WO2017160125A1 - 가스 재기화 시스템을 구비하는 선박 - Google Patents

가스 재기화 시스템을 구비하는 선박 Download PDF

Info

Publication number
WO2017160125A1
WO2017160125A1 PCT/KR2017/002947 KR2017002947W WO2017160125A1 WO 2017160125 A1 WO2017160125 A1 WO 2017160125A1 KR 2017002947 W KR2017002947 W KR 2017002947W WO 2017160125 A1 WO2017160125 A1 WO 2017160125A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
line
valve
sea water
supply
Prior art date
Application number
PCT/KR2017/002947
Other languages
English (en)
French (fr)
Inventor
이광진
박상민
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160092308A external-priority patent/KR101850606B1/ko
Priority claimed from KR1020160115564A external-priority patent/KR102306454B1/ko
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to EP17767026.2A priority Critical patent/EP3431382A4/en
Priority to CN202010091081.6A priority patent/CN111252197B/zh
Priority to CN201780014821.2A priority patent/CN108698673B/zh
Priority to US16/083,461 priority patent/US11136103B2/en
Priority to JP2018548450A priority patent/JP6710286B2/ja
Publication of WO2017160125A1 publication Critical patent/WO2017160125A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • F02M31/18Other apparatus for heating fuel to vaporise fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a vessel having a gas regasification system.
  • LNG is known to be a clean fuel and abundant reserves than petroleum, and its use is rapidly increasing with the development of mining and transport technology. It is common to store LNG in liquid state by lowering the temperature of methane, the main component, below -162 °C under 1 atmosphere, and the volume of liquefied methane is about 1/600 of the volume of gaseous methane in the standard state. Is 0.42, which is about one half of the share of crude oil.
  • LNG is liquefied for ease of transportation and vaporized at the point of use after transportation.
  • LNG vaporization facilities there is concern about the installation of LNG vaporization facilities on land due to the risk of natural disasters and terrorism.
  • the LNG stored in the liquefied gas storage tank is pressurized by the boosting pump and sent to the LNG vaporizer, and vaporized by the LNG vaporizer to NG to the land demand.
  • a lot of energy is required in the process of heat exchange to increase the temperature of LNG on the LNG vaporizer. Therefore, in order to solve the problem that the energy used in this process is wasted due to inefficient exchange, various heat exchange technologies for efficient regasification have been studied.
  • the present invention has been made to improve the prior art, to provide a vessel having a gas regasification system that can maximize the regasification efficiency of liquefied gas.
  • the ship provided with the gas regasification system including the regasification apparatus which regasses liquefied gas through the seawater supplied by the seawater supply apparatus,
  • the said seawater supply apparatus The seawater supply line for supplying the seawater to the regasification device; A seawater discharge line for discharging the seawater from the regasification apparatus; A circulation connection line branched from the seawater discharge line to connect the seawater supply line; A seawater storage tank provided on the circulation connection line and maintaining a pressure of seawater flowing in the circulation connection line; And a tank connection line connecting the seawater storage tank and the circulation connection line, wherein the tank connection line converts the seawater flowing on the seawater discharge line to flow into the circulation connection line without being discharged to the outside.
  • the fluid inside the seawater storage tank can be supplied to the circulation connection line.
  • the first on-off valve disposed closer to the point connected to the sea water supply line on the circulation connection line; And a second on / off valve disposed closer to the branching point of the seawater discharge line on the circulation connection line.
  • the sea water supply line is provided on, further comprising a sea water pump for supplying the sea water to the regasification device, the sea water pump may be located lower than the sea surface.
  • the third on-off valve provided upstream of the sea water pump on the sea water supply line;
  • a fourth open / close valve provided downstream from a branch point of the circulation connection line on the seawater discharge line;
  • a pressure holding fluid supply valve provided on the tank connection line;
  • It may further include a control unit to implement a (Stop).
  • control unit before switching the seawater flowing on the seawater discharge line to flow to the circulation connection line without being discharged to the outside, by opening the pressure holding fluid supply valve to draw the fluid to the circulation connection line Can be controlled to supply.
  • control unit may control to close the third and fourth on-off valves, and to open the first and second on-off valves.
  • the seawater storage tank by using the atmospheric pressure can maintain the pressure of the seawater.
  • the fluid inside the seawater storage tank may be seawater.
  • the fire extinguishing extinguishing water storage tank for storing the extinguishing water for extinguishing the fire further comprises, the seawater storage tank may be connected to the extinguishing water storage tank for extinguishing the fire.
  • the fire extinguishing storage tank for extinguishing the fire before the seawater flowing on the seawater discharge line flows to the circulation connection line without being discharged to the outside, the digestion water stored therein the seawater storage tank Can be supplied as
  • the regasification apparatus may include a vaporizer for directly vaporizing the liquefied gas into the seawater.
  • the regasification apparatus the vaporizer for vaporizing the liquefied gas into the intermediate fruit; And it may include a heat source heat exchanger for supplying the heat source of the sea water to the intermediate fruit.
  • the first on-off valve is a non-stop switching valve
  • the second on-off valve is a circulation valve
  • the third on-off valve is a sea water supply valve
  • the fourth on-off valve is a sea water discharge valve
  • the control unit may be a third control unit
  • the seawater storage tank may be a pressure holding device
  • the tank connecting line may be a pressure holding device connecting line.
  • the ship having a gas regasification system according to an embodiment of the present invention
  • the gas regasification system including a regasification device for regasifying the liquefied gas through the seawater supplied by the seawater supply device, the seawater supply
  • the apparatus includes a seawater discharge line for discharging the seawater from the regasification device, the seawater discharge line having at least a portion formed at a position higher than the regasification device.
  • the seawater discharge upstream line may be at least partially horizontal with the regasification device.
  • the negative pressure prevention line may be connected in streamline with the seawater discharge upstream line.
  • the seawater discharge downstream line may vertically connect the negative pressure prevention line and the seawater discharge port.
  • the sea water supply apparatus vacuum removal line for removing the negative pressure in the sea water discharge line; And a vacuum removal valve provided on the vacuum removal line and adjusting a flow rate of air introduced into the seawater discharge line, wherein the vacuum removal line may be connected in parallel to the seawater discharge downstream line.
  • the negative pressure prevention line the inlet portion connected to the seawater discharge upstream line;
  • connection part may be connected to the inflow part in a streamlined manner.
  • connection part may be connected to the inlet part and the outlet part at a right angle.
  • the regasification apparatus is located at a height of 28 to 32m from the sea level
  • the sea discharge port may be located between the sea level and -2m height from the sea level.
  • the sea water supply apparatus provided on the sea water discharge line, a negative pressure prevention valve for controlling the flow rate of sea water discharged from the regasification apparatus; A vacuum removal line for removing negative pressure in the seawater discharge line; And a vacuum removal valve provided on the vacuum removal line and adjusting a flow rate of air introduced into the seawater discharge line, wherein the vacuum removal line is located at a position where the negative pressure preventing valve on the seawater discharge line is provided. It can be connected downstream on the basis of the flow of the sea water.
  • the seawater supply device is provided between the negative pressure prevention valve and the seawater discharge port through which the seawater is discharged to the outside on the seawater discharge line, and further includes a seawater discharge valve controlling the seawater to flow out to the outside. can do.
  • the regasification apparatus the vaporizer for vaporizing the liquefied gas into the intermediate fruit; And a heat source heat exchanger for supplying the heat source of the seawater to the intermediate fruit, wherein the seawater discharge line may be formed at a position at least partially higher than that of the heat source heat exchanger.
  • the packing fluid remaining in the circulating connection line can be made stably, The conversion can be made and the effect of the re-liquefied liquefied gas to the demand source smoothly.
  • FIG. 1 is a conceptual diagram of a vessel having a gas regasification system according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a seawater supply apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a seawater supply apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a seawater supply apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of a seawater supply apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of a seawater supply apparatus according to a fifth embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a seawater supply apparatus according to a sixth embodiment of the present invention.
  • FIG. 8 is a conceptual diagram of a seawater supply apparatus according to a conventional embodiment.
  • FIG. 9 is a conceptual diagram of a seawater supply apparatus according to a seventh embodiment of the present invention.
  • FIG. 10 is a first conceptual diagram of a negative pressure preventing unit provided in the seawater supply apparatus according to the seventh embodiment of the present invention.
  • FIG. 11 is a second conceptual diagram of a negative pressure preventing unit provided in the seawater supply apparatus according to the seventh embodiment of the present invention.
  • FIG. 12 is a conceptual diagram of a seawater supply apparatus according to an eighth embodiment of the present invention.
  • liquefied gas may be used to encompass all gaseous fuels which are generally stored in a liquid state, such as LNG or LPG, ethylene, ammonia, and the like. Can be expressed as This can be applied to the boil-off gas as well.
  • LNG may be used for the purpose of encompassing not only liquid NG (Natural Gas) but also supercritical NG for convenience, and evaporation gas may be used to include not only gaseous evaporation gas but also liquefied evaporation gas. Can be.
  • FIG. 1 is a conceptual diagram of a vessel having a gas regasification system according to an embodiment of the present invention.
  • the gas regasification system 1 includes a liquefied gas storage tank 10, a feeding pump 20, a buffer tank 30, a boosting pump 40, It includes a vaporizer 50, the demand source 60, the seawater supply device (100).
  • the vessel (not shown) in which the gas regasification system 1 is installed the hull (H) consisting of a bow (not shown), a stern (not shown), upper deck (not shown) It propagates by the propeller shaft S which propagates the power produced by the engine E of the engine room (not shown) arrange
  • the vessel regasifies the liquefied gas in which a gas regasification system 1 is installed in a liquefied gas carrier (not shown) in order to regasify the liquefied gas at sea so that the liquefied gas can be supplied to the land terminal.
  • a gas regasification system 1 is installed in a liquefied gas carrier (not shown) in order to regasify the liquefied gas at sea so that the liquefied gas can be supplied to the land terminal.
  • a vessel LNG RV
  • FSRU floating liquefied gas storage and regasification plant
  • Gas regasification system 1 according to an embodiment of the present invention, the liquefied gas in the liquid state from the liquefied gas storage tank 10 through the feeding pump 20 through the buffer tank 30 via the boosting pump 40 After pressurizing to, the vaporizer 50 uses a method of heating the liquefied gas through a heat source to regasify and supply it to the demand destination (60). In other words, the gas regasification system 1 of the present invention simply regasses the liquefied gas using the vaporizer 50 and supplies it to the demand destination 60.
  • the vaporizer 50 may be supplied with seawater directly from the seawater supply device 100 to regasify the liquefied gas (direct regasification method), and indirectly received seawater from the seawater supply device 100 to recover the liquefied gas.
  • direct regasification method glycol water, which is an intermediate fruit, receives a heat source of seawater from the heat source heat exchanger 110, and then supplies a heat source supplied from the seawater to the vaporizer 50 again by the intermediate fruit).
  • the regasification apparatus is a vaporizer in the direct regasification method
  • the vaporizer 50 and the heat source heat exchanger 110 may refer to the heat source heat exchanger 110 for convenience.
  • the gas regasification system 1 may further include a liquefied gas supply line RL, and valves (not shown) are provided on the liquefied gas supply line RL to adjust the opening degree.
  • the amount of supply of liquefied gas or vaporized liquefied gas may be controlled by adjusting the opening degree of each valve.
  • the liquefied gas supply line RL connects the liquefied gas storage tank 10 and the demand destination 60, and includes a feeding pump 20, a buffer tank 30, a boosting pump 40, and a vaporizer 50. After liquefying the liquefied gas stored in the liquefied gas storage tank 10, it can be supplied to the demand destination (60).
  • the liquefied gas storage tank 10 stores the liquefied gas to be supplied to the demand destination 60.
  • the liquefied gas storage tank 10 should store the liquefied gas in a liquid state.
  • the liquefied gas storage tank 10 may have the form of a pressure tank.
  • the liquefied gas storage tank 10 is disposed inside the hull H, and may be formed in four, for example, in front of the engine room.
  • the liquefied gas storage tank 10 is, for example, a membrane type tank, but not limited thereto, and various types such as a stand-alone tank are not particularly limited.
  • the feeding pump 20 is provided on the liquefied gas supply line RL and is installed inside or outside the liquefied gas storage tank 10 to store liquefied gas stored in the liquefied gas storage tank 10 in the buffer tank 30. Can be supplied as
  • the feeding pump 20 is provided between the liquefied gas storage tank 10 and the buffer tank 30 on the liquefied gas supply line RL to primary the liquefied gas stored in the liquefied gas storage tank 10. It may be pressurized and supplied to the buffer tank 30.
  • the feeding pump 20 may pressurize the liquefied gas stored in the liquefied gas storage tank 10 to 6 to 8 bar and supply it to the buffer tank 30.
  • the feeding pump 20 may pressurize the liquefied gas discharged from the liquefied gas storage tank 10 to increase the pressure and temperature slightly, and the pressurized liquefied gas may still be in a liquid state.
  • the feeding pump 20 may be a latent pump when provided inside the liquefied gas storage tank 10, and stored in the liquefied gas storage tank 10 when the feeding pump 20 is installed outside the liquefied gas storage tank 10. It may be provided at a position inside the hull H lower than the level of the liquefied gas and may be a centrifugal pump.
  • the buffer tank 30 may be provided on the liquefied gas supply line RL to receive liquefied gas from the liquefied gas storage tank 10 and temporarily store the liquefied gas.
  • the buffer tank 30 may receive the liquefied gas stored in the liquefied gas storage tank 10 from the feeding pump 20 through the liquefied gas supply line RL, and by temporarily storing the liquefied gas received
  • the liquefied gas may be separated into a liquid phase and a gaseous phase, and the separated liquid phase may be supplied to the boosting pump 40.
  • the buffer tank 30 temporarily stores the liquefied gas to separate the liquid phase and the gaseous phase and then supplies the complete liquid phase to the boosting pump 40 so that the boosting pump 40 satisfies the effective suction head NPSH. Therefore, it is possible to prevent the cavitation (cavitation) in the boosting pump 40.
  • the boosting pump 40 may be provided between the buffer tank 30 and the vaporizer 50 on the liquefied gas supply line RL, and may be provided from the liquefied gas or the buffer tank 30 supplied from the feeding pump 20.
  • the supplied liquefied gas may be pressurized to 50 to 120 bar and supplied to the vaporizer 50.
  • the boosting pump 40 may pressurize the liquefied gas according to the pressure required by the customer 60, and may be configured as a centrifugal pump.
  • the vaporizer 50 may be provided on the liquefied gas supply line RL to re-gas the liquefied gas of the high pressure discharged from the boosting pump 40.
  • the vaporizer 50 is provided on the liquefied gas supply line RL between the demand destination 60 and the boosting pump 40, and vaporizes the high pressure liquefied gas supplied from the boosting pump 40 to demand demand 60. Can be supplied in the desired state.
  • the vaporizer 50 receives the intermediate fruit through the heat source circulation line GWL and heat-exchanges with the liquefied gas to vaporize the liquefied gas, and circulates the intermediate fruit exchanged with the liquefied gas through the heat source circulation line GWL again.
  • the vaporizer 50 may be provided with a heat source heat exchanger 110 on the heat source circulation line (GWL) in order to continuously supply the heat source to the first fruit, and additionally equipped with a heat source pump (GWP) to heat the first fruit It can be circulated in the circulation line (GWL).
  • GWL heat source circulation line
  • GWP heat source pump
  • the vaporizer 50 may use a non-explosive fruit such as glycol water, sea water, steam or engine exhaust gas as the first fruit for vaporizing the cryogenic liquefied gas,
  • a non-explosive fruit such as glycol water, sea water, steam or engine exhaust gas
  • the high pressure vaporized liquefied gas can be supplied to the demand destination 60 without pressure fluctuations.
  • the heat source supply device 110 receives a heat source through seawater and transfers the heat source to the vaporizer 50.
  • the device for delivering seawater to the heat source supply device 110 is called a seawater supply device 100.
  • the seawater supply device 100 supplies seawater, which is a heat source for regasification of the liquefied gas by the regasification device (heat source heat exchanger 110), to the regasification device, and is an open loop operation type as a driving method. ) And a closed loop operation type.
  • the open loop operation type refers to a case where the supply and discharge of seawater is performed only in one direction from the seawater supply line L1 to the seawater discharge line L2.
  • loop operation type means seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3) and back to seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3) This is the case where seawater circulation takes place.
  • the seawater supply apparatus 100 may switch bidirectionally from the open loop driving method to the closed loop driving method.
  • the switching of the driving method of the seawater supply device 100 is caused by the temperature change of the seawater.
  • seawater In summer, the temperature of seawater is high, so seawater can be used as a heat source for regasification of liquefied gas. In winter, however, the temperature of the seawater was low, so that the seawater could not be used as a regasification heat source for liquefied gas. Therefore, the seawater should be heated and used as a regasification heat source for liquefied gas.
  • the seawater supply apparatus 100 is operated in an open loop, that is, an open loop driving method in summer, and the seawater supply apparatus 100 is closed circuit, that is, a closed loop driving in winter. It was driven by switching in the manner.
  • the conventional seawater supply apparatus (200a of FIG. 8) has an internal packing fluid (air; air) on the circulation connection line L3 which is not used in the open loop driving method when switching from the open loop driving method to the closed loop driving method.
  • the seawater supply apparatus 100 may be implemented as a non-stop when bidirectionally switching from an open loop driving method to a closed loop driving method. Can be.
  • FIG. 2 is a conceptual diagram of a seawater supply apparatus according to a first embodiment of the present invention.
  • the seawater supply device 100a includes a heat source heat exchanger 110, a heater 120, a pressure maintaining device 130, a seawater pump 140, an intermediate tank 150, and a first control unit ( 170).
  • the flow path may be a line through which the fluid flows, but is not limited thereto, and any flow path may be used.
  • each line may further include a sea water supply line (L1), sea water discharge line (L2), circulation connection line (L3), pressure holding device connection line (L4).
  • Each line may be provided with valves (not shown) that can adjust the opening degree, and the supply amount of seawater or fluid may be controlled by adjusting the opening degree of each valve.
  • the seawater supply line L1 connects the seawater inlet SW1 and the heat source heat exchanger 110, and supplies seawater supplied from the seawater inlet SW1 to the heat source heat exchanger 110 through the seawater pump 140. have.
  • the seawater supply line L1 may include a seawater pump 140, a seawater supply valve B1, and a heater 120, and may be disposed under at least some sea level.
  • the seawater inlet SW1 may be located about 5 m below the sea surface, and the seawater supply valve B1 may be provided upstream of the seawater pump 140 on the seawater supply line L1.
  • the seawater discharge line L2 connects the heat source heat exchanger 110 and the seawater outlet SW2 to discharge seawater discharged from the heat source heat exchanger 110 to the seawater outlet SW2.
  • the seawater discharge line L2 may include a seawater discharge valve B2 and may be disposed under at least some sea level.
  • the seawater outlet SW2 may be located about 1.6m below the sea level, and the seawater discharge valve B2 may be provided downstream from the branch point of the circulation connection line L3a on the seawater discharge line L2.
  • the circulation connection line L3 is branched from the seawater discharge line L2 to connect the seawater supply line L1, and the seawater discharge line L2 so that the seawater flows when the seawater supply device 100a is driven in a closed loop driving method. By resupplying the seawater discharged to the seawater supply line, the seawater can be circulated.
  • the circulation connection line (L3) is branched upstream of the seawater discharge valve (B2) on the seawater discharge line (L2) between the seawater supply valve (B1) and the seawater pump (140) on the seawater supply line (L1). It may be connected, it may be provided with a circulation valve (B3).
  • the point where the circulation connection line (L3) branched upstream of the seawater discharge valve (B2) on the seawater discharge line (L2) may be located at a position approximately 20m higher from the sea surface.
  • the circulation connection line L3 may include a circulation connection line L3a and an intermediate tank bypass line L3b.
  • the circulation connection line L3a may include an intermediate tank 150, a circulation valve B3, and an intermediate tank supply valve B6, and the intermediate tank bypass line L3b may be disposed on the circulation connection line L3a. It may be configured to bypass the intermediate tank 150 may include an intermediate tank bypass valve (B5).
  • the circulation valve B3 may be provided closer to the branch point with the seawater discharge line L2 than the intermediate tank 150 on the circulation connection line L3a, and the intermediate tank supply valve B6 may include a circulation connection line ( On L3a) it may be provided closer to the intermediate tank 150 than a diverging point with the seawater discharge line (L2).
  • the bypass line L3b may perform seawater flowing on the circulation connection line L3a to bypass the intermediate tank 150 when the intermediate tank 150 is filled with seawater.
  • the pressure holding device connecting line L4 connects the pressure holding device 130 and the circulation connecting line L3a, and maintains the pressure in the circulation connecting line L3a when the seawater supply device 100a is driven in a closed loop driving method.
  • the seawater stored in the device 130 may be supplied.
  • the pressure holding device connecting line L4 may include a pressure holding device supply valve B4.
  • the heat source heat exchanger 110 is connected to the seawater supply line (L1) and the seawater discharge line (L2), and may be disposed at a position higher than the sea level at about 30m above sea level.
  • the heat source heat exchanger 110 may receive seawater through the seawater supply line (L1), transfer the heat source to the intermediate fruit, and discharge seawater heat-exchanged with the intermediate fruit through the seawater discharge line (L2).
  • the heat source heat exchanger 110 may be a shell & tube type or a printed circuit heat exchanger (PCHE).
  • the heater 120 is provided between the heat source heat exchanger 110 and the seawater pump 140 on the seawater supply line (L1), and may be disposed at a position higher than the sea level and about 30m above the sea level.
  • the heater 120 receives seawater through the seawater supply line L1 and heats it to be supplied to the heat source heat exchanger 110.
  • the heater 120 may be operated when the seawater supply device 100a is driven in a closed loop driving method. That is, the temperature of the seawater may be heated when the temperature of the seawater is so low that the heat source heat exchanger 110 cannot deliver as much heat source as the intermediate fruit.
  • the heater 120 may be supplied with a heat source such as steam from a boiler (not shown) to heat the seawater, but is not limited thereto and may be an electric heater.
  • a heat source such as steam from a boiler (not shown) to heat the seawater, but is not limited thereto and may be an electric heater.
  • the pressure holding device 130 is provided on the circulation connection line L3a and can maintain the pressure of seawater flowing in the circulation connection line L3a.
  • the pressure holding device 130 may be connected through the pressure holding device connecting line (L4) between the point connected to the seawater supply line (L1) and the intermediate tank 150 in the circulation connection line (L3a),
  • the pressure holding device supply valve L4 may be opened to maintain the pressure of seawater flowing on the circulation connection line L3a with the fluid stored therein.
  • the pressure holding device 130 is located approximately 35m higher from the sea surface, and consists of a container that is open so that the upper side is in communication with the atmosphere can maintain the pressure of the sea water using the atmospheric pressure.
  • the pressure holding device 130 located approximately 35m higher at sea level is connected to the circulation connection line L3a located approximately 5m lower at sea level, whereby the pressure holding device 130 is the head of the seawater. (Approximately 40m; 4 bar) to compensate for the pressure of the seawater flowing into the seawater pump 140, through which the circulation connection line (L3a), seawater supply line (L1), seawater discharge line (L2) phase
  • the pressure of the sea water circulating in can be kept constant.
  • the seawater pump 140 may be provided on the seawater supply line L1 to supply seawater to a regasification apparatus, that is, the heat source heat exchanger 110.
  • the seawater pump 140 is provided between the seawater supply valve B1 and the heater 120 on the seawater supply line L1 to pressurize the seawater supplied from the seawater inlet SW1 to heat the heater 120. Through the heat source heat exchanger 110 can be supplied.
  • the sea water pump 140 may be disposed at a position lower than the sea level in the hull H, and the heat source heat exchanger 110 and the heater 120 may be disposed at a position higher than the sea level in the hull H.
  • the seawater pump 140 may be disposed at a position about 5 m lower than the sea level inside the hull H, and the heat source heat exchanger 110 and the heater 120 are 30 m higher than the sea level inside the hull H. May be placed in position.
  • the seawater pump 140 pressurizes the seawater as much as it can withstand the water head (approximately 35m) of the seawater. For example, it may be pressurized to a pressure of about 3.5 bar or more.
  • Intermediate tank 150 is provided on the circulation connection line (L3a), when switching the seawater flows from the seawater discharge line (L2) to the circulation connection line (L3a), that is, non-stop when driving in a closed loop drive method (Non) -Stop).
  • the intermediate tank 150 is located on the circulation connection line (L3a) located higher than the sea level, and stores at least a portion of the seawater therein to be implemented as a non-stop when driving in a closed loop drive method. Can remain in one state.
  • the intermediate tank 150 is provided on the circulation connection line (L3a) in a state located higher than the sea surface, even if the seawater supply apparatus 100a is driven in an open loop drive system by the atmospheric pressure inside the seawater.
  • Some storage and the circulation connection line (L3a) located below the intermediate tank 150 is all filled with sea water.
  • the portion higher than the sea level inside the intermediate tank 150 is filled with air, and the portion higher than the sea level on the circulation connection line L3a is also filled with air.
  • the seawater supply apparatus 100a is connected to the circulation connection line L3a in the seawater pump 140 direction when the seawater supply apparatus 100a switches from the open loop driving method to the closed loop driving method.
  • the seawater is already full, so that switching is possible without stopping the seawater pump 140.
  • the intermediate tank 150 may further include an intermediate tank discharge valve B7 for discharging the packing fluid remaining on the circulation connection line L3a.
  • the intermediate tank discharge valve B7 is a packing fluid that is densely packed by the seawater which opens the opening and is pushed into the intermediate tank 150 when the seawater supply device 100a switches from the open loop driving method to the closed loop driving method. Can be discharged to the outside.
  • the first control unit 170 adjusts the opening degree of the seawater supply valve B1, the seawater discharge valve B2, the circulation valve B3, the intermediate tank bypass valve B5, and the intermediate tank supply valve B6,
  • the seawater is switched from the seawater discharge line (L2) to the circulation connection line (L3a), that is, when the seawater supply device (100a) is switched from the open loop drive method to the closed loop drive method to be implemented as a non-stop Can be controlled.
  • the first control unit 170 is wired or wirelessly with the seawater supply valve (B1), seawater discharge valve (B2), circulation valve (B3), intermediate tank bypass valve (B5) and intermediate tank supply valve (B6). Connected to adjust the opening degree of each valve (B1 ⁇ B6).
  • the first control unit 170 when the seawater supply apparatus 100a is switched from the open loop driving method to the closed loop driving method, the circulation valve B3 and the intermediate tank supply valve until the intermediate tank 150 is filled with seawater. (B6) can be opened.
  • the first control unit 170 that is, when the seawater supply device 100a is switched from the open loop driving method to the closed loop driving method, the seawater supply valve B1 and the seawater discharge valve B2 are opened.
  • the intermediate tank bypass valve B5 may be controlled to maintain a closed state, and may be controlled to switch the circulation valve B3 and the intermediate tank supply valve B6 from the closed state to the open state. .
  • the seawater is supplied from the seawater inlet (SW1) and discharged through the seawater supply line (L1) to the seawater outlet (SW2) through the seawater discharge line (L2), at least part of the seawater passing through the seawater discharge line (L2) Is introduced into the circulation connection line (L3a) is filled with the seawater to the intermediate tank (150).
  • the sea water supply apparatus 100a may be continuously switched from the open loop driving method to the closed loop driving method without stopping the operation of the sea water pump 140.
  • the first controller 170 keeps the circulation valve B3 and the intermediate tank supply valve B6 open until the intermediate tank 150 is filled with seawater, and the intermediate tank 150 is filled with seawater. At the moment, the circulation valve B3 is kept open, while the seawater supply valve B1 and the seawater discharge valve B2 and the intermediate tank supply valve B6 are closed, and the intermediate tank bypass valve B5 is closed. Can be controlled to open.
  • the sea water is supplied from the sea water pump 140 and flows through the sea water supply line (L1) through the sea water discharge line (L2) into the circulation connection line (L3a), the seawater introduced into the circulation connection line (L3a) is intermediate After the tank bypass line (L3b) is joined back to the circulation connection line (L3a) and then supplied to the seawater supply line (L1) is the seawater is circulated to the closed loop. That is, the seawater is continuously connected to the seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3a), intermediate tank bypass line (L3b), circulation connection line (L3a), seawater supply line (L1) It is in circulation.
  • the seawater supply device 100a when the seawater supply device 100a is switched from the open loop driving method to the closed loop driving method, the packing fluid remaining in the circulation connection line L3a, that is, air can be stably removed.
  • the driving method can be switched to the non-stop, and thus, the supply and demand of the regasified liquefied gas to the demand destination 60 can be smoothly obtained.
  • FIG. 3 is a conceptual diagram of a seawater supply apparatus according to a second embodiment of the present invention.
  • the seawater supply device 100b includes a heat source heat exchanger 110, a heater 120, a pressure maintaining device 130, a seawater pump 140, an orifice 160, and a second control unit 171. ) And a non-stop switching valve (B3).
  • the heat source heat exchanger 110, the heater 120, the pressure holding device 130 and the sea water pump 140 is the same as described in the sea water supply device 100a according to the first embodiment of the present invention so as to replace the do.
  • the flow path may be a line through which the fluid flows, but is not limited thereto, and any flow path may be used.
  • it may further include a sea water supply line (L1), sea water discharge line (L2), circulation connection line (L3), pressure holding device connection line (L4).
  • Each line may be provided with valves (not shown) that can adjust the opening degree, and the supply amount of seawater or fluid may be controlled by adjusting the opening degree of each valve.
