WO2022141381A1 - 一种大视场角的目镜光学系统及头戴显示装置 - Google Patents

一种大视场角的目镜光学系统及头戴显示装置 Download PDF

Info

Publication number
WO2022141381A1
WO2022141381A1 PCT/CN2020/142066 CN2020142066W WO2022141381A1 WO 2022141381 A1 WO2022141381 A1 WO 2022141381A1 CN 2020142066 W CN2020142066 W CN 2020142066W WO 2022141381 A1 WO2022141381 A1 WO 2022141381A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
optical
optical system
eyepiece
Prior art date
Application number
PCT/CN2020/142066
Other languages
English (en)
French (fr)
Inventor
曹鸿鹏
郭健飞
彭华军
Original Assignee
深圳纳德光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳纳德光学有限公司 filed Critical 深圳纳德光学有限公司
Priority to PCT/CN2020/142066 priority Critical patent/WO2022141381A1/zh
Publication of WO2022141381A1 publication Critical patent/WO2022141381A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to the field of optical technology, and more particularly, to an eyepiece optical system with a large viewing angle and a head-mounted display device.
  • wearable computing a new model based on "people-oriented” and “human-machine integration” has become possible.
  • Applications continue to emerge in military, industrial, medical, education, consumer and other fields.
  • the head-mounted display device is a key component.
  • the head-mounted display device guides the video image light emitted by the miniature image display (such as transmissive or reflective liquid crystal display, organic electroluminescent device, DMD device) to the user's pupil through optical technology, and the user's near vision
  • the scope realizes virtual and enlarged images, and provides users with intuitive and visible images, videos, and text information.
  • the eyepiece optical system is the core of the head-mounted display device, which realizes the function of displaying a miniature image in front of the human eyes to form a virtual magnified image.
  • the head-mounted display device is developing towards the direction of compact size, light weight, easy to wear on the head and lightening of the load.
  • large field of view and visual comfort have gradually become the key factors to measure the quality of head-mounted display devices.
  • Large field of view determines the effect of high-presence visual experience, and high image quality and low distortion determine the comfort of visual experience.
  • Spend. To meet these requirements, it is necessary for the eyepiece optical system to achieve a large field of view, high image resolution, low distortion, small field curvature, and small volume as much as possible. At the same time, satisfying the above optical performance is very important for system design and aberration optimization. challenge.
  • Patent Document 1 Choinese Patent Publication No. CN109416469A
  • Patent Document 2 Choinese Patent Publication No. CN105759424B
  • Patent Document 3 Choinese Patent Publication No. CN107015361B
  • Patent Document 4 Choinese Patent Publication No. CN111381371A
  • Patent Document 1 and Patent Document 3 completely rely on Fresnel lenses
  • Patent Documents 2 and 4 are Fresnel lenses and single and double positive lenses. Combined, it is inevitable that it is difficult to make achievements in the aberration of the optical system, and there is a large distortion and spherical aberration.
  • Patent Document 5 Choinese Patent Publication No. CN105278109A provides an optical system using a combination of positive, negative, and positive lens groups, and provides an optical system that uses a combination of positive, negative, and positive lens groups. It is a traditional spherical and even-order aspheric optical system. Although it has great advantages in aberration correction, it is extremely cumbersome under the same optical system parameters.
  • the technical problem to be solved by the present invention is to provide an eyepiece optical system and a head-mounted display device with a large field of view in view of the above-mentioned defects of the prior art, which can achieve a large field of view, high image resolution, low distortion, and a small field of view. Curve, small volume and other indicators.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing an eyepiece optical system with a large field of view, comprising a first lens group, a first lens group, The second lens group and the third lens group, and the effective focal lengths of the first lens group, the second lens group and the third lens group are positive, negative and positive combinations; the first lens group is composed of two The first lens group includes at least two Fresnel optical surfaces; the first lens includes at least one Describe the Fresnel optical surface;
  • the effective focal length of the optical system is set to F, and the effective focal length of the first lens group is set to f 1 , then F and f 1 satisfy the following relational formula (1):
  • the second lens group is composed of two optical lenses; wherein the second lens group includes a third lens and a fourth lens adjacent to the first lens group and arranged in sequence along the optical axis; the third lens and the fourth lens is a negative lens;
  • the third lens group is composed of two optical lenses; wherein the third lens group includes a fifth lens and a sixth lens adjacent to the second lens group and arranged in sequence along the optical axis; the fifth lens is a positive lens; the sixth lens is a negative lens;
  • the material properties of the first lens and the second lens satisfy the following relational expressions (2) and (3):
  • Nd 11 and Nd 12 are the refractive indices of the first lens and the second lens at the d-line, respectively.
  • the effective focal length f 11 of the first lens and the effective focal length f 1 of the first lens group satisfy the following relational formula (4):
  • the effective focal length of the optical system is F;
  • the effective focal length of the second lens group is set to f 2 , and F and f 2 satisfy the following relational formula (5):
  • the effective focal length of the first lens group is f 1
  • the effective focal length of the third lens group is set to f 3 , then f 1 and f 3 satisfy the following relational formula (6):
  • each of the first lens and the second lens includes one of the Fresnel optical surfaces.
  • the two Fresnel optical surfaces are arranged adjacently.
  • the two Fresnel optical surfaces are both plane base Fresnel optical surfaces.
  • one or more optical surfaces of the first lens and the second lens are even-order aspheric surfaces; the optical surfaces of the third lens and the fourth lens are even-order aspheric surfaces.
  • the third lens is a biconcave lens.
  • the fifth lens is a biconvex lens.
  • the material of the third lens, the fourth lens and the sixth lens is optical glass or optical plastic.
  • the present invention also provides a head-mounted display device, comprising a miniature image display and an eyepiece; the eyepiece is located between the human eye and the microscopic image display; the eyepiece is the eyepiece optical system described in any one of the foregoing.
  • the micro-image display is an organic electroluminescence light-emitting device, a transmissive liquid crystal display or a reflective liquid crystal display.
  • the head-mounted display device includes two identical and symmetrically arranged eyepiece optical systems.
  • the beneficial effects of the invention are: a combination of a double Fresnel optical surface type and a traditional optical spherical surface and aspherical surface type is adopted, and the combination of positive, negative and positive lens groups and the focal length of each lens can meet specific matching conditions. While achieving the advantages of large field of view, high image quality, low distortion, small field curvature, small volume and other indicators under the condition of It reduces the sensitivity of each optical component, facilitates the processing and assembly of the components, further improves the field of view, field curvature, distortion and other indicators in the optical system, and greatly improves the user's visual comfort experience. Through the eyepiece optical system of the present invention, an observer can watch a large-scale picture with full-frame high-definition, no distortion, and uniform image quality, so as to achieve a high-presence visual experience.
  • FIG. 1 is a schematic structural diagram of an eyepiece optical system according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a diffused spot array of the eyepiece optical system according to the first embodiment of the present invention
