JP2008193834A - Apparatus and method for controlling voltage of static type uninterruptible power supply - Google Patents

Apparatus and method for controlling voltage of static type uninterruptible power supply Download PDF

Info

Publication number
JP2008193834A
JP2008193834A JP2007026639A JP2007026639A JP2008193834A JP 2008193834 A JP2008193834 A JP 2008193834A JP 2007026639 A JP2007026639 A JP 2007026639A JP 2007026639 A JP2007026639 A JP 2007026639A JP 2008193834 A JP2008193834 A JP 2008193834A
Authority
JP
Japan
Prior art keywords
voltage
power supply
power
load
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007026639A
Other languages
Japanese (ja)
Other versions
JP4580947B2 (en
Inventor
Yoichi Nakamura
洋一 中村
Tomoko Ota
智子 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007026639A priority Critical patent/JP4580947B2/en
Publication of JP2008193834A publication Critical patent/JP2008193834A/en
Application granted granted Critical
Publication of JP4580947B2 publication Critical patent/JP4580947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to supply power of stable constant voltage, even though a load-carrying capacity fluctuates, when constant-voltage, constant-frequency power is supplied from a static uninterruptible power supply to a load by way of a power distribution installation disposed away from the power supply. <P>SOLUTION: The static uninterruptible power supply 30A is so constructed that a rectifier circuit 6A and an inverter circuit 7A are connected to an alternating-current power supply 1A, and constant-voltage, constant-frequency power is supplied to a load by way of the power distribution installation 16A; and when alternating-current power supply is removed, direct-current power 8A is guided to the inverter circuit, to continue power supply to the load. The uninterruptible power supply includes a voltage detector 32A, that detects the terminal voltage on the side of a distribution board disposed away from the power supply; a correction signal generating circuit that generates a correction signal 41A, by using terminal voltage signals 36A, 37 from the voltage detector and terminal reference voltage; and a voltage control circuit 35A that adjusts the output voltage 42A of the inverter circuit, by using a constant-voltage reference voltage 43A and the correction signal and carries out control so that the terminal voltage on the distribution board 16A side becomes the desired fixed voltage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば原子力発電プラントの運転状態集中監視システム等に用いられる計算機等の負荷へ、定電圧定周波数電源を給電する静止形無停電電源装置の電圧制御装置に関する。   The present invention relates to a voltage control device for a static uninterruptible power supply that feeds a constant voltage and constant frequency power supply to a load such as a computer used in an operation state centralized monitoring system of a nuclear power plant, for example.

原子力発電プラントにおいては、プラントのユニット容量の増大に伴い、電算機を多用した運転状態集中監視システムが導入され、プラントの運転状態の監視を、プロセス計算機とカラーCRT及び大型表示盤等とを用いて実施して、運転員とプラント間のインターフェイスの効率化が図られている。   In the nuclear power plant, as the unit capacity of the plant increases, a centralized operation state monitoring system using many computers is introduced, and the operation state of the plant is monitored using a process computer, a color CRT, a large display panel, etc. To improve the efficiency of the interface between the operator and the plant.

この運転状態集中監視システムは、冗長化された二系統(A系監視システム、B系監視システム)にて構成されることを原則とし、各監視システムの電源設備も冗長性を考慮して、各監視システムを構成する計算機が必要とする定電圧定周波数電力を得るために、定電圧定周波数電源を給電する2台の静止形無停電電源装置を設置している。   This operation state centralized monitoring system is basically composed of two redundant systems (system A monitoring system, system B monitoring system), and each monitoring system power supply facility is also considered in redundancy. In order to obtain the constant voltage and constant frequency power required by the computers constituting the monitoring system, two stationary uninterruptible power supply devices that supply a constant voltage and constant frequency power supply are installed.

さらに、前記カラーCRT及び大型表示盤等のマン・マシンインターフェイスに係る負荷へは、これら2台の静止形無停電電源装置のいずれからも給電が可能なように、カラーCRT及び大型表示盤等のマン・マシンインターフェイスに係る負荷への配電盤には電源切換機能が備えられている。   Further, the load related to the man-machine interface such as the color CRT and the large display panel can be supplied with power from either of these two stationary uninterruptible power supply devices. The switchboard to the load related to the man-machine interface has a power supply switching function.

静止形無停電電源装置は、特許文献1に記載のように、交流入力電力を整流回路で一旦直流に変換し、次に、逆変換回路(インバータ)で再び交流に変換して所定の定電圧定周波数の交流電力を出力する装置であり、殊に無停電の要求を満足するために、整流回路の出力側には、別途設備された直流電源設備(蓄電池)からの直流電力を供給できる回路が設けられている。すなわち、交流入力電力が喪失した際に、別途設置されている直流電源設備からの直流電力を、前記整流回路の出力側で逆変換回路の入力側に供給して、所定の定電圧定周波数の交流電力を無停電で出力するようにしている。   As described in Patent Document 1, the static uninterruptible power supply device converts AC input power to DC once by a rectifier circuit, and then converts it to AC again by an inverse converter circuit (inverter) to obtain a predetermined constant voltage. A device that outputs AC power at a constant frequency, and in particular, a circuit that can supply DC power from a separately installed DC power supply (storage battery) to the output side of the rectifier circuit in order to satisfy uninterruptible power requirements. Is provided. That is, when AC input power is lost, DC power from a separately installed DC power supply facility is supplied to the input side of the inverse conversion circuit on the output side of the rectifier circuit, so that a predetermined constant voltage constant frequency is obtained. AC power is output uninterrupted.

この静止形無停電電源装置は、所定の定電圧定周波数の交流電力を負荷へ給電すべく、内部の定電圧制御回路において出力電圧及び出力周波数を常に監視し、制御している。   This static uninterruptible power supply device constantly monitors and controls the output voltage and output frequency in an internal constant voltage control circuit in order to supply AC power of a predetermined constant voltage and constant frequency to a load.

ところで、従来の原子力発電プラントの運転状態集中監視システムの電源設備は、図5に示すように、所内交流電源1A及び静止形無停電電源装置20Aを備えたA系電源設備21Aと、所内交流電源1B及び静止形無停電電源装置20Bを備えたB系電源設備21Bとを有して構成される。   By the way, as shown in FIG. 5, the power supply equipment of the conventional operation state centralized monitoring system of a nuclear power plant includes an in-house AC power supply 1A and a stationary uninterruptible power supply 20A, and an in-house AC power supply. 1B and B system power supply equipment 21B provided with stationary uninterruptible power supply 20B.

このうち、A系電源設備21Aについて、所内交流電源1Aは、遮断器2Aを介して、静止形無停電電源装置20A内に設けられた予備電源回路の変圧器3Aに接続され、切換回路4A及び給電遮断器11Aを経由して、降圧変圧器13A、A系監視システムのプロセス計算機等用の配電盤16Aに接続されている。また、切換回路4Aは、給電遮断器12Aを経由して、電源切換配電盤17の遮断器14A、降圧変圧器15、配電盤18に接続されている。この配電盤18は、例えば、カラーCRT及び大型表示盤等用の配電盤である。   Among these, regarding the A-system power supply facility 21A, the in-house AC power supply 1A is connected to the transformer 3A of the standby power supply circuit provided in the static uninterruptible power supply 20A via the circuit breaker 2A, and the switching circuit 4A and The power supply circuit breaker 11A is connected to a step-down transformer 13A and a switchboard 16A for a process computer of the A-system monitoring system. The switching circuit 4A is connected to the circuit breaker 14A, the step-down transformer 15 and the switchboard 18 of the power supply switchboard 17 via the power supply breaker 12A. The switchboard 18 is, for example, a switchboard for a color CRT, a large display panel, or the like.

また、同じく所内交流電源1Aは、静止形無停電電源装置20Aを形成する受電遮断器5A、整流回路6A及び逆変換回路7Aを経由して、切換回路4Aに接続されている。さらに、別途設置した直流電源設備の直流電源8Aは、静止形無停電電源装置20Aの直流受電遮断器9Aとサイリスタスイッチ10Aとを経由して、整流回路6Aの出力側である逆変換回路7Aの入力側に接続されている。   Similarly, the in-house AC power supply 1A is connected to the switching circuit 4A via a power receiving breaker 5A, a rectifier circuit 6A, and an inverse conversion circuit 7A that form a static uninterruptible power supply 20A. Furthermore, the DC power supply 8A of the DC power supply equipment installed separately is connected to the reverse conversion circuit 7A on the output side of the rectifier circuit 6A via the DC power receiving breaker 9A and the thyristor switch 10A of the static uninterruptible power supply 20A. Connected to the input side.

