WO2017159469A1 - 電池パック及び電池パックの製造方法 - Google Patents
電池パック及び電池パックの製造方法 Download PDFInfo
- Publication number
- WO2017159469A1 WO2017159469A1 PCT/JP2017/009101 JP2017009101W WO2017159469A1 WO 2017159469 A1 WO2017159469 A1 WO 2017159469A1 JP 2017009101 W JP2017009101 W JP 2017009101W WO 2017159469 A1 WO2017159469 A1 WO 2017159469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tab
- battery
- battery pack
- potential detection
- tab member
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/211—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/298—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/569—Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/227—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/244—Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery pack containing a battery connection structure in which battery cells such as lithium ion secondary batteries are connected, and a method for manufacturing the same.
- Battery packs equipped with primary and secondary batteries are not only small power sources for portable devices such as mobile phones, digital cameras, and laptop computers, but also medium-sized power sources such as simple backup power sources for electric carts and small equipment. It is also widely used as a power source and a large power source for vehicles and homes.
- the battery pack is a container in which a battery such as a primary battery or a secondary battery and a circuit board including a protection circuit are accommodated in a container.
- a battery mounted inside a container a lithium ion battery that is light and has a high energy density is often used.
- a laminate battery using a laminate film made of a flexible aluminum sheet and resin with a thickness of several tens to several hundreds of microns as an exterior material is particularly lightweight and is expected to be used in various applications. Has been.
- the battery cell using a flexible laminate film as an exterior material is excellent in weight reduction, the strength is low compared to a square battery or a cylindrical battery using a thick metal plate as an exterior material, It has the problem of being vulnerable to external impacts.
- Patent Document 1 International Publication No. 2012/131802 discloses a battery pack that houses a battery connection structure in which stacked battery cells are connected by a substrate.
- Patent Document 1 when a battery connection structure is manufactured by connecting a plurality of battery cells, it is necessary to do this using a substrate. There was a problem that the battery pack would be enlarged. Furthermore, the technique described in Patent Document 1 has a problem in that the number of components such as a substrate increases and the cost increases.
- Patent Document 1 when a battery connection structure is manufactured by connecting a plurality of battery cells, it is necessary to do this using a substrate, and the number of components such as the substrate increases. There was a problem that extra labor and cost were required during the manufacture of the pack.
- the battery pack manufacturing method includes a battery in which a plurality of battery cells each having a positive electrode pull-out tab and a negative electrode pull-out tab drawn from a laminate film packaging material are stacked, and the adjacent battery cells are electrically connected.
- the third battery cell and the second battery cell are stacked such that the drawing tabs with different polarities overlap each other when viewed from the stacking direction of the battery cells.
- a second connection step of connecting the tabs that are not connected in the first connection step among the drawer pins having different polarities overlapped in the second lamination step, and the drawer tab is a laminate film exterior
- the positive electrode extension tab member is extended to the positive electrode extraction tab extracted from the laminate film exterior material.
- the potential detection tab member is connected together with the drawer pins having different polarities.
- a lead wire is connected to the potential detection tab member by solder.
- the potential detection tab member includes a base and a protrusion that protrudes perpendicularly to a longitudinal direction of the base, and the lead wire is provided in the protrusion. Is connected.
- the position of the protruding portion of the potential detection tab member is not changed when the drawer tabs having different polarities are folded back in the first folding step and the second folding step. Only the base is folded.
- the number of parts such as a substrate does not increase, so that the battery pack can be provided at low cost.
- the battery pack of the present invention it is possible to provide a battery pack in which an increase in size is suppressed without causing a decrease in sealing performance due to folding of the peripheral edge of the laminate exterior material.
- the number of components such as a substrate does not increase, so that no extra effort or cost is required when manufacturing the battery pack.
- the yield is not reduced.
- FIG. 4 is a diagram showing a state where a positive electrode extension tab member 125 is joined to the positive electrode pull-out tab 120 of the battery cell 100. It is a figure which shows the battery cell 100 to which the positive electrode extension tab member 125 was joined. It is a figure which shows the manufacturing process of the battery pack 700 which concerns on embodiment of this invention. It is a figure explaining the electric potential detection tab member 200 used when manufacturing the battery connection structure 500. FIG. It is a figure which shows the manufacturing process of the battery pack 700 which concerns on embodiment of this invention. It is a figure which shows the manufacturing process of the battery pack 700 which concerns on embodiment of this invention.
- FIG. 1 is a diagram showing a battery cell 100 used in a battery pack 700 according to an embodiment of the present invention.
- a battery cell 100 a lithium ion secondary unit battery that is charged and discharged by moving lithium ions between a negative electrode and a positive electrode is used.
- the battery main body 110 of the battery cell 100 has an electrode laminate in which a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes are laminated via a separator, and an electrolyte solution (both not shown) are rectangular in a plan view. It has a structure accommodated in a laminate film exterior material 103. A positive electrode extraction tab 120 and a negative electrode extraction tab 130 are extracted from the first end 111 of the battery main body 110.
- Laminate film exterior material 103 is formed of a metal laminate film having a heat-sealing resin layer on the inner surface of the battery. More specifically, for example, two metal laminate films are stacked to form a laminate film exterior material 103, and an electrode laminate having a sheet-like positive electrode, a sheet-like negative electrode, and a separator and an electrolytic solution are accommodated therein. Thus, the outer periphery (first end 111, second end 112, two side ends 113) of the laminate film exterior material is heat-sealed, so that the inside is sealed.
- extraction tabs metal pieces drawn out from the battery main body 110 made of the laminate film exterior material 103 such as the positive electrode extraction tab 120 and the negative electrode extraction tab 130 are referred to as “extraction tabs”, and are separated inside the laminate film exterior material 103.
- the electrode laminate in addition to a laminate of a plurality of sheet-like positive electrodes and a plurality of sheet-like negative electrodes via a separator as described above, a laminate of a sheet-like positive electrode and a sheet-like negative electrode via a separator The thing which makes a laminated body by winding this and compressing this is also contained.
- the positive electrode pull-out tab 120 is made of aluminum or an aluminum alloy
- the negative electrode pull-out tab 130 is made of nickel
- other metal is plated with nickel (nickel plating).
- Materials such as nickel-plated copper) and nickel and other metal clads (nickel clad materials such as nickel-copper clad) are generally used.
- the battery cell 100 has a positive electrode extraction tab 120 containing aluminum and a negative electrode extraction tab 130 containing nickel.
- a positive electrode extraction tab 120 made of aluminum and a negative electrode extraction tab 130 made of nickel are used.
- the conductivity after a predetermined period of time may deteriorate due to a potential difference between the metals. There is.
- the positive electrode extension tab 120 of the battery cell 100 is joined to the positive electrode extension tab member 125 containing nickel by resistance welding or ultrasonic welding to solve the problem of conductivity deterioration due to the potential difference problem. Like to do.
- the aluminum positive electrode lead-out tab 120 in the battery cell 100 has a length a from the first end portion 111 and is made of nickel (or a material containing nickel). (Manufactured) has a length b (b> a) from the first end 111.
- the positive electrode extension tab member 125 made of nickel is resistance welded or ultrasonically welded so that the length from the first end 111 becomes b. Etc. and joined (see FIGS. 2 and 3).
- the entire drawer tab formed by joining the positive electrode extension tab member 125 may be referred to as a “positive electrode drawer tab”.
- the positive electrode extension tab member 125 is added to the positive electrode extraction tab 120, whereby the length from the first end 111 becomes b as the entire positive electrode extraction tab.
- the entire positive electrode pull-out tab including the positive electrode pull-out tab 120 and the positive electrode extension tab member 125 added to the positive electrode pull-out tab 120 is in contact with the potential detection tab member 200 in the battery pack 700 according to the present invention.
- the battery connection structure 500 is configured.
- the potential detection tab member 200 is manufactured of nickel or a material containing nickel.