  • Fig. 3 is the distortion schematic diagram of the eyepiece optical system of the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system according to the first embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an eyepiece optical system according to a second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a speckle array of an eyepiece optical system according to a second embodiment of the present invention.
  • Fig. 7 is the distortion schematic diagram of the eyepiece optical system of the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the optical transfer function MTF of the eyepiece optical system according to the second embodiment of the present invention.
  • the present invention constructs an eyepiece optical system with a large field of view, comprising a first lens group, a second lens group and a third lens group which are coaxially arranged in sequence along the optical axis from the observation side of the human eye to the side of the micro-image display, and
  • the effective focal lengths of the first lens group, the second lens group and the third lens group are a combination of positive, negative and positive;
  • the first lens group is composed of two optical lenses, which are the first lens close to the human eye and the first lens away from the human eye.
  • the effective focal length of the optical system is set to F, and the effective focal length of the first lens group is set to f 1 , then F and f 1 satisfy the following relational formula (1):
  • f 1 /F can be 0.50, 0.53, 0.67, 0.87, 0.99, 1.21, 1.29, 0.33 and so on.
  • the second lens group is composed of two optical lenses; the second lens group includes a third lens and a fourth lens adjacent to the first lens group and arranged in sequence along the optical axis; the third lens and the fourth lens are both negative lenses ;
  • the third lens group is composed of two optical lenses; the third lens group includes a fifth lens and a sixth lens that are adjacent to the second lens group and are arranged in sequence along the optical axis; the fifth lens is a positive lens; the sixth lens is a negative lens lens;
  • Nd 11 and Nd 12 are the refractive indices of the first lens and the second lens at the d-line, respectively.
  • the wavelength of the d-line is 589.3 nm.
  • the materials of the first lens and the second lens are optional: E48R, K26R, EP3000, OKP1, etc.
  • the first lens group, the second lens group and the third lens group adopt the combination of positive, negative and positive
  • the second lens group and each lens in the third lens group adopt the combination of negative, negative, positive and negative
  • the aberration of the system is corrected and the optical resolution of the system is improved.
  • the structure of double Fresnel surfaces is adopted in the first lens group, which shares most of the effective focal lengths in the optical system, effectively reduces the difference in the outer diameter of each lens, and reduces the size of the eyepiece optics.
  • the overall size of the system improves the reliability of subsequent mass production.
  • the second lens group can provide a sufficient negative effective focal length to ensure that the eyepiece optical system can achieve a large enough angle of view.
  • optical indicators such as large field of view, low distortion, low chromatic aberration, low field curvature, and low astigmatism are realized.
  • the observer can watch a large picture with full-frame high-definition, no distortion and uniform image quality. Achieving a highly immersive visual experience.
  • This product is intended for use with head mounted displays and similar devices.
  • FIG. 1 it includes a first lens group, a second lens group, and a third lens group arranged in sequence along the optical axis direction from the observation side of the human eye to the micro-image display;
  • the surface number is 1, and so on (from left to right: 2, 3, 4, 5, 6...), the light emitted from the micro-image display goes through the third lens group, the second lens group , After the first lens group is refracted, it enters the human eye.
  • the effective focal length f 11 of the first lens and the effective focal length f 1 of the first lens group satisfy the following relational formula (4):
  • f 11 /f 1 can be 1.50, 1.62, 1.83, 1.95, 2.21, 2.75, 2.98, 3.5, 3.89, 4.31, 4.48 and so on.
  • the effective focal length of the optical system is F; the effective focal length of the second lens group is set to f 2 , and F and f 2 satisfy the following relational formula (5):
  • f 2 /F can be -0.98, -0.95, -0.82, -0.77, -0.57, -0.49, -0.41, -0.38, -0.35 and so on.
  • the effective focal length of the first lens group is f 1
  • the effective focal length of the third lens group is set to f 3 , then f 1 and f 3 satisfy the following relational formula (6):
  • f 1 /f 3 can be 0.02, 0.32, 0.47, 0.67, 0.89, 1.32, 1.55, 1.89, 2.01, 2.11, 2.15 and so on.
  • f 1 /F, f 11 /f 1 , f 2 /F and f 1 /f 3 are closely related to the correction of system aberrations, the processing difficulty of optical components, and the sensitivity of optical component assembly deviations.
  • the value of f 1 /F in formula (1) is greater than 0.5, so that the aberration of the system can be fully corrected, so as to achieve high-quality optical effects, and the value of f 1 /F is less than 1.33, which improves the machinability of the optical elements in the system; relation;
  • the value of f 11 /f 1 is greater than 1.5, so that the aberration of the system can be fully corrected, thereby achieving high-quality optical effects, and the value of f 11 /f 1 is less than 4.48, which improves the processability of the optical elements in the system;
  • the value of f 1 /f 3 in the relation (6) is greater than 0.02, so that the aberration of the system can be fully corrected, thereby achieving high-quality optical effects, and the value of f 1 /f 3 is less than 2.15, which improves the machinability of the optical elements in the system .
  • f 2 /F in the relationship (5) is greater than -0.95, so that the corresponding lens can provide sufficient negative effective focal length, so as to better balance and correct system aberrations and achieve good optical effects, and its value is less than -0.35, which reduces the difficulty of spherical aberration correction and facilitates the realization of large optical apertures.
  • the first lens and the second lens respectively include a Fresnel optical surface.
  • the two Fresnel optical surfaces are arranged adjacently.
  • both Fresnel optical surfaces are planar base Fresnel optical surfaces.
  • the double Fresnel optical surfaces in the eyepiece optical system are respectively arranged on the first lens and the second lens, and are arranged in an adjacent manner, that is, the optical surface of the first lens away from the human eye is Fresnel.
  • the ear surface, the optical surface of the second lens close to the human eye side is the Fresnel surface.
  • the structure of double Fresnel surfaces is adopted, which shares most of the effective focal length in the optical system, effectively reduces the difference between the outer diameters of each lens, reduces the overall size of the eyepiece optical system, and improves subsequent mass production. reliability.
  • one or more optical surfaces in the first lens and the second lens are even-order aspheric surfaces; and the optical surfaces in the third lens and the fourth lens are even-order aspheric surfaces.
  • the aberrations at all levels of the optical system are further optimized and corrected.
  • the optical performance of the eyepiece optical system is further improved.
  • the expression for the aspheric surface is:
  • z is the sag of the optical surface
  • c is the curvature at the vertex of the aspheric surface
  • k is the aspheric coefficient
  • ⁇ 2, 4, 6... are the coefficients of each order
  • r is the distance coordinate from the point on the surface to the optical axis of the lens system.
  • the aberrations of the optical system are fully corrected, which is beneficial for the eyepiece optical system to achieve a large field of view .
  • the image quality of the central field of view and the edge of the field of view is further improved, the difference between the image quality of the center and the edge of the field of view is reduced, and the image quality and low distortion in the full frame are more uniform.
