WO2017161507A1 - 上行数据的处理方法和设备 - Google Patents

上行数据的处理方法和设备 Download PDF

Info

Publication number
WO2017161507A1
WO2017161507A1 PCT/CN2016/077032 CN2016077032W WO2017161507A1 WO 2017161507 A1 WO2017161507 A1 WO 2017161507A1 CN 2016077032 W CN2016077032 W CN 2016077032W WO 2017161507 A1 WO2017161507 A1 WO 2017161507A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
uplink data
data
ofdm symbols
dmrs
Prior art date
Application number
PCT/CN2016/077032
Other languages
English (en)
French (fr)
Inventor
张瑞齐
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/077032 priority Critical patent/WO2017161507A1/zh
Publication of WO2017161507A1 publication Critical patent/WO2017161507A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and a device for processing uplink data.
  • the base station needs to quickly obtain the uplink data fed back by the terminal device in order to reduce the service delay and ensure the accuracy of the uplink data acquired at the current time.
  • terminal devices cannot quickly feed back uplink data.
  • the MIMO multiple input and multiple output (MIMO) communication system is taken as an example to illustrate that the terminal device cannot feed back channel state information (CSI) to the base station in time.
  • CSI channel state information
  • the base station can obtain all or part of Channel State Information (CSI), the base station can adopt a precoding technique to improve signal transmission quality or rate. Therefore, the base station sends a channel state information reference signal (CSI-RS) to the terminal device, and the terminal device (User Equipmen, referred to as the terminal device) needs to measure the CSI-RS and feed back the CSI to the base station.
  • CSI-RS channel state information reference signal
  • the terminal device User Equipmen, referred to as the terminal device
  • the base station may configure two CSI feedback modes to the terminal device, one is periodic feedback, that is, the base station configures a CSI feedback period to the terminal device, and the terminal device feeds back CSI according to the configured period; the other is triggered.
  • the base station notifies the terminal device to perform CSI-RS measurement by using a Physical Downlink Control Channel (PDCCH) in the first subframe, and the terminal device feeds back CSI in the second subframe, where the first subframe is located in the first subframe.
  • PDCCH Physical Downlink Control Channel
  • the position of the first k frames of the two sub-frames, where k ⁇ 4, and the value of k is related to the frame structure type.
  • the periodic feedback mode and the triggered feedback mode of the CSI specified by the existing communication protocol limit the feedback time of the CSI, so that the terminal device cannot quickly feed back the CSI information to the base station.
  • the embodiment of the invention provides a method and a device for processing uplink data, which are used to enable the terminal device to quickly feed back uplink data to the base station.
  • an embodiment of the present invention provides a method for processing uplink data, which is described from the perspective of a base station.
  • the method includes: the base station transmitting the first scheduling information to the first terminal device in the first subframe, to indicate that the first terminal device carries the first uplink data on the LK OFDM symbols of the second subframe; The number of OFDMs included in the frame, K ⁇ L/2; when the base station needs the second terminal device to quickly feed back the second uplink data, the base station sends the second scheduling information to the second terminal device in the third subframe to indicate the The second terminal device carries the second uplink data on the K OFDM symbols of the second subframe.
  • the scheduling information sent by the base station to each terminal device may further carry the location information of the K OFDM symbols and the modulation and coding mode of the uplink data. Then, the base station receives, by the first terminal device, the first uplink data carried on the LK OFDM symbols of the second subframe, and the second uplink carried by the second terminal device on the K OFDM symbols of the second subframe. data.
  • the third subframe is a subframe located at a previous frame position of the second subframe, or the third subframe and the second subframe
  • the second terminal device feeds back the second uplink data to the base station in the current subframe or the next subframe, so that the terminal device is fast.
  • the uplink data is fed back to the base station.
  • the base station receives the first uplink data that is sent by the first terminal device and is sent by the second terminal device on the LK OFDM symbols of the second subframe. After the second uplink data carried on the K symbols of the second subframe, the method further includes:
  • the base station demodulates the first uplink data and the second uplink data according to the demodulation reference signal DMRS in the second subframe, and acquires the first uplink data and the second uplink data.
  • the DMRS used to demodulate the first uplink data in the second subframe occupies M OFDM symbols, where M ⁇ 6, and the second subframe is used to demodulate the second uplink.
  • the DMRS of the data shares at least one of the M OFDM symbols with the DMRS for demodulating the first uplink data, and the sum of the L and the M is the number of OFDMs included in the second subframe .
  • the DMRS for demodulating the second uplink data in the second subframe is used for demodulation
  • This embodiment implements uplink data for demodulating different terminal devices in the same subframe.
  • the DMRS performs frequency division multiplexing, code division multiplexing, and time division multiplexing, so that uplink data of different terminal devices can be transmitted in the same subframe, thereby realizing that the terminal device quickly feeds back uplink data to the base station.
  • the DMRS on the second subframe is used to demodulate the first uplink data and the second Upstream data.
  • the DMRS for demodulating data of the same terminal device is shared in the same subframe, so that the terminal device quickly feeds back uplink data to the base station.
  • the first uplink data is uplink physical shared channel PUSCH data
  • the DMRS used to demodulate the PUSCH data in the second subframe occupies 2 OFDM symbols
  • the DMRS for demodulating the second uplink data on the second subframe shares the 2 OFDM symbols with a DMRS for demodulating the PUSCH data, and the second subframe is used for demodulation
  • the DMRS of the second uplink data and the DMRS frequency division multiplexing, code division multiplexing or time division multiplexing for demodulating the PUSCH data.
  • the first uplink data is uplink physical shared channel PUSCH data
  • the DMRS used to demodulate the PUSCH data in the second subframe occupies 2 OFDM symbols
  • a DMRS for demodulating the second uplink data on the second subframe shares one of the two OFDM symbols with a DMRS for demodulating the PUSCH data, where the second subframe is used for Demodulating the DMRS of the second uplink data with DMRS frequency division multiplexing or code division multiplexing for demodulating the PUSCH data.
  • the first uplink data is uplink physical control channel PUCCH data
  • the second subframe is used to demodulate the DMRS of the second uplink data and used to demodulate the PUCCH data.
  • the DMRS for demodulating the second uplink data on the second subframe is multiplexed with the DMRS code for demodulating the PUCCH data.
  • the K OFDM symbols are further used to carry the PUCCH data, and the second uplink data is code-multiplexed with the PUCCH data.
  • the first uplink data is an uplink physical shared channel PUSCH.
  • the bandwidth occupied by the second uplink data carried on the K OFDM symbols is less than or equal to the bandwidth occupied by the PUSCH data carried on the L-K OFDM symbols.
  • the first uplink data is uplink physical shared channel PUSCH data
  • the DMRS on two time slots in the second subframe is used to demodulate the PUSCH data and the second uplink data.
  • the first uplink data is uplink physical control channel PUCCH data
  • the DMRS on one time slot in the second subframe is used to demodulate the PUCCH data and the second uplink data.
  • the third subframe is a subframe located at a previous frame position of the second subframe, and the K OFDM symbols are located at a start position of the second subframe;
  • the third subframe and the second subframe are the same frame subframe, and the K OFDM symbols are located at the end of the second subframe.
  • the second uplink data includes at least one of the following data:
  • Channel state information CSI Uplink ACK/NCK, uplink traffic data.
  • an embodiment of the present invention provides a method for processing uplink data.
  • the method starts from the perspective of the terminal device.
  • the terminal device in this embodiment corresponds to an embodiment in which the first terminal device and the second terminal device in the foregoing embodiment are the same terminal device.
  • the method includes: the terminal device receives the first scheduling information that is sent by the base station in the first subframe, where the first scheduling information is used to indicate that the terminal device carries the first uplink data on the LK OFDM symbols of the second subframe; The number of OFDMs included in the second subframe; the terminal device receives the scheduling information sent by the base station in the third subframe, where the scheduling information is used to indicate that the terminal device carries the second uplink data on the K OFDM symbols of the second subframe; Transmitting, by the terminal device, the first uplink data carried on the LK OFDM symbols of the second subframe and the second uplink data carried on the K OFDM symbols of the second subframe to the base station; wherein the first subframe is located a subframe of at least the first four frame positions of the second subframe, the third subframe is a subframe located at a previous frame position of the second subframe, or the third subframe and the second subframe are the same subframe.
  • the DMRS used to demodulate the first uplink data in the second subframe occupies M OFDM symbols, where M ⁇ 6, and the second subframe is used for demodulation.
  • the DMRS of the second uplink data occupies at least one of the M DMRSs, and the sum of the L and the M is the number of OFDMs included in the second subframe.
  • the first uplink data is an uplink physical shared channel PUSCH.
  • the terminal device transmitting, to the base station, the first uplink data carried on LK OFDM symbols of the second subframe and uplink carried on K OFDM symbols of the second subframe Before the data, it also includes:
  • the PUSCH data carried by the J OFDM symbols is removed from the LK OFDM symbols, and the second uplink data is carried on the J OFDM symbols, so that the K OFDM symbols are used.
  • the bandwidth occupied by the second uplink data carried on the uplink is equal to the bandwidth occupied by the PUSCH data carried on the LK OFDM symbols;
  • Transmitting, by the terminal device, the first uplink data carried on the LK OFDM symbols of the second subframe and the uplink data carried on the K OFDM symbols of the second subframe to the base station include:
  • the uplink data includes at least one of the following:
  • Channel state information CSI Uplink ACK/NCK, uplink traffic data.
  • an embodiment of the present invention provides a base station, where the base station has a function of implementing a behavior of a base station in the design of the foregoing method.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the specific structure of the base station may include: a sending module and a receiving module.
  • the sending module is configured to send the first scheduling information to the first terminal device in the first subframe, where the first scheduling information is used to indicate that the first terminal device is on the LK OFDM symbols of the second subframe. Carrying the first uplink data; the L is smaller than the number of OFDMs included in the second subframe, and the K is ⁇ L/2; the sending module is further configured to send to the second terminal device in the third subframe.
  • the second terminal device And transmitting, by the second terminal device, the second uplink data, where the second terminal device carries the second uplink data on the K OFDM symbols of the second subframe, and the receiving module, configured to receive the first The first uplink data carried by the terminal device on the LK OFDM symbols of the second subframe, and the second terminal device that is sent by the second terminal device on the K OFDM symbols of the second subframe Second Row data; wherein the first subframe is a subframe located at at least a first frame position of the second subframe, and the third subframe is a subframe located at a previous frame position of the second subframe The frame, or the third subframe and the second subframe are the same subframe.
  • the base station further includes a processing module, where the processing module is configured to receive, by the receiving module, a host that is sent by the first terminal device and is carried on LK OFDM symbols of the second subframe. After the first uplink data and the second uplink data carried by the second terminal device on the K symbols of the second subframe, according to the demodulation reference signal DMRS on the second subframe Demodulating the first uplink data and the second uplink data, and acquiring the first uplink data and the second uplink data;
  • the DMRS used to demodulate the first uplink data in the second subframe occupies M OFDM symbols, where M ⁇ 6, and the second subframe is used to demodulate the second uplink data.
  • the DMRS shares at least one of the M OFDM symbols with a DMRS for demodulating the first uplink data, and the sum of the L and the M is the number of OFDMs included in the second subframe.
  • an embodiment of the present invention provides a terminal device, where the terminal device has a function of implementing behavior of a terminal device in the foregoing method design.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the specific structure of the terminal device may include: a receiving module and a sending module.
  • the receiving module is configured to receive first scheduling information that is sent by the base station in the first subframe, where the first scheduling information is used to indicate that the terminal device is carried in the first time on LK OFDM symbols of the second subframe.
  • Uplink data; the L is smaller than the number of OFDMs included in the second subframe;
  • the receiving module is further configured to receive scheduling information that is sent by the base station in a third subframe, where the scheduling information is used to indicate
  • the terminal device carries the second uplink data on the K OFDM symbols of the second subframe, and the sending module is configured to send, to the base station, the bearer carried on the LK OFDM symbols of the second subframe.
  • the first uplink data and the second uplink data carried on the K OFDM symbols of the second subframe; wherein the first subframe is located at least the first four frames of the second subframe a subframe, the third subframe is a subframe located at a previous frame position of the second subframe, or the third subframe is the same subframe as the second subframe.
  • the DMRS used to demodulate the first uplink data in the second subframe occupies M OFDM symbols, where M ⁇ 6, and the second subframe is used for demodulation.
  • the DMRS of the two uplink data occupies at least one of the M DMRSs, and the sum of the L and the M is the number of OFDMs included in the second subframe.
  • the terminal device further includes: a processing module, where the processing module is configured to: the first uplink data is an uplink physical shared channel PUSCH data, where the sending module sends, to the Determining uplink data carried on the K OFDM symbols before the first uplink data carried on the LK OFDM symbols of the second subframe and the uplink data carried on the K OFDM symbols of the second subframe Whether the occupied bandwidth is greater than the bandwidth occupied by the PUSCH data carried on the LK OFDM symbols; if yes, deleting the PUSCH data carried by the J OFDM symbols in the LK OFDM symbols, Carrying a portion of the second uplink data on the J OFDM symbols, so that a bandwidth occupied by the second uplink data carried on the K OFDM symbols is equal to the PUSCH data carried on the LK OFDM symbols.
  • the processing module is configured to: the first uplink data is an uplink physical shared channel PUSCH data, where the sending module sends, to the Determining uplink data carried on the K OFDM symbols before the first
  • the transmission module is specifically configured to: send, to the base station, the PUSCH data carried on LKJ OFDM symbols of the second subframe, and K OFDM symbols in the second subframe Part of the upper part Second uplink data and the second portion of the uplink data is carried on the second subframe J OFDM symbols.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the base station, and includes a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the terminal device, and includes a program designed to execute the foregoing aspects.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for processing uplink data according to the present invention
  • FIG. 2 is a schematic diagram 1 of a subframe sequence according to the present invention.
  • FIG. 3 is a second schematic diagram of a subframe sequence according to the present invention.
  • FIG. 4 is a schematic diagram 3 of a subframe sequence according to the present invention.
  • FIG. 5 is a schematic diagram 1 of multiplexing of a demodulation reference signal according to the present invention.
  • FIG. 6 is a schematic diagram 2 of demodulation reference signal multiplexing according to the present invention.
  • FIG. 7 is a schematic diagram 3 of multiplexing demodulation reference signals according to the present invention.
  • FIG. 8 is a schematic diagram 4 of demodulation reference signal multiplexing according to the present invention.
  • FIG. 9 is a schematic diagram 5 of demodulation reference signal multiplexing according to the present invention.
  • FIG. 10 is a schematic diagram 6 of multiplexing demodulation reference signals according to the present invention.
  • FIG. 11 is a schematic diagram 7 of demodulation reference signal multiplexing according to the present invention.
  • FIG. 12 is a schematic diagram 8 of demodulation reference signal multiplexing according to the present invention.
  • FIG. 13 is a schematic diagram 1 of a demodulation reference signal sharing according to the present invention.
  • FIG. 14 is a schematic diagram 2 of a demodulation reference signal sharing according to the present invention.
  • 15 is a schematic diagram 3 of a demodulation reference signal sharing according to the present invention.
  • FIG. 16 is a schematic flowchart diagram of Embodiment 2 of an uplink data processing method according to the present invention.
  • FIG. 17 is a schematic structural diagram of Embodiment 1 of a base station according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of Embodiment 2 of a base station according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of Embodiment 1 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of Embodiment 2 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of Embodiment 3 of a base station according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of Embodiment 3 of a terminal device according to an embodiment of the present disclosure.
  • the uplink data processing method provided by the embodiment of the present invention can be applied to long-term evolution (Long The Term Evolution (LTE) system mainly involves a process in which a terminal device sends uplink data to a base station. Specifically, the base station sends scheduling information to the terminal device, where the scheduling information is used to indicate the uplink data that the terminal device needs to send, and the time-frequency resource location required for sending the uplink data, and then the terminal device sends the uplink frequency resource location at the corresponding time-frequency resource location. Upstream data.
  • LTE Long The Term Evolution
  • the uplink data may be, for example, Channel State Information (CSI), uplink ACK/NCK, or other uplink services, where the channel state information includes a Channel Quality Index (CQI) and a Precoding Matrix Index ( At least one of or a combination of information such as a Precoding Matrix Index (PMI) and a rank index (RI).
