WO2017161487A1 - 短距离光学放大模组、眼镜、头盔及vr系统 - Google Patents

短距离光学放大模组、眼镜、头盔及vr系统 Download PDF

Info

Publication number
WO2017161487A1
WO2017161487A1 PCT/CN2016/076936 CN2016076936W WO2017161487A1 WO 2017161487 A1 WO2017161487 A1 WO 2017161487A1 CN 2016076936 W CN2016076936 W CN 2016076936W WO 2017161487 A1 WO2017161487 A1 WO 2017161487A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
lens
amplifying module
optical amplifying
focal length
Prior art date
Application number
PCT/CN2016/076936
Other languages
English (en)
French (fr)
Inventor
李刚
汤伟平
Original Assignee
深圳多哚新技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳多哚新技术有限责任公司 filed Critical 深圳多哚新技术有限责任公司
Priority to EP16774841.7A priority Critical patent/EP3249445B1/en
Priority to JP2016563185A priority patent/JP6377765B2/ja
Priority to ES16774841T priority patent/ES2883676T3/es
Priority to PT167748417T priority patent/PT3249445T/pt
Priority to KR1020187030474A priority patent/KR102257641B1/ko
Priority to PCT/CN2016/076936 priority patent/WO2017161487A1/zh
Priority to US15/129,778 priority patent/US10120192B2/en
Publication of WO2017161487A1 publication Critical patent/WO2017161487A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/002Magnifying glasses
    • G02B25/008Magnifying glasses comprising two or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/04Context-preserving transformations, e.g. by using an importance map
    • G06T3/047Fisheye or wide-angle transformations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the invention relates to an optical instrument, in particular to a short-distance optical amplifying module, glasses, a helmet and a VR system.
  • the reflective polarizing plate 01, the first phase retarder 02, the lens unit 03 and the second phase retarder 04 are arranged in this order, in the lens unit 03.
  • the optical surface near the second phase retarder 04 is a transflective optical surface.
  • a virtual VR (Virtual Reality) wearable device In order to provide a good user experience, a virtual VR (Virtual Reality) wearable device needs to achieve a better angle of view, eye movement range, high-quality imaging effect, and a small-sized ultra-thin structure, etc., in order to achieve the above purpose.
  • the lens group of the optical amplifying module structure needs to be optimized.
  • the existing optical amplifying module structure is not optimized, so that the above object cannot be ensured in the entire range, that is, the user is not guaranteed to have a good experience.
  • Embodiments of the present invention provide a short-distance optical amplifying module, glasses, a helmet, and a VR system to solve the problems in the prior art.
  • the present invention provides a short-distance optical amplifying module comprising: a reflective polarizer, a first phase retarder, a second lens, and a second phase retarder arranged in sequence, wherein:
  • a first lens is further disposed at either position of the optical element of the reflective polarizer, the first phase retarder, the second lens, and the second phase retarder;
  • the optical surface of the second lens adjacent to the second phase retarder is a transflective optical surface
  • the first focal length f2 of the second lens satisfies the following condition: 1F ⁇ f2 ⁇ 2F, where F is the focal length of the system by the short-distance optical amplifying module.
  • the effective surface focal length fs4 of the semi-transmissive semi-reflective optical surface satisfies the following condition: 1.5F ⁇ fs4 ⁇ 5F.
  • the effective focal length fs4 of the reflective surface of the transflective optical surface satisfies the following condition: 1F ⁇ fs4 ⁇ 2F.
  • the first focal length f2 of the second lens satisfies the following condition: 1.5F ⁇ f2 ⁇ 2F.
  • the first focal length f2 of the second lens is 1.6F.
  • the optical focal length fs3 of the second lens adjacent to the first lens satisfies the following condition :
  • the focal length f1 of the first lens satisfies the following condition:
  • the short-distance optical amplifying module has a thickness of 11 mm to 28 mm.
  • the short-distance optical amplifying module has a contact distance of 5 mm to 10 mm.
  • the aperture D through which the light beam participating in imaging is performed by the second lens and the first lens The following conditions are satisfied: 0.28F ⁇ D ⁇ 0.45F.
  • the present invention provides a short-distance optical amplifying eyeglass, comprising the short-distance optical amplifying module of the first aspect, further comprising a display screen, the display screen being coaxial with the short-distance optical amplifying module Or non-coaxial settings.
  • the present invention provides a short-distance optical amplifying helmet, comprising the short-distance optical amplifying module of the first aspect, further comprising a display screen coaxial with the short-distance optical amplifying module Or non-coaxial settings.
  • the present invention provides a short-range optical zoom VR system comprising the glasses of the second aspect or the helmet of the third aspect.
  • the parameter refinement is performed on the first focal length f2 that affects the optical amplification effect, so that the module can maintain a larger optical amplification effect while maintaining a smaller overall thickness, so that the VR device is It can achieve better viewing angle, larger eye movement range, high quality imaging effect, and bring a better experience to the user.
  • FIG. 1 is a schematic structural view of a short-distance optical amplifying module in the prior art
  • FIG. 2 is a schematic structural diagram of a short-distance optical amplifying module according to Embodiment 1 of the present invention.
  • FIG. 3 is an MTF diagram of a short-distance optical amplifying module according to Embodiment 1 of the present invention.
  • FIG. 4 is a distortion diagram of a short-distance optical amplifying module according to Embodiment 1 of the present invention.
  • FIG. 5 is a field curvature diagram of a short-distance optical amplifying module according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a short-distance optical amplifying module according to Embodiment 2 of the present invention.
  • FIG. 7 is a MTF diagram of a short-distance optical amplifying module according to Embodiment 2 of the present invention.
  • FIG. 8 is a distortion diagram of a short-distance optical amplifying module according to Embodiment 2 of the present invention.
  • FIG. 9 is a field curvature diagram of a short-distance optical amplifying module according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic structural diagram of a short-distance optical amplifying module according to Embodiment 3 of the present invention.
  • FIG. 11 is an MTF diagram of a short-distance optical amplifying module according to Embodiment 3 of the present invention.
  • FIG. 13 is a field curvature diagram of a short-distance optical amplifying module according to Embodiment 3 of the present invention.
  • FIG. 14 is a schematic structural diagram of a short-distance optical amplifying module according to Embodiment 4 of the present invention.
  • 16 is a distortion diagram of a short-distance optical amplifying module according to Embodiment 4 of the present invention.
  • FIG. 17 is a field curvature diagram of a short-distance optical amplifying module according to Embodiment 4 of the present invention.
  • FIG. 18 is a schematic structural diagram of a short-distance optical amplifying module according to Embodiment 4 of the present invention.
  • FIG. 21 is a field curvature diagram of a short-distance optical amplifying module according to Embodiment 4 of the present invention.
  • FIG. 2 is a schematic structural diagram of a short-distance optical amplifying module according to an embodiment of the present invention.
  • the short-distance optical amplification module includes a reflective polarizer, a first phase retarder, a second lens 20, and a second phase retarder, which are arranged in sequence, wherein the reflective polarizer, the first phase a first lens 10 is further disposed at any one of two sides of the retarder, the second lens 20, and the second phase retarder; wherein the reflective polarizer, the first phase
  • the retarder and the second phase retarder are not shown in the drawings, and may be specifically referred to FIG. It should be noted that, in the drawings provided in this embodiment, the first lens 10 is disposed on the left side of the second lens 20, but in practical applications, the first lens 10 may also be disposed in the first The right side of the two lenses 20 will not be described again here.