このように構成された静止形無停電電源装置20Aを含むA系電源設備21Aにおいて、所内交流電源1Aが健全な通常時の場合には、所内交流電源1Aの交流電力を整流回路6Aにて直流電力に変換し、この直流電力を逆変換回路7Aで所定の定電圧定周波数の交流電力に逆変換して、切換回路4Aを介し前記配電盤16Aまたは18に供給している。   In the A-system power supply facility 21A including the stationary uninterruptible power supply 20A configured as described above, when the on-site AC power source 1A is healthy and normal, the AC power of the on-site AC power source 1A is converted to DC by the rectifier circuit 6A. This is converted into electric power, and this direct current power is reversely converted into alternating current power of a predetermined constant voltage and constant frequency by the reverse conversion circuit 7A and supplied to the switchboard 16A or 18 through the switching circuit 4A.

所内交流電源1Aが喪失した場合には、整流回路6Aからの直流電力が逆変換回路7Aに供給されなくなるので、このときには、静止形無停電電源装置20Aの図示しない制御回路により、通常開路しているサイリスタスイッチ10Aを瞬時に閉路し、直流電源8Aからの直流電力を逆変換回路7Aに入力して、定電圧定周波数の交流電力を無停電で前記配電盤16Aまたは18に供給する。   When the in-house AC power supply 1A is lost, the DC power from the rectifier circuit 6A is not supplied to the reverse conversion circuit 7A. At this time, the circuit is normally opened by a control circuit (not shown) of the stationary uninterruptible power supply 20A. The thyristor switch 10A is instantaneously closed, DC power from the DC power supply 8A is input to the inverse conversion circuit 7A, and AC power of constant voltage and constant frequency is supplied to the switchboard 16A or 18 without interruption.

また、切換回路4Aは、通常、逆変換回路7Aからの定電圧定周波数の交流出力を前記配電盤16Aまたは18に供給するように接続されているが、逆変換回路7A側の保守時や、あるいはこの逆変換回路7Aが何等かの理由で故障した場合には、静止形無停電電源装置20Aの図示しない制御回路により、所内交流電源1Aを予備電源回路の変圧器3A側に瞬時に切替えて、この所内交流電源1Aの交流電力を直接的に前記配電盤16Aまたは18に供給する。   The switching circuit 4A is normally connected so as to supply the constant voltage and constant frequency alternating current output from the reverse conversion circuit 7A to the switchboard 16A or 18, but at the time of maintenance on the reverse conversion circuit 7A side, or When this reverse conversion circuit 7A fails for any reason, the in-house AC power supply 1A is instantaneously switched to the transformer 3A side of the standby power supply circuit by a control circuit (not shown) of the static uninterruptible power supply 20A. The AC power of the in-house AC power source 1A is directly supplied to the switchboard 16A or 18.

なお、冗長化された他方の所内交流電源1B及び静止形無停電電源装置20B等からなるB系電源設備21Bについては、上述したA系電源設備21Aと同様の構成及び作用であるため、符号の添え字をAからBに代えて説明を省略する。また、静止形無停電電源装置20A、20Bにおけるサイリスタスイッチ10A、10Bは、閉作動時に逆変換回路7A、7Bに直流電源8A、8Bの直流電力を供給する一方向性の回路が形成されたものであり、所内交流電源1A、1Bが健全な通常の場合には、このサイリスタスイッチ10A、10Bは開路されている。   In addition, about B system power supply equipment 21B which consists of the other in-house AC power supply 1B made redundant and static type uninterruptible power supply 20B etc., since it is the structure and effect | action similar to A system power supply equipment 21A mentioned above, code | symbol The subscript is changed from A to B and the description is omitted. The thyristor switches 10A and 10B in the static uninterruptible power supply devices 20A and 20B are formed with a unidirectional circuit that supplies the DC power of the DC power supplies 8A and 8B to the reverse conversion circuits 7A and 7B when closed. In the normal case where the on-site AC power supplies 1A and 1B are healthy, the thyristor switches 10A and 10B are opened.

ところで、原子力発電プラントの運転状態集中監視システムについては、近年、プロセス計算機負荷の増大に目覚ましいものがあり、従来、容量が50kVAの2台構成にて計画されていた静止形無停電電源装置は、計算機負荷の増加に伴い、1台当たりの容量が100〜200kVAに達するほどに拡大している。   By the way, as for the operation state centralized monitoring system for nuclear power plants, there is a remarkable increase in process computer load in recent years, and a static uninterruptible power supply device that has been planned with a configuration of two units having a capacity of 50 kVA in the past, As the computer load increases, the capacity per unit reaches 100 to 200 kVA.

また、原子力発電プラントにおいては、静止形無停電電源装置20A、20Bと、運転状態集中監視システムの計算機設備負荷への配電設備である前記配電盤16A、16Bまたは18とは、約200m以上離隔された場所に配置されている。このため、静止形無停電電源装置20A、20Bが、計算機設備負荷が要求する電圧100Vで、必要容量30〜60kVAの電源を配電盤16A、16Bまたは18に給電すると、給電ケーブルは大きなサイズを選定する必要がある。そこで、静止形無停電電源装置20A、20Bと配電盤16A、16Bまたは18との間で、配電盤16A、16Bまたは18の近傍に降圧変圧器13A、13B、15を設け、静止形無停電電源装置20A、20Bと降圧変圧器13A、13B、15との間の給電電圧を、例えば200Vまたは400Vに選定して給電電流を減少させ、給電ケーブルのサイズの低減を図っている。
特開昭59−129543号公報
Further, in the nuclear power plant, the stationary uninterruptible power supply devices 20A and 20B and the switchboard 16A, 16B or 18 that is a power distribution facility for the computer equipment load of the operation state centralized monitoring system are separated by about 200 m or more. Placed in place. Therefore, when the static uninterruptible power supply 20A, 20B supplies power to the switchboard 16A, 16B or 18 with a required capacity of 30-60 kVA at a voltage of 100 V required by the computer equipment load, a large size is selected for the power supply cable. There is a need. Therefore, step-down transformers 13A, 13B, and 15 are provided in the vicinity of the switchboard 16A, 16B, or 18 between the static uninterruptible power supply apparatus 20A, 20B and the switchboard 16A, 16B, or 18, and the static uninterruptible power supply apparatus 20A. , 20B and the step-down transformers 13A, 13B, and 15 are selected to have a power supply voltage of, for example, 200V or 400V to reduce the power supply current, thereby reducing the size of the power supply cable.
JP 59-129543 A

一般に、2台の静止形無停電電源装置20A、20Bの定電圧制御は、図示しない定電圧制御回路を用いて、逆変換回路7A、7Bの出力電圧を監視し、この出力電圧が、電源装置として設定されている定電圧の基準電圧になるように制御されている。   In general, the constant voltage control of the two static uninterruptible power supply devices 20A and 20B is performed by monitoring the output voltages of the inverse conversion circuits 7A and 7B using a constant voltage control circuit (not shown). Is controlled to be a reference voltage of a constant voltage set as.

しかしながら、約200m以上離隔された場所に配置されている静止形無停電電源装置20A、20Bと配電盤16A、16Bまたは18との間で、配電盤16A、16Bまたは18の近傍に降圧変圧器13A、13B、15を設け、給電電圧を例えば200Vまたは400Vに選定し、給電ケーブルのサイズの低減を図った場合であっても、次の課題が生ずる。   However, the step-down transformers 13A, 13B are located in the vicinity of the switchboard 16A, 16B, or 18 between the static uninterruptible power supply devices 20A, 20B and the switchboard 16A, 16B, or 18, which are arranged at a distance of about 200 m or more. , 15 is selected, and the power supply voltage is selected to be 200 V or 400 V, for example, and the size of the power supply cable is reduced.