  • the third lens is a biconcave lens.
  • the fifth lens is a biconvex lens.
  • the material of the third lens, the fourth lens and the sixth lens is optical glass or optical plastic.
  • the above-mentioned embodiments further improve aberrations such as astigmatism and field curvature of the system, which is beneficial for the eyepiece system to achieve a high-resolution optical effect of uniform image quality across the entire frame.
  • the diaphragm E may be the exit pupil of the eyepiece optical system for imaging, which is a virtual light exit aperture.
  • the pupil of the human eye is at the diaphragm position, the best imaging effect can be observed.
  • the eyepiece design data of the first embodiment are shown in Table 1 below:
  • 1 is a 2D structural diagram of the eyepiece optical system of the first embodiment, including a first lens group D1, a second lens group D2 and a first lens group D1, a second lens group D2 and The third lens group D3, the first lens group is composed of a first lens L1 and a second lens L2, the second and third optical surfaces of the first lens group D1 are composed of two Fresnel surfaces, and the second lens group D2 is The negative effective focal length lens group composed of two negative effective focal length optical lenses is the third lens L3 and the fourth lens L4 respectively; the third lens group D3 is composed of a positive effective focal length optical lens and a negative effective focal length optical lens.
  • the positive effective focal length lens groups are the fifth lens L5 and the sixth lens L6 respectively.
  • the focal length F of the optical system is 35.06, the effective focal length f1 of the first lens group D1 is 17.53, the effective focal length f2 of the second lens group D2 is -12.27, and the effective focal length f3 of the third lens group D3 is 8.15, wherein
  • the Fresnel lens close to the human eye has an effective focal length f 11 of 78.50, i.e. f 1 /F is 0.50, f 11 /f 1 is 4.48, f 2 /F is -0.35, and f 1 /f 3 is 2.15.
  • Accompanying drawing 2, accompanying drawing 3, accompanying drawing 4 are the scattered spot array diagram, the distortion diagram and the optical transfer function MTF diagram of the optical system, respectively, reflecting the light of each field of view in the present embodiment on the image plane (display device (IMG)
  • the unit pixel of 1) has very high resolution and very little optical distortion, the resolution per 10mm per unit period reaches more than 0.5, the aberration of the optical system is well corrected, and uniform, high optical quality can be observed through the eyepiece optical system. Display portrait of performance.
  • the eyepiece design data of the second embodiment are shown in Table 2 below:
  • FIG. 5 is a 2D structural diagram of the eyepiece optical system of the second embodiment, including a first lens group D1, a second lens group D2 and a first lens group D1, a second lens group D2 and The third lens group D3, the first lens group is composed of a first lens L1 and a second lens L2, the second and third optical surfaces of the first lens group D1 are composed of two Fresnel surfaces, and the second lens group D2 is The negative effective focal length lens group composed of two negative effective focal length optical lenses is the third lens L3 and the fourth lens L4 respectively; the third lens group D3 is composed of a positive effective focal length optical lens and a negative effective focal length optical lens.
  • the positive effective focal length lens groups are the fifth lens L5 and the sixth lens L6 respectively.
  • the main feature of the second embodiment is that its various optical indicators are slightly lower, and the imaging quality is good.
  • the focal length F of the optical system is 12.91
  • the effective focal length f1 of the first lens group D1 is 17.17
  • the effective focal length f2 of the second lens group D2 is -11.95
  • the effective focal length f3 of the third lens group D3 is 17.76
  • the Fresnel lens close to the human eye has an effective focal length f 11 of 25.75, i.e. f 1 /F is 1.33, f 11 /f 1 is 1.50, f 2 /F is -0.93, and f 1 /f 3 is 0.97.
  • Fig. 6, Fig. 7, Fig. 8 are the scattered spot array diagram, the distortion diagram and the optical transfer function MTF diagram of the optical system, respectively, reflecting the light of each field of view in the present embodiment on the image plane (display device (IMG)
  • the unit pixel of 1) has very high resolution and very little optical distortion, the resolution per 10mm per unit period reaches more than 0.8, the aberration of the optical system is well corrected, and uniform, high optical quality can be observed through the eyepiece optical system. Display portrait of performance.
  • the eyepiece design data of the third embodiment are shown in Table 3 below:
  • FIG. 9 is a 2D structural diagram of the eyepiece optical system of the third embodiment, including a first lens group D1, a second lens group D2 and a first lens group D1, a second lens group D2 and The third lens group D3, the first lens group is composed of a first lens L1 and a second lens L2, the second and third optical surfaces of the first lens group D1 are composed of two Fresnel surfaces, and the second lens group D2 is The negative effective focal length lens group composed of two negative effective focal length optical lenses is the third lens L3 and the fourth lens L4 respectively; the third lens group D3 is composed of a positive effective focal length optical lens and a negative effective focal length optical lens.
  • the positive effective focal length lens groups are the fifth lens L5 and the sixth lens L6 respectively.
  • the main feature of the second embodiment is that its various optical indicators are slightly lower, and the imaging quality is good.
  • the focal length F of the optical system is 18.22
  • the optical focal length f1 of the first lens group D1 is 12.71
  • the effective focal length f2 of the second lens group D2 is -17.86
  • the effective focal length f3 of the third lens group D3 is 635.50
  • the optical focal length f 11 of the Fresnel lens close to the human eye is 27.89, that is, f 1 /F is 0.70
  • f 11 /f 1 is 2.19
  • f 2 /F is -0.98, and f 1 /f 3 is 0.02.
  • Fig. 10, Fig. 11, Fig. 12 are the diffused spot array diagram, distortion diagram and optical transfer function MTF diagram of the optical system, respectively, which reflect the light of each field of view in this embodiment on the image plane (display device (IMG)
  • the unit pixel of I) has very high resolution and very little optical distortion, the resolution per 10mm per unit period reaches more than 0.65, the aberration of the optical system is well corrected, and uniform, high optical quality can be observed through the eyepiece optical system. Display portrait of performance.
  • the present invention also provides a head-mounted display device, comprising a miniature image display and an eyepiece; the eyepiece is located between the human eye and the miniature image display; the eyepiece is the eyepiece optical system of any one of the foregoing.
  • the miniature image display is an organic electroluminescent device, a transmissive liquid crystal display or a reflective liquid crystal display.
  • the head mounted display device comprises two identical and symmetrically arranged eyepiece optical systems.
  • the eyepiece optical system of the above-mentioned embodiments of the present invention adopts a combination of a double Fresnel optical surface type and a traditional optical spherical and aspherical surface type, combined with a combination of positive, negative and positive lens groups and each lens
  • the focal length of the optical system achieves the advantages of large field of view, high image quality, low distortion, small field curvature, small volume and other indicators under the condition of meeting specific matching conditions, and also greatly reduces the weight of the optical system.
  • the system aberration is greatly eliminated, the sensitivity of each optical component is reduced, the processing and assembly of the components are easy, and the field of view, field curvature, distortion and other indicators in the optical system are further improved, and the user's visual comfort experience is greatly improved.
  • an observer can watch a large-scale picture with full-frame high-definition, no distortion and uniform image quality, so as to achieve a visual experience with a high sense of presence.