  • the first lens 10 and the second lens 20 are core components that affect the optical amplification effect, and the system focal length F formed by the two is 15 mm to 35 mm, but is not limited to the data range, and may be, for example, 8 mm to 30 mm;
  • the first lens 10 and the second lens 20 may be disposed to be attached to each other or may have a certain pitch.
  • the optical surface near the left side of the first lens 10 is the first optical surface E1
  • the optical surface near the right side is the second optical surface E2
  • the optical side of the second lens 20 is near the left side.
  • the surface is the third optical surface E3, and the optical surface close to the right side is the fourth optical surface E4.
  • An optical image of the object side passes through the second phase retarder, the second lens 20, and the first lens 10.
  • the first phase retarder arrives at the reflective polarizer, and after the first reflection is generated at the reflective polarizer, passes through the first phase retarder to reach the fourth optical surface E4.
  • Two reflections and amplifications are performed in the module to achieve the optical magnification requirement.
  • the first lens 10 and the second lens 20 are disposed, and the two lenses cooperate with each other to share the focal length of the system and balance the aberrations to improve the imaging quality.
  • the second The first focal length f2 of the lens 20 satisfies the following conditions:
  • the focal length measured by the incident light passing through the third optical surface E3 and reflected by the fourth optical surface E4 is defined as a first focal length f2.
  • the first focal length f2 of the second lens 20 is the main source of the system power. If the refractive power of the reflective surface is too large, such as approaching the total power of the system (f2 ⁇ F), the aberration is difficult to correct. If the power of the reflective surface is too small (f2>2F), the power of other lenses is too large, and it is necessary to increase the lens to correct the aberration, which is not conducive to system miniaturization and weight reduction.
  • the conditional expression (1) defines a specific range of the first focal length f2 of the second lens 20, and at the same time, a screen having a size of 1.3 to 2.6 inches is used in the optical system, and a larger angle of view can be obtained and can be tolerated.
  • the effective focal length fs4 of the reflecting surface of the fourth optical surface E4 satisfies the following conditions:
  • the focal length measured after the incident light is reflected by the fourth optical surface E4 is defined as the effective focal length fs4 of the reflecting surface.
  • the reflecting surface of the fourth optical surface E4 is the main source of the system power. If the power is too large, such as approaching the total power of the system (fs4 ⁇ F), the aberration is difficult to correct; It will cause the mirror to be too curved and the thickness of the lens to be large, which will lead to an increase in the thickness of the system, which is not conducive to meeting the needs of VR wearable devices. begging. On the contrary, if the power is too small (fs4>5F), the power of the other lens is too large, and it is necessary to increase the lens to correct the aberration, which is disadvantageous for the system miniaturization and weight reduction.
  • the focal length fs3 of the third optical surface E3 satisfies the following conditions:
  • the focal length fs3 is too small, the second lens 20 is too curved, which is not conducive to aberration correction.
  • the surface is too curved and the thickness of the lens is large, which may cause optical
  • the increase in thickness of the system is not conducive to the requirements of light and thin VR wearable devices.
  • the focal length f1 of the first lens 10 satisfies the following conditions:
  • the focal length f1 is too small (
  • the face shape of the first lens 10 is too curved, the introduced aberration is large, and the aberration of the entire system becomes large; meanwhile, it also increases.
  • the thickness of the first lens 10 is not conducive to the requirement of thinning and thinning of the VR wearing device.
  • the thickness of the short-distance optical amplifying module is designed to be 11 mm to 28 mm, and the thickness of the short-distance optical amplifying module is the two sides of the short-distance optical amplifying module. The maximum distance between the optical axes.
  • connection distance of the short-distance optical amplifying module is designed to be 5 mm to 10 mm; the eye distance is the observer can clearly see the entire field of view.
  • the distance between the eyeball and the eyepiece is the optical face closest to the human eye.
  • the adjustable range of the aperture is designed to be 2.2F to 3.5F, that is, the light beam that is subjected to imaging through the first lens and the second lens passes through
  • the caliber D meets the following conditions:
  • the available eye movement range A is 5 mm to 10 mm.
  • the short-distance optical amplifying module of this embodiment will be further described below in conjunction with the attached table.
  • OBJ represents an object in the optical system
  • IMA represents an image in the optical system
  • STO represents an aperture in the optical system
  • thickness represents i the distance between the optical surface and the i+1 optical surface
  • i represents the order of the optical surface from the object side (i 0 )+1
  • the first lens 10 on the left side of the light is directed to the second lens 20 on the right side
  • the first focal length f2 of the second lens 20 is designed to be equal to the system focal length F, wherein
  • the first row OBJ represents the relevant design parameters of the object surface
  • the second row STO represents the aperture in the optical system, the aperture is 7 mm
  • the third row represents the reflective polarizer in the optical module and the A diaphragm formed by a phase retarder, the type of the diaphragm is STANDARD (standard surface), the material is PMMA, and the diameter is 24.685 mm, the aspherical coefficient is 0
  • the fourth row and the fifth row respectively represent data corresponding to the first optical surface E1 and the second optical surface E2 of the first lens 10, and the radius of curvature of the first optical surface E1
  • the second optical surface E2 has a radius of curvature of 888 mm
  • the first lens 10 has a thickness of 2 mm (ie, a distance from the first optical surface E1 to the second optical surface E2,
  • the thickness value in the fourth row of data) is H-ZF52A
  • the sixth row and the seventh row represent data corresponding to the third optical surface E3 and the fourth
  • the three optical surfaces E3 have a radius of curvature of -55 mm
  • the fourth optical surface E4 has a radius of curvature of -56 mm
  • the second lens 20 has a thickness of 2 mm (ie, from the third optical surface E3 to the fourth optical surface).
  • the spacing between E4, the thickness value in the sixth row of data), the material is H-QK1;
  • the eighth to fifteenth rows represent the reflection of light between the diaphragm, the first lens 10 and the second lens 20.
  • the sixteenth line represents the glass film in the liquid crystal layer of the display screen, the glass A thickness of 0.4mm, is made of BK7; IMA seventeenth rows of the light representative of the final image.
  • the focal length of the first lens 10 is -35.4F (-1032.26mm), and the first focal length f2 of the second lens 20 is F (29.16mm).
  • the effective focal length of the transflective surface of the second lens 20 is F (29.16 mm) and the thickness of the optical system is 23.8 mm, and the focal length of the system of 29.16 mm and the angle of view of 90° can be obtained;
  • the aperture of the short-distance optical amplifying module is designed to be 4, that is, the corresponding pupil diameter D is 7.29 mm, corresponding A larger eye movement range of 7 mm can be obtained.
  • the screen size is 2.22 inches and the connection distance is 9mm.
  • the average ordinate (modulation transfer function) of each field of view is higher than the abscissa (space frequency per millimeter) value of 0.18. It is further obtained that the resolution of the viewing angle of the short-distance optical amplifying module can support a resolution of 800*800.