つまり、計算機設備負荷への配電設備である配電盤16A、16Bまたは18において負荷容量が変動したときに、静止形無停電電源装置20A、20Bの直近の出力電圧は一定電圧に制御されていても、この静止形無停電電源装置20A、20Bに対し約200m以上離隔された場所に配置された配電盤16A、16Bまたは18側での電圧は、静止形無停電電源装置20A、20Bから配電盤16A、16Bまたは18までの経路に存在する給電ケーブルや降圧変圧器13A、13B、15等のインピーダンスによる電圧降下によって大きく変動してしまう。   That is, when the load capacity fluctuates in the distribution board 16A, 16B or 18 which is the distribution facility to the computer facility load, even if the immediate output voltage of the static uninterruptible power supply 20A, 20B is controlled to a constant voltage, The voltage on the switchboard 16A, 16B or 18 side arranged at a location separated by about 200 m or more from the static uninterruptible power supply 20A, 20B is distributed from the static uninterruptible power supply 20A, 20B to the switchboard 16A, 16B or 18 greatly varies due to a voltage drop due to the impedance of the power supply cable and the step-down transformers 13A, 13B, 15 and the like existing in the route up to 18.

従って、上述のような従来の静止形無停電電源装置20A、20Bの定電圧制御方式では、計算機設備負荷への給電電圧を一定の電圧変動範囲に収め、安定した定電圧の電力を計算機設備負荷に対して供給することが困難な状況になる場合があった。   Therefore, in the constant voltage control method of the conventional static uninterruptible power supply devices 20A and 20B as described above, the power supply voltage to the computer equipment load is kept within a certain voltage fluctuation range, and stable constant voltage power is supplied to the computer equipment load. There were cases where it was difficult to supply to.

本発明の目的は、上述の事情を考慮してなされたものであり、静止形無停電電源装置から、当該電源装置に対し離隔して配置された配電設備を経て負荷へ定電圧定周波数電源を給電する場合に、負荷容量が変動したときにも安定した定電圧の電力を負荷へ供給できる静止形無停電電源装置の電圧制御装置及び電圧制御方法を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and a constant voltage constant frequency power source is supplied from a stationary uninterruptible power supply device to a load through a distribution facility arranged away from the power supply device. An object of the present invention is to provide a voltage control device and a voltage control method for a static uninterruptible power supply that can supply stable constant voltage power to a load even when the load capacity changes when power is supplied.

本発明に係る静止形無停電電源装置の電圧制御装置は、上述した課題を解決するために、交流電源に整流回路及び逆変換回路が順次接続されて、定電圧定周波数電源を負荷へ配電設備を経て給電し、上記交流電源が喪失したときに直流電源を前記逆変換回路に導いて、定電圧定周波数電源の負荷への給電を継続する静止形無停電電源装置であって、前記配電設備側の末端電圧を検出する電圧検出器と、この電圧検出器により検出された前記末端電圧と末端基準電圧とを用いて補正信号を作成する補正信号作成回路と、前記逆変換回路の出力電圧を、定電圧の基準電圧及び上記補正信号を用いて調整して、前記配電設備側の前記末端電圧が所望の一定電圧となるように制御する電圧制御回路と、を有することを特徴とするものである。   In order to solve the above-described problems, a voltage control device for a static uninterruptible power supply device according to the present invention includes a rectifier circuit and an inverse conversion circuit sequentially connected to an AC power supply, and a constant voltage constant frequency power supply to a load. A static uninterruptible power supply device that continues the power supply to the load of the constant voltage constant frequency power supply by guiding the DC power supply to the inverse conversion circuit when the AC power supply is lost. A voltage detector for detecting a terminal voltage on the side, a correction signal generating circuit for generating a correction signal using the terminal voltage and the terminal reference voltage detected by the voltage detector, and an output voltage of the inverse conversion circuit A voltage control circuit that adjusts using the reference voltage of the constant voltage and the correction signal, and controls the terminal voltage on the power distribution equipment side to be a desired constant voltage. is there.

また、本発明に係る静止形無停電電源装置の電圧制御装置は、上述した課題を解決するために、交流電源に整流回路及び逆変換回路が順次接続されて、定電圧定周波数電源を負荷へ配電設備を経て給電し、前記交流電源が喪失したときに直流電源を前記逆変換回路に導いて、定電圧定周波数電源の負荷への給電を継続する静止形無停電電源装置であって、前記逆変換回路の入力直流電力と出力交流電力を用いて負荷力率を算出する負荷力率算出回路と、この負荷力率算出回路により算出された負荷力率と前記逆変換回路の出力交流電流を用いて、前記電源装置から、当該電源装置に対して離隔して配置された前記配電設備までの経路における電圧降下を算出して補正信号を作成する補正信号作成回路と、前記逆変換回路の出力電圧を、定電圧の基準電圧及び上記補正信号を用いて調整して、前記配電設備側の末端電圧が所望の一定電圧となるように制御する電圧制御回路と、を有することを特徴とするものである。   Moreover, in order to solve the above-described problem, the voltage control device for a static uninterruptible power supply according to the present invention is configured such that a rectifier circuit and an inverse conversion circuit are sequentially connected to an AC power supply, and a constant voltage constant frequency power supply is supplied to a load. A static uninterruptible power supply device that feeds power through a distribution facility and directs a DC power supply to the inverse conversion circuit when the AC power supply is lost, and continues to supply power to a load of a constant voltage constant frequency power supply, The load power factor calculation circuit that calculates the load power factor using the input DC power and the output AC power of the inverse conversion circuit, and the load power factor calculated by the load power factor calculation circuit and the output AC current of the inverse conversion circuit A correction signal generation circuit that calculates a voltage drop in a path from the power supply device to the power distribution facility arranged separately from the power supply device and generates a correction signal; and an output of the inverse conversion circuit Voltage, constant voltage Adjust with a reference voltage and the correction signal, terminal voltage of the distribution equipment side is characterized in that it has a voltage control circuit which controls so as to obtain a desired constant voltage.

さらに、本発明に係る静止形無停電電源装置の電圧制御方法は、上述した課題を解決するために、交流電源に整流回路及び逆変換回路が順次接続されて、定電圧定周波数電源を負荷へ配電設備を経て給電し、前記交流電源が喪失したときに直流電源を前記逆変換回路に導いて、定電圧定周波数電源の負荷への給電を継続する静止形無停電電源装置であって、前記配電設備側の末端電圧を検出し、この検出された末端電圧と末端基準電圧とを用いて補正信号を作成し、前記逆変換回路の出力電圧を、定電圧の基準電圧及び上記補正信号を用いて調整して、前記配電設備側の前記末端電圧が所望の一定電圧となるように制御することを特徴とする方法である。   Furthermore, in order to solve the above-described problems, the voltage control method for a static uninterruptible power supply according to the present invention is such that a rectifier circuit and an inverse conversion circuit are sequentially connected to an AC power supply, and a constant voltage constant frequency power supply is supplied to a load. A static uninterruptible power supply device that feeds power through a distribution facility and directs the DC power source to the inverse conversion circuit when the AC power source is lost, and continues to supply power to a load of a constant voltage constant frequency power source, The terminal voltage on the distribution equipment side is detected, a correction signal is created using the detected terminal voltage and terminal reference voltage, and the output voltage of the inverse conversion circuit is used as the constant voltage reference voltage and the correction signal. And adjusting the terminal voltage on the power distribution equipment side to be a desired constant voltage.

また、本発明に係る静止形無停電電源装置の電圧制御方法は、上述した課題を解決するために、交流電源に整流回路及び逆変換回路が順次接続されて、定電圧定周波数電源を負荷へ配電設備を経て給電し、前記交流電源が喪失したときに直流電源を前記逆変換回路に導いて、定電圧定周波数電源の負荷への給電を継続する静止形無停電電源装置であって、前記逆変換回路の入力直流電力と出力交流電力を用いて負荷力率を算出し、この算出された負荷力率と前記逆変換回路の出力交流電流を用いて、前記電源装置から、前記配電設備までの経路における電圧降下を算出して補正信号を作成し、前記逆変換回路の出力電圧を、定電圧の基準電圧及び上記補正信号を用いて調整して、前記配電設備側の末端電圧が所望の一定電圧となるように制御することを特徴とする方法である。   In addition, in order to solve the above-described problems, the voltage control method for the static uninterruptible power supply according to the present invention is such that a rectifier circuit and an inverse conversion circuit are sequentially connected to an AC power supply, and a constant voltage constant frequency power supply is supplied to a load. A static uninterruptible power supply device that feeds power through a distribution facility and directs a DC power supply to the inverse conversion circuit when the AC power supply is lost, and continues to supply power to a load of a constant voltage constant frequency power supply, The load power factor is calculated using the input DC power and the output AC power of the inverse conversion circuit, and the calculated load power factor and the output AC current of the inverse conversion circuit are used to transmit power from the power supply device to the distribution facility. A correction signal is created by calculating a voltage drop in the path of (1), the output voltage of the inverse conversion circuit is adjusted using a constant voltage reference voltage and the correction signal, and the terminal voltage on the power distribution equipment side is set to a desired value. Control to maintain a constant voltage A method comprising Rukoto.