- the battery pack 700 in order to electrically connect the plurality of battery cells 100 in series, members containing nickel (addition tab member 125, potential detection tab member 200) are in contact with each other. Since the drawer tabs are connected to each other, the electrical connection portions of the adjacent unit batteries (battery cells 100) are electrically connected by the same kind of metal material, there is no problem of potential difference, and the electrical conductivity due to the passage of time. Almost no deterioration occurs.
- a battery connecting structure 500 in which a plurality of battery cells 100 configured as described above are stacked and adjacent battery cells 100 are electrically connected will be described, and a method for manufacturing the battery pack 700 will be described.
- the present invention is not limited to this case.
- the number of battery cells 100 stacked is arbitrary.
- the present invention when the battery cells 100 are electrically connected to each other, it is possible to appropriately select whether the connection form is a series connection or a parallel connection.
- FIG. 4 is a diagram showing a manufacturing process of the battery pack 700 according to the embodiment of the present invention.
- FIG. 4 shows a step of preparing the first battery cell 100 among the seven battery cells 100 to be stacked.
- the cell protection insulating member 310 is disposed on the first end 111 side of the battery cell 100. Thereby, the battery cell 100 is protected by the insulating member 310.
- the insulating member 310 a tape having flame retardancy and electrical insulation can be used. As will be described later, the battery cell 100 undergoes a process of joining the tabs together by resistance welding or the like. At this time, the battery cell 100 having the laminate film exterior material 103 is protected by the insulating member 310.
- the potential detection tab member 200 is then placed on the positive electrode pull-out tab 120 and the positive electrode extension tab member 125. In the process shown in FIG. 4, the potential detection tab member 200 in which the signal lead wire 230 and the power supply line 240 are solder-connected is used.
- the positive electrode lead tab 120, the positive electrode extension tab member 125, and the potential detection tab member 200 shown in FIG. 4 serve as the positive electrode of the battery connection structure 500 itself in which seven battery cells 100 are connected in series.
- the power supply line 240 functions as a lead wire for the positive electrode of the battery connection structure 500.
- the signal lead wire 230 is used to detect the potential of the battery cell 100.
- FIG. 5 is a diagram illustrating the potential detection tab member 200 used when manufacturing the battery connection structure 500.
- FIG. 5A is a diagram showing only the potential detection tab member 200
- FIG. 5B is a diagram showing the potential detection tab member 200 in which the signal lead wire 230 and the power supply line 240 are solder-connected
- FIG. 5C is a diagram showing the potential detection tab member 200 to which the signal lead wire 230 is soldered.
- the signal detection wires 230 and the power supply wires 240 are already soldered as the potential detection tab member 200 as shown in FIGS. 5B and 5C. What is shown is used. This is a process after the potential detection tab member 200 is joined to the drawer tab, and if the signal lead wire 230 or the power supply wire 240 is soldered, it adversely affects the active material and the electrolyte in the battery cell 100 (both not shown). It is because it exerts.
- Examples of the material constituting the potential detection tab member 200 include nickel, a material obtained by applying nickel plating to another metal (nickel-plated material, for example, nickel-plated copper), and a clad of nickel and another metal (nickel clad material). For example, nickel-copper clad) is used.
- the potential detection tab member 200 is a flat plate member, and has a base 210 that is assumed to be superimposed on the drawer tab in the assembly process of the battery connection structure 500, and a protrusion 220 that protrudes from the base 210. is doing.
- a direction parallel to the direction in which the drawer tab is pulled out from the laminate film exterior material 103 is defined as the longitudinal direction of the base 210.
- the protruding portion 220 protrudes perpendicularly to the longitudinal direction of the base portion 210.
- the width of the base 210 (the length in the direction perpendicular to the longitudinal direction) is the same as the width of each drawer tab.
- the length of the base 210 in the longitudinal direction is such that when one end is overlapped with the end of the positive electrode extension tab member 125, the other end overlaps the insulating member 310. .
- a state in which the other end of the base 210 is overlapped with the insulating member 310 is shown in FIG.
- the base 210 of the potential detection tab member 200 is overlapped with the entire positive electrode tab composed of the positive electrode pull-out tab 120 and the positive electrode extension tab member 125, or is overlapped with the negative electrode pull-out tab 130, or the entire positive electrode tab. It overlaps with both the negative electrode extraction tabs 130 and is electrically and physically joined to them by resistance welding or the like.
- the protruding portion 220 of the potential detection tab member 200 is used as a conductive connection portion with the signal lead wire 230 and the power supply line 240.
- the end of the signal lead wire 230 that is not connected to the protruding portion 220 of the potential detection tab member 200 is connected to a conductive portion (not shown) of the connector member 260.
- the power supply is connected via the fuse part 243. Connected to terminal 245.
- the end of the power supply line 240 that is not connected to the protrusion 220 of the potential detection tab member 200 is used as the negative power supply line of the battery connection structure 500, it is directly connected to the power supply terminal 245.
- the potential detection tab member 200 is folded together with the joined drawer tabs.
- a line that is to be folded in the assembly process is indicated by a dotted line. The process of folding back the drawer tab and the potential detection tab member 200 will be described later.
- the lead is connected to the unit cell in advance, the lead is a container of the unit cell when stacked. There is a possibility of contact with other poles. Moreover, since it is necessary to laminate
- the positive electrode pull-out tab 120 and the potential detection tab member 200 placed on the positive electrode extension tab member 125 are joined to the positive electrode extension tab member 125 by resistance welding.
- resistance welding is used for joining the tabs, but other joining methods such as ultrasonic welding can also be used.
- a step of folding back the positive electrode extraction tab 120, the positive electrode extension tab member 125, and the potential detection tab member 200 in a direction opposite to the direction in which the positive electrode extraction tab 120 is extracted from the laminate film exterior material 103. carry out.
- the entire length of the positive electrode tab member is c from the first end 111.
- the space corresponding to the folded back bc is used when the battery cells 100 are stacked in the subsequent steps.
- the folding step when the positive electrode pull-out tab 120, the positive electrode extension tab member 125, and the potential detection tab member 200 are folded back, the respective leading ends are placed on the insulating member 310 so that The dimensions of the tab and the insulating member 310 are defined. With such an insulating member 310, the laminate film exterior material 103 of the battery cell 100 can be protected from a pull-out tab, a tab member, or the like.
- the volume efficiency of the battery pack 700 can be improved.
- the productivity can be improved by the space that can be provided by the folding process, and the yield can be improved.
- the folding is performed in the folding process as described above so that the position of the protruding portion 220 of the potential detection tab member 200 is not changed by folding. (See also the line to be folded in FIGS. 5 (B) and 5 (C).) Thereby, there is no influence of the stress on the protruding part 220 due to the folding of the potential detection tab member 200, and accordingly, the protruding part 220 has no influence. There is no influence on the connected signal lead wire 230, the power supply line 240, and the like.
- the first end-side inter-cell spacer member 330 that functions as a cushion member is placed on the positive electrode pull-out tab 120, the positive electrode extension tab member 125, and the potential detection tab member 200 that are folded back in the previous process. Placed.
- the first end-side inter-cell spacer member 330 is preferably flame retardant with electrical insulation and cushioning properties. Further, the first inter-cell spacer member 330 is prevented from protruding into the space corresponding to the previous bc.
- the battery cell to be stacked is given a prime symbol (') to distinguish it from the first battery cell.
- the main body portions of the laminate film exterior material 103 are provided with two double-sided adhesive tapes 320. Use to fix.
- the negative electrode extraction tab 130 ′ of the second battery cell 100 ′ comes on the positive electrode extraction tab 120 of the first battery cell 100, and the negative electrode extraction tab 130 ′ of the first battery cell 100 is arranged.
- the positive electrode pull-out tab 120 ′ and the positive electrode extension tab member 125 ′ of the second battery cell 100 ′ are on the upper side.
- a potential detecting tab member 200 ' is disposed. That is, the three tab members are aligned when viewed from the vertical direction.
- the end portion of the positive electrode extension tab member 125 ′, the end portion of the potential detection tab member 200 ′, and the end portion of the negative electrode lead tab 130 are substantially aligned when viewed from the vertical direction (that is, all end portions). However, the length from the first end portion 111 is approximately b).