  • the seawater supply line (L1), seawater discharge line (L2) and the pressure holding device connection line (L4) is the same as described in the seawater supply device (100a) according to the first embodiment of the present invention so as to replace it.
  • the circulation connection line L3 is branched from the seawater discharge line L2 to connect the seawater supply line L1, and the seawater discharge line L2 so that the seawater flows when the seawater supply device 100b is driven in a closed loop driving method.
  • the circulation connection line (L3) is branched upstream of the seawater discharge valve (B2) on the seawater discharge line (L2) between the seawater supply valve (B1) and the seawater pump (140) on the seawater supply line (L1). It may be connected, and may be provided with a non-stop switching valve (B8).
  • the point where the circulation connection line (L3) is branched upstream of the seawater discharge valve (B2) on the seawater discharge line (L2) may be located at a position approximately 5m lower from the sea surface.
  • the orifice 160 when the seawater is switched to flow from the seawater discharge line (L2) to the circulation connection line (L3), that is, the seawater supply device (100b) is switched from the open loop drive method to the closed loop drive method or closed loop drive When driven in a manner, the pressure of the seawater supplied to the heat source heat exchanger 110 through the seawater supply line (L1) is adjusted. That is, the orifice 160 may supply the seawater supplied to the heat source heat exchanger 110 under reduced pressure when the seawater supply device 100b is driven in a closed loop driving method.
  • the orifice 160 may have a shape in which the center portion is recessed into the pressure reducing device. If the device can reduce the seawater, the orifice 160 may be replaced with various devices without being limited to the orifice.
  • the seawater pump 140 does not change the pressure of the seawater discharged even when the seawater supply device 100b is switched from the open loop driving method to the closed loop driving method. Therefore, when the seawater flows through the closed loop space, the head of the seawater is removed, so that the pressurization through the seawater pump 140 is not required much.
  • the seawater pump 140 may compensate for the pressure loss due to the internal resistance of the apparatus 120, for example, the heater 120 or the heat source heat exchanger 110, which uses seawater in the closed loop driving method. Since the pressure is used as it is, the pressure is excessively introduced into the heater 120 or the heat source heat exchanger 110, there was a problem that the vibration and noise occurs.
  • the orifice 160 further includes an orifice bypass line L8, a seawater shutoff valve 161, and a bypass valve 162.
  • the 160 is not used, and the orifice 160 is driven at the time of driving by the closed loop driving method, thereby solving the vibration and noise problems.
  • the orifice 160 may be provided on the orifice bypass line (L8) to reduce the inflow of seawater to supply the seawater to the heat source heat exchanger (110).
  • the seawater shutoff valve 161 is provided between the heater 120 on the seawater supply line L1 and the heat source heat exchanger 110, and the seawater supply device 100b is opened when driven in an open loop driving manner, and closed loop. It can be closed when driven in a driving manner.
  • the bypass valve 162 is disposed upstream of the orifice 160 on the orifice bypass line L8 so that the seawater supply device 100b is closed when driven by the open loop drive method and is driven by the closed loop drive method. Can be opened.
  • the orifice bypass line L8 branches between the heater 120 on the seawater supply line L1 and the seawater shutoff valve 161, and again the seawater shutoff valve 161 and the heat source heat exchanger on the seawater supply line L1. It is connected between the (110), the seawater supply device 100b is the open-loop drive method when the seawater is not introduced, the seawater flows when driven by the closed-loop drive method bypassed the seawater shut-off valve 161 Sea water may be supplied to the furnace heat source heat exchanger 110.
  • the orifice 160, the orifice bypass line (L8), the seawater shut-off valve 161 and the bypass valve 162, by the heat source heat exchanger 110 By supplying, there is an effect of reducing vibration and noise.
  • the second control unit 171 adjusts the opening degree of the seawater supply valve B1, the seawater discharge valve B2, and the non-stop switching valve B8, so that the seawater is discharged from the seawater discharge line L2 to the circulation connection line L3.
  • switching to flow that is, when the seawater supply device (100b) is switched from the open loop driving method to the closed loop driving method can be controlled to be implemented as a non-stop (Non-Stop).
  • the second control unit 171 is connected to the seawater supply valve (B1), seawater discharge valve (B2), non-stop switching valve (B8) in a wired or wireless manner to determine the opening degree of the respective valves (B1, B2, B8). I can regulate it.
  • the second control unit 171 when switching the seawater flows from the seawater discharge line (L2) to the circulation connection line (L3), that is, when the seawater supply device (100b) is switched from the open-loop drive method to the closed loop drive method, Opening the opening degree of the non-stop switching valve B8 and closing the opening degree of the seawater supply valve B1 and the seawater discharge valve B2, and the seawater supply line L1, the seawater discharge line L2, and the circulation connection line It can be controlled to cycle (L3).
  • the second control unit 171 immediately opens the non-stop switching valve B8 and at the same time the sea water supply valve B1. ) And the seawater discharge valve B2 can be closed.
  • the sea water supply device 100b may be continuously switched from the open loop driving method to the closed loop driving method without stopping the operation of the sea water pump 140.
  • the sea water is supplied from the sea water pump 140 and flows through the sea water supply line (L1) to the circulation connection line (L3) through the seawater discharge line (L2), the seawater introduced into the circulation connection line (L3)
  • the seawater is supplied to the supply line (L1) to circulate the closed loop. That is, the seawater is continuously circulated to the seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3), seawater supply line (L1).
  • the second control unit 171 by adjusting the opening degree of the seawater shutoff valve 161 and the bypass valve 162, when the seawater is switched to flow from the seawater discharge line (L2) to the circulation connection line (L3), That is, when the seawater supply device 100b is switched from the open loop driving method to the closed loop driving method or driven by the closed loop driving method, the inflow of seawater into the orifice 160 (decompression device) may be controlled.
  • the second controller 171 may be connected to the seawater shutoff valve 161 and the bypass valve 162 by wire or wirelessly to adjust the opening degree of each of the valves 161 and 162.
  • the second control unit 171 when switching the seawater flows from the seawater discharge line (L2) to the circulation connection line (L3), closing the seawater shutoff valve 161 and open the bypass valve 162 to open the orifice 160
  • the heat source heat exchanger 110 may be supplied with the decompressed seawater by the orifice 160.
  • Non-stop switching valve (B8) is provided on the circulation connection line, when the seawater is switched to flow from the seawater discharge line (L2) to the circulation connection line (L3), that is, the seawater supply device (100b) in the open loop drive method When switching to the closed loop drive method, it is implemented as non-stop.
  • the non-stop switching valve (B8) is provided on the circulation connection line (L3) located below the sea level, for example, may be provided on the circulation connection line (L3) located approximately 5m below the sea level. .
  • the non-stop switching valve B8 is located approximately 5 m below the sea level, and at the same time, the point at which the circulation connection line L3 branches upstream of the sea discharge valve B2 on the sea discharge line L2 is also at sea level.
  • the seawater is filled on the circulation connection line (L3), there is no packing fluid remaining on the circulation connection line (L3).
  • the non-stop switching valve (B8) even when the seawater supply device (100b) is an open loop drive system by filling the seawater supply device (100b) without any packing fluid remaining in the circulation connection line (L3), seawater supply device (100b) There is no residual packing fluid which prevents the switching from the open loop driving method to the closed loop driving method non-stop.
  • all of the seawater supply device 100b is closed loop in the open loop driving method without any packing fluid remaining in the circulation connection line L3. Switching to the driving method can be made non-stop, and thus there is an effect that the supply and demand of the regasified liquefied gas to the demand destination (60) is smooth.
  • FIG. 4 is a conceptual diagram of a seawater supply apparatus according to a third embodiment of the present invention.
  • the seawater supply device 100c includes a heat source heat exchanger 110, a heater 120, a pressure maintaining device 130, a seawater pump 140, a ballast pump 141, and a third control unit ( 172).
  • the heat source heat exchanger 110, the heater 120, the pressure holding device 130 and the sea water pump 140 are as described in the sea water supply device (100a, 100b) according to the first and second embodiments of the present invention. It's the same, so replace it.
  • the flow path may be a line through which the fluid flows, but is not limited thereto, and any flow path may be used.
  • each line may be provided with valves (not shown) that can adjust the opening degree, and the supply amount of seawater or fluid may be controlled by adjusting the opening degree of each valve.
  • the seawater supply line (L1), the seawater discharge line (L2), the circulation connection line (L3) and the pressure holding device connection line (L4) is a seawater supply device (100a, 100b) according to the first and second embodiments of the present invention ) Is the same as described above, so replace it.
  • the fluid supply line L5 connects the upstream of the seawater inlet SW1 and the non-stop switching valve B8 on the circulation connection line L3, and includes a ballast pump 141 and a fluid supply valve B9.
  • ballast pump 141 By supplying ballast water supplied through the ballast pump 141 to the circulation connection line L3 so that the seawater flows on the circulation connection line L3 when the device 100b is driven in the closed loop driving method. Packing fluid remaining on the circulation connection line (L3) can be removed.
  • the fluid supply line L5 connects the non-stop switching valve B8 and the circulation valve B3 on the seawater inlet SW1 and the circulation connection line L3, and the seawater is discharged from the seawater discharge line L2.
  • the fluid is supplied on the circulation connection line (L3).
  • the point where the fluid supply line (L5) is connected upstream of the non-stop switching valve (B8) on the circulation connection line (L3) may be located at a position approximately 5m lower from the sea surface.
  • the ballast pump 141 is provided on the fluid supply line (L5), it can supply a fluid to the circulation connection line (L3).
  • the ballast pump 141 is provided between the seawater inlet SW1 and the fluid supply valve (B9) on the fluid supply line (L5), ballast water (ballast water; Ballast) for controlling the balance of the hull (H)
  • ballast water ballast water; Ballast
  • the seawater flows from the seawater discharge line L2 to the circulation connection line L3, that is, the seawater supply device 100c.
  • the ballast pump 141 may be a centrifugal type.
  • the third control unit 172 adjusts the opening degree of the seawater supply valve B1, the seawater discharge valve B2, the circulation valve B3, the non-stop switching valve B8 and the fluid supply valve B9, and the ballast pump ( 141 to control the operation, so that the seawater flows from the seawater discharge line (L2) to the circulation connection line (L3), that is, when the seawater supply device (100c) is switched from the open loop drive method to the closed loop drive method (Non-Stop) can be controlled to be implemented.
  • the third control unit 172 is a seawater supply valve (B1), seawater discharge valve (B2), circulation valve (B3), non-stop switching valve (B8), fluid supply valve (B9) and ballast pump 141 and wired
  • the openings of the respective valves B1 to B3, B8 and B9 may be adjusted by wireless connection.
  • the third control unit 172 when switching the seawater flows from the seawater discharge line (L2) to the circulation connection line (L3), that is, when the seawater supply device (100c) is switched from the open loop drive method to the closed loop drive method,
  • the opening degree of the fluid supply valve B9 may be opened, and the ballast pump 141 may be operated to control the ballast water to be supplied to the circulation connection line L3.
  • the third control unit 172 when the seawater supply device 100c is switched from the open loop drive method to the closed loop drive method, the seawater supply valve (B1) and the seawater discharge valve (B2) is kept open Control the non-stop switching valve (B8) and circulation valve (B3) to remain closed, to switch the fluid supply valve (B9) from the closed state to the open state, and to operate the ballast pump (141). Can be controlled.
  • the seawater is supplied from the seawater inlet (SW1) is discharged to the seawater outlet (SW2) through the seawater discharge line (L2) through the seawater supply line (L1), at the same time, the ballast pump 141 to the fluid supply line (L5) Through the ballast water flows into the circulation connection line (L3) is filled in the circulation connection line (L3).
  • the packing fluid remaining therein may be removed by the ballast water through the air removal valve 151.
  • the air removal valve 151 may be provided on the circulation connection line L3.
  • the sea water supply device 100c may be continuously switched from the open loop driving method to the closed loop driving method without stopping the operation of the sea water pump 140.
  • the third control unit 172 keeps the fluid supply valve B9 open until the circulation connection line L3 is full of seawater, and at the moment when the seawater is filled in the circulation connection line L3, the seawater is supplied.
  • the sea water discharge valve (B2) and the fluid supply valve (B9) stop the operation of the ballast pump 141, and control the opening of the circulation valve (B3) and the non-stop switching valve (B8). Can be.
  • the sea water is supplied from the sea water pump 140 and flows through the sea water supply line (L1) to the circulation connection line (L3) through the seawater discharge line (L2), the seawater introduced into the circulation connection line (L3) again
  • the sea water is supplied to the supply line (L1) is circulated to the closed loop. That is, the seawater is continuously circulated to the seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3), seawater supply line (L1).
  • the seawater supply device (100c) circulating connection when switching from the open loop drive method to the closed loop drive method
  • the packing fluid remaining in the line L3 can be removed.
  • the third control unit 172 adjusts the opening degree of the seawater supply valve B1, the seawater discharge valve B2, the circulation valve B3, the non-stop switching valve B8, and the pressure holding device supply valve B4.
  • the seawater is switched from the seawater discharge line (L2) to the circulation connection line (L3), that is, when the seawater supply device (100c) is switched from the open loop drive method to the closed loop drive method to Non-Stop (Non-Stop) Can be controlled to be implemented.
  • the third control unit 172 is connected to the seawater supply valve (B1), seawater discharge valve (B2), circulation valve (B3), non-stop switching valve (B8) and pressure holding device supply valve (B4) in a wired or wireless manner.
  • the opening degree of each of the valves B1 to B4 and B8 can be adjusted.
  • the third control unit 172 when switching the seawater flows from the seawater discharge line (L2) to the circulation connection line (L3), that is, when the seawater supply device (100c) is switched from the open loop drive method to the closed loop drive method,
  • the opening of the pressure holding device supply valve B4 may be opened to control the fluid stored in the pressure holding device 130 to be supplied to the circulation connection line L3.
  • the third control unit 172 when the seawater supply device 100c is switched from the open loop drive method to the closed loop drive method, the seawater supply valve (B1) and the seawater discharge valve (B2) is kept open.
  • the non-stop switching valve B8 and the circulation valve B3 may be controlled to maintain a closed state, and may be controlled to switch the pressure holding device supply valve B4 from the closed state to the open state.
  • the sea water is supplied from the sea water inlet (SW1) is discharged through the sea water supply line (L1) to the sea water outlet (SW2) through the sea water discharge line (L2), at the same time, the pressure holding device connection line (L4)
  • the fluid stored inside 130 flows into the circulation connection line L3 to fill the interior of the circulation connection line L3.
  • the packing fluid remaining therein may be removed by the air removal valve 151 by being pushed by the fluid.
  • the air removal valve 151 may be provided on the circulation connection line L3, where the fluid may be seawater.
  • the sea water supply device 100c may be continuously switched from the open loop driving method to the closed loop driving method without stopping the operation of the sea water pump 140.
  • the third control unit 172 maintains the pressure holding device supply valve B4 in the open state until the circulation connection line L3 is full of seawater, and at the moment when the seawater is filled in the circulation connection line L3,
  • the seawater supply valve B1 and the seawater discharge valve B2 are closed, and the circulation valve B3 and the non-stop switching valve B8 can be controlled to be opened.
  • the pressure holding device supply valve B4 is kept open even when the circulation connection line L3 is full, so that the seawater supply device 100c flows on the circulation connection line L3 even in the closed loop driving mode. The pressure of the sea water can be maintained.
  • the pressure holding device 130 may be connected to a fire extinguishing water storage tank (not shown) for storing the extinguishing water for extinguishing the fire, and the seawater supply device 100c is a closed loop drive in an open loop driving method. Digestion water can be supplied from the fire fighting extinguishing tank during the conversion.
  • the sea water is supplied from the sea water pump 140 and flows through the sea water supply line (L1) to the circulation connection line (L3) through the seawater discharge line (L2), the seawater introduced into the circulation connection line (L3) again
  • the sea water is supplied to the supply line (L1) is circulated to the closed loop. That is, the seawater is continuously circulated to the seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3), seawater supply line (L1).
  • the seawater supply device 100c when the seawater supply device 100c is switched from the open loop driving method to the closed loop driving method, the packing fluid remaining in the circulation connection line L3, that is, air can be stably removed.
  • the driving method can be switched to the non-stop, and thus, the supply and demand of the regasified liquefied gas to the demand destination 60 can be smoothly obtained.
  • FIG. 5 is a conceptual diagram of a seawater supply apparatus according to a fourth embodiment of the present invention.
  • the seawater supply device 100d includes a heat source heat exchanger 110, a heater 120, pressure maintaining devices 130a, 130b, and 130c, a seawater pump 140, and a fourth control unit 173. It includes.
  • the heat source heat exchanger 110, the heater 120 and the seawater pump 140 are the same as described in the seawater supply apparatus (100a, 100b, 100c) according to the first to third embodiments of the present invention so as to replace the do.
  • the flow path may be a line through which the fluid flows, but is not limited thereto, and any flow path may be used.
  • sea water supply line (L1) sea water discharge line (L2), circulation connection line (L3), pressure holding device first connection line (L4a), pressure holding device second connection line (L4b),
  • the pressure holding device may further include a third connection line L4c, a first branch line L6, and a second branch line L7.
  • Each line may be provided with valves (not shown) that can adjust the opening degree, and the supply amount of seawater or fluid may be controlled by adjusting the opening degree of each valve.
  • the seawater supply line L1 and the seawater discharge line L2 are the same as those described in the seawater supply apparatuses 100a, 100b, and 100c according to the first to third embodiments of the present invention. Since the first connection line (L4a) is the same as the pressure holding device connection line (L4) described in the seawater supply apparatus (100a, 100b, 100c) according to the first to third embodiments of the present invention will be replaced by this.
  • the pressure holding device second connection line L4b connects the pressure holding device 130b and the heater 120 and the heat source heat exchanger 110 on the seawater supply line L1, and the seawater supply device 100d is closed.
  • the seawater stored in the pressure maintaining device 130b may be supplied to the circulation connection line L3.
  • the pressure holding device second connection line L4b may be connected to the seawater supply line L1 at a position approximately 30m above the sea level at a position above the sea level, and has a pressure holding device second supply valve B4b. can do.
  • the pressure holding device third connection line L4c connects a line higher than sea level between the non-stop switching valve B8 and the circulation valve B3 on the pressure holding device 130c and the circulation connecting line L3.
  • the seawater supply device 100d may supply seawater stored in the pressure maintaining device 130c to the circulation connection line L3.
  • the pressure holding device third connection line L4a may be connected to the circulation connection line L3 at a position approximately 20m above the sea level at a position above the sea level, and has a pressure holding device third supply valve B4c. can do.
  • the circulation connection line L3 is the same as that described in the seawater supply apparatus 100a, 100b, 100c according to the first to third embodiments of the present invention.
  • the circulation connection line (L3) at the time of switching the seawater flows from the seawater discharge line (L2) to the circulation connection line (L30), the seawater flowing on the seawater discharge line (L1) or seawater discharge line (L2).
  • the packing fluid remaining inside can be removed from the supply.
  • the first branch line L6 is branched between the heater 120 and the heat source heat exchanger 110 on the seawater supply line L1 and connected to the circulation connection line L3, so that the seawater supply device 100d is an open loop.
  • the first branch line L6 may include a first branch valve B10 and may be connected to a circulation connection line L3 provided at a position higher than the sea level.
  • the second branch line L7 is branched between the heat source heat exchanger 110 on the seawater discharge line L2 and the point where the circulation connection line L3 branches on the seawater discharge line L2, and thus the circulation connection line L3. Is connected to, when the seawater supply device (100d) is switched from the open loop driving method to the closed loop driving method, it is possible to supply at least a portion of the sea water flowing on the seawater supply line (L1) to the circulation connection line (L3).
  • the second branch line L7 may include a second branch valve B11 and may be connected to a circulation connection line L3 provided at a position higher than the sea level.
  • the pressure holding device 130a is connected to the non-stop switching valve B8 on the circulation connecting line L3 and the circulation valve B3 at a position lower than the sea level through the pressure holding device first connecting line L4a.
  • the pressure holding device opens the first supply valve B4a to allow the fluid stored therein to flow on the circulation connection line L3. Pressure can be maintained.
  • the pressure holding device (130a) is located approximately 35m higher from the sea surface, the upper side is composed of a container open to communicate with the atmosphere can maintain the pressure of the sea water using the atmospheric pressure.
  • the pressure maintaining device 130a located approximately 35m higher at sea level is connected to the circulation connection line L3 located approximately 5m lower at sea level, whereby the pressure maintaining device 130a is the head of the seawater. (Approximately 40m; 4 bar) to compensate for the pressure of the seawater flowing into the seawater pump 140, through which the circulation connection line (L3), seawater supply line (L1), seawater discharge line (L2) phase
  • the pressure of the sea water circulating in can be kept constant.
  • the pressure holding device 130b may be connected between the heater 120 on the sea water supply line L1 and the heat source heat exchanger 110 through the pressure holding device second connection line L4b, and the sea water supply device 100d. Is driven in a closed loop driving method, it is possible to maintain the pressure of the seawater flowing on the seawater supply line L1 with the fluid stored therein by opening the pressure holding device second supply valve B4b.
  • the pressure holding device (130b) is located approximately 35m higher from the sea surface, the upper side is composed of a container open to communicate with the atmosphere can maintain the pressure of the sea water using the atmospheric pressure, the pressure holding device second connection line Seawater supply line (L1) connected to (L4b) may be located approximately 30m higher from the sea surface.
  • the pressure holding device 130b located approximately 35m higher at the sea level is connected to the seawater supply line L1 located approximately 30m higher at the sea level, whereby the pressure holding device 130b is the head of the seawater. (Approximately 5 m; 0.5 bar) can compensate for the pressure of the seawater flowing into the heat source heat exchanger 110, through which the circulation connection line (L3), seawater supply line (L1), seawater discharge line (L2) The pressure of seawater circulating in the bed can be kept constant.
  • the length is considerably reduced compared to the length of the pressure maintaining device first connection line (L4a) has the advantage that the construction cost is reduced.
  • the pressure holding device 130c is provided at a position higher than the sea level between the heat source heat exchanger 110 on the seawater discharge line L2 and the non-stop switching valve B8 and the circulation valve B3 on the circulation connection line L3. It can be connected between the pressure holding device through the third connection line (L4c), when the seawater supply device (100d) is driven in a closed loop drive method by opening the pressure holding device third supply valve (B4c) The stored fluid may maintain the pressure of the seawater flowing on the circulation connection line (L3).
  • the pressure holding device (130c) is located approximately 35m higher from the sea surface, the upper side is composed of a container open to communicate with the atmosphere can maintain the pressure of the sea water using the atmospheric pressure, pressure maintaining device third connection line Circulation connecting line (L3) connected to (L4c) may be located approximately 20m higher than sea level.
  • the pressure holding device 130c located approximately 35m higher at sea level is connected to the circulation connection line L3 located approximately 20m higher at sea level, whereby the pressure holding device 130c is the head of the seawater. (About 15m; 1.5 bar) can compensate for the pressure of the seawater flowing into the seawater pump 140, through which the circulation connection line (L3), seawater supply line (L1), seawater discharge line (L2) phase The pressure of the sea water circulating in can be kept constant.
  • the length is reduced compared to the length of the pressure maintaining device first connection line (L4a) has the advantage that the construction cost is reduced.
  • the fourth control unit 173 includes a seawater supply valve B1, a seawater discharge valve B2, a circulation valve B3, a non-stop switching valve B8, a first branch valve B10, and a second branch valve B11.
  • a seawater supply valve B1 a seawater discharge valve B2, a circulation valve B3, a non-stop switching valve B8, a first branch valve B10, and a second branch valve B11.
  • the fourth control unit 173 includes a seawater supply valve B1, a seawater discharge valve B2, a circulation valve B3, a non-stop switching valve B8, a first branch valve B10, and a second branch valve B11. ) And wired or wirelessly to adjust the opening degree of each of the valve (B1 ⁇ B3, B8, B10, B11).
  • the fourth control unit 173 may control the seawater supply valve without the control of the first branch valve B10 and the second branch valve B11. B1), the seawater discharge valve B2, the circulation valve B3, and the non-stop switching valve B8 can be controlled.
  • the fourth control unit 173, at least when the seawater supply device 100d is switched from the open loop driving method to the closed loop driving method, opens the circulation valve B3 and discharges the water to the seawater discharge line L2. Some may be controlled to be supplied to the circulation connection line (L3).
  • the fourth control unit 173 may open the seawater supply valve B1 and the seawater discharge valve B2. And to maintain, the non-stop switching valve (B8) is controlled to maintain the closed state, it can be controlled to switch the circulation valve (B3) from the closed state to the open state.
  • the seawater is supplied from the seawater inlet (SW1) and discharged through the seawater supply line (L1) to the seawater outlet (SW2) through the seawater discharge line (L2), at least part of the seawater passing through the seawater discharge line (L2) Is introduced into the circulation connection line (L3) to fill the circulation connection line (L3) with sea water, it is possible to remove the packing fluid remaining on the circulation connection line (L3) through the air removal valve (151).
  • the sea water supply device 100d may be continuously switched from the open loop driving method to the closed loop driving method without stopping the operation of the sea water pump 140.
  • the fourth control unit 173 keeps the circulation valve B3 open when the seawater is filled in the circulation connection line L3, while maintaining the seawater supply valve B1 and the seawater discharge valve B2. It can be controlled to close and open the non-stop switching valve B8.
  • the sea water is supplied from the sea water pump 140 and flows through the sea water supply line (L1) to the circulation connection line (L3) through the seawater discharge line (L2), the seawater introduced into the circulation connection line (L3)
  • the seawater is supplied to the supply line (L1) to circulate the closed loop. That is, the seawater is continuously circulated to the seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3), seawater supply line (L1).
  • the fourth control unit 173 is a seawater supply valve (B1), the seawater discharge valve without the control of the second branch valve (B11) when the seawater supply device (100d) is switched from the open loop drive method to the closed loop drive method Only B2, the first branch valve B10, and the non-stop switching valve B8 can be controlled.
  • the fourth control unit 173 opens the first branch valve B10 by opening the first branch valve B10 when the seawater supply device 100d switches from the open loop driving method to the closed loop driving method. At least a portion of the seawater supplied to the 110 may be controlled to be supplied to the circulation connection line (L3).
  • the fourth control unit 173 may open the seawater supply valve B1 and the seawater discharge valve B2.
  • the circulation valve (B3) and the non-stop switching valve (B8) is controlled to maintain a closed state, it can be controlled to switch the first branch valve (B10) from the closed state to the open state.
  • the sea water is supplied from the sea water inlet (SW1) is discharged through the sea water supply line (L1) to the sea water discharge port (SW2) through the sea water discharge line (L2), at least part of the sea water passing through the sea water supply line (L1) Is introduced into the circulation connection line (L3) to fill the circulation connection line (L3) with sea water, it is possible to remove the packing fluid remaining on the circulation connection line (L3) through the air removal valve (151).
  • the sea water supply device 100d may be continuously switched from the open loop driving method to the closed loop driving method without stopping the operation of the sea water pump 140.
  • the fourth control unit 173 opens the circulation valve B3 and the non-stop switching valve B8 at the moment when the seawater is filled in the circulation connection line L3, and the seawater supply valve B1 and the seawater discharge valve B2. And closes the first branch valve B10.
  • the sea water is supplied from the sea water pump 140 and flows through the sea water supply line (L1) to the circulation connection line (L3) through the seawater discharge line (L2), the seawater introduced into the circulation connection line (L3)
  • the seawater is supplied to the supply line (L1) to circulate the closed loop. That is, the sea water is continuously circulated to the sea water supply line (L1), sea water discharge line (L2), circulation connection line (L3), sea water supply line (L1).
  • the fourth control unit 173 is a seawater supply valve (B1), seawater discharge valve without the control of the first branch valve (B10) when the seawater supply device (100d) is switched from the open loop drive method to the closed loop drive method Only B2, the second branch valve B11, and the non-stop switching valve B8 can be controlled.
  • the fourth control unit 173 opens the second branch valve B11 and is discharged to the seawater discharge line L2. At least some of the sea water may be controlled to be supplied to the circulation connection line (L3).
  • the fourth control unit 173 may open the seawater supply valve B1 and the seawater discharge valve B2.
  • the circulation valve (B3) and the non-stop switching valve (B8) is controlled to maintain a closed state, it can be controlled to switch the second branch valve (B11) from the closed state to the open state.
  • the seawater is supplied from the seawater inlet (SW1) and discharged through the seawater supply line (L1) to the seawater outlet (SW2) through the seawater discharge line (L2), at least part of the seawater passing through the seawater discharge line (L2) Is introduced into the circulation connection line (L3) to fill the circulation connection line (L3) with sea water, it is possible to remove the packing fluid remaining on the circulation connection line (L3) through the air removal valve (151).
  • the sea water supply device 100d may be continuously switched from the open loop driving method to the closed loop driving method without stopping the operation of the sea water pump 140.
