WO2017159648A1 - Submarine device, submarine cable system, method for controlling submarine device, and storage medium for storing program for submarine device - Google Patents

Submarine device, submarine cable system, method for controlling submarine device, and storage medium for storing program for submarine device Download PDF

Info

Publication number
WO2017159648A1
WO2017159648A1 PCT/JP2017/010072 JP2017010072W WO2017159648A1 WO 2017159648 A1 WO2017159648 A1 WO 2017159648A1 JP 2017010072 W JP2017010072 W JP 2017010072W WO 2017159648 A1 WO2017159648 A1 WO 2017159648A1
Authority
WO
WIPO (PCT)
Prior art keywords
submarine
load
drive voltage
voltage generation
voltage
Prior art date
Application number
PCT/JP2017/010072
Other languages
French (fr)
Japanese (ja)
Inventor
成浩 新井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018505930A priority Critical patent/JP6614333B2/en
Priority to EP17766647.6A priority patent/EP3432481A4/en
Priority to CN201780016737.4A priority patent/CN108781093A/en
Priority to US16/079,616 priority patent/US20190074690A1/en
Publication of WO2017159648A1 publication Critical patent/WO2017159648A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J2003/001Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam
    • B63J2003/002Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam by using electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • B63J2003/043Driving of auxiliaries from power plant other than propulsion power plant using shore connectors for electric power supply from shore-borne mains, or other electric energy sources external to the vessel, e.g. for docked, or moored vessels