  • the optical imaging distortion rate in the present embodiment is controlled within the range of (-29.2%, 0), and the field curvature control in FIG. 5 is in the range of (-10 mm, 10 mm).
  • the focal length of the first lens 10 is designed to be 10.4F, and the first focal length f2 of the second lens 20 is equal to the system focal length of 1.5F, wherein
  • the focal length of the first lens 10 is 10.4F (274.56mm) and the first focal length of the second lens 20 is 1.5F (39.6mm) by the relevant parameter design in Table 3.
  • the effective focal length of the reflective surface of the semi-transmissive semi-reflecting surface of the second lens 20 is 1.88F (49.63mm) and the thickness of the optical system is 15mm, and a system focal length of 26.4mm and a large angle of view of 100° can be obtained;
  • the aperture of the short-distance optical amplifying module is designed to be 2.9, that is, the corresponding pupil diameter D is 9.1 mm, and accordingly, a larger eye movement range of 9 mm can be obtained.
  • the screen size is 2.3 inches and the connection distance is 9mm.
  • the average ordinate (modulation transfer function) of each field of view is higher than the abscissa (space frequency per mm) value of 0.18, and further It can be concluded that the resolution of the viewing angle of the short-distance optical amplifying module can support the resolution of 2500*2500; further, the optical imaging distortion rate control in the embodiment can be obtained from (33.4%, 0).
  • the field curvature control in Fig. 9 is in the range of (-1 mm, 1 mm).
  • the focal length of the first lens 10 is designed to be 6.7F, and the first focal length f2 of the second lens 20 is equal to the system focal length of 1.6F, wherein
  • the second row represents the PARAXIAL paraxial design
  • the fourth row represents the design of the relevant parameters in the diaphragm formed by the reflective polarizer in the optical module and the first phase retarder
  • sixth and seventh rows Representing a related parameter design of the first lens 10, wherein the second optical surface E2 of the first lens 10 is an EVENASPH aspheric surface
  • the eighth row and the ninth row represent related parameter designs of the first lens 20, wherein
  • the third optical surface E3 of the first lens 20 is an EVENASPH aspherical surface.
  • the aspherical formula generally has a surface
  • r is the point-to-optical distance on the lens
  • c is the curvature of the apex of the surface
  • K is the quadric coefficient
  • d, e, f, g, h, I, j are 4, 6, 8, 10, respectively 12, 14 and 16 surface coefficients.
  • the focal length of the first lens 10 is 6.7F (110.42mm) and the first focal length of the second lens 20 is 1.6F (26.368mm) through the related parameter design in Tables 5 and 6.
  • the semi-transmissive and semi-reflective reflective surface of the second lens 20 has an effective focal length of 1.9 F (94.297 mm) and an optical system thickness design of 11.1 mm, and a system focal length of 16.48 mm and a large angle of view of 100° can be obtained;
  • the aperture disposed in front of the short-distance optical amplifying module is designed to be 2.1, that is, the corresponding pupil diameter D is 8 mm, and accordingly, a larger eye movement range of 8 mm can be obtained.
  • the screen size is 1.49 inches and the connection distance is 9mm.
  • the average ordinate (modulation transfer function) of each field of view is higher than the abscissa (space frequency per mm) value of 0.18, and further It can be concluded that the resolution of the viewing angle of the short-distance optical amplifying module can support a high resolution of 2600*2600; further, from Fig. 12, the optical imaging distortion rate in the embodiment can be controlled at (-32.8%, 0).
  • the field curvature control in Fig. 13 is in the range of (-0.5 mm, 0.5 mm).
  • the focal length of the first lens 10 is designed to be 8.2F
  • the first focal length f2 of the second lens 20 is designed to be equal to the system focal length of 1.6F.
  • the focal length of the first lens 10 is 8.5F (241.9mm), and the first focal length of the second lens 20 is 1.6F (47.2mm).
  • Second penetration The semi-transmissive and semi-reflective surface of the mirror 20 has an effective focal length of 2F (59 mm) and an optical system thickness of 16.5 mm, and a system focal length of 29.5 mm and a large angle of view of 100° can be obtained;
  • the aperture before the amplifying module is designed to be 3.2, that is, the corresponding pupil diameter D is 9.2 mm, and accordingly, a large eye movement range of 9 mm can be obtained.
  • the screen size is 2.6 inches and the connection distance is 9mm.
  • the average ordinate (modulation transfer function) of each field of view is higher than the abscissa (space frequency per mm) value of 0.18, and further It can be concluded that the viewing angle resolution of the short-distance optical amplifying module can support a high resolution of 4000*4000; further, from Fig. 16, the optical imaging distortion rate control in the present embodiment can be obtained (-33%, 0).
  • the field curvature control in Fig. 17 is in the range of (-0.5 mm, 0.5 mm).
  • the focal length of the first lens 10 is designed to be 3.8F, and the first focal length f2 of the second lens 20 is equal to the focal length 2F of the system, wherein
  • the focal length of the first lens 10 is 3.8F (68.4mm), and the first focal length of the second lens 20 is 2F (36mm).
  • the semi-transmissive and semi-reflective reflecting surface of the second lens 20 has an effective focal length of 1.9 F (34.2 mm) and an optical system thickness design of 12.8 mm, and a system focal length of 18 mm and a large angle of view of 100° can be obtained;
  • the aperture of the short-distance optical amplifying module is designed to be 2.3, that is, the corresponding pupil diameter D is 8 mm, and accordingly, a large eye movement range of 8 mm can be obtained.
  • the screen size is 1.66 inches and the connection distance is 9mm.
  • the average ordinate of the field of view (modulation transfer function) is higher than 0.18 of the abscissa (space frequency per mm) value.
  • the viewing angle resolution of the short-distance optical amplifying module can support a resolution of 2000*2000, and the distortion rate in FIG. 20 is controlled within a range of (-32.5%, 0), and the field curvature control in FIG. 21 is ( -0.5mm, 0.5mm).
  • the effective focal length of the semi-transparent surface reflecting surface is not limited to the design of 1.9F, and may also be designed as 5F; the optical system thickness and the connection distance are not limited to 12.8mm and 9mm, and may be separately designed. It is 28mm and 10mm.
  • the present invention further provides a glasses, comprising the short-distance optical amplifying module in the above embodiment, the glasses further comprising a screen 30, the screen 30 and the
  • the short-range optical amplifying module is coaxial or non-coaxial.
  • the screen 30 described in FIG. 2, FIG. 6, FIG. 10, FIG. 14 and FIG. 18 is coaxial with the short-distance optical amplifying module, but in use, the screen 30 and the short-distance optical amplifying module can be coaxial. Different axes can be selected, and in the specific implementation, they can be selected according to actual needs.
  • the present invention further provides a helmet, comprising the short-distance optical amplifying module in the above embodiment, the glasses further comprising a screen 30, the screen 30 and the
  • the short-range optical amplifying module is coaxial or non-coaxial.
  • the screen 30 described in the screen 30 of Figures 2, 6, 10 and 14 is coaxial with the short-range optical amplifying module, here for convenience of presentation, but in use screen 30 and short-distance optics
  • the amplifying module can be coaxial or different axes, and can be selected according to actual needs.
  • the present invention also provides a VR system, including the glasses or helmets in the above embodiments, for use in a smart VR (Virtual Reality) wearable device.
  • the above-mentioned VR system adopts a short-distance optical amplifying module to form glasses or a helmet, so that it has a better angle of view, eye movement range, high-quality imaging effect and small-sized ultra-thin structure, etc., which will bring the user For a good experience, please refer to the embodiment of the short-distance optical amplifying module, and details are not described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Lenses (AREA)
  • Polarising Elements (AREA)
  • Helmets And Other Head Coverings (AREA)