  • the fourth control unit 173 opens the circulation valve B3 and the non-stop switching valve B8 at the moment when the seawater is filled in the circulation connection line L3, and the seawater supply valve B1 and the seawater discharge valve B2. And closes the second branch valve B11.
  • the sea water is supplied from the sea water pump 140 and flows through the sea water supply line (L1) to the circulation connection line (L3) through the seawater discharge line (L2), the seawater introduced into the circulation connection line (L3)
  • the seawater is supplied to the supply line (L1) to circulate the closed loop. That is, the sea water is continuously circulated to the sea water supply line (L1), sea water discharge line (L2), circulation connection line (L3), sea water supply line (L1).
  • the seawater supply device 100d when the seawater supply device 100d is switched from the open loop driving method to the closed loop driving method, the packing fluid remaining in the circulation connection line L3, that is, air can be stably removed.
  • the driving method can be switched to the non-stop, and thus, the supply and demand of the regasified liquefied gas to the demand destination 60 can be smoothly obtained.
  • FIG. 6 is a conceptual diagram of a seawater supply apparatus according to a fifth embodiment of the present invention.
  • the seawater supply device 100e includes a heat source heat exchanger 110, a heater 120, a pressure holding device 130b, a seawater pump 140, a low pressure pump 142, and a fifth control unit ( 174).
  • the heat source heat exchanger 110, the heater 120, the pressure holding device 130b and the sea water pump 140 is a sea water supply device (100a, 100b, 100c, 100d) according to the first to fourth embodiments of the present invention Since it is the same as described in the above, it will be replaced.
  • the flow path may be a line through which the fluid flows, but is not limited thereto, and any flow path may be used.
  • each line may further include a seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3), pressure holding device second connection line (L4b).
  • Each line may be provided with valves (not shown) that can adjust the opening degree, and the supply amount of seawater or fluid may be controlled by adjusting the opening degree of each valve.
  • seawater supply line L1 the seawater discharge line L2, and the pressure maintaining device second connection line L4b are seawater supply devices 100a, 100b, 100c, and 100d according to the first to fourth embodiments of the present invention. Since it is the same as described in the above, it will be replaced.
  • the circulation connection line L3 is the same as that described in the seawater supply apparatus 100a, 100b, 100c according to the first to third embodiments of the present invention. However, there is a slight difference in that the part connecting the circulation connection line L3 to the seawater supply line L1 is between the seawater pump 140 and the heater 120. This will be described in detail in the following low pressure pump 142 and the fifth control unit 174.
  • the low pressure pump 142 is provided on the circulation connection line (L3) can pressurize the seawater with a pressure capacity less than the pressure capacity of the seawater pump 140, seawater circulation line in the seawater discharge line (L2) It is driven only when switching to flow to (L3) can be supplied after pressurizing the seawater at a low pressure to the heat source heat exchanger (110).
  • the low pressure pump 142 when the seawater is switched to flow from the seawater discharge line (L2) to the circulation connection line (L3), that is, the seawater supply device (100e) is switched from the open loop drive method to the closed loop drive method or When driven in a closed loop driving method, the seawater flowing into the circulation connection line L3 through the seawater discharge line L2 can be pressurized to low pressure to form the heat source heat exchanger 110.
  • the seawater supply device 100e when the seawater supply device 100e is driven in the open loop driving method, the seawater is pressurized by the seawater pump 140 to be supplied to the heat source heat exchanger 110, and the closed water is driven in the closed loop driving method.
  • the low pressure pump 142 When pressurizing the sea water through the low pressure pump 142 may be supplied to the heat source heat exchanger (110).
  • the low pressure pump 142 may be centrifugal.
  • the seawater pump 140 does not change the pressure of the seawater discharged even when the seawater supply device 100e switches from the open loop driving method to the closed loop driving method. Therefore, when the seawater flows through the closed loop space, the head of the seawater is removed, so that the pressurization through the seawater pump 140 is not required much.
  • the seawater pump 140 may compensate for the pressure loss due to the internal resistance of the apparatus 120, for example, the heater 120 or the heat source heat exchanger 110, which uses seawater in the closed loop driving method. Since the pressure is used as it is, the pressure is excessively introduced into the heater 120 or the heat source heat exchanger 110, there was a problem that the vibration and noise occurs.
  • the low pressure pump 142 is provided separately from the seawater pump 140 so that the seawater pump 140 is used in the open loop driving method and the low pressure pump 142 in the closed loop driving method. ) To solve the vibration and noise problems.
  • the fifth control unit 174 adjusts the opening degree of the seawater supply valve B1, the seawater discharge valve B2, the circulation valve B3, and the switching valve B12, and the seawater pump 140 and the low pressure pump 142. Control of the operation of the seawater, so that the seawater flows from the seawater discharge line (L2) to the circulation connection line (L3), that is, when the seawater supply device (100e) is switched from the open loop drive method to the closed loop drive method (Non) -Stop) can be controlled.
  • the fifth control unit 174 the seawater supply valve (B1), seawater discharge valve (B2), circulation valve (B3), switching valve (B12), seawater pump 140 and low pressure pump 142 and wired or wireless It is connected to the can adjust the opening degree of each of the valves (B1 ⁇ B3, B12) and can control the operation of the pump (140, 142).
  • the fifth control unit 174 when switching the seawater flows from the seawater discharge line (L2) to the circulation connection line (L3), that is, when the seawater supply device (100e) is switched from the open-loop drive method to the closed loop drive method,
  • the opening degree of the circulation valve B3 may be controlled to supply at least a portion of the seawater discharged to the seawater discharge line L2 to the circulation connection line L3.
  • the fifth control unit 174 that is, when the seawater supply device 100e is switched from the open loop driving method to the closed loop driving method, the seawater supply valve B1 and the seawater discharge valve B2 are opened.
  • the switching valve (B12) is controlled to maintain the closed state, it can be controlled to switch the circulation valve (B3) from the closed state to the open state.
  • the seawater is supplied from the seawater inlet (SW1) and discharged through the seawater supply line (L1) to the seawater outlet (SW2) through the seawater discharge line (L2), at least part of the seawater passing through the seawater discharge line (L2) Is introduced into the circulation connection line (L3) to fill the circulation connection line (L3) with sea water, it is possible to remove the packing fluid remaining on the circulation connection line (L3) through the air removal valve (151).
  • the fifth control unit 174 keeps the circulation valve B3 open when the seawater is filled in the circulation connection line L3, while closing the seawater supply valve B1 and the seawater discharge valve B2. And the switching valve B12 is opened, the seawater pump 140 is stopped and the low pressure pump 142 is controlled.
  • the seawater is introduced into the circulation connection line (L3) through the seawater supply line (L1) through the seawater discharge line (L2), the seawater introduced into the circulation connection line (L3) at a low pressure through the low pressure pump (142).
  • Pressurized and supplied to the sea water supply line (L1) the sea water is circulated to the closed loop. That is, the seawater is continuously circulated to the seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3), seawater supply line (L1).
  • FIG. 7 is a conceptual diagram of a seawater supply apparatus according to a sixth embodiment of the present invention.
  • the seawater supply device 100f includes a heat source heat exchanger 110, a first heater 120a, a second heater 120b, a pressure maintaining device 130, a seawater pump 140, and a first water heater. And a control unit 175.
  • the heat source heat exchanger 110, the pressure holding device 130 and the sea water pump 140 are the same as described in the sea water supply device (100a ⁇ 100e) according to the first to fifth embodiments of the present invention so as to replace the do.
  • the first heater 120a is provided between the heat source heat exchanger 110 and the seawater pump 140 on the seawater supply line L1, and may be disposed at a position higher than sea level at about 30m above sea level.
  • the first heater 120a receives seawater through the seawater supply line L1 and heats it to be supplied to the heat source heat exchanger 110.
  • the first heater 120a may be operated when the seawater supply device 100f is driven in a closed loop driving method. have. That is, the temperature of the seawater may be heated when the temperature of the seawater is so low that the heat source heat exchanger 110 cannot deliver as much heat source as the intermediate fruit.
  • the first heater 120a may be connected to a boiler (not shown) through a steam line STL to heat seawater by receiving a heat source such as steam, but is not limited thereto. It may be a heater.
  • the first heater 120a is connected in series through the second heater 120b and the steam line STL, which will be described later, and may be driven by one heat source, that is, one steam heat source.
  • the second heater 120b may be disposed on the circulation connection line L3 and disposed at a position approximately 20m above the sea level to a position higher than the sea level, and heat the seawater flowing on the circulation connection line L3. Can be.
  • the second heater 120b receives seawater through the seawater discharge line L2 and heats it to be supplied to the heat source heat exchanger 110.
  • the second heater 120b may be operated when the seawater supply device 100f is driven in a closed loop driving method. have. That is, the temperature of the seawater may be heated when the temperature of the seawater is so low that the heat source heat exchanger 110 cannot deliver as much heat source as the intermediate fruit.
  • the second heater 120b may be connected in series through the first heater 120a and the steam line STL to heat seawater by receiving a heat source such as steam, but is not limited thereto. It may be a heater.
  • the second heater 120b can share a heat source with the first heater 120a, and finally heats the seawater remaining after heating the seawater in the first heater 120a from the second heater 120b.
  • Can be used has the effect of maximizing energy efficiency.
  • the sixth control unit 175 controls the opening degree of the seawater supply valve B1, the seawater discharge valve B2, the circulation valve B3, and the non-stop switching valve B8, and controls the operation of the second heater 120b.
  • the seawater is switched from the seawater discharge line (L2) to the circulation connection line (L3), that is, when the seawater supply device (100f) is switched from the open loop drive method to the closed loop drive method to use the energy to optimize Can be controlled.
  • the sixth control unit 175 is connected to the seawater supply valve (B1), seawater discharge valve (B2), circulation valve (B3), non-stop switching valve (B8), the second heater (120b) by wire or wireless, respectively.
  • the openings of the valves B1 to B3 and B8 may be adjusted and the operation of the second heater 120b may be controlled.
  • the opening degree of the circulation valve B3 may be controlled to supply at least a portion of the seawater discharged to the seawater discharge line L2 to the circulation connection line L3.
  • the sixth control unit 175, that is, when the seawater supply device 100f is switched from the open loop driving method to the closed loop driving method, the seawater supply valve B1 and the seawater discharge valve B2 are opened. And to maintain, the non-stop switching valve (B8) is controlled to maintain the closed state, it can be controlled to switch the circulation valve (B3) from the closed state to the open state.
  • the seawater is supplied from the seawater inlet (SW1) and discharged through the seawater supply line (L1) to the seawater outlet (SW2) through the seawater discharge line (L2), at least part of the seawater passing through the seawater discharge line (L2) Is introduced into the circulation connection line (L3) to fill the circulation connection line (L3) with sea water, it is possible to remove the packing fluid remaining on the circulation connection line (L3) through the air removal valve (151).
  • the sixth control unit 175 keeps the circulation valve B3 open when the seawater is filled in the circulation connection line L3, while closing the seawater supply valve B1 and the seawater discharge valve B2.
  • the non-stop switching valve B8 may be opened, and the temperature of the seawater may be measured by the seawater temperature sensor 180 to control the second heater 120b to operate when the seawater temperature is lower than the preset temperature.
  • the seawater temperature measuring sensor 180 may be provided on the circulation connection line L3, and may be connected to the sixth controller 175 by wire or wirelessly to transmit temperature information of seawater to the sixth controller 175. .
  • the seawater is introduced into the circulation connection line (L3) through the seawater supply line (L1) through the seawater supply line (L1), and the seawater introduced into the circulation connection line (L3) is supplied to the seawater supply line (L1) again.
  • Seawater circulates in the closed loop. That is, the sea water is continuously circulated to the sea water supply line (L1), sea water discharge line (L2), circulation connection line (L3), sea water supply line (L1), and the appropriate temperature is continued to the heat source heat exchanger (110) Supply can be performed.
  • the heat source heat exchanger 110 regardless of the temperature change of the sea water, it is possible to continuously supply the heat source to the heat source heat exchanger 110, and the second heater 120b in addition to the first heater 120a is the first heater 120a. Since the sea water is heated while sharing the heat source, the energy can be consumed economically.
  • the demand destination 60 can receive the liquefied gas vaporized by the vaporizer
  • the demand destination 60 may vaporize the liquefied gas and receive and use the liquefied gas in a gaseous state, and may be a land terminal installed on the land or a sea terminal installed floating on the sea.
  • the vessel having the gas regasification system 1 according to the present invention has an effect of maximizing the regasification efficiency of the liquefied gas.
  • FIG. 8 is a conceptual diagram of a conventional seawater supply apparatus.
  • the conventional seawater supply apparatus 200a supplies seawater, which is a heat source for regasifying the liquefied gas by the regasification apparatus (heat source heat exchanger 110), and is driven. It can have an open loop operation type and a closed loop operation type.
  • the open loop operation type refers to a case where the supply and discharge of seawater is performed only in one direction from the seawater supply line L1 to the seawater discharge line L2.
  • loop operation type means seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3) and back to seawater supply line (L1), seawater discharge line (L2), circulation connection line (L3) This is the case where seawater circulation takes place.
  • the conventional seawater supply apparatus 200a switches from the open loop driving method to the closed loop driving method due to the temperature change of the seawater.
  • seawater supply and discharge is performed only in one direction from the seawater supply line L1 to the seawater discharge line L2.
  • the vacuum removal valve 250 and the vacuum removal line 251 are provided, and the vacuum removal line 251 is connected to the rear end of the heat source heat exchanger 110 on the seawater discharge line L2.
  • the vacuum removal line 251 is connected to the rear end of the heat source heat exchanger 110 on the seawater discharge line L2.
  • the pressure of the seawater discharged from the seawater discharge line (L2) is lowered.
  • the negative pressure generated in the seawater discharge line L2 is generated directly at the rear end of the heat source heat exchanger 110.
  • the heat source heat exchanger 110 immediately causes a problem, and there is a problem in that it does not adequately correspond to compensating such a negative pressure only by the vacuum removing valve 250 and the vacuum removing line 251.
  • reference numerals 120, 130, 140, L4, SW1, and SW2 denote heaters 120, pressure holding devices 130, seawater pumps 140, pressure holding device connection lines L4, and seawater inlets ( SW1) and the seawater outlet (SW2), the configuration is the same as described in the seawater supply apparatus (100a ⁇ f) according to the first to sixth embodiments of the present invention so as to replace it.
  • FIG. 9 is a conceptual diagram of a seawater supply apparatus according to a seventh embodiment of the present invention.
  • the seawater supply apparatus 200b according to the seventh embodiment in the gas regasification system 1 of the present invention includes a heat source heat exchanger 110, a heater 120, and a pressure maintaining apparatus 130. ), Sea water pump 140, vacuum removal valve 250, vacuum removal line 251, negative pressure prevention line 260.
  • the flow path may be a line through which the fluid flows, but is not limited thereto, and any flow path may be used.
  • the present invention encompasses all of the embodiments generated by the combination of the first to sixth embodiments of the present invention and known techniques, or the combination of at least two or more embodiments.
  • the seawater supply apparatus 200b according to the seventh embodiment of the present invention is combined with the seawater supply apparatuses 100a to f according to at least one of the first to sixth embodiments of the present invention.
  • the vacuum eliminating valve 250, the vacuum eliminating line 251, and the negative pressure preventing line 260 are constructed in the first to sixth embodiments of the present invention. Note that it can be applied to each of the seawater supply apparatus (100a ⁇ f) according to at least one embodiment of the example.
  • each line may further include a sea water supply line (L1), sea water discharge line (L2), circulation connection line (L3), pressure holding device connection line (L4).
  • Each line may be provided with valves (not shown) that can adjust the opening degree, and the supply amount of seawater or fluid may be controlled by adjusting the opening degree of each valve.
  • the seawater supply line L1 connects the seawater inlet SW1 and the heat source heat exchanger 110, and supplies seawater supplied from the seawater inlet SW1 to the heat source heat exchanger 110 through the seawater pump 140. have.
  • the seawater supply line L1 may include a seawater pump 140, a seawater supply valve B1, and a heater 120, and may be disposed under at least some sea level.
  • the seawater inlet SW1 may be located about 5 m below the sea surface, and the seawater supply valve B1 may be provided upstream of the seawater pump 140 on the seawater supply line L1.
  • Seawater discharge line (L2), the heat source heat exchanger 110 and the seawater outlet (SW2) is connected to the negative pressure prevention line 160, the seawater discharged from the heat source heat exchanger (110) to the seawater outlet (SW2) Can be discharged.
  • the seawater discharge line L2 may include a seawater discharge valve B2 and may be disposed under at least some sea level.
  • the seawater outlet SW2 may be located approximately 2m below the sea level (preferably about 1.6m below) and the seawater discharge valve B2 is a branch point of the circulation connection line L3 on the seawater discharge line L2. More downstream.
  • the circulation connection line L3 is branched from the seawater discharge line L2 to connect the seawater supply line L1, and the seawater discharge line L2 so that the seawater flows when the seawater supply device 200b is driven in a closed loop driving method. By resupplying the seawater discharged to the seawater supply line, the seawater can be circulated.
  • the circulation connection line L3 is branched from the seawater discharge downstream line L2b on the seawater discharge line L2 to be connected between the seawater supply valve B1 and the seawater pump 140 on the seawater supply line L1. It may be provided with a circulation valve (B3).
  • the point where the circulation connection line (L3) branched from the seawater discharge downstream line (L2b) may be located at a position approximately 20m higher from the sea surface.
  • the pressure holding device connecting line L4 connects the pressure holding device 130 and the circulation connecting line L3, and maintains the pressure in the circulation connecting line L3 when the seawater supply device 200b is driven in a closed loop driving method.
  • the seawater stored in the device 130 may be supplied.
  • the pressure holding device connecting line L4 may include a pressure holding device supply valve B4.
  • the heat source heat exchanger 110 is connected to the seawater supply line (L1) and the seawater discharge line (L2), and may be disposed at a position higher than the sea level at about 28m to 32m (preferably about 30m) at sea level. .
  • the heat source heat exchanger 110 may receive seawater through the seawater supply line (L1), transfer the heat source to the intermediate fruit, and discharge seawater heat-exchanged with the intermediate fruit through the seawater discharge line (L2).
  • the heat source heat exchanger 110 may be a shell & tube type or a printed circuit heat exchanger (PCHE).
  • the heater 120 is provided between the heat source heat exchanger 110 and the seawater pump 140 on the seawater supply line (L1), and may be disposed at a position higher than the sea level and about 30m above the sea level.
  • the heater 120 receives seawater through the seawater supply line L1 and heats it to be supplied to the heat source heat exchanger 110.
  • the heater 120 may be operated when the seawater supply device 100b is driven in a closed loop driving method. That is, the temperature of the seawater may be heated when the temperature of the seawater is so low that the heat source heat exchanger 110 cannot deliver as much heat source as the intermediate fruit.
  • the heater 120 may be supplied with a heat source such as steam from a boiler (not shown) to heat the seawater, but is not limited thereto and may be an electric heater.
  • a heat source such as steam from a boiler (not shown) to heat the seawater, but is not limited thereto and may be an electric heater.
  • the pressure maintaining device 130 is provided on the circulation connection line L3 and can maintain the pressure of seawater flowing in the circulation connection line L3.
  • the pressure holding device 130 is connected to the circulation connection line (L3), when the seawater supply device 200b is driven in a closed loop drive method to open the pressure holding device supply valve (B4) therein
  • the stored fluid may maintain the pressure of the seawater flowing on the circulation connection line (L3).
  • the pressure holding device 130 is located approximately 35m higher from the sea surface, and consists of a container that is open so that the upper side is in communication with the atmosphere can maintain the pressure of the sea water using the atmospheric pressure.
  • the pressure holding device 130 located approximately 35m higher at sea level is connected to the circulation connection line L3 located approximately 5m lower at sea level, whereby the pressure holding device 130 is the head of the seawater. (Approximately 40m; 4 bar) to compensate for the pressure of the seawater flowing into the seawater pump 140, through which the circulation connection line (L3), seawater supply line (L1), seawater discharge line (L2) phase
  • the pressure of the sea water circulating in can be kept constant.
  • the seawater pump 140 may be provided on the seawater supply line L1 to supply seawater to a regasification apparatus, that is, the heat source heat exchanger 110.
  • the seawater pump 140 is provided between the seawater supply valve B1 and the heater 120 on the seawater supply line L1 to pressurize the seawater supplied from the seawater inlet SW1 to heat the heater 120. Through the heat source heat exchanger 110 can be supplied.
  • the sea water pump 140 may be disposed at a position lower than the sea level in the hull H, and the heat source heat exchanger 110 and the heater 120 may be disposed at a position higher than the sea level in the hull H.
  • the seawater pump 140 may be disposed at a position about 5 m lower than the sea level inside the hull H, and the heat source heat exchanger 110 and the heater 120 are 30 m higher than the sea level inside the hull H. May be placed in position.
  • the seawater pump 140 pressurizes the seawater as much as it can withstand the water head (approximately 35m) of the seawater. For example, it may be pressurized to a pressure of about 3.5 bar or more.
  • the vacuum removal valve 250 is provided on the vacuum removal line 251, and can adjust the flow rate of air introduced into the seawater discharge line L2.
  • the vacuum removal valve 250 may control the internal pressure on the seawater discharge line L2 by controlling the air supplied from the outside to be supplied to the seawater discharge line L2.
  • the vacuum relief valve 250 may be controlled by a pressure sensor and a control unit having a separate control unit (not shown) and a pressure sensor (not shown).
  • the vacuum removal line 251 may be connected on the negative pressure prevention line 260, and may supply air supplied from the outside to the seawater discharge line L2 to remove the negative pressure inside the seawater discharge line L2.
  • the vacuum removal line 251 may be connected in parallel with the seawater discharge downstream line (L2b) when connected to the negative pressure prevention line 260.
  • the vacuum removal line 251 may be directly connected to the seawater discharge downstream line (L2b), not the negative pressure prevention line 260, and may also be connected in parallel with the seawater discharge downstream line (L2b).
  • the negative pressure prevention line 260 is provided on the seawater discharge line (L2) may be formed at a position higher than the heat source heat exchanger (110).
  • the negative pressure prevention line 260 is connected to the seawater discharge upstream line L2a and the seawater discharge downstream line L2b of the seawater discharge line L2, respectively, and the seawater discharged from the heat source heat exchanger 110 is discharged from the seawater. It may be supplied to the seawater discharge downstream line (L2b) through the upstream line (L2a), it may be formed at a position higher than the heat source heat exchanger (110) on the seawater discharge line (L2).
  • the negative pressure prevention line 260 may have a gooseneck shape.
  • the negative pressure generated at the immediate end of the heat source heat exchanger 110 is generated in the negative pressure prevention line 260, through which the vacuum relief valve 250 and the vacuum removal line 251 can remove the negative pressure. There is an effect that can secure enough time.
  • the negative pressure is located in the negative pressure preventing line 260, not the rear end of the heat source heat exchanger 110, and thus the heat source. Since seawater backflow to the heat exchanger 110 or stagnation of seawater in the heat source heat exchanger 110 does not occur, driving reliability of the regasification apparatus is improved and regasification efficiency is maximized.
  • the negative pressure prevention line 260 may be connected to the seawater discharge upstream line (L2a) in a streamlined manner, and may be connected in parallel with the seawater discharge downstream line (L2b). Through this, the negative pressure prevention line 260 can prevent damage caused by seawater discharged from the heat source heat exchanger 110, thereby improving durability.
  • FIG. 10 is a first conceptual diagram of a negative pressure preventing unit provided in the seawater supply apparatus according to the seventh exemplary embodiment of the present invention
  • FIG. 11 is a second conceptual view of a negative pressure preventing unit provided in the seawater supply apparatus according to the seventh exemplary embodiment of the present invention. to be.
  • the negative pressure prevention line 260 may be configured of an inlet part 261, a connection part 262, and an outlet part 263.
  • the inlet portion 261 may be connected to the seawater discharge upstream line L2a and may receive seawater discharged from the heat source heat exchanger 110 and transmit the seawater to the connection portion 262.
  • the inlet portion 261 may be connected at right angles to the seawater discharge upstream line L2a and the connecting portion 262 (see FIG. 4) or may be connected to the seawater discharge upstream line L2a and the connecting portion 262 in a streamlined fashion. (See FIG. 5)
  • the seawater discharge upstream line L2a may be formed to be parallel to at least some heat source heat exchanger 110.
  • connection part 262 connects the inlet part 261 and the outlet part 263, and can supply the seawater which flows in from the inlet part 261 to the outlet part 263.
  • connection part 262 may be connected at right angles to the inlet part 261 and the outlet part 263 (see FIG. 10) or may be connected to the inlet part 261 and the outlet part 263 in a streamlined manner (FIG. 11). Reference) Here, the portion where the connection portion 262 is connected to the outlet portion 263 may be connected to the vacuum removal line 251.
  • the outlet portion 263 is connected to the seawater discharge downstream line (L2b) and the vacuum removal line 251, can receive the seawater discharged from the connecting portion 162 to be delivered to the seawater discharge downstream line (L2b).
  • the outlet 263 may be connected in parallel with the vacuum removing line 251.
  • the outlet portion 263 may be connected in parallel with the seawater discharge downstream line L2b, may be connected at right angles with the connecting portion 262 (see FIG. 10), or may be connected in a streamline with the connecting portion 262. 11)
  • the inlet portion 261, the connection portion 262, and the outlet portion 263 constituting the negative pressure prevention line 260 are formed at a position higher than the heat source heat exchanger 110 on the seawater discharge line L2, thereby providing a heat source.
  • the seawater treatment apparatus 200b has a negative pressure generation position on the seawater discharge line L2 generated by the external environment through the negative pressure prevention line 260 immediately after the heat source heat exchanger 110. Since it can be moved to a place other than the stage, the driving reliability of the regasification device is improved and the regasification efficiency is maximized.
  • FIG. 12 is a conceptual diagram of a seawater supply apparatus according to an eighth embodiment of the present invention.
  • the seawater supply apparatus 200c includes a heat source heat exchanger 110, a heater 120, and a pressure maintaining apparatus 130. ), Sea water pump 140, vacuum removal valve 250, vacuum removal line 251, negative pressure prevention valve 270.
  • the seawater supply apparatus 200c is a heat source heat exchanger 110 in the seawater supply apparatus 200b according to the seventh embodiment shown in FIG. 9.
  • the same reference numerals are used, but the same configuration is not necessarily referred to.
  • the present invention encompasses all of the embodiments generated by the combination of the first to sixth embodiments of the present invention and known techniques, or the combination of at least two or more embodiments.
  • the seawater supply apparatus 200c according to the eighth embodiment of the present invention is combined with the seawater supply apparatuses 100a to f according to at least one of the first to sixth embodiments of the present invention.
  • the configuration of the negative pressure prevention valve 270 of the seawater supply apparatus 200c according to the eighth embodiment is the seawater supply apparatus 100a according to at least one of the first to sixth embodiments of the present invention. Note that they can be applied to ⁇ f) respectively.
  • the seawater supply apparatus 200c according to the eighth embodiment is a negative pressure prevention line 260 in the seawater supply apparatus 200b according to the seventh embodiment shown in FIG. 9. This is excluded, the negative pressure prevention valve 270 is added, there is a difference in the position of the vacuum removal line 251 has been changed.
  • the vacuum removal line 251 may be connected to the seawater discharge line (L2), it is possible to remove the negative pressure inside the seawater discharge line (L2) by supplying air supplied from the outside to the seawater discharge line (L2).
  • the vacuum removal line 251 may be connected to the downstream on the basis of the flow of seawater than the position provided with the negative pressure preventing valve 270 on the seawater discharge line (L2).
  • the negative pressure prevention valve 270 can prevent an excessive rise in pressure.
  • the vacuum removal line 251 may be vertically connected to the seawater discharge downstream line L2b when connected to the seawater discharge line L2, and may include a vacuum removal valve 250 on the vacuum removal line 251. have.
  • the negative pressure prevention valve 270 is provided on the seawater discharge line L2 and can control the flow rate of the seawater discharged from the heat source heat exchanger 110.
  • the negative pressure prevention valve 270 is provided between the seawater discharge valve B2 on the seawater discharge line L2 and the heat source heat exchanger 110, and controls the flow rate of seawater discharged from the heat source heat exchanger 110.
  • the positive pressure may be maintained in a section between the heat source heat exchanger 110 and the negative pressure prevention valve 270 on the seawater discharge line L2.
  • the negative pressure preventing valve 270 may be a throttle valve or an orifice.
  • the negative pressure formed at the end immediately after the heat source heat exchanger 110 is negative pressure prevention valve 270 and seawater It is generated between the outlet (SW2), through which the vacuum removal valve 250 and the vacuum removal line 251 has an effect that can ensure a sufficient time to remove the negative pressure.
  • the seawater supply device 200c the heat source heat exchanger 110 to the negative pressure generation position on the seawater discharge line (L2) generated by the external environment through the negative pressure prevention valve 270 Since it can be moved to a place other than immediately after, the driving reliability of the regasification device is improved and the regasification efficiency is maximized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명에 따른 가스 재기화 시스템을 구비하는 선박은, 해수공급장치에 의해 공급되는 해수를 통해 액화가스를 재기화시키는 재기화 장치를 포함하는 가스 재기화 시스템을 구비하는 선박에 있어서, 상기 해수공급장치가 오픈루프 모드에서 클로즈루프 모드로 전환 시 논스톱으로 구현되기 위해서, 순환연결라인에 유동하는 해수의 압력을 유지시키는 해수저장탱크 내부의 유체를 순환연결라인으로 공급하도록 하는 발명입니다.

