WO2017159917A1 - Procédé de fabrication de papier carbone électriquement conducteur - Google Patents

Procédé de fabrication de papier carbone électriquement conducteur Download PDF

Info

Publication number
WO2017159917A1
WO2017159917A1 PCT/KR2016/004032 KR2016004032W WO2017159917A1 WO 2017159917 A1 WO2017159917 A1 WO 2017159917A1 KR 2016004032 W KR2016004032 W KR 2016004032W WO 2017159917 A1 WO2017159917 A1 WO 2017159917A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon paper
carbon
electrical conductivity
conductivity
thermal conductivity
Prior art date
Application number
PCT/KR2016/004032
Other languages
English (en)
Korean (ko)
Inventor
권용범
권성은
Original Assignee
권용범
(주)시엔케이
권성은
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권용범, (주)시엔케이, 권성은 filed Critical 권용범
Publication of WO2017159917A1 publication Critical patent/WO2017159917A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • 'PI' film plastic materials such as polyimide film (hereinafter referred to as 'PI' film), which are excellent in heat resistance, chemical resistance, and electrical insulation, are calcined at a very high temperature of 2000 ° C or higher through a specific process, the original material It is changed to a carbon compound having a super thermal conductivity different from that of a carbon sheet (carbon sheet such as PGS (Pyrolytic Graphite Sheet), hereinafter referred to as 'Carbon-Paper').
  • carbon sheet such as PGS (Pyrolytic Graphite Sheet)
  • Such carbon paper has excellent thermal conductivity and electrical conductivity.
  • the electrical conductivity is significantly lower than that of conductive metals such as copper (Cu) and aluminum (Al).
  • the present invention is to enhance the electrical conductivity properties of the 'carbon paper' to the level of the conductive metal, and the additives are grafted into the raw material (plastic, such as PI, etc.) or the finished material 'carbon paper' by physical or chemical processes.
  • the present invention relates to a technique for increasing electrical conductivity.
  • polyimides have attracted attention as future core materials in IT and aerospace because of their excellent electrical insulation, high thermal stability and excellent mechanical properties, and have been used as advanced high-performance industrial materials.
  • strength, flexibility, and non-igniting self-extinguishing in a wide temperature range from minus 269 ° C. to 400 ° C. have been known as the most excellent materials in existing plastics.
  • the PI film when fired at a very high temperature of 2000 °C or higher through a specific process, it is changed into a carbon material, that is, a carbon paper, having properties different from those of the original PI film.
  • Carbon film produced in this way has high thermal conductivity (more than 1000W) and heat dissipation characteristics unlike the existing PI film, and has electrical conductivity as opposed to the inherent characteristics of PI, which was excellent in electrical insulation. Appears much lower than.
  • diamond is very good in thermal conductivity while insulator and CNT is good in electrical conductivity.
  • Electroconductive carbon paper pursued in the present invention is to increase the applicability by having an excellent electrical conductivity with high thermal conductivity.
  • the present invention aims to make the carbon paper fundamentally conductive in a simple and low cost.
  • carbon materials having excellent electrical conductivity are used to increase the electrical conductivity of carbon paper to a level similar to that of a general conductive metal.
  • CNT Carbon nano tube
  • conductive metal powder conductive metal powder
  • graphene powder etc.
  • PI film By making a PI film by mixing it into a PI chip, which is the raw material of paper, 'Carbon Paper' made of the film after ultra-high temperature firing improves its electrical conductivity, or various methods of vacuum on the surface of 'Carbon Paper'
  • the present invention relates to increasing the electrical conductivity of 'carbon paper' at low cost by depositing and coating conductive materials by deposition or plating.
  • the method of mixing the conductive material may use a chemical or physical method.
  • the PI is manufactured in the form of a wire
  • a carbon wire having excellent electrical conductivity and thermal conductivity can be produced.
  • Carbon wire manufactured in this way can replace the existing copper wire, especially when combined with the transmission line, the advantages can be dramatically exhibited.
  • 1 is a manufacturing process of the PI film and PI roll using a PI (Chip).