Abstract

一种大视场角的目镜光学系统及头戴显示装置,目镜光学系统包括从人眼观察侧到微型图像显示器(IMG)侧沿光轴方向共轴依次排列的第一透镜组(D1)、第二透镜组(D2)和第三透镜组(D3),且第一透镜组(D1)、第二透镜组(D2)以及第三透镜组(D3)的有效焦距为正、负、正组合;第一透镜组(D1)包括靠近人眼侧的第一透镜(L1)和远离人眼侧的第二透镜(L2);第一透镜组(D1)包括至少两个菲涅耳光学面;第一透镜(L1)包括至少一个菲涅耳光学面;第二透镜组(D2)包括与第一透镜组(D1)相邻且沿光轴依次排列的第三透镜(L3)和第四透镜(L4);第三透镜(L3)及第四透镜(L4)均为负透镜;第三透镜组(D3)包括与第二透镜组(D2)相邻沿光轴依次排列的第五透镜(L5)和第六透镜(L6);第五透镜(L5)为正透镜;第六透镜(L6)为负透镜;具有大视场角、高像质、低畸变、小场曲、小体积的优势。

Description

一种大视场角的目镜光学系统及头戴显示装置 技术领域
本发明涉及光学技术领域,更具体地说,涉及一种大视场角的目镜光学系统及头戴显示装置。
背景技术
随着电子器件不断向超微型化发展,以及新的计算机、微电子、光电器件和通信理论和技术的发展,可穿戴计算这种基于“以人为本”“人机合一”的新型模式已经成为可能。在军事、工业、医疗、教育、消费等领域不断涌现应用。在一个典型的可穿戴计算系统架构中,头戴式显示装置是关键的组成部分。头戴显示装置通过光学技术,将微型图像显示器(例如透射式或反射式液晶显示屏,有机电致发光器件,DMD器件)发出的视频图像光引导到使用者的瞳孔,在使用者的近目范围实现虚拟、放大图像,为使用者提供直观、可视的图像、视频、文字信息。目镜光学系统是头戴显示装置的核心,实现将微型图像显示在人眼前形成虚拟放大图像的功能。
头戴显示装置向着体积紧凑,重量轻,便于头戴,减轻负载等方向发展。同时,大视场角和视觉舒适体验也逐渐成为衡量头戴显示装置优劣的关键因素,大视场角决定了高临场感的视觉体验效果,高像质、低畸变决定了视觉体验的舒适度。满足这些要求,需要目镜光学系统尽可能地实现大视场角、高图像分辨力、低畸变、小场曲、小体积等指标,同时满足上述光学性能对系统的设计和像差优化是很大挑战。
专利文献1(中国专利公开号CN109416469A)、专利文献2(中国专利公开号CN105759424B)、专利文献3(中国专利公开号CN107015361B)、专利文献4(中国专利公开号CN111381371A)分别采用的菲涅尔结构在光学系统中虽然都可以实现很好的聚焦效果,但是专利文献1和专利文献3完全依赖菲涅尔透镜,专利文献2和专利文献4则是菲涅尔透镜与单片、双片正透镜组合,其不可避免的在光学系统的像差上难以有所建树,存在很大的畸变及球差。
专利文献5(中国专利公开号CN105278109A)提供的是采用了正、负、正透镜组组合的光学系统,提供的是采用了正、负、正透镜组组合的光学系统,但专利文献5采用的是传统的球面、偶次非球面的光学系统,虽然其在像差的校正上具有很大的优势,但在相同的光学系统参数下就显得极其笨重。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种大视场角的目镜光学系统及头戴显示装置,实现大视场角、高图像分辨力、低畸变、小场曲、小体积等指标。
本发明解决其技术问题所采用的技术方案是:构造一种大视场角的目镜光学系统,包括从人眼观察侧到微型图像显示器侧沿光轴方向共轴依次排列的第一透镜组、第二透镜组和第三透镜组,且所述第一透镜组、所述第二透镜组以及所述第三透镜组的有效焦距为正、负、正组合;所述第一透镜组由两片光学透镜构成,分别是靠近人眼侧的第一透镜和远离人眼侧的第二透镜;所述第一透镜组包括至少两个菲涅耳光学面;所述第一透镜包括至少一个所述菲涅耳光学面;
所述光学系统的有效焦距设为F,第一透镜组的有效焦距设为f 1,则F与 f 1满足下列关系式(1):
0.50≤f 1/F≤1.33    (1);
所述第二透镜组由两片光学透镜构成;其中所述第二透镜组包括与所述第一透镜组相邻且沿光轴依次排列的第三透镜和第四透镜;所述第三透镜及所述第四透镜均为负透镜;
所述第三透镜组由两片光学透镜构成;其中所述第三透镜组包括与所述第二透镜组相邻且沿光轴依次排列的第五透镜和第六透镜;所述第五透镜为正透镜;所述第六透镜为负透镜;
所述第一透镜和第二透镜的材料特性满足以下关系式(2)、(3):
1.49<Nd 11<1.70    (2);
1.49<Nd 12<1.70    (3);
其中,Nd 11、Nd 12分别为第一透镜和第二透镜在d线的折射率。
进一步地,所述第一透镜的有效焦距f 11和第一透镜组的有效焦距f 1满足如下关系式(4):
1.50≤f 11/f 1≤4.48    (4)。
进一步地,所述光学系统的有效焦距为F;所述第二透镜组的有效焦距设为f 2,F、f 2满足下列关系式(5):
-0.98≤f 2/F≤-0.35    (5)。
进一步地,所述第一透镜组的有效焦距为f 1,所述第三透镜组的有效焦距设为f 3,则f 1、f 3满足下列关系式(6):
0.02≤f 1/f 3≤2.15    (6)。
进一步地,所述第一透镜与所述第二透镜中分别包含一个所述菲涅耳光学面。
进一步地,所述两个菲涅耳光学面为相邻设置。
进一步地,所述两个菲涅耳光学面均为平面基底菲涅耳光学面。
进一步地,非球面的表达式为下列关系式(7):
Figure PCTCN2020142066-appb-000001
进一步地,所述第一透镜与所述第二透镜中的一个或多个光学面为偶次非球面;所述第三透镜与所述第四透镜中的光学面均为偶次非球面。
进一步地,所述第三透镜为双凹透镜。
进一步地,所述第五透镜为双凸透镜。
进一步地,所述第三透镜、所述第四透镜和所述第六透镜的材料为光学玻璃或光学塑胶。
本发明还提供一种头戴显示装置,包括微型图像显示器和目镜;所述目镜位于人眼与所述微型图像显示器之间;所述目镜为前述中任一项所述的目镜光学系统。
进一步地,所述微型图像显示器为有机电致发光发光器件、透射式液晶显示器或反射式液晶显示器。
进一步地,所述头戴显示装置包含两个相同且对称设置的所述目镜光学系统。
本发明的有益效果在于:采用了一种双菲涅耳光学面型与传统光学球面及非球面面型的组合,结合正、负、正的透镜组组合以及各透镜的焦距在满足特定搭配条件的情况下实现其所具有的大视场角、高像质、低畸变、小场曲、小体积等指标优势的同时,也极大的减小光学系统的重量,系统像差得到大幅消除,降低各光学部件的感度,易于部件的加工及组装,进一步提高了光学系统 中的视场角、场曲、畸变等指标,极大的提高的用户的视觉舒适体验。观察者可以通过本发明的目镜光学系统,观看到全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图及实施例对本发明作进一步说明,下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图:
图1是本发明第一实施例的目镜光学系统的结构示意图;
图2是本发明第一实施例的目镜光学系统的弥散斑阵列示意图;
图3是本发明第一实施例的目镜光学系统的畸变示意图;
图4是本发明第一实施例的目镜光学系统的光学传递函数MTF示意图;
图5是本发明第二实施例的目镜光学系统的结构示意图;
图6是本发明第二实施例的目镜光学系统的弥散斑阵列示意图;
图7是本发明第二实施例的目镜光学系统的畸变示意图;
图8是本发明第二实施例的目镜光学系统的光学传递函数MTF示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明 的保护范围。
本发明构造一种大视场角的目镜光学系统,包括从人眼观察侧到微型图像显示器侧沿光轴方向共轴依次排列的第一透镜组、第二透镜组和第三透镜组,且第一透镜组、第二透镜组以及第三透镜组的有效焦距为正、负、正组合;第一透镜组由两片光学透镜构成,分别是靠近人眼侧的第一透镜和远离人眼侧的第二透镜;第一透镜组包括至少两个菲涅耳光学面;第一透镜包括至少一个菲涅耳光学面;
光学系统的有效焦距设为F,第一透镜组的有效焦距设为f 1,则F与f 1满足下列关系式(1):
0.50≤f 1/F≤1.33    (1);
其中,f 1/F可取值为0.50、0.53、0.67、0.87、0.99、1.21、1.29、0.33等等。
第二透镜组由两片光学透镜构成;其中第二透镜组包括与第一透镜组相邻且沿光轴依次排列的第三透镜和第四透镜;第三透镜及第四透镜均为负透镜;
第三透镜组由两片光学透镜构成;其中第三透镜组包括与第二透镜组相邻沿光轴依次排列的第五透镜和第六透镜;第五透镜为正透镜;第六透镜为负透镜;
第一透镜和第二透镜的材料特性满足以下关系式(2)、(3):
1.49<Nd 11<1.70    (2);
1.49<Nd 12<1.70    (3);
其中,Nd 11、Nd 12分别为第一透镜和第二透镜在d线的折射率。d线的波长为589.3nm。第一透镜和第二透镜的材料可选:E48R、K26R、EP3000、OKP1等等。
其中,第一透镜组、第二透镜组以及第三透镜组采用正、负、正的组合下,第二透镜组以及第三透镜组内各透镜采用负、负、正、负的组合,充分地校正了系统的像差,提升了系统的光学分辨力。更重要的是,第一透镜组中采用了双菲涅耳面的结构,分担了光学系统中的大部分有效焦距,有效地减小了各个透镜的外径大小的差距,减小了目镜光学系统的整体尺寸,提高了后续量产的可靠性。并且第二透镜组可提供足够的负有效焦距,以保证目镜光学系统可实现足够大的视场角。同时实现了大视场角、低畸变、低色差、低场曲、低像散等光学指标,观察者可以通过该目镜光学系统,观看到全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验。本产品适用于头戴显示器及其类似装置。
如图1所示,包括从人眼观察侧到微型图像显示器之间沿光轴方向依次排列的第一透镜组、第二透镜组、第三透镜组;其中,以靠近人眼E侧的光学表面序号为1,依此类推(从左至右为2、3、4、5、6······),从微型图像显示器发出的光,依次经第三透镜组、第二透镜组、第一透镜组折射后,进入人眼。
在进一步的实施例中,第一透镜的有效焦距f 11和第一透镜组的有效焦距f 1满足如下关系式(4):
1.50≤f 11/f 1≤4.48    (4)。
其中,f 11/f 1可取值为1.50、1.62、1.83、1.95、2.21、2.75、2.98、3.5、3.89、4.31、4.48等等。
在进一步的实施例中,光学系统的有效焦距为F;第二透镜组的有效焦距设为f 2,F、f 2满足下列关系式(5):
-0.98≤f 2/F≤-0.35    (5)。
其中,f 2/F可取值为-0.98、-0.95、-0.82、-0.77、-0.57、-0.49、-0.41、 -0.38、-0.35等等。
在进一步的实施例中,第一透镜组的有效焦距为f 1,第三透镜组的有效焦距设为f 3,则f 1、f 3满足下列关系式(6):
0.02≤f 1/f 3≤2.15    (6)。
其中,f 1/f 3可取值为0.02、0.32、0.47、0.67、0.89、1.32、1.55、1.89、2.01、2.11、2.15等等。
上述f 1/F、f 11/f 1、f 2/F以及f 1/f 3的取值范围对系统像差的校正、光学元件的加工难度、以及光学元件装配偏差的灵敏度密切相关,关系式(1)中f 1/F的取值大于0.5,使系统像差得以充分校正,从而实现优质的光学效果,其取值小于1.33,改善了所述系统中光学元件的可加工性;关系式(4)中f 11/f 1的取值大于1.5,使系统像差得以充分校正,从而实现优质的光学效果,其取值小于4.48,改善了所述系统中光学元件的可加工性;关系式(6)中f 1/f 3的取值大于0.02,使系统像差得以充分校正,从而实现优质的光学效果,其取值小于2.15,改善了所述系统中光学元件的可加工性。关系式(5)中f 2/F的取值大于-0.95,使其对应透镜可以提供足够的负有效焦距,从而可以更好地平衡校正系统像差,实现良好的光学效果,其取值小于-0.35,降低了球差的校正难度,便于实现大光学孔径。
在进一步的实施例中,第一透镜与第二透镜中分别包含一个菲涅耳光学面。
在进一步的实施例中,两个菲涅耳光学面为相邻设置。
在进一步的实施例中,两个菲涅耳光学面均为平面基底菲涅耳光学面。
上述实施例中,目镜光学系统中的双菲涅耳光学面分别设置在第一透镜与第二透镜上,并且以相邻方式进行设置,即第一透镜远离人眼侧的光学面为菲 涅耳面,第二透镜靠近人眼侧的光学面为菲涅耳面。采用了双菲涅耳面的结构,分担了光学系统中的大部分有效焦距,有效地减小了各个透镜的外径大小的差距,减小了目镜光学系统的整体尺寸,提高了后续量产的可靠性。
在进一步的实施例中,第一透镜与第二透镜中的一个或多个光学面为偶次非球面;第三透镜与第四透镜中的光学面均为偶次非球面。
使所述光学系统的各级像差得到进一步的优化校正。进一步提升所述目镜光学系统的光学性能。
在进一步的实施例中,非球面的表达式为:
Figure PCTCN2020142066-appb-000002
其中,z为光学面的矢高,c为非球面顶点处曲率,k为非球面系数,α2,4,6…为各阶系数,r为曲面上点到透镜系统光轴的距离坐标。
使所述光学系统的像差(包括球差、慧差、畸变、场曲、像散、色差和其它高阶像差)得到充分的校正,有利于所述目镜光学系统在实现大视场角、大孔径的同时,进一步提升中心视场和边缘视场的图像质量、缩小中心视场和边缘视场图像质量的差别,实现全画幅内更均匀的图像质量和低畸变。