Description

가스 재기화 시스템을 구비하는 선박
본 발명은 가스 재기화 시스템을 구비하는 선박에 관한 것이다.
일반적으로, LNG는 청정연료이고 매장량도 석유보다 풍부하다고 알려져 있고, 채광과 이송기술이 발달함에 따라 그 사용량이 급격히 증가하고 있다. 이러한 LNG는 주성분인 메탄을 1기압 하에서 -162℃ 이하로 온도를 내려서 액체 상태로 보관하는 것이 일반적인데, 액화된 메탄의 부피는 표준 상태인 기체상태의 메탄 부피의 600분의 1 정도이고, 비중은 0.42로 원유 비중의 약 2분의 1이 된다.
LNG는 운반의 용이성으로 액화시켜 운송 후 사용처에서 기화시켜서 사용한다. 그러나, 자연 재해 및 테러의 위험으로 인하여 육상에 LNG 기화설비를 설치하는 것을 우려한다.
이로 인하여 종래 육상에 설치하는 액화천연가스 재기화 시스템 대신에, 액화천연가스(Liquefied Natural Gas)를 운반하는 LNG 운반선에 재기화 장치를 설치하여 육상으로 기화된 천연가스(Natural Gas)를 공급하는 설비가 각광을 받고 있다.
LNG 재기화 장치 시스템에서 액화가스 저장탱크에 저장된 LNG는 부스팅 펌프에 의해 가압되어 LNG 기화기로 보내어지고, LNG 기화기에서 NG로 기화되어 육상의 수요처로 보내진다. 여기서 LNG 기화기 상에 LNG의 온도를 높이는 열교환이 이루어지는 과정에서 많은 에너지를 필요로 하게 된다. 따라서, 이 과정에서 쓰이는 에너지가 비효율적인 교환이 이루어짐으로 인해 낭비되는 문제점을 해결하기 위해 효율적인 재기화를 위한 다양한 열교환 기술들이 연구되고 있는 실정이다.
본 발명은 종래의 기술을 개선하고자 창출된 것으로서, 액화가스의 재기화 효율이 극대화될 수 있는 가스 재기화 시스템을 구비하는 선박을 제공하기 위한 것이다.
본 발명에 따른 가스 재기화 시스템을 구비하는 선박은, 해수공급장치에 의해 공급되는 해수를 통해 액화가스를 재기화시키는 재기화 장치를 포함하는 가스 재기화 시스템을 구비하는 선박에 있어서, 상기 해수공급장치는, 상기 재기화 장치로 상기 해수를 공급하는 해수공급라인; 상기 재기화 장치로부터 상기 해수를 배출시키는 해수배출라인; 상기 해수배출라인에서 분기되어 상기 해수공급라인을 연결하는 순환연결라인; 상기 순환연결라인 상에 구비되며, 상기 순환연결라인에 유동하는 해수의 압력을 유지시키는 해수저장탱크; 및 상기 해수저장탱크와 상기 순환연결라인을 연결하는 탱크 연결라인을 포함하고, 상기 탱크 연결라인은, 상기 해수배출라인 상에 유동하는 해수가 외부로 배출되지 않고 상기 순환연결라인으로 유동하도록 전환하기 전, 상기 순환연결라인 상에 상기 해수저장탱크 내부의 유체를 공급할 수 있다.
구체적으로, 상기 순환연결라인 상의 상기 해수공급라인과 연결되는 지점에 더 가깝게 배치되는 제1 개폐밸브; 및 상기 순환연결라인 상의 상기 해수배출라인에서 분기되는 지점에 더 가깝게 배치되는 제2 개폐밸브를 더 포함할 수 있다.
구체적으로, 상기 해수공급라인 상에 구비되어, 상기 해수를 상기 재기화 장치로 공급하는 해수 펌프를 더 포함하고, 상기 해수 펌프는, 해수면보다 낮게 위치할 수 있다.
구체적으로, 상기 해수공급라인 상의 상기 해수 펌프 상류에 구비되는 제3 개폐밸브; 상기 해수배출라인 상의 상기 순환연결라인의 분기점보다 하류에 구비되는 제4 개폐밸브; 상기 탱크 연결라인 상에 구비되는 압력유지유체 공급밸브; 및 상기 제1 내지 제4 개폐밸브 및 상기 압력유지유체 공급밸브의 개도를 조절하여, 상기 해수배출라인 상에 유동하는 해수가 외부로 배출되지 않고 상기 순환연결라인으로 유동하도록 전환하는 것을 논스톱(Non-Stop)으로 구현시키는 제어부를 더 포함할 수 있다.
구체적으로, 상기 제어부는, 상기 해수배출라인 상에 유동하는 해수가 외부로 배출되지 않고 상기 순환연결라인으로 유동하도록 전환하기 전, 상기 압력유지유체 공급밸브를 개방하여 상기 순환연결라인으로 상기 유체를 공급하도록 제어할 수 있다.
구체적으로, 상기 제어부는, 상기 순환연결라인 상에 상기 유체가 가득 차는 경우, 제3 및 제4 개폐밸브를 폐쇄하고, 상기 제1 및 제2 개폐밸브를 개방하도록 제어할 수 있다.
구체적으로, 상기 해수저장탱크는, 대기압을 이용하여, 해수의 압력을 유지시킬 수 있다.
구체적으로, 상기 해수저장탱크 내부의 유체는, 해수일 수 있다.
구체적으로, 화재를 진압하는 소화수를 저장하는 화재진압용 소화수 저장탱크를 더 포함하고, 상기 해수저장탱크는, 상기 화재진압용 소화수 저장탱크와 연결될 수 있다.
구체적으로, 상기 화재진압용 소화수저장탱크는, 상기 해수배출라인 상에 유동하는 해수가 외부로 배출되지 않고 상기 순환연결라인으로 유동하도록 전환하기 전, 내부에 저장된 상기 소화수를 상기 해수저장탱크로 공급할 수 있다.
구체적으로, 상기 재기화 장치는, 상기 액화가스를 상기 해수로 직접 기화시키는 기화기를 포함할 수 있다.
구체적으로, 상기 재기화 장치는, 상기 액화가스를 중간 열매로 기화시키는 기화기; 및 상기 해수의 열원을 상기 중간 열매로 공급하는 열원 열교환기를 포함할 수 있다.
구체적으로, 상기 제1 개폐밸브는, 논스톱 전환밸브이고, 상기 제2 개폐밸브는, 순환밸브이고, 상기 제3 개폐밸브는, 해수공급밸브이고, 상기 제4 개폐밸브는, 해수배출밸브이고, 상기 제어부는, 제3 제어부이고, 상기 해수저장탱크는, 압력유지장치이고, 상기 탱크 연결라인은 압력유지장치 연결라인일 수 있다.
또한, 본 발명의 실시예에 따른 가스 재기화 시스템을 구비하는 선박은, 해수공급장치에 의해 공급되는 해수를 통해 액화가스를 재기화시키는 재기화 장치를 포함하는 가스 재기화 시스템에 있어서, 상기 해수공급장치는, 상기 재기화 장치로부터 상기 해수를 배출시키는 해수배출라인을 포함하고, 상기 해수배출라인은, 적어도 일부가 상기 재기화 장치보다 높은 위치로 형성된다.
구체적으로, 상기 해수배출라인은, 상기 재기화 장치보다 높은 위치에 형성되는 음압방지라인; 상기 재기화 장치와 상기 음압방지라인을 연결하는 해수배출 상류라인; 및 상기 음압방지라인과 상기 해수가 외부로 배출되는 해수배출구와 연결되는 해수배출 하류라인을 포함할 수 있다.
구체적으로, 상기 해수배출 상류라인은, 적어도 일부 상기 재기화 장치와 수평을 이룰 수 있다.
구체적으로, 상기 음압방지라인은, 상기 해수배출 상류라인과 유선형으로 연결될 수 있다.
구체적으로, 상기 해수배출 하류라인은, 상기 음압방지라인과 상기 해수배출구를 수직으로 연결할 수 있다.
구체적으로, 상기 해수공급장치는, 상기 해수배출라인 내의 음압을 제거하는 진공제거라인; 및 상기 진공제거라인 상에 구비되며 상기 해수배출라인으로 유입되는 공기의 유량을 조절하는 진공제거밸브를 더 포함하고, 상기 진공제거라인은, 상기 해수배출 하류라인에 평행하게 연결될 수 있다.
구체적으로, 상기 음압방지라인은, 상기 해수배출 상류라인과 연결되는 유입부; 상기 해수배출 하류라인과 연결되는 유출부; 상기 유입부와 상기 유출부를 연결하는 연결부를 포함하며, 상기 유출부는, 상기 진공제거라인과 평행하게 연결될 수 있다.
구체적으로, 상기 연결부는, 상기 유입부와 유선형으로 연결될 수 있다.
구체적으로, 상기 연결부는, 상기 유입부 및 상기 유출부와 직각으로 연결될 수 있다.
구체적으로, 상기 재기화 장치는, 해수면으로부터 28 내지 32m 높이에 위치하고, 상기 해수배출구는, 상기 해수면과 상기 해수면으로부터 -2m 높이 사이에 위치할 수 있다.
구체적으로, 상기 해수공급장치는, 상기 해수배출라인 상에 구비되며, 상기 재기화 장치로부터 배출되는 해수의 유량을 제어하는 음압방지밸브; 상기 해수배출라인 내의 음압을 제거하는 진공제거라인; 및 상기 진공제거라인 상에 구비되며 상기 해수배출라인으로 유입되는 공기의 유량을 조절하는 진공제거밸브를 더 포함하고, 상기 진공제거라인은, 상기 해수배출라인 상의 상기 음압방지밸브가 구비된 위치보다 상기 해수의 흐름 기준으로 하류에 연결될 수 있다.
구체적으로, 상기 해수공급장치는, 상기 해수배출라인 상에서 상기 음압방지밸브와 상기 해수가 외부로 배출되는 해수배출구 사이에 구비되며, 상기 해수가 상기 외부로 유출되는 것을 제어하는 해수유출밸브를 더 포함할 수 있다.
구체적으로, 상기 재기화 장치는, 상기 액화가스를 중간 열매로 기화시키는 기화기; 및 상기 해수의 열원을 상기 중간 열매로 공급하는 열원 열교환기를 포함하되, 상기 해수배출라인은, 적어도 일부가 상기 열원 열교환기보다 높은 위치로 형성될 수 있다.
본 발명에 따른 가스 재기화 시스템을 구비하는 선박은, 해수공급장치가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인 내에 잔존하는 패킹유체가 안정적으로 이루어질 수 있어, 논스톱으로 구동방식의 전환이 이루어질 수 있고 이로 인해 재기화된 액화가스가 수요처로의 수급이 원활하게 이루어지는 효과가 있다.
도 1은 본 발명의 실시예에 따른 가스 재기화 시스템을 구비한 선박의 개념도이다.
도 2는 본 발명의 제1 실시예에 따른 해수공급장치의 개념도이다.
도 3은 본 발명의 제2 실시예에 따른 해수공급장치의 개념도이다.
도 4는 본 발명의 제3 실시예에 따른 해수공급장치의 개념도이다.
도 5는 본 발명의 제4 실시예에 따른 해수공급장치의 개념도이다.
도 6은 본 발명의 제5 실시예에 따른 해수공급장치의 개념도이다.
도 7은 본 발명의 제6 실시예에 따른 해수공급장치의 개념도이다.
도 8은 종래의 실시예에 따른 해수 공급장치의 개념도이다.
도 9는 본 발명의 제7 실시예에 따른 해수공급장치의 개념도이다.
도 10은 본 발명의 제7 실시예에 따른 해수공급장치에 구비되는 음압 방지부의 제1 개념도이다.
도 11은 본 발명의 제7 실시예에 따른 해수공급장치에 구비되는 음압 방지부의 제2 개념도이다.
도 12는 본 발명의 제8 실시예에 따른 해수공급장치의 개념도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
이하 본 명세서에서, 액화가스는 LNG 또는 LPG, 에틸렌, 암모니아 등과 같이 일반적으로 액체 상태로 보관되는 모든 가스 연료를 포괄하는 의미로 사용될 수 있으며, 가열이나 가압에 의해 액체 상태가 아닌 경우 등도 편의상 액화가스로 표현할 수 있다. 이는 증발가스도 마찬가지로 적용될 수 있다. 또한, LNG는 편의상 액체 상태인 NG(Natural Gas) 뿐만 아니라 초임계 상태 등인 NG를 모두 포괄하는 의미로 사용될 수 있으며, 증발가스는 기체 상태의 증발가스뿐만 아니라 액화된 증발가스를 포함하는 의미로 사용될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 가스 재기화 시스템을 구비한 선박의 개념도이다.
도 1에 도시한 바와 같이, 본 발명의 실시예에 따른 가스 재기화 시스템(1)은, 액화가스 저장탱크(10), 피딩 펌프(20), 버퍼 탱크(30), 부스팅 펌프(40), 기화기(50), 수요처(60), 해수공급장치(100)를 포함한다.
여기서 가스 재기화 시스템(1)이 설치된 선박(부호 도시하지 않음)은, 선수부(부호 도시하지 않음), 선미부(부호 도시하지 않음), 상갑판(부호 도시하지 않음)으로 구성된 선체(H)를 가지고 있으며, 선미부에 배치되는 엔진룸(부호 도시하지 않음)의 엔진(E)에서 생산한 동력을 프로펠러 축(S)이 프로펠러(P)로 전달하여 작동함으로써 추진된다.
또한, 상기 선박은, 해상에서 액화가스를 재기화하여 액화가스를 육상 터미널로 공급할 수 있도록 하기 위해, 액화가스 운반선(부호 도시하지 않음)에 가스 재기화 시스템(1)을 설치한 액화가스 재기화 선박(LNG RV) 또는 부유식 액화가스 저장 및 재기화 설비(FSRU)일 수 있다.
이하 도 1을 참고로 하여 본 발명의 실시예에 따른 가스 재기화 시스템(1)을 설명하도록 한다.
본 발명의 실시예에 따른 가스 재기화 시스템(1)은, 액화가스 저장탱크(10)로부터 액체 상태의 액화가스를 피딩 펌프(20)를 통해 빼내어 버퍼 탱크(30)를 거쳐 부스팅 펌프(40)로 가압시킨 후, 기화기(50)에서 열원을 통해 액화가스를 가열시켜 재기화시키고 이를 수요처(60)로 공급하는 방식을 사용한다. 즉, 간단히 말해서 본 발명의 가스 재기화 시스템(1)은, 기화기(50)를 사용하여 액화가스를 재기화시켜 수요처(60)로 공급한다.
기화기(50)는 해수공급장치(100)로부터 직접적으로 해수를 공급받아 액화가스를 재기화시킬 수 있으며(직접 재기화 방식), 해수공급장치(100)로부터 간접적으로 해수를 공급받아 액화가스를 재기화시킬 수 있다.(간접 재기화 방식; 중간열매인 글리콜 워터가 열원 열교환기(110)로부터 해수의 열원을 공급받고, 다시 중간열매가 해수로부터 공급받은 열원을 기화기(50)로 공급하는 방식)
본 발명의 모든 실시예에서는 간접 재기화 방식을 기준으로 설명하도록 하며, 이는 설명의 편의를 위한 것일 뿐, 본 발명에서 특별히 한정되는 이유가 아님을 주지바라며, 재기화 장치는 직접 재기화 방식에서는 기화기(50)만을 말하고, 간접 재기화 방식에서는 기화기(50) 및 열원 열교환기(110)를 통틀어서 지칭할 수 있고 편의상 열원 열교환기(110)를 의미할 수 있다.
본 발명의 실시예에 따른 가스 재기화 시스템(1)은, 액화가스 공급라인(RL)을 더 포함할 수 있으며, 액화가스 공급라인(RL) 상에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 액화가스 또는 기화된 액화가스의 공급량이 제어될 수 있다.
액화가스 공급라인(RL)은, 액화가스 저장탱크(10)와 수요처(60)를 연결하고, 피딩 펌프(20), 버퍼 탱크(30), 부스팅 펌프(40), 기화기(50)를 구비하여, 액화가스 저장탱크(10)에 저장된 액화가스를 재기화시킨 후 수요처(60)로 공급할 수 있다.
이하에서는 상기 본 발명의 실시예에 따른 가스 재기화 시스템(1)을 구현하는 개별적인 구성들에 대해서 상세히 설명하도록 한다.
액화가스 저장탱크(10)는, 수요처(60)에 공급될 액화가스를 저장한다. 액화가스 저장탱크(10)는, 액화가스를 액체상태로 보관하여야 하는데, 이때, 액화가스 저장탱크(10)는 압력탱크의 형태를 가질 수 있다.
여기서 액화가스 저장탱크(10)는, 선체(H)의 내부에 배치되며, 엔진룸의 전방에 일례로 4개 형성될 수 있다. 또한, 액화가스 저장탱크(10)는 일례로 멤브레인 형 탱크이나, 이에 한정되지 않고 독립형 탱크 등, 다양한 형태로 그 종류를 특별히 한정하지는 않는다.
피딩 펌프(20)는, 액화가스 공급라인(RL) 상에 구비되고, 액화가스 저장탱크(10)의 내부 또는 외부에 설치되어 액화가스 저장탱크(10)에 저장된 액화가스를 버퍼 탱크(30)로 공급할 수 있다.
구체적으로, 피딩 펌프(20)는, 액화가스 공급라인(RL) 상에 액화가스 저장탱크(10)와 버퍼 탱크(30) 사이에 구비되어 액화가스 저장탱크(10)에 저장된 액화가스를 1차 가압하여 버퍼 탱크(30)로 공급할 수 있다.
피딩 펌프(20)는, 액화가스 저장탱크(10)에 저장된 액화가스를 6 내지 8bar로 가압하여 버퍼 탱크(30)로 공급할 수 있다. 여기서 피딩 펌프(20)는, 액화가스 저장탱크(10)로부터 배출되는 액화가스를 가압하여 압력 및 온도가 다소 높아질 수 있으며, 가압된 액화가스는 여전히 액체상태일 수 있다.
이때, 피딩 펌프(20)는, 액화가스 저장탱크(10) 내부에 구비되는 경우 잠형 펌프일 수 있고, 액화가스 저장탱크(10)의 외부에 설치되는 경우에는 액화가스 저장탱크(10)에 저장된 액화가스의 수위보다 낮은 선체(H) 내부의 위치에 구비될 수 있고 원심형 펌프일 수 있다.
버퍼 탱크(30)는, 액화가스 공급라인(RL) 상에 구비되어 액화가스 저장탱크(10)로부터 액화가스를 공급받아 임시저장할 수 있다.
구체적으로, 버퍼 탱크(30)는, 액화가스 공급라인(RL)을 통해 피딩 펌프(20)로부터 액화가스 저장탱크(10)에 저장된 액화가스를 공급받을 수 있고, 공급받은 액화가스를 임시 저장함으로써 액화가스를 액상과 기상으로 분리할 수 있으며, 분리된 액상은 부스팅 펌프(40)로 공급될 수 있다.
즉, 버퍼 탱크(30)는, 액화가스를 임시 저장하여 액상과 기상을 분리한 후 완전한 액상을 부스팅 펌프(40)로 공급하여, 부스팅 펌프(40)가 유효흡입수두(NPSH)를 만족하도록 하며, 이로 인해 부스팅 펌프(40)에서의 공동현상(캐비테이션; Cavitation)을 방지할 수 있도록 한다.
부스팅 펌프(40)는, 액화가스 공급라인(RL) 상에 버퍼 탱크(30)와 기화기(50) 사이에 구비될 수 있으며, 피딩 펌프(20)로부터 공급받은 액화가스 또는 버퍼 탱크(30)로부터 공급받은 액화가스를 50 내지 120bar로 가압하여 기화기(50)로 공급할 수 있다.
부스팅 펌프(40)는, 수요처(60)가 요구하는 압력에 맞춰 액화가스를 가압할 수 있으며, 원심형 펌프로 구성될 수 있다.
기화기(50)는, 액화가스 공급라인(RL) 상에 마련되어 부스팅 펌프(40)로부터 배출되는 고압의 액화가스를 재기화시킬 수 있다.
구체적으로, 기화기(50)는, 수요처(60)와 부스팅 펌프(40) 사이의 액화가스 공급라인(RL) 상에 마련되어, 부스팅 펌프(40)로부터 공급되는 고압의 액화가스를 기화시켜 수요처(60)가 원하는 상태로 공급할 수 있다.
기화기(50)는, 열원 순환라인(GWL)을 통해서 중간 열매를 공급받아 액화가스와 열교환시켜 액화가스를 기화시키고, 액화가스와 열교환된 중간 열매를 다시 열원 순환라인(GWL)을 통해서 순환시킨다.
기화기(50)는 제1 열매에 열원을 지속적으로 공급하기 위해서 열원순환라인(GWL) 상에 열원 열교환기(110)를 구비할 수 있으며, 열원 펌프(GWP)를 추가구비하여 제1 열매를 열원순환라인(GWL)에 순환시킬 수 있다.
이때, 기화기(50)는, 극저온의 액화가스를 기화시키기 위한 제1 열매로 글리콜 워터(Glycol Water), 해수(Sea Water), 스팀(Steam) 또는 엔진 배기가스 등 비폭발성 열매를 사용할 수 있으며, 고압의 기화된 액화가스를 압력 변동없이 수요처(60)로 공급할 수 있다.
여기서 열원 공급장치(110)는, 해수를 통해 열원을 공급받아 기화기(50)로 열원을 전달하는데, 열원 공급장치(110)로 해수를 전달하는 장치를 해수공급장치(100)라고 한다.
해수공급장치(100)는, 재기화 장치(열원 열교환기(110))가 액화가스를 재기화시키기 위한 열원인 해수를 재기화 장치로 공급하며, 구동방식으로 오픈루프 구동방식(open loop operation type)과 클로우즈루프 구동방식(Close loop operation type)을 가질 수 있다.
여기서, 오픈루프 구동방식(open loop operation type)이란, 해수공급라인(L1)에서 해수배출라인(L2)으로의 일방향으로만, 해수의 공급 및 배출이 이루어지는 경우를 말하며, 클로우즈루프 구동방식(Close loop operation type)이란, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3)을 거쳐 다시 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3)으로 해수의 순환이 이루어지는 경우를 말한다.
본 발명의 실시예에서 해수공급장치(100)는, 오픈루프 구동방식에서 클로우즈루프 구동방식으로 양방향 전환할 수 있다. 이러한 해수공급장치(100)의 구동방식의 전환은, 해수의 온도변화에 기인한다.
여름에는 해수의 온도가 높아 해수를 그대로 액화가스의 재기화 열원으로 사용 가능하다. 그러나 겨울에는 해수의 온도가 낮아 해수를 그대로 액화가스의 재기화 열원으로 사용할 수 없었고, 그에 따라 해수를 가열하여 액화가스의 재기화 열원으로 사용하여야 한다.
이에 가열원의 공급을 줄이고 에너지를 효율적으로 사용하기 위해서 여름에는 해수공급장치(100)를 개회로, 즉 오픈루프 구동방식으로 구동하고, 겨울에는 해수공급장치(100)를 폐회로, 즉 클로우즈루프 구동방식으로 전환시켜 구동하였다.
종래의 해수공급장치(도 8의 200a)는, 이러한 오픈루프구동방식에서 클로우즈루프 구동방식으로 전환시, 오픈루프 구동방식에서 사용하지 않는 순환연결라인(L3) 상의 내부 패킹유체(공기; air)를 제거하여야 하므로 해수공급장치의 구동을 이틀 내지 사흘간 정지해야만 하는 문제점이 있었다.
이는, 순환연결라인(L3) 상의 내부 패킹 유체를 제거하지 않고 그대로 사용하게 되면, 해수 펌프(140)로 공기가 유입되어 해수 펌프(140)에 캐비테이션이 발생해 작동불능이 될 우려가 발생하는 것에 이유가 있다.
이에 본 발명의 실시예에서는 상기의 문제점을 해결하기 위해서 본 발명의 실시예에서 해수공급장치(100)는, 오픈루프 구동방식에서 클로우즈루프 구동방식으로 양방향 전환시, 논스톱(Non-Stop)으로 구현할 수 있다.
이하. 도 2 내지 도 7을 참고로 하여 해수공급장치(100a~f)를 상세히 살펴보도록 하며, 도 1에서 미설명된 부호 120, 130, 140, L4, SW1, SW2는 각각 히터(120), 압력유지장치(130), 해수 펌프(140), 압력유지장치 연결라인(L4), 해수 유입구(SW1) 및 해수 유출구(SW2)로, 도 2 내지 도 7에서 해수공급장치(100)를 설명할 때, 상세히 기술하도록 한다.
도 2는 본 발명의 제1 실시예에 따른 해수공급장치의 개념도이다.
도 2에 도시된 바와 같이 해수공급장치(100a)는, 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140), 중간탱크(150) 및 제1 제어부(170)를 포함한다.
본 발명의 실시예의 해수공급장치(100a)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 연결라인(L4)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
해수공급라인(L1)은, 해수유입구(SW1)와 열원 열교환기(110)를 연결하며, 해수유입구(SW1)로부터 공급되는 해수를 해수 펌프(140)를 통해 열원 열교환기(110)로 공급할 수 있다.
해수공급라인(L1)은, 해수 펌프(140), 해수공급밸브(B1) 및 히터(120)를 구비할 수 있고, 적어도 일부 해수면 아래에 배치될 수 있다. 여기서 해수유입구(SW1)는, 해수면보다 약 5m 아래에 위치할 수 있고, 해수공급밸브(B1)는, 해수공급라인(L1) 상의 해수 펌프(140) 상류에 구비될 수 있다.
해수배출라인(L2)은, 열원 열교환기(110)와 해수유출구(SW2)를 연결하며, 열원 열교환기(110)로부터 토출되는 해수를 해수유출구(SW2)로 배출시킬 수 있다.
해수배출라인(L2)은, 해수배출밸브(B2)를 구비할 수 있고, 적어도 일부 해수면 아래에 배치될 수 있다. 여기서 해수유출구(SW2)는, 해수면보다 약 1.6m 아래에 위치할 수 있고 해수배출밸브(B2)는, 해수배출라인(L2) 상의 순환연결라인(L3a)의 분기점보다 하류에 구비될 수 있다.
순환연결라인(L3)은, 해수배출라인(L2)에서 분기되어 해수공급라인(L1)을 연결하며, 해수공급장치(100a)가 클로우즈루프 구동방식으로 구동시 해수가 흐르도록 해수배출라인(L2)으로 배출되는 해수를 해수공급라인으로 재공급함으로써, 해수를 순환시킬 수 있다.
구체적으로, 순환연결라인(L3)은, 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되어 해수공급라인(L1) 상의 해수공급밸브(B1)와 해수펌프(140) 사이에 연결될 수 있으며, 순환밸브(B3)를 구비할 수 있다. 여기서 순환연결라인(L3)이 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되는 지점은 해수면에서 대략 20m 더 높은 위치에 위치할 수 있다.
본 실시예에 따른 해수공급장치(100a)에서 순환연결라인(L3)은, 순환연결라인(L3a)과 중간탱크 바이패스라인(L3b)으로 구성될 수 있다. 여기서 순환연결라인(L3a)은 중간탱크(150)와 순환밸브(B3) 및 중간탱크 공급밸브(B6)를 포함할 수 있고, 중간탱크 바이패스 라인(L3b)은 순환연결라인(L3a) 상에 중간탱크(150)를 바이패스하도록 구성되어 중간탱크 바이패스 밸브(B5)를 포함할 수 있다.
순환밸브(B3)는, 순환연결라인(L3a) 상에서 중간탱크(150)보다 해수배출라인(L2)과의 분기점에 더 가깝게 구비될 수 있고, 중간탱크 공급밸브(B6)는, 순환연결라인(L3a) 상에서 해수배출라인(L2)과의 분기점보다 중간탱크(150)에 더 가깝게 구비될 수 있다.
바이패스라인(L3b)은, 중간탱크(150)에 해수가 가득차는 경우에, 순환연결라인(L3a) 상에 유동하는 해수가 중간 탱크(150)를 바이패스하도록 수행할 수 있다.
압력유지장치 연결라인(L4)은, 압력유지장치(130)와 순환연결라인(L3a)을 연결하며, 해수공급장치(100a)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3a)으로 압력유지장치(130) 내부에 저장된 해수를 공급할 수 있다. 여기서 압력유지장치 연결라인(L4)은, 압력유지장치 공급밸브(B4)를 구비할 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L4)에 의해 유기적으로 형성되어 해수공급장치(100a)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
열원 열교환기(110)는, 해수공급라인(L1)과 해수배출라인(L2)이 연결되며, 해수면보다 높은 위치로 대략 해수면에서 30m 정도 높은 위치에 배치될 수 있다.
열원 열교환기(110)는, 해수공급라인(L1)을 통해서 해수를 공급받아 중간열매에 열원을 전달할 수 있고, 해수배출라인(L2)을 통해서 중간열매와 열교환한 해수를 배출시킬 수 있다.
여기서 열원 열교환기(110)는, 쉘 앤 튜브(Shell & tube) 방식이거나 인쇄회로기판형 열교환기(Printed Circuit Heat Exchanger; PCHE)일 수 있다.
히터(120)는, 해수공급라인(L1) 상의 열원 열교환기(110)와 해수 펌프(140)사이에 마련되며, 해수면보다 높은 위치로 대략 해수면에서 30m 정도 높은 위치에 배치될 수 있다.
히터(120)는, 해수공급라인(L1)을 통해서 해수를 공급받아 가열하여 열원 열교환기(110)로 공급하며, 해수공급장치(100a)가 클로우즈루프 구동방식으로 구동되는 때에 가동될 수 있다. 즉, 해수의 온도가 너무 낮아 열원 열교환기(110)가 중간열매로 필요한 만큼의 열원을 전달할 수 없을 경우에 해수의 온도를 가열할 수 있다.
이때, 히터(120)는, 보일러(부호 도시하지 않음)로부터 스팀(Steam) 등의 열원을 공급받아 해수를 가열할 수 있으며, 이에 한정되지 않고 전기히터일 수 있다.
압력유지장치(130)는, 순환연결라인(L3a) 상에 구비되며, 순환연결라인(L3a)에 유동하는 해수의 압력을 유지시킬 수 있다.
구체적으로, 압력유지장치(130)는, 순환연결라인(L3a)에서 해수공급라인(L1)과 연결되는 지점과 중간탱크(150) 사이에 압력유지장치 연결라인(L4)을 통해 연결될 수 있으며, 해수공급장치(100a)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 공급밸브(L4)를 개방하여 내부에 저장된 유체로 순환연결라인(L3a) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130)가 해수면에서 대략 5m 더 낮게 위치한 순환연결라인(L3a)에 연결됨으로써, 압력유지장치(130)가 해수의 수두(대략 40m; 4 bar)를 이용하여 해수 펌프(140)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3a), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
해수 펌프(140)는, 해수공급라인(L1) 상에 구비되어, 해수를 재기화 장치 즉, 열원 열교환기(110)로 공급할 수 있다.
구체적으로, 해수 펌프(140)는, 해수공급라인(L1) 상의 해수공급밸브(B1)와 히터(120) 사이에 구비되어, 해수유입구(SW1)로부터 공급되는 해수를 가압하여 히터(120)를 거쳐 열원 열교환기(110)로 공급할 수 있다.
해수 펌프(140)는, 선체(H) 내부의 해수면보다 낮은 위치에 배치되며, 열원 열교환기(110) 및 히터(120)는 선체(H) 내부의 해수면보다 높은 위치에 배치될 수 있다. 일례로 해수 펌프(140)는, 선체(H) 내부의 해수면보다 약 5m 낮은 위치에 배치될 수 있고, 열원 열교환기(110) 및 히터(120)는, 선체(H) 내부의 해수면보다 30m 높은 위치에 배치될 수 있다.
이로 인해, 해수 펌프(140)로부터 열원 열교환기(110) 및 히터(120)로 해수를 공급하기 위해서 해수 펌프(140)는 해수의 수두(water head; 대략 35m)를 이겨낼 수 있는 만큼 해수를 가압할 수 있으며, 일례로 대략 3.5 bar 이상의 압력으로 가압할 수 있다.
중간탱크(150)는, 순환연결라인(L3a) 상에 구비되어, 해수가 해수배출라인(L2)에서 순환연결라인(L3a)으로 흐르도록 전환시 즉, 클로우즈루프 구동방식으로 구동시 논스톱(Non-Stop)으로 구현되도록 한다.
구체적으로, 중간탱크(150)는, 해수면보다 높게 위치한 순환연결라인(L3a) 상에 위치하며, 클로우즈루프 구동방식으로 구동시 논스톱(Non-Stop)으로 구현되도록 하기 위해 내부에 해수를 적어도 일부 저장한 상태를 유지할 수 있다.
즉, 중간탱크(150)는, 해수면보다 높게 위치한 상태에서 순환연결라인(L3a) 상에 구비되어, 해수공급장치(100a)가 오픈루프 구동방식으로 구동하고 있는 경우에도 대기압에 의해 내부에 해수를 일부 저장할 수 있고 중간탱크(150)보다 아래에 위치한 순환연결라인(L3a)은 모두 해수로 가득 차 있게 된다. 이때, 중간 탱크(150) 내부에서 해수면보다 높은 부분은 공기로 채워져 있고, 순환연결라인(L3a) 상의 해수면보다 높은 부분도 공기로 채워져 있다.
이로 인해, 본 발명에서의 해수공급장치(100a)는, 오픈루프 구동방식에서 해수공급장치(100a)가 클로우즈루프 구동방식으로 전환하는 때에, 해수 펌프(140) 방향의 순환연결라인(L3a)에 이미 해수가 가득 차 있게 되어 해수 펌프(140)를 중단하지 않고 전환이 가능하게 된다.
중간탱크(150)는, 순환연결라인(L3a) 상에 잔존하는 패킹유체를 배출시키는 중간탱크 토출밸브(B7)를 더 포함할 수 있다.
중간탱크 토출밸브(B7)는, 오픈루프 구동방식에서 해수공급장치(100a)가 클로우즈루프 구동방식으로 전환하는 때에, 개도를 개방하여 중간탱크(150)로 밀려오는 해수에 의해 점점 밀집하는 패킹유체들을 외부로 토출시킬 수 있다.
제1 제어부(170)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 중간탱크 바이패스 밸브(B5) 및 중간탱크 공급밸브(B6)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3a)으로 흐르도록 전환시, 즉 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제1 제어부(170)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 중간탱크 바이패스 밸브(B5) 및 중간탱크 공급밸브(B6)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B6)의 개도를 조절할 수 있다.
제1 제어부(170)는, 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 중간탱크(150)에 해수가 가득 찰 때까지 순환밸브(B3)와 중간탱크 공급밸브(B6)를 개방시킬 수 있다.
구체적으로, 제1 제어부(170)는, 즉 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 중간탱크 바이패스 밸브(B5)는 폐쇄된 상태를 유지하도록 제어하며, 순환밸브(B3)와 중간탱크 공급밸브(B6)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3a)으로 유입되어 중간탱크(150)로 해수를 채우게 된다.
즉, 해수 펌프(140)의 가동 중단없이, 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제1 제어부(170)는, 중간탱크(150)에 해수가 가득 찰 때까지 순환밸브(B3)와 중간탱크 공급밸브(B6)를 개방상태로 유지하고, 중간탱크(150)에 해수가 가득 차는 순간에는 순환밸브(B3)를 개방된 상태로 유지하는 반면, 해수공급밸브(B1)와 해수배출밸브(B2) 및 중간탱크 공급밸브(B6)를 폐쇄시키고, 중간탱크 바이패스 밸브(B5)를 개방하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3a)으로 유입되고, 순환연결라인(L3a)으로 유입된 해수는 중간탱크 바이패스 라인(L3b)을 거쳐 다시 순환연결라인(L3a)으로 합류되고 이후 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3a), 중간탱크 바이패스 라인(L3b), 순환연결라인(L3a), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
이와 같이 본 발명의 실시예에서는, 해수공급장치(100a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인(L3a) 내에 잔존하는 패킹유체 즉, 공기의 제거가 안정적으로 이루어질 수 있어, 논스톱으로 구동방식의 전환이 이루어질 수 있고 이로 인해 재기화된 액화가스의 수요처(60)로의 수급이 원활하게 이루어지는 효과가 있다.
도 3은 본 발명의 제2 실시예에 따른 해수공급장치의 개념도이다.