  • FIG. 2 is a process chart of making a chip by mixing a PI chip and an electrically conductive material (Dopant).
  • 3 is a process chart made in the form of film and roll using a doped chip.
  • the thermal conductivity is more than 5 times that of copper, and the carbon paper (PGS (Pyrolytic Graphite Sheet) such as PGS (Pyrolytic Graphite Sheet)) with excellent physical and chemical properties has the same electrical conductivity as the material with high electrical conductivity such as copper or aluminum. It is.
  • Polyimide (PI) a raw material of 'carbon paper', has been attracting attention as a core material of future industries due to its excellent electrical insulation, high thermal stability and excellent mechanical properties.
  • the PI film When the PI film is fired at an ultra-high temperature of 2000 °C or higher, it is converted into a 'carbon paper' composed of carbon having properties different from those of the original PI film.
  • the carbon paper produced in this way has excellent thermal conductivity (more than 1000W) as opposed to the physical properties of the existing PI film, and also exhibits electrical conductivity. .
  • the method to be realized in the present invention may be divided into three types, which are distinguished from the existing methods.
  • plastic materials such as PI film, which is the raw material of 'carbon paper', and inducing electrical conductivity
  • PI film which is the raw material of 'carbon paper'
  • 'Conductive metal film is formed on the surface.
  • Ion-Implanter is used to inject ION to enhance the conductive properties on the' carbon paper 'surface.
  • PI film is made by passing a PI made in the form of a chip as shown in FIG. 1 through a film molding machine.
  • the method to be implemented in the present invention first, the raw material of the PI chip as shown in [2] Dopant (metal powder or CNT (Carbon nano tube), and graphene (Graphene) powder) and excellent electrical conductivity New chips are made by mixing in a manner such as dispersion (Diffusion).
  • the chip thus made is made into a film form by passing through a film molding machine as shown in FIG.
  • Dopant injected into the raw material PI in the above-mentioned manner acts as a factor inducing electrical conductivity during the ultra-high temperature firing process where carbon paper is formed, thereby changing carbon paper into a highly conductive molecular structure, or It itself serves to increase conductivity.
  • the gas atmosphere dopant injection method which is commonly used in semiconductor processes, is a method of increasing the electrical conductivity by first converting the dopant into a gas form and plastically manufacturing 'carbon paper' in the gas. .
  • Dopant Gas is not easy to input into raw materials because the carbon paper is made at a very high temperature of more than 2000 °C and the thermal energy of carbon paper itself is too high. That is, the energy of the dopant gas is small, which makes it difficult to inject the dopant.
  • the dopant can be easily injected into the raw material because the dopant is originally added in the manufacturing process of the raw material of the PI chip.
  • a PI chip is passed through a film molding machine to make a PI film.
  • the film thus made is made of carbon paper through an ultra-high temperature process of more than 2000 °C °C.
  • an electrically conductive film is formed by depositing a metal such as copper (Cu) and aluminum (Al) having high electrical conductivity on the surface by vacuum deposition as shown in FIG.
  • the carbon paper coated with the conductive metal has high electrical conductivity due to the metal coated on the surface thereof, and also has excellent thermal conductivity depending on the characteristics of the carbon paper itself.
  • the vacuum deposition method may use various methods such as PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition).
  • the carbon paper has a basic electrical conductivity properties it can be used to form an electrically conductive metal film on the surface by using a metal plating method as shown in FIG.
  • Ion-Implanter is used to inject ION to enhance the conduction characteristics on the surface of 'carbon paper'.
  • This method is a method commonly used in semiconductor manufacturing processes and uses ion-implanters to inject specific ions that can increase electrical conductivity onto the surface of a target material, that is, carbon paper. By increasing the electrical conductivity on the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paper (AREA)