Abstract

一种短距离光学放大模组、眼镜、头盔及VR系统,放大模组包括依次排列布置的反射式偏振片、第一相位延迟片、第二透镜(20)和第二相位延迟片,在反射式偏振片、第一相位延迟片、第二透镜(20)和第二相位延迟片中任一个光学元件的两侧任一位置还设有第一透镜(10);第二透镜(20)中,靠近第二相位延迟片的光学面为半透射半反射光学面;第二透镜(20)的第一焦距f2满足条件:1F≤f2≤2F,F为光学放大模组的系统焦距。通过对影响光学放大效果的第一焦距f2进行参数细化,使得模组在获得较大光学放大效果的同时还能保持整体厚度较小,使得VR设备能实现较佳视场角、较大眼动范围、高质量成像效果,给用户带来更好的体验感。

Description

短距离光学放大模组、眼镜、头盔及VR系统 技术领域
本发明涉及一种光学仪器,特别是涉及一种短距离光学放大模组、眼镜、头盔及VR系统。
背景技术
现有的光学放大模组结构中,如图1所示,包括依次排列布置反射式偏振片01、第一相位延迟片02、透镜单元03和第二相位延迟片04,在所述透镜单元03中、靠近所述第二相位延迟片04的光学面为半透射半反射光学面。在使用过程中,光学图像通过所述透镜单元03进行透射放大,然后在所述反射式偏振片01上反射,再经过所述透镜单元03进行二次放大,最后通过所述反射式偏振片01进入人眼视线。进一步的,在所述反射式偏振片01、所述第一相位延迟片02、所述第二透镜03和所述第二相位延迟片04中任一个光学元件的两侧任一位置还设有不影响光线相位延时的其它透镜单元。所述透镜单元03和其它透镜单元形成透镜组,所述透镜组为影响光学图像放大效果的核心部件。
由于智能VR(Virtual Reality,虚拟现实)穿戴设备为了提供良好的用户体验感,需要实现较佳的视场角、眼动范围、高质量的成像效果以及小尺寸超薄结构等,为了达到上述目的,需要对光学放大模组结构的透镜组进行优化设计。而现有的光学放大模组结构没有进行优化设计,因此无法保证在整个范围内均能实现上述目的,即无法保证给用户带来良好的体验感。
发明内容
本发明实施例提供了一种短距离光学放大模组、眼镜、头盔及VR系统,以解决采用现有技术的问题。
第一方面,本发明提供了一种短距离光学放大模组,包括依次排列布置反射式偏振片、第一相位延迟片、第二透镜和第二相位延迟片,其中:
在所述反射式偏振片、所述第一相位延迟片、所述第二透镜和所述第二相位延迟片中任一个光学元件的两侧任一位置还设有第一透镜;
所述第二透镜中、靠近所述第二相位延迟片的光学面为半透射半反射光学面;
所述第二透镜的第一焦距f2满足以下条件:1F≤f2≤2F,F为由所述短距离光学放大模组的系统焦距。
结合第一方面,在第一方面第一种可能的实现方式中,所述半透射半反射光学面的反射面有效焦距fs4满足以下条件:1.5F≤fs4≤5F。
结合第一方面第二种可能的实现方式,在第一方面第二种可能的实现方式中,所述半透射半反射光学面的反射面有效焦距fs4满足以下条件:1F≤fs4≤2F。
结合第一方面,在第一方面第三种可能的实现方式中,所述第二透镜的第一焦距f2满足以下条件:1.5F≤f2≤2F。
合第一方面第三种可能的实现方式,在第一方面第四种可能的实现方式中,所述第二透镜的第一焦距f2为1.6F。
结合第一方面或第一方面第一种可能的实现方式至第一方面的第四种可能的实现方式中,所述第二透镜中、靠近所述第一透镜的光学面焦距fs3满足以下条件:|fs3|≥2F。
结合第一方面或第一方面第一种可能的实现方式至第一方面的第四种可能的实现方式中,所述第一透镜的焦距f1满足以下条件:|f1|≥3F。
结合第一方面或第一方面第一种可能的实现方式至第一方面的第四种可能的实现方式中,所述短距离光学放大模组的厚度为11mm~28mm。
结合第一方面或第一方面第一种可能的实现方式至第一方面的第四种可能的实现方式中,所述短距离光学放大模组的接目距为5mm~10mm。
结合第一方面或第一方面第一种可能的实现方式至第一方面的第四种可能的实现方式中,经过所述第二透镜和所述第一透镜参与成像的光束所通过的口径D满足以下条件:0.28F≤D≤0.45F。
第二方面,本发明提供了一种短距离光学放大眼镜,包括第一方面所述的短距离光学放大模组,还包括显示屏,所述显示屏与所述短距离光学放大模组同轴或非同轴设置。
第三方面,本发明提供了一种短距离光学放大头盔,包括第一方面所述的短距离光学放大模组,还包括显示屏,所述显示屏与所述短距离光学放大模组同轴或非同轴设置。
第四方面,本发明提供了一种短距离光学放大VR系统,包括第二方面所述的眼镜或第三方面所述的头盔。
采用本发明实施例,本实施例通过对影响光学放大效果的第一焦距f2进行参数细化,使得该模组在获得较大光学放大效果的同时还能保持整体厚度较小,使得该VR设备能实现较佳视场角、较大眼动范围、高质量成像效果,给用户带来更好的体验感。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的短距离光学放大模组的结构示意图;
图2为本发明实施例一提供的一种短距离光学放大模组的结构示意图;
图3为本发明实施例一提供的一种短距离光学放大模组的MTF图;
图4为本发明实施例一提供的一种短距离光学放大模组的畸变图;
图5为本发明实施例一提供的一种短距离光学放大模组的场曲图;
图6为本发明实施例二提供的一种短距离光学放大模组的结构示意图;
图7为本发明实施例二提供的一种短距离光学放大模组的MTF图;
图8为本发明实施例二提供的一种短距离光学放大模组的畸变图;
图9为本发明实施例二提供的一种短距离光学放大模组的场曲图;
图10为本发明实施例三提供的一种短距离光学放大模组的结构示意图;
图11为本发明实施例三提供的一种短距离光学放大模组的MTF图;
图12为本发明实施例三提供的一种短距离光学放大模组的畸变图;
图13为本发明实施例三提供的一种短距离光学放大模组的场曲图;
图14为本发明实施例四提供的一种短距离光学放大模组的结构示意图;
图15为本发明实施例四提供的一种短距离光学放大模组的MTF图;
图16为本发明实施例四提供的一种短距离光学放大模组的畸变图;
图17为本发明实施例四提供的一种短距离光学放大模组的场曲图
图18为本发明实施例四提供的一种短距离光学放大模组的结构示意图;
图19为本发明实施例四提供的一种短距离光学放大模组的MTF图;
图20为本发明实施例四提供的一种短距离光学放大模组的畸变图;
图21为本发明实施例四提供的一种短距离光学放大模组的场曲图。
具体实施方式
为了使本领域技术人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所述描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图2、图6、图10、图14和图18所示,为本发明实施例提供的短距离光学放大模组的结构示意图。所述短距离光学放大模组包括依次排列布置的反射式偏振片、第一相位延迟片、第二透镜20和第二相位延迟片,其中,在所述反射式偏振片、所述第一相位延迟片、所述第二透镜20和所述第二相位延迟片中任一个光学元件的两侧任一位置还设有第一透镜10;其中,所述反射式偏振片、所述第一相位延迟片和所述第二相位延迟片未在附图中示出,具体可以参考图1。需要说明的是,本实施例提供的附图中所述第一透镜10设置在所述第二透镜20的左侧,但在实际应用中,所述第一透镜10还可以设置在所述第二透镜20的右侧,在此不再一一赘述。
所述第一透镜10和第二透镜20为影响光学放大效果的核心部件,两者构成的系统焦距F为15mm~35mm,但并不限于所述数据范围,比如还可以为8mm~30mm;同时,所述第一透镜10和所述第二透镜20之间可以贴合设置,也可以具有一定的间距。
本实施例定义,所述第一透镜10中靠近左侧的光学面为第一光学面E1、靠近右侧的光学面为第二光学面E2;所述第二透镜20中靠近左侧的光学面为第三光学面E3、靠近右侧的光学面为第四光学面E4。
物侧的光学图像经所述第二相位延迟片、所述第二透镜20、所述第一透镜 10、所述第一相位延迟片后到达所述反射式偏振片,在所述反射式偏振片处产生第一次反射后经所述第一相位延迟片后,到达所述第四光学面E4,在所述第四光学面E4处产生第二次反射后再依次经过所述第一相位延迟片和所述反射式偏振片后进入人眼视线,这样光学图像可以在所述短距离光学放大模组内完成两次反射和放大,达到光学放大倍数的要求。
