant. A 5 ⁇ L injection was performed for LC/MS/MS analysis.
  • LC-MS/MS-O (API 4000) LC/MS and column: ACQUITYUPLC BEH C18 1.7 ⁇ m 2.1 ⁇ 50mm, using Tolbutamide as internal standard compound, UPLC-MS was injected into the gradient elution analysis, and the retention time and peak area of the internal standard, test compound and metabolite TSL1100 were recorded respectively, using the software Phoenix WinNonlin 6.2. 1 Analysis by SRM quantitative detection method.
  • the representative compounds selected in the test examples confirmed that the novel uridine-phosphoramide prodrug compounds of the present invention can be used for the preparation of a medicament for treating hepatitis C virus infectious diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明涉及一种尿苷类磷酰胺前药、其制备方法及其在医药上的应用,本发明所述的前药是如通式Ⅰ所示的化合物或其光学异构体或其药学上可接受的盐,本发明所述的前药还包括,如通式Ⅰ所示的化合物或其光学异构体或其药学上可接受的盐的溶剂化物,本发明所述的前药可以治疗病毒感染性疾病,特别是丙肝病毒感染性疾病。

Description

尿苷类磷酰胺前药、其制备方法及其在医药上的应用 技术领域
本发明涉及一种新型尿苷类磷酰胺前药或其异构体、可药用盐、水合物与溶剂化物及其制备方法与其在医药上的应用。
背景技术
丙肝属于全球流行性疾病,目前患者数超过2亿,其中中国患者有数千万。NS5B抑制剂是一种聚合酶抑制剂,通过与NS5B RNA-依赖的RNA聚合酶结合干扰病毒的复制。此类药物有两种类型:核苷类抑制剂及非核苷类抑制剂。核苷类抑制剂是活性部位抑制剂,伪装成聚合酶的天然底物插入到RNA链中,中断RNA的复制。因此此类药物能对抗所有基因型的HCV感染,病毒对其抗药性也非常低。其中2-氟-2-甲基去氧尿苷三磷酸是一个细胞内强效NS5B抑制剂,但在体内无法转运至病灶。可以采用其非活性形式2-氟-2-甲基去氧尿苷单磷酸的前药,其在体内代谢成2-氟-2-甲基去氧尿苷单磷酸后活化成2-氟-2-甲基去氧尿苷三磷酸,从而抑制NS5B,发挥抗HCV作用。
目前采用在磷酸基团上加入掩蔽基团从而形成前药的策略,其中一个掩蔽基团与磷酸基团形成磷酰胺结构、另一个基团与磷酸基团形成磷酯类的化合物被证实有肝靶向效应。成酯基团包括各种芳环和芳杂环在替诺福韦前药上的应用,尤其是苯酚酯(CN201310041647.4,WO02082841),但成酯基团为相对无毒性的苄基或天然醇或糖或维生素的2-氟-2-甲基去氧尿苷单磷酸的前药未见合成与生物活性研究报道。
本发明的目的在于提供一类新型尿苷单磷酰胺类前药化合物与其制备方法以及其在制备治疗病毒感染性疾病的药物中的用途,以同时提高药物的肝靶向性和生物利用度,从而提高药物疗效,减少药物用量并降低毒性。
发明内容
发明人发明了一类尿苷类磷酰胺前药化合物,本发明化合物在大鼠灌胃后可以在肝部有效代谢、磷酸化转化成活性产物2-氟-2-甲基去氧尿苷三磷酸,而且与现有技术相比,本发明化合物在血浆中更稳定,其活性代谢产物2-氟-2-甲基去氧尿苷三磷酸在血浆中完全检测不到,从而降低了由于血浆代谢导致活性代谢产物出现在非靶器官从而引起的系统毒副作用。
本发明的目的是提供一种抗病毒尿苷类磷酰胺前药,为通式Ⅰ所示的化合物或其光学异构体或其药学上可接受的盐,
Figure PCTCN2017077693-appb-000001
式中:
R独立地选自有取代或无取代的苄基基团、取代或未取代的C5-C50直链或环状的天然产物片段,或选自半合成或者全合成的糖类、维生素、醇类,及其结构改造或修饰后得到的类似物片段;
R1,R2,R3分别独立地选自H、取代或未取代的C1-C10直链烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基,其中所述取代为一个到三个独立地选自O,S,N,Se的杂原子,或者R1与R2,R1与R3,R2与R3与连接它们的结构部分一起形成取代或未经取代的3-8元环;
Z独立地选自O,S,Se,-NH-或-CH2-;
所述的前药还包括,如通式Ⅰ所示的化合物或其药学上可接受的盐的溶剂化物、其光学异构体。
本发明所述的前药,优选的,其中:
R独立地选自有取代或无取代的苄基基团,或选自母核为C3-C8的直链或环状的天然产物片段,或选自半合成或者全合成的糖类、维生素、醇类,及其结构改造或修饰后得到的类似物片段;
R1,R2,R3分别独立地选自H、取代或未取代的C1-C10直链烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基,其中所述取代为一个到三个独立地选自O,S,N,Se的杂原子,或者R1与R2,R1与R3,R2与R3与连接它们的结构部分一起形成取代或未经取代的3-8元环;
Z选自O,S,Se,-NH-或-CH2-。
本发明所述的前药,进一步优选,其中:
R独立地选自有取代或无取代的苄基基团,或选自母核为C3-C8的天然产物,所述天然产物选自各种单糖类或其类似物片段,或选自各种多糖或其类似物片段,或选自脂溶性维生素,或选自天然醇类或其类似物;
R1,R2,R3分别独立地选自H、取代或未取代的C1-C10直链烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基,其中所述取代为一个到三个独立地选自O,S,N,Se的杂原子,或者R1与R2,R1与R3,R2与R3与连接它们的结构部分一起形成取代或未经取代的3-8元环;
Z选自O,S,Se,-NH-或-CH2-。
本发明所述的前药,进一步优选,其中:
R独立地选自有取代或无取代的苄基基团,或选自母核为C3-C8的天然产物,所述天然产物选自各种单糖类或其类似物片段,或选自各种多糖类或其类似物片段,或选自脂溶性维生素,或选自天然醇类或其类似物;