- three tab members (a negative electrode pull-out tab 130, a potential detection tab member 200 ′, and a positive electrode extension tab member 125 ′) aligned in the vertical direction are attached to the anvil portion of the resistance welding apparatus 1000 from above and below. 1010 and the horn 1020 are sandwiched and resistance welding is performed.
- FIG. 12 is a diagram showing a resistance welding process and a folding process of three tab members (a negative electrode extraction tab 130, a potential detection tab member 200 ', and a positive electrode extension tab member 125').
- FIG. 12 is a side view of the drawer tab and the potential detection tab member drawn out from the laminate film exterior material of the battery cell.
- FIG. 12A shows the three tab members (negative electrode pull-out tab 130, potential detection tab member 200 ′, and positive electrode extension tab member 125 ′), which are shown in FIG. , The state set between the horn part 1020 is shown.
- FIG. 12B shows a state in which the welding operation by the resistance welding apparatus 1000 is executed and the three tab members (the negative electrode extraction tab 130, the potential detection tab member 200 ′, and the positive electrode extension tab member 125 ′) are resistance welded. ing.
- FIG. 12C is a diagram showing a state in which the three resistance-welded tab members (the negative electrode pull-out tab 130, the potential detection tab member 200 ′, and the positive electrode extension tab member 125 ′) are taken out from the resistance welding apparatus 1000. .
- FIG. 12D shows three tab members (negative electrode pull-out tab 130, potential detection tab member 200 ′, and positive electrode extension tab member 125 ′) that are resistance welded in a direction in which the pull-out tab is pulled out from the laminate film exterior material. In the opposite direction, the process of folding is shown.
- the length of the three resistance-welded tab members (the negative electrode extraction tab 130, the potential detection tab member 200 ′, and the positive electrode extension tab member 125 ′) is c from the first end 111. .
- the space corresponding to the folded back portion bc shown in the figure shows the anvil portion 1010 and the horn portion 1020 of the resistance welding apparatus 1000 when the battery cells 100 are stacked and the tab members are resistance welded in the subsequent steps. It is used as a space for entering.
- FIG. 13 shows a state in which the folding process is performed on the three resistance-welded tab members (the negative electrode pull-out tab 130, the potential detection tab member 200 ', and the positive electrode extension tab member 125').
- the first end-side inter-cell spacer member 330 ′ is disposed and the third battery cell 100 ′ ′ ′ is stacked.
- a double-sided adhesive tape 320 '(not shown) is used for fixing the battery cells 100' '.
- 15 to 21 are diagrams schematically showing a manufacturing process of the battery pack 700 according to the embodiment of the present invention.
- the battery cells 100 are given ordinal numbers such as “first” and “second” in the order of stacking. Further, a positive sign tab 120 pulled out from the battery cell 100 and a positive electrode extension tab member 125 added to the positive electrode pull-out tab 120 have a (+) symbol, and a negative electrode pull-out tab 130 drawn from the battery cell 100 has a negative sign (-). A symbol is attached. In the description of the manufacturing process by the schematic diagram, they are referred to as (+) tab, ( ⁇ ) tab, and the like.
- FIG. 15 shows a step of preparing the first battery cell.
- a potential detection tab member (not shown) is connected to the (+) tab of the first battery cell, and these are folded back.
- FIG. 16 illustrates a step of laminating the second battery cell on the first battery cell (first laminating step), the ( ⁇ ) tab of the first battery cell, and the second battery cell.
- the state which performed the process (1st connection process) which connects (+) tab of this and the electric potential detection tab member not shown is shown.
- FIG. 18 illustrates a step of stacking the third battery cell on the second battery cell (second stacking step), and the ( ⁇ ) tab of the second battery cell and the third battery cell.
- the state which performed the process (2nd connection process) which connects (+) tab of this and the electric potential detection tab member not shown is shown.
- FIG. 20 illustrates a process of stacking the fourth battery cell on the third battery cell (third stacking process), and the ( ⁇ ) tab of the third battery cell and the fourth battery cell. This shows a state in which the step (third connection step) of connecting the (+) tab of (2) and a potential detection tab member (not shown) is performed.
- the third connection process is performed using the resistance welding apparatus 1000.
- the space into which the anvil part 1010 and the horn part 1020 of the resistance welding apparatus 1000 enter is generated by the first folding process. Space can be utilized.
- the ( ⁇ ) tab of the third battery cell, the (+) tab of the fourth battery cell, and a potential detection tab member (not shown) are provided.
- a folding step (third folding step) is performed.
- the battery pack manufacturing method as described above, as shown in the above-described series of schematic diagrams, a space for connecting the battery cells can be secured by sequentially performing the folding process. It becomes possible to connect between them efficiently.
- the battery pack manufacturing method according to the present invention does not require an extra part such as a substrate for connecting the battery cells, and the extra effort and cost associated with the extra part are not required. Can be reduced.
- the seventh battery cell 100 is stacked by repeating the stacking process ⁇ connection process ⁇ folding process as described above, and the signal is placed on the negative electrode extraction tab 130 as shown in FIG.
- the potential detection tab member 200 in which the lead wire 230 and the power supply wire 240 are solder-connected is placed.
- a connecting step of connecting the negative electrode lead tab 130 and the potential detecting tab member 200 by resistance welding is performed, and a folding step of folding them back is further performed.
- 330 is attached, and the battery connection structure 500 is completed.
- the positive power terminal 245, the negative power terminal 245, and the connector member 260 of the battery connection structure 500 are electrically connected to a control board (not shown).
- a plurality of second end side inter-cell spacer members 340 that are flame retardant cushion members are attached to the second end 112 side of the plurality of battery cells 100 constituting the battery connection structure 500.
- a plurality of first end-side inter-cell spacer members 330 are provided on the first end 111 side of the battery cell 100 as a cushion member between the stacked battery cells 100, and the battery cell.
- a plurality of second end-side inter-cell spacer members 340 are provided on the second end portion 112 side of 100 to absorb the impact on the battery cell 100.
- first end-side inter-cell spacer member 330 the second end-side inter-cell spacer member 340, and two connecting members that connect them (the two side end portions 113 of the battery cell 100 are arranged in the vicinity.
- a frame-like structure made up of a battery member 100 and the like.
- the first plate 410 is attached to the first battery cell 100 of the battery connection structure 500 with a double-sided adhesive tape (not shown).
- the second plate 420 is attached to the second end 112 side of the battery cell 100 with a double-sided adhesive tape (not shown).
- a synthetic resin material such as an ABS resin, a polyethylene terephthalate resin, or a polycarbonate resin can be used.
- a bottom spacer member 350 which is a cushion member having flame resistance, is attached to the first plate 410 by a double-sided adhesive tape 320.
- FIG. 25 is a view showing a battery pack 700 according to the embodiment of the present invention. The outline of the case is indicated by a dotted line.
- the number of parts such as a substrate does not increase, and therefore, there is no need for extra labor and cost when the battery pack 700 is manufactured.
- the yield is not reduced.
- the number of components such as a substrate does not increase, so that the battery pack 700 can be provided at low cost.
- the battery pack 700 of the present invention it is possible to provide the battery pack 700 in which the increase in size is suppressed without causing a decrease in sealing performance due to folding of the peripheral edge of the laminate exterior material.
- the present invention relates to a battery pack comprising unit cells using a flexible laminate film that is lightweight, high in safety, and high in energy density as an exterior material.