  • CSI Channel State Information
  • CQI Channel Quality Index
  • PMI Precoding Matrix Index
  • RI rank index
  • the method for transmitting the uplink data on the time-frequency resource is improved, so that There are two time-frequency resources in the subframe, and the two time-frequency resources are used to carry uplink data sent by the terminal equipment scheduled by the base station to the base station at different times.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for processing uplink data according to the present invention.
  • an execution subject of this embodiment is a base station, and the base station can be implemented by software and/or hardware.
  • the method includes:
  • Step 101 The base station sends the first scheduling information to the first terminal device in the first subframe, where the first scheduling information is used to indicate that the first terminal device carries the first one on the LK OFDM symbols of the second subframe.
  • Uplink data is used to indicate that the first terminal device carries the first one on the LK OFDM symbols of the second subframe.
  • the L is smaller than the number of OFDMs included in the second subframe, where K ⁇ L/2;
  • Step 102 The base station sends second scheduling information to the second terminal device in the third subframe, where the second scheduling information is used to indicate that the second terminal device is K OFDM symbols in the second subframe. Carrying the second uplink data;
  • Step 103 The base station receives, by the first terminal device, the first uplink data that is carried on the LK OFDM symbols of the second subframe, and the second terminal device that is sent by the second terminal device. Second uplink data carried on K OFDM symbols of the subframe;
  • the first subframe is a subframe located at at least the first four frame positions of the second subframe
  • the third subframe is a subframe located at a previous frame position of the second subframe, or
  • the third subframe and The second subframe is the same subframe.
  • the base station schedules the first terminal device and the second terminal device at different times. Specifically, the base station sends the first scheduling information to the first terminal device in the first subframe to instruct the first terminal device to perform LK Orthogonal Frequency Division Multiplexing (OFDM) in the second subframe.
  • the first uplink data is carried on the symbol.
  • the first uplink data in this embodiment may be a Physical Uplink Control Channel (PUCCH) data or a Physical Uplink Shared Channel (PUSCH) data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • L is the number of OFDM symbols that can be used to transmit data in the second subframe, and L is smaller than the number of OFDM symbols included in the second subframe. In this case, it is equivalent to the first terminal device needing to reserve K OFDM symbols.
  • the PUCCH data referred to in this embodiment refers to data carried by the PUCCH
  • the PUSCH data refers to data carried by the PUSCH.
  • the base station sends the second scheduling information to the second terminal device in the third subframe to indicate that the second terminal device carries the second uplink data on the K OFDM symbols reserved by the first terminal device.
  • the second scheduling information is further used to indicate that the second terminal device measures the CSI-RS, and the second terminal device carries the CSI on the K OFDM symbols after measuring the CSI-RS.
  • the third subframe is a subframe located after the first subframe.
  • the K OFDM symbols in this embodiment are located at the beginning of the second subframe or at the end of the second subframe.
  • the first uplink data and the second uplink data are time division multiplexed during transmission.
  • the base station receives, by the first terminal device, the first uplink data carried on the LK OFDM symbols of the second subframe, and the second uplink carried by the second terminal device on the K OFDM symbols of the second subframe. data.
  • the first subframe is a subframe located at least the first four frame positions of the second subframe
  • the third subframe is a subframe located at a previous frame position of the second subframe, or the third subframe
  • the frame is the same subframe as the second subframe.
  • the first subframe in the FDD-LTE communication system, is a subframe located in the first four frame positions of the second subframe, and in the TDD-LTE communication system, the first subframe is located in the second subframe.
  • the FDD-LTE communication system is taken as an example to describe the timing relationship of each subframe in detail.
  • the implementation process is similar, and the details are not described herein again.
  • the specific implementation process Several possible implementations of the subframe timing are described in detail in conjunction with FIGS. 2 through 4.
  • FIG. 2 is a schematic diagram 1 of a subframe sequence according to the present invention.
  • FIG. 2 shows a possible implementation.
  • the first subframe is a subframe located in the first four frames of the second subframe, and the third subframe and the second subframe are the same subframe.
  • the K OFDM symbols are located at the beginning of the second subframe.
  • FIG. 3 is a second schematic diagram of a subframe sequence according to the present invention.
  • FIG. 3 shows another possible implementation manner.
  • the first subframe is a subframe located at the first 4 frames of the second subframe
  • the third subframe is located before the second subframe.
  • the K OFDM symbols are located at the end of the second subframe.
  • the base station sends the first scheduling information D1 to the first terminal device, where the first terminal device indicates that the first terminal device carries the first one on the LK OFDM symbols of the second subframe. Upstream data.
  • the base station sends the second scheduling information D2 to the second terminal device in the third subframe, to indicate that the second terminal device carries the second uplink data on the K OFDM symbols of the second subframe.
  • the first terminal device sends the first uplink data U1 carried on the LK OFDM symbols of the second subframe to the base station, and the second terminal device transmits the second uplink data U2 carried on the K OFDM symbols of the second subframe. Send to the base station.
  • FIG. 4 is a third schematic diagram of a subframe sequence according to the present invention.
  • Figure 4 shows yet another possible implementation.
  • the base station schedules two first terminal devices, such that the first terminal device A reserves K A OFDM symbols, and the second terminal device reserves K B OFDM symbols.
  • the K A OFDM symbols are located at the end of the first subframe A, and the K B OFDM symbols are located at the beginning of the first subframe B.
  • the base station sends the first scheduling information D1A to the first terminal device A on the first subframe A, to indicate that the first terminal device A carries the LK A OFDM symbols in the second subframe A.
  • An upstream data The base station sends the first scheduling information D1B to the first terminal device B on the first subframe B, and is used to indicate that the first terminal device B carries the first uplink data on the LK B OFDM symbols of the second subframe B.
  • the base station sends, to the second terminal device, the second scheduling information D2, in the third subframe, to indicate that the second terminal device carries the second uplink data U1A on the K A OFDM symbols of the second subframe A, in the second sub-
  • the second uplink data U1B is carried on the K B OFDM symbols of the frame B.
  • the first terminal device A transmits the first uplink data U1A carried on the LK A OFDM symbols of the second subframe to the base station, and the first terminal device B carries the first uplink device on the LK B OFDM symbols of the second subframe.
  • An uplink data U1B is sent to the base station, and the second terminal device sends the second uplink data U2A carried on the K A OFDM symbols of the second subframe to the base station, and carries the K B OFDM symbols in the second subframe.
  • the second uplink data U1B is sent to the base station.
  • the base station when the base station needs to quickly acquire the uplink data fed back by the terminal device, the base station sends the second scheduling information to the second terminal device in the third subframe to indicate that the second terminal device is in the second subframe.
  • the second uplink data is carried on the K OFDM symbols, because the third subframe is a subframe located at a previous frame position of the second subframe, or the third subframe and the second subframe are the same subframe, that is, the base station is in the scheduling After the second terminal device, the second terminal device can quickly feed back the scheduling data to the base station.
  • the terminal device after receiving the scheduling information sent by the base station, the terminal device needs to pass the at least 3 subframes to feed back the uplink data to the base station, and the method provided by this embodiment, the second terminal device is currently After receiving the second scheduling information sent by the base station, the subframe feeds back the second uplink data to the base station in the current subframe or the next subframe, so that the terminal device quickly feeds back the uplink data to the base station.
  • the base station After receiving the first uplink data and the second uplink data, the base station demodulates the first uplink data and the second uplink data according to the demodulation reference signal DMRS in the second subframe, and acquires the first uplink data and the first Two uplink data. As shown in FIG. 2 to FIG. 4, the first terminal device sends a Demodulation Reference Signal (DMRS) to the base station through the second subframe while transmitting the first uplink data to the base station.
  • DMRS Demodulation Reference Signal
  • the DMRS used for demodulating the first uplink data in the second subframe occupies M OFDM symbols, M ⁇ 6, and the DMRS used for demodulating the second uplink data in the second subframe uses the M At least one of the DMRSs, the sum of the L and the M is the number of OFDMs included in the second subframe.
  • the DMRS used for demodulating the PUSCH data in the second subframe occupies 2 OFDM symbols
  • the first uplink data is PUCCH data
  • the second subframe is used for demodulation.
  • the DMRS of the PUSCH occupies 4 OFDM symbols or occupies 6 OFDM symbols.
  • the DMRS used for demodulating the PUSCH data or the PUCCH data in this embodiment may use the DMRS in the prior art, that is, the number of DMRSs in the prior art and the location of the DMRS are not changed in this embodiment. .
  • DMRSs for demodulating PUSCH data or PUCCH data can also be changed in this embodiment.
  • the specific implementation manner of the DMRS for demodulating the PUSCH data or the PUCCH data is not limited herein.
  • the DMRS for demodulating the second uplink data on the second subframe and the DMRS for demodulating the first uplink data share at least one of the M OFDM symbols.
  • the DMRS used for demodulating the second uplink data is used The DMRS demodulating the first uplink data shares at least one of the M OFDM symbols by means of time division multiplexing, code division multiplexing, and frequency division multiplexing.
  • the DMRS for demodulating the second uplink data shares the M OFDM symbols with the DMRS for demodulating the first uplink data.
  • the DMRS for demodulating the second uplink data and the DMRS frequency division multiplexing for demodulating the first uplink data in the second subframe time division multiplexing or code division multiplexing.
  • the first uplink data is PUSCH data or the first uplink data is PUCCH data, and the implementation manner of multiplexing is slightly different.
  • the DMRS in the second subframe is two, and is located at the position of the fourth OFDM symbol and the eleventh OFDM symbol of the second subframe, and the second uplink data.
  • the location where the second uplink data is located in the last two OFDM symbols of the second subframe is taken as an example, and is divided into the following feasible implementation manners.
  • the DMRS used for demodulating the second uplink data in the second subframe shares the 2 OFDM symbols with the DMRS used for demodulating the PUSCH data, that is, the two share the 4th OFDM symbol and the 11th
  • the OFDM symbol is specifically shown in FIGS. 5 to 7.
  • FIG. 5 is a schematic diagram 1 of multiplexing demodulation reference signals according to the present invention.
  • the DMRS for demodulating CSI and the DMRS for demodulating PUSCH data in the second subframe share 2 OFDM symbols by means of code division multiplexing.
  • multiplexing may be employed in an orthogonal code division manner.
  • FIG. 6 is a schematic diagram 2 of multiplexing of demodulation reference signals according to the present invention.
  • the DMRS (CSI DMRS) for demodulating CSI
  • the DMRS (PUSCH DMRS) for demodulating PUSCH data in the second subframe share two OFDM symbols in a frequency division multiplexing manner.
  • FIG. 7 is a schematic diagram 3 of multiplexing of demodulation reference signals according to the present invention.
  • the DMRS (CSI DMRS) for demodulating CSI and the DMRS (PUSCH DMRS) for demodulating PUSCH data in the second subframe share two OFDM symbols in a time division multiplexing manner. That is, the PUSCH DMRS occupies the 4th OFDM symbol, and the CSI DMRS occupies the 11th OFDM symbol.
  • the DMRS used to demodulate the second uplink data in the second subframe shares one of the 2 OFDM symbols, that is, the two share one of the 4th OFDM symbol or the 11th OFDM symbol, as shown in FIG. 8 to FIG.
  • FIG. 8 is a schematic diagram 4 of demodulation reference signal multiplexing according to the present invention.
  • DMRS CSI DMRS
  • PUSCH DMRS two DMRSs
  • FIG. 9 is a schematic diagram 5 of demodulation reference signal multiplexing according to the present invention.
  • a DMRS (CSI DMRS) for demodulating CSI
  • a DMRS (PUSCH DMRS) for demodulating PUSCH data adopt a non-orthogonal sequence.
  • the CSI DMRS occupies the 11th OFDM symbol
  • the sequence is S2
  • the PUSCH DMRS uses the sequence S1 on the 11th OFDM symbol.
  • S1 and S2 are not necessarily orthogonal, but the correlation is small.
  • the channel H1 of the first terminal device is estimated on the DMRS occupying the 4th OFDM symbol, and the received signal H1xS1 of the first terminal device on the DMRS occupying the 11th OFDM symbol is reconstructed, and then the reconstructed reception is performed.
  • the signal is subtracted from the received signal of the DMRS occupying the 11th OFDM symbol, and the received signal H2xS2 of the second terminal device is obtained, thereby obtaining the channel estimate of the second terminal device.
  • FIG. 10 is a schematic diagram 6 of demodulation reference signal multiplexing according to the present invention.
  • the CSI is transmitted on the last K OFDM symbols of the subframe n, and the DMRS demodulating the CSI occupies the 11th OFDM symbol in the subframe n, and occupies the 4th OFDM in the subframe n+1.
  • the symbol, and the PUSCH DMRS is frequency-division multiplexed with the CIS DMRS, so that the channel estimation performance of the CSI can be guaranteed.
  • the embodiment transmits the PUCCH format 1/1a/1b in the second subframe, and the DMRS used for demodulating the PUCCH is located on the 3rd, 4th, and 5th OFDM symbols in one slot.
  • the second uplink data is CSI, and the second uplink data is located at the position of the last two OFDM symbols of the second subframe, and is divided into the following feasible implementation manners.
  • the DMRS for demodulating the CSI on the second subframe and the DMRS for demodulating the PUCCH data share the DMRS for demodulating the PUCCH data on one slot on the second subframe.
  • FIG. 11 is a schematic diagram 7 of demodulation reference signal multiplexing according to the present invention.
  • the DMRS used for demodulating PUCCH data occupies 6 OFDM symbols, which are respectively located on the 3rd, 4th, and 5th symbols of each slot, for demodulating CSI.
  • the DMRS shares the DMRS (PUCCH DMRS) for demodulating PUCCH data on the second slot on the second subframe with the DMRS for demodulating the PUCCH data.
  • the CSI DMRS is code-multiplexed with the PUCCH DMRS.
  • the CSI can be not only time-multiplexed with the PUCCH data, but also CSI can be code-multiplexed with the PUCCH data.
  • FIG. 12 is a schematic diagram 8 of demodulation reference signal multiplexing according to the present invention. As shown in FIG. 12, the K OFDM symbols are further used to carry PUCCH data, and the CSI and PUCCH data are code-multiplexed.
  • frequency division multiplexing, code division multiplexing, and time division multiplexing are performed on DMRSs for demodulating uplink data of different terminal devices in the same subframe, so that uplink data of different terminal devices may be the same.
  • the transmission is performed on the subframe, so that the terminal device quickly feeds back the uplink data to the base station.
  • the DMRS in the second subframe is used to demodulate the first uplink data and the second uplink data.
  • the first uplink data is PUSCH data or the first uplink data is PUCCH data, and the implementation manner is slightly different.
  • the DMRS in the second subframe is two, and is located at the position of the fourth OFDM symbol and the eleventh OFDM symbol of the second subframe, and the second uplink data.
  • the location where the second uplink data is located in the last two OFDM symbols of the second subframe is taken as an example for detailed description.
  • the starting position or the ending position of the physical resource block occupied by the CSI may be the same as the PUSCH, so that the PUSCH data and the CSI can directly share the DMRS without multiplexing.
  • the second subframe includes 100 physical resource blocks (Resource Blocks, RBs for short) in the frequency domain width, where the PUSCH data can occupy the 2nd to 99th RBs, and the PUCCH data only It can occupy the 1st to 100th RBs. Therefore, in this embodiment, preferably, the starting position or the ending position of the physical resource block occupied by the CSI is the same as the PUSCH data, and the bandwidth occupied by the CSI is less than or equal to the bandwidth occupied by the PUSCH data. In this way, the two can directly share the DMRS, as shown in FIG.
  • Resource Blocks Resource Blocks
  • FIG. 13 is a schematic diagram 1 of a demodulation reference signal sharing according to the present invention.
  • CSI and PUSCH The termination positions of the physical resource blocks occupied by the data are the same, and the bandwidth occupied by the CSI is smaller than the bandwidth occupied by the PUSCH data.
  • the DMRS on the two slots in the second subframe is used to demodulate the PUCCH data and the second uplink data, that is, the two directly share the two DMRSs for demodulating the PUSHC data, and no multiplexing processing is required.
  • FIG. 14 is a schematic diagram 2 of the demodulation reference signal sharing according to the present invention. As shown in FIG. 14, the CSI occupied by the last two OFDM symbols occupies a larger bandwidth than the PUSCH data. At this time, the terminal device knocks out the third OFDM symbol to carry the CSI, so that the CSI and the PUSCH data occupy. The bandwidth is the same.
  • the present embodiment transmits PUCCH format1/1a/1b in the second subframe, and the third, fourth, and fifth OFDM symbols in which the DMRS for demodulating the PUCCH data is located in one slot.
  • the second uplink data is CSI, and the second uplink data is located at the position of the last two OFDM symbols of the second subframe, and is described in detail.
  • FIG. 15 is a schematic diagram 3 of the demodulation reference signal sharing according to the present invention.
  • the DMRS on one slot in the second subframe is used to demodulate PUCCH data and CSI.
  • the time slot is the second time slot of the second subframe.
  • the DMRS for demodulating data of the same terminal device is shared in the same subframe, so that the terminal device quickly feeds back uplink data to the base station.
  • FIG. 16 is a schematic flowchart of Embodiment 2 of an uplink data processing method according to the present invention.
  • the execution entity of this embodiment is a terminal device, and the terminal device can be implemented by software and/or hardware.