在进一步的实施例中,第三透镜为双凹透镜。
在进一步的实施例中,第五透镜为双凸透镜。
在进一步的实施例中,第三透镜、第四透镜和第六透镜的材料为光学玻璃或光学塑胶。
上述实施例进一步改善了系统的像散和场曲等像差,有利于目镜系统实现全画幅均匀像质的高分辨率光学效果。
下面通过更加具体的实施例对上述目镜光学系统的原理、方案及显示结果 进行更进一步的阐述。
以下实施例中,光阑E可以为目镜光学系统成像的出瞳,为一个虚拟的出光孔径,人眼的瞳孔在光阑位置时,可以观察到最佳的成像效果。
第一实施例
所述第一实施例目镜设计数据如下表一所示:
表一
Figure PCTCN2020142066-appb-000003
附图1为第一实施例目镜光学系统的2D结构图,包括从人眼观察侧到显示器件(IMG)侧沿光轴方向共轴依次排列的第一透镜组D1、第二透镜组D2和第三透镜组D3,第一透镜组由第一透镜L1和第二透镜L2构成,第一透镜组D1第2、第3光学面是由两个菲涅耳面组成,第二透镜组D2是由两片负有效焦距光学透镜组成的负有效焦距透镜组,分别是第三透镜L3与第四透镜L4;第三透镜组D3是由一片正有效焦距光学透镜和一片负有效焦距光学透镜组成的正有效焦距透镜组,分别是第五透镜L5和第六透镜L6。其中光学系统的焦 距F为35.06,第一透镜组D1的有效焦距f 1为17.53,第二透镜组D2的有效焦距f 2为-12.27,第三透镜组D3的有效焦距f 3为8.15,其中靠近人眼的那个菲涅耳透镜的有效焦距f 11为78.50,即f 1/F为0.50,f 11/f 1为4.48,f 2/F为-0.35,f 1/f 3为2.15。
附图2、附图3、附图4分别为该光学系统的弥散斑阵列图、畸变图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(显示器件(IMG)I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.5以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第二实施例
所述第二实施例目镜设计数据如下表二所示:
表二
Figure PCTCN2020142066-appb-000004
附图5为第二实施例目镜光学系统的2D结构图,包括从人眼观察侧到显 示器件(IMG)侧沿光轴方向共轴依次排列的第一透镜组D1、第二透镜组D2和第三透镜组D3,第一透镜组由第一透镜L1和第二透镜L2构成,第一透镜组D1第2、第3光学面是由两个菲涅耳面组成,第二透镜组D2是由两片负有效焦距光学透镜组成的负有效焦距透镜组,分别是第三透镜L3与第四透镜L4;第三透镜组D3是由一片正有效焦距光学透镜和一片负有效焦距光学透镜组成的正有效焦距透镜组,分别是第五透镜L5和第六透镜L6。较实施例一,实施例二的主要特点在于,其各项光学指标稍微低点,成像质量很好。其中光学系统的焦距F为12.91,第一透镜组D1的有效焦距f 1为17.17,第二透镜组D2的有效焦距f 2为-11.95,第三透镜组D3的有效焦距f 3为17.76,其中靠近人眼的那个菲涅耳透镜的有效焦距f 11为25.75,即f 1/F为1.33,f 11/f 1为1.50,f 2/F为-0.93,f 1/f 3为0.97。
附图6、附图7、附图8分别为该光学系统的弥散斑阵列图、畸变图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(显示器件(IMG)I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.8以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
第三实施例
所述第三实施例目镜设计数据如下表三所示:
表三
Figure PCTCN2020142066-appb-000005
Figure PCTCN2020142066-appb-000006
附图9为第三实施例目镜光学系统的2D结构图,包括从人眼观察侧到显示器件(IMG)侧沿光轴方向共轴依次排列的第一透镜组D1、第二透镜组D2和第三透镜组D3,第一透镜组由第一透镜L1和第二透镜L2构成,第一透镜组D1第2、第3光学面是由两个菲涅耳面组成,第二透镜组D2是由两片负有效焦距光学透镜组成的负有效焦距透镜组,分别是第三透镜L3与第四透镜L4;第三透镜组D3是由一片正有效焦距光学透镜和一片负有效焦距光学透镜组成的正有效焦距透镜组,分别是第五透镜L5和第六透镜L6。较实施例一,实施例二的主要特点在于,其各项光学指标稍微低点,成像质量很好。其中光学系统的焦距F为18.22,第一透镜组D1的光学焦距f 1为12.71,第二透镜组D2的有效焦距f 2为-17.86,第三透镜组D3的有效焦距f 3为635.50,其中靠近人眼的那个菲涅耳透镜的光学焦距f 11为27.89,即f 1/F为0.70,f 11/f 1为2.19,f 2/F为-0.98,f 1/f 3为0.02。
附图10、附图11、附图12分别为该光学系统的弥散斑阵列图、畸变图及光学传递函数MTF图,反映出了本实施例各个视场光线在像平面(显示器件(IMG)I)的单位像素内有着很高的分辨率及很小的光学畸变,单位周期每10mm分辨率达到0.65以上,光学系统像差得到良好校正,通过所述目镜光学系统可观察到均匀、高光学性能的显示画像。
上述实施例一至三的各项数据均满足发明内容中所记录的参数要求,结果如下表四所示:
表四
  f 1/F f 11/f 1 f 2/F f 1/f 3
实施例一 0.50 4.48 -0.35 2.15
实施例二 1.33 1.50 -0.93 0.97
实施例三 0.70 2.19 -0.98 0.02
本发明还提供一种头戴显示装置,包括微型图像显示器和目镜;目镜位于人眼与微型图像显示器之间;目镜为前述中任一项的目镜光学系统。
优选地,微型图像显示器为有机电致发光器件、透射式液晶显示器或反射式液晶显示器。
优选地,头戴显示装置包含两个相同且对称设置的目镜光学系统。
综上,本发明的上述各实施例的目镜光学系统采用了一种双菲涅耳光学面型与传统光学球面及非球面面型的组合,结合正、负、正的透镜组组合以及各透镜的焦距在满足特定搭配条件的情况下实现其所具有的大视场角、高像质、低畸变、小场曲、小体积等指标优势的同时,也极大的减小光学系统的重量,系统像差得到大幅消除,降低各光学部件的感度,易于部件的加工及组装,进一步提高了光学系统中的视场角、场曲、畸变等指标,极大的提高的用户的视觉舒适体验。观察者可以通过本发明的目镜光学系统,观看到全画幅高清、无失真、像质均匀的大幅画面,达到高临场感的视觉体验。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (14)