同时,本实施例中设置第一透镜10和第二透镜20,两个透镜相互配合,可以分摊系统焦距、互相平衡像差,提高成像质量。
为了实现将所述短距离光学放大模组应用于智能VR穿戴设备时,能够实现较佳的视场角、眼动范围、高质量的成像效果以及小尺寸超薄结构的要求,所述第二透镜20的第一焦距f2满足以下条件:
F≤f2≤2F    (1)
其中,入射光透过所述第三光学面E3由所述第四光学面E4反射后所测得的焦距定义为第一焦距f2。
所述第二透镜20的第一焦距f2是系统光焦度的主要来源,如果含反射面光焦度过大,如接近系统总光焦度(f2<F),则像差很难矫正好;如果含反射面光焦度过小(f2>2F),则其他透镜担负的光焦度过大,需要增加透镜来矫正像差,不利于系统小型化以及轻量化
条件式(1)限定了所述第二透镜20的第一焦距f2的具体范围,同时在光学系统中使用尺寸为1.3~2.6英寸的屏幕,便可以获取较大的视场角和可以容许大的屏幕分辨率,其中可获取的视场角V为90°~100°、可以容许的屏幕分辨率为800*800~4000*4000。
在所述第二透镜20中,所述第四光学面E4的反射面有效焦距fs4满足以下条件:
1.5F≤fs4≤5F    (2)
本实施例中,入射光经过所述第四光学面E4反射后测得的焦距定义为反射面有效焦距fs4。
所述第四光学面E4的反射面是系统光焦度的主要来源,如果其光焦度过大,如接近系统总光焦度(fs4<F),则像差很难矫正好;同时也会导致镜面过于弯曲、透镜厚度较大,进而会导致系统厚度增加,不利于满足VR穿戴设备轻薄化的要 求。相反,如果其光焦度过小(fs4>5F),则其他透镜担负的光焦度过大,需要增加透镜来矫正像差,这样便不利于系统小型化和轻量化的要求。
在所述第二透镜20中,所述第三光学面E3的焦距fs3满足以下条件:
|fs3|≥2F    (3)
如果所述焦距fs3过小,则会导致所述第二透镜20面型过于弯曲,不利于像差矫正;同时和第一透镜10综合来看,面型过于弯曲透镜厚度较大,会导致光学系统厚度增加,不利于VR穿戴设备轻薄化的要求。
所述第一透镜10的焦距f1满足一下条件:
|f1|≥3F    (4)
如果所述焦距f1过小(|f1|<3F),则会导致所述第一透镜10的面型过于弯曲,引入像差较大,导致整个系统的像差变大;同时,也会增加所述第一透镜10的厚度,不利于VR穿戴设备轻薄化的要求。
为了达到VR穿戴设备小尺寸、超薄结构的要求,所述短距离光学放大模组的厚度设计为11mm~28mm,所述短距离光学放大模组的厚度为短距离光学放大模组两侧之间沿光轴方向的最大距离。
考虑VR设备佩戴舒适度的同时又能获得较好的成像质量,所述短距离光学放大模组的接目距设计为5mm~10mm;所述接目距为观测者能清晰看到整个视场的像时眼球与目镜(本发明中该目镜为最靠近人眼的光学面)之间的距离。
为了获得大的眼动范围、同时又能获得较好的成像质量,光圈的可调范围设计为2.2F~3.5F,即经过所述第一透镜和所述第二透镜参与成像的光束所通过的口径D满足以下条件:
0.28F≤D≤0.45F    (5)
与等式(5)相对应的,可获得的眼动范围A为5mm~10mm。
进一步的,所述条件等式(1)和(2)的数值范围更有利的设置如下:
1.5F≤f2≤2F    (1a)
1F≤fs4≤2F    (2a)
以下将结合附表对本实施例提供短距离光学放大模组做进一步的说明。
在每个实施例中,所述短距离光学放大模组的具体设计参数表内,OBJ表示光学系统中的物,IMA表示光学系统中的像,STO表示光学系统中的光阑,厚度代表从i光学面到i+1光学面之间的间距,i表示从物侧起的光学面的顺序(i0)+1,光线左侧的第一透镜10射向右侧的第二透镜20,遇到材质(Glass)列为MIRROR即反射往相反方向走,反射到第二个MIRROR再次反向,再从左向右走,最终达到像面。
实施例一
如图2所示,在所述短距离光学放大模组中,设计所述第二透镜20的第一焦距f2等于系统焦距F,其中,
所述短距离光学放大模组的具体设计参数如表一:
Surf Type 曲率半径 厚度 材质 镜面半径 非球面系数
OBJ STANDARD Infinity -200   400 0
STO STANDARD Infinity 9   7 0
2 STANDARD Infinity 0.2 PMMA 24.685 0
3 STANDARD Infinity 2 H-ZF52A 24.89819 0
4 STANDARD 888 9.210156   26.6281 -33
5 STANDARD -55 2 H-QK1 38.26443 0
6 STANDARD -56 -2 MIRROR 40.54977 0.915605
7 STANDARD -55 -9.210156   40.02718 0
8 STANDARD 888 -2 H-ZF53A 39.72057 -33
9 STANDARD Infinity -0.2 PMMA 39.69469 0
10 STANDARD Infinity 0 MIRROR 39.69181 0
11 STANDARD Infinity 0.2 PMMA 39.69181 0
12 STANDARD Infinity 2 H-ZF52A 39.68893 0
13 STANDARD 888 9.210156   39.66306 -33
14 STANDARD -55 2 H-QK1 39.77483 0
15 STANDARD -56 1   40.25757 0.915605
16 STANDARD Infinity 0.4 BK7 41.00791 0
IMA STANDARD Infinity     41.12973 0
在表一中,第一行OBJ代表物面的相关设计参数;第二行STO代表光学系统中的光阑,所述孔径为7mm;第三行代表光学模组中的反射式偏振片和第一相位延迟片形成的膜片,所述膜片的类型为STANDARD(标准面)、材质为PMMA、直径 为24.685mm、非球面系数为0;第四行和第五行分别代表所述第一透镜10的第一光学面E1和第二光学面E2对应的数据,所述第一光学面E1的曲率半径为Infinity(平面),所述第二光学面E2的曲率半径为888mm,所述第一透镜10的厚度为2mm(即从第一光学面E1到所述第二光学面E2之间的间距、第四行数据中的厚度值)、材质为H-ZF52A;第六行和第七行分别代表所述第二透镜20的第三光学面E3和第四光学面E4对应的数据,所述第三光学面E3的曲率半径为-55mm、所述第四光学面E4的曲率半径为-56mm,所述第二透镜20的厚度为2mm(即从第三光学面E3到所述第四光学面E4之间的间距、第六行数据中的厚度值)、材质为H-QK1;第八行至第十五行代表光线在所述膜片、第一透镜10和第二透镜20之间的反射和透射中的相关参数,在此不再一一赘述;第十六行代表显示屏液晶层中的玻璃膜,所述玻璃膜的厚度为0.4mm、材质为BK7;第十七行IMA代表光线最终成像。
所述短距离光学放大模组相对应的其它参数如表二:
Figure PCTCN2016076936-appb-000001
通过表二可以看出,通过表一中的相关参数设计,所述第一透镜10焦距为-35.4F(-1032.26mm)、所述第二透镜20第一焦距f2为F(29.16mm)、同时所述第二透镜20的半透射半反射面有效焦距为F(29.16mm)以及光学系统厚度设计23.8mm,可以获得29.16mm的系统焦距以及90°的视场角;通过将设置在所述短距离光学放大模组前的光圈设计为4,即对应的光阑直径D为7.29mm,相应的 便可以获得7mm的较大的眼动范围。
同时设计屏幕尺寸为2.22英寸、接目距为9mm,结合从图3的MTF图中,得出各个视场平均纵坐标(调制传递函数)高于0.18的横坐标(每毫米空间频率)值,进而得出所述短距离光学放大模组的视角解析力可以支持800*800的分辨率。