Abstract

Lorsqu'un matériau plastique, qui est excellent en ce qui concerne la résistance à la chaleur, les propriétés d'isolation électrique, la résistance chimique et similaires, tel qu'un film de polyimide, est fritté/traité par un procédé spécifique à une température super-élevée de 2000°C ou plus, le matériau change de caractéristiques et devient du "papier carbone", qui est un composé de carbone présentant une conductivité super-thermique différente des caractéristiques originales du matériau. Le papier carbone présente une très bonne conductivité thermique et présente un degré de conductivité électrique, mais la conductivité électrique est sensiblement inférieure à celle du cuivre (Cu), de l'aluminium (Al) ou analogue. Un produit électronique de pointe est, dans certains cas, nécessaire pour disposer d'une fonction d'alimentation électrique ou de mise à la terre, tout en étant apte à extraire de la chaleur en un emplacement souhaité en une courte période de temps. Un tel cas nécessite à la fois une conductivité thermique élevée et une conductivité électrique élevée. Une telle requête a traditionnellement été satisfaite par liaison de "papier carbone" et d'un matériau conducteur, tel qu'une plaque mince de cuivre ou d'aluminium, par un procédé physique ou chimique. Cependant, le but de la présente invention est d'améliorer la conductivité électrique du "papier carbone", en plus de ses caractéristiques uniques, par addition d'un procédé d'injection d'un dopant électroconducteur, d'un procédé de dépôt sous vide d'un métal hautement électroconducteur, d'un procédé de placage, d'un procédé d'injection d'ions inductifs électroconducteurs ou similaires au procédé de fabrication de "papier carbone".
PCT/KR2016/004032 2016-03-18 2016-04-18 Procédé de fabrication de papier carbone électriquement conducteur WO2017159917A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0032431 2016-03-18
KR1020160032431A KR101997120B1 (ko) 2016-03-18 2016-03-18 전기전도성 카본페이퍼의 제작방법.

Publications (1)

Publication Number Publication Date
WO2017159917A1 true WO2017159917A1 (fr) 2017-09-21

Family

ID=59851121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004032 WO2017159917A1 (fr) 2016-03-18 2016-04-18 Procédé de fabrication de papier carbone électriquement conducteur

Country Status (2)

Country Link
KR (1) KR101997120B1 (fr)
WO (1) WO2017159917A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056735A1 (fr) 2021-03-09 2022-09-14 Studiengesellschaft Kohle mbH Procédé pour la préparation d'une électrode pour applications électrolytiques
US11508498B2 (en) 2019-11-26 2022-11-22 Trimtabs Ltd Cables and methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102078974B1 (ko) 2019-08-28 2020-02-18 도레이첨단소재 주식회사 열전도성이 우수한 카본페이퍼의 제조방법 및 이로부터 제조된 카본페이퍼
KR20210133454A (ko) 2020-04-29 2021-11-08 도레이첨단소재 주식회사 탄소섬유 카본시트 및 그의 제조방법
KR102504825B1 (ko) 2021-01-26 2023-02-28 금오공과대학교 산학협력단 분산성이 우수한 탄소섬유를 이용한 카본페이퍼 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579983A1 (fr) * 1992-07-02 1994-01-26 Sumitomo Electric Industries, Limited Film dur en carbone contenant des impuretés
JP2007320775A (ja) * 2005-07-28 2007-12-13 Kaneka Corp グラファイトフィルムおよびグラファイトフィルムの製造方法
KR20080031741A (ko) * 2005-06-21 2008-04-10 에스지엘 카본 악티엔게젤샤프트 금속-코팅된 그래파이트 시트
KR101263545B1 (ko) * 2007-05-17 2013-05-13 가부시키가이샤 가네카 그라파이트 필름 및 그라파이트 복합 필름
KR101473432B1 (ko) * 2014-06-13 2014-12-16 에스케이씨 주식회사 그라파이트의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579983A1 (fr) * 1992-07-02 1994-01-26 Sumitomo Electric Industries, Limited Film dur en carbone contenant des impuretés
KR20080031741A (ko) * 2005-06-21 2008-04-10 에스지엘 카본 악티엔게젤샤프트 금속-코팅된 그래파이트 시트
JP2007320775A (ja) * 2005-07-28 2007-12-13 Kaneka Corp グラファイトフィルムおよびグラファイトフィルムの製造方法
KR101263545B1 (ko) * 2007-05-17 2013-05-13 가부시키가이샤 가네카 그라파이트 필름 및 그라파이트 복합 필름
KR101473432B1 (ko) * 2014-06-13 2014-12-16 에스케이씨 주식회사 그라파이트의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508498B2 (en) 2019-11-26 2022-11-22 Trimtabs Ltd Cables and methods thereof
US11823814B2 (en) 2019-11-26 2023-11-21 Trimtabs Ltd Cables and methods thereof
EP4056735A1 (fr) 2021-03-09 2022-09-14 Studiengesellschaft Kohle mbH Procédé pour la préparation d'une électrode pour applications électrolytiques
WO2022189212A1 (fr) 2021-03-09 2022-09-15 Studiengesellschaft Kohle Mbh Procédé de préparation d'une électrode pour applications électrolytiques

Also Published As

Publication number Publication date
KR101997120B1 (ko) 2019-07-05
KR20170108474A (ko) 2017-09-27

Similar Documents

Publication Publication Date Title
WO2017159917A1 (fr) Procédé de fabrication de papier carbone électriquement conducteur
Azizi et al. High‐performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high‐temperature dielectric materials
Zhou et al. Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites
US7449631B2 (en) Coaxial cable
WO2015147501A1 (fr) Complexe polymère à base de catécholamine-graphite en paillettes pour la préparation d'un composite
US6403697B1 (en) Carbon black, method for its preparation and its applications
KR20170097692A (ko) 질화붕소 나노튜브 강화 전기 부품
Zhou et al. High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ ZnO particles
WO2014030782A1 (fr) Composite de fibre de carbone revêtu de carbure de silicium, et son procédé de production
WO2018084518A1 (fr) Composition de pâte époxyde comprenant des nanofils de cuivre revêtus d'argent ayant une structure cœur-écorce, et film conducteur comprenant celle-ci
CN105061855A (zh) 一种导热绝缘材料的制备方法
Qian et al. Scalable Assembly of High‐Quality Graphene Films via Electrostatic‐Repulsion Aligning
CN104319008A (zh) 一种耐高温低损耗复合绝缘同轴电缆
CN102702965A (zh) 一种应用于绝缘子的防污闪涂料及其使用方法
WO2016159510A1 (fr) Matériau composite hautement thermoconducteur
CN111471300A (zh) 一种导热聚酰亚胺绝缘膜及其制备方法
Duan et al. Scalable, mechanically-robust, fire-resistance MXene/PEDOT: PSS/PBO film for efficient electromagnetic interference shielding and Joule heating performance
KR101856665B1 (ko) 방열 도료 조성물 및 이의 제조방법
WO2021015580A1 (fr) Matériau composite à dissipation thermique, et procédé de fabrication associé
WO2015016490A1 (fr) Procédé de fabrication de graphite revêtu de céramique
KR102081783B1 (ko) 전기전도성 카본페이퍼의 제작방법
US20240006095A1 (en) Conductive wire, conductive coil, and conductive device
WO2013162108A1 (fr) Composite de métal et de carbone, procédé d'élaboration correspondant, et pâte élaborée selon ce procédé
Yang et al. Regulating dielectric performances of Poly (vinylidene fluoride) nanocomposites by individually controlling shell thickness of Core@ Double‐Shells structured nanowires
WO2020067839A1 (fr) Matériau composite

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.01.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16894648

Country of ref document: EP

Kind code of ref document: A1