本発明によれば、電圧検出器により検出された配電設備側の末端電圧と末端基準電圧とを用いて補正信号作成回路が補正信号を作成し、電圧制御回路が、逆変換回路の出力電圧を定電圧の基準電圧及び上記補正信号に基づき調整して、配電設備側の末端電圧が所望の一定電圧となるように制御している。このことから、配電設備から負荷への給電電圧を一定の電圧変動範囲に収めることができ、安定した定電圧の電力を負荷に対して供給することができる。   According to the present invention, the correction signal generation circuit generates a correction signal using the terminal voltage on the distribution equipment side detected by the voltage detector and the terminal reference voltage, and the voltage control circuit outputs the output voltage of the inverse conversion circuit. The terminal voltage on the distribution equipment side is controlled to be a desired constant voltage by adjusting based on the constant voltage reference voltage and the correction signal. Thus, the power supply voltage from the distribution facility to the load can be kept within a certain voltage fluctuation range, and stable constant voltage power can be supplied to the load.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。但し、本発明は、これらの実施の形態に限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.

[A]第1の実施の形態(図1〜図3)
図1は、本発明に係る静止形無停電電源装置の電圧制御装置における第1の実施の形態を備えた静止形無停電電源装置が配置された電源設備を示す構成ブロック図である。本実施の形態において、図5に示す従来の静止形無停電電源装置などと同様な部分は、同一の符号を付すことにより説明を省略する。
[A] First embodiment (FIGS. 1 to 3)
FIG. 1 is a configuration block diagram showing a power supply facility in which a static uninterruptible power supply having the first embodiment in a voltage control apparatus for a static uninterruptible power supply according to the present invention is arranged. In the present embodiment, the same parts as those of the conventional stationary uninterruptible power supply shown in FIG.

本実施の形態の静止形無停電電源装置30A、30Bにおいても、所内交流電源1A、1Bに整流器6A、6B、逆変換回路7A、7B及び切換器4A、4Bが順次接続されて、定電圧定周波数電源を、配電設備としての配電盤16A、16B、18を経て図示しない負荷(例えば、原子力発電プラントの運転状態集中監視システムにおける計算機設備負荷など)へ給電し、上記所内交流電源1A、1Bが喪失したときに直流電源8A、8Bを逆変換回路7A、7Bへ導いて、定電圧定周波数電源の上記負荷への給電を継続する。更に、逆変換回路7A、7Bの保守時や故障時には切換器4A、4Bの作用で、所内交流電源1A、1Bが配電盤16A、16B、18を経て上記負荷へ直接給電される。   Also in the static uninterruptible power supply devices 30A and 30B of the present embodiment, the rectifiers 6A and 6B, the inverse conversion circuits 7A and 7B, and the switching devices 4A and 4B are sequentially connected to the on-site AC power supplies 1A and 1B, so that the constant voltage constant The frequency power supply is supplied to a load (not shown) such as a computer equipment load in an operation state centralized monitoring system of a nuclear power plant via the distribution boards 16A, 16B, and 18 as power distribution equipment, and the above-mentioned AC power supplies 1A and 1B are lost. Then, the DC power supplies 8A and 8B are led to the inverse conversion circuits 7A and 7B, and the power supply to the load of the constant voltage and constant frequency power supply is continued. Further, when the inverse conversion circuits 7A and 7B are maintained or failed, the in-house AC power supplies 1A and 1B are directly supplied to the load via the switchboards 16A, 16B and 18 by the action of the switches 4A and 4B.

これらの静止形無停電電源装置30A、配電盤16A、18、所内交流電源1A、直流電源8Aを有してなるA系電源設備21Aにおいても、静止形無停電電源装置30B、配電盤16B、18、所内交流電源1B、直流電源8Bを有してなるB系電源設備21Bにおいても、静止形無停電電源装置30A、30Bと配電盤16A、16B、18とは約200m以上離隔して配置され、これらの間の給電ケーブルのサイズを抑制するために、配電盤16A、16B、18近傍に降圧変圧器13A、13B、15が設置されている。   The stationary uninterruptible power supply 30B, the switchboards 16B and 18, the in-house power supply 21A including the static uninterruptible power supply 30A, the switchboards 16A and 18 and the in-house AC power supply 1A and the DC power supply 8A. Also in the B system power supply equipment 21B having the AC power supply 1B and the DC power supply 8B, the stationary uninterruptible power supply devices 30A, 30B and the switchboards 16A, 16B, 18 are arranged apart from each other by about 200 m. Step-down transformers 13A, 13B, and 15 are installed in the vicinity of the switchboards 16A, 16B, and 18 in order to suppress the size of the power feeding cable.

さて、本実施の形態の静止形無停電電源装置30A、30Bは、直近の出力電圧を一定に制御するのではなく、配電盤16A、16B、18側の末端電圧を所望の一定電圧に制御するための電圧制御装置31A、31Bをそれぞれ備えている。電圧制御装置31Aは、電圧検出器32A及び33、補正信号作成回路34A(図3)並びに電圧制御回路35Aを有し、電圧制御装置31Bは、電圧検出器32B及び33、補正信号作成回路34B(図3)並びに電圧制御回路35Bを有する。上記電圧検出器33は、電圧制御装置31Aと31Bとにおいて共通の検出器である。   Now, the static uninterruptible power supply devices 30A and 30B of the present embodiment do not control the latest output voltage constant, but to control the terminal voltage on the switchboards 16A, 16B, and 18 side to a desired constant voltage. Voltage control devices 31A and 31B. The voltage control device 31A includes voltage detectors 32A and 33, a correction signal generation circuit 34A (FIG. 3), and a voltage control circuit 35A. The voltage control device 31B includes voltage detectors 32B and 33, a correction signal generation circuit 34B ( 3) and a voltage control circuit 35B. The voltage detector 33 is a common detector in the voltage control devices 31A and 31B.

電圧検出器32A、32B、33は、配電盤16A、16B、18側の末端電圧、つまり配電盤16A、16B、18の近傍に設置された降圧変圧器13A、13B、15の二次側電圧をそれぞれ検出して、それぞれ末端電圧信号36A、36B、37を出力するものである。末端電圧信号36Aは、静止形無停電電源装置30Aから配電盤16Aへ給電された給電電圧を示す。末端電圧信号36Bは、静止形無停電電源装置30Bから配電盤16Bへ給電された給電電圧を示す。末端電圧信号37は、静止形無停電電源装置30Aまたは30Bから配電盤18へ給電された給電電圧を示す。   The voltage detectors 32A, 32B, 33 detect the terminal voltages on the switchboards 16A, 16B, 18 side, that is, the secondary voltages of the step-down transformers 13A, 13B, 15 installed in the vicinity of the switchboards 16A, 16B, 18 respectively. Thus, the terminal voltage signals 36A, 36B, and 37 are output, respectively. The terminal voltage signal 36A indicates a power supply voltage supplied from the static uninterruptible power supply 30A to the switchboard 16A. The terminal voltage signal 36B indicates a power supply voltage supplied from the static uninterruptible power supply 30B to the switchboard 16B. The terminal voltage signal 37 indicates a power supply voltage supplied to the switchboard 18 from the stationary uninterruptible power supply 30A or 30B.

図3に示す補正信号作成回路34Aは、末端電圧信号36A、37と末端基準電圧とを用いて、例えばそれらの偏差から補正信号41Aを作成する。同様に、補正信号作成回路34Bは、末端電圧信号36B、37と末端基準電圧とを用いて、例えばそれらの偏差から補正信号41Bを作成する。具体的には、補正信号作成回路34A及び34Bは、中間値・低値選択回路38、リミッタ39及び正規化回路40を有して構成される。   The correction signal generation circuit 34A shown in FIG. 3 uses the terminal voltage signals 36A and 37 and the terminal reference voltage, for example, to generate a correction signal 41A from their deviations. Similarly, the correction signal generating circuit 34B uses the terminal voltage signals 36B and 37 and the terminal reference voltage to generate a correction signal 41B from the deviation thereof, for example. Specifically, the correction signal generation circuits 34A and 34B include an intermediate value / low value selection circuit 38, a limiter 39, and a normalization circuit 40.