进一步的,从图4中可以得出本实施例中的光学成像畸变率控制在(-29.2%,0)的范围内,图5中的场曲控制在(-10mm,10mm)范围内。
实施例二
如图6所示,在所述短距离光学放大模组中,设计所述第一透镜10的焦距为10.4F,所述第二透镜20的第一焦距f2等于系统焦距1.5F,其中,
所述短距离光学放大模组的具体设计参数如表三:
Surf Type 曲率半径 厚度 材质 镜面半径 非球面系数
OBJ STANDARD Infinity -200   476.7014 0
STO STANDARD Infinity 9   9 0
2 STANDARD Infinity 4 H-QK3L 30.04656 0
3 STANDARD -134.133 5.996206   33.5536 0
4 STANDARD Infinity 4 H-QK3L 47.00138 0
5 STANDARD -99 -4 MIRROR 48.08787 0
6 EVENASPH Infinity -5.996206   48.07203 0
7 EVENASPH -134.133 -4 H-QK3L 47.88681 0
8 STANDARD Infinity -0.2 PMMA 47.64044 0
9 STANDARD Infinity 0 MIRROR 47.61382 0
10 STANDARD Infinity 0.2 PMMA 47.61382 0
11 STANDARD Infinity 4 H-QK3L 47.58719 0
12 EVENASPH -134.133 5.996206   47.33418 0
13 EVENASPH Infinity 4 H-QK3L 44.22057 0
14 STANDARD -99 0.6   43.82507 0
15 STANDARD Infinity 0.4 BK7 41.91615 0
IMA STANDARD Infinity     41.9188 0
本实施例中的其他相关参数解释可以参考实施例一中的表一,在此不再一一赘述。
所述短距离光学放大模组相对应的其它参数如表四:
Figure PCTCN2016076936-appb-000002
通过表四可以看出,通过表三中的相关参数设计,所述第一透镜10焦距为10.4F(274.56mm)、所述第二透镜20第一焦距为1.5F(39.6mm)、同时所述第二透镜20的半透射半反射面的反射面有效焦距为1.88F(49.63mm)以及光学系统厚度设计15mm,可以获得26.4mm的系统焦距以及100°的大视场角;通过将设置在所述短距离光学放大模组前的光圈设计为2.9,即对应的光阑直径D为9.1mm,相应的便可以获得9mm的较大的眼动范围。
同时设计屏幕尺寸为2.3英寸、接目距为9mm,结合图7的MTF图中,得出各个视场平均纵坐标(调制传递函数)高于0.18的横坐标(每毫米空间频率)值,进而得出所述短距离光学放大模组的视角解析力可以支持2500*2500的分辨率;进一步的,从图8可以得出本实施例中的光学成像畸变率控制在(-33.4%,0)的范围内,图9中的场曲控制在(-1mm,1mm)范围内。
实施例三
如图10所示,在所述短距离光学放大模组中,设计所述第一透镜10的焦距为6.7F,所述第二透镜20的第一焦距f2等于系统焦距1.6F,其中,
所述短距离光学放大模组的具体设计参数如表五:
Figure PCTCN2016076936-appb-000003
Figure PCTCN2016076936-appb-000004
在表五中,第二行代表PARAXIAL近轴设计;第四行代表光学模组中的反射式偏振片和第一相位延迟片形成的膜片中的相关参数设计;第六行和第七行代表所述第一透镜10的相关参数设计,其中所述第一透镜10的第二光学面E2为EVENASPH非球面;第八行和第九行代表所述第一透镜20的相关参数设计,其中所述第一透镜20的第三光学面E3为EVENASPH非球面。本实施例中的其他相关参数解释可以参考实施例一,在此不再一一赘述。
所述短距离光学放大模组中的光学面的细化设计参数如表六:
Figure PCTCN2016076936-appb-000005
Figure PCTCN2016076936-appb-000006
Figure PCTCN2016076936-appb-000007
在表六中,非球面公式一般表面为;
Figure PCTCN2016076936-appb-000008
其中:r为透镜上的点到光轴距离,c为曲面顶点的曲率,K为二次曲面系数,d,e,f,g,h,I,j分别为4、6、8、10、12、14、16次曲面系数。
把相应系数值分别代入x公式(6)就是各表面的非球面方程表达式。
所述短距离光学放大模组相对应的其它参数如表七:
Figure PCTCN2016076936-appb-000009
Figure PCTCN2016076936-appb-000010
通过表七可以看出,通过表五和表六中的相关参数设计,所述第一透镜10焦距为6.7F(110.42mm)、所述第二透镜20第一焦距为1.6F(26.368mm)、同时所述第二透镜20的半透射半反射的反射面有效焦距为1.9F(94.297mm)以及光学系统厚度设计11.1mm,可以获得16.48mm的系统焦距以及100°的大视场角;通过将设置在所述短距离光学放大模组前的光圈设计为2.1,即对应的光阑直径D为8mm,相应的便可以获得8mm的较大的眼动范围。
同时设计屏幕尺寸为1.49英寸、接目距为9mm,结合图11的MTF图中,得出各个视场平均纵坐标(调制传递函数)高于0.18的横坐标(每毫米空间频率)值,进而得出所述短距离光学放大模组的视角解析力可以支持2600*2600的高分辨率;进一步的,从图12可以得出本实施例中的光学成像畸变率控制在(-32.8%,0)的范围内,图13中的场曲控制在(-0.5mm,0.5mm)范围内。
实施例四
如图14所示,在所述短距离光学放大模组中,设计所述第一透镜10的焦距为8.2F,设计所述第二透镜20的第一焦距f2等于系统焦距1.6F,其中,
所述短距离光学放大模组的具体设计参数如表八:
Figure PCTCN2016076936-appb-000011
Figure PCTCN2016076936-appb-000012
本实施例中的表八相关参数解释可以参考实施例一至实施例三,在此不再一一赘述。
所述短距离光学放大模组相对应的其它参数如表九:
屏幕尺寸C(英寸) 2.6
视场角V(°) 100
系统焦距F(mm) 29.5
半透半射面反射面有效焦距fs4 2F
eyebox眼动范围A(mm) 9
屏幕分辨率 4000*4000
光学系统厚度(mm) 16.2
eye relif接目距(mm) 9
F#光圈 3.2
光学外直径(mm) 52
系统畸变D 33
第二透镜第一焦距f2 1.6F
第一透镜焦距f1 8.2F
通过表九可以看出,通过表八中的相关参数设计,所述第一透镜10焦距为8.5F(241.9mm)、所述第二透镜20第一焦距为1.6F(47.2mm)、同时所述第二透 镜20的半透射半反射面反射面有效焦距为2F(59mm)以及光学系统厚度设计16.5mm,可以获得29.5mm的系统焦距以及100°的大视场角;通过将设置在所述短距离光学放大模组前的光圈设计为3.2,即对应的光阑直径D为9.2mm,相应的便可以获得9mm的大的眼动范围。
同时设计屏幕尺寸为2.6英寸、接目距为9mm,结合图15的MTF图中,得出各个视场平均纵坐标(调制传递函数)高于0.18的横坐标(每毫米空间频率)值,进而得出所述短距离光学放大模组的视角解析力可以支持4000*4000的高分辨率;进一步的,从图16可以得出本实施例中的光学成像畸变率控制在(-33%,0)的范围内,图17中的场曲控制在(-0.5mm,0.5mm)范围内。
实施例五
如图18所示,在所述短距离光学放大模组中,设计所述第一透镜10的焦距为3.8F,所述第二透镜20的第一焦距f2等于系统焦距2F,其中,
所述短距离光学放大模组的具体设计参数如表十:
Figure PCTCN2016076936-appb-000013
Figure PCTCN2016076936-appb-000014