Definitions

  • the present invention relates to a submarine device, a submarine cable system, a submarine device control method, and a submarine device program.
  • the submarine cable system employs a power feeding system that supplies a constant current (hereinafter referred to as “system current”) to the submarine equipment via a power cable.
  • system current a constant current
  • FIG. 5 is a block diagram showing an example of the internal configuration of the submarine device 10 related to the present invention.
  • the undersea device 10 includes a voltage converter 11, n Zener diodes 12-1 to 12-n, n DC (Direct Current) -DC converters 13-1 to 13-n, and n sensors 14 -1 to 14-n.
  • n Zener diodes 12 are connected to the primary side
  • a DC-DC converter 13 is connected to the secondary side.
  • the primary side and the secondary side are electrically insulated.
  • the n Zener diodes 12 are included in a primary-side power supply circuit (not shown) in the voltage converter 11.
  • the undersea device 10 obtains a constant voltage by using a breakdown voltage due to a Zener effect generated when a voltage is applied between the anode and the cathode of the Zener diode 12 provided in the power supply circuit.
  • the product obtained by multiplying the constant voltage and the system current flowing through the n Zener diodes 12 corresponds to the power consumption of the submarine device 10, and therefore, the power supply circuit has a number corresponding to the power consumption of the submarine device 10.
  • a zener diode 12 is included connected in series.
  • the DC-DC converter 13 generates a voltage necessary for each component of the submarine device 10.
  • various sensors 14-1 to 14-n of the submarine equipment 10 as shown in FIG. May be installed.
  • the sensor mounted in such a case often consumes more power than the existing components of the submarine device 10.
  • a sensor mounted in such a case is required to have a function of starting and stopping operation and a function of changing various operation settings according to remote control.
  • Patent Document 1 describes a submarine transmission system that applies a reverse bias voltage to a predetermined number of Zener diodes.
  • Patent Document 2 describes a balanced DC constant current input / DC constant current distribution output device that compensates for fluctuations in an external load with fluctuations in power consumption of a constant resistance circuit.
  • the submarine cable system including the submarine equipment 10 is required to have flexibility to meet the expansion demand for adding sensors. Therefore, in the submarine cable system deployed in such an observation system, when the power load on the secondary side of the voltage converter 11 in the submarine equipment 10 changes due to the start, stop, extension, etc. of the sensor. In addition, the system current flowing through the zener diodes 12-1 to 12-n on the primary side changes. Therefore, there arises a problem that the constant voltage obtained by the Zener effect cannot be maintained. Specifically, for example, when the power supply load on the secondary side of the voltage converter 11 decreases, the current flowing on the primary side of the voltage converter 11 increases. As a result, the current flowing through the Zener diodes 12-1 to 12-n decreases. When the current flowing through the Zener diodes 12-1 to 12-n becomes less than a predetermined Zener current, the constant voltage obtained by the Zener effect cannot be maintained.
  • a coping method of fixing the power load in the submarine device 10 can be considered.
  • this coping method impairs the expandability and flexibility of the submarine cable system, making it difficult to use the submarine cable system for various observation purposes.
  • the submarine device 10 is configured in advance so that the maximum power supply capacity in anticipation of the future expansion and expansion of sensors can be applied.
  • this coping method it is necessary to provide the submarine device 10 with an electronic load in advance, and the electronic load must be operated at a light load until the sensor is added or expanded. It will be consumed.
  • the components in the submarine device 10 must be operated in an environment where the temperature has increased due to a light load operation of an electronic load or the like. Therefore, in this coping method, the problem of the increase in the power consumption in the submarine equipment 10 and the fall of long-term reliability of the component of the subsea equipment 10 arises.
  • the submarine transmission system described in Patent Document 1 cannot flexibly cope with fluctuations in power consumption in the submarine transmission system because the number of Zener diodes to which the reverse bias voltage is applied is fixed. Therefore, the submarine transmission system described in Patent Document 1 cannot obtain a constant voltage when the power load varies.
  • the balanced DC constant current input / DC constant current distribution output device described in Patent Document 2 needs to include a circuit including a constant resistance circuit in order to prevent a change in passive power on the input side. Therefore, the balanced DC constant current input / DC constant current distribution output device described in Patent Document 2 is increased in size to obtain a constant voltage.
  • the present invention has been made in view of the above problems, and can provide a submarine device, a submarine cable system, and a submarine device that can obtain a constant voltage regardless of fluctuations in a power load without increasing the size and complexity of the device. It is an object to provide a control method and a program for submarine equipment.
  • a submarine device includes a driving voltage generation unit configured to generate a voltage for driving a connected load in response to a current flowing, and each of the loads.
  • Detecting means for detecting whether or not the submarine device is connected to the submarine device, and control means for controlling the current to flow or not to flow to the drive voltage generating means according to the detection result by the detecting means.
  • the drive voltage generation means is prepared according to the load, the detection means detects whether or not each load is connected, and the control means detects each load by the detection means. In accordance with the detection result of whether or not is connected, control is performed so that the current flows or does not flow in each drive voltage generation means corresponding to each load.
  • a control method for a submarine device includes a method for controlling the load according to a current flowing in a drive voltage generation unit prepared in accordance with a connected load. Generate voltages for driving each, detect whether each load is connected to the submarine equipment, and depending on the detection result whether each load is connected, each load according to each load Control is performed so that the current flows or does not flow in the drive voltage generation means.
  • a program for a submarine device is based on the fact that a current flows to a drive voltage generation unit prepared in accordance with a load connected to a computer of a submarine device. And a process for generating a voltage for driving each of the loads, a process for detecting whether or not each load is connected to the submarine equipment, and a detection result of whether or not each load is connected. Accordingly, a process for controlling the current to flow or not to flow to each drive voltage generation unit corresponding to each load is performed.
  • a constant voltage can be obtained regardless of fluctuations in the power load without increasing the size and complexity of the device.
  • FIG. 1 is a block diagram illustrating a configuration example of a submarine device 100 in the present embodiment.
  • the undersea device 100 includes n Zener diode groups 140-1 to 140-n, a power load detection unit 180, and a switch switching control unit 190.
  • each of the n Zener diode groups 140-1 to 140-n is connected in series with each other.
  • each of the n Zener diode groups 140-1 to 140-n is configured by m 1 to mn Zener diodes that are connected in series with each other.
  • the Zener diode group 140-1 is constituted by Zener diodes 141-1 ⁇ 141-m 1 each connected in series with each other.
  • Zener diode group 140-2 is constituted by Zener diodes 141-1 ⁇ 141-m 2 each connected in series with each other.
  • the Zener diode group 140-n includes Zener diodes 141-1 to 141- mn that are connected in series with each other.
  • the power cable 110 is arranged to be connected to the n Zener diode groups 140-1 to 140-n.
  • each of the n voltage converters 150-1 to 150-n is arranged to be connected in parallel to each of the n Zener diode groups 140-1 to 140-n.
  • Each of the n Zener diode groups 140-1 to 140-n is connected to the primary side of each of the n voltage converters 150-1 to 150-n.
  • Each of the n quantity changeover switches 120-1 to 120-n is in parallel with each of the n Zener diode groups 140-1 to 140-n and the n voltage converters 150-1 to 150-n. It is arranged to be connected to. Each of the n quantity changeover switches 120-1 to 120-n is connected to the primary side of each of the n voltage converters 150-1 to 150-n. Each of the n quantity changeover switches 120-1 to 120-n is connected to the switch changeover control unit 190 in a controllable manner.
  • each of the n path changeover switches 130-1 to 130-n includes each of the n Zener diode groups 140-1 to 140-n and the n voltage converters 150-1 to 150-n. It arrange
  • Each of the n path selector switches 130-1 to 130-n is connected in series to each of the n Zener diode groups 140-1 to 140-n and the n voltage converters 150-1 to 150-n. Connected to. Further, each of the n path changeover switches 130-1 to 130-n is connected to the switch changeover control unit 190 in a controllable manner.
  • each of the n DC-DC converters 160-1 to 160-n is arranged to be connected to the secondary side of each of the n voltage converters 150-1 to 150-n.
  • each of the n power loads 170-1 to 170-n is arranged to be connected to each of the n DC-DC converters 160-1 to 160-n.
  • Each of the n power loads 170-1 to 170-n is also connected to the power load detector 180.
  • n power loads 170-1 to 170-n may be arranged inside the submarine device 100 or may be arranged outside. In the example shown in FIG. 1, n power loads 170-1 to 170-n are arranged outside the submarine device 100.
  • the quantity changeover switches 120-1 to 120-n will be referred to as quantity changeover switches 120.
  • the path selector switches 130-1 to 130-n are referred to as a path selector switch 130.
  • the Zener diode groups 140-1 to 140-n are referred to as a Zener diode group 140.
  • the m Zener diodes 141-1 to 141 -m are referred to as Zener diodes 141.
  • Voltage converters 150-1 to 150-n are referred to as voltage converter 150.
  • the DC-DC converters 160-1 to 160-n are referred to as a DC-DC converter 160.
  • the power loads 170-1 to 170-n are referred to as a power load 170.
  • the submarine device 100 is a device such as a submarine repeater constituting a submarine cable system.
  • one Zener diode group 140 includes one quantity changeover switch 120, one path changeover switch 130, one voltage converter 150, one DC-DC converter 160, One power load 170 is associated.
  • the Zener diode group 140-1 includes a quantity changeover switch 120-1, a path changeover switch 130-1, a voltage converter 150-1, a DC-DC converter 160-1, a power supply The load 170-1 is associated.
  • a constant current (also referred to as a system current) supplied from a land power supply device (not shown) installed on land is input to the submarine device 100 via the power cable 110.
  • the quantity changeover switch 120 transitions between an open state and a closed state according to the control of the switch changeover control unit 190.
  • the path changeover switch 130 transitions between an open state and a closed state according to the control of the switch changeover control unit 190.
  • the path changeover switch 130 changes to the open state when the quantity changeover switch 120 changes to the closed state, and changes to the closed state when the quantity changeover switch 120-1 changes to the open state.
  • the quantity changeover switch 120 and the route changeover switch 130 will be described later.
  • System current flows through the Zener diode group 140 corresponding to the quantity changeover switch 120 in the open state and the path changeover switch 130 in the closed state. Then, a predetermined constant voltage is applied to the Zener diode group 140 through which the system current flows using the breakdown voltage due to the Zener effect. For example, when the quantity changeover switch 120-1 is open and the path changeover switch 130-1 is closed, a constant voltage is applied to the Zener diode group 140-1.
  • the number of Zener diodes 141 constituting the Zener diode group 140 is determined.
  • the Zener diode group 140-1 includes three Zener diodes 141 each having a Zener voltage of 5V when a voltage of 15V is required on the primary side of the voltage converter 150-1.
  • the voltage converter 150 converts the voltage generated on the primary side, and applies the converted voltage to the secondary side. Specifically, when the quantity changeover switch 120 changes to the open state, the path changeover switch 130 changes to the closed state, and a system current flows through the Zener diode group 140, the voltage corresponding to the system current is changed to the voltage converter 150. Applied to the primary side. Then, the voltage is converted into a predetermined voltage and applied to the secondary side of the voltage converter 150. Then, power is supplied to the secondary side of the voltage converter 150.
  • the voltage converter 150 is realized by, for example, a transformer system including a transformer.
  • the DC-DC converter 160 converts the voltage converted and applied by the voltage converter 150 into an appropriate voltage according to the power load 170. Then, the DC-DC converter 160 applies the converted voltage to the power load 170.
  • the power load 170 is attached to the submarine device 100 via an underwater connector (not shown) according to the purpose and application of the submarine cable system.
  • the power load 170 is removed from the submarine device 100 as necessary.
  • the installation of the power load 170 to the submarine device 100 and the removal of the power load 170 from the submarine device 100 can be performed according to the expansion or expansion demand of the submarine cable system after the submarine device 100 is installed on the seabed. It takes place underwater via an underwater connector.
  • the power load 170 is, for example, a sensor such as an accelerometer or a water pressure gauge.
  • the power load detection unit 180 detects that the power load 170 is attached to and removed from the undersea device 100 (detachment). When the power load detection unit 180 detects the attachment / detachment of the power load 170, the power load detection unit 180 notifies the switch switching control unit 190 that the power load 170 is attached or removed.
  • the switch switching control unit 190 when notified of the attachment / detachment of the power load 170 from the power load detection unit 180, controls the state of the quantity switching switch 120 and the path switching switch 130 based on the content of the notification. As a result, the Zener diode group 140 through which the system current flows is selected. Specifically, for example, when the power load 170-1 is attached to the submarine device 100, the switch switching control unit 190 controls the quantity switching switch 120-1 to transition to the open state, and the path switching switch 130 Control -1 to transition to the closed state. Then, since a system current flows through the Zener diode group 140-1, a constant voltage is applied to the Zener diode group 140-1.
  • a voltage is applied to the primary side of the voltage converter 150-1. Then, electric power is supplied to the secondary side of the voltage converter 150-1. Further, for example, when the power load 170-1 is removed from the submarine device 100, the switch switching control unit 190 controls the quantity changeover switch 120-1 to transition to the closed state, and the path changeover switch 130-1 is changed. Control to transition to the open state. Then, since the system current does not flow through the Zener diode group 140-1, no constant voltage is applied to the Zener diode group 140-1. Therefore, no voltage is applied to the primary side of the voltage converter 150-1. Then, power is not supplied to the secondary side of the voltage converter 150-1.
  • the switch switching control unit 190 causes the system current to flow through the Zener diode group 140 in which the corresponding power load 170 is attached to the submarine device 100, and the Zener diode group in which the corresponding power load 170 is not attached to the submarine device 100.
  • the state of the quantity changeover switch 120 and the path changeover switch 130 is controlled so that the system current does not flow through 140.
  • the state of the path changeover switch 130 is controlled, so that the quantity changeover switch 120 has transitioned to the closed state. In this case, it is possible to prevent a part of the system current from flowing to the primary side of the voltage converter 150.
  • the Zener diode group 140 that passes the system current is selected only by controlling the state of the quantity changeover switch 120, the quantity changeover switch 120 transitions to the closed state when the power load 170 is removed. Even so, a part of the system current flows to the primary side of the voltage converter 150, and the voltage is applied to the secondary side of the voltage converter 150. Therefore, problems such as unnecessary power consumption and fluctuations in the system current flowing on the primary side arise.
  • the power load 170 is When it is removed, it is possible to prevent the system current from flowing to the primary side of the voltage converter 150 corresponding to the power load 170, so that such a problem can be prevented from occurring.
  • FIG. 2 is a flowchart showing a process for supplying an appropriate system current to the submarine device 100.
  • the switch switching control unit 190 performs the following process when notified from the power load detection unit 180 that the power load 170 has been attached or removed (YES in S101).
  • the switch switching control unit 190 proceeds to the process of S103.
  • the switch switching control unit 190 proceeds to S104.
  • the voltage converter 150 converts the constant voltage applied to the primary side using the Zener diode group 140 and applies the converted voltage to the secondary side of the converted voltage.
  • the DC-DC converter 160 converts the voltage applied by the voltage converter 150 into an appropriate voltage corresponding to the power load 170. Then, the DC-DC converter 160 applies the converted voltage to the power load 170.
  • the switch switching control unit 190 when the power load 170 is attached, the switch switching control unit 190 is configured so that the system current flows through the Zener diode group 140 corresponding to the power load 170.
  • the quantity changeover switch 120 and the path changeover switch 130 are controlled.
  • the switch switching control unit 190 switches the quantity so that the system current does not flow through the Zener diode group 140 corresponding to the power load 170.
  • the switch 120 and the path changeover switch 130 are controlled.
  • the switch switching control unit 190 appropriately changes the Zener diode group 140 through which the system current flows according to the attachment / detachment of the power load 170 (change in power consumption of the submarine device 100).
  • the switch switching control unit 190 appropriately changes the Zener diode group 140 through which the system current flows according to the attachment / detachment of the power load 170 (change in power consumption of the submarine device 100).
  • fluctuations in the system current due to the attachment / detachment of the power load 170 can be prevented. Therefore, application of a constant voltage to each Zener diode group 140 can be maintained.
  • the submarine device 100 does not need to include a circuit including a constant resistance circuit for preventing fluctuations in the system current due to the attachment / detachment of the power load 170.
  • a constant voltage can be obtained regardless of fluctuations in the power load without increasing the size and complexity of the device.
  • FIG. 3 is a block diagram showing a configuration example of the submarine device 200 in the present embodiment.
  • the submarine device 200 includes a drive voltage generation unit 210, a detection unit 220, and a control unit 230.
  • the drive voltage generation unit 210 corresponds to, for example, the Zener diode group 140 in the first embodiment of the present invention shown in FIG.
  • the detection unit 220 corresponds to, for example, the power load detection unit 180 in the first embodiment of the present invention illustrated in FIG.
  • the control unit 230 corresponds to, for example, the switch switching control unit 190 in the first embodiment of the present invention illustrated in FIG.
  • the drive voltage generator 210 generates a voltage for driving the connected load in response to the current flowing.
  • the detection unit 220 detects whether each of the loads is connected to the submarine device 200.
  • the control unit 230 performs control so that a current flows or does not flow in the drive voltage generation unit 210 according to the detection result of the detection unit 220.
  • the drive voltage generation unit 210 is prepared for each connected load. Moreover, the detection part 220 each detects whether each load is connected. The control unit 230 may or may not allow current to flow to each drive voltage generation unit 210 corresponding to each load according to the detection result of whether or not each load is connected by the detection unit 220. Control.
  • the detection unit 220 detects whether or not each load is connected.
  • the control unit 230 performs control so that a current flows or does not flow in each drive voltage generation unit 210 corresponding to each load according to a detection result of whether or not each load is connected by the detection unit 220. .
  • the detection unit 220 detects whether or not each load to be driven is connected to the submarine device 200 based on the voltage generated by each drive voltage generation unit 210.
  • the control unit 230 may or may not allow current to flow to each drive voltage generation unit 210 corresponding to each load according to the detection result of whether or not each load is connected by the detection unit 220. Control. With such a configuration, it is possible to prevent fluctuations in constant current due to load connection and removal. Further, the submarine device 200 does not need to include a circuit including a constant resistance circuit for preventing fluctuations in system current due to connection and removal of a load.
  • Submarine equipment 11 Voltage converters 12-1 to 12-n Zener diode 13 DC-DC converters 14-1 to 14-n Sensor 100 Submarine equipment 110 Power cables 120-1 to 120-n Quantity changeover switches 130-1 to 130 -N path changeover switches 140-1 to 140-n Zener diode groups 141-1 to 141-m Zener diodes 150-1 to 150-n Voltage converters 160-1 to 160-n DC-DC converters 170-1 to 170 -N Power load 180 Power load detection unit 190 Switch switching control unit 200 Submarine equipment 210 Drive voltage generation unit 220 Detection unit 230 Control unit

Abstract

[Problem] To provide a submarine device capable of obtaining a constant voltage despite fluctuations in power supply load without making the device large or complicated, as well as a submarine cable system, a method for controlling the submarine device, and a program for the submarine device. [Solution] Provided is a submarine device that is characterized by being provided with: drive voltage generation means for generating voltages for driving connected loads according to current flows; a detection means for detecting whether or not each of the loads is connected to the submarine device; and a control means that performs control such that currents flow or do not flow in the drive voltage generation means according to a detection result of the detection means, wherein the submarine device is characterized in that the drive voltage generation means are prepared according to the respective loads, the detection means detects whether or not each of the loads is connected, and the control means performs control so that a current flows or does not flow in each of the drive voltage generation means according to each of the loads according to a detection result from the detection means as to whether each of the loads is connected.