R1,R2,R3分别独立地选自H、取代或未取代的C1-C10直链烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基,其中所述取代为一个到三个独立地选自O,S,N,Se的杂原子,或者R1与R2,R1与R3,R2与R3与连接它们的结构部分一起形成取代或未经取代的3-8元环;
Z为O或S。
本发明所述的前药,进一步优选的,其中:
R独立地选自苯环上无取代的苄基基团;或者亚甲基上无取代的苄基基团;或者苯环上取代基独立地选自邻位或对位取代的C1-C10直链烃基、OC1-C10烷氧烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基的苄基基团;或者亚甲基上取代基独立地选自C1-C10直链烃基、OC1-C10烷氧烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基的苄基基团;或选自母核为C3-C8的各种单糖类或其类似物片段,或选自各种多糖类或其类似物片段,或选自脂溶性维生素,或选自天然醇类或其类似物;
R1,R2,R3分别独立地选自H、取代或未取代的C1-C10直链烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基,其中所述取代为一个到三个独立地选自O,S,N,Se的杂原子,或者R1与R2,R1与R3,R2与R3与连接它们的结构部分一起形成取代或未经取代的3-8元环;
Z为O或S。
本发明所述的前药,进一步优选的,其中:
R独立地选自:苯环上无取代的苄基基团;或者亚甲基上无取代的苄基基团;或者苯环上取代基独立地选自甲基或/和甲氧基的苄基基团;或者亚甲基上取代基独立地选自C1-C10直链烃基、OC1-C10烷氧烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基的苄 基基团,当苄基苯环上只有一个取代基且在邻位时,取代基为非甲基;
R1为异丙基;
R2为甲基,所连接的碳原子构型为R或者S;
R3为H;
Z为O。
本发明所述的前药,进一步优选的,式中:
R独立地选自苯环上无取代的苄基基团,或选自苯环上的取代基团为甲基或/和甲氧基的苄基基团,当苄基苯环上只有一个取代基且在邻位时,取代基为非甲基;
R1为异丙基;
R2为甲基,所连接的碳原子构型为R或者S;
R3为H;
Z为O。
本发明所述的前药,更进一步优选的,式中:
R独立地选自苯环上无取代的苄基基团,或选自苯环上的取代基团为甲基或/和甲氧基的苄基基团,当苄基苯环上只有一个取代基且在邻位时,取代基为非甲基;
R1为异丙基;
R2为甲基,所连接的碳原子构型为S构型;
R3为H;
Z为O。
本发明所述的前药,特别优选的,为以下结构的化合物或其光学异构体、或其药学上可接受的盐,或其药学上可接受的盐、或化合物或其光学异构体或其药学上可接受的盐的这三类形式化合物的溶剂化物:
Figure PCTCN2017077693-appb-000002
Figure PCTCN2017077693-appb-000003
本发明的前药,其中所述式(I)化合物药学上可接受的盐,包括与无机酸,如盐酸、硫酸形成的盐,与有机酸,如乙酸、三氟乙酸、柠檬酸、马来酸、草酸、琥珀酸、苯甲酸、酒石酸、富马酸、扁桃酸、抗坏血酸或苹果酸形成的盐,以及氨基酸,如丙氨酸、天冬氨酸、赖氨酸形成的盐或与磺酸,如甲磺酸、对甲苯磺酸形成的盐。根据需要和化合物的性质,也可按常规方法将它们制备成碱金属盐、碱土金属盐、银盐、钡盐等,如钾盐,钠盐,铵盐,钙盐,镁盐。
本发明的式(I)化合物也可以溶剂化物(如水合物)的形式存在,因此,这些溶剂化物(如水合物)也包括在本发明的化合物之内。
本发明进一步包括所述的前药的制备方法,所述方法之一反应式如下:
Figure PCTCN2017077693-appb-000004
1.1)三氯氧磷在碱的作用下与含羟基的醇类或糖类或者含苄基的化合物反应后,再与氨基酸酯和含苯环的活性芳香试剂反应得到活性磷酯中间体;其中Y为O原子或者S原子或者Se原子,R4为氢原子或者任意含硅或者含氟的活泼离去基团,W为任意卤素原子或者硝基集团,n为0-5任意整数。
1.2)磷酯中间体与尿苷类似物33在碱的存在下反应生成如式Ⅰ所示的尿苷类磷酰胺前药。
所述步骤1.1)中:
碱是无机碱或有机碱,优选有机碱,进一步优选有机碱为胺类化合物,例如但不限于二异丙基乙基胺,三乙胺,叔丁基胺,二乙胺等;
含苄基的化合物指各种取代或者无取代的卤化苄或苄醇,更优选为各种取代或者无取代苄溴或各种取代或者无取代苄醇;
所述步骤1.2)中:
碱是无机碱或有机碱,优选有机碱,进一步优选有机碱为胺类化合物,例如但不限于二异丙基乙基胺,三乙胺,叔丁基胺,二乙胺等。
所述方法之二反应式如下:
Figure PCTCN2017077693-appb-000005
2.1)尿苷单磷酸化合物34与含羟基的醇类或糖类或带苄基基团的化合物在碱的作用下反应得到尿苷单磷酯中间体;
2.2)尿苷单磷酯中间体在碱的存在下与末端含NH-基团的化合物分子中含-NH-基团的环状化合物在缩合剂作用下反应生成如式Ⅰ所示的尿苷类磷酰胺前药。
所述步骤2.1)中:
碱是无机碱或有机碱,优选有机碱,进一步优选有机碱为胺类化合物,例如但不限于二异丙基乙基胺,三乙胺,叔丁基胺,二乙胺等;
带苄基基团的化合物是各种取代或者无取代的卤化苄或苄醇,优选为各种取代或者无取代苄溴或各种取代或者无取代苄醇;
所述步骤2.2)中:
碱是无机碱或有机碱,优选有机碱,进一步优选有机碱为胺类化合物,例如但不限于二异丙基乙基胺,三乙胺,叔丁基胺,二乙胺等。
本发明进一步包括化合物手性分离的方法,HPLC反向制备柱分离或者手性柱分离收集各保留时间的洗脱液,干燥得到各手性异构体。
本发明进一步包括含有本发明所述的前药和药学上可接受的载体的药物组合物。所述的前药可以治疗病毒感染性疾病如丙型肝炎或者丙肝病毒引起的疾病。
本发明的药物组合物,优选的是单位剂量的药物制剂形式,在制成药物制剂时可以制成 任何可药用的剂型,这些剂型选自:片剂、糖衣片剂、薄膜衣片剂、肠溶衣片剂、胶囊剂、硬胶囊剂、软胶囊剂、口服液、口含剂、颗粒剂、混悬剂、溶液剂、注射剂、栓剂、软膏剂、硬膏剂、霜剂、喷雾剂、贴剂。优选的是口服制剂形式,最佳优选的是片剂,胶囊剂。
进一步的,本发明所述药物组合物还含有药学上可接受的载体。
可以采用制剂学常规技术制备该药物制剂,如将本发明的替新型尿苷类磷酰胺前药化合物、或其水合物、或其溶剂化物、或其药学上可接受的盐或其拆分的单一异构体与药学上可接受的载体混合。所述药学上可接受的载体包括但不限于:甘露醇、山梨醇、山梨酸或钾盐、焦亚硫酸钠、亚硫酸氢钠、硫代硫酸钠、盐酸半胱氨酸、巯基乙酸、蛋氨酸、维生素A、维生素C、维生素E、维生素D、氮酮、EDTA二钠、EDTA钙钠,一价碱金属的碳酸盐、醋酸盐、磷酸盐或其水溶液、盐酸、醋酸、硫酸、磷酸、氨基酸、氯化钠、氯化钾、乳酸钠、木糖醇、麦芽糖、葡萄糖、果糖、右旋糖苷、甘氨酸、淀粉、蔗糖、乳糖、甘露糖醇、硅衍生物、纤维素及其衍生物、藻酸盐、明胶、聚乙烯吡咯烷酮、甘油、丙二醇、乙醇、吐温60-80、司盘-80、蜂蜡、羊毛脂、液体石蜡、十六醇、没食子酸酯类、琼脂、三乙醇胺、碱性氨基酸、尿素、尿囊素、碳酸钙、碳酸氢钙、聚乙二醇、环糊精、β-环糊精、磷脂类材料、高岭土、滑石粉、硬脂酸钙、硬脂酸镁等。