도 3에 도시된 바와 같이 해수공급장치(100b)는, 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140), 오리피스(160), 제2 제어부(171) 및 논스톱 전환밸브(B3)를 포함한다.
여기서 열원 열교환기(110), 히터(120), 압력유지장치(130) 및 해수 펌프(140)는 본 발명의 제1 실시예에 따른 해수공급장치(100a)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예의 해수공급장치(100b)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 연결라인(L4)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다. 여기서 해수공급라인(L1), 해수배출라인(L2) 및 압력유지장치 연결라인(L4)은 본 발명의 제1 실시예에 따른 해수공급장치(100a)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
순환연결라인(L3)은, 해수배출라인(L2)에서 분기되어 해수공급라인(L1)을 연결하며, 해수공급장치(100b)가 클로우즈루프 구동방식으로 구동시 해수가 흐르도록 해수배출라인(L2)으로 배출되는 해수를 해수공급라인(L1)으로 재공급함으로써, 해수를 순환시킬 수 있다.
구체적으로, 순환연결라인(L3)은, 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되어 해수공급라인(L1) 상의 해수공급밸브(B1)와 해수펌프(140) 사이에 연결될 수 있으며, 논스톱 전환밸브(B8)를 구비할 수 있다. 여기서 순환연결라인(L3)이 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되는 지점은 해수면에서 대략 5m 더 낮은 위치에 위치할 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L4)에 의해 유기적으로 형성되어 해수공급장치(100b)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
오리피스(160)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환되거나 클로우즈루프 구동방식으로 구동시, 해수공급라인(L1)을 통해 열원 열교환기(110)로 공급되는 해수의 압력을 조절한다. 즉, 오리피스(160)는, 해수공급장치(100b)가 클로우즈루프 구동방식으로 구동시, 열원 열교환기(110)로 공급되는 해수를 감압하여 공급할 수 있다.
여기서 오리피스(160)는 갑압장치로 중앙부가 오목하게 들어간 형상을 가질 수 있으며, 해수를 감압할 수 있는 장치라면 오리피스에 한정되지 않고 다양한 장치로 대체가능할 수 있다.
본 발명의 실시예에서 해수 펌프(140)는, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시에도 토출시키는 해수의 압력을 변화시키지 않는다. 따라서, 해수가 폐루프 공간을 유동하게 되면 해수의 수두는 제거되므로 해수 펌프(140)를 통한 가압이 많이 필요치 않게 된다.
즉, 해수 펌프(140)는, 클로우즈루프 구동방식에서 해수를 사용하는 장치들 예를 들어 히터(120) 또는 열원 열교환기(110)의 내부 저항에 따른 압력손실을 보충하면 되는데, 오픈루프 구동방식에서의 압력을 그대로 사용하므로 압력이 과다하게 히터(120) 또는 열원 열교환기(110)로 유입되어 진동 및 소음이 발생하는 문제점이 있었다.
이를 해결하기 위해서 본 발명의 실시예에서는 오리피스(160) 외에 오리피스 바이패스 라인(L8), 해수차단밸브(161) 및 바이패스 밸브(162)를 더 구비하여, 오픈루프 구동방식으로 구동시에 오리피스(160)가 사용되지 않게 하고, 클로우즈루프 구동방식으로 구동시에 오리피스(160)가 구동되도록 하여, 진동 및 소음 문제를 해결하고 있다.
여기서 오리피스(160)는, 오리피스 바이패스라인(L8) 상에 구비되어 유입되는 해수를 감압한 후 열원 열교환기(110)로 해수를 공급할 수 있다.
해수차단밸브(161)는, 해수공급라인(L1) 상의 히터(120)와 열원 열교환기(110) 사이에 구비되어, 해수공급장치(100b)가 오픈루프 구동방식으로 구동시 개방되고, 클로우즈루프 구동방식으로 구동시 폐쇄될 수 있다.
바이패스 밸브(162)는, 오리피스 바이패스 라인(L8) 상의 오리피스(160)의 상류에 배치되어, 해수공급장치(100b)가 오픈루프 구동방식으로 구동시 폐쇄되고, 클로우즈루프 구동방식으로 구동시 개방될 수 있다.
오리피스 바이패스 라인(L8)은, 해수공급라인(L1) 상의 히터(120)와 해수차단밸브(161) 사이에 분기되어, 다시 해수공급라인(L1) 상의 해수차단밸브(161)와 열원 열교환기(110) 사이에 연결되며, 해수공급장치(100b)가 오픈루프 구동방식으로 구동시 해수가 유입되지 않고, 클로우즈루프 구동방식으로 구동시 해수가 유입되어 해수차단밸브(161)를 바이패스한 상태로 열원 열교환기(110)로 해수를 공급할 수 있다.
이를 통해 본 발명의 실시예에서는, 오리피스(160), 오리피스 바이패스 라인(L8), 해수차단밸브(161) 및 바이패스 밸브(162)를 구비하여, 열원 열교환기(110)로 감압된 해수를 공급함으로써, 진동 및 소음이 줄어드는 효과가 있다.
제2 제어부(171)는, 해수공급밸브(B1), 해수배출밸브(B2), 논스톱 전환밸브(B8)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제2 제어부(171)는, 해수공급밸브(B1), 해수배출밸브(B2), 논스톱 전환밸브(B8)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1, B2, B8)의 개도를 조절할 수 있다.
제2 제어부(171)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 논스톱 전환밸브(B8)의 개도를 개방하고, 해수공급밸브(B1) 및 해수배출밸브(B2)의 개도를 폐쇄시켜, 해수가 해수공급라인(L1), 해수배출라인(L2) 및 순환연결라인(L3)을 순환하도록 제어할 수 있다.
구체적으로, 제2 제어부(171)는, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 즉각적으로, 논스톱 전환밸브(B8)를 개방함과 동시에 해수공급밸브(B1) 및 해수배출밸브(B2)의 개도를 폐쇄시키도록 제어할 수 있다.
즉, 해수 펌프(140)의 가동 중단없이, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
또한, 제2 제어부(171)는, 해수차단밸브(161) 및 바이패스 밸브(162)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환되거나 클로우즈루프 구동방식으로 구동시, 오리피스(160; 감압장치)로의 해수의 유입을 제어할 수 있다.
여기서 제2 제어부(171)는, 해수차단밸브(161) 및 바이패스 밸브(162)와 유선 또는 무선으로 연결되어 각각의 밸브들(161,162)의 개도를 조절할 수 있다.
제2 제어부(171)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 해수차단밸브(161)를 폐쇄하고 바이패스 밸브(162)를 개방하여 오리피스(160)로 해수가 공급되도록 제어함으로써, 열원 열교환기(110)가 오리피스(160)에 의해 감압된 해수를 공급받을 수 있다.
논스톱 전환밸브(B8)는, 순환연결라인 상에 구비되며, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시 즉, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 논스톱(Non-Stop)으로 구현되도록 한다.
구체적으로, 논스톱 전환밸브(B8)는, 해수면보다 아래에 위치하는 순환연결라인(L3) 상에 구비되며, 일례로 해수면보다 대략 5m 아래에 위치하는 순환연결라인(L3) 상에 구비될 수 있다.
이로 인해 논스톱 전환밸브(B8)가 해수면보다 대략 5m 아래에 위치함과 동시에, 순환연결라인(L3)이 해수배출라인(L2) 상의 해수배출밸브(B2)의 상류에서 분기되는 지점 또한, 해수면에서 대략 5m 더 낮은 위치에 위치함으로써, 순환연결라인(L3) 상에는 해수가 가득 차게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체가 존재하지 않게 된다.
즉, 논스톱 전환밸브(B8)는, 해수공급장치(100b)가 오픈루프 구동방식인 경우에도 순환연결라인(L3) 내에 잔존하는 패킹유체가 없이 모두 해수로 가득 차 있게 함으로써, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환을 논스톱으로 이루어지지 못하게 하는 잔존 패킹유체가 존재하지 않아 전환이 논스톱으로 이루어질 수 있게되는 효과가 있다.
이와 같이 이와 같이 본 발명의 실시예에서는, 오픈루프 구동방식에서도 순환연결라인(L3) 내에 잔존하는 패킹유체가 없이 모두 해수로 가득 차있어, 해수공급장치(100b)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 논스톱으로 이루어질 수 있고 이로 인해 재기화된 액화가스의 수요처(60)로의 수급이 원활하게 이루어지는 효과가 있다.
도 4는 본 발명의 제3 실시예에 따른 해수공급장치의 개념도이다.
도 4에 도시된 바와 같이 해수공급장치(100c)는, 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140), 밸러스트 펌프(141) 및 제3 제어부(172)를 포함한다.
여기서 열원 열교환기(110), 히터(120), 압력유지장치(130) 및 해수 펌프(140)는 본 발명의 제1 및 제2 실시예에 따른 해수공급장치(100a, 100b)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예의 해수공급장치(100c)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 연결라인(L4) 및 유체공급라인(L5)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
여기서 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3) 및 압력유지장치 연결라인(L4)은 본 발명의 제1 및 제2 실시예에 따른 해수공급장치(100a, 100b)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
유체공급라인(L5)은, 해수유입구(SW1)와 순환연결라인(L3) 상의 논스톱 전환밸브(B8)의 상류를 연결하고 밸러스트 펌프(141) 및 유체 공급밸브(B9)를 구비하며, 해수공급장치(100b)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3) 상에 해수가 흐르도록 밸러스트 펌프(141)를 통해 공급되는 밸러스트 워터(Ballast Water)를 순환연결라인(L3)으로 공급함으로써, 순환연결라인(L3) 상에 잔존하는 패킹유체를 제거할 수 있다.
구체적으로, 유체공급라인(L5)은, 해수유입구(SW1)와 순환연결라인(L3) 상의 논스톱 전환밸브(B8)와 순환밸브(B3) 사이를 연결하고, 해수가 해수배출라인(L2) 에서 순환연결라인(L3)으로 흐르도록 전환시, 순환연결라인(L3) 상에 유체를 공급한다.
여기서 유체공급라인(L5)이 순환연결라인(L3) 상의 논스톱 전환밸브(B8)의 상류에서 연결되는 지점은 해수면에서 대략 5m 더 낮은 위치에 위치할 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L5)에 의해 유기적으로 형성되어 해수공급장치(100c)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
밸러스트 펌프(141)는, 유체공급라인(L5) 상에 구비되어, 순환연결라인(L3)으로 유체를 공급할 수 있다.
구체적으로, 밸러스트 펌프(141)는, 유체공급라인(L5) 상의 해수유입구(SW1)와 유체공급밸브(B9) 사이에 구비되며, 선체(H)의 평형을 제어하는 평형수(밸러스트 워터; Ballast water)를 선체(H) 내의 임의의 밸러스트 저장고(도시하지 않음)로 공급함과 동시에, 해수가 해수배출라인(L2) 에서 순환연결라인(L3)으로 흐르도록 전환시, 즉, 해수공급장치(100c)가 클로우즈루프 구동모드로 구동시 순환연결라인(L3) 상에 잔존하는 패킹유체를 제거하기 위한 유체를 순환연결라인(L3)으로 공급할 수 있다.
여기서 밸러스트 펌프(141)는, 원심형일 수 있다.
제3 제어부(172)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8) 및 유체공급밸브(B9)의 개도를 조절하고, 밸러스트 펌프(141)의 가동을 제어하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제3 제어부(172)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8), 유체공급밸브(B9) 및 밸러스트 펌프(141)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B3,B8,B9)의 개도를 조절할 수 있다.
제3 제어부(172)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 유체공급밸브(B9)의 개도를 개방하고, 밸러스트 펌프(141)를 가동시켜 순환연결라인(L3)으로 평형수가 공급되도록 제어할 수 있다.
구체적으로, 제3 제어부(172)는, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 논스톱 전환밸브(B8) 및 순환밸브(B3)는 폐쇄된 상태를 유지하도록 제어하며, 유체공급밸브(B9)를 폐쇄된 상태에서 개방상태로 전환시키고, 밸러스트 펌프(141)를 가동하도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 유체 공급라인(L5)으로 밸러스트 펌프(141)를 통해 평형수가 순환연결라인(L3)으로 유입되어 순환연결라인(L3) 내부를 채우게 된다. 내부에 잔존하는 패킹유체는, 평형수에 밀려 공기제거밸브(151)를 통해 제거될 수 있다. 공기제거밸브(151)는, 순환연결라인(L3) 상에 구비될 수 있다.
즉, 해수 펌프(140)의 가동 중단없이, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제3 제어부(172)는, 순환연결라인(L3)에 해수가 가득 찰 때까지 유체공급밸브(B9)를 개방상태로 유지하고, 순환연결라인(L3)에 해수가 가득 차는 순간에는, 해수공급밸브(B1)와 해수배출밸브(B2) 및 유체공급밸브(B9)를 폐쇄시키고, 밸러스트 펌프(141)의 가동을 중단시키며, 순환밸브(B3) 및 논스톱 전환밸브(B8)를 개방하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 다시 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
또한, 본 발명의 실시예에서는, 압력유지장치(130) 내부의 유체를 순환연결라인(L3)으로 공급시킴으로써, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인(L3) 내에 잔존하는 패킹유체를 제거할 수 있다.
구체적으로, 제3 제어부(172)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8) 및 압력유지장치 공급밸브(B4)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제3 제어부(172)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8) 및 압력유지장치 공급밸브(B4)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B4,B8)의 개도를 조절할 수 있다.
제3 제어부(172)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 압력유지장치 공급밸브(B4)의 개도를 개방하여 순환연결라인(L3)으로 압력유지장치(130) 내부에 저장된 유체가 공급되도록 제어할 수 있다.
구체적으로, 제3 제어부(172)는, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 논스톱 전환밸브(B8) 및 순환밸브(B3)는 폐쇄된 상태를 유지하도록 제어하며, 압력유지장치 공급밸브(B4)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 압력유지장치 연결라인(L4)으로 압력유지장치(130) 내부에 저장된 유체가 순환연결라인(L3)으로 유입되어 순환연결라인(L3) 내부를 채우게 된다. 내부에 잔존하는 패킹유체는, 유체에 밀려 공기제거밸브(151)를 통해 제거될 수 있다. 공기제거밸브(151)는, 순환연결라인(L3) 상에 구비될 수 있고, 여기서 유체는 해수일 수 있다.
즉, 해수 펌프(140)의 가동 중단없이, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제3 제어부(172)는, 순환연결라인(L3)에 해수가 가득 찰 때까지 압력유지장치 공급밸브(B4)를 개방상태로 유지하고, 순환연결라인(L3)에 해수가 가득 차는 순간에는, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키고, 순환밸브(B3) 및 논스톱 전환밸브(B8)를 개방하도록 제어할 수 있다. 압력유지장치 공급밸브(B4)는 순환연결라인(L3)에 해수가 가득 차는 순간에도 개방상태를 유지하여 해수공급장치(100c)가 클로우즈루프 구동모드 시에도 순환연결라인(L3) 상에 유동하는 해수의 압력이 유지되도록 할 수 있다.
여기서 압력유지장치(130)는, 화재를 진압하는 소화수를 저장하는 화재진압용 소화수 저장탱크(도시하지 않음)와 연결될 수 있고, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 이루어지는 동안에 화재진압용 소화수저장탱크로부터 소화수를 공급받을 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 다시 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
이와 같이 본 발명의 실시예에서는, 해수공급장치(100c)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인(L3) 내에 잔존하는 패킹유체 즉, 공기의 제거가 안정적으로 이루어질 수 있어, 논스톱으로 구동방식의 전환이 이루어질 수 있고 이로 인해 재기화된 액화가스의 수요처(60)로의 수급이 원활하게 이루어지는 효과가 있다.
도 5는 본 발명의 제4 실시예에 따른 해수공급장치의 개념도이다.
도 5에 도시된 바와 같이 해수공급장치(100d)는, 열원 열교환기(110), 히터(120), 압력유지장치(130a, 130b, 130c), 해수 펌프(140) 및 제4 제어부(173)를 포함한다.
여기서 열원 열교환기(110), 히터(120) 및 해수 펌프(140)는 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a, 100b, 100c)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예의 해수공급장치(100d)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 제1 연결라인(L4a), 압력유지장치 제2 연결라인(L4b), 압력유지장치 제3 연결라인(L4c), 제1 분기라인(L6) 및 제2 분기라인(L7)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
여기서 해수공급라인(L1) 및 해수배출라인(L2)은 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a, 100b, 100c)에서 기술한 바와 동일하므로 이에 갈음하고, 압력유지장치 제1 연결라인(L4a)은, 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a,100b,100c)에서 기술된 압력유지장치 연결라인(L4)과 동일하므로 이에 갈음하도록 한다.
압력유지장치 제2 연결라인(L4b)은, 압력유지장치(130b)와 해수공급라인(L1) 상의 히터(120)와 열원 열교환기(110) 사이를 연결하며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3)으로 압력유지장치(130b) 내부에 저장된 해수를 공급할 수 있다. 여기서 압력유지장치 제2 연결라인(L4b)은, 해수면보다 상측의 위치로 해수면보다 대략 30m 위의 위치의 해수공급라인(L1)과 연결될 수 있고, 압력유지장치 제2 공급밸브(B4b)를 구비할 수 있다.
압력유지장치 제3 연결라인(L4c)은, 압력유지장치(130c)와 순환연결라인(L3) 상의 논스톱 전환밸브(B8)와 순환밸브(B3) 사이 중 해수면보다 높은 위치의 라인을 연결하며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3)으로 압력유지장치(130c) 내부에 저장된 해수를 공급할 수 있다. 여기서 압력유지장치 제3 연결라인(L4a)은, 해수면보다 상측의 위치로 해수면보다 대략 20m 위의 위치의 순환연결라인(L3)과 연결될 수 있고, 압력유지장치 제3 공급밸브(B4c)를 구비할 수 있다.
본 발명의 실시예에서 순환연결라인(L3)은 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a, 100b, 100c)에서 기술한 바와 동일하다. 다만, 해수가 해수배출라인(L2)에서 순환연결라인(L30)으로 흐르도록 전환시에 순환연결라인(L3)은, 해수배출라인(L1) 또는 해수배출라인(L2) 상으로 유동하는 해수를 공급받아 내부에 잔존하는 패킹유체를 제거할 수 있다는 점에서 약간의 차이가 있다.
이에 대해서는 하기 제1 및 제2 분기라인(L6,L7)과 제4 제어부(173)에서 상세히 기술하도록 한다.
제1 분기라인(L6)은, 해수공급라인(L1) 상의 히터(120)와 열원 열교환기(110) 사이에서 분기되어 순환연결라인(L3)에 연결되어, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급라인(L1) 상에 유동하는 해수의 적어도 일부를 순환연결라인(L3)으로 공급할 수 있다. 여기서 제1 분기라인(L6)은, 제1 분기밸브(B10)를 구비할 수 있고, 해수면보다 높은 위치에 마련되는 순환연결라인(L3)에 연결될 수 있다.
제2 분기라인(L7)은, 해수배출라인(L2) 상의 열원 열교환기(110)와 해수배출라인(L2) 상에서 순환연결라인(L3)이 분기되는 지점 사이에서 분기되어 순환연결라인(L3)에 연결되며, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급라인(L1) 상에 유동하는 해수의 적어도 일부를 순환연결라인(L3)으로 공급할 수 있다. 여기서 제2 분기라인(L7)은, 제2 분기밸브(B11)를 구비할 수 있고, 해수면보다 높은 위치에 마련되는 순환연결라인(L3)에 연결될 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L4, L6, L7)에 의해 유기적으로 형성되어 해수공급장치(100d)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
압력유지장치(130a)는, 순환연결라인(L3) 상의 논스톱 전환밸브(B8)와 순환밸브(B3) 사이 중 해수면보다 낮은 위치에 마련되는 라인에 압력유지장치 제1 연결라인(L4a)을 통해 연결될 수 있으며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 제1 공급밸브(B4a)를 개방하여 내부에 저장된 유체로 순환연결라인(L3) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130a)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130a)가 해수면에서 대략 5m 더 낮게 위치한 순환연결라인(L3)에 연결됨으로써, 압력유지장치(130a)가 해수의 수두(대략 40m; 4 bar)를 이용하여 해수 펌프(140)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
압력유지장치(130b)는, 해수공급라인(L1) 상의 히터(120)와 열원 열교환기(110) 사이에 압력유지장치 제2 연결라인(L4b)을 통해 연결될 수 있으며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 제2 공급밸브(B4b)를 개방하여 내부에 저장된 유체로 해수공급라인(L1) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130b)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있고, 압력유지장치 제2 연결라인(L4b)과 연결되는 해수공급라인(L1)은 해수면에서 대략 30m 더 높게 위치할 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130b)가 해수면에서 대략 30m 더 높게 위치한 해수공급라인(L1)에 연결됨으로써, 압력유지장치(130b)가 해수의 수두(대략 5m; 0.5 bar)를 이용하여 열원 열교환기(110)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
따라서, 이 경우 압력유지장치 제1 연결라인(L4a)의 길이에 비해 길이가 상당히 많이 줄어들어 구축비용이 줄어드는 장점이 있다.
압력유지장치(130c)는, 해수배출라인(L2) 상의 열원 열교환기(110)와 순환연결라인(L3) 상의 논스톱 전환밸브(B8)와 순환밸브(B3) 사이 중 해수면보다 높은 위치에 마련되는 라인 사이에 압력유지장치 제3 연결라인(L4c)을 통해 연결될 수 있으며, 해수공급장치(100d)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 제3 공급밸브(B4c)를 개방하여 내부에 저장된 유체로 순환연결라인(L3) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130c)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있고, 압력유지장치 제3 연결라인(L4c)과 연결되는 순환연결라인(L3)은 해수면에서 대략 20m 더 높게 위치할 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130c)가 해수면에서 대략 20m 더 높게 위치한 순환연결라인(L3)에 연결됨으로써, 압력유지장치(130c)가 해수의 수두(대략 15m; 1.5 bar)를 이용하여 해수 펌프(140)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
따라서, 이 경우 압력유지장치 제1 연결라인(L4a)의 길이에 비해 길이가 많이 줄어들어 구축비용이 줄어드는 장점이 있다.
제4 제어부(173)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8), 제1 분기밸브(B10) 및 제2 분기밸브(B11)의 개도를 조절하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환 시, 즉 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제4 제어부(173)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8), 제1 분기밸브(B10) 및 제2 분기밸브(B11)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B3,B8,B10,B11)의 개도를 조절할 수 있다.
제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제1 분기밸브(B10) 및 제2 분기밸브(B11)의 제어 없이 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8)을 제어할 수 있다.
즉, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 순환밸브(B3)를 개방하여 해수배출라인(L2)으로 배출되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제4 제어부(173)는, 즉 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 논스톱 전환밸브(B8)는 폐쇄된 상태를 유지하도록 제어하며, 순환밸브(B3)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
즉, 해수 펌프(140)의 가동 중단없이, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제4 제어부(173)는, 순환연결라인(L3))에 해수가 가득 차는 순간에 순환밸브(B3)를 개방된 상태로 유지하는 반면, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키고 논스톱 전환밸브(B8)를 개방하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
또한, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제2 분기밸브(B11)의 제어 없이 해수공급밸브(B1), 해수배출밸브(B2), 제1 분기밸브(B10), 논스톱 전환밸브(B8)만을 제어할 수 있다.
즉, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제1 분기밸브(B10)를 개방하여 해수공급라인(L1)에서 열원 열교환기(110)로 공급되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제4 제어부(173)는, 즉 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 순환밸브(B3) 및 논스톱 전환밸브(B8)는 폐쇄된 상태를 유지하도록 제어하며, 제1 분기밸브(B10)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수공급라인(L1)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
즉, 해수 펌프(140)의 가동 중단없이, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제4 제어부(173)는, 순환연결라인(L3)에 해수가 가득 차는 순간에 순환밸브(B3) 및 논스톱 전환밸브(B8)를 개방시키고, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키며, 제1 분기밸브(B10)를 폐쇄하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 루게된다.
또한, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제1 분기밸브(B10)의 제어 없이 해수공급밸브(B1), 해수배출밸브(B2), 제2 분기밸브(B11), 논스톱 전환밸브(B8)만을 제어할 수 있다.
즉, 제4 제어부(173)는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 제2 분기밸브(B11)를 개방하여 해수배출라인(L2)에으로 배출되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제4 제어부(173)는, 즉 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 순환밸브(B3) 및 논스톱 전환밸브(B8)는 폐쇄된 상태를 유지하도록 제어하며, 제2 분기밸브(B11)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
즉, 해수 펌프(140)의 가동 중단없이, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환이 연속적으로 이루어질 수 있다.
제4 제어부(173)는, 순환연결라인(L3)에 해수가 가득 차는 순간에 순환밸브(B3) 및 논스톱 전환밸브(B8)를 개방시키고, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키며, 제2 분기밸브(B11)를 폐쇄하도록 제어할 수 있다.
이때, 해수는 해수 펌프(140)로부터 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 해수공급라인(L1)으로 공급되어 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 루게된다.
이와 같이 본 발명의 실시예에서는, 해수공급장치(100d)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 순환연결라인(L3) 내에 잔존하는 패킹유체 즉, 공기의 제거가 안정적으로 이루어질 수 있어, 논스톱으로 구동방식의 전환이 이루어질 수 있고 이로 인해 재기화된 액화가스의 수요처(60)로의 수급이 원활하게 이루어지는 효과가 있다.
도 6은 본 발명의 제5 실시예에 따른 해수공급장치의 개념도이다.
도 6에 도시된 바와 같이 해수공급장치(100e)는, 열원 열교환기(110), 히터(120), 압력유지장치(130b), 해수 펌프(140), 저압 펌프(142) 및 제5 제어부(174)를 포함한다.