Description

海底機器、海底ケーブルシステム、海底機器の制御方法および海底機器のプログラムが記憶された記憶媒体Submarine equipment, submarine cable system, submarine equipment control method, and storage medium storing submarine equipment program
 本発明は、海底機器、海底ケーブルシステム、海底機器の制御方法および海底機器のプログラムに関する。 The present invention relates to a submarine device, a submarine cable system, a submarine device control method, and a submarine device program.
 陸上に設置された端局装置や海底に設置された海底機器等がケーブルで互いに接続された海底ケーブルシステムがある。ケーブルは長距離に亘って敷設され、総延長が、例えば、数千kmに及ぶことがある。長距離に亘るケーブルを介して、陸上に設置された陸上給電装置から海底機器に定電圧を印加することは困難である。そこで、海底ケーブルシステムには、電源ケーブルを介して海底機器に定電流(以下、「システム電流」と記載する。)を供給する給電方式が採用されている。 There is a submarine cable system in which terminal devices installed on land and submarine equipment installed on the seabed are connected to each other by cables. Cables are laid over long distances, and the total length can be, for example, thousands of kilometers. It is difficult to apply a constant voltage to a submarine device from a land power supply device installed on land via a cable over a long distance. In view of this, the submarine cable system employs a power feeding system that supplies a constant current (hereinafter referred to as “system current”) to the submarine equipment via a power cable.
 図5は、本発明に関連する海底機器10の内部の構成例を示すブロック図である。海底機器10は、電圧変換器11と、n個のツェナーダイオード12-1~12-nと、n個のDC(Direct Current)―DCコンバータ13-1~13-nと、n個のセンサ14-1~14-nとを含む。ここで、電圧変換器11において、n個のツェナーダイオード12が1次側に接続され、DC―DCコンバータ13が2次側に接続されている。なお、電圧変換器11において、1次側と2次側との間は電気的に絶縁されている。ここで、n個のツェナーダイオード12は、電圧変換器11における1次側の電源回路(図示せず)に含まれる。 FIG. 5 is a block diagram showing an example of the internal configuration of the submarine device 10 related to the present invention. The undersea device 10 includes a voltage converter 11, n Zener diodes 12-1 to 12-n, n DC (Direct Current) -DC converters 13-1 to 13-n, and n sensors 14 -1 to 14-n. Here, in the voltage converter 11, n Zener diodes 12 are connected to the primary side, and a DC-DC converter 13 is connected to the secondary side. In the voltage converter 11, the primary side and the secondary side are electrically insulated. Here, the n Zener diodes 12 are included in a primary-side power supply circuit (not shown) in the voltage converter 11.
 海底機器10は、電源回路に備えられたツェナーダイオード12のアノードとカソードとの間に電圧を印加した際に生じるツェナー効果による降伏電圧を利用して定電圧を得る。ここで、当該定電圧とn個のツェナーダイオード12に流れるシステム電流とを乗算した積が海底機器10の消費電力に相当することから、電源回路には海底機器10の消費電力に応じた個数のツェナーダイオード12が直列接続されて含まれる。そして、DC―DCコンバータ13は、海底機器10の構成要素毎に必要となる電圧を生成する。 The undersea device 10 obtains a constant voltage by using a breakdown voltage due to a Zener effect generated when a voltage is applied between the anode and the cathode of the Zener diode 12 provided in the power supply circuit. Here, the product obtained by multiplying the constant voltage and the system current flowing through the n Zener diodes 12 corresponds to the power consumption of the submarine device 10, and therefore, the power supply circuit has a number corresponding to the power consumption of the submarine device 10. A zener diode 12 is included connected in series. The DC-DC converter 13 generates a voltage necessary for each component of the submarine device 10.
 海底ケーブルシステムを地震監視や、資源監視、港湾監視等の観測システムに活用するために、図5に示すような海底機器10のセンサ14-1~14-nに目的や用途に応じて多種多様なセンサが搭載される場合がある。しかし、そのような場合に搭載されるセンサは、海底機器10の既存の構成要素に比べて消費電力が大きい場合が多い。また、そのような場合に搭載されるセンサには、遠隔制御に従って、起動したり動作停止したりする機能や、各種動作の設定を変更したりする機能が求められる。 In order to use the submarine cable system for observation systems such as seismic monitoring, resource monitoring, harbor monitoring, etc., various sensors 14-1 to 14-n of the submarine equipment 10 as shown in FIG. May be installed. However, the sensor mounted in such a case often consumes more power than the existing components of the submarine device 10. In addition, a sensor mounted in such a case is required to have a function of starting and stopping operation and a function of changing various operation settings according to remote control.
 特許文献1には、所定数のツェナーダイオードに逆方向バイアス電圧を印加する海底伝送システムが記載されている。 Patent Document 1 describes a submarine transmission system that applies a reverse bias voltage to a predetermined number of Zener diodes.
 特許文献2には、外部負荷の変動を定抵抗回路の消費電力変動で補償する平衡型直流定電流入力/直流定電流分配出力装置が記載されている。 Patent Document 2 describes a balanced DC constant current input / DC constant current distribution output device that compensates for fluctuations in an external load with fluctuations in power consumption of a constant resistance circuit.
特開2004-208287号公報JP 2004-208287 A 特開2011-135715号公報JP 2011-135715 A
 海底機器10を含む海底ケーブルシステムには、センサを増設する拡張需要に対応できる柔軟性が求められる。したがって、そのような上記観測システムに展開される海底ケーブルシステムでは、センサの起動や、停止、増設等に伴い、海底機器10における電圧変換器11の2次側の電源負荷に変動が生じた場合に、1次側のツェナーダイオード12-1~12-nに流れるシステム電流が変化する。よって、ツェナー効果によって得られる定電圧を維持できなくなるという問題が生じる。具体的には、例えば、電圧変換器11の2次側の電源負荷が小さくなった場合に、電圧変換器11の1次側に流れる電流が増加する。すると、ツェナーダイオード12-1~12-nに流れる電流が減少する。そして、ツェナーダイオード12-1~12-nに流れる電流が所定のツェナー電流未満になると、ツェナー効果によって得られる定電圧を維持できなくなる。 The submarine cable system including the submarine equipment 10 is required to have flexibility to meet the expansion demand for adding sensors. Therefore, in the submarine cable system deployed in such an observation system, when the power load on the secondary side of the voltage converter 11 in the submarine equipment 10 changes due to the start, stop, extension, etc. of the sensor. In addition, the system current flowing through the zener diodes 12-1 to 12-n on the primary side changes. Therefore, there arises a problem that the constant voltage obtained by the Zener effect cannot be maintained. Specifically, for example, when the power supply load on the secondary side of the voltage converter 11 decreases, the current flowing on the primary side of the voltage converter 11 increases. As a result, the current flowing through the Zener diodes 12-1 to 12-n decreases. When the current flowing through the Zener diodes 12-1 to 12-n becomes less than a predetermined Zener current, the constant voltage obtained by the Zener effect cannot be maintained.
 そのような問題に対し、海底機器10における電源負荷を固定するという対処方法が考えられる。しかし、この対処方法は、海底ケーブルシステムの拡張性や柔軟性を損なってしまい、海底ケーブルシステムの多様な観測用途への活用を困難にする。 For such a problem, a coping method of fixing the power load in the submarine device 10 can be considered. However, this coping method impairs the expandability and flexibility of the submarine cable system, making it difficult to use the submarine cable system for various observation purposes.
 また、そのような問題に対し、将来におけるセンサの増設や拡張を見据えた最大電源容量を予め適用可能に海底機器10を構成するという対処方法が考えられる。しかし、この対処方法では、海底機器10に予め電子負荷を備える必要があると共に、センサの増設や拡張が行われるまでの間、当該電子負荷を軽負荷動作させなければならないので、無駄に電力が消費されてしまう。また、この対処方法では、電子負荷の軽負荷動作等によって温度が上昇した環境で、海底機器10における構成要素を動作させなければならない。よって、この対処方法では、海底機器10における消費電力の増大、および海底機器10の構成要素の長期信頼性の低下という問題が生じる。さらに、この対処方法では、電子負荷やセンサの数の変化に伴う海底機器10の電源負荷の変動を抑制する複雑な機能を当該海底機器10に具備させる必要があるので、海底機器10が大型化したり複雑化したりする。したがって、海底機器10の製造工程、検査工程および海底敷設工程において、作業効率が低下してしまう。 In addition, for such a problem, a countermeasure method is conceivable in which the submarine device 10 is configured in advance so that the maximum power supply capacity in anticipation of the future expansion and expansion of sensors can be applied. However, in this coping method, it is necessary to provide the submarine device 10 with an electronic load in advance, and the electronic load must be operated at a light load until the sensor is added or expanded. It will be consumed. Further, in this coping method, the components in the submarine device 10 must be operated in an environment where the temperature has increased due to a light load operation of an electronic load or the like. Therefore, in this coping method, the problem of the increase in the power consumption in the submarine equipment 10 and the fall of long-term reliability of the component of the subsea equipment 10 arises. Furthermore, in this coping method, it is necessary to provide the submarine device 10 with a complicated function for suppressing fluctuations in the power load of the submarine device 10 due to changes in the number of electronic loads and sensors. Or complicated. Therefore, in the manufacturing process, the inspection process, and the seabed laying process of the submarine equipment 10, work efficiency is lowered.
 特許文献1に記載されている海底伝送システムは、逆方向バイアス電圧を印加するツェナーダイオードの数が固定されているので、海底伝送システムにおける消費電力の変動に柔軟に対応できない。したがって、特許文献1に記載されている海底伝送システムは、電源負荷に変動が生じた場合、定電圧を得ることができなくなる。 The submarine transmission system described in Patent Document 1 cannot flexibly cope with fluctuations in power consumption in the submarine transmission system because the number of Zener diodes to which the reverse bias voltage is applied is fixed. Therefore, the submarine transmission system described in Patent Document 1 cannot obtain a constant voltage when the power load varies.
 また、特許文献2に記載されている平衡型直流定電流入力/直流定電流分配出力装置は、入力側の受動電力の変化を防止するために、定抵抗回路を含む回路を備える必要がある。したがって、特許文献2に記載されている平衡型直流定電流入力/直流定電流分配出力装置は、定電圧を得るために大型化してしまう。 Further, the balanced DC constant current input / DC constant current distribution output device described in Patent Document 2 needs to include a circuit including a constant resistance circuit in order to prevent a change in passive power on the input side. Therefore, the balanced DC constant current input / DC constant current distribution output device described in Patent Document 2 is increased in size to obtain a constant voltage.
 本発明は、上記問題に鑑みてなされたものであり、機器を大型化および複雑化することなく、電源負荷の変動にかかわらず定電圧を得ることができる海底機器、海底ケーブルシステム、海底機器の制御方法および海底機器のプログラムを提供することを目的とする。 The present invention has been made in view of the above problems, and can provide a submarine device, a submarine cable system, and a submarine device that can obtain a constant voltage regardless of fluctuations in a power load without increasing the size and complexity of the device. It is an object to provide a control method and a program for submarine equipment.
 上記目的を達成するために、本発明の一態様における海底機器は、電流が流れたことに応じて、接続された負荷を駆動するための電圧を生成する駆動電圧生成手段と、前記負荷の各々が当該海底機器に接続されているか否かを検知する検知手段と、前記検知手段による検知結果に応じて、前記駆動電圧生成手段に前記電流が流れるように、または流れないように制御する制御手段とを備え、前記駆動電圧生成手段は、前記負荷に応じてそれぞれ用意され、前記検知手段は、各負荷が接続されているか否かをそれぞれ検知し、前記制御手段は、前記検知手段による各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成手段に前記電流が流れるように、または流れないように制御することを特徴とする。 In order to achieve the above object, a submarine device according to an aspect of the present invention includes a driving voltage generation unit configured to generate a voltage for driving a connected load in response to a current flowing, and each of the loads. Detecting means for detecting whether or not the submarine device is connected to the submarine device, and control means for controlling the current to flow or not to flow to the drive voltage generating means according to the detection result by the detecting means. The drive voltage generation means is prepared according to the load, the detection means detects whether or not each load is connected, and the control means detects each load by the detection means. In accordance with the detection result of whether or not is connected, control is performed so that the current flows or does not flow in each drive voltage generation means corresponding to each load.