  1. 一种大视场角的目镜光学系统,其特征在于:包括从人眼观察侧到微型图像显示器侧沿光轴方向共轴依次排列的第一透镜组、第二透镜组和第三透镜组,且所述第一透镜组、所述第二透镜组以及所述第三透镜组的有效焦距为正、负、正组合;所述第一透镜组由两片光学透镜构成,分别是靠近人眼侧的第一透镜和远离人眼侧的第二透镜;所述第一透镜组包括至少两个菲涅耳光学面;所述第一透镜包括至少一个所述菲涅耳光学面;
    所述光学系统的有效焦距设为F,第一透镜组的有效焦距设为f 1,则F与f 1满足下列关系式(1):
    0.50≤f 1/F≤1.33    (1);
    所述第二透镜组由两片光学透镜构成;其中所述第二透镜组包括与所述第一透镜组相邻且沿光轴依次排列的第三透镜和第四透镜;所述第三透镜及所述第四透镜均为负透镜;
    所述第三透镜组由两片光学透镜构成;其中所述第三透镜组包括与所述第二透镜组相邻且沿光轴依次排列的第五透镜和第六透镜;所述第五透镜为正透镜;所述第六透镜为负透镜;
    所述第一透镜和第二透镜的材料特性满足以下关系式(2)、(3):
    1.49<Nd 11<1.70    (2);
    1.49<Nd 12<1.70    (3);
    其中,Nd 11、Nd 12分别为第一透镜和第二透镜在d线的折射率。
  2. 根据权利要求1所述的大视场角的目镜光学系统,其特征在于,所述第一透镜的有效焦距f 11和第一透镜组的有效焦距f 1满足如下关系式(4):
    1.50≤f 11/f 1≤4.48    (4)。
  3. 根据权利要求1所述的大视场角的目镜光学系统,其特征在于,所述光学系统的有效焦距为F;所述第二透镜组的有效焦距设为f 2,F、f 2满足下列关系式(5):
    -0.98≤f 2/F≤-0.35    (5)。
  4. 根据权利要求1所述的大视场角的目镜光学系统,其特征在于,所述第一透镜组的有效焦距为f 1,所述第三透镜组的有效焦距设为f 3,则f 1、f 3满足下列关系式(6):
    0.02≤f 1/f 3≤2.15    (6)。
  5. 根据权利要求1所述的大视场角的目镜光学系统,其特征在于,所述第一透镜与所述第二透镜中分别包含一个所述菲涅耳光学面。
  6. 根据权利要求5所述的大视场角的目镜光学系统,其特征在于,所述两个菲涅耳光学面为相邻设置。
  7. 根据权利要求5所述的大视场角的目镜光学系统,其特征在于,所述两个菲涅耳光学面均为平面基底菲涅耳光学面。
  8. 根据权利要求1所述的大视场角的目镜光学系统,其特征在于,所述第一透镜与所述第二透镜中的一个或多个光学面为偶次非球面;所述第三透镜与所述第四透镜中的光学面均为偶次非球面。
  9. 根据权利要求1所述的大视场角的目镜光学系统,其特征在于,所述第三透镜为双凹透镜。
  10. 根据权利要求1所述的大视场角的目镜光学系统,其特征在于,所述第五透镜为双凸透镜。
  11. 根据权利要求1所述的大视场角的目镜光学系统,其特征在于,所述 第三透镜、所述第四透镜和所述第六透镜的材料为光学玻璃或光学塑胶。
  12. 一种头戴显示装置,包括微型图像显示器和目镜;所述目镜位于人眼与所述微型图像显示器之间;其特征在于,所述目镜为权利要求1-11中任一项所述的目镜光学系统。
  13. 根据权利要求12所述的头戴显示装置,其特征在于,所述微型图像显示器为有机电致发光器件、透射式液晶显示器或反射式液晶显示器。
  14. 根据权利要求12或13所述的头戴显示装置,其特征在于,所述头戴显示装置包含两个相同且对称设置的所述目镜光学系统。
PCT/CN2020/142066 2020-12-31 2020-12-31 一种大视场角的目镜光学系统及头戴显示装置 WO2022141381A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142066 WO2022141381A1 (zh) 2020-12-31 2020-12-31 一种大视场角的目镜光学系统及头戴显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142066 WO2022141381A1 (zh) 2020-12-31 2020-12-31 一种大视场角的目镜光学系统及头戴显示装置