本发明的药物组合物,在制成药剂时,单位剂量的药剂可含有本发明的药物活性物质0.1-1000mg,其余为药学上可接受的载体。药学上可接受的载体以重量计可以是制剂总重量的0.1-99.9%。
本发明的药物组合物在使用时根据病人的情况确定用法用量。
以下为名词术语的解释说明:
所述单糖类或其类似物为包括但不限于核糖,去氧核糖,阿拉伯糖,阿洛糖,呋喃糖,木糖,鼠李糖,葡萄糖,甘露糖等;
所述多糖类或其类似物片段,例如但不限于蔗糖,乳糖,麦芽糖,纤维二糖等;
所述脂溶性维生素是指不溶于水而溶于脂肪及有机溶剂的维生素,包括维生素A、维生素D、维生素E、维生素K;
所述天然醇类或其类似物,例如但不限于白藜芦醇,黄酮醇,薄荷醇等。
本发明提供的化合物具有以下优点:
1、结构上:与索非布韦结构相比,用毒性较小的苄基或者天然醇类或者天然糖类或者维生素类取代索非布韦结构中的苯基,从而使代谢片段从神经毒性和心脏毒性较高的苯酚替换成相对无毒的苄醇或者天然醇类或者天然糖类或者维生素类化合物;
2、效果上:本发明提供的化合物在大鼠灌胃后可以在肝部有效代谢、磷酸化转化成活性产物2-氟-2-甲基去氧尿苷三磷酸,而活性代谢产物在血液中完全检测不到。而且与现有技术相比,本发明提供的化合物在人血浆中更稳定,从而在保持化合物的生物活性的同时降低了由于血浆代谢引起活性代谢产物出现在非靶器官因而导致的系统毒副作用。
具体实施方式
以下结合具体实施例详细地解释本发明,使得本领域技术人员更全面地理解本专利。合成路线或具体实施例仅用于说明本发明的技术方案,并不以任何方式限定本发明。
合成路线一:
Figure PCTCN2017077693-appb-000006
合成路线二:
Figure PCTCN2017077693-appb-000007
实施例1:化合物21的制备
往三颈瓶中加入POCl3(14.2g,92.5mmol,1.00eq),无水二氯甲烷(300mL),混合均匀后冷却至-40℃,在此温度搅拌下滴加化合物11(见合成路线一中的原料11,10.0g,92.5mmol,1.00eq)和无水三乙胺(9.36g,92.5mmol,1.00eq)在无水二氯甲烷(100mL)中的混合液,30分钟滴加完毕后保温-78℃搅拌2小时。在此温度下往反应混合物中加入化合物31(14.7g,87.8mmol,0.95eq)和无水二氯甲烷(50mL),然后滴加三乙胺(18.7g,185mmol,2.00eq)的无水二氯甲烷(50mL)溶液,30分钟滴加完毕后,自然升至室温,搅拌2小时后冷却至0℃。往反应混合物中滴加化合物32(10.2g,55.5mmol,0.60eq)和三乙胺(11.2g,111mmol,1.20eq)的无水二氯甲烷(50mL)混合液,20分钟滴加完毕后,在室温条件下搅拌过夜(16小时),减压旋干溶剂。残渣用水(200mL)和乙酸乙酯(100mL)分液,水相用乙酸乙酯(50mL×2)进一步萃取后合并有机相,有机相用盐水(50mL)洗涤后无水硫酸钠干燥,过滤,减压旋干溶剂后进行柱层析(硅胶,200-300目,乙酸乙酯/石油醚体积比为1/10~1/1),得到白色固体21,收率89.8%。
1H NMR(400MHz,CDCl3)δ7.37~7.38(m,5H),5.19~5.23(m,2H),4.99~5.09(m,1H),3.97~4.08(m,1H),3.75-3.84(m,1H),1.41(dd,J=7.2Hz,J=12.8Hz,3H),1.22-1.27(m,6H);19F NMR(400MHz,CDCl3)δ-153.57~-153.71(m,2F),-159.76~-160.01(m,1F),-162.15~-162.34(m,2F);31PNMR(400MHz,CDCl3)δ3.91(s,1P).
实施例2:化合物22的制备
制备方法同实施例1,其中化合物11用化合物12(见合成路线一中的原料12),替代。收率84.9%。
1H NMR(400MHz,CDCl3)δ7.36-7.18(m,4H),5.25-5.22(m,2H),5.08-4.97(m,1H),4.07-3.95(m,1H),3.82-3.72(m,1H),2.38,2.37(s,s,3H),1.43-1.36(dd,J=20,8.0Hz,3H),1.27-1.20(m,6H);19F NMR(400MHz,CDCl3)δ-153.61~-153.75(m,2F),-159.76~-160.01(m,1F),-162.14~-162.33(m,2F);31PNMR(400MHz,CDCl3)δ4.02,3.97(s,s,1P).
实施例3:化合物23的制备
制备方法同实施例1,其中化合物11用化合物13(见合成路线一中的原料13)替代。收率79.7%。
1H NMR(400MHz,CDCl3)δ7.36-7.27(m,2H),6.98-6.94(m,1H),6.90-6.88(m,1H),5.33-5.21(m,2H),5.09-4.99(m,1H),4.10-4.01(m,1H),3.91-3.83(m,4H),1.43(dd,J=9.2, 7.2Hz,3H),1.28-1.23(m,6H);19F NMR(400MHz,CDCl3)δ-153.48~-153.64(m,2F),-160.11~-160.35(m,1F),-162.40~-162.59(m,2F);31PNMR(400MHz,CDCl3)δ3.96,3.88(s,s,1P).
实施例4:化合物24的制备
制备方法同实施例1,其中化合物11用化合物14(见合成路线一中的原料14)替代。收率70.2%。
1H NMR(400MHz,CDCl3)δ7.27-7.16(dd,J=36,8.0Hz,4H),5.16-5.14(d,J=8.0Hz,2H),5.05-4.98(m,1H),4.05-3.96(m,1H),3.76-3.71(m,1H),2.36(3,3H),1.43,1.41(s,s,3H),1.23,1.22(s,s,6H);19F NMR(400MHz,CDCl3)δ-153.63~-153.69(m,2F),-160.07~-160.09(m,1F),-162.34~-162.44(m,2F);31PNMR(400MHz,CDCl3)δ3.91(s,1P).
实施例5:化合物25的制备
制备方法同实施例1,其中化合物11用化合物15(见合成路线一中的原料15)替代。收率15.4%。