本实施例中的表十相关参数解释可以参考实施例一至实施例三,在此不再一一赘述。
所述短距离光学放大模组中的光学面的细化设计参数如表十一:
Figure PCTCN2016076936-appb-000015
Figure PCTCN2016076936-appb-000016
Figure PCTCN2016076936-appb-000017
所述短距离光学放大模组相对应的其它参数如表十二::
屏幕尺寸C(英寸) 1.66
视场角V(°) 100
系统焦距F(mm) 18
半透半射面反射面有效焦距fs4 1.9F
eyebox眼动范围A(mm) 8
屏幕分辨率 2000*2000
光学系统厚度(mm) 12.8
eye relif接目距(mm) 9
F#光圈 2.3
光学外直径(mm) 40
系统畸变D 32.5
第二透镜第一焦距f2 2F
第一透镜焦距f1 3.8F
通过表十二可以看出,通过表十和十一中的相关参数设计,所述第一透镜10焦距为3.8F(68.4mm)、所述第二透镜20第一焦距为2F(36mm)、同时所述第二透镜20的半透射半反射反射面有效焦距为1.9F(34.2mm)以及光学系统厚度设计12.8mm,可以获得18mm的系统焦距以及100°的大视场角;通过将设置在所述短距离光学放大模组前的光圈设计为2.3,即对应的光阑直径D为8mm,相应的便可以获得8mm的大的眼动范围。
同时设计屏幕尺寸为1.66英寸、接目距为9mm,结合图19的MTF图,得出各个视场平均纵坐标(调制传递函数)高于0.18的横坐标(每毫米空间频率)值,进而得出所述短距离光学放大模组的视角解析力可以支持2000*2000的分辨率,图20中的畸变率控制在(-32.5%,0)的范围内,图21中的场曲控制在(-0.5mm,0.5mm)范围内。
进一步的,所述半透半射面反射面有效焦距并不限于设计为1.9F,还可以设计为5F;所述光学系统厚度和接目距也并不仅限于12.8mm和9mm,还可以分别设计为28mm和10mm。
基于本实施例提供的短距离光学放大模组,本发明还提供了一种眼镜,包括上述实施例中的短距离光学放大模组,所述眼镜还包括屏幕30,所述屏幕30与所述短距离光学放大模组同轴或非同轴设置。图2、图6、图10、图14和图18中的所述的屏幕30与短距离光学放大模组同轴,但在使用中屏幕30与所述短距离光学放大模组可以同轴也可以不同轴,在具体实施中可以根据实际需要自行选择。
基于本实施例提供的短距离光学放大模组,本发明还提供了一种头盔,包括上述实施例中的短距离光学放大模组,所述眼镜还包括屏幕30,所述屏幕30与所述短距离光学放大模组同轴或非同轴设置。图2、图6、图10和图14中的所述的屏幕30中所述的屏幕30与短距离光学放大模组同轴,此处为了表达方便,但在使用中屏幕30与短距离光学放大模组可以同轴也可以不同轴,根据实际需要自行选择。
基于本发明提供的眼镜和头盔,本发明还提供了一种VR系统,包括上述实施例中的眼镜或头盔,用于智能VR(Virtual Reality,虚拟现实)穿戴设备的使用。上述VR系统中采用短距离光学放大模组构成的眼镜或头盔,使其具有较佳的视场角、眼动范围、高质量的成像效果以及小尺寸超薄结构等,将给使用者带来良好的体验,具体的请参考短距离光学放大模组的实施例,在此不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种短距离光学放大模组,其特征在于,包括依次排列布置反射式偏振片、第一相位延迟片、第二透镜和第二相位延迟片,其中:
    在所述反射式偏振片、所述第一相位延迟片、所述第二透镜和所述第二相位延迟片中任一个光学元件的两侧任一位置还设有第一透镜;
    所述第二透镜中、靠近所述第二相位延迟片的光学面为半透射半反射光学面;
    所述第二透镜的第一焦距f2满足以下条件:1F≤f2≤2F,F为由所述短距离光学放大模组的系统焦距。
  2. 根据权利要求1所述的短距离光学放大模组,其特征在于,所述半透射半反射光学面的反射面有效焦距fs4满足以下条件:1.5F≤fs4≤5F。
  3. 根据权利要求2所述的短距离光学放大模组,其特征在于,所述半透射半反射光学面的反射面有效焦距fs4满足以下条件:1F≤fs4≤2F。
  4. 根据权利要求1所述的短距离光学放大模组,其特征在于,所述第二透镜的第一焦距f2满足以下条件:1.5F≤f2≤2F。
  5. 根据权利要求4所述的短距离光学放大模组,其特征在于,所述第二透镜的第一焦距f2为1.6F。
  6. 根据权利要求1-5任一所述的短距离光学放大模组,其特征在于,所述第二透镜中、靠近所述第一透镜的光学面焦距fs3满足以下条件:|fs3|≥2F。
  7. 根据权利要求1-5任一所述的短距离光学放大模组,其特征在于,所述第一透镜的焦距f1满足以下条件:|f1|≥3F。
  8. 根据权利要求1-5任一所述的短距离光学放大模组,其特征在于,所述短距离光学放大模组的厚度为11mm~28mm。
  9. 根据权利要求1-5任一所述的短距离光学放大模组,其特征在于,所述短距离光学放大模组的接目距为5mm~10mm。
  10. 根据权利要求1-5任一所述的短距离光学放大模组,其特征在于,经过所述第二透镜和所述第一透镜参与成像的光束所通过的口径D满足以下 条件:0.28F≤D≤0.45F。
  11. 一种短距离光学放大眼镜,其特征在于,包括权利要求1-10任一所述的短距离光学放大模组,还包括显示屏,所述显示屏与所述短距离光学放大模组同轴或非同轴设置。
  12. 一种短距离光学放大头盔,其特征在于,包括权利要求1-10任一所述的短距离光学放大模组,还包括显示屏,所述显示屏与所述短距离光学放大模组同轴或非同轴设置。
  13. 一种短距离光学放大VR系统,其特征在于,包括权利要求11所述的眼镜或权利要求12所述的头盔。
PCT/CN2016/076936 2016-03-21 2016-03-21 短距离光学放大模组、眼镜、头盔及vr系统 WO2017161487A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16774841.7A EP3249445B1 (en) 2016-03-21 2016-03-21 Short-distance optical magnification module, glasses, helmet and vr system
JP2016563185A JP6377765B2 (ja) 2016-03-21 2016-03-21 短距離光拡大モジュール、眼鏡、ヘルメット、およびvrシステム
ES16774841T ES2883676T3 (es) 2016-03-21 2016-03-21 Módulo, gafas, casco y sistema de VR de aumento óptico a corta distancia
PT167748417T PT3249445T (pt) 2016-03-21 2016-03-21 Módulo de ampliação óptica de curto alcance, óculos, capacete e sistema de rv
KR1020187030474A KR102257641B1 (ko) 2016-03-21 2016-03-21 근거리 광 증폭 모듈, 안경, 헬멧 및 가상현실 시스템
PCT/CN2016/076936 WO2017161487A1 (zh) 2016-03-21 2016-03-21 短距离光学放大模组、眼镜、头盔及vr系统
US15/129,778 US10120192B2 (en) 2016-03-21 2016-03-21 Short-range optical amplification module, spectacles, helmet and VR system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076936 WO2017161487A1 (zh) 2016-03-21 2016-03-21 短距离光学放大模组、眼镜、头盔及vr系统