 上記目的を達成するために、本発明の一態様における海底機器の制御方法は、接続された負荷に応じてそれぞれ用意された駆動電圧生成手段に、電流が流れたことに応じて、前記負荷の各々を駆動するための電圧を生成させ、各負荷が当該海底機器に接続されているか否かを検知し、各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成手段に前記電流が流れるように、または流れないように制御することを特徴とする。 In order to achieve the above object, a control method for a submarine device according to an aspect of the present invention includes a method for controlling the load according to a current flowing in a drive voltage generation unit prepared in accordance with a connected load. Generate voltages for driving each, detect whether each load is connected to the submarine equipment, and depending on the detection result whether each load is connected, each load according to each load Control is performed so that the current flows or does not flow in the drive voltage generation means.
 上記目的を達成するために、本発明の一態様における海底機器のプログラムは、海底機器のコンピュータに、接続された負荷に応じてそれぞれ用意された駆動電圧生成手段に、電流が流れたことに応じて、前記負荷の各々を駆動するための電圧を生成させる処理と、各負荷が前記海底機器に接続されているか否かを検知する処理と、各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成手段に前記電流が流れるように、または流れないように制御する処理とを実行させることを特徴とする。 In order to achieve the above object, a program for a submarine device according to an aspect of the present invention is based on the fact that a current flows to a drive voltage generation unit prepared in accordance with a load connected to a computer of a submarine device. And a process for generating a voltage for driving each of the loads, a process for detecting whether or not each load is connected to the submarine equipment, and a detection result of whether or not each load is connected. Accordingly, a process for controlling the current to flow or not to flow to each drive voltage generation unit corresponding to each load is performed.
 本発明によれば、機器を大型化および複雑化することなく、電源負荷の変動にかかわらず定電圧を得ることができる。 According to the present invention, a constant voltage can be obtained regardless of fluctuations in the power load without increasing the size and complexity of the device.
本発明の第1の実施形態における海底機器の内部の構成例を示すブロック図である。It is a block diagram which shows the example of an internal structure of the submarine apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における海底機器の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the submarine apparatus in the 1st Embodiment of this invention. 本発明の第2の実施形態における海底機器の構成例を示すブロック図である。It is a block diagram which shows the structural example of the submarine apparatus in the 2nd Embodiment of this invention. 本発明の第2の実施形態における海底機器の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the submarine apparatus in the 2nd Embodiment of this invention. 本発明に関連する海底機器の内部の構成例を示すブロック図である。It is a block diagram which shows the example of an internal structure of the submarine apparatus relevant to this invention.
 (第1の実施形態)
 本発明の第1の実施形態について図面を参照して説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings.
 図1は、本実施形態における海底機器100の構成例を示すブロック図である。図1に示す例では、海底機器100は、n個のツェナーダイオード群140-1~140-nと、電源負荷検知部180と、スイッチ切替制御部190とを備える。なお、n個のツェナーダイオード群140-1~140-nの各々は、互いに直列に接続されている。また、n個のツェナーダイオード群140-1~140-nの各々は、各々が互いに直列に接続されたm~m個のツェナーダイオードによって構成される。具体的には、ツェナーダイオード群140-1は、各々が互いに直列に接続されたツェナーダイオード141-1~141―mによって構成される。また、ツェナーダイオード群140-2は、各々が互いに直列に接続されたツェナーダイオード141-1~141―mによって構成される。ツェナーダイオード群140-nは、各々が互いに直列に接続されたツェナーダイオード141-1~141―mによって構成される。 FIG. 1 is a block diagram illustrating a configuration example of a submarine device 100 in the present embodiment. In the example shown in FIG. 1, the undersea device 100 includes n Zener diode groups 140-1 to 140-n, a power load detection unit 180, and a switch switching control unit 190. Note that each of the n Zener diode groups 140-1 to 140-n is connected in series with each other. Further, each of the n Zener diode groups 140-1 to 140-n is configured by m 1 to mn Zener diodes that are connected in series with each other. Specifically, the Zener diode group 140-1 is constituted by Zener diodes 141-1 ~ 141-m 1 each connected in series with each other. Further, the Zener diode group 140-2 is constituted by Zener diodes 141-1 ~ 141-m 2 each connected in series with each other. The Zener diode group 140-n includes Zener diodes 141-1 to 141- mn that are connected in series with each other.
 ここで、海底機器100において、電源ケーブル110が、n個のツェナーダイオード群140-1~140-nに接続されるように配置される。 Here, in the submarine device 100, the power cable 110 is arranged to be connected to the n Zener diode groups 140-1 to 140-n.
 また、n個の電圧変換器150-1~150-nの各々が、n個のツェナーダイオード群140-1~140-nの各々に並列に接続されるように配置される。なお、n個のツェナーダイオード群140-1~140-nの各々は、n個の電圧変換器150-1~150-nの各々の1次側に接続される。 Further, each of the n voltage converters 150-1 to 150-n is arranged to be connected in parallel to each of the n Zener diode groups 140-1 to 140-n. Each of the n Zener diode groups 140-1 to 140-n is connected to the primary side of each of the n voltage converters 150-1 to 150-n.
 また、n個の数量切替スイッチ120-1~120-nの各々が、n個のツェナーダイオード群140-1~140-nおよびn個の電圧変換器150-1~150-nの各々に並列に接続されるように配置される。なお、n個の数量切替スイッチ120-1~120-nの各々は、n個の電圧変換器150-1~150-nの各々の1次側に接続される。また、n個の数量切替スイッチ120-1~120-nの各々は、スイッチ切替制御部190に制御可能に接続される。 Each of the n quantity changeover switches 120-1 to 120-n is in parallel with each of the n Zener diode groups 140-1 to 140-n and the n voltage converters 150-1 to 150-n. It is arranged to be connected to. Each of the n quantity changeover switches 120-1 to 120-n is connected to the primary side of each of the n voltage converters 150-1 to 150-n. Each of the n quantity changeover switches 120-1 to 120-n is connected to the switch changeover control unit 190 in a controllable manner.
 また、n個の経路切替スイッチ130-1~130-nの各々が、n個のツェナーダイオード群140-1~140-nと、n個の電圧変換器150-1~150-nの各々の1次側との間に配置される。なお、n個の経路切替スイッチ130-1~130-nの各々は、n個のツェナーダイオード群140-1~140-nおよびn個の電圧変換器150-1~150-nの各々に直列に接続される。また、n個の経路切替スイッチ130-1~130-nの各々は、スイッチ切替制御部190に制御可能に接続される。 Further, each of the n path changeover switches 130-1 to 130-n includes each of the n Zener diode groups 140-1 to 140-n and the n voltage converters 150-1 to 150-n. It arrange | positions between primary sides. Each of the n path selector switches 130-1 to 130-n is connected in series to each of the n Zener diode groups 140-1 to 140-n and the n voltage converters 150-1 to 150-n. Connected to. Further, each of the n path changeover switches 130-1 to 130-n is connected to the switch changeover control unit 190 in a controllable manner.
 また、n個のDC―DCコンバータ160-1~160-nの各々が、n個の電圧変換器150-1~150-nの各々の2次側に接続されるように配置される。 Further, each of the n DC-DC converters 160-1 to 160-n is arranged to be connected to the secondary side of each of the n voltage converters 150-1 to 150-n.
 また、n個の電源負荷170-1~170~nの各々が、n個のDC―DCコンバータ160-1~160-nの各々に接続されるように配置される。なお、n個の電源負荷170-1~170~nの各々は、電源負荷検知部180にも接続される。 Also, each of the n power loads 170-1 to 170-n is arranged to be connected to each of the n DC-DC converters 160-1 to 160-n. Each of the n power loads 170-1 to 170-n is also connected to the power load detector 180.
 ここで、n個の電源負荷170-1~170~nは、海底機器100の内部に配置されてもよいし、外部に配置されてもよい。図1に示す例では、n個の電源負荷170-1~170~nは、海底機器100の外部に配置されている。 Here, the n power loads 170-1 to 170-n may be arranged inside the submarine device 100 or may be arranged outside. In the example shown in FIG. 1, n power loads 170-1 to 170-n are arranged outside the submarine device 100.
 以降の説明では、n個の数量切替スイッチ120-1~120-nの各々を区別して説明する必要が無い場合には、数量切替スイッチ120-1~120-nを数量切替スイッチ120と記す。同様に、経路切替スイッチ130-1~130-nを経路切替スイッチ130と記す。また、ツェナーダイオード群140-1~140-nをツェナーダイオード群140と記す。そして、m個のツェナーダイオード141-1~141~mをツェナーダイオード141と記す。電圧変換器150-1~150-nを電圧変換器150と記す。また、DC―DCコンバータ160-1~160-nをDC―DCコンバータ160と記す。そして、電源負荷170-1~170~nを電源負荷170と記す。 In the following description, when there is no need to separately explain each of the n quantity changeover switches 120-1 to 120-n, the quantity changeover switches 120-1 to 120-n will be referred to as quantity changeover switches 120. Similarly, the path selector switches 130-1 to 130-n are referred to as a path selector switch 130. The Zener diode groups 140-1 to 140-n are referred to as a Zener diode group 140. The m Zener diodes 141-1 to 141 -m are referred to as Zener diodes 141. Voltage converters 150-1 to 150-n are referred to as voltage converter 150. The DC-DC converters 160-1 to 160-n are referred to as a DC-DC converter 160. The power loads 170-1 to 170-n are referred to as a power load 170.
 海底機器100は、海底ケーブルシステムを構成する海底中継器等の機器である。ここで、海底機器100において、1つのツェナーダイオード群140には、1つの数量切替スイッチ120と、1つの経路切替スイッチ130と、1つの電圧変換器150と、1つのDC―DCコンバータ160と、1つの電源負荷170とが対応付けられる。具体的には、例えば、ツェナーダイオード群140-1には、数量切替スイッチ120-1と、経路切替スイッチ130-1と、電圧変換器150-1と、DC―DCコンバータ160-1と、電源負荷170-1とが対応付けられる。 The submarine device 100 is a device such as a submarine repeater constituting a submarine cable system. Here, in the undersea device 100, one Zener diode group 140 includes one quantity changeover switch 120, one path changeover switch 130, one voltage converter 150, one DC-DC converter 160, One power load 170 is associated. Specifically, for example, the Zener diode group 140-1 includes a quantity changeover switch 120-1, a path changeover switch 130-1, a voltage converter 150-1, a DC-DC converter 160-1, a power supply The load 170-1 is associated.
 陸上に設置された陸上給電装置(図示せず)から供給された定電流(システム電流ともいう)が、電源ケーブル110を介して海底機器100に入力される。 A constant current (also referred to as a system current) supplied from a land power supply device (not shown) installed on land is input to the submarine device 100 via the power cable 110.
 数量切替スイッチ120は、スイッチ切替制御部190の制御に従って開状態と閉状態との間で相互に遷移する。 The quantity changeover switch 120 transitions between an open state and a closed state according to the control of the switch changeover control unit 190.
 経路切替スイッチ130は、スイッチ切替制御部190の制御に従って開状態と閉状態との間で相互に遷移する。なお、経路切替スイッチ130は、数量切替スイッチ120が閉状態に遷移したときに開状態に遷移し、数量切替スイッチ120-1が開状態に遷移したときに閉状態に遷移する。ここで、数量切替スイッチ120および経路切替スイッチ130については後述される。 The path changeover switch 130 transitions between an open state and a closed state according to the control of the switch changeover control unit 190. The path changeover switch 130 changes to the open state when the quantity changeover switch 120 changes to the closed state, and changes to the closed state when the quantity changeover switch 120-1 changes to the open state. Here, the quantity changeover switch 120 and the route changeover switch 130 will be described later.
 開状態である数量切替スイッチ120および閉状態である経路切替スイッチ130に対応するツェナーダイオード群140には、システム電流が流れる。そして、システム電流が流れるツェナーダイオード群140に、ツェナー効果による降伏電圧が利用されて所定の定電圧が印加される。例えば、数量切替スイッチ120-1が開状態であり、経路切替スイッチ130-1が閉状態である場合、ツェナーダイオード群140-1に定電圧が印加される。 System current flows through the Zener diode group 140 corresponding to the quantity changeover switch 120 in the open state and the path changeover switch 130 in the closed state. Then, a predetermined constant voltage is applied to the Zener diode group 140 through which the system current flows using the breakdown voltage due to the Zener effect. For example, when the quantity changeover switch 120-1 is open and the path changeover switch 130-1 is closed, a constant voltage is applied to the Zener diode group 140-1.