  • the method includes:
  • Step 1602 The terminal device receives the first scheduling information that is sent by the base station in the first subframe, where the first scheduling information is used to indicate that the terminal device is carried in the first uplink data on the LK OFDM symbols of the second subframe.
  • the L is smaller than the number of OFDMs included in the second subframe;
  • Step 1602 The terminal device receives scheduling information that is sent by the base station in a third subframe, where the scheduling information is used to indicate that the terminal device carries uplink data on K OFDM symbols of the second subframe.
  • Step 1603 The terminal device sends, to the base station, the first uplink data carried on L-K OFDM symbols of the second subframe and K OFDM symbols in the second subframe.
  • the second uplink data carried on the number
  • the first subframe is a subframe located at at least the first four frame positions of the second subframe
  • the third subframe is a subframe located at a previous frame position of the second subframe, or
  • the third subframe and the second subframe are the same subframe.
  • the DMRS for demodulating the first uplink data in the second subframe occupies M OFDM symbols, M ⁇ 6, and the DMRS for demodulating the uplink data in the second subframe occupies at least one of the M DMRSs, L and M
  • the sum is the number of OFDMs included in the second subframe.
  • the method for processing the uplink data of the terminal device according to the embodiment is mainly that the first terminal device and the second terminal device in the foregoing embodiment are the same terminal device.
  • the first terminal device and the second terminal device in the foregoing embodiment are the same terminal device.
  • the uplink physical shared channel is a PUSCH channel
  • the terminal device determines whether the bandwidth occupied by the uplink data carried on the K OFDM symbols is greater than the bandwidth occupied by the PUSCH data carried on the LK OFDM symbols; if yes, in the LK
  • the PUSCH data carried by the J OFDM symbols is removed from the OFDM symbol, and the second uplink data is carried on the J OFDM symbols, so that the bandwidth occupied by the second uplink data carried on the K OFDM symbols is equal to LK OFDM symbols.
  • the terminal device sends, to the base station, PUSCH data carried on the LKJ OFDM symbols of the second subframe, part of the second uplink data carried on the K OFDM symbols of the second subframe, and in the second subframe. Part of the second uplink data carried on the J OFDM symbols.
  • the terminal device receives the first scheduling information that is sent by the base station in the first subframe, and the terminal device receives the scheduling information that is sent by the base station in the third subframe; the terminal device sends the LK in the second subframe to the base station.
  • the first uplink data carried on the OFDM symbol and the second uplink data carried on the K OFDM symbols of the second subframe enable sharing of the DMRS for demodulating data of the same terminal device in the same subframe.
  • the terminal device quickly feeds back uplink data to the base station.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 17 is a schematic structural diagram of Embodiment 1 of a base station according to an embodiment of the present disclosure.
  • the base station provided in this embodiment includes: a sending module 10 and a receiving module 11.
  • the sending module 10 is configured to send the first scheduling information to the first terminal device in the first subframe, where the first scheduling information is used to indicate that the first terminal device carries the LK OFDM symbols in the second subframe.
  • First uplink data; the L is smaller than the number of OFDMs included in the second subframe, where K ⁇ L/2;
  • the sending module 10 is further configured to send second scheduling information to the second terminal device in the third subframe, where the second scheduling information is used to indicate that the second terminal device is in the second subframe. Carrying second uplink data on the OFDM symbols;
  • the receiving module 11 is configured to receive, by the first terminal device, the first uplink data that is carried on the LK OFDM symbols of the second subframe, and the second terminal device that is sent by the second terminal device The second uplink data carried on K OFDM symbols of a subframe;
  • the first subframe is a subframe located at at least the first four frame positions of the second subframe
  • the third subframe is a subframe located at a previous frame position of the second subframe, or
  • the third subframe and the second subframe are the same subframe.
  • the foregoing sending module 10 may correspond to a transmitter or a transmitting antenna of the base station, and the receiving module 11 may correspond to a receiver or a receiving antenna of the base station.
  • the sending module 10 and the receiving module 11 may be integrated in a transceiver of the base station or In the transceiver.
  • the base station provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of Embodiment 2 of a base station according to an embodiment of the present invention. As shown in FIG. 18, the base station further includes a processing module 12 on the basis of the foregoing embodiment.
  • the processing module 12 is configured to receive, by the receiving module, the first uplink data that is sent by the first terminal device and is sent by the second terminal device on the LK OFDM symbols of the second subframe. After the second uplink data carried on the K symbols of the second subframe, according to the demodulation reference signal DMRS on the second subframe, the first uplink data and the second Demodulating the uplink data to obtain the first uplink data and the second uplink data;
  • the DMRS used to demodulate the first uplink data in the second subframe occupies M OFDM symbols, where M ⁇ 6, and the second subframe is used to demodulate the second uplink data. Sharing, by the DMRS, at least one of the M OFDM symbols with a DMRS for demodulating the first uplink data One, the sum of the L and the M is the number of OFDMs included in the second subframe.
  • the DMRS used to demodulate the second uplink data in the second subframe is used to demodulate the first DMRS frequency division multiplexing, time division multiplexing or code division multiplexing of uplink data.
  • the DMRS in the second subframe is used to demodulate the first uplink data and the second uplink data.
  • the first uplink data is uplink physical shared channel PUSCH data
  • the DMRS used for demodulating the PUSCH data in the second subframe occupies 2 OFDM symbols
  • the DMRS for demodulating the second uplink data on the second subframe shares the 2 OFDM symbols with a DMRS for demodulating the PUSCH data, and the second subframe is used for demodulation
  • the DMRS of the second uplink data and the DMRS frequency division multiplexing, code division multiplexing or time division multiplexing for demodulating the PUSCH data.
  • the first uplink data is uplink physical shared channel PUSCH data
  • the DMRS used for demodulating the PUSCH data in the second subframe occupies 2 OFDM symbols
  • a DMRS for demodulating the second uplink data on the second subframe shares one of the two OFDM symbols with a DMRS for demodulating the PUSCH data, where the second subframe is used for Demodulating the DMRS of the second uplink data with DMRS frequency division multiplexing or code division multiplexing for demodulating the PUSCH data.
  • the first uplink data is uplink physical control channel PUCCH data
  • the DMRS for demodulating the second uplink data and the DMRS sharing unit for demodulating the PUCCH data in the second subframe Decoding a DMRS of the PUCCH data on a time slot on the second subframe
  • the DMRS for demodulating the second uplink data on the second subframe is multiplexed with the DMRS code for demodulating the PUCCH data.
  • the K OFDM symbols are further used to carry the PUCCH data, and the second uplink data is code-multiplexed with the PUCCH data.
  • the first uplink data is uplink physical shared channel PUSCH data
  • the second uplink data carried on the K OFDM symbols occupies less than or equal to PUSCH data carried on the LK OFDM symbols.
  • the first uplink data is uplink physical shared channel PUSCH data, where the The DMRS on the two slots on the two subframes is used to demodulate the PUSCH data and the second uplink data.
  • the first uplink data is uplink physical control channel PUCCH data
  • the DMRS on one time slot of the second subframe is used to demodulate the PUCCH data and the second uplink data.
  • the third subframe is a subframe located at a previous frame position of the second subframe, where the K OFDM symbols are located at a starting position of the second subframe;
  • the third subframe and the second subframe are the same frame subframe, and the K OFDM symbols are located at the end of the second subframe.
  • the second uplink data includes at least one of the following data:
  • Channel state information CSI Uplink ACK/NCK, uplink traffic data.
  • the base station provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 19 is a schematic structural diagram of Embodiment 1 of a terminal device according to an embodiment of the present disclosure.
  • the terminal device provided in this embodiment includes: a receiving module 20 and a sending module 21.
  • the receiving module 20 is configured to receive first scheduling information that is sent by the base station in the first subframe, where the first scheduling information is used to indicate that the terminal device is carried in the first uplink on LK OFDM symbols of the second subframe. Data; the L is smaller than the number of OFDMs included in the second subframe;
  • the receiving module 20 is further configured to receive scheduling information that is sent by the base station in a third subframe, where the scheduling information is used to indicate that the terminal device carries the number of K OFDM symbols in the second subframe.
  • the sending module 21 is configured to send, to the base station, the first uplink data that is carried on the LK OFDM symbols of the second subframe, and the that is carried on the K OFDM symbols of the second subframe. Describe the second uplink data;
  • the first subframe is a subframe located at at least the first four frame positions of the second subframe
  • the third subframe is a subframe located at a previous frame position of the second subframe, or
  • the third subframe and the second subframe are the same subframe.
  • the foregoing sending module 21 may correspond to a transmitter or a transmitting antenna of the terminal device, and the receiving module 20 may correspond to a receiver or a receiving antenna of the terminal device.
  • the sending module 21 and the receiving module 20 may be integrated in the terminal device.
  • the transceiver or transceiver In the transceiver or transceiver.
  • the terminal device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • the DMRS used to demodulate the first uplink data in the second subframe occupies M OFDM symbols, where M ⁇ 6, and the second subframe is used.
  • the DMRS demodulating the second uplink data occupies at least one of the M DMRSs, and the sum of the L and the M is the number of OFDMs included in the second subframe.
  • FIG. 20 is a schematic structural diagram of Embodiment 2 of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 20, the terminal device provided in this embodiment further includes: a processing module 22, based on the foregoing embodiment.
  • the processing module 22 is configured to: the first uplink data is an uplink physical shared channel PUSCH data, and the sending module sends, to the base station, the first carried on the LK OFDM symbols of the second subframe Determining, by an uplink data, and uplink data carried on the K OFDM symbols of the second subframe, whether the bandwidth occupied by the uplink data carried on the K OFDM symbols is greater than that carried on the LK OFDM symbols The bandwidth occupied by the PUSCH data;
  • the PUSCH data carried by the J OFDM symbols is removed from the LK OFDM symbols, and the second uplink data is carried on the J OFDM symbols, so that the K OFDM symbols are used.
  • the bandwidth occupied by the second uplink data carried on the uplink is equal to the bandwidth occupied by the PUSCH data carried on the LK OFDM symbols;
  • the sending module is specifically configured to send, to the base station, the PUSCH data carried on the LKJ OFDM symbols of the second subframe, and the part carried on the K OFDM symbols of the second subframe The second uplink data and a portion of the second uplink data carried on the J OFDM symbols of the second subframe.
  • the uplink data includes at least one of the following data:
  • Channel state information CSI Uplink ACK/NCK, uplink traffic data.
  • the terminal device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 21 is a schematic structural diagram of Embodiment 3 of a base station according to an embodiment of the present invention.
  • the base station provided in this embodiment includes: a transceiver 30 and a processor 31.
  • a separate transmitter and a separate receiver may be included in the transceiver 30, or the transmitter and receiver may be integrated.
  • the transceiver 30 can work under the instruction of the corresponding processing chip, and can also work in real time according to its own function.
  • the transceiver 30 may correspond to a transceiver or a transceiver antenna in a base station.
  • the transceiver 30 is configured to send the first scheduling information to the first terminal device in the first subframe, where the first scheduling information is used to indicate that the first terminal device carries the LK OFDM symbols in the second subframe.
  • First uplink data; the L is smaller than the number of OFDMs included in the second subframe, where K ⁇ L/2;
  • the transceiver 30 is further configured to send second scheduling information to the second terminal device on the third subframe, where the second scheduling information is used to indicate that the second terminal device is K OFDM in the second subframe. Carrying the second uplink data on the symbol;
  • the transceiver 30 is further configured to receive, by the first terminal device, the first uplink data that is carried on the LK OFDM symbols of the second subframe, and the second terminal device sends the The second uplink data carried on the K OFDM symbols of the two subframes;
  • the first subframe is a subframe located at at least the first four frame positions of the second subframe
  • the third subframe is a subframe located at a previous frame position of the second subframe, or
  • the third subframe and the second subframe are the same subframe.
  • the processor 31 is configured to receive, by the receiving module, the first uplink data that is sent by the first terminal device and is sent by the second terminal device on the LK OFDM symbols of the second subframe. After the second uplink data carried on the K symbols of the second subframe, the first uplink data and the second uplink data are used according to the demodulation reference signal DMRS on the second subframe. Performing demodulation to obtain the first uplink data and the second uplink data;
  • the DMRS used to demodulate the first uplink data in the second subframe occupies M OFDM symbols, where M ⁇ 6, and the second subframe is used to demodulate the second uplink data.
  • the DMRS shares at least one of the M OFDM symbols with a DMRS for demodulating the first uplink data, and the sum of the L and the M is the number of OFDMs included in the second subframe.
  • the DMRS used to demodulate the second uplink data in the second subframe is used to demodulate the first DMRS frequency division multiplexing, time division multiplexing or code division multiplexing of uplink data.
  • the specific multiplexing mode refer to the foregoing embodiment, and details are not described herein again.
  • the DMRS in the second subframe is used to demodulate the first uplink data and the second uplink data.
  • the specific multiplexing mode refer to the foregoing embodiment, and details are not described herein again.
  • the base station provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 22 is a schematic structural diagram of Embodiment 3 of a terminal device according to an embodiment of the present disclosure.
  • the terminal device provided in this embodiment includes: a transceiver 40 and a processor 41.
  • a separate transmitter and a separate receiver may be included in the transceiver 40, or the transmitter and receiver may be integrated.
  • the transceiver 40 can operate under the instruction of the corresponding processing chip, and can also work in real time according to its own function. Alternatively, the transceiver 40 can correspond to a transceiver or a transceiver antenna in the base station.
  • the transceiver 40 is configured to receive first scheduling information that is sent by the base station in the first subframe, where the first scheduling information is used to indicate that the terminal device is carried in the first uplink on the LK OFDM symbols of the second subframe. Data; the L is smaller than the number of OFDMs included in the second subframe;
  • the transceiver 40 is further configured to receive scheduling information that is sent by the base station in a third subframe, where the scheduling information is used to indicate that the terminal device carries a second uplink on the K OFDM symbols of the second subframe. data;
  • the transceiver 40 is further configured to send, to the base station, the first uplink data carried on LK OFDM symbols of the second subframe and the K OFDM symbols carried in the second subframe.
  • the first subframe is a subframe located at at least the first four frame positions of the second subframe
  • the third subframe is a subframe located at a previous frame position of the second subframe, or
  • the third subframe and the second subframe are the same subframe.
  • the DMRS used to demodulate the first uplink data in the second subframe occupies M OFDM symbols, where M ⁇ 6, and the second subframe is used.
  • the DMRS demodulating the second uplink data occupies at least one of the M DMRSs, and the sum of the L and the M is the number of OFDMs included in the second subframe.
  • the processor 41 is configured to: the first uplink data is an uplink physical shared channel (PUSCH) data, and the sending module sends, to the base station, the first uplink that is carried on the LK OFDM symbols of the second subframe. Determining, by the data, and the uplink data carried on the K OFDM symbols of the second subframe, whether the bandwidth occupied by the uplink data carried on the K OFDM symbols is greater than the bandwidth carried on the LK OFDM symbols The bandwidth occupied by PUSCH data;
  • PUSCH physical shared channel
  • the PUSCH data carried by the J OFDM symbols is removed from the L-K OFDM symbols, and the second uplink data is carried on the J OFDM symbols to And a bandwidth occupied by the second uplink data carried on the K OFDM symbols is equal to a bandwidth occupied by the PUSCH data carried on the L-K OFDM symbols;
  • the sending module is specifically configured to send, to the base station, the PUSCH data carried on the LKJ OFDM symbols of the second subframe, and the part carried on the K OFDM symbols of the second subframe The second uplink data and a portion of the second uplink data carried on the J OFDM symbols of the second subframe.
  • the uplink data includes at least one of the following data:
  • Channel state information CSI Uplink ACK/NCK, uplink traffic data.
  • the terminal device provided by the embodiment of the present invention may perform the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a A computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the base station embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the units described as the separate components may or may not be physically separated, and the components displayed as the units may or may not be physical units, that is, may be located in one place. Or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the described systems, devices, and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, base station or unit, and may be in electronic, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种上行数据的处理方法和设备。该方法包括:基站在第一子帧上向第一终端设备发送第一调度信息,以指示第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据,在第三子帧上向第二终端设备发送第二调度信息,以指示第二终端设备在第二子帧的K个OFDM符号上承载第二上行数据;基站接收第一终端设备在第二子帧上发送的第一上行数据、第二终端设备在第二子帧上发送的第二上行数据。本实施例实现了终端设备向基站快速反馈上行数据。

Description

上行数据的处理方法和设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种上行数据的处理方法和设备。
背景技术
长期演进(Long Term Evolution,简称LTE)系统中,基站为了减小业务延迟、保证当前时刻获取的上行数据的准确性等,基站需要快速获取终端设备反馈的上行数据。然而,由于现有通信协议的限制,终端设备无法快速反馈上行数据。下面以MIMO多输入多输出(Multiple Input and Multiple Output,简称MIMO)通信系统为例,来说明终端设备无法及时向基站反馈信道状态信息(Channel State Information,简称CSI)。
在现有技术中,针对MIMO通信系统,如果基站可以获得全部或者部分信道状态信息(Channel State Information,简称CSI),基站就可以采用预编码技术来提高信号传输质量或者速率。因此,基站向终端设备发送信道状态信息参考信号(Channel State Information Reference Signal,简称CSI-RS),终端设备(User Equipmen,简称终端设备)需要测量该CSI-RS,并向基站反馈CSI。具体地,基站可以向终端设备配置两种CSI反馈方式,一种为周期性的反馈,即基站向终端设备配置CSI的反馈周期,终端设备按照配置的周期反馈CSI;另一种为触发性的反馈,即基站在第一子帧通过下行物理控制信道(Physical Downlink Control Channel,简称PDCCH)通知终端设备进行CSI-RS测量,终端设备在第二子帧反馈CSI,其中,第一子帧位于第二子帧前k帧的位置,其中k≥4,且k的取值与帧结构类型有关。然而,现有通信协议规定的CSI的周期性反馈方式和触发式反馈方式限制了CSI的反馈时间,使得终端设备无法快速向基站反馈CSI信息。
因此,目前亟需一种终端设备能够快速反馈上行数据的方法。
发明内容
本发明实施例提供一种上行数据的处理方法和设备,用以使终端设备能够向基站快速反馈上行数据。
第一方面,本发明实施例提供一种上行数据的处理方法,该方法从基站的角度进行描述。该方法包括:基站在第一子帧上向第一终端设备发送第一调度信息,以指示第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据;L小于第二子帧所包含的OFDM个数,K≤L/2;当基站需要第二终端设备快速反馈第二上行数据时,基站在第三子帧上向第二终端设备发送第二调度信息,以指示第二终端设备在第二子帧的K个OFDM符号上承载第二上行数据。此外,在基站发给各终端设备的调度信息中,还可携带K个OFDM符号的位置信息和上行数据的调制编码方式。然后,基站接收第一终端设备发送的在第二子帧的L-K个OFDM符号上承载的第一上行数据、第二终端设备发送的在第二子帧的K个OFDM符号上承载的第二上行数据。由于第一子帧是位于第二子帧的至少前4帧位置的子帧,第三子帧是位于第二子帧的前一帧位置的子帧,或者第三子帧与第二子帧为同一子帧,第二终端设备在当前子帧收到基站发送的第二调度信息后,第二终端设备在当前子帧或者下一子帧向基站反馈第二上行数据,实现了终端设备快速向基站反馈上行数据。
在一个可能的设计中,所述基站接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个符号上承载的所述第二上行数据之后,还包括:
所述基站根据所述第二子帧上的解调参考信号DMRS,对所述第一上行数据以及所述第二上行数据进行解调,获取所述第一上行数据以及所述第二上行数据;其中,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS共享所述M个OFDM符号中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
在一个可能的设计中,所述第一终端设备与所述第二终端设备为不同终端设备时,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS频分复用、时分复用或者码分复用。
本实施例实现了在同一子帧上,对用于解调不同终端设备的上行数据的 DMRS进行频分复用、码分复用以及时分复用,实现了不同终端设备的上行数据可以在同一子帧上传输,从而实现了终端设备快速向基站反馈上行数据。
在一个可能的设计中,所述第一终端设备与所述第二终端设备为相同终端设备时,所述第二子帧上的DMRS用于解调所述第一上行数据和所述第二上行数据。
本实施例实现了在同一子帧上,对用于解调相同终端设备的数据的DMRS进行共用,实现了终端设备快速向基站反馈上行数据。
在一个可能的设计中,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上用于解调所述PUSCH数据的DMRS占用2个OFDM符号;
所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS共享所述2个OFDM符号,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS频分复用、码分复用或者时分复用。
在一个可能的设计中,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上用于解调所述PUSCH数据的DMRS占用2个OFDM符号;
所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS共享所述2个OFDM符号中的一个,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS频分复用或者码分复用。
在一个可能的设计中,所述第一上行数据为上行物理控制信道PUCCH数据,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUCCH数据的DMRS共享所述第二子帧上的一个时隙上用于解调所述PUCCH数据的DMRS;
所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUCCH数据的DMRS码分复用。
在一个可能的设计中,所述K个OFDM符号上还用于承载所述PUCCH数据,所述第二上行数据与所述PUCCH数据码分复用。
在一个可能的设计中,所述第一上行数据为上行物理共享信道PUSCH 数据,所述K个OFDM符号上所承载的第二上行数据所占的带宽小于或等于所述L-K个OFDM符号上承载的PUSCH数据所占的带宽。
在一个可能的设计中,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上两个时隙上的DMRS用于解调所述PUSCH数据和所述第二上行数据。
在一个可能的设计中,所述第一上行数据为上行物理控制信道PUCCH数据,所述第二子帧上一个时隙上的DMRS用于解调所述PUCCH数据和所述第二上行数据。
在一个可能的设计中,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,所述K个OFDM符号位于所述第二子帧的起始位置;或者
所述第三子帧与所述第二子帧为同一帧子帧,所述K个OFDM符号位于所述第二子帧的末尾位置。
在一个可能的设计中,所述第二上行数据包括如下中的至少一种数据:
信道状态信息CSI、上行ACK/NCK、上行业务数据。
第二方面,本发明实施例提供一种上行数据的处理方法。该方法从终端设备的角度出发。具体地,本实施例的终端设备对应上述实施例中的第一终端设备与第二终端设备为同一终端设备的实施例。该方法包括:终端设备接收基站在第一子帧上发送的第一调度信息,第一调度信息用于指示终端设备在第二子帧的L-K个OFDM符号上承载在第一上行数据;L小于第二子帧所包含的OFDM个数;终端设备接收基站在第三子帧上发送的调度信息,调度信息用于指示终端设备在第二子帧的K个OFDM符号上承载第二上行数据;终端设备向基站发送、在第二子帧的L-K个OFDM符号上承载的第一上行数据以及在第二子帧的K个OFDM符号上承载的第二上行数据;其中,第一子帧是位于第二子帧的至少前4帧位置的子帧,第三子帧是位于第二子帧的前一帧位置的子帧,或者第三子帧与第二子帧为同一子帧。
在一个可能的设计中,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS占用所述M个DMRS中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
在一个可能的设计中,所述第一上行数据为上行物理共享信道PUSCH 数据,所述终端设备向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的上行数据之前,还包括:
所述终端设备判断所述K个OFDM符号上承载的上行数据所占的带宽是否大于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
若是,则在所述L-K个OFDM符号中打掉J个OFDM符号所承载的所述PUSCH数据,在所述J个OFDM符号上承载部分所述第二上行数据,以使所述K个OFDM符号上承载的第二上行数据所占的带宽等于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
所述终端设备向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的上行数据,包括:
所述终端设备向所述基站发送、在所述第二子帧的L-K-J个OFDM符号上承载的所述PUSCH数据、在所述第二子帧的K个OFDM符号上承载的部分所述第二上行数据以及在所述第二子帧的J个OFDM符号上承载的部分所述第二上行数据。
在一个可能的设计中,所述上行数据包括如下中的至少一种数据:
信道状态信息CSI、上行ACK/NCK、上行业务数据。
第三方面,本发明实施例提供一种基站,该基站具有实现上述方法设计中基站行为的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该基站具体结构可包括:发送模块和接收模块。其中,发送模块,用于在第一子帧上向第一终端设备发送第一调度信息,所述第一调度信息用于指示所述第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据;所述L小于所述第二子帧所包含的OFDM个数,所述K≤L/2;所述发送模块,还用于在第三子帧上向第二终端设备发送第二调度信息,所述第二调度信息用于指示所述第二终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;接收模块,用于接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个OFDM符号上承载的所述第二上 行数据;其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
在一个可能的设计中,该基站还包括处理模块,所述处理模块用于在所述接收模块接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个符号上承载的所述第二上行数据之后,根据所述第二子帧上的解调参考信号DMRS,对所述第一上行数据以及所述第二上行数据进行解调,获取所述第一上行数据以及所述第二上行数据;
其中,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS共享所述M个OFDM符号中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
第四方面,本发明实施例提供一种终端设备,该终端设备具有实现上述方法设计中终端设备行为的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,该终端设备具体结构可包括:接收模块和发送模块。其中,接收模块,用于接收基站在第一子帧上发送的第一调度信息,所述第一调度信息用于指示所述终端设备在第二子帧的L-K个OFDM符号上承载在第一上行数据;所述L小于所述第二子帧所包含的OFDM个数;所述接收模块,还用于接收所述基站在第三子帧上发送的调度信息,所述调度信息用于指示所述终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;发送模块,用于向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的所述第二上行数据;其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
在一个可能的设计中,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第 二上行数据的DMRS占用所述M个DMRS中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
在一个可能的设计中,该终端设备还包括:处理模块,所述处理模块用于在所述第一上行数据为上行物理共享信道PUSCH数据,所述发送模块向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的上行数据之前,判断所述K个OFDM符号上承载的上行数据所占的带宽是否大于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;若是,则在所述L-K个OFDM符号中打掉J个OFDM符号所承载的所述PUSCH数据,在所述J个OFDM符号上承载部分所述第二上行数据,以使所述K个OFDM符号上承载的第二上行数据所占的带宽等于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;所述发送模块具体用于,向所述基站发送、在所述第二子帧的L-K-J个OFDM符号上承载的所述PUSCH数据、在所述第二子帧的K个OFDM符号上承载的部分所述第二上行数据以及在所述第二子帧的J个OFDM符号上承载的部分所述第二上行数据。
第五方面,本发明实施例提供一种计算机存储介质,用于存储为上述基站所用的计算机软件指令,并包含用于执行上述方面所设计的程序。
第六方面,本发明实施例提供一种计算机存储介质,用于存储为上述终端设备所用的计算机软件指令,并包含用于执行上述方面所设计的程序。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的上行数据的处理方法的实施例一的流程图;
图2为本发明子帧时序示意图一;
图3为本发明子帧时序示意图二;
图4为本发明子帧时序示意图三;
图5为本发明解调参考信号复用示意图一;
图6为本发明解调参考信号复用示意图二;
图7为本发明解调参考信号复用示意图三;
图8为本发明解调参考信号复用示意图四;
图9为本发明解调参考信号复用示意图五;
图10为本发明解调参考信号复用示意图六;
图11为本发明解调参考信号复用示意图七;
图12为本发明解调参考信号复用示意图八;
图13为本发明解调参考信号共用示意图一;
图14为本发明解调参考信号共用示意图二;
图15为本发明解调参考信号共用示意图三;
图16为本发明提供的上行数据处理方法实施例二的流程示意图;
图17为本发明实施例提供的基站实施例一的结构示意图;
图18为本发明实施例提供的基站实施例二的结构示意图;
图19为本发明实施例提供的终端设备实施例一的结构示意图;
图20为本发明实施例提供的终端设备实施例二的结构示意图;
图21为本发明实施例提供的基站实施例三的结构示意图;
图22为本发明实施例提供的终端设备实施例三的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例提供的上行数据的处理方法,可以应用到长期演进(Long  Term Evolution,简称LTE)系统中,主要涉及终端设备向基站发送上行数据的过程。具体地,基站向终端设备发送调度信息,该调度信息用于指示终端设备需要发送的上行数据,以及发送该上行数据所需要的时频资源位置,然后终端设备在对应的时频资源位置发送该上行数据。该上行数据例如可以是信道状态信息(Channel State Information,简称CSI)、上行ACK/NCK或者其它上行业务等,其中信道状态信息包括信道质量索引(Channel Quality Index,简称CQI)、预编码矩阵索引(Precoding Matrix Index,简称PMI)和信道的秩的索引(rank index,简称RI)等信息中的至少一个或其组合。在本实施例中,为了保证终端设备能够快速向基站发送上行数据,使得基站快速获取所需的上行数据,本实施例中,对在时频资源上传输上行数据的方法进行了改进,使得一个子帧存在两份时频资源,该两份时频资源用于承载不同时刻被基站调度的终端设备向基站发送的上行数据。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程在某些实施例中不再赘述。
图1为本发明提供的上行数据的处理方法的实施例一的流程图,如图1所示,本实施例的执行主体为基站,该基站可以通过软件和/或硬件实现。该方法包括:
步骤101、基站在第一子帧上向第一终端设备发送第一调度信息,所述第一调度信息用于指示所述第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据;
其中,所述L小于所述第二子帧所包含的OFDM个数,所述K≤L/2;
步骤102、所述基站在第三子帧上向第二终端设备发送第二调度信息,所述第二调度信息用于指示所述第二终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
步骤103、所述基站接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个OFDM符号上承载的第二上行数据;
其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与 所述第二子帧为同一子帧。
在本实施例中,基站在不同时刻调度第一终端设备和第二终端设备。具体地,基站在第一子帧上向第一终端设备发送第一调度信息,以指示第一终端设备在第二子帧的L-K个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号上承载第一上行数据。可选地,本实施例中的第一上行数据具体可以为上行物理控制信道(Physical Uplink Control Channel,简称PUCCH)数据或者上行物理共享信道(Physical Uplink Shared Channel,简称PUSCH)数据。其中,L为第二子帧上可以用于传输数据的OFDM符号的个数,L小于第二子帧所包含的OFDM符号的个数。在此种情况下,相当于第一终端设备需要预留出K个OFDM符号。本领域技术人员可以理解,在本实施例中所涉及的PUCCH数据是指PUCCH携带的是数据,PUSCH数据是指PUSCH携带的数据。
基站在第三子帧上向第二终端设备发送第二调度信息,以指示第二终端设备在第一终端设备预留的K个OFDM符号上承载第二上行数据。具体地,当该第二上行数据为CSI时,第二调度信息还用于指示第二终端设备测量CSI-RS,第二终端设备在测量CSI-RS之后,在K个OFDM符号上承载CSI。在本实施例中,第三子帧是位于第一子帧之后的子帧。优选地,为了便于调度和传输数据,本实施例中的K个OFDM符号位于第二子帧的起始位置,或者位于第二子帧的末尾位置。第一上行数据和第二上行数据在传输过程中,时分复用。
最终,基站接收第一终端设备发送的在第二子帧的L-K个OFDM符号上承载的第一上行数据、第二终端设备发送的在第二子帧的K个OFDM符号上承载的第二上行数据。在本实施例中,第一子帧是位于第二子帧的至少前4帧位置的子帧,第三子帧是位于第二子帧的前一帧位置的子帧,或者,第三子帧与第二子帧为同一子帧。
在具体实现过程中,在FDD-LTE通信系统中,第一子帧是位于第二子帧的前4帧位置的子帧,在TDD-LTE通信系统中,第一子帧是位于第二子帧的前4帧位置的子帧,或者是位于第二子帧的前4帧及以上位置的子帧。
下面以FDD-LTE通信系统为例,对各子帧的时序关系进行详细说明。对于TDD-LTE,其实现过程类似,本实施例此处不再赘述。在具体实现过程中, 结合图2至图4,对子帧时序的几种可行的实现方式进行详细说明。
图2为本发明子帧时序示意图一。图2示出了一种可行的实现方式,如图2所示,第一子帧是位于第二子帧前4帧位置的子帧,第三子帧与第二子帧为同一子帧。K个OFDM符号位于第二子帧的起始位置。
图3为本发明子帧时序示意图二。图3示出了另一种可行的实现方式,如图3所示,第一子帧是位于第二子帧前4帧位置的子帧,第三子帧是位于第二子帧前一帧位置的子帧。K个OFDM符号位于第二子帧的末尾位置。
在上述两种可行的实现方式中,基站在第一子帧上向第一终端设备发送第一调度信息D1,用于指示第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据。基站在第三子帧上向第二终端设备发送第二调度信息D2,用于指示第二终端设备在第二子帧的K个OFDM符号上承载第二上行数据。第一终端设备将在第二子帧的L-K个OFDM符号上承载的第一上行数据U1发送给基站,第二终端设备将在第二子帧的K个OFDM符号上承载的第二上行数据U2发送给基站。
图4为本发明子帧时序示意图三。图4示出了又一种可行的实现方式。在本实施方式中,基站调度两个第一终端设备,使得第一终端设备A预留出KA个OFDM符号,第二终端设备预留出KB个OFDM符号。其中,KA个OFDM符号位于第一子帧A的末尾位置,KB个OFDM符号位于第一子帧B的起始位置。
在具体实现过程中,基站在第一子帧A上向第一终端设备A发送第一调度信息D1A,用于指示第一终端设备A在第二子帧A的L-KA个OFDM符号上承载第一上行数据。基站在第一子帧B上向第一终端设备B发送第一调度信息D1B,用于指示第一终端设备B在第二子帧B的L-KB个OFDM符号上承载第一上行数据。基站在第三子帧上向第二终端设备发送第二调度信息D2,用于指示第二终端设备在第二子帧A的KA个OFDM符号上承载第二上行数据U1A,在第二子帧B的KB个OFDM符号上承载第二上行数据U1B。第一终端设备A将在第二子帧的L-KA个OFDM符号上承载的第一上行数据U1A发送给基站,第一终端设备B将在第二子帧的L-KB个OFDM符号上承载的第一上行数据U1B发送给基站,第二终端设备将在第二子帧的KA个OFDM符号上承载的第二上行数据U2A发送给基站,将在第二子帧的KB个 OFDM符号上承载的第二上行数据U1B发送给基站。
在本发明实施例中,基站在需要快速获取终端设备反馈的上行数据时,基站在第三子帧上向第二终端设备发送第二调度信息,以指示第二终端设备在第二子帧的K个OFDM符号上承载第二上行数据,由于第三子帧是位于第二子帧前一帧位置的子帧,或者第三子帧与第二子帧为同一子帧,即基站在调度第二终端设备后,第二终端设备可以快速向基站反馈调度数据。例如,针对CSI,现有技术中,终端设备在收到基站发送的调度信息后,需要经过至少3个子帧,才向基站反馈上行数据,而本实施例提供的方法,第二终端设备在当前子帧收到基站发送的第二调度信息后,在当前子帧或者下一子帧向基站反馈第二上行数据,实现了终端设备快速向基站反馈上行数据。
在基站接收到第一上行数据和第二上行数据之后,基站根据第二子帧上的解调参考信号DMRS,对第一上行数据以及第二上行数据进行解调,获取第一上行数据以及第二上行数据。由图2至图4可知,第一终端设备在向基站发送第一上行数据的同时,还通过第二子帧向基站发送解调参考信号(DeModulation Reference Signal,简称DMRS)。
在本实施例中,第二子帧上用于解调第一上行数据的DMRS占用M个OFDM符号,M≤6,第二子帧上用于解调第二上行数据的DMRS使用该M个DMRS中的至少一个,该L与该M之和为第二子帧所包含的OFDM个数。
例如,当第一上行数据为PUSCH数据时,第二子帧上用于解调PUSCH数据的DMRS占用2个OFDM符号,当第一上行数据为PUCCH数据时,第二子帧上用于解调PUSCH的DMRS占用4个OFDM符号,或者占用6个OFDM符号。可选地,本实施例中的用于解调PUSCH数据或PUCCH数据的DMRS可以采用现有技术中的DMRS,即本实施例对现有技术中的DMRS的个数以及DMRS的位置不做改变。本领域技术人员可以理解,本实施例中也可以对解调PUSCH数据或PUCCH数据的DMRS的数量和位置做出改变。在本实施例中,对于解调PUSCH数据或PUCCH数据的DMRS的具体实现方式,本实施例此处不做特别限制。
特别地,第二子帧上用于解调第二上行数据的DMRS与用于解调所述第一上行数据的DMRS共享该M个OFDM符号中的至少一个。当第一终端设备和第二终端设备为不同终端设备时,用于解调第二上行数据的DMRS与用 于解调第一上行数据的DMRS通过时分复用、码分复用以及频分复用的方式共享M个OFDM符号中的至少一个。当第一终端设备和第二终端设备为同一终端设备时,用于解调第二上行数据的DMRS与用于解调第一上行数据的DMRS共用M个OFDM符号。下面采用详细的实施例,针对不同的情况,进行详细说明。
第一种情况,第一终端设备与第二终端设备为不同终端设备时,第二子帧上用于解调第二上行数据的DMRS与用于解调第一上行数据的DMRS频分复用、时分复用或者码分复用。
具体地,第一上行数据为PUSCH数据或第一上行数据为PUCCH数据,复用的实现方式略有不同。
当第一上行数据为PUSCH数据时,本实施例以第二子帧上的DMRS为两个,分别位于第二子帧的第4个OFDM符号和第11个OFDM符号的位置,第二上行数据为CSI,第二上行数据位于第二子帧的最后两个OFDM符号的位置为例,分为以下可行的实现方式。
一种可行的实现方式,第二子帧上用于解调第二上行数据的DMRS与用于解调PUSCH数据的DMRS共享2个OFDM符号,即二者共享第4个OFDM符号和第11个OFDM符号,具体如图5至图7所示。
图5为本发明解调参考信号复用示意图一。如图5所示,第二子帧上用于解调CSI的DMRS与用于解调PUSCH数据的DMRS通过码分复用的方式共享2个OFDM符号。可选地,可采用正交码分的方式复用。例如,对于PUSCH数据,其两个解调参考信号可以分别用正交码[C1 C2]=[1 1],而对于解调CSI的DMRS来说,其正交码为[C1 C2]=[1 -1]。
图6为本发明解调参考信号复用示意图二。如图6所示,第二子帧上用于解调CSI的DMRS(CSI DMRS)与用于解调PUSCH数据的DMRS(PUSCH DMRS)采用频分复用的方式共享2个OFDM符号。
图7为本发明解调参考信号复用示意图三。如图7所示,第二子帧上用于解调CSI的DMRS(CSI DMRS)与用于解调PUSCH数据的DMRS(PUSCH DMRS)采用时分复用的方式共享2个OFDM符号。即PUSCH DMRS占用第4个OFDM符号,CSI DMRS占用第11个OFDM符号。
另一种可行的实现方式,第二子帧上用于解调第二上行数据的DMRS与 用于解调PUSH数据的DMRS共享2个OFDM符号中的一个,即二者共享第4个OFDM符号或第11个OFDM符号中的一个,具体如图8至图10所示。
图8为本发明解调参考信号复用示意图四。如图8所示,在本实施例中,不要求用于解调CSI的DMRS(CSI DMRS)占用两个OFDM符号。即使用于解调CSI的DMRS只与用于解调PUSCH数据的两个DMRS(PUSCH DMRS)其中一个DMRS频分复用,也能区分出CSI DMRS和PUSCH DMRS。
图9为本发明解调参考信号复用示意图五。如图9所示,在本实施例中,用于解调CSI的DMRS(CSI DMRS)与用于解调PUSCH数据的DMRS(PUSCH DMRS)采用非正交的序列。例如,CSI DMRS占用第11个OFDM符号,采用序列为S2,而PUSCH DMRS在第11个OFDM符号上采用序列S1。S1和S2不一定正交,但是相关性较小。
具体地,在占用第4个OFDM符号的DMRS上估计出第一终端设备的信道H1,重构出占用第11个OFDM符号的DMRS上第一终端设备的接收信号H1xS1,然后将重构的接收信号从占用第11个OFDM符号的DMRS的接收信号中减去,就会得到第二终端设备的接收信号H2xS2,从而得到第二终端设备的信道估计。
本领域技术人员可以理解,以上的举例是假设CSI和用于解调CSI的DMRS在同一个子帧中传输,而实际上,CSI可以和解调CSI的DMRS在不同的子帧中传输。图10为本发明解调参考信号复用示意图六。如图10所示,CSI在子帧n的后K个OFDM符号上传输,而解调CSI的DMRS在子帧n中占用第11个OFDM符号,在子帧n+1中占用第4个OFDM符号,并且PUSCH DMRS与CIS DMRS频分复用,这样可以保证CSI的信道估计性能。
当第一上行数据为PUCCH数据时,本实施例以第二子帧上传输PUCCH format1/1a/1b,用于解调PUCCH的DMRS位于一个时隙中的第3、4、5个OFDM符号上,第二上行数据为CSI,第二上行数据位于第二子帧的最后两个OFDM符号的位置为例,分为以下可行的实现方式。
一种可行的实现方式,第二子帧上用于解调CSI的DMRS与用于解调PUCCH数据的DMRS共享第二子帧上的一个时隙上用于解调PUCCH数据的DMRS。具体如图11所示,图11为本发明解调参考信号复用示意图七。 如图11所示,在第二子帧上,用于解调PUCCH数据的DMRS占用6个OFDM符号,分别位于每个时隙的第3、4、5个符号上,用于解调CSI的DMRS(CSI DMRS)与用于解调PUCCH数据的DMRS共享第二子帧上的第二个时隙上用于解调PUCCH数据的DMRS(PUCCH DMRS)。在本实施例中,CSI DMRS与PUCCH DMRS码分复用。
可选地,在本实施例中,CSI不仅可以与PUCCH数据不仅可以时分复用,CSI还可以与PUCCH数据码分复用。具体地,图12为本发明解调参考信号复用示意图八。如图12所示,该K个OFDM符号上还用于承载PUCCH数据,CSI与PUCCH数据码分复用。
本实施例实现了在同一子帧上,对用于解调不同终端设备的上行数据的DMRS进行频分复用、码分复用以及时分复用,实现了不同终端设备的上行数据可以在同一子帧上传输,从而实现了终端设备快速向基站反馈上行数据。
第二种情况,第一终端设备与第二终端设备为相同终端设备时,第二子帧上的DMRS用于解调第一上行数据和第二上行数据。
具体地,第一上行数据为PUSCH数据或第一上行数据为PUCCH数据,实现方式略有不同。
当第一上行数据为PUSCH数据时,本实施例以第二子帧上的DMRS为两个,分别位于第二子帧的第4个OFDM符号和第11个OFDM符号的位置,第二上行数据为CSI,第二上行数据位于第二子帧的最后两个OFDM符号的位置为例,进行详细说明。
在具体实现过程中,为了保证单载波特性,CSI所占的物理资源块的起始位置或者终止位置可以和PUSCH相同,这样PUSCH数据和CSI可直接共用DMRS,而不需要进行复用。
本领域技术人员可以理解,第二子帧在频域宽度上包括100个物理资源块(Resource Block,简称:RB),其中,PUSCH数据可以占用第2个至第99个RB,而PUCCH数据仅可以占用第1个至第100个RB。因此,在本实施例中,优选地,CSI所占的物理资源块的起始位置或者终止位置与PUSCH数据相同,且CSI所占的带宽小于或者等于PUSCH数据所占的带宽。这样,二者可以直接共用DMRS,具体可如图13所示。
图13为本发明解调参考信号共用示意图一。如图13所示,CSI与PUSCH 数据所占的物理资源块的终止位置相同,且CSI所占的带宽小于PUSCH数据所占的带宽。此时,第二子帧上两个时隙上的DMRS用于解调PUCCH数据和第二上行数据,即二者直接共用用于解调PUSHC数据的两个DMRS,不需要进行复用处理。
在本实施例中,如果PUSCH数据所占的带宽小于CSI所分配的带宽,那么可以根据需要打掉一个或者若干个OFDM符号用来承载CSI,使得CSI所占的带宽和PUSCH数据相同。图14为本发明解调参考信号共用示意图二。如图14所示,位于最后两个OFDM符号的CSI所占的带宽大于PUSCH数据的带宽,此时,终端设备打掉倒数第3个OFDM符号用来承载CSI,使得CSI与PUSCH数据所占的带宽相同。
当第一上行数据为PUCCH数据时,本实施例以第二子帧上传输PUCCH format1/1a/1b,用于解调PUCCH数据的DMRS位于一个时隙中的第3、4、5个OFDM符号上,第二上行数据为CSI,第二上行数据位于第二子帧的最后两个OFDM符号的位置为例,进行详细说明。
图15为本发明解调参考信号共用示意图三。如图15所示,第二子帧上一个时隙上的DMRS用于解调PUCCH数据和CSI。在本实施例中,该时隙为第二子帧的第二个时隙。
本实施例实现了在同一子帧上,对用于解调相同终端设备的数据的DMRS进行共用,实现了终端设备快速向基站反馈上行数据。
图16为本发明提供的上行数据处理方法实施例二的流程示意图,如图16所示,本实施例的执行主体为终端设备,该终端设备可以通过软件和/或硬件实现。该方法包括:
步骤1601、终端设备接收基站在第一子帧上发送的第一调度信息,所述第一调度信息用于指示所述终端设备在第二子帧的L-K个OFDM符号上承载在第一上行数据;所述L小于所述第二子帧所包含的OFDM个数;
步骤1602、所述终端设备接收所述基站在第三子帧上发送的调度信息,所述调度信息用于指示所述终端设备在所述第二子帧的K个OFDM符号上承载上行数据;
步骤1603、所述终端设备向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符 号上承载的第二上行数据;
其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。第二子帧上用于解调第一上行数据的DMRS占用M个OFDM符号,M≤6,第二子帧上用于解调上行数据的DMRS占用M个DMRS中的至少一个,L与M之和为第二子帧所包含的OFDM个数。
本实施例所涉及的终端设备的上行数据处理方法,主要是针对上述实施例中的第一终端设备与第二终端设备为同一终端设备。具体的实现方式,可参见上述实施例,本实施例此处不再赘述。
进一步地,在上行物理共享信道为PUSCH信道,终端设备判断K个OFDM符号上承载的上行数据所占的带宽是否大于L-K个OFDM符号上承载的PUSCH数据所占的带宽;若是,则在L-K个OFDM符号中打掉J个OFDM符号所承载的PUSCH数据,在J个OFDM符号上承载部分第二上行数据,以使K个OFDM符号上承载的第二上行数据所占的带宽等于L-K个OFDM符号上承载的PUSCH数据所占的带宽;
对应地,终端设备向基站发送、在第二子帧的L-K-J个OFDM符号上承载的PUSCH数据、在第二子帧的K个OFDM符号上承载的部分第二上行数据以及在第二子帧的J个OFDM符号上承载的部分第二上行数据。
本实施例通过终端设备接收基站在第一子帧上发送的第一调度信息,终端设备接收基站在第三子帧上发送的调度信息;终端设备向基站发送、在第二子帧的L-K个OFDM符号上承载的第一上行数据以及在第二子帧的K个OFDM符号上承载的第二上行数据,实现了在同一子帧上,对用于解调相同终端设备的数据的DMRS进行共用,实现了终端设备快速向基站反馈上行数据。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图17为本发明实施例提供的基站实施例一的结构示意图。如图17所示,本实施例提供的基站包括:发送模块10和接收模块11。
发送模块10,用于在第一子帧上向第一终端设备发送第一调度信息,所述第一调度信息用于指示所述第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据;所述L小于所述第二子帧所包含的OFDM个数,所述K≤L/2;
所述发送模块10,还用于在第三子帧上向第二终端设备发送第二调度信息,所述第二调度信息用于指示所述第二终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
接收模块11,用于接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个OFDM符号上承载的所述第二上行数据;
其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
上述发送模块10可以对应于基站的发送器或者发送天线,上述接收模块11可以对应于基站的接收器或者接收天线,可选的,上述发送模块10和接收模块11可以集成在基站的收发器或者收发机中。
本发明实施例提供的基站,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图18为本发明实施例提供的基站实施例二的结构示意图。如图18所示,本实施例在上述实施例的基础上,该基站还包括处理模块12。
所述处理模块12用于在所述接收模块接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个符号上承载的所述第二上行数据之后,根据所述第二子帧上的解调参考信号DMRS,对所述第一上行数据以及所述第二上行数据进行解调,获取所述第一上行数据以及所述第二上行数据;
其中,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS共享所述M个OFDM符号中的至少 一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
可选地,所述第一终端设备与所述第二终端设备为不同终端设备时,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS频分复用、时分复用或者码分复用。
可选地,所述第一终端设备与所述第二终端设备为相同终端设备时,所述第二子帧上的DMRS用于解调所述第一上行数据和所述第二上行数据。
可选地,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上用于解调所述PUSCH数据的DMRS占用2个OFDM符号;
所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS共享所述2个OFDM符号,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS频分复用、码分复用或者时分复用。
可选地,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上用于解调所述PUSCH数据的DMRS占用2个OFDM符号;
所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS共享所述2个OFDM符号中的一个,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS频分复用或者码分复用。
可选地,所述第一上行数据为上行物理控制信道PUCCH数据,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUCCH数据的DMRS共享所述第二子帧上的一个时隙上用于解调所述PUCCH数据的DMRS;
所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUCCH数据的DMRS码分复用。
可选地,所述K个OFDM符号上还用于承载所述PUCCH数据,所述第二上行数据与所述PUCCH数据码分复用。
可选地,所述第一上行数据为上行物理共享信道PUSCH数据,所述K个OFDM符号上所承载的第二上行数据所占的带宽小于或等于所述L-K个OFDM符号上承载的PUSCH数据所占的带宽。
可选地,所述第一上行数据为上行物理共享信道PUSCH数据,所述第 二子帧上两个时隙上的DMRS用于解调所述PUSCH数据和所述第二上行数据。
可选地,所述第一上行数据为上行物理控制信道PUCCH数据,所述第二子帧上一个时隙上的DMRS用于解调所述PUCCH数据和所述第二上行数据。
可选地,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,所述K个OFDM符号位于所述第二子帧的起始位置;或者
所述第三子帧与所述第二子帧为同一帧子帧,所述K个OFDM符号位于所述第二子帧的末尾位置。
可选地,所述第二上行数据包括如下中的至少一种数据:
信道状态信息CSI、上行ACK/NCK、上行业务数据。
本发明实施例提供的基站,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图19为本发明实施例提供的终端设备实施例一的结构示意图。如图19所示,本实施例提供的终端设备包括:接收模块20和发送模块21。
接收模块20,用于接收基站在第一子帧上发送的第一调度信息,所述第一调度信息用于指示所述终端设备在第二子帧的L-K个OFDM符号上承载在第一上行数据;所述L小于所述第二子帧所包含的OFDM个数;
所述接收模块20,还用于接收所述基站在第三子帧上发送的调度信息,所述调度信息用于指示所述终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
发送模块21,用于向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的所述第二上行数据;
其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
上述发送模块21可以对应于终端设备的发送器或者发送天线,上述接收模块20可以对应于终端设备的接收器或者接收天线,可选的,上述发送模块21和接收模块20可以集成在终端设备的收发器或者收发机中。
本发明实施例提供的终端设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
进一步地,在上述实施例的基础上,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS占用所述M个DMRS中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
图20为本发明实施例提供的终端设备实施例二的结构示意图。如图20所示,本实施例提供的终端设备在上述实施例的基础上,还包括:处理模块22。
所述处理模块22用于在所述第一上行数据为上行物理共享信道PUSCH数据,所述发送模块向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的上行数据之前,判断所述K个OFDM符号上承载的上行数据所占的带宽是否大于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
若是,则在所述L-K个OFDM符号中打掉J个OFDM符号所承载的所述PUSCH数据,在所述J个OFDM符号上承载部分所述第二上行数据,以使所述K个OFDM符号上承载的第二上行数据所占的带宽等于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
所述发送模块具体用于,向所述基站发送、在所述第二子帧的L-K-J个OFDM符号上承载的所述PUSCH数据、在所述第二子帧的K个OFDM符号上承载的部分所述第二上行数据以及在所述第二子帧的J个OFDM符号上承载的部分所述第二上行数据。
可选地,所述上行数据包括如下中的至少一种数据:
信道状态信息CSI、上行ACK/NCK、上行业务数据。
本发明实施例提供的终端设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图21为本发明实施例提供的基站实施例三的结构示意图。如图21所示,本实施例提供的基站包括:收发器30和处理器31。收发器30中可以包括单独的发送器和单独的接收器,也可以是发送器和接收器集成一体。该收发器30可以在相应的处理芯片的指示下工作,还可以依据自身的功能实时工作, 可选的,该收发器30可以对应于基站中的收发机或者收发天线。
收发器30,用于在第一子帧上向第一终端设备发送第一调度信息,所述第一调度信息用于指示所述第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据;所述L小于所述第二子帧所包含的OFDM个数,所述K≤L/2;
收发器30,还用于在第三子帧上向第二终端设备发送第二调度信息,所述第二调度信息用于指示所述第二终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
收发器30,还用于接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个OFDM符号上承载的所述第二上行数据;
其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
处理器31用于在所述接收模块接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个符号上承载的所述第二上行数据之后,根据所述第二子帧上的解调参考信号DMRS,对所述第一上行数据以及所述第二上行数据进行解调,获取所述第一上行数据以及所述第二上行数据;
其中,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS共享所述M个OFDM符号中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
可选地,所述第一终端设备与所述第二终端设备为不同终端设备时,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS频分复用、时分复用或者码分复用。对于具体的复用方式,可参见上述实施例,本实施例此处不再赘述。
可选地,所述第一终端设备与所述第二终端设备为相同终端设备时,所述第二子帧上的DMRS用于解调所述第一上行数据和所述第二上行数据。对于具体的复用方式,可参见上述实施例,本实施例此处不再赘述。
本发明实施例提供的基站,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图22为本发明实施例提供的终端设备实施例三的结构示意图。如图22所示,本实施例提供的终端设备包括:收发器40和处理器41。收发器40中可以包括单独的发送器和单独的接收器,也可以是发送器和接收器集成一体。该收发器40可以在相应的处理芯片的指示下工作,还可以依据自身的功能实时工作,可选的,该收发器40可以对应于基站中的收发机或者收发天线。
收发器40,用于接收基站在第一子帧上发送的第一调度信息,所述第一调度信息用于指示所述终端设备在第二子帧的L-K个OFDM符号上承载在第一上行数据;所述L小于所述第二子帧所包含的OFDM个数;
收发器40,还用于接收所述基站在第三子帧上发送的调度信息,所述调度信息用于指示所述终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
收发器40,还用于向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的所述第二上行数据;
其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
进一步地,在上述实施例的基础上,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS占用所述M个DMRS中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
处理器41用于在所述第一上行数据为上行物理共享信道PUSCH数据,所述发送模块向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的上行数据之前,判断所述K个OFDM符号上承载的上行数据所占的带宽是否大于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
若是,则在所述L-K个OFDM符号中打掉J个OFDM符号所承载的所述PUSCH数据,在所述J个OFDM符号上承载部分所述第二上行数据,以 使所述K个OFDM符号上承载的第二上行数据所占的带宽等于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
所述发送模块具体用于,向所述基站发送、在所述第二子帧的L-K-J个OFDM符号上承载的所述PUSCH数据、在所述第二子帧的K个OFDM符号上承载的部分所述第二上行数据以及在所述第二子帧的J个OFDM符号上承载的部分所述第二上行数据。
可选地,所述上行数据包括如下中的至少一种数据:
信道状态信息CSI、上行ACK/NCK、上行业务数据。
本发明实施例提供的终端设备,可以执行上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
所属领域的技术人员可以清楚地了解到,本发明各实施例之间均可以相互参照。为描述的方便和简洁,上述描述的设备,设备中的模块或单元的具体工作过程,以及包括上述描述的设备的通信系统的工作过程,可以参考前述方法实施例中的对应过程描述。
通过以上的实施例的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的基站实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述系统、设备和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,基站或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (34)

  1. 一种上行数据的处理方法,其特征在于,包括:
    基站在第一子帧上向第一终端设备发送第一调度信息,所述第一调度信息用于指示所述第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据;所述L小于所述第二子帧所包含的OFDM个数,所述K≤L/2;
    所述基站在第三子帧上向第二终端设备发送第二调度信息,所述第二调度信息用于指示所述第二终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
    所述基站接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个OFDM符号上承载的所述第二上行数据;
    其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
  2. 根据权利要求1所述的方法,其特征在于,所述基站接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个符号上承载的所述第二上行数据之后,还包括:
    所述基站根据所述第二子帧上的解调参考信号DMRS,对所述第一上行数据以及所述第二上行数据进行解调,获取所述第一上行数据以及所述第二上行数据;
    其中,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS共享所述M个OFDM符号中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一终端设备与所述第二终端设备为不同终端设备时,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS频分复用、时分复用或者码分复用。
  4. 根据权利要求2所述的方法,其特征在于,所述第一终端设备与所述 第二终端设备为相同终端设备时,所述第二子帧上的DMRS用于解调所述第一上行数据和所述第二上行数据。
  5. 根据权利要求3所述的方法,其特征在于,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上用于解调所述PUSCH数据的DMRS占用2个OFDM符号;
    所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS共享所述2个OFDM符号,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS频分复用、码分复用或者时分复用。
  6. 根据权利要求3所述的方法,其特征在于,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上用于解调所述PUSCH数据的DMRS占用2个OFDM符号;
    所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS共享所述2个OFDM符号中的一个,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS频分复用或者码分复用。
  7. 根据权利要求3所述的方法,其特征在于,所述第一上行数据为上行物理控制信道PUCCH数据,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUCCH数据的DMRS共享所述第二子帧上的一个时隙上用于解调所述PUCCH数据的DMRS;
    所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUCCH数据的DMRS码分复用。
  8. 根据权利要求7所述的方法,其特征在于,所述K个OFDM符号上还用于承载所述PUCCH数据,所述第二上行数据与所述PUCCH数据码分复用。
  9. 根据权利要求4所述的方法,其特征在于,所述第一上行数据为上行物理共享信道PUSCH数据,所述K个OFDM符号上所承载的第二上行数据所占的带宽小于或等于所述L-K个OFDM符号上承载的PUSCH数据所占的带宽。
  10. 根据权利要求4或9所述的方法,其特征在于,所述第一上行数据 为上行物理共享信道PUSCH数据,所述第二子帧上两个时隙上的DMRS用于解调所述PUSCH数据和所述第二上行数据。
  11. 根据权利要求4所述的方法,其特征在于,所述第一上行数据为上行物理控制信道PUCCH数据,所述第二子帧上一个时隙上的DMRS用于解调所述PUCCH数据和所述第二上行数据。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,所述K个OFDM符号位于所述第二子帧的起始位置;或者
    所述第三子帧与所述第二子帧为同一帧子帧,所述K个OFDM符号位于所述第二子帧的末尾位置。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述第二上行数据包括如下中的至少一种数据:
    信道状态信息CSI、上行ACK/NCK、上行业务数据。
  14. 一种上行数据的处理方法,其特征在于,包括:
    终端设备接收基站在第一子帧上发送的第一调度信息,所述第一调度信息用于指示所述终端设备在第二子帧的L-K个OFDM符号上承载在第一上行数据;所述L小于所述第二子帧所包含的OFDM个数;
    所述终端设备接收所述基站在第三子帧上发送的调度信息,所述调度信息用于指示所述终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
    所述终端设备向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的所述第二上行数据;
    其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
  15. 根据权利要求14所述的方法,其特征在于,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS占用所述M个DMRS中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一上行数据为上行物理共享信道PUSCH数据,所述终端设备向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的上行数据之前,还包括:
    所述终端设备判断所述K个OFDM符号上承载的上行数据所占的带宽是否大于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
    若是,则在所述L-K个OFDM符号中打掉J个OFDM符号所承载的所述PUSCH数据,在所述J个OFDM符号上承载部分所述第二上行数据,以使所述K个OFDM符号上承载的第二上行数据所占的带宽等于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
    所述终端设备向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的上行数据,包括:
    所述终端设备向所述基站发送、在所述第二子帧的L-K-J个OFDM符号上承载的所述PUSCH数据、在所述第二子帧的K个OFDM符号上承载的部分所述第二上行数据以及在所述第二子帧的J个OFDM符号上承载的部分所述第二上行数据。
  17. 根据权利要求14至16任一项所述的方法,其特征在于,所述上行数据包括如下中的至少一种数据:
    信道状态信息CSI、上行ACK/NCK、上行业务数据。
  18. 一种基站,其特征在于,包括:
    发送模块,用于在第一子帧上向第一终端设备发送第一调度信息,所述第一调度信息用于指示所述第一终端设备在第二子帧的L-K个OFDM符号上承载第一上行数据;所述L小于所述第二子帧所包含的OFDM个数,所述K≤L/2;
    所述发送模块,还用于在第三子帧上向第二终端设备发送第二调度信息,所述第二调度信息用于指示所述第二终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
    接收模块,用于接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第 二子帧的K个OFDM符号上承载的所述第二上行数据;
    其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
  19. 根据权利要求18所述的基站,其特征在于,还包括处理模块,所述处理模块用于在所述接收模块接收所述第一终端设备发送的在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据、所述第二终端设备发送的在所述第二子帧的K个符号上承载的所述第二上行数据之后,根据所述第二子帧上的解调参考信号DMRS,对所述第一上行数据以及所述第二上行数据进行解调,获取所述第一上行数据以及所述第二上行数据;
    其中,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS共享所述M个OFDM符号中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
  20. 根据权利要求19所述的基站,其特征在于,所述第一终端设备与所述第二终端设备为不同终端设备时,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述第一上行数据的DMRS频分复用、时分复用或者码分复用。
  21. 根据权利要求19所述的基站,其特征在于,所述第一终端设备与所述第二终端设备为相同终端设备时,所述第二子帧上的DMRS用于解调所述第一上行数据和所述第二上行数据。
  22. 根据权利要求20所述的基站,其特征在于,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上用于解调所述PUSCH数据的DMRS占用2个OFDM符号;
    所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS共享所述2个OFDM符号,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS频分复用、码分复用或者时分复用。
  23. 根据权利要求20所述的基站,其特征在于,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上用于解调所述PUSCH数据的 DMRS占用2个OFDM符号;
    所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS共享所述2个OFDM符号中的一个,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUSCH数据的DMRS频分复用或者码分复用。
  24. 根据权利要求20所述的基站,其特征在于,所述第一上行数据为上行物理控制信道PUCCH数据,所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUCCH数据的DMRS共享所述第二子帧上的一个时隙上用于解调所述PUCCH数据的DMRS;
    所述第二子帧上用于解调所述第二上行数据的DMRS与用于解调所述PUCCH数据的DMRS码分复用。
  25. 根据权利要求24所述的基站,其特征在于,所述K个OFDM符号上还用于承载所述PUCCH数据,所述第二上行数据与所述PUCCH数据码分复用。
  26. 根据权利要求21所述的基站,其特征在于,所述第一上行数据为上行物理共享信道PUSCH数据,所述K个OFDM符号上所承载的第二上行数据所占的带宽小于或等于所述L-K个OFDM符号上承载的PUSCH数据所占的带宽。
  27. 根据权利要求21或26所述的基站,其特征在于,所述第一上行数据为上行物理共享信道PUSCH数据,所述第二子帧上两个时隙上的DMRS用于解调所述PUSCH数据和所述第二上行数据。
  28. 根据权利要求21所述的基站,其特征在于,所述第一上行数据为上行物理控制信道PUCCH数据,所述第二子帧上一个时隙上的DMRS用于解调所述PUCCH数据和所述第二上行数据。
  29. 根据权利要求18至28任一项所述的基站,其特征在于,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,所述K个OFDM符号位于所述第二子帧的起始位置;或者
    所述第三子帧与所述第二子帧为同一帧子帧,所述K个OFDM符号位于所述第二子帧的末尾位置。
  30. 根据权利要求18至29任一项所述的基站,其特征在于,所述第二 上行数据包括如下中的至少一种数据:
    信道状态信息CSI、上行ACK/NCK、上行业务数据。
  31. 一种终端设备,其特征在于,包括:
    接收模块,用于接收基站在第一子帧上发送的第一调度信息,所述第一调度信息用于指示所述终端设备在第二子帧的L-K个OFDM符号上承载在第一上行数据;所述L小于所述第二子帧所包含的OFDM个数;
    所述接收模块,还用于接收所述基站在第三子帧上发送的调度信息,所述调度信息用于指示所述终端设备在所述第二子帧的K个OFDM符号上承载第二上行数据;
    发送模块,用于向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的所述第二上行数据;
    其中,所述第一子帧是位于所述第二子帧的至少前4帧位置的子帧,所述第三子帧是位于所述第二子帧的前一帧位置的子帧,或者所述第三子帧与所述第二子帧为同一子帧。
  32. 根据权利要求31所述的终端设备,其特征在于,所述第二子帧上用于解调所述第一上行数据的DMRS占用M个OFDM符号,所述M≤6,所述第二子帧上用于解调所述第二上行数据的DMRS占用所述M个DMRS中的至少一个,所述L与所述M之和为所述第二子帧所包含的OFDM个数。
  33. 根据权利要求31或32所述的终端设备,其特征在于,还包括:处理模块,所述处理模块用于在所述第一上行数据为上行物理共享信道PUSCH数据,所述发送模块向所述基站发送、在所述第二子帧的L-K个OFDM符号上承载的所述第一上行数据以及在所述第二子帧的K个OFDM符号上承载的上行数据之前,判断所述K个OFDM符号上承载的上行数据所占的带宽是否大于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
    若是,则在所述L-K个OFDM符号中打掉J个OFDM符号所承载的所述PUSCH数据,在所述J个OFDM符号上承载部分所述第二上行数据,以使所述K个OFDM符号上承载的第二上行数据所占的带宽等于所述L-K个OFDM符号上承载的所述PUSCH数据所占的带宽;
    所述发送模块具体用于,向所述基站发送、在所述第二子帧的L-K-J个 OFDM符号上承载的所述PUSCH数据、在所述第二子帧的K个OFDM符号上承载的部分所述第二上行数据以及在所述第二子帧的J个OFDM符号上承载的部分所述第二上行数据。
  34. 根据权利要求31至33任一项所述的终端设备,其特征在于,所述上行数据包括如下中的至少一种数据:
    信道状态信息CSI、上行ACK/NCK、上行业务数据。
PCT/CN2016/077032 2016-03-22 2016-03-22 上行数据的处理方法和设备 WO2017161507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077032 WO2017161507A1 (zh) 2016-03-22 2016-03-22 上行数据的处理方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077032 WO2017161507A1 (zh) 2016-03-22 2016-03-22 上行数据的处理方法和设备