Publications (1)

Publication Number Publication Date
WO2017161487A1 true WO2017161487A1 (zh) 2017-09-28

Family

ID=59900924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076936 WO2017161487A1 (zh) 2016-03-21 2016-03-21 短距离光学放大模组、眼镜、头盔及vr系统

Country Status (7)

Country Link
US (1) US10120192B2 (zh)
EP (1) EP3249445B1 (zh)
JP (1) JP6377765B2 (zh)
KR (1) KR102257641B1 (zh)
ES (1) ES2883676T3 (zh)
PT (1) PT3249445T (zh)
WO (1) WO2017161487A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505920A (zh) * 2019-09-16 2021-03-16 双莹科技股份有限公司 微型化短距离光学系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017161488A1 (zh) * 2016-03-21 2017-09-28 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统
JP2022542049A (ja) * 2019-07-22 2022-09-29 スリーエム イノベイティブ プロパティズ カンパニー 拡大された仮想画像を表示する光学システム
CN116027551A (zh) * 2021-10-26 2023-04-28 广州视源电子科技股份有限公司 一种短焦折叠光学系统以及虚拟现实显示设备
CN114280783B (zh) * 2021-12-22 2022-12-06 上海摩软通讯技术有限公司 光学模组及vr设备
WO2023153266A1 (ja) * 2022-02-09 2023-08-17 ソニーグループ株式会社 光学系及び表示装置
CN114942489A (zh) * 2022-07-26 2022-08-26 歌尔光学科技有限公司 一种光学模组以及头戴显示设备
CN116338959A (zh) * 2023-01-20 2023-06-27 诚瑞光学(常州)股份有限公司 光学系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075651A (en) * 1999-01-28 2000-06-13 Kaiser Electro-Optics, Inc. Compact collimating apparatus
CN1930511A (zh) * 2003-11-26 2007-03-14 吕勒公司 用于真实世界模拟的改进的准直光学元件
CN104414747A (zh) * 2013-09-11 2015-03-18 财团法人工业技术研究院 虚像显示装置
CN105093555A (zh) * 2015-07-13 2015-11-25 深圳多新哆技术有限责任公司 短距离光学放大模组及使用其的近眼显示光学模组
CN105676477A (zh) * 2016-03-21 2016-06-15 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统
CN205562978U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480875A (en) * 1965-12-06 1969-11-25 Ibm Laser scanning device having two lens systems with a common focal plane
JP3441188B2 (ja) 1994-10-07 2003-08-25 オリンパス光学工業株式会社 光学系及び視覚表示装置
JP3411953B2 (ja) * 1996-04-24 2003-06-03 シャープ株式会社 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
US5975703A (en) * 1996-09-30 1999-11-02 Digital Optics International Image projection system
JP3387338B2 (ja) 1996-12-24 2003-03-17 三菱電機株式会社 接眼光学系、及び接眼映像表示装置
WO1999031535A1 (fr) * 1997-12-16 1999-06-24 Gosudarstvenny Nauchny Tsentr Rossiiskoi Federatsii 'niopik' (Gnts Rf 'niopik') Polariseur et element d'affichage a cristaux liquides
US6208463B1 (en) * 1998-05-14 2001-03-27 Moxtek Polarizer apparatus for producing a generally polarized beam of light
US6108131A (en) * 1998-05-14 2000-08-22 Moxtek Polarizer apparatus for producing a generally polarized beam of light
JP2000194068A (ja) * 1998-12-25 2000-07-14 Seiko Epson Corp 照明光学系および投写型表示装置
JP4419281B2 (ja) 2000-06-13 2010-02-24 コニカミノルタホールディングス株式会社 接眼光学系
US7206134B2 (en) * 2004-02-04 2007-04-17 Displaytech, Inc. Compact electronic viewfinder
CN102301275B (zh) * 2008-12-01 2014-10-08 瑞尔D股份有限公司 用于在中间像面使用空间复用的立体投影系统和方法
WO2011008552A2 (en) * 2009-06-29 2011-01-20 Reald Inc. Stereoscopic projection system employing spatial multiplexing at an intermediate image plane
JP5646440B2 (ja) * 2011-11-18 2014-12-24 昭和オプトロニクス株式会社 接眼レンズ
CN204855955U (zh) * 2015-07-13 2015-12-09 深圳多新哆技术有限责任公司 短距离光学放大模组及使用其的近眼显示光学模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075651A (en) * 1999-01-28 2000-06-13 Kaiser Electro-Optics, Inc. Compact collimating apparatus
CN1930511A (zh) * 2003-11-26 2007-03-14 吕勒公司 用于真实世界模拟的改进的准直光学元件
CN104414747A (zh) * 2013-09-11 2015-03-18 财团法人工业技术研究院 虚像显示装置
CN105093555A (zh) * 2015-07-13 2015-11-25 深圳多新哆技术有限责任公司 短距离光学放大模组及使用其的近眼显示光学模组
CN105676477A (zh) * 2016-03-21 2016-06-15 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统
CN205562978U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505920A (zh) * 2019-09-16 2021-03-16 双莹科技股份有限公司 微型化短距离光学系统

Also Published As

Publication number Publication date
US10120192B2 (en) 2018-11-06
KR102257641B1 (ko) 2021-06-01
JP6377765B2 (ja) 2018-08-22
EP3249445B1 (en) 2021-05-05
US20180088332A1 (en) 2018-03-29
EP3249445A4 (en) 2017-11-29
ES2883676T3 (es) 2021-12-09
JP2018512602A (ja) 2018-05-17
PT3249445T (pt) 2021-08-06
EP3249445A1 (en) 2017-11-29
KR20180133866A (ko) 2018-12-17

Similar Documents

Publication Publication Date Title
WO2017161487A1 (zh) 短距离光学放大模组、眼镜、头盔及vr系统
WO2017161488A1 (zh) 短距离光学放大模组、眼镜、头盔及vr系统
WO2017161486A1 (zh) 短距离光学放大模组、眼镜、头盔及vr系统
CN107683432B (zh) 大视场角的目镜光学系统及头戴显示装置
CN105676477B (zh) 短距离光学放大模组、眼镜、头盔及vr系统
CN105629494B (zh) 一种短距离光学放大模组、眼镜、头盔以及vr系统
WO2017161485A1 (zh) 短距离光学放大模组、眼镜、头盔及vr系统
CN205562977U (zh) 短距离光学放大模组、眼镜、头盔及vr系统
US20210302627A1 (en) Eyepiece and display apparatus
CN105652460B (zh) 短距离光学放大模组、眼镜、头盔及vr系统
CN113325565B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
WO2022141385A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN113341558A (zh) 一种反射式目镜光学系统及头戴近眼显示装置
CN110596898B (zh) 一种一屏双目式头戴显示光学系统及设备
CN113341557B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
CN113325566B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
WO2022141389A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141387A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141382A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN113341556B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
WO2022141595A1 (zh) 一种可叠加光路的目镜光学系统及头戴显示装置
WO2022141386A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141381A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141383A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN113341555A (zh) 一种反射式目镜光学系统及头戴近眼显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15129778

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016774841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016774841

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016563185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030474

Country of ref document: KR

Kind code of ref document: A