여기서 열원 열교환기(110), 히터(120), 압력유지장치(130b) 및 해수 펌프(140)는 본 발명의 제1 내지 제4 실시예에 따른 해수공급장치(100a,100b,100c,100d)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예의 해수공급장치(100e)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 제2 연결라인(L4b)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
여기서 해수공급라인(L1), 해수배출라인(L2) 및 압력유지장치 제2 연결라인(L4b)은 본 발명의 제1 내지 제4 실시예에 따른 해수공급장치(100a,100b,100c,100d)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
본 발명의 실시예에서 순환연결라인(L3)은 본 발명의 제1 내지 제3 실시예에 따른 해수공급장치(100a, 100b, 100c)에서 기술한 바와 동일하다. 다만, 순환연결라인(L3)이 해수공급라인(L1)과 연결되는 부분이 해수 펌프(140)와 히터(120) 사이인 점에서 약간의 차이가 있다. 이에 대해서는 하기 저압 펌프(142)와 제5 제어부(174)에서 상세히 기술하도록 한다.
이하에서는 상기 설명한 각 라인들(L1~L4b)에 의해 유기적으로 형성되어 해수공급장치(100e)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
저압 펌프(142)는, 순환연결라인(L3) 상에 구비되어 해수 펌프(140)의 가압용량보다 적은 가압용량을 가지고 해수를 가압할 수 있으며, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시에만 구동되어 열원 열교환기(110)로 해수를 저압으로 가압한 후 공급할 수 있다.
구체적으로 저압 펌프(142)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환 시, 즉 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환되거나 클로우즈루프 구동방식으로 구동시, 해수배출라인(L2)을 거쳐 순환연결라인(L3)으로 유입되는 해수를 저압으로 가압하여 열원 열교환기(110)로 할 수 있다.
즉, 본 발명의 실시예에서는, 해수공급장치(100e)가 오픈루프 구동방식으로 구동시 해수 펌프(140)를 통해 해수를 가압하여 열원 열교환기(110)로 공급하고, 클로우즈루프 구동방식으로 구동시 저압 펌프(142)를 통해 해수를 가압하여 열원 열교환기(110)로 공급할 수 있다. 여기서 저압 펌프(142)는 원심형일 수 있다.
본 발명의 실시예에서 해수 펌프(140)는, 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시에도 토출시키는 해수의 압력을 변화시키지 않는다. 따라서, 해수가 폐루프 공간을 유동하게 되면 해수의 수두는 제거되므로 해수 펌프(140)를 통한 가압이 많이 필요치 않게 된다.
즉, 해수 펌프(140)는, 클로우즈루프 구동방식에서 해수를 사용하는 장치들 예를 들어 히터(120) 또는 열원 열교환기(110)의 내부 저항에 따른 압력손실을 보충하면 되는데, 오픈루프 구동방식에서의 압력을 그대로 사용하므로 압력이 과다하게 히터(120) 또는 열원 열교환기(110)로 유입되어 진동 및 소음이 발생하는 문제점이 있었다.
이를 해결하기 위해서 본 발명의 실시예에서는 저압 펌프(142)를 해수 펌프(140)와는 별도로 구비하여, 오픈루프 구동방식에서 해수펌프(140)가 사용되게 하고, 클로우즈루프 구동방식에서 저압 펌프(142)가 구동되도록 하여, 진동 및 소음 문제를 해결하고 있다.
이를 통해 본 발명의 실시예에서는, 해수 펌프(140)와 별도로 구동되는 저압 펌프(142)를 구비하여, 열원 열교환기(110)로 적정한 압력의 해수를 공급함으로써, 진동 및 소음이 줄어드는 효과가 있다.
제5 제어부(174)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 전환밸브(B12)의 개도를 조절하고, 해수 펌프(140) 및 저압 펌프(142)의 가동을 제어하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 논스톱(Non-Stop)으로 구현되도록 제어할 수 있다.
여기서 제5 제어부(174)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 전환밸브(B12), 해수 펌프(140) 및 저압 펌프(142)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B3, B12)의 개도를 조절하고 펌프(140,142)의 가동을 제어할 수 있다.
제5 제어부(174)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 순환 밸브(B3)의 개도를 개방하여 해수배출라인(L2)으로 배출되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제5 제어부(174)는, 즉 해수공급장치(100e)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 전환밸브(B12)는 폐쇄된 상태를 유지하도록 제어하며, 순환밸브(B3)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
제5 제어부(174)는, 순환연결라인(L3)에 해수가 가득 차는 순간에 순환밸브(B3)를 개방된 상태로 유지하는 반면, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키고 전환밸브(B12)를 개방하며, 해수 펌프(140)는 가동 중단하고 저압 펌프(142)는 가동하도록 제어할 수 있다.
이때, 해수는 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 저압 펌프(142)를 통해 저압으로 가압되어 해수공급라인(L1)으로 공급되며, 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게된다.
이를 통해 본 발명의 실시예에서는, 해수 펌프(140)와는 별도로 구동되는 저압 펌프(142)를 구비하여, 열원 열교환기(110)로 적정한 압력의 해수를 공급함으로써, 진동 및 소음이 줄어드는 효과가 있다.
도 7은 본 발명의 제6 실시예에 따른 해수공급장치의 개념도이다.
도 7에 도시된 바와 같이 해수공급장치(100f)는, 열원 열교환기(110), 제1 히터(120a), 제2 히터(120b), 압력유지장치(130), 해수 펌프(140) 및 제6 제어부(175)를 포함한다.
여기서 열원 열교환기(110), 압력유지장치(130) 및 해수 펌프(140)는 본 발명의 제1 내지 제5 실시예에 따른 해수공급장치(100a~100e)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
제1 히터(120a)는, 해수공급라인(L1) 상의 열원 열교환기(110)와 해수 펌프(140)사이에 마련되며, 해수면보다 높은 위치로 대략 해수면에서 30m 정도 높은 위치에 배치될 수 있다.
제1 히터(120a)는, 해수공급라인(L1)을 통해서 해수를 공급받아 가열하여 열원 열교환기(110)로 공급하며, 해수공급장치(100f)가 클로우즈루프 구동방식으로 구동되는 때에 가동될 수 있다. 즉, 해수의 온도가 너무 낮아 열원 열교환기(110)가 중간열매로 필요한 만큼의 열원을 전달할 수 없을 경우에 해수의 온도를 가열할 수 있다.
이때, 제1 히터(120a)는, 보일러(부호 도시하지 않음)로부터 스팀라인(STL)을 통해 연결되어, 스팀(Steam) 등의 열원을 공급받아 해수를 가열할 수 있으며, 이에 한정되지 않고 전기히터일 수 있다. 여기서 제1 히터(120a)는, 후술할 제2 히터(120b)와 스팀라인(STL)을 통해 직렬로 연결되며, 하나의 열원 즉, 하나의 스팀 열원으로 구동될 수 있다.
제2 히터(120b)는, 순환연결라인(L3) 상에 배치되어 해수면보다 높은 위치로 대략 해수면에서 20m 정도 높은 위치에 배치될 수 있고, 순환연결라인(L3) 상에 유동하는 해수를 가열할 수 있다.
제2 히터(120b)는, 해수배출라인(L2)을 통해서 해수를 공급받아 가열하여 열원 열교환기(110)로 공급하며, 해수공급장치(100f)가 클로우즈루프 구동방식으로 구동되는 때에 가동될 수 있다. 즉, 해수의 온도가 너무 낮아 열원 열교환기(110)가 중간열매로 필요한 만큼의 열원을 전달할 수 없을 경우에 해수의 온도를 가열할 수 있다.
이때, 제2 히터(120b)는, 제1 히터(120a)와 스팀라인(STL)을 통해 직렬 연결되어, 스팀(Steam) 등의 열원을 공급받아 해수를 가열할 수 있으며, 이에 한정되지 않고 전기히터일 수 있다.
즉, 제2 히터(120b)는, 제1 히터(120a)와 열원을 공유할 수 있고, 제1 히터(120a)에서 해수를 가열하고 남은 스팀의 열원을 제2 히터(120b)에서 최종적으로 뽑아서 사용할 수 있어 에너지 효율이 극대화되는 효과가 있다.
제6 제어부(175)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8)의 개도를 조절하고, 제2 히터(120b)의 가동을 제어하여, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100f)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시 에너지를 최적화하여 사용할 수 있도록 제어할 수 있다.
여기서 제6 제어부(175)는, 해수공급밸브(B1), 해수배출밸브(B2), 순환밸브(B3), 논스톱 전환밸브(B8), 제2 히터(120b)와 유선 또는 무선으로 연결되어 각각의 밸브들(B1~B3, B8)의 개도를 조절하고 제2 히터(120b)의 가동을 제어할 수 있다.
제6 제어부(175)는, 해수가 해수배출라인(L2)에서 순환연결라인(L3)으로 흐르도록 전환시, 즉 해수공급장치(100f)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 순환 밸브(B3)의 개도를 개방하여 해수배출라인(L2)으로 배출되는 해수 중 적어도 일부를 순환연결라인(L3)으로 공급되도록 제어할 수 있다.
구체적으로, 제6 제어부(175)는, 즉 해수공급장치(100f)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 전환시, 해수공급밸브(B1) 및 해수배출밸브(B2)는 개방된 상태를 유지하도록 하고, 논스톱 전환밸브(B8)는 폐쇄된 상태를 유지하도록 제어하며, 순환밸브(B3)를 폐쇄된 상태에서 개방상태로 전환시키도록 제어할 수 있다.
이때, 해수는 해수유입구(SW1)에서 공급되어 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 해수배출구(SW2)로 배출됨과 동시에, 해수배출라인(L2)을 지나가는 해수의 적어도 일부가 순환연결라인(L3)으로 유입되어 순환연결라인(L3)을 해수로 채우게 되고, 순환연결라인(L3) 상에 잔존하는 패킹유체를 공기제거밸브(151)를 통해 제거할 수 있다.
제6 제어부(175)는, 순환연결라인(L3)에 해수가 가득 차는 순간에 순환밸브(B3)를 개방된 상태로 유지하는 반면, 해수공급밸브(B1)와 해수배출밸브(B2)를 폐쇄시키고 논스톱 전환밸브(B8)를 개방시키며, 해수의 온도를 해수온도측정센서(180)로 측정하여 해수의 온도가 기설정온도보다 낮으면 제2 히터(120b)를 가동하도록 제어할 수 있다.
여기서 해수온도측정센서(180)는 순환연결라인(L3) 상에 구비될 수 있고, 제6 제어부(175)와 유선 또는 무선으로 연결되어 해수의 온도 정보를 제6 제어부(175)로 전달할 수 있다.
이때, 해수는 해수공급라인(L1)을 지나 해수배출라인(L2)을 통해 순환연결라인(L3)으로 유입되고, 순환연결라인(L3)으로 유입된 해수는 다시 해수공급라인(L1)으로 공급되며, 해수가 클로우즈루프로 순환하게 된다. 즉, 해수는 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 해수공급라인(L1)으로 계속적인 순환을 이루게 되고, 적정한 온도를 열원 열교환기(110)로 지속적인 공급을 수행할 수 있다.
이를 통해 본 발명의 실시예에서는, 해수의 온도변화에도 상관없이 열원 열교환기(110)로 지속적인 열원의 공급이 가능해지고 제1 히터(120a) 외에 제2 히터(120b)가 제1 히터(120a)의 열원을 공유하면서 해수를 가열하므로 에너지를 경제적으로 소비할 수 있는 효과가 있다.
수요처(60)는, 기화기(50)에 의해 기화된 액화가스를 공급받아 소비할 수 있다. 여기서 수요처(60)는, 액화가스를 기화시켜 기상의 액화가스를 공급받아 사용할 수 있으며, 육상에 설치되는 육상 터미널 또는 해상에 부유되어 설치되는 해상 터미널일 수 있다.
이와 같이 본 발명에 따른 가스 재기화 시스템(1)을 구비하는 선박은, 액화가스의 재기화 효율이 극대화될 수 있는 효과가 있다.
도 8은 종래의 해수 공급장치의 개념도이다.
도 8에 도시된 바와 같이, 종래의 해수공급장치(200a)는, 재기화 장치(열원 열교환기(110))가 액화가스를 재기화시키기 위한 열원인 해수를 재기화 장치로 공급하며, 구동방식으로 오픈루프 구동방식(open loop operation type)과 클로우즈루프 구동방식(Close loop operation type)을 가질수 있다.
여기서, 오픈루프 구동방식(open loop operation type)이란, 해수공급라인(L1)에서 해수배출라인(L2)으로의 일방향으로만, 해수의 공급 및 배출이 이루어지는 경우를 말하며, 클로우즈루프 구동방식(Close loop operation type)이란, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3)을 거쳐 다시 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3)으로 해수의 순환이 이루어지는 경우를 말한다. 상기와 같이 종래의 해수공급장치(200a)가 오픈루프 구동방식에서 클로우즈루프 구동방식으로 양방향 전환하는 것은 해수의 온도변화에 기인한다.
종래의 해수공급장치(200a)는, 오픈루프 구동방식에서 구동되는 경우, 해수공급라인(L1)에서 해수배출라인(L2)으로의 일방향으로만, 해수의 공급 및 배출이 이루어진다.
이때, 해수배출라인(L2)에서 배출되는 해수의 압력이 낮아지는 경우에 해수배출라인(L2) 상에 음압이 발생하여, 열원 열교환기(110)의 성능이 저하되고, 해수배출라인(L2) 상에 공기가 유입될 우려가 있어, 내부 코팅이 손상되거나 부식이 발생하는 문제점이 있다.
그에 따라, 종래의 해수공급장치(200a)에서는 진공제거밸브(250)와 진공제거라인(251)을 구비하고, 진공제거라인(251)을 해수배출라인(L2) 상의 열원 열교환기(110) 후단에 배치하여, 진공제거라인(251)을 통해 공급되는 공기로 압력을 추가공급함으로써, 해수배출라인(L2)에서 배출되는 해수의 압력이 낮아지는 것을 방지하고 있다.
그러나 종래의 해수공급장치(200a)에서는, 해수배출라인(L2)에서 발생되는 음압이 열원 열교환기(110)의 후단에서 바로 발생하게 된다. 그에 따라, 열원 열교환기(110)에 즉각적으로 문제점을 일으키게 되는데, 이러한 음압을 진공제거밸브(250)와 진공제거라인(251)만으로 보상하기에는 적절하게 대응하지 못하는 문제점이 있었다.
상기와 같은 문제점을 해결하기 위해서 본 출원인은 본 발명의 해수공급장치(200b)를 개발하였으며, 도 9 및 도 12를 참고로 하여 하기 상세히 설명하도록 한다.
도 8에서 미설명된 부호 120, 130, 140, L4, SW1, SW2는 각각 히터(120), 압력유지장치(130), 해수 펌프(140), 압력유지장치 연결라인(L4), 해수 유입구(SW1) 및 해수 유출구(SW2)로, 상기 구성은 본 발명의 제1 내지 제6 실시예에 따른 해수공급장치들(100a~f)에서 기술한 바와 동일하므로 이에 갈음하도록 한다.
도 9는 본 발명의 제7 실시예에 따른 해수공급장치의 개념도이다.
도 9에 도시한 바와 같이, 본 발명의 가스 재기화 시스템(1)에서 제7 실시예에 따른 해수공급장치(200b)는, 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140), 진공제거밸브(250), 진공제거라인(251), 음압방지라인(260)을 포함한다.
본 발명의 제 7실시예의 해수공급장치(200b)의 개별적인 구성을 기술하기에 앞서, 개별적인 구성들을 유기적으로 연결하는 기본적인 유로들에 대해서 설명하기로 한다. 여기서 유로는 유체가 흐르는 통로로 라인(Line)일 수 있으며 이에 한정되지 않고 유체가 유동하는 구성이면 모두 가능하다.
또한, 본 발명은, 본 발명의 제1 내지 제6 실시예와 공지기술의 조합 또는 적어도 둘 이상의 실시예의 조합 등에 의해 발생하는 실시예들을 모두 포괄한다. 예를 들어, 상기 본 발명의 제7 실시예에 따른 해수공급장치(200b)는, 본 발명의 제1 내지 제6 실시예 중 적어도 하나의 실시예에 따른 해수 공급장치(100a~f)와 조합이 가능하며, 특히 제7 실시예에 따른 해수 공급장치(200b) 중 진공제거밸브(250), 진공제거라인(251), 음압방지라인(260)의 구성이 본 발명의 제1 내지 제6 실시예 중 적어도 하나의 실시예에 따른 해수 공급장치(100a~f)에 각각 적용될 수 있음을 알려둔다.
본 발명의 실시예에서는, 해수공급라인(L1), 해수배출라인(L2), 순환연결라인(L3), 압력유지장치 연결라인(L4)을 더 포함할 수 있다. 각각의 라인에는 개도 조절이 가능한 밸브(도시하지 않음)들이 설치될 수 있으며, 각 밸브의 개도 조절에 따라 해수 또는 유체의 공급량이 제어될 수 있다.
해수공급라인(L1)은, 해수유입구(SW1)와 열원 열교환기(110)를 연결하며, 해수유입구(SW1)로부터 공급되는 해수를 해수 펌프(140)를 통해 열원 열교환기(110)로 공급할 수 있다.
해수공급라인(L1)은, 해수 펌프(140), 해수공급밸브(B1) 및 히터(120)를 구비할 수 있고, 적어도 일부 해수면 아래에 배치될 수 있다. 여기서 해수유입구(SW1)는, 해수면보다 약 5m 아래에 위치할 수 있고, 해수공급밸브(B1)는, 해수공급라인(L1) 상의 해수 펌프(140) 상류에 구비될 수 있다.
해수배출라인(L2)은, 열원 열교환기(110)와 해수유출구(SW2)를 연결하고 음압방지라인(160)을 구비하며, 열원 열교환기(110)로부터 토출되는 해수를 해수유출구(SW2)로 배출시킬 수 있다.
해수배출라인(L2)은, 열원 열교환기(110)와 음압방지라인(160)을 연결하는 해수배출 상류라인(L2a)과 음압방지라인(160)과 해수유출구(SW2)를 연결하는 해수배출 하류라인(L2b)으로 구분될 수 있다.
해수배출라인(L2)은, 해수배출밸브(B2)를 구비할 수 있고, 적어도 일부 해수면 아래에 배치될 수 있다. 여기서 해수유출구(SW2)는, 해수면보다 대략 2m 아래(바람직하게는 약 1.6m 아래)에 위치할 수 있고 해수배출밸브(B2)는, 해수배출라인(L2) 상의 순환연결라인(L3)의 분기점보다 하류에 구비될 수 있다.
순환연결라인(L3)은, 해수배출라인(L2)에서 분기되어 해수공급라인(L1)을 연결하며, 해수공급장치(200b)가 클로우즈루프 구동방식으로 구동시 해수가 흐르도록 해수배출라인(L2)으로 배출되는 해수를 해수공급라인으로 재공급함으로써, 해수를 순환시킬 수 있다.
구체적으로, 순환연결라인(L3)은, 해수배출라인(L2) 상의 해수배출 하류라인(L2b)에서 분기되어 해수공급라인(L1) 상의 해수공급밸브(B1)와 해수펌프(140) 사이에 연결될 수 있으며, 순환밸브(B3)를 구비할 수 있다. 여기서 순환연결라인(L3)이 해수배출 하류라인(L2b)에서 분기되는 지점은 해수면에서 대략 20m 더 높은 위치에 위치할 수 있다.
압력유지장치 연결라인(L4)은, 압력유지장치(130)와 순환연결라인(L3)을 연결하며, 해수공급장치(200b)가 클로우즈루프 구동방식으로 구동시 순환연결라인(L3)으로 압력유지장치(130) 내부에 저장된 해수를 공급할 수 있다. 여기서 압력유지장치 연결라인(L4)은, 압력유지장치 공급밸브(B4)를 구비할 수 있다.
이하에서는 상기 설명한 각 라인들(L1~L4)에 의해 유기적으로 형성되어 해수공급장치(200b)를 구현하는 개별적인 구성들에 대해서 설명하도록 한다.
열원 열교환기(110)는, 해수공급라인(L1)과 해수배출라인(L2)이 연결되며, 해수면보다 높은 위치로 대략 해수면에서 28m 내지 32m (바람직하게는 30m 정도) 높은 위치에 배치될 수 있다.
열원 열교환기(110)는, 해수공급라인(L1)을 통해서 해수를 공급받아 중간열매에 열원을 전달할 수 있고, 해수배출라인(L2)을 통해서 중간열매와 열교환한 해수를 배출시킬 수 있다.
여기서 열원 열교환기(110)는, 쉘 앤 튜브(Shell & tube) 방식이거나 인쇄회로기판형 열교환기(Printed Circuit Heat Exchanger; PCHE)일 수 있다.
히터(120)는, 해수공급라인(L1) 상의 열원 열교환기(110)와 해수 펌프(140)사이에 마련되며, 해수면보다 높은 위치로 대략 해수면에서 30m 정도 높은 위치에 배치될 수 있다.
히터(120)는, 해수공급라인(L1)을 통해서 해수를 공급받아 가열하여 열원 열교환기(110)로 공급하며, 해수공급장치(100b)가 클로우즈루프 구동방식으로 구동되는 때에 가동될 수 있다. 즉, 해수의 온도가 너무 낮아 열원 열교환기(110)가 중간열매로 필요한 만큼의 열원을 전달할 수 없을 경우에 해수의 온도를 가열할 수 있다.
이때, 히터(120)는, 보일러(도시하지 않음)로부터 스팀(Steam) 등의 열원을 공급받아 해수를 가열할 수 있으며, 이에 한정되지 않고 전기히터일 수 있다.
압력유지장치(130)는, 순환연결라인(L3) 상에 구비되며, 순환연결라인(L3)에 유동하는 해수의 압력을 유지시킬 수 있다.
구체적으로, 압력유지장치(130)는, 순환연결라인(L3)에 연결되어, 해수공급장치(200b)가 클로우즈루프 구동방식으로 구동되는 경우에 압력유지장치 공급밸브(B4)를 개방하여 내부에 저장된 유체로 순환연결라인(L3) 상에 유동하는 해수의 압력을 유지시킬 수 있다.
이때, 압력유지장치(130)는, 해수면에서 대략 35m 더 높게 위치하고, 상측이 대기와 연통되도록 개방된 용기로 구성되어 대기압을 이용하여 해수의 압력을 유지시킬 수 있다.
즉, 본 발명의 실시예에서는, 해수면에서 대략 35m 더 높게 위치한 압력유지장치(130)가 해수면에서 대략 5m 더 낮게 위치한 순환연결라인(L3)에 연결됨으로써, 압력유지장치(130)가 해수의 수두(대략 40m; 4 bar)를 이용하여 해수 펌프(140)로 유입되는 해수의 압력을 보상할 수 있고, 이를 통해서 순환연결라인(L3), 해수공급라인(L1), 해수배출라인(L2) 상에 순환하는 해수의 압력을 일정하게 유지할 수 있다.
해수 펌프(140)는, 해수공급라인(L1) 상에 구비되어, 해수를 재기화 장치 즉, 열원 열교환기(110)로 공급할 수 있다.
구체적으로, 해수 펌프(140)는, 해수공급라인(L1) 상의 해수공급밸브(B1)와 히터(120) 사이에 구비되어, 해수유입구(SW1)로부터 공급되는 해수를 가압하여 히터(120)를 거쳐 열원 열교환기(110)로 공급할 수 있다.
해수 펌프(140)는, 선체(H) 내부의 해수면보다 낮은 위치에 배치되며, 열원 열교환기(110) 및 히터(120)는 선체(H) 내부의 해수면보다 높은 위치에 배치될 수 있다. 일례로 해수 펌프(140)는, 선체(H) 내부의 해수면보다 약 5m 낮은 위치에 배치될 수 있고, 열원 열교환기(110) 및 히터(120)는, 선체(H) 내부의 해수면보다 30m 높은 위치에 배치될 수 있다.
이로 인해, 해수 펌프(140)로부터 열원 열교환기(110) 및 히터(120)로 해수를 공급하기 위해서 해수 펌프(140)는 해수의 수두(water head; 대략 35m)를 이겨낼 수 있는 만큼 해수를 가압할 수 있으며, 일례로 대략 3.5bar 이상의 압력으로 가압할 수 있다.
진공제거밸브(250)는, 진공제거라인(251) 상에 구비되며, 해수배출라인(L2)으로 유입되는 공기의 유량을 조절할 수 있다.
진공제거밸브(250)는, 외부로부터 공급되는 공기를 해수배출라인(L2)에 공급되도록 제어하여, 해수배출라인(L2) 상의 내부 압력을 제어할 수 있다. 여기서 진공제거밸브(250)는 별도의 제어부(도시하지 않음) 및 압력센서(도시하지 않음)을 구비하여 압력센서와 제어부에 의해 제어될 수 있다.
진공제거라인(251)은, 음압방지라인(260) 상에 연결될 수 있으며, 외부로부터 공급되는 공기를 해수배출라인(L2)에 공급하여 해수배출라인(L2) 내부의 음압을 제거할 수 있다.
진공제거라인(251)은, 음압방지라인(260) 상에 연결시 해수배출 하류라인(L2b)과 평행하게 연결될 수 있다. 또한 진공제거라인(251)은 음압방지라인(260)이 아닌 해수배출 하류라인(L2b)과 직접연결될 수 있으며, 이때도 역시 해수배출 하류라인(L2b)과 평행하게 연결될 수 있다.
음압방지라인(260)은, 해수배출라인(L2) 상에 구비되어 열원 열교환기(110)보다 높은 위치에 형성될 수 있다.
구체적으로, 음압방지라인(260)은, 해수배출라인(L2)의 해수배출 상류라인(L2a)과 해수배출 하류라인(L2b)에 각각 연결되어 열원 열교환기(110)에서 배출되는 해수가 해수배출 상류라인(L2a)을 거쳐 해수배출 하류라인(L2b)으로 공급되도록 할 수 있으며, 해수배출라인(L2) 상에 열원 열교환기(110)보다 높은 위치에 형성될 수 있다. 여기서 음압방지라인(260)은, 구즈넥(Gooseneck) 형태를 가질 수 있다.
이를 통해서 열원 열교환기(110)의 직후단에 형성되었던 음압이 음압방지라인(260) 내에서 발생하게 되고, 이를 통해서 진공제거밸브(250) 및 진공제거라인(251)이 음압을 제거할 수 있는 시간을 충분히 확보할 수 있는 효과가 있다.
즉, 진공제거밸브(250) 및 진공제거라인(251)이 음압을 제거하는데 준비하는 시간동안에 음압은 열원 열교환기(110)의 후단이 아닌 음압방지라인(260) 내에 위치하게 되고, 이로 인해 열원 열교환기(110)로의 해수 역류 또는 열원 열교환기(110) 내의 해수 정체현상이 발생하지 않아 재기화 장치의 구동 신뢰성이 향상되고 재기화 효율이 극대화되는 효과가 있다.
음압방지라인(260)은, 해수배출 상류라인(L2a)과 유선형으로 연결될 수 있고, 해수배출 하류라인(L2b)과 평행하게 연결될 수 있다. 이를 통해서 음압방지라인(260)은, 열원 열교환기(110)에서 배출되는 해수에 의한 손상을 방지할 수 있어 내구성이 향상되는 효과가 있다.
음압방지라인(260)의 구체적인 구성에 대해서는 하기 도 10 및 도 11을 참조하여 상세히 설명하도록 한다.
도 10은 본 발명의 제7 실시예에 따른 해수공급장치에 구비되는 음압 방지부의 제1 개념도이고, 도 11은 본 발명의 제7 실시예에 따른 해수공급장치에 구비되는 음압 방지부의 제2 개념도이다.
도 10 및 도 11에 도시된 바와 같이 음압방지라인(260)은, 유입부(261), 연결부(262), 유출부(263)로 구성될 수 있다.
유입부(261)는, 해수배출 상류라인(L2a)과 연결되며, 열원 열교환기(110)에서 배출되는 해수를 공급받아 연결부(262)로 전달할 수 있다.
유입부(261)는, 해수배출 상류라인(L2a) 및 연결부(262)와 직각으로 연결될 수 있으며(도 4 참조) 또는 해수배출 상류라인(L2a) 및 연결부(262)와 유선형으로 연결될 수 있다.(도 5 참조) 여기서 해수배출 상류라인(L2a)은, 적어도 일부 열원 열교환기(110)와 수평을 이루도록 형성될 수 있다.
연결부(262)는, 유입부(261)와 유출부(263)를 연결하며, 유입부(261)로부터 유입되는 해수를 유출부(263)로 공급할 수 있다.
연결부(262)는, 유입부(261) 및 유출부(263)와 직각으로 연결될 수 있으며(도 10 참조) 또는 유입부(261) 및 유출부(263)와 유선형으로 연결될 수 있다.(도 11 참조) 여기서 연결부(262)가 유출부(263)와 연결되는 부분은, 진공제거라인(251)과 연결될 수 있다.
유출부(263)는, 해수배출 하류라인(L2b) 및 진공제거라인(251)과 연결되며, 연결부(162)에서 배출되는 해수를 공급받아 해수배출 하류라인(L2b)으로 전달할 수 있다. 여기서 유출부(263)는, 진공제거라인(251)과 평행하게 연결될 수 있다.
유출부(263)는, 해수배출 하류라인(L2b)과 평행하게 연결될 수 있고, 연결부(262)와 직각으로 연결될 수 있으며(도 10 참조) 또는 연결부(262)와 유선형으로 연결될 수 있다.(도 11 참조)
이와 같이 음압방지라인(260)을 구성하는 유입부(261), 연결부(262) 및 유출부(263)가 해수배출라인(L2) 상에 열원 열교환기(110)보다 높은 위치에 형성됨으로써, 열원 열교환기(110)의 직후단에 형성되었던 음압이 음압방지라인(260) 내에서 발생하게 되고, 이를 통해서 진공제거밸브(250) 및 진공제거라인(251)이 음압을 제거할 수 있는 시간을 충분히 확보할 수 있는 효과가 있다.
이와 같이 본 발명의 실시예에 따른 해수처리장치(200b)는, 음압방지라인(260)을 통해 외부환경에 의해 발생하는 해수배출라인(L2) 상의 음압 발생 위치를 열원 열교환기(110)의 직후단이 아닌 곳으로 옮길 수 있어, 재기화 장치의 구동신뢰성이 향상되고 재기화 효율이 극대화되는 효과가 있다.
도 12는 본 발명의 제8 실시예에 따른 해수공급장치의 개념도이다.
도 12에 도시한 바와 같이, 본 발명의 가스 재기화 시스템(1)의 제8 실시예에 따른 해수공급장치(200c)는, 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140), 진공제거밸브(250), 진공제거라인(251), 음압방지밸브(270)를 포함한다.
본 발명의 가스 재기화 시스템(1)에서 제8 실시예에 따른 해수공급장치(200c)는, 도 9에 도시된 제7 실시예에 따른 해수공급장치(200b)에서의 열원 열교환기(110), 히터(120), 압력유지장치(130), 해수 펌프(140)와 편의상 동일한 도면 부호를 사용하나, 반드시 동일한 구성을 지칭하는 것은 아니다.
또한, 본 발명은, 본 발명의 제1 내지 제6 실시예와 공지기술의 조합 또는 적어도 둘 이상의 실시예의 조합 등에 의해 발생하는 실시예들을 모두 포괄한다. 예를 들어, 상기 본 발명의 제8 실시예에 따른 해수공급장치(200c)는, 본 발명의 제1 내지 제6 실시예 중 적어도 하나의 실시예에 따른 해수 공급장치(100a~f)와 조합이 가능하며, 특히 제8 실시예에 따른 해수 공급장치(200c) 중 음압방지밸브(270)의 구성이 본 발명의 제1 내지 제6 실시예 중 적어도 하나의 실시예에 따른 해수 공급장치(100a~f)에 각각 적용될 수 있음을 알려둔다.
또한. 본 발명의 가스 재기화 시스템(1)에서 제8 실시예에 따른 해수공급장치(200c)는, 도 9에 도시된 제7 실시예에 따른 해수공급장치(200b)에서, 음압방지라인(260)이 제외되고, 음압방지밸브(270)가 추가되며, 진공제거라인(251)의 위치가 변경된 차이점이 존재한다.
따라서, 이하에서는 진공제거라인(251) 및 음압방지밸브(270)의 구성에 대해서만 상세하게 설명하도록 한다.
진공제거라인(251)은, 해수배출라인(L2) 상에 연결될 수 있으며, 외부로부터 공급되는 공기를 해수배출라인(L2)에 공급하여 해수배출라인(L2) 내부의 음압을 제거할 수 있다.
구체적으로, 진공제거라인(251)은, 해수배출라인(L2) 상의 음압방지밸브(270)가 구비된 위치보다 해수의 흐름 기준으로 하류에 연결될 수 있다. 이를 통해서 본 발명의 제8 실시예에 따른 해수공급장치(200c)는, 진공제거밸브(250) 및 진공제거라인(251)을 통해 해수배출라인(L2) 내의 음압을 제거하는 경우, 음압방지밸브(270)에 의해 과도한 압력의 상승을 방지할 수 있다.
진공제거라인(251)은, 해수배출라인(L2) 상에 연결시 해수배출 하류라인(L2b)과 수직하게 연결될 수 있으며, 진공제거라인(251) 상에 진공제거밸브(250)를 구비할 수 있다.
음압방지밸브(270)는, 해수배출라인(L2) 상에 구비되며, 열원 열교환기(110)에서 배출되는 해수의 유량을 제어할 수 있다.
구체적으로, 음압방지밸브(270)는, 해수배출라인(L2) 상의 해수유출밸브(B2)와 열원 열교환기(110) 사이에 구비되며, 열원 열교환기(110)에서 배출되는 해수의 유량을 제어하여, 해수배출라인(L2) 상의 열원 열교환기(110)와 음압방지밸브(270) 사이의 구간에 양압이 유지되도록 할 수 있다.
여기서 음압방지밸브(270)는, 스로틀 밸브(Throttling valve) 또는 오리피스(Orifice)일 수 있다.
이와 같이 본 발명의 실시예에서는, 해수배출 하류라인(L2b) 상에 음압방지밸브(270)를 구비함으로써, 열원 열교환기(110)의 직후단에 형성되었던 음압이 음압방지밸브(270)와 해수유출구(SW2) 사이에서 발생하게 되고, 이를 통해서 진공제거밸브(250) 및 진공제거라인(251)이 음압을 제거할 수 있는 시간을 충분히 확보할 수 있는 효과가 있다.
이와 같이 본 발명의 제8 실시예에 따른 해수공급장치(200c)는, 음압방지밸브(270)를 통해 외부환경에 의해 발생하는 해수배출라인(L2) 상의 음압 발생 위치를 열원 열교환기(110)의 직후단이 아닌 곳으로 옮길 수 있어, 재기화 장치의 구동신뢰성이 향상되고 재기화 효율이 극대화되는 효과가 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (26)