補正信号作成回路34Aの中間値・低値選択回路38は、入力された末端電圧信号36Aと37の中間値を算出して選択し、或いは末端電圧信号36Aと37のうちの低い値を優先して選択する。また、補正信号作成回路34Bの中間値・低値選択回路38は、入力された末端電圧信号36Bと37の中間値を算出して選択し、或いは末端電圧信号36Bと37のうちの低い値を優先して選択する。   The intermediate value / low value selection circuit 38 of the correction signal generating circuit 34A calculates and selects the intermediate value of the input terminal voltage signals 36A and 37, or gives priority to the lower value of the terminal voltage signals 36A and 37. To select. Further, the intermediate value / low value selection circuit 38 of the correction signal generation circuit 34B calculates and selects the intermediate value of the input terminal voltage signals 36B and 37, or selects the lower value of the terminal voltage signals 36B and 37. Select with priority.

ここで、配電盤18は図1に示すように、静止形無停電電源装置30Aまたは30Bのいずれか一方から電源切換配電盤17を介して給電される構成である。このため、補正信号作成回路34Aの中間値・低値選択回路38には、電源切換配電盤17の遮断器14Aの閉時にのみ末端電圧信号37が入力され、上記遮断器14Aの開時には末端電圧信号37の入力が阻止される。同様に、補正信号作成回路34Bの中間値・低値選択回路38には、電源切換配電盤17の遮断器14Bの閉時にのみ末端電圧信号37が入力され、上記遮断器14Bの開時には末端電圧信号37の入力が阻止される。   Here, as shown in FIG. 1, the switchboard 18 is configured to be supplied with power from either the static uninterruptible power supply 30 </ b> A or 30 </ b> B via the power supply switchboard 17. For this reason, the terminal voltage signal 37 is input to the intermediate value / low value selection circuit 38 of the correction signal generating circuit 34A only when the circuit breaker 14A of the power switching board 17 is closed, and the terminal voltage signal is output when the circuit breaker 14A is opened. 37 input is blocked. Similarly, the terminal voltage signal 37 is input to the intermediate value / low value selection circuit 38 of the correction signal generation circuit 34B only when the circuit breaker 14B of the power supply switchboard 17 is closed, and when the circuit breaker 14B is opened, the terminal voltage signal is input. 37 input is blocked.

補正信号作成回路34A及び34Bのリミッタ39は、中間値・低値選択回路38からの信号値を、末端基準電圧に対し許容される変動幅(例えば末端基準電圧に対し±10V)内に制限するものであり、これにより、作成される補正信号41A、41Bの値が過大になることが防止される。   The limiter 39 of the correction signal generation circuits 34A and 34B limits the signal value from the intermediate value / low value selection circuit 38 within an allowable fluctuation range with respect to the terminal reference voltage (for example, ± 10V with respect to the terminal reference voltage). Thus, it is possible to prevent the correction signals 41A and 41B that are created from becoming excessively large.

補正信号作成回路34A及び34Bの正規化回路40は、リミッタ39からの信号値を末端基準電圧に基づいて比率換算し、この比率換算値を用いて算出した値と末端基準電圧との偏差から、末端基準電圧に対する不足電圧を補正電圧とする補正信号41A、41Bを作成して出力する。補正信号作成回路34Aの正規化回路40にて作成された補正信号を補正信号41Aとし、補正信号作成回路34Bの正規化回路40にて作成された補正信号を補正信号41Bとする。   The normalization circuit 40 of the correction signal generation circuits 34A and 34B converts the signal value from the limiter 39 into a ratio based on the terminal reference voltage, and from the deviation between the value calculated using this ratio converted value and the terminal reference voltage, Correction signals 41A and 41B are generated and output with the undervoltage relative to the terminal reference voltage as a correction voltage. The correction signal generated by the normalization circuit 40 of the correction signal generation circuit 34A is referred to as a correction signal 41A, and the correction signal generated by the normalization circuit 40 of the correction signal generation circuit 34B is referred to as a correction signal 41B.

電圧制御回路35Aは、図2に示すように、逆変換回路7Aの出力電圧42Aを、定電圧の基準電圧43A及び補正信号41Aを用いて調整し、配電盤16A、18側の末端電圧(末端電圧信号36A、38に相当)が所望の一定電圧となるように制御するものである。同様に、電圧制御回路35B(図1)は、逆変換回路7Bの出力電圧42Bを、定電圧の基準電圧43B及び補正信号41Bを用いて調整し、配電盤16B、18側の末端電圧(末端電圧信号36B、38に相当)が所望の一定電圧となるように制御するものである。   As shown in FIG. 2, the voltage control circuit 35A adjusts the output voltage 42A of the inverse conversion circuit 7A using the constant voltage reference voltage 43A and the correction signal 41A, and the terminal voltage on the switchboards 16A, 18 side (terminal voltage). (Corresponding to the signals 36A and 38) is controlled so as to be a desired constant voltage. Similarly, the voltage control circuit 35B (FIG. 1) adjusts the output voltage 42B of the inverse conversion circuit 7B using the constant voltage reference voltage 43B and the correction signal 41B, and the terminal voltage (terminal voltage) on the switchboards 16B and 18 side. (Corresponding to the signals 36B and 38) is controlled to have a desired constant voltage.

電圧制御回路35Aを例にして更に詳説する。この電圧制御回路35Aは、図2に示すように、逆変換回路7Aの出力電圧42Aを監視すると共に、加算回路に定電圧の基準電圧43Aと、補正信号作成回路34Aにて作成された補正信号41Aとを入力して電圧制御信号44Aを作成し、この電圧制御信号44Aを逆変換回路7Aの図示しない制御部に入力する。上記定電圧の基準電圧43Aと上記補正信号41Aとの加算値に比べて逆変換回路7Aの出力電圧42Aが低い場合には、電圧制御信号44Aは電圧上昇信号として逆変換回路7Aの制御部へ出力される。これにより、逆変換回路7Aの制御部は、当該逆変換回路7Aの出力電圧42Aを定電圧の基準電圧43Aよりも高い値に調整して、配電盤16A、18側の末端電圧(末端電圧信号36A、38に相当)が所望の一定電圧となるように制御する。   The voltage control circuit 35A will be described in detail as an example. As shown in FIG. 2, the voltage control circuit 35A monitors the output voltage 42A of the inverse conversion circuit 7A, and adds a constant voltage reference voltage 43A to the addition circuit and the correction signal generated by the correction signal generation circuit 34A. 41A is input to create a voltage control signal 44A, and this voltage control signal 44A is input to a control unit (not shown) of the inverse conversion circuit 7A. When the output voltage 42A of the inverse conversion circuit 7A is lower than the added value of the constant voltage reference voltage 43A and the correction signal 41A, the voltage control signal 44A is sent to the control unit of the inverse conversion circuit 7A as a voltage increase signal. Is output. As a result, the control unit of the inverse conversion circuit 7A adjusts the output voltage 42A of the inverse conversion circuit 7A to a value higher than the constant voltage reference voltage 43A, and the terminal voltage on the switchboards 16A, 18 side (terminal voltage signal 36A). , 38)) to a desired constant voltage.

電圧制御回路35Bも同様に、図1に示すように、逆変換回路7Bの出力電圧42Bに、定電圧の基準電圧43Bと補正信号41Bとを加算して電圧制御信号44Bを作成し、これにより、配電盤16B、18側の末端電圧(末端電圧信号36B、38に相当)が所望の一定電圧のように逆変換回路7Bの出力電圧42Bを制御している。   Similarly, as shown in FIG. 1, the voltage control circuit 35B adds the constant voltage reference voltage 43B and the correction signal 41B to the output voltage 42B of the inverse conversion circuit 7B to create a voltage control signal 44B. The terminal voltage (corresponding to the terminal voltage signals 36B and 38) on the switchboards 16B and 18 side controls the output voltage 42B of the inverse conversion circuit 7B so that it is a desired constant voltage.

以上のように構成されたことから、上記実施の形態によれば、次の効果を奏する。   With the configuration as described above, according to the above embodiment, the following effects are obtained.