 ここで、電圧変換器150の一次側に必要となる電圧に応じて、ツェナーダイオード群140を構成するツェナーダイオード141の数が決定される。例えば、ツェナーダイオード群140-1は、電圧変換器150-1の一次側に15Vの電圧が必要な場合、それぞれツェナー電圧が5Vである3個のツェナーダイオード141によって構成される。 Here, according to the voltage required on the primary side of the voltage converter 150, the number of Zener diodes 141 constituting the Zener diode group 140 is determined. For example, the Zener diode group 140-1 includes three Zener diodes 141 each having a Zener voltage of 5V when a voltage of 15V is required on the primary side of the voltage converter 150-1.
 電圧変換器150は、1次側に生じた電圧を変換し、変換した後の電圧を2次側に印加する。具体的には、数量切替スイッチ120が開状態に遷移し、経路切替スイッチ130が閉状態に遷移し、ツェナーダイオード群140にシステム電流が流れた場合、システム電流に応じた電圧が電圧変換器150の1次側に印加される。すると、当該電圧が所定の電圧に変換され、電圧変換器150の2次側に印加される。そして、電圧変換器150の2次側に電力が供給されるようになる。電圧変換器150は、例えば、変圧器を含む変圧システムによって実現される。 The voltage converter 150 converts the voltage generated on the primary side, and applies the converted voltage to the secondary side. Specifically, when the quantity changeover switch 120 changes to the open state, the path changeover switch 130 changes to the closed state, and a system current flows through the Zener diode group 140, the voltage corresponding to the system current is changed to the voltage converter 150. Applied to the primary side. Then, the voltage is converted into a predetermined voltage and applied to the secondary side of the voltage converter 150. Then, power is supplied to the secondary side of the voltage converter 150. The voltage converter 150 is realized by, for example, a transformer system including a transformer.
 DC―DCコンバータ160は、電圧変換器150によって変換および印加された電圧を電源負荷170に応じた適切な電圧に変換する。そして、DC―DCコンバータ160は、変換後の電圧を電源負荷170に印加する。 The DC-DC converter 160 converts the voltage converted and applied by the voltage converter 150 into an appropriate voltage according to the power load 170. Then, the DC-DC converter 160 applies the converted voltage to the power load 170.
 電源負荷170は、海底ケーブルシステムの目的や用途に応じて、水中コネクタ(図示せず)を介して海底機器100に取り付けられる。また、電源負荷170は、必要に応じて、海底機器100から取り外される。なお、海底機器100への電源負荷170の取り付け、および海底機器100からの電源負荷170の取り外しは、海底機器100が海底に設置された後、海底ケーブルシステムの増設や拡張需要等に応じて、水中コネクタを介して水中で行われる。ここで、電源負荷170は、例えば、加速度計や水圧計等のセンサである。 The power load 170 is attached to the submarine device 100 via an underwater connector (not shown) according to the purpose and application of the submarine cable system. In addition, the power load 170 is removed from the submarine device 100 as necessary. In addition, the installation of the power load 170 to the submarine device 100 and the removal of the power load 170 from the submarine device 100 can be performed according to the expansion or expansion demand of the submarine cable system after the submarine device 100 is installed on the seabed. It takes place underwater via an underwater connector. Here, the power load 170 is, for example, a sensor such as an accelerometer or a water pressure gauge.
 電源負荷検知部180は、海底機器100に電源負荷170が取り付けられたこと、および取り外されたこと(着脱)を検知する。そして、電源負荷検知部180は、電源負荷170の着脱を検知した場合、電源負荷170が取り付けられたこと、または取り外されたことをスイッチ切替制御部190に通知する。 The power load detection unit 180 detects that the power load 170 is attached to and removed from the undersea device 100 (detachment). When the power load detection unit 180 detects the attachment / detachment of the power load 170, the power load detection unit 180 notifies the switch switching control unit 190 that the power load 170 is attached or removed.
 スイッチ切替制御部190は、電源負荷検知部180から電源負荷170の着脱を通知された場合、当該通知の内容に基づき数量切替スイッチ120および経路切替スイッチ130の状態を制御する。これによって、システム電流が流れるツェナーダイオード群140が選択される。具体的には、例えば、スイッチ切替制御部190は、電源負荷170-1が海底機器100に取り付けられた場合、数量切替スイッチ120-1を開状態に遷移させるように制御し、経路切替スイッチ130-1を閉状態に遷移させるように制御する。すると、ツェナーダイオード群140-1にシステム電流が流れるので、ツェナーダイオード群140-1に定電圧が印加される。したがって、電圧変換器150-1の1次側に電圧が印加される。そして、電圧変換器150-1の2次側に電力が供給される。また、例えば、スイッチ切替制御部190は、電源負荷170-1が海底機器100から取り外された場合、数量切替スイッチ120-1を閉状態に遷移させるように制御し、経路切替スイッチ130-1を開状態に遷移させるように制御する。すると、ツェナーダイオード群140-1にシステム電流が流れなくなるので、ツェナーダイオード群140-1に定電圧が印加されなくなる。したがって、電圧変換器150-1の1次側に電圧が印加されなくなる。そして、電圧変換器150-1の2次側に電力が供給されなくなる。よって、スイッチ切替制御部190は、対応する電源負荷170が海底機器100に取り付けられているツェナーダイオード群140にシステム電流が流れ、対応する電源負荷170が海底機器100に取り付けられていないツェナーダイオード群140にシステム電流が流れないように、数量切替スイッチ120および経路切替スイッチ130の状態を制御する。 The switch switching control unit 190, when notified of the attachment / detachment of the power load 170 from the power load detection unit 180, controls the state of the quantity switching switch 120 and the path switching switch 130 based on the content of the notification. As a result, the Zener diode group 140 through which the system current flows is selected. Specifically, for example, when the power load 170-1 is attached to the submarine device 100, the switch switching control unit 190 controls the quantity switching switch 120-1 to transition to the open state, and the path switching switch 130 Control -1 to transition to the closed state. Then, since a system current flows through the Zener diode group 140-1, a constant voltage is applied to the Zener diode group 140-1. Accordingly, a voltage is applied to the primary side of the voltage converter 150-1. Then, electric power is supplied to the secondary side of the voltage converter 150-1. Further, for example, when the power load 170-1 is removed from the submarine device 100, the switch switching control unit 190 controls the quantity changeover switch 120-1 to transition to the closed state, and the path changeover switch 130-1 is changed. Control to transition to the open state. Then, since the system current does not flow through the Zener diode group 140-1, no constant voltage is applied to the Zener diode group 140-1. Therefore, no voltage is applied to the primary side of the voltage converter 150-1. Then, power is not supplied to the secondary side of the voltage converter 150-1. Therefore, the switch switching control unit 190 causes the system current to flow through the Zener diode group 140 in which the corresponding power load 170 is attached to the submarine device 100, and the Zener diode group in which the corresponding power load 170 is not attached to the submarine device 100. The state of the quantity changeover switch 120 and the path changeover switch 130 is controlled so that the system current does not flow through 140.
 なお、システム電流が流れるツェナーダイオード群140を選択するために、数量切替スイッチ120の状態に加え経路切替スイッチ130の状態を制御するように構成したことによって、数量切替スイッチ120が閉状態に遷移した場合に、電圧変換器150の1次側にシステム電流の一部が流れることを防ぐことができる。 In addition, in order to select the Zener diode group 140 through which the system current flows, in addition to the state of the quantity changeover switch 120, the state of the path changeover switch 130 is controlled, so that the quantity changeover switch 120 has transitioned to the closed state. In this case, it is possible to prevent a part of the system current from flowing to the primary side of the voltage converter 150.
 なお、例えば、数量切替スイッチ120の状態の制御のみでシステム電流を流すツェナーダイオード群140を選択するように構成した場合、電源負荷170が取り外されたことに伴い数量切替スイッチ120が閉状態に遷移しても、システム電流の一部が電圧変換器150の1次側に流れ、電圧変換器150の2次側に電圧が印加される。したがって、不必要に電力が消費されたり、1次側に流れるシステム電流に変動が生じたりする等の問題が生じる。 For example, when the Zener diode group 140 that passes the system current is selected only by controlling the state of the quantity changeover switch 120, the quantity changeover switch 120 transitions to the closed state when the power load 170 is removed. Even so, a part of the system current flows to the primary side of the voltage converter 150, and the voltage is applied to the secondary side of the voltage converter 150. Therefore, problems such as unnecessary power consumption and fluctuations in the system current flowing on the primary side arise.
 それに対して、本例のように、システム電流を流すツェナーダイオード群140を選択するために、数量切替スイッチ120の状態に加え経路切替スイッチ130の状態を制御する構成によれば、電源負荷170が取り外された場合に、当該電源負荷170に対応する電圧変換器150の1次側にシステム電流が流れることを防ぐことができるので、そのような問題の発生を防ぐことが可能である。 On the other hand, according to the configuration in which the state of the path changeover switch 130 is controlled in addition to the state of the quantity changeover switch 120 in order to select the Zener diode group 140 through which the system current flows, as in this example, the power load 170 is When it is removed, it is possible to prevent the system current from flowing to the primary side of the voltage converter 150 corresponding to the power load 170, so that such a problem can be prevented from occurring.
 次に、海底機器100の動作例を図2を参照して説明する。 Next, an operation example of the submarine device 100 will be described with reference to FIG.
 図2は、海底機器100に適切なシステム電流を供給するための処理を示すフローチャートである。 FIG. 2 is a flowchart showing a process for supplying an appropriate system current to the submarine device 100.
 (S101:電源負荷検知部180における処理)
 電源負荷検知部180は、海底機器100から電源負荷170が取り外されたこと、または海底機器100に電源負荷170が取り付けられたことを検知した場合に(S101のYES)、検知した内容をスイッチ切替制御部190に通知する。そして、S102に移行する。また、電源負荷検知部180は、海底機器100から電源負荷170が取り外されたこと、および海底機器100に電源負荷170が取り付けられたことを検知しなかった場合に(S101のNO)、海底機器100に適切なシステム電流を供給するための処理を終了する。なお、海底機器100に適切なシステム電流を供給するための処理は、例えば、所定の時間間隔で行われる。
(S101: Processing in the power load detection unit 180)
When the power load detection unit 180 detects that the power load 170 is removed from the submarine device 100 or the power load 170 is attached to the submarine device 100 (YES in S101), the detected content is switched. Notify the control unit 190. Then, the process proceeds to S102. When the power load detection unit 180 does not detect that the power load 170 has been removed from the submarine device 100 and that the power load 170 has been attached to the submarine device 100 (NO in S101), the submarine device. The process for supplying an appropriate system current to 100 is terminated. The process for supplying an appropriate system current to the submarine device 100 is performed at predetermined time intervals, for example.
 (S102:スイッチ切替制御部190における処理)
 スイッチ切替制御部190は、電源負荷検知部180から電源負荷170が取り付けられたこと、または取り外されたことを通知された場合に(S101のYES)、以下の処理を行う。
(S102: Processing in Switch Change Control Unit 190)
The switch switching control unit 190 performs the following process when notified from the power load detection unit 180 that the power load 170 has been attached or removed (YES in S101).
 スイッチ切替制御部190は、海底機器100から電源負荷170が取り外されたことを電源負荷検知部180から通知された場合に(S102のYES)、S103の処理に移行する。また、スイッチ切替制御部190は、海底機器100に電源負荷170が取り付けられたことを電源負荷検知部180から通知された場合に(S102のNO)、S104処理に移行する。 When the power load detection unit 180 notifies that the power load 170 has been removed from the submarine device 100 (YES in S102), the switch switching control unit 190 proceeds to the process of S103. In addition, when the power switch 170 is notified that the power load 170 is attached to the submarine device 100 (NO in S102), the switch switching control unit 190 proceeds to S104.
 (S103:スイッチ切替制御部190における処理)
 海底機器100から電源負荷170が取り外されたことを電源負荷検知部180から通知された場合に(S102のYES)、スイッチ切替制御部190は、数量切替スイッチ120を閉状態に遷移させるように制御し、経路切替スイッチ130を開状態に遷移させるように制御する。すると、取り外された電源負荷170に対応するツェナーダイオード群140にシステム電流を流さないようにすることができる。例えば、ツェナーダイオード群140-1に対応する電源負荷170-1が取り外された場合、スイッチ切替制御部190は、数量切替スイッチ120-1を閉状態に遷移させるように制御し、経路切替スイッチ130-1を開状態に遷移させるように制御する。すると、ツェナーダイオード群140-1に、システム電流を流さないようにすることができる。
(S103: Processing in Switch Change Control Unit 190)
When the power load detection unit 180 notifies that the power load 170 has been removed from the submarine device 100 (YES in S102), the switch switching control unit 190 performs control so that the quantity switching switch 120 is transitioned to the closed state. Then, the path changeover switch 130 is controlled to be changed to the open state. Then, it is possible to prevent a system current from flowing through the Zener diode group 140 corresponding to the removed power load 170. For example, when the power load 170-1 corresponding to the Zener diode group 140-1 is removed, the switch switching control unit 190 controls the quantity changeover switch 120-1 to transition to the closed state, and the path changeover switch 130 is changed. −1 is controlled to transition to the open state. Then, it is possible to prevent the system current from flowing through the Zener diode group 140-1.
 そして、S101の処理に移行する。 Then, the process proceeds to S101.
 (S104:スイッチ切替制御部190における処理)
 海底機器100に電源負荷170が取り付けられたことを電源負荷検知部180から通知された場合に(S102のNO)、スイッチ切替制御部190は、数量切替スイッチ120を開状態に遷移させるように制御し、経路切替スイッチ130を閉状態に遷移させるように制御する。すると、取り付けられた電源負荷170に対応するツェナーダイオード群140にシステム電流を流すようにすることができる。例えば、ツェナーダイオード群140-1に対応する電源負荷170-1が取り付けられた場合に、スイッチ切替制御部190は、数量切替スイッチ120-1を開状態に遷移させるように制御し、経路切替スイッチ130-1を閉状態に遷移させるように制御する。すると、ツェナーダイオード群140-1にシステム電流を流すようにすることができる。
(S104: Processing in Switch Change Control Unit 190)
When the power load detection unit 180 is notified that the power load 170 is attached to the submarine device 100 (NO in S102), the switch switching control unit 190 performs control so that the quantity changeover switch 120 is shifted to the open state. Then, the path changeover switch 130 is controlled to transition to the closed state. Then, the system current can be made to flow through the Zener diode group 140 corresponding to the attached power load 170. For example, when the power load 170-1 corresponding to the Zener diode group 140-1 is attached, the switch switching control unit 190 controls the quantity changeover switch 120-1 to transition to the open state, and the path changeover switch Control 130-1 to transition to the closed state. Then, a system current can be made to flow through the Zener diode group 140-1.
 (S105:電圧変換器150における処理)
 電圧変換器150は、ツェナーダイオード群140が活用されて一次側に印加された定電圧を変換し、変換後の電圧の2次側に印加する。
(S105: Processing in Voltage Converter 150)
The voltage converter 150 converts the constant voltage applied to the primary side using the Zener diode group 140 and applies the converted voltage to the secondary side of the converted voltage.
 (S106:DC―DCコンバータ160における処理)
 DC―DCコンバータ160は、電圧変換器150によって印加された電圧を電源負荷170に応じた適切な電圧に変換する。そして、DC―DCコンバータ160は、変換後の電圧を電源負荷170に印加する。
(S106: Processing in DC-DC Converter 160)
The DC-DC converter 160 converts the voltage applied by the voltage converter 150 into an appropriate voltage corresponding to the power load 170. Then, the DC-DC converter 160 applies the converted voltage to the power load 170.
 以上のように、本実施形態における海底機器100では、電源負荷170が取り付けられた場合に、当該電源負荷170に対応するツェナーダイオード群140にシステム電流が流れるように、スイッチ切替制御部190が、数量切替スイッチ120および経路切替スイッチ130を制御する。また、海底機器100では、海底機器100から電源負荷170が取り外された場合に、当該電源負荷170に対応するツェナーダイオード群140にシステム電流が流れないように、スイッチ切替制御部190が、数量切替スイッチ120および経路切替スイッチ130を制御する。すなわち、海底機器100では、スイッチ切替制御部190が、電源負荷170の着脱(海底機器100の消費電力の変動)に応じて、システム電流が流れるツェナーダイオード群140を適宜変更する。そのような構成により、電源負荷170の着脱に起因したシステム電流の変動を防ぐことができる。よって、各ツェナーダイオード群140への定電圧の印加を維持することができる。また、海底機器100は、電源負荷170の着脱に起因したシステム電流の変動を防ぐための定抵抗回路を含む回路等を備える必要がない。 As described above, in the submarine device 100 according to the present embodiment, when the power load 170 is attached, the switch switching control unit 190 is configured so that the system current flows through the Zener diode group 140 corresponding to the power load 170. The quantity changeover switch 120 and the path changeover switch 130 are controlled. Further, in the submarine device 100, when the power load 170 is removed from the submarine device 100, the switch switching control unit 190 switches the quantity so that the system current does not flow through the Zener diode group 140 corresponding to the power load 170. The switch 120 and the path changeover switch 130 are controlled. That is, in the submarine device 100, the switch switching control unit 190 appropriately changes the Zener diode group 140 through which the system current flows according to the attachment / detachment of the power load 170 (change in power consumption of the submarine device 100). With such a configuration, fluctuations in the system current due to the attachment / detachment of the power load 170 can be prevented. Therefore, application of a constant voltage to each Zener diode group 140 can be maintained. Further, the submarine device 100 does not need to include a circuit including a constant resistance circuit for preventing fluctuations in the system current due to the attachment / detachment of the power load 170.
 したがって、本実施形態によれば、機器を大型化および複雑化することなく、電源負荷の変動にかかわらず定電圧を得ることができる。 Therefore, according to the present embodiment, a constant voltage can be obtained regardless of fluctuations in the power load without increasing the size and complexity of the device.
 (第2の実施形態)
 本発明の第2の実施形態について図面を参照して説明する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to the drawings.
 図3は、本実施形態における海底機器200の構成例を示すブロック図である。図3に示す例では、海底機器200は、駆動電圧生成部210と、検知部220と、制御部230とを備える。 FIG. 3 is a block diagram showing a configuration example of the submarine device 200 in the present embodiment. In the example illustrated in FIG. 3, the submarine device 200 includes a drive voltage generation unit 210, a detection unit 220, and a control unit 230.
 ここで、駆動電圧生成部210は、例えば、図1に示す本発明の第1の実施形態におけるツェナーダイオード群140に相当する。また、検知部220は、例えば、図1に示す本発明の第1の実施形態における電源負荷検知部180に相当する。また、制御部230は、例えば、図1に示す本発明の第1の実施形態におけるスイッチ切替制御部190に相当する。 Here, the drive voltage generation unit 210 corresponds to, for example, the Zener diode group 140 in the first embodiment of the present invention shown in FIG. The detection unit 220 corresponds to, for example, the power load detection unit 180 in the first embodiment of the present invention illustrated in FIG. The control unit 230 corresponds to, for example, the switch switching control unit 190 in the first embodiment of the present invention illustrated in FIG.
 駆動電圧生成部210は、電流が流れたことに応じて、接続された負荷を駆動するための電圧を生成する。 The drive voltage generator 210 generates a voltage for driving the connected load in response to the current flowing.
 検知部220は、負荷の各々が海底機器200に接続されているか否かを検知する。 The detection unit 220 detects whether each of the loads is connected to the submarine device 200.
 制御部230は、検知部220の検知結果に応じて、駆動電圧生成部210に電流が流れるように、または流れないように制御する。 The control unit 230 performs control so that a current flows or does not flow in the drive voltage generation unit 210 according to the detection result of the detection unit 220.
 なお、駆動電圧生成部210は、接続された負荷に応じてそれぞれ用意される。また、検知部220は、各負荷が接続されているか否かをそれぞれ検知する。そして、制御部230は、検知部220による各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成部210に電流が流れるように、または流れないように制御する。 The drive voltage generation unit 210 is prepared for each connected load. Moreover, the detection part 220 each detects whether each load is connected. The control unit 230 may or may not allow current to flow to each drive voltage generation unit 210 corresponding to each load according to the detection result of whether or not each load is connected by the detection unit 220. Control.
 次に、海底機器200の動作例を図4を参照して説明する。 Next, an operation example of the submarine device 200 will be described with reference to FIG.
 (S201:検知部220における処理)
 検知部220は、各負荷が接続されているか否かをそれぞれ検知する。
(S201: Processing in the detection unit 220)
The detection unit 220 detects whether or not each load is connected.
 (S202:制御部230における処理)
 制御部230は、検知部220による各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成部210に電流が流れるように、または流れないように制御する。
(S202: Processing in the control unit 230)
The control unit 230 performs control so that a current flows or does not flow in each drive voltage generation unit 210 corresponding to each load according to a detection result of whether or not each load is connected by the detection unit 220. .
 本実施形態によれば、検知部220は、各駆動電圧生成部210が生成した電圧に基づき駆動する各負荷が海底機器200に接続されているか否かを検知する。そして、制御部230は、検知部220による各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成部210に電流が流れるように、または流れないように制御する。そのような構成により、負荷の接続や取り外しに起因した定電流の変動を防ぐことができる。また、海底機器200は、負荷の接続や取り外しに起因したシステム電流の変動を防ぐための定抵抗回路を含む回路等を備える必要がない。 According to the present embodiment, the detection unit 220 detects whether or not each load to be driven is connected to the submarine device 200 based on the voltage generated by each drive voltage generation unit 210. The control unit 230 may or may not allow current to flow to each drive voltage generation unit 210 corresponding to each load according to the detection result of whether or not each load is connected by the detection unit 220. Control. With such a configuration, it is possible to prevent fluctuations in constant current due to load connection and removal. Further, the submarine device 200 does not need to include a circuit including a constant resistance circuit for preventing fluctuations in system current due to connection and removal of a load.
 したがって、本実施形態においても、本発明の第1の実施形態と同様な効果も奏することができる。 Therefore, also in this embodiment, the same effect as that of the first embodiment of the present invention can be achieved.
 以上、本発明の各実施形態を説明したが、本発明は、上記した各実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形や、置換、調整を加えることができる。また、各実施形態を適宜組み合わせて実施してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and further modifications and substitutions are possible without departing from the basic technical idea of the present invention. You can make adjustments. Moreover, you may implement combining each embodiment suitably.
 なお、上記の特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせ、ないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得る各種変形、修正を含むことは勿論である。 It should be noted that the disclosures of the above patent documents are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiment can be changed and adjusted based on the basic technical concept. Various combinations and selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention of course includes various variations and modifications that can be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2016年3月18日に出願された日本出願特願2016-055019を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-055019 filed on Mar. 18, 2016, the entire disclosure of which is incorporated herein.
10 海底機器
11 電圧変換器
12-1~12-n ツェナーダイオード
13 DC―DCコンバータ
14-1~14-n センサ
100 海底機器
110 電源ケーブル
120-1~120-n 数量切替スイッチ
130-1~130-n 経路切替スイッチ
140-1~140-n ツェナーダイオード群
141-1~141-m ツェナーダイオード
150-1~150-n 電圧変換器
160-1~160-n DC-DCコンバータ
170-1~170-n 電源負荷
180 電源負荷検知部
190 スイッチ切替制御部
200 海底機器
210 駆動電圧生成部
220 検知部
230 制御部
10 Submarine equipment 11 Voltage converters 12-1 to 12-n Zener diode 13 DC-DC converters 14-1 to 14-n Sensor 100 Submarine equipment 110 Power cables 120-1 to 120-n Quantity changeover switches 130-1 to 130 -N path changeover switches 140-1 to 140-n Zener diode groups 141-1 to 141-m Zener diodes 150-1 to 150-n Voltage converters 160-1 to 160-n DC-DC converters 170-1 to 170 -N Power load 180 Power load detection unit 190 Switch switching control unit 200 Submarine equipment 210 Drive voltage generation unit 220 Detection unit 230 Control unit

Claims (8)

  1.  電流が流れたことに応じて、接続された負荷を駆動するための電圧を生成する駆動電圧生成手段と、
     前記負荷の各々が当該海底機器に接続されているか否かを検知する検知手段と、
     前記検知手段による検知結果に応じて、前記駆動電圧生成手段に前記電流が流れるように、または流れないように制御する制御手段とを備え、
     前記駆動電圧生成手段は、前記負荷に応じてそれぞれ用意され、
     前記検知手段は、各負荷が接続されているか否かをそれぞれ検知し、
     前記制御手段は、前記検知手段による各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成手段に前記電流が流れるように、または流れないように制御する
     ことを特徴とする海底機器。
    Drive voltage generating means for generating a voltage for driving the connected load in response to the current flowing;
    Detecting means for detecting whether each of the loads is connected to the submarine equipment;
    Control means for controlling the current to flow in the drive voltage generation means or not to flow according to the detection result by the detection means,
    The drive voltage generation means is prepared according to the load,
    The detection means detects whether or not each load is connected,
    The control means controls the current to flow or not flow to each drive voltage generation means corresponding to each load according to a detection result of whether or not each load is connected by the detection means. Submarine equipment characterized by that.
  2.  前記駆動電圧生成手段のそれぞれに応じて設けられ、対応する前記駆動電圧生成手段が生成した電圧が入力され、入力された前記電圧を変圧して前記負荷側に印加する変圧手段をそれぞれ含み、
     前記制御手段は、対応する前記駆動電圧生成手段に前記電流が流れるように制御する場合に、前記変圧手段に前記電圧が入力されるように制御する
     ことを特徴とする請求項1に記載の海底機器。
    Provided according to each of the driving voltage generating means, each of which includes a voltage converting means for inputting the voltage generated by the corresponding driving voltage generating means, transforming the input voltage and applying it to the load side,
    2. The seabed according to claim 1, wherein when the control means controls the current to flow to the corresponding drive voltage generation means, the control is performed so that the voltage is input to the voltage transformation means. machine.
  3.  前記制御手段は、前記検知手段が、前記負荷が接続されていることを検知した場合に、前記負荷に対応する前記駆動電圧生成手段に電流が流れ、前記駆動電圧生成手段に対応する前記変圧手段に前記電圧が入力されるように制御する
     ことを特徴とする請求項2に記載の海底機器。
    The control means, when the detection means detects that the load is connected, a current flows through the drive voltage generation means corresponding to the load, and the transformation means corresponding to the drive voltage generation means The submarine device according to claim 2, wherein the voltage is controlled to be input to the submarine device.
  4.  前記制御手段は、前記検知手段が、前記負荷が接続されていないことを検知した場合に、前記負荷に対応する前記駆動電圧生成手段に電流が流れず、前記駆動電圧生成手段に対応する前記変圧手段に前記電圧が入力されないように制御する
     ことを特徴とする請求項2または請求項3に記載の海底機器。
    The control means, when the detection means detects that the load is not connected, current does not flow to the drive voltage generation means corresponding to the load, and the transformer corresponding to the drive voltage generation means. It controls so that the said voltage may not be input into a means. The submarine apparatus of Claim 2 or Claim 3 characterized by the above-mentioned.
  5.  前記駆動電圧生成手段は、前記負荷に応じた数のツェナーダイオードを含む
     ことを特徴とする請求項1乃至4のいずれか1項に記載の海底機器。
    The submarine device according to any one of claims 1 to 4, wherein the drive voltage generation unit includes a number of Zener diodes corresponding to the load.
  6.  請求項1乃至5のいずれかに記載された海底機器と、
     前記海底機器に前記電流を供給する給電装置と
     を備えることを特徴とする海底ケーブルシステム。
    Submarine equipment according to any one of claims 1 to 5,
    A submarine cable system comprising: a power supply device that supplies the current to the submarine equipment.
  7.  接続された負荷に応じてそれぞれ用意された駆動電圧生成手段に、電流が流れたことに応じて、前記負荷の各々を駆動するための電圧を生成させ、
     各負荷が当該海底機器に接続されているか否かを検知し、
     各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成手段に前記電流が流れるように、または流れないように制御する
     ことを特徴とする海底機器の制御方法。
    Drive voltage generation means prepared according to the connected load, in response to the current flowing, to generate a voltage for driving each of the loads,
    Detect whether each load is connected to the submarine equipment,
    Control of submarine equipment characterized in that control is performed so that the current flows or does not flow to each drive voltage generation means corresponding to each load according to the detection result of whether or not each load is connected. Method.
  8.  海底機器のコンピュータに、
     接続された負荷に応じてそれぞれ用意された駆動電圧生成手段に、電流が流れたことに応じて、前記負荷の各々を駆動するための電圧を生成させる処理と、
     各負荷が前記海底機器に接続されているか否かを検知する処理と、
     各負荷が接続されているか否かの検知結果に応じて、各負荷に応じた各駆動電圧生成手段に前記電流が流れるように、または流れないように制御する処理と
     を実行させるための海底機器のプログラムが記憶された記憶媒体。
    To the submarine equipment computer,
    A process for generating a voltage for driving each of the loads in response to the current flowing in the drive voltage generation means prepared according to the connected load;
    Processing for detecting whether each load is connected to the submarine device; and
    A submarine device for executing a process for controlling the current to flow or not to flow to each drive voltage generation unit corresponding to each load according to a detection result of whether or not each load is connected. A storage medium that stores the program.
PCT/JP2017/010072 2016-03-18 2017-03-14 Submarine device, submarine cable system, method for controlling submarine device, and storage medium for storing program for submarine device WO2017159648A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018505930A JP6614333B2 (en) 2016-03-18 2017-03-14 Submarine equipment, submarine cable system, subsea equipment control method, and submarine equipment program
EP17766647.6A EP3432481A4 (en) 2016-03-18 2017-03-14 Submarine device, submarine cable system, method for controlling submarine device, and storage medium for storing program for submarine device
CN201780016737.4A CN108781093A (en) 2016-03-18 2017-03-14 Seabed installation, submarine cable system, the control method of seabed installation and the storage medium for storing the program for being used for seabed installation
US16/079,616 US20190074690A1 (en) 2016-03-18 2017-03-14 Submarine device, submarine cable system, method for controlling submarine device, and storage medium for storing program for submarine device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-055019 2016-03-18
JP2016055019 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159648A1 true WO2017159648A1 (en) 2017-09-21

Family

ID=59850863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010072 WO2017159648A1 (en) 2016-03-18 2017-03-14 Submarine device, submarine cable system, method for controlling submarine device, and storage medium for storing program for submarine device

Country Status (5)

Country Link
US (1) US20190074690A1 (en)
EP (1) EP3432481A4 (en)
JP (1) JP6614333B2 (en)
CN (1) CN108781093A (en)
WO (1) WO2017159648A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078197A (en) * 2018-11-08 2020-05-21 Necプラットフォームズ株式会社 Power supply system, power supply method, and program
WO2020166636A1 (en) 2019-02-15 2020-08-20 日本電気株式会社 Power supply circuit and method for controlling power supply circuit
JPWO2021124789A1 (en) * 2019-12-20 2021-06-24
US11966244B2 (en) 2019-02-15 2024-04-23 Nec Corporation Power supply circuit with cascade-connected diodes and method for controlling power supply circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343787B1 (en) * 2015-08-24 2019-10-23 Nec Corporation Constant current supply device, constant current supply system, and constant current supply method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150492A (en) * 1997-11-17 1999-06-02 Nec Corp Power supply circuit for submarine cable system
JP2010239563A (en) * 2009-03-31 2010-10-21 Occ Corp Sea-bottom observing system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2232562C (en) * 1995-09-22 2008-07-29 The Laitram Corporation Electrical power distribution and communication system for an underwater cable
JP2002057607A (en) * 2000-08-11 2002-02-22 Mitsubishi Electric Corp Feeding line switching method, feeding line branching device, and feeding line switching system
US7068419B2 (en) * 2004-03-12 2006-06-27 Red Sky Subsea Ltd. Overmolded, ultra-small form factor optical repeater
NO328415B1 (en) * 2008-03-17 2010-02-15 Vetco Gray Scandinavia As Device related to an offshore cable system
CN102820712B (en) * 2012-08-27 2014-12-24 哈尔滨工业大学 Current induction type power supply of power grid monitoring device
EP2874324B1 (en) * 2013-11-18 2017-03-01 Alcatel Lucent Power supply for a submarine branching unit
CN104852404A (en) * 2015-05-25 2015-08-19 国家电网公司 Micro-grid system of grid-connected island power grid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150492A (en) * 1997-11-17 1999-06-02 Nec Corp Power supply circuit for submarine cable system
JP2010239563A (en) * 2009-03-31 2010-10-21 Occ Corp Sea-bottom observing system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432481A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078197A (en) * 2018-11-08 2020-05-21 Necプラットフォームズ株式会社 Power supply system, power supply method, and program
WO2020166636A1 (en) 2019-02-15 2020-08-20 日本電気株式会社 Power supply circuit and method for controlling power supply circuit
US20220131460A1 (en) * 2019-02-15 2022-04-28 Nec Corporation Power supply circuit and method for controlling power supply circuit
EP3926436A4 (en) * 2019-02-15 2022-05-04 NEC Corporation Power supply circuit and method for controlling power supply circuit
US11966244B2 (en) 2019-02-15 2024-04-23 Nec Corporation Power supply circuit with cascade-connected diodes and method for controlling power supply circuit
JPWO2021124789A1 (en) * 2019-12-20 2021-06-24
WO2021124789A1 (en) 2019-12-20 2021-06-24 日本電気株式会社 Undersea device, energization method, and recording medium
JP7251661B2 (en) 2019-12-20 2023-04-04 日本電気株式会社 Submarine equipment, electrification method and electrification program

Also Published As

Publication number Publication date
CN108781093A (en) 2018-11-09
JPWO2017159648A1 (en) 2018-12-27
EP3432481A1 (en) 2019-01-23
JP6614333B2 (en) 2019-12-04
US20190074690A1 (en) 2019-03-07
EP3432481A4 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6614333B2 (en) Submarine equipment, submarine cable system, subsea equipment control method, and submarine equipment program
US7759827B2 (en) DC voltage converting device having a plurality of DC voltage converting units connected in series on an input side and in parallel on an output side
US8659181B2 (en) Power line communication method for transmitting data signal with splitting of power transmission interval
US10141854B1 (en) Isolated power supply system and method for an undersea communication cable
US20110170219A1 (en) Islanded Power System with Distributed Power Supply
JP5800427B2 (en) Power supply apparatus and power supply switching method
KR101422960B1 (en) Power module and distributed power supplying apparatus having the same
JP6635526B1 (en) Power supply system, power supply method and program
EP2768105B1 (en) Direct current power delivery system and method
JP5205654B2 (en) Distributed DC power supply control circuit
US7170196B2 (en) Power feed
JP2016001981A (en) Dc power transmission system
KR101305003B1 (en) Power distribution system, propulsion system, and dynamic positioning system including the same
JP6493539B2 (en) Constant current supply device, constant current supply system, and constant current supply method
JP4941951B2 (en) Solar power system
CN114063698B (en) Main line adjusting and protecting circuit and method for constant-voltage submarine observation network
JP6962441B2 (en) Submarine cable system, branching device and its status response method
JP6403022B2 (en) Power supply system
JP2008193834A (en) Apparatus and method for controlling voltage of static type uninterruptible power supply
JP2007060802A (en) Uninterruptible power supply
Yeago et al. Advances in Undersea Power Distribution
JP2005160210A (en) Dc power supply apparatus for backup
JP2016127645A (en) Multi-output switching power supply device
KR20170120358A (en) Power transmission device and method, and power system with the same
JP2009239985A (en) Power conversion system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505930

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017766647

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766647

Country of ref document: EP

Effective date: 20181018