  1. 해수공급장치에 의해 공급되는 해수를 통해 액화가스를 재기화시키는 재기화 장치를 포함하는 가스 재기화 시스템을 구비하는 선박에 있어서,
    상기 해수공급장치는,
    상기 재기화 장치로 상기 해수를 공급하는 해수공급라인;
    상기 재기화 장치로부터 상기 해수를 배출시키는 해수배출라인;
    상기 해수배출라인에서 분기되어 상기 해수공급라인을 연결하는 순환연결라인;
    상기 순환연결라인 상에 구비되며, 상기 순환연결라인에 유동하는 해수의 압력을 유지시키는 해수저장탱크; 및
    상기 해수저장탱크와 상기 순환연결라인을 연결하는 탱크 연결라인을 포함하고,
    상기 탱크 연결라인은,
    상기 해수배출라인 상에 유동하는 해수가 외부로 배출되지 않고 상기 순환연결라인으로 유동하도록 전환하기 전, 상기 순환연결라인 상에 상기 해수저장탱크 내부의 유체를 공급하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  2. 제 1 항에 있어서,
    상기 순환연결라인 상의 상기 해수공급라인과 연결되는 지점에 더 가깝게 배치되는 제1 개폐밸브; 및
    상기 순환연결라인 상의 상기 해수배출라인에서 분기되는 지점에 더 가깝게 배치되는 제2 개폐밸브를 더 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  3. 제 2 항에 있어서,
    상기 해수공급라인 상에 구비되어, 상기 해수를 상기 재기화 장치로 공급하는 해수 펌프를 더 포함하고,
    상기 해수 펌프는,
    해수면보다 낮게 위치하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  4. 제 3 항에 있어서,
    상기 해수공급라인 상의 상기 해수 펌프 상류에 구비되는 제3 개폐밸브;
    상기 해수배출라인 상의 상기 순환연결라인의 분기점보다 하류에 구비되는 제4 개폐밸브;
    상기 탱크 연결라인 상에 구비되는 압력유지유체 공급밸브; 및
    상기 제1 내지 제4 개폐밸브 및 상기 압력유지유체 공급밸브의 개도를 조절하여, 상기 해수배출라인 상에 유동하는 해수가 외부로 배출되지 않고 상기 순환연결라인으로 유동하도록 전환하는 것을 논스톱(Non-Stop)으로 구현시키는 제어부를 더 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  5. 제 4 항에 있어서, 상기 제어부는,
    상기 해수배출라인 상에 유동하는 해수가 외부로 배출되지 않고 상기 순환연결라인으로 유동하도록 전환하기 전, 상기 압력유지유체 공급밸브를 개방하여 상기 순환연결라인으로 상기 유체를 공급하도록 제어하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  6. 제 5 항에 있어서, 상기 제어부는,
    상기 순환연결라인 상에 상기 유체가 가득 차는 경우, 제3 및 제4 개폐밸브를 폐쇄하고, 상기 제1 및 제2 개폐밸브를 개방하도록 제어하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  7. 제 1 항에 있어서, 상기 해수저장탱크는,
    대기압을 이용하여, 해수의 압력을 유지시키는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  8. 제 1 항에 있어서, 상기 해수저장탱크 내부의 유체는,
    해수인 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  9. 제 1 항에 있어서,
    화재를 진압하는 소화수를 저장하는 화재진압용 소화수 저장탱크를 더 포함하고,
    상기 해수저장탱크는,
    상기 화재진압용 소화수 저장탱크와 연결되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  10. 제 9 항에 있어서, 상기 화재진압용 소화수저장탱크는,
    상기 해수배출라인 상에 유동하는 해수가 외부로 배출되지 않고 상기 순환연결라인으로 유동하도록 전환하기 전, 내부에 저장된 상기 소화수를 상기 해수저장탱크로 공급하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  11. 제 1 항에 있어서, 상기 재기화 장치는,
    상기 액화가스를 상기 해수로 직접 기화시키는 기화기를 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  12. 제 1 항에 있어서, 상기 재기화 장치는,
    상기 액화가스를 중간 열매로 기화시키는 기화기; 및
    상기 해수의 열원을 상기 중간 열매로 공급하는 열원 열교환기를 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  13. 제 6 항에 있어서,
    상기 제1 개폐밸브는, 논스톱 전환밸브이고, 상기 제2 개폐밸브는, 순환밸브이고, 상기 제3 개폐밸브는, 해수공급밸브이고, 상기 제4 개폐밸브는, 해수배출밸브이고, 상기 제어부는, 제3 제어부이고, 상기 해수저장탱크는, 압력유지장치이고, 상기 탱크 연결라인은 압력유지장치 연결라인인 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  14. 해수공급장치에 의해 공급되는 해수를 통해 액화가스를 재기화시키는 재기화 장치를 포함하는 가스 재기화 시스템에 있어서,
    상기 해수공급장치는,
    상기 재기화 장치로부터 상기 해수를 배출시키는 해수배출라인을 포함하고,
    상기 해수배출라인은,
    적어도 일부가 상기 재기화 장치보다 높은 위치로 형성되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  15. 제 14 항에 있어서, 상기 해수배출라인은,
    상기 재기화 장치보다 높은 위치에 형성되는 음압방지라인;
    상기 재기화 장치와 상기 음압방지라인을 연결하는 해수배출 상류라인; 및
    상기 음압방지라인과 상기 해수가 외부로 배출되는 해수배출구와 연결되는 해수배출 하류라인을 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  16. 제 15 항에 있어서, 상기 해수배출 상류라인은,
    적어도 일부 상기 재기화 장치와 수평을 이루는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  17. 제 15 항에 있어서, 상기 음압방지라인은,
    상기 해수배출 상류라인과 유선형으로 연결되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  18. 제 15 항에 있어서, 상기 해수배출 하류라인은,
    상기 음압방지라인과 상기 해수배출구를 수직으로 연결하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  19. 제 15 항에 있어서, 상기 해수공급장치는,
    상기 해수배출라인 내의 음압을 제거하는 진공제거라인; 및
    상기 진공제거라인 상에 구비되며 상기 해수배출라인으로 유입되는 공기의 유량을 조절하는 진공제거밸브를 더 포함하고,
    상기 진공제거라인은, 상기 해수배출 하류라인에 평행하게 연결되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  20. 제 19 항에 있어서, 상기 음압방지라인은,
    상기 해수배출 상류라인과 연결되는 유입부;
    상기 해수배출 하류라인과 연결되는 유출부;
    상기 유입부와 상기 유출부를 연결하는 연결부를 포함하며,
    상기 유출부는,
    상기 진공제거라인과 평행하게 연결되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  21. 제 20 항에 있어서, 상기 연결부는,
    상기 유입부와 유선형으로 연결되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  22. 제 20 항에 있어서, 상기 연결부는,
    상기 유입부 및 상기 유출부와 직각으로 연결되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  23. 제 15 항에 있어서,
    상기 재기화 장치는, 해수면으로부터 28 내지 32m 높이에 위치하고,
    상기 해수배출구는, 상기 해수면과 상기 해수면으로부터 -2m 높이 사이에 위치하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  24. 제 14 항에 있어서, 상기 해수공급장치는,
    상기 해수배출라인 상에 구비되며, 상기 재기화 장치로부터 배출되는 해수의 유량을 제어하는 음압방지밸브;
    상기 해수배출라인 내의 음압을 제거하는 진공제거라인; 및
    상기 진공제거라인 상에 구비되며 상기 해수배출라인으로 유입되는 공기의 유량을 조절하는 진공제거밸브를 더 포함하고,
    상기 진공제거라인은,
    상기 해수배출라인 상의 상기 음압방지밸브가 구비된 위치보다 상기 해수의 흐름 기준으로 하류에 연결되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  25. 제 24 항에 있어서, 상기 해수공급장치는,
    상기 해수배출라인 상에서 상기 음압방지밸브와 상기 해수가 외부로 배출되는 해수배출구 사이에 구비되며, 상기 해수가 상기 외부로 유출되는 것을 제어하는 해수유출밸브를 더 포함하는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
  26. 제 14 항에 있어서, 상기 재기화 장치는,
    상기 액화가스를 중간 열매로 기화시키는 기화기; 및
    상기 해수의 열원을 상기 중간 열매로 공급하는 열원 열교환기를 포함하되,
    상기 해수배출라인은,
    적어도 일부가 상기 열원 열교환기보다 높은 위치로 형성되는 것을 특징으로 하는 가스 재기화 시스템을 구비하는 선박.
PCT/KR2017/002947 2016-03-18 2017-03-17 가스 재기화 시스템을 구비하는 선박 WO2017160125A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17767026.2A EP3431382A4 (en) 2016-03-18 2017-03-17 SHIP COMPRISING A GAS REGAZEIFICATION SYSTEM
CN202010091081.6A CN111252197B (zh) 2016-03-18 2017-03-17 具有气体再汽化系统的船舶
CN201780014821.2A CN108698673B (zh) 2016-03-18 2017-03-17 具有气体再汽化系统的船舶
US16/083,461 US11136103B2 (en) 2016-03-18 2017-03-17 Ship having gas regasification system
JP2018548450A JP6710286B2 (ja) 2016-03-18 2017-03-17 ガス再気化システムを備える船舶