静止形無停電電源装置の電圧制御装置31A、31Bによれば、電圧検出器32A、32B、33により検出された配電盤16A、16B、18側の末端電圧と、末端基準電圧とを用いて補正信号作成回路34A、34Bが補正信号41A、41Bを作成し、電圧制御回路35A、35Bが、逆変換回路7A、7Bの出力電圧42A、42Bを定電圧の基準電圧43A、43B及び上記補正信号41A、41Bに基づき調整して、配電盤16A、16B、18側の末端電圧(末端電圧信号36A、36B、38に相当)が所望の一定電圧となるように制御している。このことから、負荷容量が変動したときにも、静止形無停電電源装置20A、20Bに対して離隔して配置された配電盤16A、16B、18から負荷(原子力発電プラントの運転状態集中監視システムにおける計算機設備負荷など)への給電電圧を一定の電圧変動範囲に収めることができ、安定した定電圧の電力を上記負荷に対して供給することができる。   According to the voltage control devices 31A and 31B of the stationary uninterruptible power supply device, the correction signal using the terminal voltage on the switchboards 16A, 16B and 18 side detected by the voltage detectors 32A, 32B and 33 and the terminal reference voltage The creation circuits 34A and 34B create the correction signals 41A and 41B, and the voltage control circuits 35A and 35B use the output voltages 42A and 42B of the inverse conversion circuits 7A and 7B as the constant voltage reference voltages 43A and 43B and the correction signal 41A, The terminal voltage (corresponding to the terminal voltage signals 36A, 36B, 38) on the switchboards 16A, 16B, 18 side is controlled to be a desired constant voltage by adjusting based on 41B. From this, even when the load capacity fluctuates, the load (in the operation state centralized monitoring system of the nuclear power plant) is distributed from the switchboards 16A, 16B, 18 arranged away from the stationary uninterruptible power supply devices 20A, 20B. The power supply voltage to the computer equipment load or the like can be kept within a certain voltage fluctuation range, and stable constant voltage power can be supplied to the load.

[B]第2の実施の形態(図4)
図4は、本発明に係る静止形無停電電源装置の電圧制御装置における第2の実施の形態を示す構成ブロック図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付すことにより説明を省略する。
[B] Second embodiment (FIG. 4)
FIG. 4 is a block diagram showing the configuration of a second embodiment of the voltage control device for a static uninterruptible power supply according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施の形態における静止形無停電電源装置30A、30Bは、当該電源装置の直近の出力電圧を一定に制御するのではなく、配電盤16A、16B、18側の末端電圧を所望の一定電圧に制御する電圧制御装置51A、51Bをそれぞれ備える。但し、本実施の形態においては、静止形無停電電源装置30Bの電圧制御装置51Bは、静止形無停電電源装置30Aの電圧制御装置51Aと同様な構成及び作用であるため説明を省略し、電圧制御装置51Aについてのみ説明する。   The static uninterruptible power supply devices 30A and 30B in the present embodiment do not control the output voltage of the power supply device immediately, but control the terminal voltage on the switchboards 16A, 16B and 18 to a desired constant voltage. Voltage control devices 51A and 51B are provided. However, in the present embodiment, the voltage control device 51B of the static uninterruptible power supply 30B has the same configuration and operation as the voltage control device 51A of the static uninterruptible power supply 30A. Only the control device 51A will be described.

この静止形無停電電源装置30Aの電圧制御装置51Aは、負荷力率算出回路52A、補正信号作成回路53A及び電圧制御回路54Aを有して構成される。   The voltage control device 51A of the static uninterruptible power supply 30A includes a load power factor calculation circuit 52A, a correction signal creation circuit 53A, and a voltage control circuit 54A.

負荷力率算出回路52Aは、静止形無停電電源装置30Aにおける逆変換回路7Aへの入力直流電力(入力直流電圧(Vd)55A及び入力直流電流(Id)56A)と、逆変換回路7Aからの出力交流電力(出力交流電圧(Va)57A及び出力交流電流(Ia)58A)とを用いて、次式(1)により負荷力率(cosθ)を算出し、算出負荷力率信号59Aを補正信号作成回路53Aへ出力する。

Figure 2008193834
The load power factor calculation circuit 52A receives the input DC power (input DC voltage (Vd) 55A and input DC current (Id) 56A) to the inverse conversion circuit 7A in the static uninterruptible power supply 30A and the inverse conversion circuit 7A. Using the output AC power (output AC voltage (Va) 57A and output AC current (Ia) 58A), the load power factor (cos θ) is calculated by the following equation (1), and the calculated load power factor signal 59A is corrected. Output to the creation circuit 53A.
Figure 2008193834

補正信号作成回路53Aには、静止形無停電電源装置30Aの直後から、この静止形無停電電源装置30Aに対して約200m以上を離隔して配置された配電盤16A、18近傍の降圧変圧器13A、15の二次側までの経路のインピーダンス(Z)が予め入力されている。この補正信号作成回路53Aは、負荷力率算出回路52Aにより算出された負荷力率と、逆変換回路7Aの出力交流電流(Ia)58Aと、上記経路のインピーダンス(Z)とを用いて、静止形無停電電源装置30Aの直後から配電盤16A、18の直前までの上記経路における電圧降下(ΔV)を、次式(2)を用いて算出する。

Figure 2008193834
The correction signal generating circuit 53A includes a step-down transformer 13A in the vicinity of the switchboards 16A and 18 that are arranged at a distance of about 200 m or more from the stationary uninterruptible power supply 30A immediately after the stationary uninterruptible power supply 30A. , 15 impedance (Z) to the secondary side is input in advance. The correction signal generation circuit 53A uses the load power factor calculated by the load power factor calculation circuit 52A, the output alternating current (Ia) 58A of the inverse conversion circuit 7A, and the impedance (Z) of the path to stop the correction power generation circuit 53A. The voltage drop (ΔV) in the above path from immediately after the uninterruptible power supply 30A to immediately before the switchboards 16A and 18 is calculated using the following equation (2).
Figure 2008193834

次に、補正信号作成回路53Aは、算出した電圧降下(ΔV)を相殺して、配電盤16A、18側の末端電圧(末端電圧信号36A、38に相当)を末端基準電圧まで昇圧するための補正信号60Aを作成する。   Next, the correction signal creation circuit 53A cancels the calculated voltage drop (ΔV) and corrects the terminal voltage on the switchboards 16A, 18 side (corresponding to the terminal voltage signals 36A, 38) to the terminal reference voltage. Signal 60A is created.

電圧制御回路54Aは、逆変換回路7Aの出力電圧(出力交流電圧(Va)57A)を、電圧の基準電圧43A及び補正信号60Aを用いて調整し、配電盤16A、18側の末端電圧が所望の一定電圧になるように制御する。つまり、この電圧制御回路54Aは、逆変換回路7Aの出力電圧(出力交流電圧(Va)57A)を監視すると共に、加算回路に定電圧の基準電圧43Aと、補正信号作成回路53Aにて作成された補正信号60Aとを入力して電圧制御信号61Aを作成し、この電圧制御信号61Aを逆変換回路7Aの図示しない制御部に入力する。上記定電圧の基準電圧43Aと上記補正信号60Aとの加算値に比べて逆変換回路7Aの出力電圧(出力交流電圧(Va)57A)が低い場合には、電圧制御信号61Aは電圧上昇信号として逆変換回路7Aの制御部へ出力される。これにより、逆変換回路7Aの制御部は、当該逆変換回路7Aの出力電圧(出力交流電圧(Va)57A)を定電圧の基準電圧43Aよりも高い値に調整して、配電盤16A、18側の末端電圧(末端電圧信号36A、38に相当)が所望の一定電圧となるように制御する。   The voltage control circuit 54A adjusts the output voltage (output AC voltage (Va) 57A) of the inverse conversion circuit 7A using the voltage reference voltage 43A and the correction signal 60A, and the terminal voltage on the switchboards 16A, 18 side is desired. Control to a constant voltage. That is, the voltage control circuit 54A monitors the output voltage (output AC voltage (Va) 57A) of the inverse conversion circuit 7A, and is created by the constant voltage reference voltage 43A and the correction signal creation circuit 53A in the addition circuit. The correction signal 60A is input to create a voltage control signal 61A, and this voltage control signal 61A is input to a control unit (not shown) of the inverse conversion circuit 7A. When the output voltage (output AC voltage (Va) 57A) of the inverse conversion circuit 7A is lower than the sum of the constant voltage reference voltage 43A and the correction signal 60A, the voltage control signal 61A is used as a voltage increase signal. It is output to the control unit of the inverse conversion circuit 7A. Thereby, the control part of the reverse conversion circuit 7A adjusts the output voltage (output AC voltage (Va) 57A) of the reverse conversion circuit 7A to a value higher than the reference voltage 43A of the constant voltage, and the switchboards 16A, 18 side The terminal voltage (corresponding to the terminal voltage signals 36A and 38) is controlled to a desired constant voltage.