- the potential detection tab member includes a base portion and a protruding portion protruding perpendicularly to the longitudinal direction of the base portion, and the lead wire is connected to the protruding portion, The potential detection tab member is folded together with the connected tab, and the folded tip end portion of the potential detection tab member is placed on the insulating member. According to such a configuration, Since the number of components such as a substrate does not increase, a battery pack can be provided at a low cost, and industrial applicability is very large.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Mounting, Suspending (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Secondary Cells (AREA)
Abstract
基板などの部品点数が増加することがない、安価な電池パックを提供するために、本発明の電池パックは、ラミネートフィルム外装材から引き出された正極引き出しタブと負極引き出しタブとを有する電池セル100を複数積層し、隣接する前記電池セル100を電気的に接続した電池連結構造体を含む電池パックであって、隣接する前記電池セル100のそれぞれのタブが、接続される電位検知タブ部材200と、前記電位検知タブ部材200に接続されるリード線230と、電気接続部を絶縁する絶縁部材310と、を有し、前記電位検知タブ部材200は、基部と、前記基部の長手方向に対して垂直に突出する突出部と、からなり、前記突出部に前記リード線230が接続され、前記電位検知タブ部材200は、接続された前記タブと共に折り返され、折り返された前記電位検知タブ部材の先端部が、前記絶縁部材310に載置される。
Description
本発明は、リチウムイオン二次電池などの電池セルが連結されてなる電池連結構造体が収容された電池パックや、その製造方法に関する。
一次電池や二次電池を搭載した電池パックは、携帯電話、デジタルカメラ、ラップトップコンピュータなどのポータブル機器の小型の電源としてはもちろん、電動カートや小型設備等の簡易的なバックアップ電源などの中型の電源や、車両や家庭用の大型電源としても広く普及している。
電池パックは、一次電池や二次電池などの電池と、保護回路などを含む回路基板とを容器内に収容したものである。容器の内部に搭載する電池として、高エネルギー密度で軽量なリチウムイオン電池が用いられることが多くなっている。なかでも、外装材として、厚さが数十ミクロンから数百ミクロン程度の可撓性のアルミニウムシートと樹脂とからなるラミネートフィルムを用いたラミネート電池は特に軽量で、様々な用途への活用が期待されている。
ここで、可撓性のラミネートフィルムを外装材に用いた電池セルは軽量化に優れる一方で、肉厚の大きな金属板を外装材とした角型電池や円筒型電池に比べると強度が低く、外部からの衝撃に弱いという課題を有する。
また、電池パックが接続される側の機器で必要とする電池容量などが大きくなると、必然的に電池セルを複数接続して使用する必要がある。電池パック内に複数のラミネート型の電池セルを収容する場合、積層方向に積み重ねるか、外装ケースの内面に平行に並べて配置することになる。
例えば、特許文献1(国際公開2012/131802号)には、積み重ねられた電池セルが、基板によって連結されてなる電池連結構造体が収容された電池パックが開示されている。
国際公開2012/131802号
特許文献1記載の技術においては、複数の電池セルを連結して電池連結構造体を作製する際、基板を用いてこれを行う必要があり、基板などの体積分、電池連結構造体が、ひいては電池パックが大型化してしまう、という問題があった。さらに、特許文献1記載の技術では、基板などの部品点数が増加してしまい、コストが上昇してしまう、という問題もあった。
電池パックの大型化を避けるために、電池セル自体を小型化しておく、という発想に基づけば、ラミネート外装材の周囲を折り返した構造の電池セルを準備してことも考えられる。しかしながら、ラミネート外装材の周囲を折り返すと、折り返しにより熱溶着部にクラックが入り、封止性を損なうおそれがある、という新たな問題が発生する。
また、特許文献1記載の技術においては、複数の電池セルを連結して電池連結構造体を作製する際、基板を用いてこれを行う必要があり、基板などの部品点数が増加するので、電池パックの製造時において余計な手間とコストがかかってしまう、という問題があった。
一方、特許文献1記載のような基板を用いることなく、複数の電池セルを連結しようとすると、複数の電池セルから引き出されている引き出しタブの取り扱いが煩雑となるため、タブ同士の接続不良などの発生の可能性が大きくなり、歩留まりが低減してしまう、という問題もあった。
本発明は、上記のような問題を解決するものであって、本発明に係る電池パックは、ラミネートフィルム外装材から引き出された正極引き出しタブと負極引き出しタブとを有する電池セルを複数積層し、隣接する前記電池セルを電気的に接続した電池連結構造体を含む電池パックであって、隣接する前記電池セルのそれぞれのタブが、接続される電位検知タブ部材と、前記電位検知タブ部材に接続されるリード線と、電気接続部を絶縁する絶縁部材と、を有し、前記電位検知タブ部材は、基部と、前記基部の長手方向に対して垂直に突出する突出部と、からなり、前記突出部に前記リード線が接続され、前記電位検知タブ部材は、接続された前記タブと共に折り返され、折り返された前記電位検知タブ部材の先端部が、前記絶縁部材に載置される。
また、本発明に係る電池パックは、前記電位検知タブ部材にはリード線が半田によって接続されている。
また、本発明に係る電池パックは、前記電位検知タブ部材が、接続された前記タブと共に折り返される際、前記電位検知タブ部材の前記突出部の位置が変更されないように前記基部のみが折り返される。
また、本発明に係る電池パックの製造方法は、ラミネートフィルム外装材から引き出された正極引き出しタブと負極引き出しタブとを有する電池セルを複数積層し、隣接する前記電池セルを電気的に接続した電池連結構造体を含む電池パックを製造する電池パックの製造方法であって、前記電池セルの積層方向からみて、異極の引き出しタブ同士が重なるようにして、第1の電池セルと、第2の電池セルとを積層する第1積層工程と、重なった異極の引き出しタブ同士のうちの一方のタブ同士を接続する第1接続工程と、引き出しタブがラミネートフィルム外装材から引き出される方向と逆の方向に、前記第1接続工程で接続された異極の引き出しタブ同士を折り返す第1折り返し工程と、を有する。
また、本発明に係る電池パックの製造方法は、前記電池セルの積層方向からみて、異極の引き出しタブ同士が重なるようにして、第3の電池セルと、第2の電池セルとを積層する第2積層工程と、前記第2積層工程で重なった異極の引き出しタブ同士のうち、前記第1接続工程で接続していないタブ同士を接続する第2接続工程と、引き出しタブがラミネートフィルム外装材から引き出される方向と逆の方向に、前記第2接続工程で接続された異極の引き出しタブ同士を折り返す第2折り返し工程と、を有する。
また、本発明に係る電池パックの製造方法は、ラミネートフィルム外装材から引き出された正極引き出しタブには、正極継ぎ足しタブ部材が継ぎ足されている。
また、本発明に係る電池パックの製造方法は、前記第1接続工程及び前記第2接続工程では、異極の引き出しタブ同士と共に、電位検知タブ部材も接続する。
また、本発明に係る電池パックの製造方法は、前記電位検知タブ部材にはリード線が半田によって接続されている。
また、本発明に係る電池パックの製造方法は、前記電位検知タブ部材は、基部と、前記基部の長手方向に対して垂直に突出する突出部と、を有し、前記突出部に前記リード線が接続される。
また、本発明に係る電池パックの製造方法は、前記第1折り返し工程及び前記第2折り返し工程で異極の引き出しタブ同士を折り返す際、前記電位検知タブ部材の前記突出部の位置が変更されないように前記基部のみが折り返される。
本発明に係る電池パックによれば、基板などの部品点数が増加することがないので、安価に電池パックを提供することができる。
また、本発明に係る電池パックによれば、ラミネート外装材の周縁部の折り返しによる封止性低下を招くことなく、大型化を抑制した電池パックを提供することができる。
また、本発明に係る電池パックの製造方法によれば、基板などの部品点数が増加することがないので、電池パックの製造時において余計な手間やコストがかかることがない。
また、本発明に係る電池パックの製造方法によれば、歩留まりが低減することがない。
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明の実施形態に係る電池パック700に用いられる電池セル100を示す図である。このような電池セル100としては、リチウムイオンが負極と正極とを移動することにより充放電が行われるリチウムイオン二次単位電池が用いられる。
電池セル100の電池本体部110は、複数のシート状正極と複数のシート状負極とがセパレーターを介して積層された電極積層体、および電解液(いずれも図示しない)が、平面視で矩形のラミネートフィルム外装材103内に収容された構造となっている。そして、電池本体部110の第1端部111からは、正極引き出しタブ120及び負極引き出しタブ130が引き出されている。
正極引き出しタブ120及び負極引き出しタブ130は、いずれも平板状で、ラミネートフィルム外装材103内において、それぞれ、シート状正極、シート状負極と直接またはリード体などを介して接続されている。ラミネートフィルム外装材103は、電池内側となる面に熱融着樹脂層を有する金属ラミネートフィルムにより構成されている。より具体的には、例えば2枚の金属ラミネートフィルムが重ねられてラミネートフィルム外装材103を構成し、シート状正極、シート状負極およびセパレーターを有する電極積層体や電解液を、内部に収容した状態でラミネートフィルム外装材の外周辺(第1端部111、第2端部112、2つの側端部113)が熱シールされることで、その内部が密閉されている。
ここで、正極引き出しタブ120や負極引き出しタブ130などのラミネートフィルム外装材103よりなる電池本体部110から引き出される金属片は、「引き出しタブ」と称することとし、ラミネートフィルム外装材103の内側でセパレーターや電解液などを介して積層されているシート状正極やシート状負極を「電極」と称する。
なお、電極積層体には、上記のように複数のシート状正極と複数のシート状負極とがセパレーターを介して積層したものの他に、シート状正極とシート状負極とがセパレーターを介し積層したものを巻回し、これが圧縮されることにより積層体をなすものも含まれる。
上記のような電池セル100においては、正極引き出しタブ120の材質としてはアルミニウムまたはアルミニウム合金が、また、負極引き出しタブ130の材質としては、ニッケル、他の金属にニッケルメッキを施した材料(ニッケルメッキ材。例えば、ニッケルメッキをした銅など)、ニッケルと他の金属のクラッド(ニッケルクラッド材。例えば、ニッケル-銅クラッドなど)が一般的に用いられている。すなわち、電池セル100としては、アルミニウムを含む正極引き出しタブ120と、ニッケルを含む負極引き出しタブ130とを有する構成となっている。本実施形態においては、アルミニウム製の正極引き出しタブ120が、また、ニッケル製の負極引き出しタブ130がそれぞれ用いられている。
電池セル100のアルミニウムを含む正極引き出しタブ120と、他の導電性金属を直接的に接続させる構成では、金属間の電位差の問題により所定の年月が経過した後の導電性が劣化する可能性がある。
そこで、本発明においては、電池セル100の正極引き出しタブ120には、ニッケルを含む正極継ぎ足しタブ部材125を抵抗溶接或いは超音波溶着により接合しておき、電位差の問題による導電性劣化の問題を解決するようにしている。
このための構成についてより説明する。図1に示すように、電池連結構造体500を構成する上では、電池セル100におけるアルミニウム製の正極引き出しタブ120は第1端部111から長さaとされ、ニッケル製(或いはニッケルを含む材料製)の負極引き出しタブ130は第1端部111から長さb(b>a)とされる。
次に、長さaのアルミニウム製の正極引き出しタブ120に対しては、第1端部111からの長さがbとなるように、ニッケル製の正極継ぎ足しタブ部材125が抵抗溶接或いは超音波溶着などによって接合され、継ぎ足される(図2、図3参照)。
なお、以下、正極継ぎ足しタブ部材125が接合されて形成された引き出しタブ全体を、「正極引き出しタブ」と称することもある。図3に示すように、正極引き出しタブ120に、正極継ぎ足しタブ部材125が継ぎ足されることで、正極引き出しタブ全体としては、第1端部111からの長さがbとなる。
正極引き出しタブ120と、この正極引き出しタブ120に継ぎ足されている正極継ぎ足しタブ部材125とからなる正極の引き出しタブ全体は、本発明に係る電池パック700においては、電位検知タブ部材200と当接された状態で、電池連結構造体500が構成される。この電位検知タブ部材200は、ニッケル、又はニッケルを含む材料によって製造されている。
このように本発明に係る電池パック700においては、複数の電池セル100を直列に電気接続する上では、ニッケルを含む部材同士(継ぎ足しタブ部材125、電位検知タブ部材200)が接触するようにして、引き出しタブ同士が連結されているので、隣り合う単位電池(電池セル100)同士の電気接続部は、同種の金属材料による電気接続となり、電位差の問題がなく、年月の経過による導電性の劣化が発生することがほとんどなくなる。
次に、以上のように構成される電池セル100を複数積層し、隣接する電池セル100を電気的に接続した電池連結構造体500となし、これにより電池パック700を製造する方法について説明する。
以下、本実施形態では7つの電池セル100を積層して、これらを直列接続し電池連結構造体500となす場合を例に挙げ説明するが、本発明がこの場合に限定されるものではなく、本発明で電池セル100を積層する数は任意である。また、本発明で、電池セル100同士を電気接続する際、接続形態を直列接続とするか、並列接続するかなども適宜選択することができる。
図4は本発明の実施形態に係る電池パック700の製造工程を示す図である。図4は、7つ積層する電池セル100のうちの最初の電池セル100を準備する工程を示している。
図4の工程では、セル保護用の絶縁部材310を電池セル100の第1端部111側に配する。これにより、電池セル100を絶縁部材310により保護するようにしている。絶縁部材310としては、難燃性及び電気絶縁性を有するテープなどを用いることができる。電池セル100は、後述するようにタブ同士を、抵抗溶接などにより接合する工程を経るが、このとき絶縁部材310によって、ラミネートフィルム外装材103を有する電池セル100が保護される。
電池セル100に絶縁部材310が付されると、次に、正極引き出しタブ120と正極継ぎ足しタブ部材125の上に、電位検知タブ部材200が載置される。図4に示す工程では、信号リード線230と電源線240とが半田接続された電位検知タブ部材200が用いられる。
図4で示す正極引き出しタブ120と正極継ぎ足しタブ部材125と電位検知タブ部材200とは、7つの電池セル100が直列接続された電池連結構造体500自体の正極となる。電源線240は電池連結構造体500の正極用のリード線として機能する。一方、信号リード線230は電池セル100の電位を検知するために利用される。
ここで、電位検知タブ部材200についてより詳しく説明する。図5は電池連結構造体500を製造する際に用いる電位検知タブ部材200を説明する図である。
図5(A)は電位検知タブ部材200のみを抜き出して示す図であり、図5(B)は信号リード線230と電源線240とが半田接続された電位検知タブ部材200を示す図であり、図5(C)は信号リード線230が半田接続された電位検知タブ部材200を示す図である。
本発明において、電池連結構造体500を組み立てる際には、電位検知タブ部材200としては、既に信号リード線230や電源線240が半田接続されている図5(B)や図5(C)に示すものが用いられる。これは、引き出しタブに電位検知タブ部材200を接合した後の工程で、信号リード線230や電源線240を半田接続すると、電池セル100内の活物質や電解液(いずれも不図示)に悪影響を及ぼしてしまうからである。
電位検知タブ部材200を構成する材料としては、ニッケル、他の金属にニッケルメッキを施した材料(ニッケルメッキ材。例えば、ニッケルメッキをした銅など)、ニッケルと他の金属のクラッド(ニッケルクラッド材。例えば、ニッケル-銅クラッドなど)が用いられる。
電位検知タブ部材200は平板の部材であり、電池連結構造体500の組み立て工程において、引き出しタブと重畳されることが想定されている基部210と、この基部210から突出する突出部220とを有している。
電位検知タブ部材200が引き出しタブと重畳される際、引き出しタブがラミネートフィルム外装材103から引き出されている方向と、平行な方向を基部210の長手方向として定義する。突出部220は、基部210の長手方向に対して、垂直に突出するようになっている。また、基部210の幅の長さ(長手方向に垂直な方向の長さ)は、各引き出しタブの幅の長さと、同じとされている。また、基部210の長手方向の長さは、一方の端部が、正極継ぎ足しタブ部材125の端部と揃って重ねられたとき、他方の端部が絶縁部材310と重なる程度の長さとされる。基部210の他方の端部が絶縁部材310と重なっている状態は図6に示されている。
電位検知タブ部材200の基部210は、正極引き出しタブ120と正極継ぎ足しタブ部材125とからなる正極のタブ全体と重ねられたり、或いは、負極引き出しタブ130と重ねられたり、或いは、正極のタブ全体と負極引き出しタブ130の両方と重ねられたりして、それらと抵抗溶接などによって電気的・物理的に接合される。
一方、電位検知タブ部材200の突出部220は、信号リード線230や電源線240との導電接続部として利用される。
電位検知タブ部材200の突出部220と接続されていない方の信号リード線230の端部は、コネクタ部材260の不図示の導電部と接続されている。
また、電位検知タブ部材200の突出部220と接続されていない方の電源線240の端部が、電池連結構造体500の正極の電源線として用いられる場合には、ヒューズ部243を介して電源端子245と接続される。
また、電位検知タブ部材200の突出部220と接続されていない方の電源線240の端部が、電池連結構造体500の負極の電源線として用いられる場合には、直接電源端子245と接続される。
電池連結構造体500の製造工程において、電位検知タブ部材200は、接合された各引き出しタブと共に、折り返されるようになっている。図5(B)、(C)には、組み立て工程で折り返される予定のラインが、点線にて示されている。引き出しタブや、電位検知タブ部材200を折り返す工程については後述する。
なお、本発明で用いるような電位検知タブ部材200を省略して組電池を製造しようとすると、単電池に予めリードが接続された状態になるので、積層する際に、リードが単電池の容器や異極と接触する可能性がある。また、それを防ぐには長いリードを取りまとめながら単電池を積層する必要があるため、生産性が低下してしまう。このようなことを防ぐためにも、電位検知タブ部材200を採用することが好ましい。
続く図6に示す工程では、正極引き出しタブ120と正極継ぎ足しタブ部材125の上に載置された電位検知タブ部材200が、正極継ぎ足しタブ部材125と抵抗溶接されて接合された状態となる。本実施形態では、タブ同士の接合に、抵抗溶接を用いたが、超音波溶接などのその他の接合方法を用いることもできる。
続く図7に示す工程では、正極引き出しタブ120がラミネートフィルム外装材103から引き出されている方向と逆の方向に、正極引き出しタブ120、正極継ぎ足しタブ部材125、電位検知タブ部材200を折り返す工程を実施する。このような折り返し工程で、正極のタブ部材全体の長さは、第1端部111からcとなる。折り返された分のb-cに相当する空間が、以降の工程で電池セル100を積層する際に利用される。
前記折り返す工程で、正極引き出しタブ120、正極継ぎ足しタブ部材125、電位検知タブ部材200が折り返された際には、それぞれの先端部が、絶縁部材310に載置される程度となるように、各タブや絶縁部材310の寸法が規定されている。このような絶縁部材310により、引き出しタブやタブ部材等から、電池セル100のラミネートフィルム外装材103を保護することができる。
また、本発明に係る電池パック700においては、上記のような折り返し工程を、引き出しタブやタブ部材等に施すので、電池パック700の体積効率を向上させることができる。
また、本発明に係る電池パック700によれば、折り返し工程によって設けることができる空間によって、製造性も向上させることができ、歩留まりの向上を図ることもできる。
また、本発明に係る電池パック700においては、上記のような折り返し工程で、電位検知タブ部材200の突出部220の位置が折り返しにより変更されないように折り返しが実施される。(図5(B)、図5(C)の折り返し予定ラインも参照。)これにより、電位検知タブ部材200の折り返しによる、突出部220への応力などの影響がなく、従って、突出部220に接続されている信号リード線230や電源線240などへの影響もない。
続く図8に示す工程では、クッション部材として機能する第1端側セル間スペーサー部材330が、先の工程で折り返された正極引き出しタブ120、正極継ぎ足しタブ部材125、電位検知タブ部材200の上に載置される。第1端側セル間スペーサー部材330は、電気絶縁性、クッション性を備え、難燃性であることが好ましい。また、第1端側セル間スペーサー部材330は、先のb-cに相当する空間にはみ出すことがないようにする。
次に、電池セルを積層する工程を図9に示す。積層する電池セルにはプライム記号(’)を付して、1番目の電池セルと区別を図ることとする。
図9、図10に示す工程で、2番目の電池セル100’を、最初の電池セル100に積層する際には、ラミネートフィルム外装材103の本体部同士は、2条の両面接着テープ320を用いて固着する。
また、このとき、最初の電池セル100の正極引き出しタブ120の上には、2番目の電池セル100’の負極引き出しタブ130’がくるようにし、また、最初の電池セル100の負極引き出しタブ130の上には、2番目の電池セル100’の正極引き出しタブ120’と正極継ぎ足しタブ部材125’がくるようにする。
また、最初の電池セル100の負極引き出しタブ130と、2番目の電池セル100’の正極引き出しタブ120’、正極継ぎ足しタブ部材125’との間には、信号リード線230’のみが半田接合されている電位検知タブ部材200’が配される。すなわち、3枚のタブ部材が鉛直方向から見て整列することとなる。
ここで、正極継ぎ足しタブ部材125’の端部と、電位検知タブ部材200’の端部と、負極引き出しタブ130の端部とが鉛直方向から見てほぼ揃っている(すなわち、全ての端部が、第1端部111からの長さがほぼbとなる)ようにする。
続く図11に示す工程では、鉛直方向に揃った3枚のタブ部材(負極引き出しタブ130、電位検知タブ部材200’、正極継ぎ足しタブ部材125’)を、上下から、抵抗溶接装置1000のアンビル部1010と、ホーン部1020とで挟み込み抵抗溶接を実施する。
図12は3枚のタブ部材(負極引き出しタブ130、電位検知タブ部材200’、正極継ぎ足しタブ部材125’)の抵抗溶接工程と、折り返し工程とを示す図である。 図12はいずれも、電池セルのラミネートフィルム外装材から引き出された引き出しタブと、電位検知タブ部材とを側面から見た図である。
図12(A)は、図11に示した、抵抗溶接を施される3枚のタブ部材(負極引き出しタブ130、電位検知タブ部材200’、正極継ぎ足しタブ部材125’)が、アンビル部1010と、ホーン部1020と間にセットされた状態を示している。
図12(B)は、抵抗溶接装置1000による溶接動作を実行し、3枚のタブ部材(負極引き出しタブ130、電位検知タブ部材200’、正極継ぎ足しタブ部材125’)を抵抗溶接した様子を示している。
図12(C)は、抵抗溶接された3枚のタブ部材(負極引き出しタブ130、電位検知タブ部材200’、正極継ぎ足しタブ部材125’)を抵抗溶接装置1000から取り出した様子を示す図である。
図12(D)は、抵抗溶接された3枚のタブ部材(負極引き出しタブ130、電位検知タブ部材200’、正極継ぎ足しタブ部材125’)を、引き出しタブがラミネートフィルム外装材から引き出される方向と逆の方向に、折り返される工程を示している。
このような折り返し工程で、抵抗溶接された3枚のタブ部材(負極引き出しタブ130、電位検知タブ部材200’、正極継ぎ足しタブ部材125’)の長さは、第1端部111からcとなる。図に示す、折り返された分のb-cに相当する空間が、以降の工程で電池セル100を積層しタブ部材同士を抵抗溶接する際、抵抗溶接装置1000のアンビル部1010とホーン部1020とが入り込む空間として利用される。
図13は、抵抗溶接された3枚のタブ部材(負極引き出しタブ130、電位検知タブ部材200’、正極継ぎ足しタブ部材125’)に、折り返し工程を施した様子を示している。
続く図14に示す工程では、第1端側セル間スペーサー部材330’を配し、3番目の電池セル100’ ’を積層した様子を示している。電池セル100’ ’の固着には不図示の両面接着テープ320’が用いられている。
ここで、本発明に係る電池パック700の製造の概略を簡単に振り返る。図15乃至図21は本発明の実施形態に係る電池パック700の製造工程を模式的に示す図である。
一連の図において、電池セル100には、積層していこう順番に、「第1の」や「第2の」といった序数を付した。また、電池セル100から引き出される正極引き出しタブ120と、これに継ぎ足される正極継ぎ足しタブ部材125には(+)の記号を、また、電池セル100から引き出される負極引き出しタブ130には(-)の記号を付した。模式図による製造工程の説明では、(+)タブ、(-)タブなどと称する。
電池セルを積層する積層工程、また、電池セルのタブ部材同士を抵抗溶接で接続する接続工程、また、接続工程の後の折り返し工程についても、「第1の」や「第2の」といった序数を付した。また、煩雑となるので、電位検知タブ部材については図示省略した。
図15は、第1の電池セルを準備する工程を示しいている。第1の電池セルの(+)タブに、不図示の電位検知タブ部材を接続して、これらを折り返す。
図16は、第1の電池セルの上に、第2の電池セルを積層する工程(第1積層工程)を実施し、さらに第1の電池セルの(-)タブと、第2の電池セルの(+)タブと、不図示の電位検知タブ部材とを接続する工程(第1接続工程)を実施した様子を示している。
続いて、図17に示すように、第1の電池セルの(-)タブと、第2の電池セルの(+)タブと、不図示の電位検知タブ部材とを折り返す工程(第1折り返し工程)を実施する。
図18は、第2の電池セルの上に、第3の電池セルを積層する工程(第2積層工程)を実施し、さらに第2の電池セルの(-)タブと、第3の電池セルの(+)タブと、不図示の電位検知タブ部材とを接続する工程(第2接続工程)を実施した様子を示している。
続いて、図19に示すように、第2の電池セルの(-)タブと、第3の電池セルの(+)タブと、不図示の電位検知タブ部材とを折り返す工程(第2折り返し工程)を実施する。
図20は、第3の電池セルの上に、第4の電池セルを積層する工程(第3積層工程)を実施し、さらに第3の電池セルの(-)タブと、第4の電池セルの(+)タブと、不図示の電位検知タブ部材とを接続する工程(第3接続工程)を実施した様子を示している。
ここで、実際には抵抗溶接装置1000を用いて、第3接続工程を実施するが、この際、抵抗溶接装置1000のアンビル部1010やホーン部1020が入り込む空間は、第1折り返し工程により生じた空間を活用することができる。
このような空間を設けるためにも、図21に示すように、第3の電池セルの(-)タブと、第4の電池セルの(+)タブと、不図示の電位検知タブ部材とを折り返す工程(第3折り返し工程)を実施する。
以上のような電池パックの製造方法においては、上記の一連の模式図で示したように、順次折り返し工程を実施していくことにより、電池セル間を接続するための空間を確保でき、電池セル間を効率的に接続することが可能となる。このように、本発明に係る電池パックの製造方法では、電池セル間を接続するための基板などの余計な部品を要することもないし、また、余計な部品に伴う、製造上の手間やコストも削減することができる。
以上のような、積層工程→接続工程→折り返し工程を繰り返すことで、本実施形態においては、7番目の電池セル100を積層し、図22に示すように、負極引き出しタブ130の上に、信号リード線230と電源線240とが半田接続された電位検知タブ部材200を載置する。
続く図23に示す工程では、負極引き出しタブ130と電位検知タブ部材200とを抵抗溶接で接続する接続工程を実施し、さらに、これらを折り返す折り返し工程を実施し、第1端側セル間スペーサー部材330を取り付けて、電池連結構造体500が完成する。
続く、図24に示す工程では、電池連結構造体500の正極の電源端子245と、負極の電源端子245と、コネクタ部材260とを不図示の制御基板に電気接続する。また、電池連結構造体500を構成する複数の電池セル100の第2端部112側には、難燃性を有するクッション部材である第2端側セル間スペーサー部材340を複数取り付ける。
本実施形態に係る電池パック700では、積層される電池セル100間のクッション部材として、電池セル100の第1端部111側に複数の第1端側セル間スペーサー部材330を、また、電池セル100の第2端部112側に複数の第2端側セル間スペーサー部材340を設けて、電池セル100への衝撃を吸収するようにしている。
これに限らず、第1端側セル間スペーサー部材330と、第2端側セル間スペーサー部材340と、これらを連結する2つの連結部材(電池セル100の2つの側端部113近傍に配される部材)と、からなる枠状の構造体(不図示)で、電池セル100への衝撃を吸収するようにしてもよい。
また、本実施形態に係る電池パック700では、電池連結構造体500の第1番目の電池セル100に対しては、第1プレート410を不図示の両面接着テープなどで取り付ける。また、電池セル100の第2端部112側に第2プレート420を不図示の両面接着テープなどで取り付ける。第1プレート410や第2プレート420には、ABS樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂などの合成樹脂材料を用いることができる。
また、第1プレート410には、両面接着テープ320によって、難燃性を有するクッション部材である底面スペーサー部材350を取り付ける。
電池連結構造体500と、以上のような付属物を、ケースに収納することで本発明に係る電池パック700が完成する。図25は本発明の実施形態に係る電池パック700を示す図である。ケースの概略については、点線にて示している。
以上のような本発明に係る電池パック700の製造方法によれば、基板などの部品点数が増加することがないので、電池パック700の製造時において余計な手間やコストがかかることがない。
また、本発明に係る電池パック700の製造方法によれば、歩留まりが低減することがない。
また、本発明に係る電池パック700によれば、基板などの部品点数が増加することがないので、安価に電池パック700を提供することができる。
また、本発明に係る電池パック700によれば、ラミネート外装材の周縁部の折り返しによる封止性低下を招くことなく、大型化を抑制した電池パック700を提供することができる。
本発明は、軽量で安全性が高く、エネルギー密度も高い可撓性のラミネートフィルムを外装材として用いた単位セルからなる電池パックに関するものである。複数の電池セルを連結して電池連結構造体を作製する際、基板を用いると、基板などの体積分、電池連結構造体が、ひいては電池パックが大型化してしまう、という問題があった。さらに、基板などの部品点数が増加してしまい、コストが上昇してしまう、という問題もあった。
そこで、本発明に係る電池パックでは、電位検知タブ部材は、基部と、前記基部の長手方向に対して垂直に突出する突出部と、からなり、前記突出部に前記リード線が接続され、前記電位検知タブ部材は、接続された前記タブと共に折り返され、折り返された前記電位検知タブ部材の先端部が、前記絶縁部材に載置される構成が採られており、このような構成によれば、基板などの部品点数が増加することがないので、安価に電池パックを提供することができ、産業上の利用性が非常に大きい。
100・・・単位セル
103・・・ラミネートフィルム外装材
105・・・電極積層領域
110・・・電池本体部
111・・・第1端部
112・・・第2端部
113・・・側端部
119・・・面取り部
120・・・正極引き出しタブ
125・・・正極継ぎ足しタブ部材
130・・・負極引き出しタブ
200・・・電位検知タブ部材
210・・・基部
220・・・突出部
230・・・信号リード線
240・・・電源線
243・・・ヒューズ部
245・・・電源端子
260・・・コネクタ部材
310・・・絶縁部材(セル保護用)
320・・・両面接着テープ
330・・・第1端側セル間スペーサー部材(クッション部材)
340・・・第2端側セル間スペーサー部材(クッション部材)
350・・・底面スペーサー部材(クッション部材)
410・・・第1プレート
420・・・第2プレート
500・・・電池連結構造体
700・・・電池パック
1000・・・抵抗溶接装置
1010・・・アンビル部
1020・・・ホーン部
103・・・ラミネートフィルム外装材
105・・・電極積層領域
110・・・電池本体部
111・・・第1端部
112・・・第2端部
113・・・側端部
119・・・面取り部
120・・・正極引き出しタブ
125・・・正極継ぎ足しタブ部材
130・・・負極引き出しタブ
200・・・電位検知タブ部材
210・・・基部
220・・・突出部
230・・・信号リード線
240・・・電源線
243・・・ヒューズ部
245・・・電源端子
260・・・コネクタ部材
310・・・絶縁部材(セル保護用)
320・・・両面接着テープ
330・・・第1端側セル間スペーサー部材(クッション部材)
340・・・第2端側セル間スペーサー部材(クッション部材)
350・・・底面スペーサー部材(クッション部材)
410・・・第1プレート
420・・・第2プレート
500・・・電池連結構造体
700・・・電池パック
1000・・・抵抗溶接装置
1010・・・アンビル部
1020・・・ホーン部
Claims (10)
- ラミネートフィルム外装材から引き出された正極引き出しタブと負極引き出しタブとを有する電池セルを複数積層し、隣接する前記電池セルを電気的に接続した電池連結構造体を含む電池パックであって、
隣接する前記電池セルのそれぞれのタブが、接続される電位検知タブ部材と、
前記電位検知タブ部材に接続されるリード線と、
電気接続部を絶縁する絶縁部材と、を有し、
前記電位検知タブ部材は、基部と、前記基部の長手方向に対して垂直に突出する突出部と、からなり、前記突出部に前記リード線が接続され、
前記電位検知タブ部材は、接続された前記タブと共に折り返され、折り返された前記電位検知タブ部材の先端部が、前記絶縁部材に載置される電池パック。 - 前記電位検知タブ部材にはリード線が半田によって接続されている請求項2に記載の電池パック。
- 前記電位検知タブ部材が、接続された前記タブと共に折り返される際、
前記電位検知タブ部材の前記突出部の位置が変更されないように前記基部のみが折り返される請求項1又は請求項2に記載の電池パック。 - ラミネートフィルム外装材から引き出された正極引き出しタブと負極引き出しタブとを有する電池セルを複数積層し、隣接する前記電池セルを電気的に接続した電池連結構造体を含む電池パックを製造する電池パックの製造方法であって、
前記電池セルの積層方向からみて、異極の引き出しタブ同士が重なるようにして、第1の電池セルと、第2の電池セルとを積層する第1積層工程と、
重なった異極の引き出しタブ同士のうちの一方のタブ同士を接続する第1接続工程と、
引き出しタブがラミネートフィルム外装材から引き出される方向と逆の方向に、前記第1接続工程で接続された異極の引き出しタブ同士を折り返す第1折り返し工程と、
を有する電池パックの製造方法。 - 前記電池セルの積層方向からみて、異極の引き出しタブ同士が重なるようにして、第3の電池セルと、第2の電池セルとを積層する第2積層工程と、
前記第2積層工程で重なった異極の引き出しタブ同士のうち、前記第1接続工程で接続していないタブ同士を接続する第2接続工程と、
引き出しタブがラミネートフィルム外装材から引き出される方向と逆の方向に、前記第2接続工程で接続された異極の引き出しタブ同士を折り返す第2折り返し工程と、
を有する請求項4に記載の電池パックの製造方法。 - ラミネートフィルム外装材から引き出された正極引き出しタブには、正極継ぎ足しタブ部材が継ぎ足されている請求項4又は請求項5に記載の電池パックの製造方法。
- 前記第1接続工程及び前記第2接続工程では、
異極の引き出しタブ同士と共に、電位検知タブ部材も接続する請求項4乃至請求項6のいずれか1項に記載の電池パックの製造方法。 - 前記電位検知タブ部材にはリード線が半田によって接続されている請求項7に記載の電池パックの製造方法。
- 前記電位検知タブ部材は、基部と、前記基部の長手方向に対して垂直に突出する突出部と、を有し、
前記突出部に前記リード線が接続される請求8に記載の電池パックの製造方法。 - 前記第1折り返し工程及び前記第2折り返し工程で異極の引き出しタブ同士を折り返す際、
前記電位検知タブ部材の前記突出部の位置が変更されないように前記基部のみが折り返される請求項9に記載の電池パックの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018505841A JP7016797B2 (ja) | 2016-03-16 | 2017-03-07 | 電池パック及び電池パックの製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-052914 | 2016-03-16 | ||
JP2016052913 | 2016-03-16 | ||
JP2016052914 | 2016-03-16 | ||
JP2016-052913 | 2016-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159469A1 true WO2017159469A1 (ja) | 2017-09-21 |
Family
ID=59851208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009101 WO2017159469A1 (ja) | 2016-03-16 | 2017-03-07 | 電池パック及び電池パックの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7016797B2 (ja) |
WO (1) | WO2017159469A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112640197A (zh) * | 2018-08-31 | 2021-04-09 | 夏普株式会社 | 金属空气电池模块 |
JP2021111512A (ja) * | 2020-01-10 | 2021-08-02 | Connexx Systems株式会社 | 二次電池パック |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109301149B (zh) * | 2018-10-08 | 2022-09-13 | 桑顿新能源科技(长沙)有限公司 | 一种锂离子电池极耳及锂离子电池的封装方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338275A (ja) * | 2002-05-21 | 2003-11-28 | Nissan Motor Co Ltd | 二次電池モジュール |
JP2009187895A (ja) * | 2008-02-08 | 2009-08-20 | Nec Tokin Corp | 組電池および電池パック |
JP2013140707A (ja) * | 2012-01-04 | 2013-07-18 | Hitachi Ltd | 電池モジュール及びその製造方法 |
WO2014171250A1 (ja) * | 2013-04-19 | 2014-10-23 | Necエナジーデバイス株式会社 | 電池の製造方法及び電池モジュール |
-
2017
- 2017-03-07 JP JP2018505841A patent/JP7016797B2/ja active Active
- 2017-03-07 WO PCT/JP2017/009101 patent/WO2017159469A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338275A (ja) * | 2002-05-21 | 2003-11-28 | Nissan Motor Co Ltd | 二次電池モジュール |
JP2009187895A (ja) * | 2008-02-08 | 2009-08-20 | Nec Tokin Corp | 組電池および電池パック |
JP2013140707A (ja) * | 2012-01-04 | 2013-07-18 | Hitachi Ltd | 電池モジュール及びその製造方法 |
WO2014171250A1 (ja) * | 2013-04-19 | 2014-10-23 | Necエナジーデバイス株式会社 | 電池の製造方法及び電池モジュール |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112640197A (zh) * | 2018-08-31 | 2021-04-09 | 夏普株式会社 | 金属空气电池模块 |
CN112640197B (zh) * | 2018-08-31 | 2023-08-29 | 夏普株式会社 | 金属空气电池模块 |
US12034185B2 (en) | 2018-08-31 | 2024-07-09 | Sharp Kabushiki Kaisha | Metal air battery module |
JP2021111512A (ja) * | 2020-01-10 | 2021-08-02 | Connexx Systems株式会社 | 二次電池パック |
JP7241356B2 (ja) | 2020-01-10 | 2023-03-17 | Connexx Systems株式会社 | 二次電池パック |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017159469A1 (ja) | 2019-01-24 |
JP7016797B2 (ja) | 2022-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012131801A1 (ja) | 電池パック | |
JP5761742B2 (ja) | 電池パック | |
JP5831924B2 (ja) | 電池パック | |
JP2003234094A (ja) | 非水電解質電池 | |
JP6919102B2 (ja) | 電池パック | |
US11251488B2 (en) | Battery pack and method for manufacturing battery pack | |
WO2012131803A1 (ja) | 電池パック | |
US11239522B2 (en) | Battery pack and method for manufacturing battery pack | |
WO2017159469A1 (ja) | 電池パック及び電池パックの製造方法 | |
JP5700543B2 (ja) | 電池パック | |
JP5858458B2 (ja) | 電池パックの製造方法、電池パック | |
JP5709215B2 (ja) | 電池パック | |
US12046761B2 (en) | Battery pack and method for manufacturing battery pack | |
JP5709214B2 (ja) | 電池パック | |
JP5765769B2 (ja) | 電池パック | |
JP5831923B2 (ja) | 電池パック | |
JP5765770B2 (ja) | 電池パック | |
JP5366188B2 (ja) | 電池パック及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018505841 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766470 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17766470 Country of ref document: EP Kind code of ref document: A1 |