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0032911 2016-03-18
KR20160032911 2016-03-18
KR1020160092308A KR101850606B1 (ko) 2016-03-18 2016-07-20 가스 재기화 시스템을 구비하는 선박
KR10-2016-0092308 2016-07-20
KR1020160115564A KR102306454B1 (ko) 2016-09-08 2016-09-08 가스 재기화 시스템 및 이를 포함하는 선박
KR10-2016-0115564 2016-09-08

Publications (1)

Publication Number Publication Date
WO2017160125A1 true WO2017160125A1 (ko) 2017-09-21

Family

ID=59851981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002947 WO2017160125A1 (ko) 2016-03-18 2017-03-17 가스 재기화 시스템을 구비하는 선박

Country Status (1)

Country Link
WO (1) WO2017160125A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080085284A (ko) * 2007-03-19 2008-09-24 대우조선해양 주식회사 Lng 재기화 선박의 온수 순환식 기화장치 및액화천연가스 기화방법
KR20130011152A (ko) * 2011-07-20 2013-01-30 삼성중공업 주식회사 해수 가열 장치 및 이를 이용한 액화천연가스 재기화 시스템
KR20140044139A (ko) * 2012-10-04 2014-04-14 삼성중공업 주식회사 재기화 시스템
KR20150000161A (ko) * 2013-06-24 2015-01-02 대우조선해양 주식회사 선박의 액화천연가스 연료 공급 시스템 및 방법
KR20150130711A (ko) * 2014-05-14 2015-11-24 대우조선해양 주식회사 배관 시스템 및 상기 배관 시스템의 압력 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080085284A (ko) * 2007-03-19 2008-09-24 대우조선해양 주식회사 Lng 재기화 선박의 온수 순환식 기화장치 및액화천연가스 기화방법
KR20130011152A (ko) * 2011-07-20 2013-01-30 삼성중공업 주식회사 해수 가열 장치 및 이를 이용한 액화천연가스 재기화 시스템
KR20140044139A (ko) * 2012-10-04 2014-04-14 삼성중공업 주식회사 재기화 시스템
KR20150000161A (ko) * 2013-06-24 2015-01-02 대우조선해양 주식회사 선박의 액화천연가스 연료 공급 시스템 및 방법
KR20150130711A (ko) * 2014-05-14 2015-11-24 대우조선해양 주식회사 배관 시스템 및 상기 배관 시스템의 압력 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431382A4 *

Similar Documents

Publication Publication Date Title
WO2013172644A1 (ko) 액화가스 처리 시스템 및 방법
WO2017078244A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
WO2020017769A1 (ko) 휘발성 유기화합물 처리 시스템 및 선박
WO2016195279A1 (ko) 선박
WO2012053705A1 (ko) 액화천연가스 저장 용기 운반선
WO2012053704A1 (ko) 액화천연가스의 저장 용기
WO2012124885A1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템의 운전방법
WO2017022874A1 (ko) 열전발전장치와 연료저장탱크의 발열장치 및 폐열 회수시스템
WO2014133332A1 (en) Refrigerator and method of controlling the same
WO2012050273A1 (ko) 가압액화천연가스 생산 방법 및 이에 사용되는 생산 시스템
WO2014092369A1 (ko) 선박의 액화가스 처리 시스템
WO2018093064A1 (ko) 선박용 연료유 전환 시스템 및 방법
WO2019027065A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법
WO2017171164A1 (ko) 선박용 증발가스 재액화 장치 및 방법
WO2018062601A1 (ko) 선박의 증발가스 재액화 장치 및 방법
WO2019117631A1 (ko) 가스 히트펌프 시스템
WO2017160125A1 (ko) 가스 재기화 시스템을 구비하는 선박
WO2016148318A1 (en) System for supplying fuel to engine of ship
WO2019027068A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법
WO2019245259A1 (ko) 저압 배전이 적용된 선박
WO2013172642A1 (ko) 액화가스 처리 시스템 및 방법
WO2013172645A1 (ko) 액화가스 처리 시스템 및 방법
WO2016148319A1 (en) System for supplying fuel to engine of ship
WO2019027063A1 (ko) 증발가스 재액화 시스템 및 증발가스 재액화 시스템 내의 윤활유 배출 방법, 그리고 엔진의 연료 공급 방법
WO2023172074A1 (ko) 가스 처리 시스템 및 이를 포함하는 선박

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548450

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017767026

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017767026

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17767026

Country of ref document: EP

Kind code of ref document: A1