従って、本実施の形態によれば、次の効果を奏する。   Therefore, according to the present embodiment, the following effects can be obtained.

静止形無停電電源装置30Aの電圧制御装置51Aによれば、逆変換回路7Aの入力直流電力(入力直流電圧(Vd)55A及び入力直流電流(Id)56A)と、出力交流電力(出力交流電圧(Va)57A及び出力交流電流(Ia)58A)を用いて負荷力率算出回路52Aが負荷力率を算出し、この算出された負荷力率と逆変換回路7Aの出力交流電流58Aを用いて、補正信号作成回路53Aが、静止形無停電電源装置30Aから配電盤16A、18までの経路における電圧降下(ΔV)を算出して補正信号60Aを作成する。そして、電圧制御回路54Aが、逆変換回路7Aの出力電圧(出力交流電圧(Va)57A)を、定電圧の基準電圧43A及び上記補正信号60Aを用いて調整して、配電盤16A、18側の末端電圧(末端電圧信号36A、38に相当)が所望の一定電圧となるように制御する。このことから、負荷容量が変動したときにも、静止形無停電電源装置30Aに対して離隔して配置された配電盤16A、18から負荷(例えば、原子力発電プラントの運転状態集中監視システムにおける計算機設備負荷など)への給電電圧を一定の電圧変動範囲に収めることができ、安定した一定電圧の電力を負荷に対して供給することができる。静止形無停電電源装置30Bの電圧制御装置51Bにおいても、同様な効果を奏する。   According to the voltage control device 51A of the static uninterruptible power supply 30A, the input DC power (input DC voltage (Vd) 55A and input DC current (Id) 56A) of the reverse conversion circuit 7A and output AC power (output AC voltage) The load power factor calculation circuit 52A calculates the load power factor using (Va) 57A and the output AC current (Ia) 58A), and uses the calculated load power factor and the output AC current 58A of the inverse conversion circuit 7A. The correction signal generation circuit 53A calculates a voltage drop (ΔV) in the path from the static uninterruptible power supply 30A to the switchboards 16A and 18 to generate the correction signal 60A. Then, the voltage control circuit 54A adjusts the output voltage (output AC voltage (Va) 57A) of the inverse conversion circuit 7A by using the constant voltage reference voltage 43A and the correction signal 60A, so that the power distribution board 16A, 18 side The terminal voltage (corresponding to the terminal voltage signals 36A and 38) is controlled to be a desired constant voltage. From this, even when the load capacity fluctuates, the load (for example, the computer equipment in the operation state centralized monitoring system of the nuclear power plant) from the switchboards 16A and 18 arranged separately from the stationary uninterruptible power supply 30A. The power supply voltage to the load or the like can be kept within a certain voltage fluctuation range, and stable and constant power can be supplied to the load. The same effect can be obtained in the voltage control device 51B of the stationary uninterruptible power supply 30B.

本発明に係る静止形無停電電源装置の電圧制御装置における第1の実施の形態を備えた静止形無停電電源装置が配置された電源設備を示すブロック図。The block diagram which shows the power supply installation by which the stationary uninterruptible power supply provided with 1st Embodiment in the voltage control apparatus of the static uninterruptible power supply which concerns on this invention is arrange | positioned. 図1の静止形無停電電源装置の電圧制御装置における、主に電圧制御回路を示すブロック図。The block diagram which mainly shows the voltage control circuit in the voltage control apparatus of the static uninterruptible power supply apparatus of FIG. 図1の静止形無停電電源装置の電圧制御装置における補正信号作成回路を示すブロック図。The block diagram which shows the correction signal preparation circuit in the voltage control apparatus of the static uninterruptible power supply apparatus of FIG. 本発明に係る静止形無停電電源装置の電圧制御装置における第2の実施の形態を示すブロック図。The block diagram which shows 2nd Embodiment in the voltage control apparatus of the stationary uninterruptible power supply which concerns on this invention. 従来の静止形無停電電源装置が設置された電源設備を示すブロック図。The block diagram which shows the power supply installation with which the conventional static type uninterruptible power supply device was installed.

符号の説明Explanation of symbols

1A、1B 所内交流電源
6A、6B 整流回路
7A、7B 逆変換回路
8A、8B 直流電源
16A、16B、18 配電盤(配電設備)
30A、30B 静止形無停電電源装置
31A、31B 電圧制御装置
32A、32B、33 電圧検出器
34A、34B 補正信号作成回路
35A、35B 電圧制御回路
36A、36B、37 末端電圧信号
41A、41B 補正信号
42A、42B 出力電圧
43A、43B 定電圧の基準電圧
44A、44B 電圧制御信号
51A、51B 電圧制御装置
52A 負荷力率算出回路
53A 補正信号作成回路
54A 電圧制御回路
55A 入力直流電圧(Vd)
56A 入力直流電流(Id)
57A 出力交流電圧(Va)
58A 出力交流電流(Ia)
59A 算出負荷力率信号
60A 補正信号
61A 電圧制御信号
1A, 1B In-house AC power supply 6A, 6B Rectifier circuit 7A, 7B Inverse conversion circuit 8A, 8B DC power supply 16A, 16B, 18 Distribution board (distribution equipment)
30A, 30B Static uninterruptible power supply 31A, 31B Voltage controller 32A, 32B, 33 Voltage detector 34A, 34B Correction signal generation circuit 35A, 35B Voltage control circuit 36A, 36B, 37 Terminal voltage signal 41A, 41B Correction signal 42A 42B Output voltage 43A, 43B Constant voltage reference voltage 44A, 44B Voltage control signal 51A, 51B Voltage controller 52A Load power factor calculation circuit 53A Correction signal creation circuit 54A Voltage control circuit 55A Input DC voltage (Vd)
56A Input DC current (Id)
57A Output AC voltage (Va)
58A Output AC current (Ia)
59A Calculated load power factor signal 60A Correction signal 61A Voltage control signal

Claims (4)