1H NMR(400MHz,CDCl3)δ7.38-7.29(m,2H),6.89-6.85(m,1H),6.80-6.78(m,1H),5.36-5.24(m,2H),5.15-5.04(m,1H),4.12-4.04(m,1H),3.89-3.85(m,4H),1.45(dd,J=9.2,7.2Hz,3H),1.27-1.21(m,6H);19F NMR(400MHz,CDCl3)δ-153.30~-153.46(m,2F),-160.08~-160.32(m,1F),-162.59~-162.70(m,2F);31PNMR(400MHz,CDCl3)δ3.95(s,1P).
实施例6:化合物01的制备
方法一:
在0℃条件下,往化合物33(5mmol)的DMF(20mL)悬浮液中,缓慢滴加1M叔丁基氯化镁(7.5mmol),滴加完毕后保持在0℃反应1h后缓慢滴加化合物21(5.75mmol,由实施例1制备得到)的THF溶液(20ml),滴加完毕后保持在0℃反应1h后自然升至室温搅拌过夜。往反应液加入20ml冰水搅拌0.5h淬灭反应后,用乙酸乙酯(3×20ml)萃取反应液,有机相用盐水(20mL)洗涤后无水硫酸钠干燥。过滤,减压旋干溶剂后进行柱层析(硅胶,200-300目,甲醇/二氯甲烷=1/20),得到白色固体01,收率58.4%。
方法二:
往化合物34(5mmol)的乙腈(20mL)悬浮液中依次加入DIPEA(10mmol)、化合物41(见合成路线二中的原料41,5mmol),将此混合物在加热回流下搅拌16小时后减压旋干, 残渣加入吡啶(20mL)溶解后,再依次加入三乙胺(5mL)和化合物31(见合成路线一中的原料31,10mmol),加热到50℃搅拌30分钟后在此温度下加入三苯基膦(15mmol)和2,2’-二硫二吡啶(15mmol),保温在50℃搅拌3小时后减压旋干。残渣硅胶柱层析(甲醇/二氯甲烷洗脱)得到白色固体产物,收率32.6%。
1HNMR(400MHz,CDCl3)δ9.47(br s,1H),7.48,7.46(s,s,1H),7.45-7.34(m,5H),6.19,6.15(s,s,1H),5.74-5.71(dd,J=4.0Hz,1H),5.11-4.96(m,3H),4.40-4.29(m,3H),4.09-4.07(m,3H),3.81-3.75(m,1H),1.30-1.29(s,s,6H),1.25-1.21(m,6H);19F NMR(400MHz,CDCl3)δ-162.02,-162.35(s,s,1F);31PNMR(400MHz,CDCl3)δ8.72,8.67(s,s,1P).
实施例7:化合物02的制备
制备方法一同实施例6方法一,其中化合物21用化合物22替代。收率54.2%。
制备方法二同实施例6方法二,其中化合物41用化合物42(见合成路线二中的原料42)替代。收率30.6%。
1H NMR(400MHz,CDCl3)δ9.16(br s,1H),7.47,7.45(s,s,1H),7.35-7.20(m,4H),6.19,6.15(s,s,1H),5.73,5.71(dd,J=8.0Hz,1H),5.17-4.97(m,3H),4.40-4.23(m,3H),4.09-4.03(m,1H),3.95-3.73(m,3H),2.38(s,3H),1.42-1.28(m,6H),1.23-1.21(m,6H);19F NMR(400MHz,CDCl3)δ-163.94(s,1F);31PNMR(400MHz,CDCl3)δ8.79(s,1P).
实施例8:化合物03的制备
制备方法一同实施例6方法一,其中化合物21用化合物23替代。收率48.3%。
制备方法二同实施例6方法二,其中化合物41用化合物43(见合成路线二中的原料43)替代。收率28.9%。
1H NMR(400MHz,CDCl3)δ8.90(br s,1H),7.52-7.49(m,1H),7.37-7.32(m,2H),6.99-6.89(m,2H),6.21,6.16(s,s,1H),5.75~5.47(d,d,J=8.0Hz,J=8.0Hz,1H),5.16-5.08(m,2H),5.05-4.96(m,1H),4.42-4.30(m,2H),4.09-4.07(m,1H),3.95-3.72(m,6H),1.88(br s,2H),1.42-1.34(m,6H),1.25-1.22(m,6H);19F NMR(400MHz,CDCl3)δ-162.30,-162.90(s,s,1F);31PNMR(400MHz,CDCl3)δ8.77,8.71(s,s,1P).
实施例9:化合物04的制备
制备方法一同实施例6方法一,其中化合物21用化合物24替代。收率52.9%。
制备方法二同实施例6方法二,其中化合物41用化合物44(见合成路线二中的原料44)替代。收率25.3%。
1H NMR(400MHz,CDCl3)δ9.06(br s,1H),7.47-7.40(m,1H),7.28-7.16(m,4H),6.99-6.89(m,2H),6.18(d,J=20Hz,1H),5.71,5.45(d,d,J=8.0Hz,J=8.0Hz,1H),5.09-4.94(m,3H),4.40-4.28(m,2H),4.08-4.06(m,1H),3.95-3.72(m,3H),2.36,2.34(s,s,3H),1.43-1.22(m,12H);19F NMR(400MHz,CDCl3)δ-162.03,-162.45(s,s,1F);31P NMR(400MHz,CDCl3)δ8.73,8.66(s,s,1P).
实施例10:化合物05的制备
制备方法一同实施例6方法一,其中化合物21用化合物25替代。收率57.3%。
制备方法二同实施例6方法二,其中化合物41用化合物45(见合成路线二中的原料45)替代。收率22.5%。
1H NMR(400MHz,CDCl3)δ8.87(br s,1H),7.55-7.52(m,1H),7.35-7.30(m,2H),6.97-6.86(m,2H),6.19(d,J=8.0Hz,1H),5.77~5.49(m,1H),5.25-5.18(m,2H),5.12-4.99(m,1H),4.57-4.45(m,2H),4.21-4.17(m,1H),3.98-3.76(m,6H),2.05(br s,2H),1.44-1.32(m,6H),1.24-1.20(m,6H);19F NMR(400MHz,CDCl3)δ-162.30,-162.90(s,s,1F);31P NMR(400MHz,CDCl3)δ8.77,8.71(s,s,1P).
实施例11:单一手性化合物的分离制备
HPLC反向色谱柱分离:取实施例6中化合物01经HPLC制备分离(制备柱:Diamonsil C18,5μm,150x21.1mm;流动相:20%乙腈水溶液(V/V))等度洗脱后按出峰顺序先后得到化合物01b和01a。
HPLC手性色谱柱分离:取实施例6中化合物01经手性柱制备分离(制备柱:CHIRALPAK AD-H,0.46cm I.D.×25cm L;流动相:正己烷/异丙醇=65/35(V/V)等度洗脱后按出峰顺序先后得到化合物01a和01b。
化合物01a:1H NMR(400MHz,CDCl3)δ9.07(br s,1H),7.42-7.33(m,6H),6.19,6.15(d,J=16Hz,1H),5.46,5.44(d,J=8.0Hz,1H),5.12-4.98(m,3H),4.40,4.39(d,J=4.0Hz,2H),4.09,4.07(d,J=8.0Hz,1H),3.92-3.73(m,4H),1.39-1.33(m,6H),1.24,1.22(d,J=8.0Hz,6H);19F NMR(400MHz,CDCl3)δ-162.47(s,1F);31PNMR(400MHz,CDCl3)δ8.70(s,1P).
化合物01b:1HNMR(400MHz,CDCl3)δ8.97(br s,1H),7.48,7.46(s,s,1H),7.42-7.36 (m,5H),6.19,6.15(s,s,1H),5.74,5.72(d,J=8.0Hz,1H),5.14-4.97(m,3H),4.41-4.29(m,2H),4.14-3.73(m,5H),1.43-1.22(m,12H);19F NMR(400MHz,CDCl3)δ-162.02(s,1F);31P NMR(400MHz,CDCl3)δ8.77(s,1P).
对前药化合物而言,最关键的是前药在非靶器官系统中的稳定性和在靶器官部分的代谢活性。在系统(如胃肠道,血液等)中稳定性越高,在靶器官(如本发明中的肝脏等)中代谢成活性化合物的量越高,则化合物毒性越低、药效越高。试验例中本发明化合物、参照化合物等前药均代谢成活性代谢物尿苷类三磷酸后发挥抗丙肝病毒作用。
目前结构相近的前药化合物是CN101918424A(申请号为200880103023.8)实施例25中公布的化合物(简称2008年专利化合物06)、在CN102459299A(申请号为201080032541.2)中公布的其单一手性异构体(简称2010年专利化合物06a,2010年专利化合物06b),以及在US9156874中公布的化合物(见公开文本中的权利要求15中第39页右栏第2、3化合物,其二者拆分前的化合物,简称2013年专利化合物未拆分对映体02),这些化合物与本发明的化合物具有相同的母药结构2-氟-2-甲基去氧尿苷和活性代谢产物2-氟-2-甲基去氧尿苷三磷酸,但肝靶向片段不同。
理论上本发明的化合物优势在于活性相当或更高或由于在血液系统中结构更稳定从而系统毒性更小。进一步地相对于2008年专利化合物06而言,本发明的化合物代谢生成的苯甲酸类化合物则相对安全,克服了2008年专利化合物06释放出毒性苯酚的缺陷,在活性优越的同时具备更低毒性的优势。进一步相对于2013年专利化合物未拆分对映体02来说,由于本发明化合物肝靶向片段中的非邻甲基取代的苄基基团比邻甲基苄基更稳定,在血液酯酶代谢中苄基脱落活性较低,因此血液中的活性母药相对减少,肝脏中的活性代谢物相对增加,从而体现出更好的活性。本发明的化合物苄基脱落后毒性更小,具有更优的系统稳定性和更低的毒性,这些推测在实际研究中得到了数据支持和验证。具体如以下所述试验例:
试验例1:细胞水平抗HBV活性与细胞毒性对比实验
运用丙型肝炎病毒(HCV)基因型(GT)1b稳转复制子(replicon)细胞株系统,测定化合物对HCV GT1b复制子的抑制活性,本实验中采用化合物06a(GS-7977)作为参考化合物,监控实验质量。
1、化合物结构
被试化合物为本发明实施例中列举的化合物01、03、04、05;化合物01拆分后得到的 单一手性异构体01a、01b;参照化合物为2008年专利化合物06、2010年专利化合物06a、2013年专利化合物未拆分对映体02。
Figure PCTCN2017077693-appb-000008
2、化合物稀释:用100%DMSO配制成20mM母液,对化合物DMSO母液进行稀释并加入96孔实验板中。DMSO终浓度为0.5%。体外抗HCV活性实验和细胞毒性实验所有化合物起始浓度为20μM,5倍稀释,6个浓度DMSO终浓度为0.5%。
3、细胞处理:在上述96孔细胞板中种入HCV-1b复制子细胞(8,000细胞/孔),随后置于37℃,5%CO2培养箱中培养3天。
4、细胞活性检测:每孔加入细胞生长荧光滴定检测试剂,37℃、5%CO2培养箱培养细胞1小时后,用分光光度仪检测系统Envision检测Fluorescence信号值,原始数据(RFU)用于化合物细胞毒性计算。
5、抗HCV复制子活性检测:每孔加荧光素酶发光底物Bright-Glo,5分钟内用化学发光检测系统Envision检测Luminescence信号值,原始数据(RLU)用于化合物抑制活性计算。
6、数据处理:使用如下公式将步骤1.3的原始数据(RFU)处理为细胞活力百分数:
Figure PCTCN2017077693-appb-000009
使用如下公式将步骤1.4的原始数据(RLU)处理为抑制百分数:
Figure PCTCN2017077693-appb-000010
*CPD:化合物孔的信号值;
HPE(Hundredpercent effect):100%有效作用对照孔信号值,孔中只有DMEM培养液;
ZPE(Zero percent effect):无效作用对照孔信号值,用0.5%DMSO代替化合物。
将细胞活力百分数、抑制百分数分别导入GraphPadPrism软件进行数据处理得出化合物对应的曲线及
其细胞毒性(CC50)和其对HCV复制子的抑制活性(EC50)数值。
7、实验结果与结论:
表1:化合物抗HCV复制子活性EC50值和对HCV GT1b复制子细胞毒性CC50
Figure PCTCN2017077693-appb-000011
本次实验中共有6个受试化合物和3个对照化合物,实验结果总结如下:
受试化合物01和对照化合物06(2008年专利化合物06)显示出较好的抑制HCV GT1b复制活性,EC50值在10μM级以下,化合物01活性优于对照化合物06,受试化合物04和对照化合物02(2013年专利化合物未拆分对映体02)抑制HCV GT1b复制的活性相对较弱,EC50值在10μM-20μM之间;另外2个受试化合物03、05抑制HCV GT1b复制的活性EC50值高于最大测试浓度20μM。
本发明的化合物01、03、04、05与对照化合物02、06的结构相似,因此具有相似的药效作用,其中化合物01抑制HCV GT1b复制的活性略优于2008年专利化合物06和2013年专利化合物02,化合物04的活性略优于2013年专利化合物未拆分对映体02。选取化合物01、06的单一手性对映体化合物01a、01b、06a进行活性对比发现,单一手性异构体01a抑制HCV GT1b复制的活性略优于化合物2010年专利化合物06a。
试验例2:稳定性研究结果
下述稳定性试验方法按照现有技术进行,表中显示的数据为测试条件下被试化合物在孵育不同时间段后的残留百分比。
1、模拟胃液稳定性(测试浓度:10μM),见表2:
表2:模拟胃液稳定性测定(测试浓度:10μM)
Compounds %0h %1h %2h %6h %24h
01 100 96.81 105.99 100.76 71.32
2013年专利化合物未拆分对映体02 100 82.70 82.45 74.80 41.56
2008年专利化合物06 100 95.19 98.47 84.08 49.36
奥美拉唑(Omeprazole20μM) 100 5.24 2.76 0.20 0.00
2、模拟肠液稳定性(测试浓度:10μM),见表3:
表3:模拟肠液稳定性测定(测试浓度:10μM)
Compounds %0h %1h %2h %6h %24h
01 100 1.69 0.08 0.00 0.00
2013年专利化合物未拆分对映体02 100 0.63 0.08 0.00 0.00
2008年专利化合物06 100 0.00 0.00 0.00 0.00
苯丁酸氮芥(Chlorambucil) 100 43.83 3.91 0.00 0.00
3、人血浆稳定性(测试浓度:2μM),见表4
表4:人血浆稳定性检测(测试浓度:2μM)
Figure PCTCN2017077693-appb-000012
4、人肝S9稳定性参数(测试浓度:1μM),见表5
表5:人肝S9稳定性参数(测试浓度:1μM)
Figure PCTCN2017077693-appb-000013
上述(7-Ethoxycumarin)7-乙氧基香豆素、(7-Hydroxycoumarin)7-羟基香豆素、(Propantheline)溴丙胺太林、(Chlorambucil)苯丁酸氮芥、(Omeprazole)奥美拉唑等相关对照品的实验数据可以验证本系列实验的有效性。
稳定性初步研究实验数据显示,在模拟胃液、模拟肠液和人血中的稳定性,化合物01均高于2013年专利化合物未拆分对映体02和2008年专利化合物06。在人肝S9中,化合物01与2008年专利化合物06的稳定性相当,代谢成活性母药的速率相当,预示在肝细胞中相同浓度的化合物具有相当的活性。
综合比较,化合物01和化合物02、06相比具有更高的胃肠道和血液系统代谢稳定性,从而非病灶部分药物浓度更低,病灶部位药物浓度更高,预示着化合物01与2013年专利化合物未拆分对映体02、2008年专利化合物06相比在体内具有更好的肝靶向性和更低的系统毒性。
试验例3:体外心脏毒性研究
1、实验细胞与化合物配制
实验采用从AVivaBiosciences公司获得的能稳定表达hERG钾离子通道的CHO细胞,细胞在37℃,5%CO2,恒定湿度环境中孵育。
化合物和阳性对照化合物阿米替林(Amitriptyline,Sigma-Aldrich,BCBJ8594V)溶解于100%二甲基亚砜(DMSO)后等度稀释,细胞外液中DMSO的最终浓度不高于0.30%,保存于-20℃备用。
2、手动膜片钳记录
化合物于室温下在Multiclamp patch-clamp amplifier上采用全细胞膜片钳技术进行测试,输出信号采用DIgiDAta 1440A/D-D/A板进行数字化,Pclamp10软件进行记录控制。设置最小密封电阻为500MOhms,最小特异hERG电流为0.4nA进行质量控制。
3、数据分析
采用Clampfit(V10.2,Molecular Devices),Excel 2003和GraphPad Prism 5.0进行数据分析。电流计算公式:
I/Icontrol=Bottom+(Top-Bottom)/(1+10^((LogIC50-Log C)*Hillslope
4、实验结果与结论:见表6
表6:体外心脏毒性实验结果
Compounds IC50(μM) HillSlope Number of cells
阿米替林(Amitriptyline) 3.19 1.18 4
01a >30.00 - 2
01b >30.00 - 2
2010年专利化合物06a >10.00 - 2
结论:hERG实验中化合物01a、01b IC50均在10μM以上,06a的IC50在10μM以上,预示同剂量下01a、01b比2010年专利化合物06a在导致心脏毒性方面的安全性略优。
试验例4:大鼠体内代谢与组织分布实验
1、实验动物、药物配制方法与给药方案
18只SD大鼠(雄性,6-9周龄,购自维通利华动物中心)随机分为6组,每组3只,给药前先禁食12h,禁食期间自由给水,给药4小时后禁食结束。分析天平上精密称取50mg化合物,加入95%(0.5%CMC-Na)/5%solutol水溶液混合涡旋混匀,超声待用。给药剂量为50mg/kg,给药浓度10mg/mL,给药体积为5mL/kg。
2、样品采集方案与处理方法
样品采集方案:大鼠灌胃给药后于1h,2h,3h,6h,12h和24h取血和肝组织。
血浆样品处理方法:大鼠全血转移到预先加入3μL 0.5M的K2EDTA作为抗凝剂的离心EP管中后,立即取200μL全血加入到含有800μL预冷75%MeOH/25%CAN和内标(V75%MeOH/25%ACN:VBlood=4:1)的EP管中,以沉淀蛋白、保证受试物在全血中的稳定性。样品涡旋振荡2分钟后在4℃左右、12,000rpm条件下离心15分钟,分离75%MeOH/25%Acetonitrile提取物和细胞/蛋白碎片。样品在-70℃保存,取上清液30μL,加入30μL水后涡旋混合并于4℃离心后,取上清液5μL进样进行LC/MS/MS分析。
肝组织样品处理方法:取小鼠组织样品置于塑料EP管中,加入5倍(w:v)的1.75mL MeOH与5μL 50%KOH水溶液和0.75mL 268mM EDTA溶液所配成的溶液,混合均匀后取60μL样品,加入240μL内标溶液混合,涡旋振荡2min,离心10min(13000rpm,4℃),取30μL上清液,加入30μL水,涡旋混合并于4℃离心后,取上清液5μL进样进行LC/MS/MS分析。
3、样品分析方法
采用LC-MS/MS-O(API 4000)液质联用仪和色谱柱:ACQUITYUPLC BEH C18
Figure PCTCN2017077693-appb-000014
1.7μm 2.1×50mm,采用Tolbutamide为内标化合物,UPLC-MS进样后进行梯度洗脱分析,分别记录内标、待测化合物和代谢产物TSL1100的保留时间和峰面积,采用软件Phoenix WinNonlin 6.2.1通过SRM定量检测方法进行分析。
4、样品分析结果与结论:见表7
表7 大鼠灌胃后代谢产物在肝组织的PK参数
Figure PCTCN2017077693-appb-000015
表7结果显示:在全血中完全检测不到三磷酸类活性代谢产物,在肝脏中检测到有活性代谢产物,其PK参数如下表。结果说明此类化合物可以在肝脏有效富集转化为活性代谢产物;验证了其肝靶向性,预示了其抗HCV活性。
试验例选取的代表性化合物证实了本发明中的新型尿苷类磷酰胺前药化合物可以用于制备治疗丙肝病毒感染性疾病的药物。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

  1. 一种抗病毒尿苷类磷酰胺前药,为通式Ⅰ所示的化合物或其光学异构体或其药学上可接受的盐,
    Figure PCTCN2017077693-appb-100001
    式中:
    R独立地选自有取代或无取代的苄基基团、取代或未取代的C5-C50直链或环状的天然产物片段,或选自半合成或者全合成的糖类、维生素、醇类,及其结构改造或修饰后得到的类似物片段;
    R1,R2,R3分别独立地选自H、取代或未取代的C1-C10直链烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基,其中所述取代为一个到三个独立地选自O,S,N,Se的杂原子,或者R1与R2,R1与R3,R2与R3与连接它们的结构部分一起形成取代或未经取代的3-8元环;
    Z独立地选自O,S,Se,-NH-或-CH2-;
    所述的前药还包括,如通式Ⅰ所示的化合物或其光学异构体或其药学上可接受的盐的溶剂化物。
  2. 根据权利要求1所述的前药,其特征在于,式中:R选自母核为C3-C8的直链或环状的天然产物片段。
  3. 根据权利要求2所述的前药,其特征在于,所述天然产物片段选自各种单糖类或其类似物片段,或选自各种多糖或其类似物片段,或选自脂溶性维生素,或选自天然醇类或其类似物。
  4. 根据权利要求1-3所述的前药,其特征在于,式中:Z为O或S。
  5. 根据权利要求1所述的前药,其特征在于,式中:R独立地选自有取代或无取代的苄基基团、其中取代基独立地选自邻位或对位取代的C1-C10直链烃基、OC1-C10烷氧烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基;
    Z为O或S。
  6. 根据权利要求5所述的前药,其特征在于,式中:
    R选自苯环上取代的苄基基团、或者亚甲基上取代的苄基基团,其中苯环上取代基独立地选自甲基或/和甲氧基的苄基基团;亚甲基上取代基独立地选自C1-C10直链烃基、OC1-C10烷氧烃基、C3-C10支链烃基、C3-C10环烃基、C6-C10芳香烃基或杂芳基的苄基基团,当苄基苯环上只有一个取代基且在邻位时,取代基为非甲基;
    R1为异丙基;
    R2为甲基,所连接的碳原子构型为R或者S;
    R3为H;
    Z为O。
  7. 根据权利要求1-6任一项所述的前药,其特征在于,所述化合物选自为以下结构的化合物或其光学异构体、或其药学上可接受的盐、或化合物或其光学异构体或其药学上可接受的盐的溶剂化物:
    Figure PCTCN2017077693-appb-100002
  8. 一种权利要求1所述的前药的制备方法,反应式如下,
    Figure PCTCN2017077693-appb-100003
    所述方法,包括以下步骤:
    步骤1、三氯氧磷在碱的作用下与含羟基的醇类或者糖类或者含苄基的化合物反应后,再与氨基酸酯和含苯环的活性芳香试剂反应得到活性磷酯中间体;其中Y为O原子或者S原子或者Se原子,R4为氢原子或者任意含硅或者含氟的活泼离去基团,W为任意卤素原子或者硝基集团,n为0或1-5之间的任意整数;
    步骤2、磷酯中间体与尿苷类似物33在碱的存在下反应生成如式Ⅰ所示的尿苷类磷酰胺前药。
  9. 一种权利要求1所述的前药的制备方法,反应式如下:
    Figure PCTCN2017077693-appb-100004
    所述方法,包括以下步骤:
    步骤1、尿苷单磷酸化合物34与含羟基的醇类或糖类或带苄基基团的化合物在碱的作用下反应得到尿苷单磷酯中间体;
    步骤2、尿苷单磷酯中间体在碱的存在下与末端含NH-基团的化合物分子中含-NH-基团的环状化合物在缩合剂作用下反应生成如式Ⅰ所示的尿苷类磷酰胺前药。
  10. 一种药物组合物,其特征在于,该药物组合物含有权利要求1-7任一项所述的前药和药学上可接受的载体。
PCT/CN2017/077693 2016-03-25 2017-03-22 尿苷类磷酰胺前药、其制备方法及其在医药上的应用 WO2017162169A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US16/072,647 US10745434B2 (en) 2016-03-25 2017-03-22 Uridine phosphoramide prodrug, preparation method therefor, and medicinal uses thereof
CA3010462A CA3010462A1 (en) 2016-03-25 2017-03-22 Uridine phosphoramide prodrug, preparation method therefor, and medicinal uses thereof
AU2017239338A AU2017239338B2 (en) 2016-03-25 2017-03-22 Uridine phosphoramide prodrug, preparation method therefor, and medicinal uses thereof
JP2018545307A JP6890132B2 (ja) 2016-03-25 2017-03-22 抗ウイルス用ウリジン類ホスホラミド、その調製方法およびその医薬における使用
EP17769446.0A EP3434685B1 (en) 2016-03-25 2017-03-22 Uridine phosphoramide prodrug, preparation method therefor, and medicinal uses thereof
KR1020187024563A KR20180122333A (ko) 2016-03-25 2017-03-22 우리딘 포스포르아미드 프로드럭, 그의 제조 방법 및 그의 의약적 용도
RU2018125748A RU2740760C2 (ru) 2016-03-25 2017-03-22 Пролекарство на основе уридинфосфорамида, способ его получения и его применения в медицине
CN201780018366.3A CN109071588B (zh) 2016-03-25 2017-03-22 尿苷类磷酰胺前药、其制备方法及其在医药上的应用
IL261193A IL261193B (en) 2016-03-25 2018-08-16 Uridine phosphoramide prodrug, preparation method therefor, and medicinal uses thereof
HK19101469.9A HK1258984A1 (zh) 2016-03-25 2019-01-28 尿苷類磷醯胺前藥、其製備方法及其在醫藥上的應用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610180475 2016-03-25
CN201610180475.2 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017162169A1 true WO2017162169A1 (zh) 2017-09-28

Family

ID=59899318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077693 WO2017162169A1 (zh) 2016-03-25 2017-03-22 尿苷类磷酰胺前药、其制备方法及其在医药上的应用

Country Status (12)

Country Link
US (1) US10745434B2 (zh)
EP (1) EP3434685B1 (zh)
JP (1) JP6890132B2 (zh)
KR (1) KR20180122333A (zh)
CN (2) CN109071588B (zh)
AU (1) AU2017239338B2 (zh)
CA (1) CA3010462A1 (zh)
HK (1) HK1258984A1 (zh)
IL (1) IL261193B (zh)
RU (1) RU2740760C2 (zh)
TW (1) TW201733596A (zh)
WO (1) WO2017162169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262348A (zh) * 2020-09-16 2022-04-01 上海本仁科技有限公司 环状核苷磷酸酯类化合物及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983016B (zh) 2015-03-23 2023-08-11 天士力医药集团股份有限公司 一种含有水飞蓟宾的药物组合
CN113234102A (zh) * 2021-05-18 2021-08-10 宁波大学 一种三配位磷衍生物及中间体及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121634A2 (en) * 2007-03-30 2008-10-09 Pharmasset, Inc. Nucleoside phosphoramidate prodrugs
WO2013187978A1 (en) * 2012-06-16 2013-12-19 Nanjing Molecular Research, Inc. Double-liver-targeting phosphoramidate and phosphonoamidate prodrugs
CN103980332A (zh) * 2013-12-09 2014-08-13 南京迈勒克生物技术研究中心 2′-氟-2′-(氟甲基)-2′-脱氧核苷类化合物及其磷酸酯潜药

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2466729C2 (ru) 2006-12-28 2012-11-20 Айденикс Фармасьютикалз, Инк. Соединения и фармацевтические композиции для лечения вирусных инфекций
US8053186B2 (en) 2007-06-15 2011-11-08 The Ohio State University Research Foundation Oncogenic ALL-1 fusion proteins for targeting Drosha-mediated microRNA processing
TWI576352B (zh) 2009-05-20 2017-04-01 基利法瑪席特有限責任公司 核苷磷醯胺
US9156874B2 (en) * 2011-01-03 2015-10-13 Nanjing Molecular Research, Inc. Double-liver-targeting phosphoramidate and phosphonoamidate prodrugs
EP2697242B1 (en) * 2011-04-13 2018-10-03 Merck Sharp & Dohme Corp. 2'-azido substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases
CN103224530B (zh) * 2012-08-13 2014-10-29 洛阳聚慧投资股份有限公司 一组替诺福韦酯化合物、制备方法及其在抗病毒方面的应用
CN107312039B (zh) 2012-08-30 2019-06-25 江苏豪森药业集团有限公司 一种替诺福韦前药的制备方法
CN103435672A (zh) * 2013-04-25 2013-12-11 刘沛 含有取代苄基的新型核苷磷酸酯前药的结构与合成
CN105307661A (zh) * 2013-05-16 2016-02-03 里博科学有限责任公司 4’-叠氮基,3’-脱氧基-3’-氟取代的核苷衍生物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121634A2 (en) * 2007-03-30 2008-10-09 Pharmasset, Inc. Nucleoside phosphoramidate prodrugs
WO2013187978A1 (en) * 2012-06-16 2013-12-19 Nanjing Molecular Research, Inc. Double-liver-targeting phosphoramidate and phosphonoamidate prodrugs
CN103980332A (zh) * 2013-12-09 2014-08-13 南京迈勒克生物技术研究中心 2′-氟-2′-(氟甲基)-2′-脱氧核苷类化合物及其磷酸酯潜药

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434685A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262348A (zh) * 2020-09-16 2022-04-01 上海本仁科技有限公司 环状核苷磷酸酯类化合物及其应用

Also Published As

Publication number Publication date
US10745434B2 (en) 2020-08-18
CN109071588A (zh) 2018-12-21
RU2018125748A3 (zh) 2020-04-23
CN107226831A (zh) 2017-10-03
RU2740760C2 (ru) 2021-01-20
AU2017239338A1 (en) 2018-07-19
JP6890132B2 (ja) 2021-06-18
AU2017239338B2 (en) 2020-08-27
JP2019514843A (ja) 2019-06-06
IL261193A (en) 2018-10-31
HK1258984A1 (zh) 2019-11-22
CA3010462A1 (en) 2017-09-28
EP3434685B1 (en) 2021-06-16
US20180371004A1 (en) 2018-12-27
EP3434685A1 (en) 2019-01-30
KR20180122333A (ko) 2018-11-12
RU2018125748A (ru) 2020-01-13
IL261193B (en) 2020-10-29
TW201733596A (zh) 2017-10-01
CN109071588B (zh) 2021-07-06
EP3434685A4 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
EP3305795B1 (en) Tenofovir monobenzyl ester phosphamide prodrug, preparation method and use thereof
CN104955818B (zh) 核苷激酶旁路组合物和方法
WO2017162169A1 (zh) 尿苷类磷酰胺前药、其制备方法及其在医药上的应用
ES2639863A1 (es) Compuestos para el tratamiento de enfermedades causadas por la acumulación de oxalato
JP6215484B2 (ja) がん治療のための短鎖脂肪酸およびゼブラリンまたは1’−シアノ−シタラビンを含む相互プロドラッグ
EP4233916A1 (en) Complex, and use thereof
JPH09506640A (ja) ヘテロアリール基置換デオキシグリセロ−ホスホエタノールアミン
CN106496132B (zh) N-(4-取代苯基)-2-取代乙酰胺类化合物及其作为sirt2蛋白抑制剂的用途
CN111285900B (zh) 基于紫檀芪和香荚兰乙酮的偶联分子dcz0847类化合物、其制备方法及用途
CN110590838A (zh) Y27632前药、其制备方法及其在医药上的应用
CN117562915A (zh) 一种腺苷衍生物在制备预防、缓解或治疗纤维化疾病的药物中的应用
CN118320117A (zh) 多细胞器靶向、原位释放的分子基药物递送系统
CN111247148A (zh) Wnt通路调节剂

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3010462

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2018125748

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017239338

Country of ref document: AU

Date of ref document: 20170322

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 261193

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 20187024563

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018545307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017769446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769446

Country of ref document: EP

Effective date: 20181025

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769446

Country of ref document: EP

Kind code of ref document: A1