Publications (1)

Publication Number Publication Date
WO2022141381A1 true WO2022141381A1 (zh) 2022-07-07

Family

ID=82258879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142066 WO2022141381A1 (zh) 2020-12-31 2020-12-31 一种大视场角的目镜光学系统及头戴显示装置

Country Status (1)

Country Link
WO (1) WO2022141381A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210468A1 (en) * 2002-05-07 2003-11-13 Yumiko Kato Observation optical system and optical apparatus
CN101609208A (zh) * 2009-07-20 2009-12-23 北京理工大学 目镜
CN204360008U (zh) * 2014-12-17 2015-05-27 青岛歌尔声学科技有限公司 一种微显示目镜、头戴目镜系统和头戴可视设备
CN104820282A (zh) * 2014-10-13 2015-08-05 山东北方光学电子有限公司 一种共用单显示器的大出瞳双目目镜光学系统
CN106405817A (zh) * 2016-06-02 2017-02-15 乐视控股(北京)有限公司 一种接目镜片及其生产方法和相应的设备
CN108196360A (zh) * 2018-02-05 2018-06-22 小派科技(上海)有限责任公司 目镜及配有目镜的眼镜
CN108474935A (zh) * 2016-07-07 2018-08-31 株式会社尼康 目镜光学系统及头戴式显示器
CN108957730A (zh) * 2017-05-19 2018-12-07 北京海鲸科技有限公司 一种目镜及微显示屏头戴显示设备
CN110824712A (zh) * 2019-11-26 2020-02-21 深圳纳德光学有限公司 一种大视场角高像质的目镜光学系统及设备
CN112731666A (zh) * 2020-12-31 2021-04-30 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN112764221A (zh) * 2020-12-31 2021-05-07 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN214011639U (zh) * 2020-12-31 2021-08-20 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN214041889U (zh) * 2020-12-31 2021-08-24 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210468A1 (en) * 2002-05-07 2003-11-13 Yumiko Kato Observation optical system and optical apparatus
CN101609208A (zh) * 2009-07-20 2009-12-23 北京理工大学 目镜
CN104820282A (zh) * 2014-10-13 2015-08-05 山东北方光学电子有限公司 一种共用单显示器的大出瞳双目目镜光学系统
CN204360008U (zh) * 2014-12-17 2015-05-27 青岛歌尔声学科技有限公司 一种微显示目镜、头戴目镜系统和头戴可视设备
CN106405817A (zh) * 2016-06-02 2017-02-15 乐视控股(北京)有限公司 一种接目镜片及其生产方法和相应的设备
CN108474935A (zh) * 2016-07-07 2018-08-31 株式会社尼康 目镜光学系统及头戴式显示器
CN108957730A (zh) * 2017-05-19 2018-12-07 北京海鲸科技有限公司 一种目镜及微显示屏头戴显示设备
CN108196360A (zh) * 2018-02-05 2018-06-22 小派科技(上海)有限责任公司 目镜及配有目镜的眼镜
CN110824712A (zh) * 2019-11-26 2020-02-21 深圳纳德光学有限公司 一种大视场角高像质的目镜光学系统及设备
CN112731666A (zh) * 2020-12-31 2021-04-30 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN112764221A (zh) * 2020-12-31 2021-05-07 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN214011639U (zh) * 2020-12-31 2021-08-20 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置
CN214041889U (zh) * 2020-12-31 2021-08-24 深圳纳德光学有限公司 一种大视场角的目镜光学系统及头戴显示装置

Similar Documents

Publication Publication Date Title
CN107683432B (zh) 大视场角的目镜光学系统及头戴显示装置
CN110426838B (zh) 一种目镜光学系统及头戴显示器
CN213934402U (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2021016810A1 (zh) 一种目镜光学系统及头戴显示器
CN112630973A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934403U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630977A (zh) 一种大视场角的目镜光学系统及头戴显示装置
US11480782B1 (en) Reflective eyepiece optical system and head-mounted near-to-eye display device
CN112630976A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630974A (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141385A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214041889U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934401U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN214011639U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934399U (zh) 一种大视场角的目镜光学系统及头戴显示装置
US20210157122A1 (en) Eyepiece optical system and device with large field-of-view angle and high image quality
CN112630975A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112764221A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112731666A (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN112630978A (zh) 一种大视场角的目镜光学系统及头戴显示装置
US20230393383A1 (en) Diopter-adjustable eyepiece optical system and head-mounted display device
CN210243956U (zh) 一种目镜光学系统及头戴显示器
CN213934404U (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN213934400U (zh) 一种大视场角的目镜光学系统及头戴显示装置
WO2022141133A1 (zh) 一种折反射式目镜光学系统及头戴显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967720

Country of ref document: EP

Kind code of ref document: A1