Publications (1)

Publication Number Publication Date
WO2017161507A1 true WO2017161507A1 (zh) 2017-09-28

Family

ID=59900936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077032 WO2017161507A1 (zh) 2016-03-22 2016-03-22 上行数据的处理方法和设备

Country Status (1)

Country Link
WO (1) WO2017161507A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347627A (zh) * 2018-01-12 2023-06-27 华为技术有限公司 资源指示方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174879A (zh) * 2006-11-02 2008-05-07 鼎桥通信技术有限公司 一种混合自动请求重传的调度方法
CN101754252A (zh) * 2008-12-19 2010-06-23 大唐移动通信设备有限公司 多载波升级系统及其反馈ack/nack的方法及设备
US20150230246A1 (en) * 2014-02-07 2015-08-13 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources in carrier aggregation system
CN105323861A (zh) * 2014-07-15 2016-02-10 中国移动通信集团公司 一种信息发送方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174879A (zh) * 2006-11-02 2008-05-07 鼎桥通信技术有限公司 一种混合自动请求重传的调度方法
CN101754252A (zh) * 2008-12-19 2010-06-23 大唐移动通信设备有限公司 多载波升级系统及其反馈ack/nack的方法及设备
US20150230246A1 (en) * 2014-02-07 2015-08-13 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources in carrier aggregation system
CN105323861A (zh) * 2014-07-15 2016-02-10 中国移动通信集团公司 一种信息发送方法、设备及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347627A (zh) * 2018-01-12 2023-06-27 华为技术有限公司 资源指示方法、终端设备和网络设备
US11777680B2 (en) 2018-01-12 2023-10-03 Huawei Technologies Co., Ltd. Resource indication method, terminal device, and network device
CN116347627B (zh) * 2018-01-12 2024-01-16 华为技术有限公司 资源指示方法、终端设备和网络设备

Similar Documents

Publication Publication Date Title
CN106455094B (zh) 探测参考信号的传输方法及网络侧设备、用户设备
EP2999282B1 (en) Uplink control information transmission method, user equipment and base station
CN109964435B (zh) 传输参考信号的方法和通信设备
CN108476494B (zh) 上行控制信息的传输方法、装置
WO2017167146A1 (zh) 一种传输资源指示方法、基站、用户终端和系统
EP3500007B1 (en) Uplink transmission method, network side device and terminal
WO2020187281A1 (zh) 一种侧链路反馈控制信息传输方法及装置
WO2010145361A9 (zh) 一种载波聚合时的信号传输方法及系统
WO2017008562A1 (zh) 在上行控制信道上发送信号的方法和装置
TW200922195A (en) Coding and multiplexing of control information in a wireless communication system
US20130100896A1 (en) Method and device for transmitting aperiodic sounding reference signal (srs)
CN111294971B (zh) 用于信道传输的方法、终端设备及网络设备
KR20130122572A (ko) 단말 대 단말 통신을 위한 송수신 방법
US20130201946A1 (en) Transmission of Reference Signals
CN108702685B (zh) 传输模式的信息的传输方法、网络设备、终端设备和系统
KR20190034671A (ko) 단축된 전송 시간 구간(tti)을 갖는 pusch 상에서의 업링크 제어 시그널링
CN109714827A (zh) 上行控制信息的传输方法和装置
WO2021160010A1 (zh) 数据传输方法、装置、设备和存储介质
CN105122716A (zh) 用于在无线通信系统中传输信道状态信息的方法和装置
CN108365915B (zh) 信道状态信息传输的方法及用户设备
WO2017193714A1 (zh) 一种信道传输方法及装置
WO2016119251A1 (zh) 上行控制信息的传输方法、装置及系统
WO2017005131A1 (zh) 一种物理信道传输方法及设备
TWI665924B (zh) 上行鏈路(ul)分頻雙工(fdd)子訊框
WO2018027818A1 (zh) 信息传输方法、基站和用户设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894862

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894862

Country of ref document: EP

Kind code of ref document: A1