交流電源に整流回路及び逆変換回路が順次接続されて、定電圧定周波数電源を負荷へ配電設備を経て給電し、上記交流電源が喪失したときに直流電源を前記逆変換回路に導いて、定電圧定周波数電源の負荷への給電を継続する静止形無停電電源装置であって、
前記配電設備側の末端電圧を検出する電圧検出器と、
この電圧検出器により検出された前記末端電圧と末端基準電圧とを用いて補正信号を作成する補正信号作成回路と、
前記逆変換回路の出力電圧を、定電圧の基準電圧及び上記補正信号を用いて調整して、前記配電設備側の前記末端電圧が所望の一定電圧となるように制御する電圧制御回路と、を有することを特徴とする静止形無停電電源装置の電圧制御装置。
A rectifier circuit and an inverse conversion circuit are sequentially connected to an AC power source, and a constant voltage constant frequency power source is supplied to a load through a distribution facility. When the AC power source is lost, the DC power source is led to the inverse conversion circuit to A static uninterruptible power supply that continues to supply power to the load of the voltage constant frequency power supply,
A voltage detector for detecting a terminal voltage on the power distribution facility side;
A correction signal generating circuit that generates a correction signal using the terminal voltage and the terminal reference voltage detected by the voltage detector;
A voltage control circuit that adjusts an output voltage of the inverse conversion circuit using a reference voltage of a constant voltage and the correction signal, and controls the terminal voltage on the distribution facility side to be a desired constant voltage; A voltage control device for a static uninterruptible power supply, comprising:
交流電源に整流回路及び逆変換回路が順次接続されて、定電圧定周波数電源を負荷へ配電設備を経て給電し、前記交流電源が喪失したときに直流電源を前記逆変換回路に導いて、定電圧定周波数電源の負荷への給電を継続する静止形無停電電源装置であって、
前記逆変換回路の入力直流電力と出力交流電力を用いて負荷力率を算出する負荷力率算出回路と、
この負荷力率算出回路により算出された負荷力率と前記逆変換回路の出力交流電流を用いて、前記電源装置から、当該電源装置に対して離隔して配置された前記配電設備までの経路における電圧降下を算出して補正信号を作成する補正信号作成回路と、
前記逆変換回路の出力電圧を、定電圧の基準電圧及び上記補正信号を用いて調整して、前記配電設備側の末端電圧が所望の一定電圧となるように制御する電圧制御回路と、を有することを特徴とする静止形無停電電源装置の電圧制御装置。
A rectifier circuit and an inverse conversion circuit are sequentially connected to an AC power source, and a constant voltage constant frequency power source is supplied to a load through a distribution facility. When the AC power source is lost, the DC power source is led to the inverse conversion circuit to A static uninterruptible power supply that continues to supply power to the load of the voltage constant frequency power supply,
A load power factor calculation circuit that calculates a load power factor using input DC power and output AC power of the inverse conversion circuit;
By using the load power factor calculated by the load power factor calculation circuit and the output alternating current of the inverse conversion circuit, in the path from the power supply device to the power distribution equipment arranged away from the power supply device A correction signal generation circuit for calculating a voltage drop and generating a correction signal;
A voltage control circuit that adjusts an output voltage of the inverse conversion circuit using a reference voltage of a constant voltage and the correction signal, and controls the terminal voltage on the distribution facility side to be a desired constant voltage. A voltage control device for a static uninterruptible power supply.
交流電源に整流回路及び逆変換回路が順次接続されて、定電圧定周波数電源を負荷へ配電設備を経て給電し、前記交流電源が喪失したときに直流電源を前記逆変換回路に導いて、定電圧定周波数電源の負荷への給電を継続する静止形無停電電源装置であって、
前記配電設備側の末端電圧を検出し、
この検出された末端電圧と末端基準電圧とを用いて補正信号を作成し、
前記逆変換回路の出力電圧を、定電圧の基準電圧及び上記補正信号を用いて調整して、前記配電設備側の前記末端電圧が所望の一定電圧となるように制御することを特徴とする静止形無停電電源装置の電圧制御方法。
A rectifier circuit and an inverse conversion circuit are sequentially connected to an AC power source, and a constant voltage constant frequency power source is supplied to a load through a distribution facility. When the AC power source is lost, the DC power source is led to the inverse conversion circuit to A static uninterruptible power supply that continues to supply power to the load of the voltage constant frequency power supply,
Detect the terminal voltage on the power distribution equipment side,
A correction signal is created using the detected terminal voltage and terminal reference voltage,
The output voltage of the inverse conversion circuit is adjusted by using a constant voltage reference voltage and the correction signal so as to control the terminal voltage on the power distribution equipment side to be a desired constant voltage. A voltage control method for an uninterruptible power supply.
交流電源に整流回路及び逆変換回路が順次接続されて、定電圧定周波数電源を負荷へ配電設備を経て給電し、前記交流電源が喪失したときに直流電源を前記逆変換回路に導いて、定電圧定周波数電源の負荷への給電を継続する静止形無停電電源装置であって、
前記逆変換回路の入力直流電力と出力交流電力を用いて負荷力率を算出し、
この算出された負荷力率と前記逆変換回路の出力交流電流を用いて、前記電源装置から、前記配電設備までの経路における電圧降下を算出して補正信号を作成し、
前記逆変換回路の出力電圧を、定電圧の基準電圧及び上記補正信号を用いて調整して、前記配電設備側の末端電圧が所望の一定電圧となるように制御することを特徴とする静止形無停電電源装置の電圧制御方法。
A rectifier circuit and an inverse conversion circuit are sequentially connected to an AC power source, and a constant voltage constant frequency power source is supplied to a load through a distribution facility. When the AC power source is lost, the DC power source is led to the inverse conversion circuit to A static uninterruptible power supply that continues to supply power to the load of the voltage constant frequency power supply,
Calculate the load power factor using the input DC power and output AC power of the inverse conversion circuit,
Using this calculated load power factor and the output alternating current of the inverse conversion circuit, calculate a voltage drop in the path from the power supply device to the power distribution facility, and create a correction signal,
The output voltage of the inverse conversion circuit is adjusted using a constant voltage reference voltage and the correction signal so as to control the terminal voltage on the power distribution equipment side to be a desired constant voltage. Voltage control method for uninterruptible power supply.
JP2007026639A 2007-02-06 2007-02-06 Voltage control device and voltage control method for static uninterruptible power supply Expired - Fee Related JP4580947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026639A JP4580947B2 (en) 2007-02-06 2007-02-06 Voltage control device and voltage control method for static uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026639A JP4580947B2 (en) 2007-02-06 2007-02-06 Voltage control device and voltage control method for static uninterruptible power supply

Publications (2)

Publication Number Publication Date
JP2008193834A true JP2008193834A (en) 2008-08-21
JP4580947B2 JP4580947B2 (en) 2010-11-17

Family

ID=39753390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026639A Expired - Fee Related JP4580947B2 (en) 2007-02-06 2007-02-06 Voltage control device and voltage control method for static uninterruptible power supply

Country Status (1)

Country Link
JP (1) JP4580947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999013A (en) * 2017-08-10 2020-04-10 Ls产电株式会社 Energy storage system
CN115663989A (en) * 2022-10-20 2023-01-31 上海山源电子科技股份有限公司 Commercial power inversion switching control method and circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983543A (en) * 1982-10-30 1984-05-15 株式会社東芝 Power source facility
JPS63103635A (en) * 1986-10-16 1988-05-09 日本電気精器株式会社 Output voltage control circuit of non-interrupted electric source
JP2000315116A (en) * 1999-04-30 2000-11-14 J Purasesu Kk Ac power supply device
JP2003032913A (en) * 2001-07-11 2003-01-31 Tokyo Gas Co Ltd Uninterruptible power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983543A (en) * 1982-10-30 1984-05-15 株式会社東芝 Power source facility
JPS63103635A (en) * 1986-10-16 1988-05-09 日本電気精器株式会社 Output voltage control circuit of non-interrupted electric source
JP2000315116A (en) * 1999-04-30 2000-11-14 J Purasesu Kk Ac power supply device
JP2003032913A (en) * 2001-07-11 2003-01-31 Tokyo Gas Co Ltd Uninterruptible power supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999013A (en) * 2017-08-10 2020-04-10 Ls产电株式会社 Energy storage system
CN115663989A (en) * 2022-10-20 2023-01-31 上海山源电子科技股份有限公司 Commercial power inversion switching control method and circuit

Also Published As

Publication number Publication date
JP4580947B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
AU2013306202B2 (en) System and method for efficient power distribution and backup
US9882379B2 (en) Power source system
EP2695281B1 (en) Power distribution systems using distributed current sensing
EP2622705A1 (en) Coordinated control of multi-terminal hvdc systems
JP6299831B1 (en) Active filter device, air conditioning device, and air conditioning system
KR101604906B1 (en) High voltage direct current transmission system
WO2019221053A1 (en) Uninterruptable power supply device
CN104410088B (en) Take over seamlessly circuit
JP5948116B2 (en) Uninterruptible power supply system
JP4568111B2 (en) Power conversion control device
JP4580947B2 (en) Voltage control device and voltage control method for static uninterruptible power supply
JP6684805B2 (en) Selective parallel operation method for measuring device / control device
US9312725B2 (en) System and method for efficient power distribution and backup
JP2014083900A (en) Control device of electric power supply system for electric railroad
JP5955523B2 (en) Voltage adjusting device and voltage adjusting method
JP2010239686A (en) Auxiliary power supply device
KR101318960B1 (en) Uninterruptible power supply and method controlling thereof
JP2016092915A (en) Uninterruptible power supply
JP4892459B2 (en) Control device for voltage fluctuation compensator for railway
JP2007202362A (en) Power supply method coping with power failure and instantaneous voltage drop and device thereof
JP2008141804A (en) Serial multiplexing ac/dc converter and control method
JP2013247785A (en) Voltage reactive power control system
CN209896453U (en) High-power supply cabinet for supplying power to electron accelerator
KR101936564B1 (en) Apparatus for controlling multilevel inverter
JP4679418B2 (en) Field current control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4580947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees