WO2017159102A1 - Exhaust gas processing device - Google Patents

Exhaust gas processing device Download PDF

Info

Publication number
WO2017159102A1
WO2017159102A1 PCT/JP2017/003873 JP2017003873W WO2017159102A1 WO 2017159102 A1 WO2017159102 A1 WO 2017159102A1 JP 2017003873 W JP2017003873 W JP 2017003873W WO 2017159102 A1 WO2017159102 A1 WO 2017159102A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
pipe
branch pipe
reaction tower
branch
Prior art date
Application number
PCT/JP2017/003873
Other languages
French (fr)
Japanese (ja)
Inventor
邦幸 高橋
譲 榎本
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2017159102A1 publication Critical patent/WO2017159102A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases

Definitions

  • the present invention relates to an exhaust gas treatment apparatus.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-190240
  • Patent Document 2 Japanese Patent Laid-Open No. 08-281055
  • the nozzle provided at the same position as the height of the exhaust gas inlet discharges liquid toward the exhaust gas inlet
  • the liquid discharged from the nozzle may flow backward from the exhaust gas inlet toward the engine. If liquid enters the engine, the engine may break. Therefore, it is desirable to suppress the backflow of liquid from the exhaust gas inlet to the engine.
  • an exhaust gas treatment apparatus for treating exhaust gas.
  • the exhaust gas treatment apparatus may include a reaction tower, a trunk pipe, and a plurality of branch pipes.
  • the reaction tower may have an internal space extending in the height direction.
  • the height direction may be a direction from the bottom side where the exhaust gas is introduced to the upper side where the exhaust gas is discharged.
  • the trunk tube may carry liquid.
  • the main pipe may extend in the height direction in the internal space of the reaction tower.
  • the plurality of branch pipes may be provided extending from the outer wall of the trunk pipe toward the inner wall of the reaction tower.
  • Each of the plurality of branch pipes may include an injection unit.
  • the plurality of branch pipes may be provided at different height positions.
  • the ejection unit may eject the liquid supplied from the trunk tube.
  • the reaction tower may have an exhaust gas inlet on the side surface on the bottom side that introduces exhaust gas and swirls and rises along the inner surface of the reaction tower.
  • the branch pipe located at the same height as the exhaust gas inlet in the height direction among the plurality of branch pipes, the branch pipe is located on the exhaust gas inlet side of the plane orthogonal to the exhaust gas introduction direction and passing through the central axis of the reaction tower.
  • the main direction of the part may be 90 degrees or less with respect to the exhaust gas introduction direction.
  • the main direction may be defined at the center of the injection angle of the injection unit that injects the liquid with respect to the exhaust gas inlet.
  • the exhaust gas introduction direction may be the direction of the exhaust gas introduced from the exhaust gas inlet.
  • the main direction of the injection unit may be 45 degrees or less with respect to the exhaust gas introduction direction.
  • the density of the injection part located at the same height as the exhaust gas inlet in the height direction may be smaller than the density of the injection part located at a different height from the exhaust gas inlet in the height direction.
  • the trunk tube may have an upper trunk tube and a lower trunk tube.
  • the upper trunk can be located on the uppermost side.
  • the lower trunk can be located on the most bottom side.
  • the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the lower trunk pipe is larger than the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the upper trunk pipe. It can be big.
  • the branch pipe located at the same height as the exhaust gas inlet in the height direction among the plurality of branch pipes may be provided in the lower trunk pipe.
  • the trunk pipe may have a middle trunk pipe between the upper trunk pipe and the lower trunk pipe.
  • the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the middle trunk pipe is larger than the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the lower trunk pipe. It can be small.
  • the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the middle trunk pipe is larger than the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the upper trunk pipe. It can be big.
  • At least one branch pipe provided in the middle trunk pipe may be located at the same height as the exhaust gas inlet in the height direction.
  • the main direction may be 0 degree or more and 180 degrees or less with respect to the exhaust gas introduction direction.
  • the main direction may be defined at the center of the injection angle of the injection unit that injects the liquid with respect to the exhaust gas inlet.
  • At least one branch pipe provided in the upper trunk pipe may be located at the same height as the exhaust gas inlet in the height direction.
  • the main direction may be 0 degree or more and 180 degrees or less with respect to the exhaust gas introduction direction.
  • the main direction may be defined at the center of the injection angle of the injection unit that injects the liquid with respect to the exhaust gas inlet.
  • the branch pipe located on the most bottom side may be located on the upper side of the intermediate position between the bottom side and the upper side of the exhaust gas inlet.
  • the main direction of the injection part in at least one branch pipe located on the bottom side among the plurality of branch pipes may be inclined to the upper side.
  • the main direction of the injection part in at least one branch pipe located on the upper side among the plurality of branch pipes may be inclined toward the bottom side.
  • the reaction tower may have a flange on the uppermost side of the exhaust gas inlet.
  • may extend in the direction of exhaust gas introduction.
  • at least a part of the collar portion may overlap with a branch pipe located on the upper side of the collar section among the plurality of branch pipes.
  • may have an outer peripheral region.
  • the outer peripheral region may be provided in contact with the inner wall of the reaction tower.
  • the height in the height direction of the outer peripheral region may increase as it proceeds from the inner end to the outer end of the exhaust gas inlet.
  • the exhaust gas treatment device may further include an exhaust gas introduction pipe.
  • the exhaust gas introduction pipe may be connected to the exhaust gas introduction port from the outside of the reaction tower.
  • the exhaust gas introduction pipe may have an outer side surface and an inner side surface.
  • the outer side surface may extend in the tangential direction of the outer shape of the reaction tower.
  • the inner side surface may be provided to face the outer side surface.
  • the inner side surface may extend in a direction that intersects the outer shape of the reaction tower. The inner side surface may not protrude into the internal space of the reaction tower.
  • the exhaust gas introduction pipe may have a first straight part and a second straight part.
  • the first straight part may extend in the height direction.
  • the second straight part may include a straight part perpendicular to the height direction.
  • the second straight part may be provided between the first straight part and the exhaust gas inlet in the exhaust gas flow path.
  • FIG. 2 is a top view of AA ′ of FIG. 1.
  • FIG. 7 is a top view of AA ′ in the first modification example of FIG. 1. It is a figure explaining the angle which the branch pipe 22-9B and the exhaust gas introduction direction 63 in FIG. 3A make. It is a figure explaining the angle which the branch pipe 22-9C and the exhaust gas introduction direction 63 in FIG. 3A make.
  • FIG. 10 is a top view of AA ′ in the second modification of FIG. 1. It is a figure explaining the angle which the branch pipe 22-9B and the exhaust gas introduction direction 63 in FIG. 4A make.
  • FIG. 10 is a top view of AA ′ in the third modification of FIG. 1. It is a figure which shows the outline
  • FIG. 10 is a top view of BB ′ in the first modified example of FIG. 8. It is a figure explaining the angle which the branch pipe 42-3B and the exhaust gas introduction direction 63 in FIG. 9A make.
  • FIG. 1 is a diagram showing an outline of an exhaust gas treatment apparatus 200 in the first embodiment.
  • FIG. 1 is a front view of the exhaust gas treatment apparatus 200.
  • the cross section of the exhaust gas processing apparatus 200 is shown.
  • the trunk tube 20, the branch tube 22, the ejection unit 24, the liquid introduction tube 28, and the baffle 29 show side surfaces rather than cross sections.
  • the exhaust gas inlet 62 provided in the position in front of the paper surface in the reaction tower 10 is indicated by a dotted line.
  • the longitudinal direction of the reaction tower 10 is the z direction.
  • the z direction is equal to the height direction from the bottom 14 side to the top 12 side of the reaction tower 10.
  • the x and y directions are perpendicular to each other.
  • the x, y and z directions constitute a right-handed system.
  • the z direction is a direction perpendicular to a plane having x and y directions.
  • the z direction may be a direction perpendicular to the floor of the ship or a direction perpendicular to the ground.
  • the z direction is not limited to the examples of these directions.
  • the z direction may be a direction parallel to the ground.
  • the + z direction may be referred to as “upper”, “upward”, or “upper”, and the ⁇ z direction may be referred to as “lower”, “lower”, “lower”, or “bottom”.
  • the exhaust gas treatment apparatus 200 includes a reaction tower 10, a main pipe 20, a plurality of branch pipes 22, a liquid introduction pipe 28, a baffle 29, an upper liquid return ring 72, a lower liquid return ring 74, and a reducer.
  • Part 80 and a flue part 90 are provided.
  • the reaction tower 10 and the flue portion 90 of this example have a cylindrical internal space 15 extending in the height direction.
  • the reducer portion 80 of the present example has a truncated cone-shaped internal space 15.
  • the internal space 15 in the reaction tower 10, the reducer section 80 and the flue section 90 of this example has a common central axis 11.
  • the central axis 11 in this example is parallel to the z direction.
  • the central axis 11 in this example is also the central axis of the trunk tube 20.
  • the reaction tower 10 has an exhaust gas inlet 62 on the side surface on the bottom 14 side.
  • the exhaust gas inlet 62 may be a conduit having a rectangular cross section when the reaction tower 10 is viewed from the front.
  • the exhaust gas introduction port 62 in this example is a joint between an exhaust gas introduction pipe (to be described later) and the reaction tower 10.
  • the exhaust gas is introduced into the reaction tower 10 from the exhaust gas inlet 62 located on the bottom 14 side.
  • the exhaust gas may be exhaust gas discharged from a power device such as a ship engine.
  • the exhaust gas is introduced into the reaction tower 10 from the exhaust gas inlet 62 so as to swirl upward along the inner surface of the reaction tower 10.
  • the exhaust gas in this example swirls spirally in the internal space 15 of the reaction tower 10.
  • the reducer unit 80 is provided above the reaction tower 10.
  • a flue section 90 is provided on the reducer section 80.
  • the reducer part 80 may be a joint part that connects two cylinders having different diameters.
  • the reducer 80 may have a small diameter portion at the end in the + z direction and a large diameter portion at the end in the ⁇ z direction.
  • the large diameter part of the reducer part 80 is connected to the reaction tower 10, and the small diameter part of the reducer part 80 is connected to the flue part 90.
  • the pressure loss in the exhaust gas treatment apparatus 200 can be reduced by directly connecting the reaction tower 10 and the flue section 90 as compared with the case where the inner diameter of the cylinder changes discontinuously in the height direction. .
  • the exhaust gas is washed with liquid inside the reaction tower 10 and then discharged from the flue 90 to the outside of the exhaust gas treatment apparatus 200.
  • the reaction tower 10 of this example has a length in the height direction from the bottom 14 to the top 12 of 3 [m] and an inner diameter of 700 [mm]. Further, the reducer portion 80 of this example has a length in the height direction of 654 [mm], and the inner diameter of the small diameter portion is 420 [mm].
  • the bottom part 14 of the reaction tower 10 may function as a drainage storage part for temporarily storing the liquid that has fallen after being jetted inside the reaction tower 10.
  • the liquid stored in the bottom 14 may be finally discharged out of the reaction tower 10 from the drainage outlet 17.
  • the liquid introduction pipe 28 of this example is introduced into the inside from the side surface of the reaction tower 10 in the vicinity of the bottom 14 of the reaction tower 10.
  • the liquid introduction tube 28 of this example is a tube bent into an L shape.
  • the liquid introduction pipe 28 in this example is watertightly connected to the trunk pipe 20 in parallel with the central axis 11. Seawater, lake water, river water, or an alkaline liquid may be introduced into the liquid introduction pipe 28 from the outside of the reaction tower 10 using a pump or the like.
  • the liquid introduction pipe 28 and the trunk pipe 20 are fluidly connected, and the liquid introduced into the liquid introduction pipe 28 may be supplied to the trunk pipe 20.
  • the baffle 29 in this example is installed in the liquid introduction pipe 28.
  • the baffle 29 may have a plane parallel to the xy plane.
  • the baffle 29 of this example is a disk having a through opening through which the trunk tube 20 can pass.
  • the baffle 29 is provided closer to the bottom 14 than the exhaust gas inlet 62.
  • the baffle 29 may have a function of dividing the reaction tower 10 into a region where exhaust gas is introduced and a region where waste water is stored.
  • the trunk pipe 20 of this example extends in the height direction in the internal space 15 of the reaction tower 10.
  • the trunk tube 20 may convey the liquid supplied from the liquid introduction tube 28 in the height direction.
  • the fact that the main pipe 20 conveys the liquid in the height direction may mean that the main pipe 20 provides a path for conveying the liquid in the height direction.
  • a plurality of branch pipes 22 are connected to the trunk pipe 20.
  • the trunk tube 20 and the branch tube 22 are fluidly connected so that the liquid is supplied from the trunk tube 20 to the branch tube 22.
  • the plurality of branch pipes 22 are provided extending from the outer wall 21 of the trunk pipe 20 toward the inner wall 18 of the reaction tower 10. One end in the longitudinal direction of the branch pipe 22 may be welded to the main pipe 20.
  • four branch pipes 22-A, 22-B, 22-C and 22-D are provided at the same height position.
  • the four branch pipes 22-A to 22-D form a cross when the trunk pipe 20 is viewed from above. In FIG. 1, the branch pipe 22-D is omitted.
  • the branch pipes 22-1A to 22-nA in this example are provided so as to overlap in the height direction.
  • the branch pipes 22-1A to 22-nA of the present example are provided at different height positions spaced apart at a constant interval in the height direction.
  • n is a natural number of 2 or more.
  • n 9.
  • the pitch in the height direction of the branch pipes 22 may be 0.2 [m].
  • the branch pipes 22-1B to 22-nB are also provided at different height positions by a predetermined pitch. The same applies to the branch pipe 22-1C to the branch pipe 22-nC and the branch pipe 22-1D to the branch pipe 22-nD.
  • the at least one branch pipe 22 may be located at the same height as the exhaust gas inlet 62 in the height direction.
  • the branch pipes 22-6 to 22-9 are located at the same height as the exhaust gas inlet 62.
  • the branch pipe 22 is located at the same height as the exhaust gas inlet 62.
  • the height position of the branch pipe 22 is located within the range of the length in the height direction of the exhaust gas inlet 62. To tell. In this example, it is possible to prevent the liquid from flowing back to the engine by devising the injection direction of the liquid injected from the branch pipe 22 located at the same height as the exhaust gas inlet 62.
  • Each of the plurality of branch pipes 22 has an injection unit 24.
  • one branch pipe 22 has two injection parts 24.
  • the number of the injection parts 24 which one branch pipe 22 has is not limited to two, Three or more may be sufficient.
  • the injection unit 24 may be connected to the branch pipe 22 by screwing means, or may be connected to the branch pipe 22 by welding.
  • the injection unit 24 injects the liquid supplied from the trunk tube 20 inside the reaction tower 10.
  • the jetted liquid changes into a fine water droplet or mist.
  • sulfur oxides and the like in the exhaust gas are absorbed by the liquid.
  • exhaust gas can be washed.
  • the ejection unit 24 may be a spray nozzle that ejects liquid in an empty cone shape.
  • the injection port of the injection part 24 is provided in the part which attached
  • FIG. 2 is a top view of AA ′ of FIG.
  • the branch pipe 22-9 will be described by showing a top view of AA ′.
  • the branch pipes 22-6 to 22-8 may have the same configuration as the branch pipes 22-9.
  • the exhaust gas treatment apparatus 200 includes an exhaust gas introduction pipe 60 connected to the exhaust gas introduction port 62 from the outside of the reaction tower 10.
  • the exhaust gas introduction pipe 60 of this example is a pipe having a rectangular cross section parallel to the yz plane.
  • the exhaust gas introduction pipe 60 of this example extends in the x direction and is connected to the side surface of the reaction tower 10.
  • the exhaust gas introduction pipe 60 has an outer side surface 64 and an inner side surface 66.
  • the outer side surface 64 extends in the tangential direction in the circumferential outer shape of the reaction tower 10.
  • the inner side surface 66 faces the outer side surface 64. Further, the inner side surface 66 extends in a direction intersecting with the outer shape of the reaction tower 10. Note that the distance between the outer side surface 64 and the inner side surface 66 may be smaller than the radius of the reaction tower 10. In this example, the tangential direction of the reaction column 10 at the intersection of the inner side surface 66 and the outer shape of the reaction column 10 and the inner side surface 66 form a predetermined angle ⁇ smaller than 90 degrees.
  • the outer shape of the reaction tower 10 may be read as the outer diameter of the reaction tower 10 in consideration of the wall thickness defined by the inner diameter and the outer diameter in the cylindrical reaction tower 10. An intersection line between the inner side surface 66 and the outer shape of the reaction tower 10 is indicated by an intersection point 61 in FIG. Similarly, there may be a case where an intersection line between surfaces is simply indicated by an intersection point.
  • the inner side surface 66 does not protrude into the internal space 15 of the reaction tower 10. Therefore, the exhaust gas introduction pipe 60 of this example is advantageous in that it does not hinder the exhaust gas swirlability in the internal space 15. As the exhaust gas swirls well in the internal space 15, gas-liquid contact is ensured, so that sulfur oxides and the like can be more reliably removed.
  • the injection unit 24 of this example injects liquid from the injection port 23 so as to assist the swirling of the exhaust gas.
  • the ejection unit 24 of the present example ejects liquid in the clockwise direction at each position. Specifically, in this example, the ejection unit 24 of the branch pipe 22-9A ejects liquid in the ⁇ x direction.
  • the ejection unit 24 of the branch pipe 22-9B ejects liquid in the ⁇ y direction.
  • the ejection unit 24 of the branch pipe 22-9C ejects liquid in the + x direction.
  • the ejection unit 24 of the branch pipe 22-9D ejects liquid in the + y direction.
  • the liquid diffuses in a substantially triangular shape with the injection port 23 of the injection unit 24 as one vertex.
  • an angle formed by two sides connected to the injection port 23 which is the apex is an injection angle 25.
  • the injection angle 25 may be not less than 60 degrees and not more than 120 degrees.
  • the center of the injection angle 25 is the main direction. That is, the main direction in this example is a bisector of the injection angle 25.
  • the main direction 26 and the main direction 27 are distinguished from each other.
  • the main direction 26 is the main direction of the ejection unit 24 that ejects liquid to the exhaust gas inlet 62.
  • the main direction 27 is the main direction of the injection unit 24 that does not inject liquid to the exhaust gas inlet 62.
  • the branch pipe 22 provided with the injection unit 24 having the main direction 26 is located at the same height as the exhaust gas inlet 62.
  • the injection port 23 of the branch pipe 22-9B has a main direction 26 because it faces the exhaust gas introduction port 62.
  • the main direction 26 of the branch pipe 22-9B is 90 degrees with respect to the exhaust gas introduction direction 63.
  • the injected liquid has a vector component in the + x direction with respect to the exhaust gas introduced in the ⁇ x direction. Therefore, the introduction of the exhaust gas into the reaction tower 10 is obstructed, and there is a possibility that the reverse vector component liquid flows back to the engine.
  • the main direction 26 and the exhaust gas introduction direction 63 are set to 0 degree or more and 90 degrees or less, so that the liquid can be prevented from flowing backward from the exhaust gas introduction port 62 to the engine.
  • the branch pipe 22 is located at the same height as the exhaust gas inlet 62, and the exhaust gas is introduced from the virtual plane 13 that is orthogonal to the exhaust gas introduction direction 63 and passes through the central axis 11 of the reaction tower 10. Attention is paid to the branch pipe 22 located on the mouth 62 side.
  • the main direction 26 of the injection part 24 of the branch pipe 22 located closer to the exhaust gas introduction port 62 than the virtual plane 13 is 0 degree or more and 90 degrees or less with respect to the exhaust gas introduction direction 63, the liquid Backflow from the exhaust gas inlet 62 to the engine can be suppressed.
  • main direction 26 and the exhaust gas introduction direction 63 are 90 degrees or less, depending on the magnitude of the injection angle 25, some liquids may have a negative vector with respect to the exhaust gas introduction direction 63. However, since the influence of some liquids is limited, it is not considered in this example. If the main direction 26 and the exhaust gas introduction direction 63 are not less than 0 degrees and not more than 90 degrees, the above-described advantageous effects may be obtained.
  • the injection ports 23 of the branch pipe 22-9A, the branch pipe 22-9C, and the branch pipe 22-9D do not face the exhaust gas inlet 62. Therefore, the injection parts 24 of the branch pipes 22-9A, the branch pipes 22-9C, and the branch pipes 22-9D have a main direction 27.
  • the branch pipe 22-9C has a predetermined angle ⁇ (0 ⁇ 0) clockwise around the central axis 11 as compared with the example of FIG. It is assumed that the injection port 23 of the branch pipe 22-9C faces the exhaust gas introduction port 62 when it is provided by being rotated by ( ⁇ ⁇ 90 degrees). Therefore, in the example of FIGS. 3A and 3C and FIGS. 4A and 4C, the injection unit 24 of the branch pipe 22-9C has a main direction 26.
  • FIG. 3A is a top view of AA ′ in the first modification of FIG.
  • FIG. 3B is a diagram illustrating an angle formed by the branch pipe 22-9B and the exhaust gas introduction direction 63 in FIG. 3A.
  • FIG. 3C is a diagram for explaining an angle formed by the branch pipe 22-9C and the exhaust gas introduction direction 63 in FIG. 3A.
  • This example is an example in which the branch pipes 22-9A to 22-9D in FIG. 2 are rotated clockwise by 30 degrees around the central axis 11.
  • the injection ports 23 of the branch pipe 22-9B and the branch pipe 22-9C face the exhaust gas introduction port 62. Therefore, the injection parts 24 of the branch pipes 22-9B and 22-9C have a main direction 26.
  • the injection part 24 of the branch pipe 22-9A and the branch pipe 22-9D has a main direction 27.
  • the main direction 26 of the injection unit 24 in the branch pipe 22-9B is 60 degrees with respect to the exhaust gas introduction direction 63.
  • the main direction 26 of the injection unit 24 in the branch pipe 22-9C is 150 degrees with respect to the exhaust gas introduction direction 63. Therefore, in this example, the ejecting unit 24 of the branch pipe 22-9C does not eject liquid. Thereby, it can suppress that a liquid flows backward from the exhaust gas inlet 62 to an engine.
  • the state which does not eject a liquid is shown by x of a thick line in FIG. 3A.
  • FIG. 4A is a top view of AA ′ in the second modification of FIG.
  • FIG. 4B is a diagram illustrating an angle formed by the branch pipe 22-9B and the exhaust gas introduction direction 63 in FIG. 4A.
  • FIG. 4C is a diagram illustrating an angle formed by the branch pipe 22-9C and the exhaust gas introduction direction 63 in FIG. 4A.
  • This example is an example in which the branch pipes 22-9A to 22-9D in FIG. 2 are rotated by 45 degrees clockwise around the central axis 11. Also in this example, the branch pipes 22-9B and the branch pipes 22-9C have a main direction 26, and the injection portions 24 of the branch pipes 22-9A and the branch pipes 22-9D have a main direction 27.
  • the main direction 26 of the injection unit 24 in the branch pipe 22-9B may be 0 degree or more and 45 degrees or less with respect to the exhaust gas introduction direction 63.
  • the main direction 26 of the injection unit 24 in the branch pipe 22-9B is 45 degrees with respect to the exhaust gas introduction direction 63.
  • the main direction 26 of the injection unit 24 in the branch pipe 22-9C is 135 degrees with respect to the exhaust gas introduction direction 63. Therefore, in this example, the ejecting unit 24 of the branch pipe 22-9C does not eject liquid. Thereby, it can suppress that a liquid flows backward from the exhaust gas inlet 62 to an engine. As in FIG. 3A, the situation where no liquid is ejected is indicated by a bold x in FIG. 4A.
  • FIG. 5 is a top view of AA ′ in the third modification of FIG.
  • the branch pipes 22-9A to 22-9D in FIG. 2 are rotated about 45 degrees clockwise around the central axis 11.
  • the branch pipes 22-9B and the branch pipes 22-9C have a main direction 26, and the injection portions 24 of the branch pipes 22-9A and the branch pipes 22-9D have a main direction 27.
  • the injection unit 24 itself is not provided instead of the injection unit 24 not injecting liquid.
  • the main direction 26 of the injection unit 24 in the branch pipe 22-9C is 135 degrees with respect to the exhaust gas introduction direction 63. Therefore, the injection part 24 is not provided in the branch pipe 22-9C of this example.
  • the branch pipe 22-9C may not be provided.
  • the injection unit 24 is connected to the branch pipe 22-6C and the branch pipe 22-9C. Not provided. Thereby, the density of the injection part 24 of the branch pipe 22 located at the same height as the exhaust gas introduction port 62 in the height direction is made equal to the injection part of the branch pipe 22 located at a different height from the exhaust gas introduction port 62 in the height direction. The density is smaller than 24.
  • the density of the injection part 24 of the branch pipe 22 means the number of the injection parts 24 of the branch pipe 22 provided in the same height.
  • the density of the jetting parts 24 of the branch pipes 22 refers to the number of jetting parts 24 of the branch pipes 22-nA to 22-nD provided at the same height. More specifically, in this example, the density of the injection portion 24 of the branch pipe 22 from the branch pipe 22-6 to the branch pipe 22-9 is 6, but from the branch pipe 22-1 to the branch pipe 22-5.
  • the density of the injection part 24 of the branch pipe 22 is 8.
  • the upper trunk pipe 30 is located on the uppermost 12 side of the trunk pipe 20, and the lower trunk pipe 50 is located on the lowest bottom 14 side of the trunk pipe 20.
  • the middle trunk tube 40 is located between the upper trunk tube 30 and the lower trunk tube 50.
  • the inner diameter of the lower trunk 50 is the largest, the middle trunk 40 is the second largest, and the upper trunk 30 is the smallest.
  • the liquid introduction pipe 28 supplies liquid only to the lower trunk pipe 50.
  • the liquid introduction pipe 38 and the liquid introduction pipe 48 are connected to the upper trunk pipe 30 and the middle trunk pipe 40, respectively, and supply the liquid independently.
  • the upper trunk tube 30 and the middle trunk tube 40 are fixed to each other by the upper connection portion 31, and the middle trunk tube 40 and the lower trunk tube 50 are physically fixed to each other by the lower connection portion 41.
  • the upper trunk pipe 30 of this example has branch pipes 32-1 to 32-3. Each of the branch pipes 32-1 to 32-3 has an injection unit 34.
  • the middle trunk pipe 40 of this example has branch pipes 42-1 to 42-3, and the lower trunk pipe 50 of this example has branch pipes 52-1 to 52-3.
  • the branch pipe 42-1 to the branch pipe 42-3 have an injection part 44, and the branch pipe 52-1 to the branch pipe 52-3 have an injection part 54.
  • the particle size of the liquid droplets ejected from the ejecting section 54 in the branch pipe 52 provided in the lower trunk pipe 50 is the liquid liquid ejected from the ejecting section 34 in the branch pipe 32 provided in the upper trunk pipe 30. It is larger than the particle size of the droplet.
  • the particle size of the liquid droplets ejected from the ejection unit 44 in the branch pipe 42 provided in the middle trunk tube 40 is equal to the liquid ejected from the ejection unit 54 in the branch pipe 52 provided in the lower trunk tube 50.
  • the droplet diameter is smaller than that of the liquid droplets and larger than the particle diameter of the liquid droplets ejected from the ejection portion 34 in the branch pipe 32 provided in the upper trunk tube 30.
  • the opening area of the injection port 23 may be the largest in the injection unit 54, then the injection unit 44, and the injection unit 34 may be the smallest.
  • the concentration of sulfur oxides in the exhaust gas decreases from the bottom 14 side toward the top 12 side.
  • the concentration of sulfur oxides in the exhaust gas decreases from the bottom 14 side toward the top 12 side.
  • the probability that the liquid and sulfur oxides in the exhaust gas come into contact can be improved. . Therefore, the exhaust gas can be treated more reliably than in the case where the size of the droplet is constant in the height direction.
  • the lower trunk pipe 50 may be provided with at least one branch pipe 52 located at the same height as the exhaust gas inlet 62 in the height direction.
  • the branch pipe 52-3 located closest to the bottom 14 among the branch pipes 52 of the lower trunk pipe 50 is located at the same height as the exhaust gas inlet 62.
  • the arrangement of the branch pipe 52 and the injection unit 54 may be the same as that of the branch pipe 22 and the injection unit 24 described with reference to FIGS.
  • the main direction 26 in the injection unit 54 of the branch pipe 52 may be 0 degree or more and 90 degrees or less with respect to the exhaust gas introduction direction 63, and may be 0 degree or more and 45 degrees or less.
  • the density of the branch pipe 52-3 may be made smaller than the densities of the branch pipe 52-1 and the branch pipe 52-2.
  • the main direction of the injection unit 54 that injects a liquid having a particle size larger than that of the injection unit 34 and the injection unit 44 does not have a vector opposite to the exhaust gas introduction direction 63.
  • the volume of the droplet is directly proportional to the mass of the droplet. Therefore, it is possible to effectively suppress large droplets having a relatively large mass and not easily affected by the exhaust gas flow from flowing back from the exhaust gas inlet 62 to the engine.
  • FIG. 7 is a diagram showing an outline of the exhaust gas treatment device 220 in the third embodiment.
  • all the branch pipes 52-1 to 52-3 in the lower trunk pipe 50 are positioned at the same height as the exhaust gas inlet 62.
  • the arrangement of the branch pipe 52 and the injection unit 54 may be the same as that of the branch pipe 22 and the injection unit 24 described with reference to FIGS. Also in this example, the arrangement of the branch pipes 52 and the injection units 54 may be the same as in the third embodiment. Thereby, it is possible to suppress a large droplet from the injection unit 54 from flowing backward from the exhaust gas inlet 62 to the engine.
  • FIG. 8 is a diagram showing an outline of the exhaust gas treatment device 230 in the fourth embodiment.
  • At least one branch pipe 42 provided in the middle trunk pipe 40 may be positioned at the same height as the exhaust gas inlet 62 in the height direction.
  • the branch pipe 42-3 located closest to the bottom 14 among the branch pipes 42 of the middle trunk pipe 40 is located at the same height as the exhaust gas inlet 62.
  • the configuration of the branch pipe 52 is the same as that of the third embodiment.
  • the main direction 26 of the injection portion 44 of the branch pipe 42 that injects the liquid to the exhaust gas introduction port 62 is not less than 0 degrees and not more than 180 degrees with respect to the exhaust gas introduction direction 63. That is, the injection unit 44 in the branch pipe 42 of the middle trunk pipe 40 may inject liquid regardless of the angle formed by the main direction 26 and the exhaust gas introduction direction 63. More specifically, the ejection unit 44 may eject the liquid even when the main direction 26 is greater than 90 degrees and equal to or less than 180 degrees. For comparison purposes, see the examples of branches 22-9C of FIGS. 3A and 3C and FIGS. 4A and 4C.
  • the branch pipe 42 positioned at the same height as the exhaust gas inlet 62 may not be thinned out.
  • the mass of the liquid droplet ejected by the ejection unit 44 is smaller than the mass of the liquid droplet ejected by the ejection unit 54, the ejection unit is smaller than the liquid droplet ejected by the ejection unit 54. The liquid droplets ejected by 44 hardly flow back to the engine.
  • the branch pipe 42 of the middle trunk pipe 40 also overlaps with the exhaust gas inlet 62 in the height direction, so that the length in the height direction of the trunk pipe 20 is reduced. can do.
  • the height direction length of the exhaust gas processing apparatus 230 can be made small. Since the exhaust gas treatment device 230 may be provided in the interior of a ship, which is a limited space, the advantage of being able to downsize the exhaust gas treatment device 230 is important.
  • FIG. 9A is a top view of BB ′ in the first modification of FIG.
  • FIG. 9B is a diagram illustrating an angle formed by the branch pipe 42-3B and the exhaust gas introduction direction 63 in FIG. 9A.
  • FIG. 9C is a diagram illustrating an angle formed by the branch pipe 42-3C and the exhaust gas introduction direction 63 in FIG. 9A.
  • the branch pipe 42-3 and the injection unit 44 of the middle trunk pipe 40 are shown.
  • the main direction 26 of the injection unit 34 and the injection unit 44 for injecting liquid to the exhaust gas introduction port 62 is 0 degree or more and 180 degrees or less with respect to the exhaust gas introduction direction 63. That is, the ejection unit 34 and the ejection unit 44 may eject liquid regardless of the angle formed by the main direction 26 and the exhaust gas introduction direction 63. Further, the branch pipe 32 and the branch pipe 42 positioned at the same height as the exhaust gas inlet 62 may not be thinned out. Thereby, the height direction length of the exhaust gas treatment apparatus 240 of this example can be further reduced as compared with the exhaust gas treatment apparatus 230 of the fourth embodiment.
  • FIG. 11 is a view showing an exhaust gas treatment apparatus 250 in the fifth embodiment.
  • the trunk tube 20 of this example is different from the above-described embodiment.
  • the upper trunk pipe 30 and the middle trunk pipe 40 are connected to each other by an upper joint portion 76.
  • the inner trunk pipe 40 and the lower trunk pipe 50 are connected to each other by a lower joint portion 78.
  • the upper trunk tube 30, the middle trunk tube 40, and the lower trunk tube 50 are fluidly connected in the height direction.
  • the liquid is supplied from the bottom 14 side of the lower trunk pipe 50 through the liquid introduction pipe 28 and reaches the upper trunk pipe 30.
  • the upper joint portion 76 and the lower joint portion 78 may have a frustoconical internal space in which the diameter of the internal space decreases as it proceeds in the height direction.
  • this example is different from the examples of FIGS.
  • the arrangement of the branch pipe 32, the branch pipe 42, or the branch pipe 52 in FIGS. 6 to 10 may be applied to this example.
  • FIG. 12 is a diagram showing an outline of the exhaust gas treatment apparatus 260 in the sixth embodiment.
  • the description will be made using the configuration of the trunk tube 20 of the first embodiment in order to simplify the description.
  • the examples in FIGS. 1 to 11 may be applied as appropriate to the examples after this example.
  • the branch pipe 22 located closest to the bottom 14 side is located closer to the upper part 12 than an intermediate position 65 between the bottom part 14 side and the upper part 12 side of the exhaust gas inlet 62.
  • the length in the height direction of the exhaust gas inlet 62 is indicated by two Lz.
  • the intermediate position 65 is located between the two Lz.
  • FIG. 13A is a diagram for explaining the orientation of the main direction 27 in the seventh embodiment.
  • the main direction 27 of the injection part 24 in the branch pipe 22 located on the uppermost 12 side is inclined toward the bottom part 14 side.
  • the branch pipe 22-1 located on the uppermost side 12 is at a position higher than the exhaust gas inlet 62. Therefore, the main direction of the injection unit 24 provided in the branch pipe 22-1 is described as the main direction 27, not the main direction 26. It is not necessary to limit to the branch pipe 22 positioned on the uppermost 12 side, and the main direction 27 of the injection unit 24 in the at least one branch pipe 22 positioned on the upper 12 side may be inclined to the bottom 14 side. .
  • the branch pipe 22 positioned on the upper side 12 means, for example, the branch pipe 22 positioned above the uppermost portion of the exhaust gas inlet 62.
  • the main direction 27 is preferably adjusted so that the liquid is not ejected toward the bottom 14 side in parallel with the height direction.
  • the main direction 27 may be inclined toward the bottom 14 by a predetermined angle of several degrees to 40 degrees with respect to the horizontal direction, and a predetermined angle of 10 degrees to 30 degrees You may incline only to the bottom part 14 side.
  • the injected liquid absorbs sulfur oxides and the like, it is desirable that the injected liquid is not discharged from the flue portion 90.
  • the injection port 23 of the injection part 24 on the uppermost 12 side faces the bottom part 14 side, it is possible to suppress the liquid from being discharged from the flue part 90 to the outside of the exhaust gas treatment apparatus.
  • the main direction 26 or the main direction 27 of the injection unit 24 provided on the branch pipe 22-2 and the branch pipe 22-3 on the bottom 14 side of the branch pipe 22-1 is an xy plane. And may be parallel.
  • FIG. 13B is a diagram illustrating the orientation of the main direction 26 in the modification of the seventh embodiment.
  • the main direction 26 of the injection unit 24 in the branch pipe 22 located closest to the bottom 14 is inclined toward the upper part 12.
  • the branch pipe 22-9 located closest to the bottom 14 is located at the same height as the exhaust gas inlet 62. Therefore, the main direction of the injection unit 24 provided in the branch pipe 22-9B is referred to as a main direction 26.
  • the injection port 23 of the injection unit 24 closest to the bottom portion 14 faces the upper portion 12 side, the swirlability of exhaust gas can be further improved as compared with the first to sixth embodiments.
  • the main pipe 26 of the injection unit 24 in at least one branch pipe 22 located on the bottom 14 side may be inclined to the upper part 12 side.
  • the branch pipe 22 positioned on the bottom 14 side means, for example, the branch pipe 22 positioned below the uppermost portion of the exhaust gas inlet 62.
  • the main direction 26 is preferably adjusted so that the liquid is not ejected toward the upper portion 12 side in parallel with the height direction.
  • the main direction 26 may be inclined to the upper part 12 side by a predetermined angle of several degrees to 40 degrees with respect to the horizontal direction, and a predetermined angle of 10 degrees to 30 degrees Only the upper 12 side may be inclined.
  • the eaves part 100 is provided inside the reaction tower 10.
  • the eaves part 100 has an outer peripheral region 112 provided in contact with the inner wall 18 of the reaction tower 10.
  • the outer peripheral region 112 may be a joint between the exhaust gas introduction pipe 60 and the outer shape of the reaction tower 10.
  • the outer peripheral region 112 has a circular arc shape conforming to the inner wall 18 of the reaction tower 10.
  • the outer peripheral region 112 in this example has an arc shape from the intersection 61 between the outer shape of the reaction tower 10 and the inner side surface 66 to the intersection 162 between the outer shape of the reaction tower 10 and the outer side surface 64.
  • the heel part 100 protrudes from the inner wall 18 of the reaction tower 10 into the internal space 15.
  • the tip region of the collar portion 100 protruding from the inner wall 18 is referred to as an inner region 114.
  • the inner region 114 in this example is also a straight region connecting both ends of the outer peripheral region 112.
  • the main direction 26 of the injection unit 24 that injects liquid to the exhaust gas introduction port 62 is 90 degrees or less with respect to the exhaust gas introduction direction 63.
  • the main direction 27 of the injection part 24 of the branch pipe 22 located at a different height from the exhaust gas introduction port 62 may be larger than 90 degrees with respect to the exhaust gas introduction direction 63.
  • the main direction 27 may have a vector opposite to the exhaust gas introduction direction 63.
  • the buttocks 100 are provided. Thereby, the liquid which has a vector of the reverse direction with respect to the exhaust gas introduction direction 63 among the liquids injected from the injection part 24 located above the collar part 100 is suppressed from entering the exhaust gas introduction pipe 60. Can do.
  • the flange portion 100 can also prevent the liquid that has grown to a large particle diameter along the inner wall 18 from entering the exhaust gas introduction pipe 60.
  • FIG. 15A is a first modification in the top view of CC ′ of FIG.
  • FIG. 15B is a second modification of the CC ′ top view of FIG.
  • the example of FIGS. 15A and 15B is different from the example of FIG.
  • FIG. 15B is an example in which the branch pipe 22 of FIG. 15A is rotated about 45 degrees clockwise around the central axis 11.
  • At least a part of the collar part 100 may overlap with the branch pipe 22 positioned on the upper part 12 side of the collar part 100 when viewed from the upper surface.
  • viewing from the top means viewing from the top 12 to the bottom 14.
  • the collar part 100 is located between the branch pipe 22-5 and the branch pipe 22-6. A part of the collar part 100 of this example overlaps the branch pipe 22-5A when viewed from the upper surface.
  • the outer peripheral region 112 has an arc shape from an intersection 61 between the outer shape of the reaction tower 10 and the inner side surface 66 to a position 164 that advances further clockwise than the intersection 162 between the outer shape of the reaction tower 10 and the outer side surface 64. It is. Thereby, the area of the collar part 100 when the collar part 100 is viewed from above is larger than that of the ninth embodiment. Therefore, the liquid can be prevented from entering the exhaust gas introduction pipe 60 more effectively than the ninth embodiment.
  • FIG. 16 is a schematic diagram showing a part of the reaction tower 10 in the second modification of the eighth embodiment.
  • the height in the height direction of the outer peripheral region 112 of the flange portion 100 may increase as it proceeds from the inner end to the outer end of the exhaust gas inlet 62.
  • the inner end portion is the end portion on the uppermost 12 side of the inner side surface 66.
  • the outer end portion is the end portion on the uppermost 12 side of the outer side surface 64. In other examples, the outer end may be at the position 164.
  • the height of the outer peripheral region 112 and the inner region 114 in an arbitrary x direction may be the same.
  • the height of the outer peripheral region 112 in this example monotonously increases from the intersection point 61 toward the intersection point 162.
  • the height of the outer peripheral region 112 may be an arc shape along the inner wall 18 that increases from the intersection point 61 toward the intersection point 162 so as to correspond to the turning of the exhaust gas.
  • the swirlability of the exhaust gas introduced into the reaction tower 10 can be promoted by relatively reducing the height (intersection 61) on the central axis 11 side of the flange portion 100 when viewed from the side. .
  • this example may be applied to the example of FIG. In that case, the height of the outer peripheral region 112 may increase from the intersection 61 toward the position 164.
  • FIG. 17 is a diagram showing an outline of the exhaust gas introduction pipe 60 in the ninth embodiment.
  • the exhaust gas introduction pipe 60 may have a first straight part 68 and a second straight part 69.
  • the first straight portion 68 may be provided extending in the height direction.
  • the second straight portion 69 may be provided between the first straight portion 68 and the exhaust gas inlet 62 in the exhaust gas flow path.
  • the second straight part 69 may include a straight part perpendicular to the height direction.
  • the second straight portion 69 of this example is connected to the first straight portion 68 on the bottom portion 14 side.
  • the exhaust gas introduction pipe 60 of this example has a so-called inverted L shape. Therefore, compared with the case where the first straight portion 68 is connected to the second straight portion 69 on the upper portion 12 side, the injected liquid may easily flow back to the engine. Therefore, when the exhaust gas introduction pipe 60 of this example is used, the configuration of the main direction 26 and the injection unit 24 and the configuration of the flange unit 100 described in FIGS. 1 to 16 may be applied. This may prevent the liquid from flowing back to the engine.
  • FIG. 18 is a view showing another example of the exhaust gas introduction pipe 60.
  • the second straight part 69 of this example is connected to the first straight part 68 on the upper part 12 side. That is, the exhaust gas introduction pipe 60 of this example has an L shape in the vicinity of the position where it is connected to the reaction tower 10. This is different from the ninth embodiment.
  • the configuration of the exhaust gas introduction pipe 60 may be appropriately determined on the upstream side of the exhaust gas from the first straight portion 68.
  • the exhaust gas introduction pipe 60 of this example includes a fourth straight portion 169, a third straight portion 168, a fifth straight portion 167, a first straight portion 68, and a second straight portion 69 in order from upstream to downstream of the exhaust gas.
  • the third straight portion 168 extends in the height direction similarly to the first straight portion 68.
  • the fourth straight part 169 includes a straight part perpendicular to the height direction on the bottom 14 side of the third straight part 168.
  • the fifth straight part 167 is provided between the first straight part 68 and the third straight part 168.
  • the fifth straight part 167 includes a straight part perpendicular to the height direction on the upper part 12 side of the first straight part 68 and the third straight part 168. Thereby, in the flow path of exhaust gas, a convex part is provided upward in the height direction.
  • the height direction length of the first straight part 68 functions as a wall that prevents the back flow of the liquid. Therefore, the back flow of the liquid can be suppressed by the configuration of the exhaust gas introduction pipe 60 as compared with the ninth embodiment.
  • the main direction 26 and the configuration of the injection unit 24 and the configuration of the collar unit 100 described in FIGS. 1 to 16 may be applied.
  • Liquid introduction pipe 50 .. Lower trunk pipe, 52 .. Branch pipe, 54 .. Injection section, 60 .. Exhaust gas introduction pipe, 61. Intersection, 62 ⁇ Exhaust gas inlet, 63 ⁇ Exhaust gas introduction direction, 64 ⁇ Outside side surface, 65 ⁇ Intermediate position, 66 ⁇ Inside side surface, 68 ⁇ First straight , 69 ⁇ 2nd straight portion, 72 ⁇ Upper liquid return ring, 74 ⁇ ⁇ Lower liquid return ring, 76 ⁇ ⁇ Upper joint portion, 78 ⁇ ⁇ Lower joint portion, 80 ⁇ ⁇ Reducer portion, 90 ⁇ ⁇ ⁇ • Flue section, 100 ⁇ Hut, 112 ⁇ Outer peripheral area, 114 ⁇ Inner area, 162 ⁇ Intersection, 164 ⁇ Position, 167 ⁇ Fifth straight section, 168 ⁇ Third straight section, 169 ⁇ Fourth straight section, 200 ..Exhaust gas treatment device, 210 ..Exhaust gas treatment device, 220 ..

Abstract

When a nozzle provided in a location identical in height to an exhaust gas intake port discharges a fluid toward the exhaust gas intake port, sometimes the fluid discharged from the nozzle flows back toward the engine from the exhaust gas intake port. There is a possibility of engine failure when a fluid enters an engine. Consequently, it is preferable to prevent the backflow of a fluid toward an engine from an exhaust gas intake port. Thus, provided is an exhaust gas processing device equipped with a reaction column having an internal space that extends in the height direction, a trunk tube for transporting a fluid, and a plurality of branch tubes which each have a spraying unit for spraying a fluid supplied from the trunk tube, and are provided at different heights from one another, wherein: the reaction column has an exhaust gas intake port located in a floor-side lateral surface; and the principal direction, defined as the center of the spraying angle of any spraying unit that sprays a fluid at the exhaust gas intake port, is 90° or less relative to the exhaust gas intake direction of the exhaust gas introduced through the exhaust gas intake port, for any branch tube among the branch tubes that is positioned at a height identical to that of the exhaust gas intake port in the height direction, and is positioned on the exhaust gas intake port side of a plane that passes through the center axis of the reaction column and is orthogonal to the exhaust gas intake direction.

Description

排ガス処理装置Exhaust gas treatment equipment
 本発明は、排ガス処理装置に関する。 The present invention relates to an exhaust gas treatment apparatus.
 従来、反応塔の側面に設けられた排ガス導入口から反応塔内部に導入した排ガスと、反応塔内部に設けられたノズルから噴射される液体とを気液接触させることにより、排ガス中の硫黄酸化物(SOx)等を除去していた。
[先行技術文献]
[特許文献]
Conventionally, exhaust gas introduced into the reaction tower from the exhaust gas inlet provided on the side surface of the reaction tower and liquid injected from the nozzle provided in the reaction tower are brought into gas-liquid contact, thereby oxidizing sulfur in the exhaust gas. Things (SOx) etc. were removed.
[Prior art documents]
[Patent Literature]
 [特許文献1]特開平06-190240号公報
 [特許文献2]特開平08-281055号公報
[Patent Document 1] Japanese Patent Laid-Open No. 06-190240 [Patent Document 2] Japanese Patent Laid-Open No. 08-281055
解決しようとする課題Challenges to be solved
 排ガス導入口の高さと同じ位置に設けられたノズルが排ガス導入口に向けて液体を放出する場合、ノズルから放出された液体が排ガス導入口からエンジンに向けて逆流することがある。液体がエンジンに入り込むとエンジンが壊れる可能性がある。それゆえ、排ガス導入口からエンジンへの液体の逆流を抑制することが望ましい。 When the nozzle provided at the same position as the height of the exhaust gas inlet discharges liquid toward the exhaust gas inlet, the liquid discharged from the nozzle may flow backward from the exhaust gas inlet toward the engine. If liquid enters the engine, the engine may break. Therefore, it is desirable to suppress the backflow of liquid from the exhaust gas inlet to the engine.
一般的開示General disclosure
 本発明の第1の態様においては、排ガスを処理する排ガス処理装置を提供する。排ガス処理装置は、反応塔と、幹管と、複数の枝管とを備えてよい。反応塔は、高さ方向に延伸する内部空間を有してよい。高さ方向は、排ガスが導入される底部側から排ガスが排出される上部側への方向であってよい。幹管は、液体を搬送してよい。幹管は、反応塔の内部空間において高さ方向に延伸してよい。複数の枝管は、幹管の外壁から反応塔の内壁に向けて延伸して設けられてよい。複数の枝管は、噴射部を各々有してよい。複数の枝管は、各々異なる高さ位置に設けられてよい。噴射部は、幹管から供給される液体を噴射してよい。反応塔は、排ガスを導入して反応塔の内面に沿って旋回上昇させる排ガス導入口を底部側の側面に有してよい。複数の枝管のうち高さ方向において排ガス導入口と同じ高さに位置し、排ガス導入方向に直交し且つ反応塔の中心軸を通る面よりも排ガス導入口側に位置する枝管において、噴射部の主方向が、排ガス導入方向に対して90度以下であってよい。主方向は、排ガス導入口に対して液体を噴射する噴射部の噴射角度の中心で規定されてよい。排ガス導入方向は、排ガス導入口から導入される排ガスの方向であってよい。 In the first aspect of the present invention, an exhaust gas treatment apparatus for treating exhaust gas is provided. The exhaust gas treatment apparatus may include a reaction tower, a trunk pipe, and a plurality of branch pipes. The reaction tower may have an internal space extending in the height direction. The height direction may be a direction from the bottom side where the exhaust gas is introduced to the upper side where the exhaust gas is discharged. The trunk tube may carry liquid. The main pipe may extend in the height direction in the internal space of the reaction tower. The plurality of branch pipes may be provided extending from the outer wall of the trunk pipe toward the inner wall of the reaction tower. Each of the plurality of branch pipes may include an injection unit. The plurality of branch pipes may be provided at different height positions. The ejection unit may eject the liquid supplied from the trunk tube. The reaction tower may have an exhaust gas inlet on the side surface on the bottom side that introduces exhaust gas and swirls and rises along the inner surface of the reaction tower. In the branch pipe located at the same height as the exhaust gas inlet in the height direction among the plurality of branch pipes, the branch pipe is located on the exhaust gas inlet side of the plane orthogonal to the exhaust gas introduction direction and passing through the central axis of the reaction tower. The main direction of the part may be 90 degrees or less with respect to the exhaust gas introduction direction. The main direction may be defined at the center of the injection angle of the injection unit that injects the liquid with respect to the exhaust gas inlet. The exhaust gas introduction direction may be the direction of the exhaust gas introduced from the exhaust gas inlet.
 噴射部の主方向は、排ガス導入方向に対して45度以下であってよい。 The main direction of the injection unit may be 45 degrees or less with respect to the exhaust gas introduction direction.
 高さ方向において排ガス導入口と同じ高さに位置する噴射部の密度は、高さ方向において排ガス導入口と異なる高さに位置する噴射部の密度よりも小さくてよい。 The density of the injection part located at the same height as the exhaust gas inlet in the height direction may be smaller than the density of the injection part located at a different height from the exhaust gas inlet in the height direction.
 幹管は、上部幹管と、下部幹管とを有してよい。上部幹管は、最も上部側に位置してよい。下部幹管は、最も底部側に位置してよい。下部幹管に設けられた枝管における噴射部から噴射される液体の液滴の粒径は、上部幹管に設けられた枝管における噴射部から噴射される液体の液滴の粒径よりも大きくてよい。複数の枝管のうち高さ方向において排ガス導入口と同じ高さに位置する枝管は、下部幹管に設けられてよい。 The trunk tube may have an upper trunk tube and a lower trunk tube. The upper trunk can be located on the uppermost side. The lower trunk can be located on the most bottom side. The particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the lower trunk pipe is larger than the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the upper trunk pipe. It can be big. The branch pipe located at the same height as the exhaust gas inlet in the height direction among the plurality of branch pipes may be provided in the lower trunk pipe.
 幹管は、上部幹管と下部幹管との間に中部幹管を有してよい。中部幹管に設けられた枝管における噴射部から噴射される液体の液滴の粒径は、下部幹管に設けられた枝管における噴射部から噴射される液体の液滴の粒径よりも小さくてよい。中部幹管に設けられた枝管における噴射部から噴射される液体の液滴の粒径は、上部幹管に設けられた枝管における噴射部から噴射される液体の液滴の粒径よりも大きくてよい。 The trunk pipe may have a middle trunk pipe between the upper trunk pipe and the lower trunk pipe. The particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the middle trunk pipe is larger than the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the lower trunk pipe. It can be small. The particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the middle trunk pipe is larger than the particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the upper trunk pipe. It can be big.
 中部幹管に設けられた少なくとも1つの枝管が、高さ方向において排ガス導入口と同じ高さに位置してよい。中部幹管に設けられた枝管において、主方向は、排ガス導入方向に対して0度以上180度以下であってよい。主方向は、排ガス導入口に対して液体を噴射する噴射部の噴射角度の中心で規定されてよい。 At least one branch pipe provided in the middle trunk pipe may be located at the same height as the exhaust gas inlet in the height direction. In the branch pipe provided in the middle trunk pipe, the main direction may be 0 degree or more and 180 degrees or less with respect to the exhaust gas introduction direction. The main direction may be defined at the center of the injection angle of the injection unit that injects the liquid with respect to the exhaust gas inlet.
 上部幹管に設けられた少なくとも1つの枝管が、高さ方向において排ガス導入口と同じ高さに位置してよい。上部幹管に設けられた枝管において、主方向は、排ガス導入方向に対して0度以上180度以下であってよい。主方向は、排ガス導入口に対して液体を噴射する噴射部の噴射角度の中心で規定されてよい。 At least one branch pipe provided in the upper trunk pipe may be located at the same height as the exhaust gas inlet in the height direction. In the branch pipe provided in the upper trunk pipe, the main direction may be 0 degree or more and 180 degrees or less with respect to the exhaust gas introduction direction. The main direction may be defined at the center of the injection angle of the injection unit that injects the liquid with respect to the exhaust gas inlet.
 複数の枝管のうち最も底部側に位置する枝管は、排ガス導入口の底部側と上部側との中間位置よりも上部側に位置してよい。 Among the plurality of branch pipes, the branch pipe located on the most bottom side may be located on the upper side of the intermediate position between the bottom side and the upper side of the exhaust gas inlet.
 複数の枝管のうち底部側に位置する少なくとも1つの枝管における噴射部の主方向は、上部側に傾いていてよい。 The main direction of the injection part in at least one branch pipe located on the bottom side among the plurality of branch pipes may be inclined to the upper side.
 複数の枝管のうち上部側に位置する少なくとも1つの枝管における噴射部の主方向は、底部側に傾いていてよい。 The main direction of the injection part in at least one branch pipe located on the upper side among the plurality of branch pipes may be inclined toward the bottom side.
 反応塔は、排ガス導入口の最も上部側に庇部を有してよい。 The reaction tower may have a flange on the uppermost side of the exhaust gas inlet.
 庇部は、排ガス導入方向に延伸してよい。上面から見た場合、庇部の少なくとも一部は、複数の枝管のうち庇部よりも上部側に位置する枝管と重なってよい。 庇 may extend in the direction of exhaust gas introduction. When viewed from the upper surface, at least a part of the collar portion may overlap with a branch pipe located on the upper side of the collar section among the plurality of branch pipes.
 庇部は、外周領域を有してよい。外周領域は、反応塔の内壁に接して設けられてよい。外周領域は、排ガス導入口の内側端部から外側端部に進むにつれて高さ方向の高さが増加してよい。 庇 may have an outer peripheral region. The outer peripheral region may be provided in contact with the inner wall of the reaction tower. The height in the height direction of the outer peripheral region may increase as it proceeds from the inner end to the outer end of the exhaust gas inlet.
 排ガス処理装置は、排ガス導入管をさらに備えてよい。排ガス導入管は、反応塔の外側から排ガス導入口に接続してよい。排ガス導入管は、外側側面と、内側側面とを有してよい。外側側面は、反応塔の外形の接線方向に延伸してよい。内側側面は、外側側面に対向して設けられてよい。内側側面は、反応塔の外形と交差する方向に延伸してよい。内側側面は、反応塔の内部空間に突出しないとしてよい。 The exhaust gas treatment device may further include an exhaust gas introduction pipe. The exhaust gas introduction pipe may be connected to the exhaust gas introduction port from the outside of the reaction tower. The exhaust gas introduction pipe may have an outer side surface and an inner side surface. The outer side surface may extend in the tangential direction of the outer shape of the reaction tower. The inner side surface may be provided to face the outer side surface. The inner side surface may extend in a direction that intersects the outer shape of the reaction tower. The inner side surface may not protrude into the internal space of the reaction tower.
 排ガス導入管は、第1直線部と第2直線部とを有してよい。第1直線部は、高さ方向に延伸してよい。第2直線部は、高さ方向に直交する直線部を含んでよい。第2直線部は、排ガスの流路において第1直線部と排ガス導入口との間に設けられてよい。 The exhaust gas introduction pipe may have a first straight part and a second straight part. The first straight part may extend in the height direction. The second straight part may include a straight part perpendicular to the height direction. The second straight part may be provided between the first straight part and the exhaust gas inlet in the exhaust gas flow path.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
第1実施形態における排ガス処理装置200の概要を示す図である。It is a figure which shows the outline | summary of the waste gas processing apparatus 200 in 1st Embodiment. 図1のA‐A'上面視図である。FIG. 2 is a top view of AA ′ of FIG. 1. 図1の第1変形例におけるA‐A'上面視図である。FIG. 7 is a top view of AA ′ in the first modification example of FIG. 1. 図3Aにおける枝管22‐9Bと排ガス導入方向63とが成す角度を説明する図である。It is a figure explaining the angle which the branch pipe 22-9B and the exhaust gas introduction direction 63 in FIG. 3A make. 図3Aにおける枝管22‐9Cと排ガス導入方向63とが成す角度を説明する図である。It is a figure explaining the angle which the branch pipe 22-9C and the exhaust gas introduction direction 63 in FIG. 3A make. 図1の第2変形例におけるA‐A'上面視図である。FIG. 10 is a top view of AA ′ in the second modification of FIG. 1. 図4Aにおける枝管22‐9Bと排ガス導入方向63とが成す角度を説明する図である。It is a figure explaining the angle which the branch pipe 22-9B and the exhaust gas introduction direction 63 in FIG. 4A make. 図4Aにおける枝管22‐9Cと排ガス導入方向63とが成す角度を説明する図である。It is a figure explaining the angle which branch pipe 22-9C and exhaust gas introduction direction 63 in FIG. 4A comprise. 図1の第3変形例におけるA‐A'上面視図である。FIG. 10 is a top view of AA ′ in the third modification of FIG. 1. 第2実施形態における排ガス処理装置210の概要を示す図である。It is a figure which shows the outline | summary of the waste gas processing apparatus 210 in 2nd Embodiment. 第3実施形態における排ガス処理装置220の概要を示す図である。It is a figure which shows the outline | summary of the waste gas processing apparatus 220 in 3rd Embodiment. 第4実施形態における排ガス処理装置230の概要を示す図である。It is a figure which shows the outline | summary of the waste gas processing apparatus 230 in 4th Embodiment. 図8の第1変形例におけるB‐B'上面視図である。FIG. 10 is a top view of BB ′ in the first modified example of FIG. 8. 図9Aにおける枝管42‐3Bと排ガス導入方向63とが成す角度を説明する図である。It is a figure explaining the angle which the branch pipe 42-3B and the exhaust gas introduction direction 63 in FIG. 9A make. 図9Aにおける枝管42‐3Cと排ガス導入方向63とが成す角度を説明する図である。It is a figure explaining the angle which the branch pipe 42-3C and the waste gas introduction direction 63 in FIG. 9A make. 図8の第2変形例における排ガス処理装置240を示す図である。It is a figure which shows the waste gas processing apparatus 240 in the 2nd modification of FIG. 第5実施形態における排ガス処理装置250を示す図である。It is a figure which shows the waste gas processing apparatus 250 in 5th Embodiment. 第6実施形態における排ガス処理装置260の概要を示す図である。It is a figure which shows the outline | summary of the waste gas processing apparatus 260 in 6th Embodiment. 第7実施形態における主方向27の向きを説明する図である。It is a figure explaining the direction of the main direction 27 in 7th Embodiment. 第7実施形態の変形例における主方向26の向きを説明する図である。It is a figure explaining the direction of the main direction 26 in the modification of 7th Embodiment. (a)は、第8実施形態における反応塔10の一部を示す概要図である。(b)は、(a)のC‐C'上面視図である。(A) is a schematic diagram which shows a part of reaction tower 10 in 8th Embodiment. (B) is a CC 'top view of (a). 図14のC‐C'上面視図における第1変形例である。It is the 1st modification in CC 'top view of Drawing 14. 図14のC‐C'上面視図における第2変形例である。It is the 2nd modification in CC 'top view of Drawing 14. 第8実施形態の第2変形例における反応塔10の一部を示す概要図である。It is a schematic diagram which shows a part of reaction tower 10 in the 2nd modification of 8th Embodiment. 第9実施形態における排ガス導入管60の概要を示す図である。It is a figure which shows the outline | summary of the waste gas introduction pipe | tube 60 in 9th Embodiment. 排ガス導入管60の他の例を示す図である。It is a figure which shows the other example of the waste gas introduction pipe | tube 60. FIG.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、第1実施形態における排ガス処理装置200の概要を示す図である。図1は、排ガス処理装置200の正面視図である。図1では、排ガス処理装置200の断面を示す。ただし、理解を容易にすることを目的として、幹管20、枝管22、噴射部24、液体導入管28およびバッフル29は、断面ではなく側面を示す。また、反応塔10における紙面手前の位置に設けられる排ガス導入口62を点線により示す。 FIG. 1 is a diagram showing an outline of an exhaust gas treatment apparatus 200 in the first embodiment. FIG. 1 is a front view of the exhaust gas treatment apparatus 200. In FIG. 1, the cross section of the exhaust gas processing apparatus 200 is shown. However, for the purpose of facilitating understanding, the trunk tube 20, the branch tube 22, the ejection unit 24, the liquid introduction tube 28, and the baffle 29 show side surfaces rather than cross sections. Moreover, the exhaust gas inlet 62 provided in the position in front of the paper surface in the reaction tower 10 is indicated by a dotted line.
 本例では、反応塔10の長手方向をz方向とする。z方向は、反応塔10の底部14側から上部12側への高さ方向に等しい。xおよびy方向は、互いに垂直である。本例において、x、yおよびz方向は、右手系を構成する。z方向は、xおよびy方向を有する平面に対して垂直な方向である。z方向は、船舶の床面に垂直な方向であってよいし、地面に垂直な方向であってもよい。ただし、z方向はこれらの方向の例に限定されない。z方向は、地面に平行な方向であってもよい。なお、本例において、+z方向を「上」、「上方」または「上部」と称し、-z方向を「下」、「下方」、「下部」または「底部」と称する場合がある。 In this example, the longitudinal direction of the reaction tower 10 is the z direction. The z direction is equal to the height direction from the bottom 14 side to the top 12 side of the reaction tower 10. The x and y directions are perpendicular to each other. In this example, the x, y and z directions constitute a right-handed system. The z direction is a direction perpendicular to a plane having x and y directions. The z direction may be a direction perpendicular to the floor of the ship or a direction perpendicular to the ground. However, the z direction is not limited to the examples of these directions. The z direction may be a direction parallel to the ground. In this example, the + z direction may be referred to as “upper”, “upward”, or “upper”, and the −z direction may be referred to as “lower”, “lower”, “lower”, or “bottom”.
 排ガス処理装置200は、反応塔10と、幹管20と、複数の枝管22と、液体導入管28とバッフル29と、上部液返しリング72と、下部液返しリング74と、レデューサ(reducer)部80と、煙道部90とを備える。本例の反応塔10および煙道部90は、高さ方向に延伸する筒形状の内部空間15を有する。また、本例のレデューサ部80は、円錐台形状の内部空間15を有する。本例の反応塔10、レデューサ部80および煙道部90における内部空間15は、共通の中心軸11を有する。本例の中心軸11は、z方向に平行である。なお、本例の中心軸11は、幹管20の中心軸でもある。 The exhaust gas treatment apparatus 200 includes a reaction tower 10, a main pipe 20, a plurality of branch pipes 22, a liquid introduction pipe 28, a baffle 29, an upper liquid return ring 72, a lower liquid return ring 74, and a reducer. Part 80 and a flue part 90 are provided. The reaction tower 10 and the flue portion 90 of this example have a cylindrical internal space 15 extending in the height direction. Further, the reducer portion 80 of the present example has a truncated cone-shaped internal space 15. The internal space 15 in the reaction tower 10, the reducer section 80 and the flue section 90 of this example has a common central axis 11. The central axis 11 in this example is parallel to the z direction. The central axis 11 in this example is also the central axis of the trunk tube 20.
 反応塔10は、底部14側の側面に排ガス導入口62を有する。排ガス導入口62は、反応塔10を正面視した場合に矩形の断面を有する導管であってよい。本例の排ガス導入口62は、後述する排ガス導入管と反応塔10との接合部である。 The reaction tower 10 has an exhaust gas inlet 62 on the side surface on the bottom 14 side. The exhaust gas inlet 62 may be a conduit having a rectangular cross section when the reaction tower 10 is viewed from the front. The exhaust gas introduction port 62 in this example is a joint between an exhaust gas introduction pipe (to be described later) and the reaction tower 10.
 排ガスは、底部14側に位置する排ガス導入口62から反応塔10へ導入される。排ガスは、船舶のエンジン等の動力装置から排出された排ガスであってよい。排ガスは、反応塔10の内面に沿って旋回上昇するように排ガス導入口62から反応塔10に導入される。本例の排ガスは、反応塔10の内部空間15において螺旋状に旋回する。 The exhaust gas is introduced into the reaction tower 10 from the exhaust gas inlet 62 located on the bottom 14 side. The exhaust gas may be exhaust gas discharged from a power device such as a ship engine. The exhaust gas is introduced into the reaction tower 10 from the exhaust gas inlet 62 so as to swirl upward along the inner surface of the reaction tower 10. The exhaust gas in this example swirls spirally in the internal space 15 of the reaction tower 10.
 レデューサ部80は、反応塔10よりも上方に設けられる。レデューサ部80上には、煙道部90が設けられる。レデューサ部80は、異なる径を有する2つの筒を接続する継手部であってよい。レデューサ部80は、+z方向の端部に小径部を有し、-z方向の端部に大径部を有してよい。本例において、レデューサ部80の大径部は反応塔10に接続し、レデューサ部80の小径部は煙道部90に接続する。これにより、反応塔10と煙道部90とを直接接続することにより高さ方向において筒の内径が不連続に変化する場合と比較して、排ガス処理装置200における圧力損失を低減することができる。排ガスは、反応塔10の内部で液体により洗浄された後、煙道部90から排ガス処理装置200の外へ排出される。 The reducer unit 80 is provided above the reaction tower 10. A flue section 90 is provided on the reducer section 80. The reducer part 80 may be a joint part that connects two cylinders having different diameters. The reducer 80 may have a small diameter portion at the end in the + z direction and a large diameter portion at the end in the −z direction. In this example, the large diameter part of the reducer part 80 is connected to the reaction tower 10, and the small diameter part of the reducer part 80 is connected to the flue part 90. Thereby, the pressure loss in the exhaust gas treatment apparatus 200 can be reduced by directly connecting the reaction tower 10 and the flue section 90 as compared with the case where the inner diameter of the cylinder changes discontinuously in the height direction. . The exhaust gas is washed with liquid inside the reaction tower 10 and then discharged from the flue 90 to the outside of the exhaust gas treatment apparatus 200.
 本例の反応塔10は、底部14から上部12までの高さ方向の長さが3[m]であり、内径が700[mm]である。また、本例のレデューサ部80は高さ方向の長さが654[mm]であり、小径部の内径は420[mm]である。 The reaction tower 10 of this example has a length in the height direction from the bottom 14 to the top 12 of 3 [m] and an inner diameter of 700 [mm]. Further, the reducer portion 80 of this example has a length in the height direction of 654 [mm], and the inner diameter of the small diameter portion is 420 [mm].
 反応塔10の底部14は、反応塔10の内部で噴射された後に落下した液体を一時的に貯留する排水貯留部として機能してよい。底部14に貯留された液体は、最終的に排水導出部17から反応塔10の外へ排出されてよい。 The bottom part 14 of the reaction tower 10 may function as a drainage storage part for temporarily storing the liquid that has fallen after being jetted inside the reaction tower 10. The liquid stored in the bottom 14 may be finally discharged out of the reaction tower 10 from the drainage outlet 17.
 本例の液体導入管28は、反応塔10の底部14近傍において反応塔10の側面から内部に導入される。本例の液体導入管28は、L字形状に屈曲した管である。本例の液体導入管28は、中心軸11と平行に幹管20に水密接続される。液体導入管28には、反応塔10の外部からポンプ等を用いて、海水、湖水、川水またはアルカリ性の液体が導入されてよい。液体導入管28と幹管20とは流体連結されており、液体導入管28に導入された液体は幹管20へ供給されてよい。 The liquid introduction pipe 28 of this example is introduced into the inside from the side surface of the reaction tower 10 in the vicinity of the bottom 14 of the reaction tower 10. The liquid introduction tube 28 of this example is a tube bent into an L shape. The liquid introduction pipe 28 in this example is watertightly connected to the trunk pipe 20 in parallel with the central axis 11. Seawater, lake water, river water, or an alkaline liquid may be introduced into the liquid introduction pipe 28 from the outside of the reaction tower 10 using a pump or the like. The liquid introduction pipe 28 and the trunk pipe 20 are fluidly connected, and the liquid introduced into the liquid introduction pipe 28 may be supplied to the trunk pipe 20.
 本例のバッフル29は、液体導入管28に設置される。バッフル29は、x‐y平面に平行な平面を有してよい。本例のバッフル29は、幹管20が通ることができる貫通開口を有する円板である。バッフル29は、排ガス導入口62よりも底部14側に設けられる。バッフル29は、排ガスが導入される領域と排水を貯留する領域とに、反応塔10を区切る機能を有してよい。 The baffle 29 in this example is installed in the liquid introduction pipe 28. The baffle 29 may have a plane parallel to the xy plane. The baffle 29 of this example is a disk having a through opening through which the trunk tube 20 can pass. The baffle 29 is provided closer to the bottom 14 than the exhaust gas inlet 62. The baffle 29 may have a function of dividing the reaction tower 10 into a region where exhaust gas is introduced and a region where waste water is stored.
 本例の幹管20は、反応塔10の内部空間15において高さ方向に延伸する。幹管20は、液体導入管28から供給された液体を高さ方向に搬送してよい。幹管20が液体を高さ方向に搬送するとは、液体を高さ方向に搬送する経路を幹管20が提供することを意味してよい。幹管20には複数の枝管22が接続される。幹管20から枝管22へ液体が供給されるよう、幹管20と枝管22とは流体連結されている。 The trunk pipe 20 of this example extends in the height direction in the internal space 15 of the reaction tower 10. The trunk tube 20 may convey the liquid supplied from the liquid introduction tube 28 in the height direction. The fact that the main pipe 20 conveys the liquid in the height direction may mean that the main pipe 20 provides a path for conveying the liquid in the height direction. A plurality of branch pipes 22 are connected to the trunk pipe 20. The trunk tube 20 and the branch tube 22 are fluidly connected so that the liquid is supplied from the trunk tube 20 to the branch tube 22.
 複数の枝管22は、幹管20の外壁21から反応塔10の内壁18に向けて延伸して設けられる。枝管22の長手方向の一端は、幹管20に溶接されてよい。本例では、同じ高さ位置に4つの枝管22‐A、22‐B、22‐Cおよび22-Dが設けられる。4つの枝管22‐Aから22-Dは、幹管20を上面視した場合に十字を形成する。なお、図1においては枝管22‐Dを省略する。 The plurality of branch pipes 22 are provided extending from the outer wall 21 of the trunk pipe 20 toward the inner wall 18 of the reaction tower 10. One end in the longitudinal direction of the branch pipe 22 may be welded to the main pipe 20. In this example, four branch pipes 22-A, 22-B, 22-C and 22-D are provided at the same height position. The four branch pipes 22-A to 22-D form a cross when the trunk pipe 20 is viewed from above. In FIG. 1, the branch pipe 22-D is omitted.
 本例の枝管22‐1Aから22‐nAは、高さ方向において重なるよう設けられる。本例の枝管22‐1Aから22‐nAは、高さ方向において一定間隔で離間して各々異なる高さ位置に設けられる。なお、nは2以上の自然数である。本例においては、n=9である。枝管22の高さ方向におけるピッチは0.2[m]であってよい。枝管22‐1Bから枝管22‐nBも、各々異なる高さ位置に所定のピッチだけ離間して設けられる。枝管22‐1Cから枝管22‐nCおよび枝管22‐1Dから枝管22‐nDも同様である。 The branch pipes 22-1A to 22-nA in this example are provided so as to overlap in the height direction. The branch pipes 22-1A to 22-nA of the present example are provided at different height positions spaced apart at a constant interval in the height direction. Note that n is a natural number of 2 or more. In this example, n = 9. The pitch in the height direction of the branch pipes 22 may be 0.2 [m]. The branch pipes 22-1B to 22-nB are also provided at different height positions by a predetermined pitch. The same applies to the branch pipe 22-1C to the branch pipe 22-nC and the branch pipe 22-1D to the branch pipe 22-nD.
 少なくとも1つの枝管22は、高さ方向において排ガス導入口62と同じ高さに位置してよい。本例において、枝管22‐6から枝管22‐9は、排ガス導入口62と同じ高さに位置する。なお、本例において、枝管22が排ガス導入口62と同じ高さに位置するとは、枝管22の高さ位置が、排ガス導入口62の高さ方向長さの範囲内に位置することを言う。本例では、排ガス導入口62と同じ高さに位置する枝管22から噴射される液体の噴射方向を工夫することにより、液体がエンジンへ逆流することを抑制することができる。 The at least one branch pipe 22 may be located at the same height as the exhaust gas inlet 62 in the height direction. In this example, the branch pipes 22-6 to 22-9 are located at the same height as the exhaust gas inlet 62. In addition, in this example, the branch pipe 22 is located at the same height as the exhaust gas inlet 62. The height position of the branch pipe 22 is located within the range of the length in the height direction of the exhaust gas inlet 62. To tell. In this example, it is possible to prevent the liquid from flowing back to the engine by devising the injection direction of the liquid injected from the branch pipe 22 located at the same height as the exhaust gas inlet 62.
 複数の枝管22の各々は、噴射部24を有する。本例では、1つの枝管22は2つの噴射部24を有する。なお、1つの枝管22が有する噴射部24の数は、2つに限定されず3つ以上であってもよい。噴射部24は、ねじ込み手段により枝管22に接続されてよく、溶接により枝管22に接続されてもよい。 Each of the plurality of branch pipes 22 has an injection unit 24. In this example, one branch pipe 22 has two injection parts 24. In addition, the number of the injection parts 24 which one branch pipe 22 has is not limited to two, Three or more may be sufficient. The injection unit 24 may be connected to the branch pipe 22 by screwing means, or may be connected to the branch pipe 22 by welding.
 噴射部24は、幹管20から供給される液体を反応塔10の内部において噴射する。噴射された液体は、細かい水滴または霧状に変化する。噴射された液体と排ガスとを気液接触させることにより、排ガス中の硫黄酸化物等は液体に吸収される。これにより、排ガスを洗浄することができる。噴射部24は、空円錐状に液体を噴射するスプレーノズルであってよい。本例では、図1の×印を付した部分に、噴射部24の噴射口が設けられる。 The injection unit 24 injects the liquid supplied from the trunk tube 20 inside the reaction tower 10. The jetted liquid changes into a fine water droplet or mist. By bringing the injected liquid and exhaust gas into gas-liquid contact, sulfur oxides and the like in the exhaust gas are absorbed by the liquid. Thereby, exhaust gas can be washed. The ejection unit 24 may be a spray nozzle that ejects liquid in an empty cone shape. In this example, the injection port of the injection part 24 is provided in the part which attached | subjected x mark of FIG.
 図2は、図1のA‐A'上面視図である。本例はA‐A'上面視図を示すことにより、枝管22‐9について説明する。ただし、枝管22‐6から枝管22‐8も枝管22‐9と同じ構成を有してよい。 FIG. 2 is a top view of AA ′ of FIG. In this example, the branch pipe 22-9 will be described by showing a top view of AA ′. However, the branch pipes 22-6 to 22-8 may have the same configuration as the branch pipes 22-9.
 排ガス処理装置200は、反応塔10の外側から排ガス導入口62に接続する排ガス導入管60を備える。本例の排ガス導入管60は、y‐z平面に平行な矩形断面を有する管である。本例の排ガス導入管60は、x方向に延伸して反応塔10の側面に接続する。排ガス導入管60は、外側側面64と、内側側面66とを有する。 The exhaust gas treatment apparatus 200 includes an exhaust gas introduction pipe 60 connected to the exhaust gas introduction port 62 from the outside of the reaction tower 10. The exhaust gas introduction pipe 60 of this example is a pipe having a rectangular cross section parallel to the yz plane. The exhaust gas introduction pipe 60 of this example extends in the x direction and is connected to the side surface of the reaction tower 10. The exhaust gas introduction pipe 60 has an outer side surface 64 and an inner side surface 66.
 外側側面64は、反応塔10の円周状の外形における接線方向に延伸する。内側側面66は、外側側面64に対向する。また、内側側面66は、反応塔10の外形と交差する方向に延伸する。なお、外側側面64と内側側面66との間の距離は、反応塔10の半径よりも小さくてよい。本例において、内側側面66と反応塔10の外形との交線における反応塔10の接線方向と、内側側面66とは、90度よりも小さい所定の角度αを成す。なお、円筒形状の反応塔10において内径および外径により規定される壁の厚みを考慮して、反応塔10の外形は反応塔10の外径と読み替えてもよい。内側側面66と反応塔10の外形との交線を、図2においては交点61により示す。以下同様に、面同士の交線を簡易的に交点により示す場合がある。 The outer side surface 64 extends in the tangential direction in the circumferential outer shape of the reaction tower 10. The inner side surface 66 faces the outer side surface 64. Further, the inner side surface 66 extends in a direction intersecting with the outer shape of the reaction tower 10. Note that the distance between the outer side surface 64 and the inner side surface 66 may be smaller than the radius of the reaction tower 10. In this example, the tangential direction of the reaction column 10 at the intersection of the inner side surface 66 and the outer shape of the reaction column 10 and the inner side surface 66 form a predetermined angle α smaller than 90 degrees. Note that the outer shape of the reaction tower 10 may be read as the outer diameter of the reaction tower 10 in consideration of the wall thickness defined by the inner diameter and the outer diameter in the cylindrical reaction tower 10. An intersection line between the inner side surface 66 and the outer shape of the reaction tower 10 is indicated by an intersection point 61 in FIG. Similarly, there may be a case where an intersection line between surfaces is simply indicated by an intersection point.
 本例において、内側側面66は反応塔10の内部空間15に突出しない。それゆえ、本例の排ガス導入管60は、内部空間15における排ガスの旋回性を阻害しない点において有利である。排ガスが内部空間15においてよく旋回するほど、気液接触が担保されるので、より確実に硫黄酸化物等を除去することができる。 In this example, the inner side surface 66 does not protrude into the internal space 15 of the reaction tower 10. Therefore, the exhaust gas introduction pipe 60 of this example is advantageous in that it does not hinder the exhaust gas swirlability in the internal space 15. As the exhaust gas swirls well in the internal space 15, gas-liquid contact is ensured, so that sulfur oxides and the like can be more reliably removed.
 本例では、交点61近傍において排ガス導入管60から内部空間15に導入される排ガスの流れを、排ガス導入方向63とする。本例において、排ガス導入方向63は-x方向である。本例の排ガスは、時計回りに旋回しつつz方向に上昇する。 In this example, the flow of exhaust gas introduced from the exhaust gas introduction pipe 60 into the internal space 15 in the vicinity of the intersection 61 is defined as an exhaust gas introduction direction 63. In this example, the exhaust gas introduction direction 63 is the −x direction. The exhaust gas in this example rises in the z direction while turning clockwise.
 本例の噴射部24は、排ガスの旋回を助けるよう噴射口23から液体を噴射する。本例の噴射部24は、各位置において時計回り方向に液体を噴射する。具体的には、本例において、枝管22‐9Aの噴射部24は、-x方向に液体を噴射する。枝管22‐9Bの噴射部24は、-y方向に液体を噴射する。枝管22‐9Cの噴射部24は、+x方向に液体を噴射する。枝管22‐9Dの噴射部24は、+y方向に液体を噴射する。 The injection unit 24 of this example injects liquid from the injection port 23 so as to assist the swirling of the exhaust gas. The ejection unit 24 of the present example ejects liquid in the clockwise direction at each position. Specifically, in this example, the ejection unit 24 of the branch pipe 22-9A ejects liquid in the −x direction. The ejection unit 24 of the branch pipe 22-9B ejects liquid in the −y direction. The ejection unit 24 of the branch pipe 22-9C ejects liquid in the + x direction. The ejection unit 24 of the branch pipe 22-9D ejects liquid in the + y direction.
 図2において、噴射部24の噴射口23を一の頂点とする略三角形状に液体は拡散する。本例において、頂点である噴射口23に接続する二辺の成す角を噴射角度25とする。噴射角度25は、60度以上120度以下であってよい。また、本例において、噴射角度25の中心を主方向とする。つまり、本例の主方向は、噴射角度25の二等分線である。 In FIG. 2, the liquid diffuses in a substantially triangular shape with the injection port 23 of the injection unit 24 as one vertex. In this example, an angle formed by two sides connected to the injection port 23 which is the apex is an injection angle 25. The injection angle 25 may be not less than 60 degrees and not more than 120 degrees. In this example, the center of the injection angle 25 is the main direction. That is, the main direction in this example is a bisector of the injection angle 25.
 ただし、本例においては主方向26と主方向27とを区別して用いる。主方向26は、排ガス導入口62に対して液体を噴射する噴射部24の主方向とする。これに対して、主方向27は、排ガス導入口62に対して液体を噴射しない噴射部24の主方向とする。なお、主方向26を有する噴射部24が設けられる枝管22は、排ガス導入口62と同じ高さに位置する。 However, in this example, the main direction 26 and the main direction 27 are distinguished from each other. The main direction 26 is the main direction of the ejection unit 24 that ejects liquid to the exhaust gas inlet 62. On the other hand, the main direction 27 is the main direction of the injection unit 24 that does not inject liquid to the exhaust gas inlet 62. Note that the branch pipe 22 provided with the injection unit 24 having the main direction 26 is located at the same height as the exhaust gas inlet 62.
 枝管22‐9Bの噴射口23は、排ガス導入口62を向いているので主方向26を有する。本例において、枝管22‐9Bの主方向26は、排ガス導入方向63に対して90度である。これに対して、主方向26と排ガス導入口62とが90度よりも大きい場合には、-x方向に導入される排ガスに対して、噴射された液体は+x方向のベクトル成分を有する。それゆえ、反応塔10への排ガスの導入が邪魔されると共に、逆向きのベクトル成分の液体がエンジンへ逆流する恐れがある。本例では、主方向26と排ガス導入方向63とは0度以上90度以下とすることにより、液体が排ガス導入口62からエンジンへ逆流することを抑制することができる。 The injection port 23 of the branch pipe 22-9B has a main direction 26 because it faces the exhaust gas introduction port 62. In this example, the main direction 26 of the branch pipe 22-9B is 90 degrees with respect to the exhaust gas introduction direction 63. On the other hand, when the main direction 26 and the exhaust gas inlet 62 are larger than 90 degrees, the injected liquid has a vector component in the + x direction with respect to the exhaust gas introduced in the −x direction. Therefore, the introduction of the exhaust gas into the reaction tower 10 is obstructed, and there is a possibility that the reverse vector component liquid flows back to the engine. In this example, the main direction 26 and the exhaust gas introduction direction 63 are set to 0 degree or more and 90 degrees or less, so that the liquid can be prevented from flowing backward from the exhaust gas introduction port 62 to the engine.
 詰まる所、本例においては、排ガス導入口62と同じ高さに位置する枝管22であって、排ガス導入方向63に直交し且つ反応塔10の中心軸11を通る仮想面13よりも排ガス導入口62側に位置する枝管22に注目する。本例においては、仮想面13よりも排ガス導入口62側に位置する枝管22の噴射部24の主方向26が、排ガス導入方向63に対して0度以上90度以下であれば、液体が排ガス導入口62からエンジンへ逆流することを抑制することができる。 In this example, the branch pipe 22 is located at the same height as the exhaust gas inlet 62, and the exhaust gas is introduced from the virtual plane 13 that is orthogonal to the exhaust gas introduction direction 63 and passes through the central axis 11 of the reaction tower 10. Attention is paid to the branch pipe 22 located on the mouth 62 side. In this example, if the main direction 26 of the injection part 24 of the branch pipe 22 located closer to the exhaust gas introduction port 62 than the virtual plane 13 is 0 degree or more and 90 degrees or less with respect to the exhaust gas introduction direction 63, the liquid Backflow from the exhaust gas inlet 62 to the engine can be suppressed.
 なお、主方向26と排ガス導入方向63とが90度以下であっても、噴射角度25の大きさによっては、一部の液体が排ガス導入方向63に対してマイナスベクトルを有する場合もあり得る。しかしながら、一部の液体による影響は限定的であるので、本例においては考慮しないものとする。あくまで、主方向26と排ガス導入方向63とは0度以上90度以下であれば上述の有利な効果が得られるとしてよい。 Even if the main direction 26 and the exhaust gas introduction direction 63 are 90 degrees or less, depending on the magnitude of the injection angle 25, some liquids may have a negative vector with respect to the exhaust gas introduction direction 63. However, since the influence of some liquids is limited, it is not considered in this example. If the main direction 26 and the exhaust gas introduction direction 63 are not less than 0 degrees and not more than 90 degrees, the above-described advantageous effects may be obtained.
 本例では、枝管22‐9A、枝管22‐9Cおよび枝管22‐9Dの噴射口23は、排ガス導入口62を向いていないとする。それゆえ、枝管22‐9A、枝管22‐9Cおよび枝管22‐9Dの噴射部24は、主方向27を有する。ただし、後述する図3A~図3Cおよび図4A~図4Cの例の様に、図2の例と比較して枝管22‐9Cが中心軸11の周りにおいて時計回りに所定角度β(0<β≦90度)だけ回転して設けられた場合は、枝管22‐9Cの噴射口23は、排ガス導入口62を向いているとする。それゆえ、図3Aおよび図3Cならびに図4Aおよび図4Cの例においては、枝管22‐9Cの噴射部24は、主方向26を有するとする。 In this example, it is assumed that the injection ports 23 of the branch pipe 22-9A, the branch pipe 22-9C, and the branch pipe 22-9D do not face the exhaust gas inlet 62. Therefore, the injection parts 24 of the branch pipes 22-9A, the branch pipes 22-9C, and the branch pipes 22-9D have a main direction 27. However, as in the examples of FIGS. 3A to 3C and FIGS. 4A to 4C described later, the branch pipe 22-9C has a predetermined angle β (0 <0) clockwise around the central axis 11 as compared with the example of FIG. It is assumed that the injection port 23 of the branch pipe 22-9C faces the exhaust gas introduction port 62 when it is provided by being rotated by (β ≦ 90 degrees). Therefore, in the example of FIGS. 3A and 3C and FIGS. 4A and 4C, the injection unit 24 of the branch pipe 22-9C has a main direction 26.
 図3Aは、図1の第1変形例におけるA‐A'上面視図である。図3Bは、図3Aにおける枝管22‐9Bと排ガス導入方向63とが成す角度を説明する図である。図3Cは、図3Aにおける枝管22‐9Cと排ガス導入方向63とが成す角度を説明する図である。 FIG. 3A is a top view of AA ′ in the first modification of FIG. FIG. 3B is a diagram illustrating an angle formed by the branch pipe 22-9B and the exhaust gas introduction direction 63 in FIG. 3A. FIG. 3C is a diagram for explaining an angle formed by the branch pipe 22-9C and the exhaust gas introduction direction 63 in FIG. 3A.
 本例は、図2における枝管22‐9Aから22‐9Dを中心軸11の周りにおいて時計回りに30度だけ回転した例である。本例においては、枝管22‐9Bおよび枝管22‐9Cの噴射口23が、排ガス導入口62を向いている。それゆえ、枝管22‐9Bおよび枝管22‐9Cの噴射部24は、主方向26を有する。これに対して、枝管22‐9Aおよび枝管22‐9Dの噴射部24は、主方向27を有する。 This example is an example in which the branch pipes 22-9A to 22-9D in FIG. 2 are rotated clockwise by 30 degrees around the central axis 11. In this example, the injection ports 23 of the branch pipe 22-9B and the branch pipe 22-9C face the exhaust gas introduction port 62. Therefore, the injection parts 24 of the branch pipes 22-9B and 22-9C have a main direction 26. On the other hand, the injection part 24 of the branch pipe 22-9A and the branch pipe 22-9D has a main direction 27.
 本例において、枝管22‐9Bにおける噴射部24の主方向26は、排ガス導入方向63に対して60度である。これに対して、枝管22‐9Cにおける噴射部24の主方向26は、排ガス導入方向63に対して150度である。そこで、本例においては、枝管22‐9Cの噴射部24は、液体を噴射しない。これにより、液体が排ガス導入口62からエンジンへ逆流することを抑制することができる。なお、液体を噴射しない状況を図3Aにおいて太線の×により示す。 In this example, the main direction 26 of the injection unit 24 in the branch pipe 22-9B is 60 degrees with respect to the exhaust gas introduction direction 63. On the other hand, the main direction 26 of the injection unit 24 in the branch pipe 22-9C is 150 degrees with respect to the exhaust gas introduction direction 63. Therefore, in this example, the ejecting unit 24 of the branch pipe 22-9C does not eject liquid. Thereby, it can suppress that a liquid flows backward from the exhaust gas inlet 62 to an engine. In addition, the state which does not eject a liquid is shown by x of a thick line in FIG. 3A.
 図4Aは、図1の第2変形例におけるA‐A'上面視図である。図4Bは、図4Aにおける枝管22‐9Bと排ガス導入方向63とが成す角度を説明する図である。図4Cは、図4Aにおける枝管22‐9Cと排ガス導入方向63とが成す角度を説明する図である。 FIG. 4A is a top view of AA ′ in the second modification of FIG. FIG. 4B is a diagram illustrating an angle formed by the branch pipe 22-9B and the exhaust gas introduction direction 63 in FIG. 4A. FIG. 4C is a diagram illustrating an angle formed by the branch pipe 22-9C and the exhaust gas introduction direction 63 in FIG. 4A.
 本例は、図2の枝管22‐9Aから22‐9Dを中心軸11の周りにおいて時計回りに45度だけ回転した例である。本例においても、枝管22‐9Bおよび枝管22‐9Cは主方向26を有し、枝管22‐9Aおよび枝管22‐9Dの噴射部24は主方向27を有する。 This example is an example in which the branch pipes 22-9A to 22-9D in FIG. 2 are rotated by 45 degrees clockwise around the central axis 11. Also in this example, the branch pipes 22-9B and the branch pipes 22-9C have a main direction 26, and the injection portions 24 of the branch pipes 22-9A and the branch pipes 22-9D have a main direction 27.
 枝管22‐9Bにおける噴射部24の主方向26は、排ガス導入方向63に対して0度以上45度以下であってよい。本例において、枝管22‐9Bにおける噴射部24の主方向26は、排ガス導入方向63に対して45度である。これに対して、枝管22‐9Cにおける噴射部24の主方向26は、排ガス導入方向63に対して135度である。そこで、本例においては、枝管22‐9Cの噴射部24は、液体を噴射しない。これにより、液体が排ガス導入口62からエンジンへ逆流することを抑制することができる。図3Aと同様に、液体を噴射しない状況を図4Aにおいて太線の×により示す。 The main direction 26 of the injection unit 24 in the branch pipe 22-9B may be 0 degree or more and 45 degrees or less with respect to the exhaust gas introduction direction 63. In this example, the main direction 26 of the injection unit 24 in the branch pipe 22-9B is 45 degrees with respect to the exhaust gas introduction direction 63. On the other hand, the main direction 26 of the injection unit 24 in the branch pipe 22-9C is 135 degrees with respect to the exhaust gas introduction direction 63. Therefore, in this example, the ejecting unit 24 of the branch pipe 22-9C does not eject liquid. Thereby, it can suppress that a liquid flows backward from the exhaust gas inlet 62 to an engine. As in FIG. 3A, the situation where no liquid is ejected is indicated by a bold x in FIG. 4A.
 図5は、図1の第3変形例におけるA‐A'上面視図である。本例は、図2の枝管22‐9Aから22‐9Dを中心軸11の周りにおいて時計回りに45度だけ回転した例である。本例においても、枝管22‐9Bおよび枝管22‐9Cは主方向26を有し、枝管22‐9Aおよび枝管22‐9Dの噴射部24は主方向27を有する。 FIG. 5 is a top view of AA ′ in the third modification of FIG. In this example, the branch pipes 22-9A to 22-9D in FIG. 2 are rotated about 45 degrees clockwise around the central axis 11. Also in this example, the branch pipes 22-9B and the branch pipes 22-9C have a main direction 26, and the injection portions 24 of the branch pipes 22-9A and the branch pipes 22-9D have a main direction 27.
 ただし、本例では、主方向26と排ガス導入方向63とが90度よりも大きい場合には、噴射部24が液体を噴射しないとすることに代えて、噴射部24自体を設けない。本例においては、枝管22‐9Cにおける噴射部24の主方向26は、排ガス導入方向63に対して135度である。それゆえ、本例の枝管22‐9Cには噴射部24を設けない。なお、枝管22‐9Cを設けないとしてもよい。 However, in this example, when the main direction 26 and the exhaust gas introduction direction 63 are larger than 90 degrees, the injection unit 24 itself is not provided instead of the injection unit 24 not injecting liquid. In this example, the main direction 26 of the injection unit 24 in the branch pipe 22-9C is 135 degrees with respect to the exhaust gas introduction direction 63. Therefore, the injection part 24 is not provided in the branch pipe 22-9C of this example. The branch pipe 22-9C may not be provided.
 また、本例では、枝管22‐6から枝管22‐9が排ガス導入口62と同じ高さに位置するので、枝管22‐6C、から枝管22‐9Cには、噴射部24を設けない。これにより、高さ方向において排ガス導入口62と同じ高さに位置する枝管22の噴射部24の密度を、高さ方向において排ガス導入口62と異なる高さに位置する枝管22の噴射部24の密度よりも小さくする。 In this example, since the branch pipe 22-6 to the branch pipe 22-9 are positioned at the same height as the exhaust gas inlet 62, the injection unit 24 is connected to the branch pipe 22-6C and the branch pipe 22-9C. Not provided. Thereby, the density of the injection part 24 of the branch pipe 22 located at the same height as the exhaust gas introduction port 62 in the height direction is made equal to the injection part of the branch pipe 22 located at a different height from the exhaust gas introduction port 62 in the height direction. The density is smaller than 24.
 なお、本例において、枝管22の噴射部24の密度とは、同じ高さに設けられた枝管22の噴射部24の数を言う。本例において、枝管22の噴射部24の密度とは、同じ高さに設けられた枝管22‐nAから枝管22‐nDの噴射部24の数を言う。さらに具体的に言えば、本例において、枝管22‐6から枝管22‐9における枝管22の噴射部24の密度は6であるが、枝管22‐1から枝管22‐5における枝管22の噴射部24の密度は8である。
 
In addition, in this example, the density of the injection part 24 of the branch pipe 22 means the number of the injection parts 24 of the branch pipe 22 provided in the same height. In this example, the density of the jetting parts 24 of the branch pipes 22 refers to the number of jetting parts 24 of the branch pipes 22-nA to 22-nD provided at the same height. More specifically, in this example, the density of the injection portion 24 of the branch pipe 22 from the branch pipe 22-6 to the branch pipe 22-9 is 6, but from the branch pipe 22-1 to the branch pipe 22-5. The density of the injection part 24 of the branch pipe 22 is 8.
 図6は、第2実施形態における排ガス処理装置210の概要を示す図である。本例の幹管20は、上部幹管30と、中部幹管40と、下部幹管50とを有する。係る点において、第1実施形態と異なる。なお、上部幹管30および中部幹管40においても、各外壁21から反応塔10の内壁18に向けて延伸して複数の枝管32および複数の枝管42が設けられる。 FIG. 6 is a diagram showing an outline of the exhaust gas treatment apparatus 210 in the second embodiment. The trunk tube 20 of this example includes an upper trunk tube 30, a middle trunk tube 40, and a lower trunk tube 50. This is different from the first embodiment. The upper trunk tube 30 and the middle trunk tube 40 are also provided with a plurality of branch pipes 32 and a plurality of branch pipes 42 extending from each outer wall 21 toward the inner wall 18 of the reaction tower 10.
 上部幹管30は幹管20の最も上部12側に位置し、下部幹管50は幹管20の最も底部14側に位置する。中部幹管40は、上部幹管30と下部幹管50との間に位置する。内径の大きさは、下部幹管50が最も大きく、中部幹管40は2番目に大きく、上部幹管30が最も小さい。 The upper trunk pipe 30 is located on the uppermost 12 side of the trunk pipe 20, and the lower trunk pipe 50 is located on the lowest bottom 14 side of the trunk pipe 20. The middle trunk tube 40 is located between the upper trunk tube 30 and the lower trunk tube 50. The inner diameter of the lower trunk 50 is the largest, the middle trunk 40 is the second largest, and the upper trunk 30 is the smallest.
 液体導入管28は、下部幹管50のみに液体を供給する。液体導入管38および液体導入管48は、上部幹管30および中部幹管40にそれぞれ接続して独立に液体を供給する。なお、上部幹管30と中部幹管40とは上部連結部31により互いに固定され、中部幹管40と下部幹管50とは下部連結部41により互いに物理的に固定される。 The liquid introduction pipe 28 supplies liquid only to the lower trunk pipe 50. The liquid introduction pipe 38 and the liquid introduction pipe 48 are connected to the upper trunk pipe 30 and the middle trunk pipe 40, respectively, and supply the liquid independently. The upper trunk tube 30 and the middle trunk tube 40 are fixed to each other by the upper connection portion 31, and the middle trunk tube 40 and the lower trunk tube 50 are physically fixed to each other by the lower connection portion 41.
 本例の上部幹管30は、枝管32‐1から枝管32‐3を有する。枝管32‐1から枝管32‐3の各々は噴射部34を有する。同様に、本例の中部幹管40は枝管42‐1から枝管42‐3を有し、本例の下部幹管50は枝管52‐1から枝管52‐3を有する。また、枝管42‐1から枝管42‐3は噴射部44を有し、枝管52‐1から枝管52‐3は噴射部54を有する。 The upper trunk pipe 30 of this example has branch pipes 32-1 to 32-3. Each of the branch pipes 32-1 to 32-3 has an injection unit 34. Similarly, the middle trunk pipe 40 of this example has branch pipes 42-1 to 42-3, and the lower trunk pipe 50 of this example has branch pipes 52-1 to 52-3. Further, the branch pipe 42-1 to the branch pipe 42-3 have an injection part 44, and the branch pipe 52-1 to the branch pipe 52-3 have an injection part 54.
 下部幹管50に設けられた枝管52における噴射部54から噴射される液体の液滴の粒径は、上部幹管30に設けられた枝管32における噴射部34から噴射される液体の液滴の粒径よりも大きい。また、中部幹管40に設けられた枝管42における噴射部44から噴射される液体の液滴の粒径は、下部幹管50に設けられた枝管52における噴射部54から噴射される液体の液滴の粒径よりも小さく、かつ、上部幹管30に設けられた枝管32における噴射部34から噴射される液体の液滴の粒径よりも大きい。これを実現するべく、噴射口23の開口面積は、噴射部54が最も大きく、次いで噴射部44が大きく、噴射部34が最も小さくてよい。 The particle size of the liquid droplets ejected from the ejecting section 54 in the branch pipe 52 provided in the lower trunk pipe 50 is the liquid liquid ejected from the ejecting section 34 in the branch pipe 32 provided in the upper trunk pipe 30. It is larger than the particle size of the droplet. In addition, the particle size of the liquid droplets ejected from the ejection unit 44 in the branch pipe 42 provided in the middle trunk tube 40 is equal to the liquid ejected from the ejection unit 54 in the branch pipe 52 provided in the lower trunk tube 50. The droplet diameter is smaller than that of the liquid droplets and larger than the particle diameter of the liquid droplets ejected from the ejection portion 34 in the branch pipe 32 provided in the upper trunk tube 30. In order to realize this, the opening area of the injection port 23 may be the largest in the injection unit 54, then the injection unit 44, and the injection unit 34 may be the smallest.
 排ガス中の硫黄酸化物等は、底部14側から上部12側に向かうにつれて濃度が低減する。本例の様に、底部14側から上部12側に向かって噴射する液滴の大きさを小さくすることにより、液体と排気ガス中の硫黄酸化物等とが接触する確率を向上させることができる。それゆえ、液滴の大きさが高さ方向において一定の場合と比較して、より確実に排ガスを処理することができる。 The concentration of sulfur oxides in the exhaust gas decreases from the bottom 14 side toward the top 12 side. Like this example, by reducing the size of the droplets ejected from the bottom 14 side toward the top 12 side, the probability that the liquid and sulfur oxides in the exhaust gas come into contact can be improved. . Therefore, the exhaust gas can be treated more reliably than in the case where the size of the droplet is constant in the height direction.
 高さ方向において排ガス導入口62と同じ高さに位置する少なくとも1つの枝管52が、下部幹管50に設けられてよい。本例では、下部幹管50の枝管52のうち最も底部14側に位置する枝管52‐3が、排ガス導入口62と同じ高さに位置する。枝管52および噴射部54の配置は、図2から図5において説明した枝管22および噴射部24と同じ配置としてよい。具体的には、枝管52の噴射部54における主方向26は、排ガス導入方向63に対して0度以上90度以下であってよく、0度以上45度以下であってよい。また、枝管52‐3Cを設けないとすることにより、枝管52‐3の密度を枝管52‐1および枝管52‐2の密度よりも小さくしてもよい。 The lower trunk pipe 50 may be provided with at least one branch pipe 52 located at the same height as the exhaust gas inlet 62 in the height direction. In the present example, the branch pipe 52-3 located closest to the bottom 14 among the branch pipes 52 of the lower trunk pipe 50 is located at the same height as the exhaust gas inlet 62. The arrangement of the branch pipe 52 and the injection unit 54 may be the same as that of the branch pipe 22 and the injection unit 24 described with reference to FIGS. Specifically, the main direction 26 in the injection unit 54 of the branch pipe 52 may be 0 degree or more and 90 degrees or less with respect to the exhaust gas introduction direction 63, and may be 0 degree or more and 45 degrees or less. Further, by not providing the branch pipe 52-3C, the density of the branch pipe 52-3 may be made smaller than the densities of the branch pipe 52-1 and the branch pipe 52-2.
 本例では、噴射部34および噴射部44よりも粒径の大きい液体を噴射する噴射部54の主方向が、排ガス導入方向63に対して逆方向のベクトルを有さない。なお、液滴の体積は、液滴の質量に正比例する。それゆえ、質量が相対的に大きく排ガス流の影響を受けにくい大きな液滴が、排ガス導入口62からエンジンへ逆流することを効果的に抑制することができる。 In this example, the main direction of the injection unit 54 that injects a liquid having a particle size larger than that of the injection unit 34 and the injection unit 44 does not have a vector opposite to the exhaust gas introduction direction 63. The volume of the droplet is directly proportional to the mass of the droplet. Therefore, it is possible to effectively suppress large droplets having a relatively large mass and not easily affected by the exhaust gas flow from flowing back from the exhaust gas inlet 62 to the engine.
 図7は、第3実施形態における排ガス処理装置220の概要を示す図である。本例では、下部幹管50における全ての枝管52‐1から枝管52‐3が、排ガス導入口62と同じ高さに位置する。枝管52および噴射部54の配置は、図2から図5において説明した枝管22および噴射部24と同じ配置としてよい。本例においても、枝管52および噴射部54の配置は、第3実施形態と同じであってよい。これにより、噴射部54からの大きな液滴が排ガス導入口62からエンジンへ逆流することを抑制することができる。 FIG. 7 is a diagram showing an outline of the exhaust gas treatment device 220 in the third embodiment. In this example, all the branch pipes 52-1 to 52-3 in the lower trunk pipe 50 are positioned at the same height as the exhaust gas inlet 62. The arrangement of the branch pipe 52 and the injection unit 54 may be the same as that of the branch pipe 22 and the injection unit 24 described with reference to FIGS. Also in this example, the arrangement of the branch pipes 52 and the injection units 54 may be the same as in the third embodiment. Thereby, it is possible to suppress a large droplet from the injection unit 54 from flowing backward from the exhaust gas inlet 62 to the engine.
 図8は、第4実施形態における排ガス処理装置230の概要を示す図である。中部幹管40に設けられた少なくとも1つの枝管42は、高さ方向において排ガス導入口62と同じ高さに位置してよい。本例では、3つの枝管52に加えて、中部幹管40の枝管42のうち最も底部14側に位置する枝管42‐3が、排ガス導入口62と同じ高さに位置する。なお、本例において、枝管52の構成は、第3実施形態と同じである。 FIG. 8 is a diagram showing an outline of the exhaust gas treatment device 230 in the fourth embodiment. At least one branch pipe 42 provided in the middle trunk pipe 40 may be positioned at the same height as the exhaust gas inlet 62 in the height direction. In this example, in addition to the three branch pipes 52, the branch pipe 42-3 located closest to the bottom 14 among the branch pipes 42 of the middle trunk pipe 40 is located at the same height as the exhaust gas inlet 62. In this example, the configuration of the branch pipe 52 is the same as that of the third embodiment.
 ただし、本例において、排ガス導入口62に対して液体を噴射する枝管42の噴射部44の主方向26は、排ガス導入方向63に対して0度以上180度以下である。つまり、中部幹管40の枝管42における噴射部44は、主方向26と排ガス導入方向63との成す角に関わらず、液体を噴射してよい。より具体的には、噴射部44は、主方向26が90度より大きく180度以下の場合においても液体を噴射してよい。比較対象として、図3Aおよび図3Cならびに図4Aおよび図4Cの枝管22‐9Cの例を参照されたい。また、本例において排ガス導入口62と同じ高さに位置する枝管42は間引かなくてもよい。本例において、噴射部54が噴射する液体の液滴の質量と比較して噴射部44が噴射する液体の液滴の質量が小さいので、噴射部54が噴射する液体の液滴よりも噴射部44が噴射する液体の液滴はエンジンへ逆流しにくい。 However, in this example, the main direction 26 of the injection portion 44 of the branch pipe 42 that injects the liquid to the exhaust gas introduction port 62 is not less than 0 degrees and not more than 180 degrees with respect to the exhaust gas introduction direction 63. That is, the injection unit 44 in the branch pipe 42 of the middle trunk pipe 40 may inject liquid regardless of the angle formed by the main direction 26 and the exhaust gas introduction direction 63. More specifically, the ejection unit 44 may eject the liquid even when the main direction 26 is greater than 90 degrees and equal to or less than 180 degrees. For comparison purposes, see the examples of branches 22-9C of FIGS. 3A and 3C and FIGS. 4A and 4C. In this example, the branch pipe 42 positioned at the same height as the exhaust gas inlet 62 may not be thinned out. In this example, since the mass of the liquid droplet ejected by the ejection unit 44 is smaller than the mass of the liquid droplet ejected by the ejection unit 54, the ejection unit is smaller than the liquid droplet ejected by the ejection unit 54. The liquid droplets ejected by 44 hardly flow back to the engine.
 本例では、下部幹管50の枝管52に加えて、中部幹管40の枝管42も排ガス導入口62と高さ方向においてオーバーラップさせるので、幹管20の高さ方向長さを低減することができる。これにより、第1から第4実施形態と比較して排ガス処理装置230の高さ方向長さを小さくすることができる。排ガス処理装置230は制限された空間である船舶の室内に設けられる場合があるので、排ガス処理装置230を小型化できることの利点は重要である。 In this example, in addition to the branch pipe 52 of the lower trunk pipe 50, the branch pipe 42 of the middle trunk pipe 40 also overlaps with the exhaust gas inlet 62 in the height direction, so that the length in the height direction of the trunk pipe 20 is reduced. can do. Thereby, compared with 1st to 4th embodiment, the height direction length of the exhaust gas processing apparatus 230 can be made small. Since the exhaust gas treatment device 230 may be provided in the interior of a ship, which is a limited space, the advantage of being able to downsize the exhaust gas treatment device 230 is important.
 図9Aは、図8の第1変形例におけるB‐B'上面視図である。図9Bは、図9Aにおける枝管42‐3Bと排ガス導入方向63とが成す角度を説明する図である。図9Cは、図9Aにおける枝管42‐3Cと排ガス導入方向63とが成す角度を説明する図である。図9Aにおいては、中部幹管40の枝管42‐3および噴射部44を示す。 FIG. 9A is a top view of BB ′ in the first modification of FIG. FIG. 9B is a diagram illustrating an angle formed by the branch pipe 42-3B and the exhaust gas introduction direction 63 in FIG. 9A. FIG. 9C is a diagram illustrating an angle formed by the branch pipe 42-3C and the exhaust gas introduction direction 63 in FIG. 9A. In FIG. 9A, the branch pipe 42-3 and the injection unit 44 of the middle trunk pipe 40 are shown.
 図9Bに示すように、枝管42‐3Bにおける噴射部44の主方向26は、排ガス導入方向63に対して45度である。これに対して、図9Cに示すように、枝管42‐3Cにおける噴射部44の主方向26は、排ガス導入方向63に対して135度である。上述の様に、本例においては、枝管42‐3Cに設けられた噴射部44から液体を噴射させてよい。 As shown in FIG. 9B, the main direction 26 of the injection section 44 in the branch pipe 42-3B is 45 degrees with respect to the exhaust gas introduction direction 63. On the other hand, as shown in FIG. 9C, the main direction 26 of the injection section 44 in the branch pipe 42-3C is 135 degrees with respect to the exhaust gas introduction direction 63. As described above, in this example, the liquid may be ejected from the ejection unit 44 provided in the branch pipe 42-3C.
 図10は、図8の第2変形例における排ガス処理装置240を示す図である。上部幹管30に設けられた少なくとも1つの枝管32は、高さ方向において排ガス導入口62と同じ高さに位置してよい。本例では、上部幹管30の枝管32のうち最も底部14側に位置する枝管32‐3が、排ガス導入口62と同じ高さに位置する。なお、枝管42および枝管52の全ては、排ガス導入口62と同じ高さに位置する。 FIG. 10 is a view showing an exhaust gas treatment apparatus 240 in the second modification of FIG. At least one branch pipe 32 provided in the upper trunk pipe 30 may be positioned at the same height as the exhaust gas inlet 62 in the height direction. In this example, the branch pipe 32-3 located closest to the bottom 14 among the branch pipes 32 of the upper trunk pipe 30 is located at the same height as the exhaust gas inlet 62. Note that all of the branch pipe 42 and the branch pipe 52 are located at the same height as the exhaust gas inlet 62.
 本例において、排ガス導入口62に対して液体を噴射する噴射部34および噴射部44の主方向26は、排ガス導入方向63に対して0度以上180度以下である。つまり、噴射部34および噴射部44は、主方向26と排ガス導入方向63との成す角に関わらず、液体を噴射してよい。また、排ガス導入口62と同じ高さに位置する枝管32および枝管42は間引かなくてもよい。これにより、本例の排ガス処理装置240の高さ方向長さを、第4実施形態の排ガス処理装置230と比較して、さらに小さくすることができる。 In this example, the main direction 26 of the injection unit 34 and the injection unit 44 for injecting liquid to the exhaust gas introduction port 62 is 0 degree or more and 180 degrees or less with respect to the exhaust gas introduction direction 63. That is, the ejection unit 34 and the ejection unit 44 may eject liquid regardless of the angle formed by the main direction 26 and the exhaust gas introduction direction 63. Further, the branch pipe 32 and the branch pipe 42 positioned at the same height as the exhaust gas inlet 62 may not be thinned out. Thereby, the height direction length of the exhaust gas treatment apparatus 240 of this example can be further reduced as compared with the exhaust gas treatment apparatus 230 of the fourth embodiment.
 図11は、第5実施形態における排ガス処理装置250を示す図である。本例の幹管20は、上述の実施形態と異なる。本例において、上部幹管30と中部幹管40とは、上側継手部76により内部空間が連結される。同様に、中部幹管40と下部幹管50とは、下側継手部78により内部空間が連結される。これにより、本例の幹管20は、上部幹管30、中部幹管40および下部幹管50が高さ方向に流体連結される。なお、液体は、液体導入管28を介して下部幹管50の底部14側から供給されて、上部幹管30にまで達する。上側継手部76および下側継手部78は、高さ方向に進むにつれて内部空間の直径が小さくなる円錐台形状の内部空間を有してよい。係る点において、本例は図6から図10の例と異なる。ただし、図6から図10における枝管32、枝管42または枝管52の配置を本例に適用してよいのは勿論である。 FIG. 11 is a view showing an exhaust gas treatment apparatus 250 in the fifth embodiment. The trunk tube 20 of this example is different from the above-described embodiment. In this example, the upper trunk pipe 30 and the middle trunk pipe 40 are connected to each other by an upper joint portion 76. Similarly, the inner trunk pipe 40 and the lower trunk pipe 50 are connected to each other by a lower joint portion 78. Accordingly, in the trunk tube 20 of the present example, the upper trunk tube 30, the middle trunk tube 40, and the lower trunk tube 50 are fluidly connected in the height direction. The liquid is supplied from the bottom 14 side of the lower trunk pipe 50 through the liquid introduction pipe 28 and reaches the upper trunk pipe 30. The upper joint portion 76 and the lower joint portion 78 may have a frustoconical internal space in which the diameter of the internal space decreases as it proceeds in the height direction. In this respect, this example is different from the examples of FIGS. However, of course, the arrangement of the branch pipe 32, the branch pipe 42, or the branch pipe 52 in FIGS. 6 to 10 may be applied to this example.
 図12は、第6実施形態における排ガス処理装置260の概要を示す図である。本例以降においては、説明を簡単にするために第1実施形態の幹管20の構成を用いて説明する。ただし、本例以降の例に対して図1から図11の例を適宜適用してもよい。 FIG. 12 is a diagram showing an outline of the exhaust gas treatment apparatus 260 in the sixth embodiment. In the following examples, the description will be made using the configuration of the trunk tube 20 of the first embodiment in order to simplify the description. However, the examples in FIGS. 1 to 11 may be applied as appropriate to the examples after this example.
 本例において、複数の枝管22のうち最も底部14側に位置する枝管22は、排ガス導入口62の底部14側と上部12側との中間位置65よりも上部12側に位置する。排ガス導入口62の高さ方向長さを2つのLzにより示す。中間位置65は、2つのLzの中間に位置する。これにより、枝管22を排ガス導入口62の中間位置65から底部14側までの間に枝管22を設ける場合と比較して、排ガスと液体との気液接触をより十分に担保することができる。なお、本例の枝管22の数は、図1の例の枝管の数よりも少なくした。 In this example, among the plurality of branch pipes 22, the branch pipe 22 located closest to the bottom 14 side is located closer to the upper part 12 than an intermediate position 65 between the bottom part 14 side and the upper part 12 side of the exhaust gas inlet 62. The length in the height direction of the exhaust gas inlet 62 is indicated by two Lz. The intermediate position 65 is located between the two Lz. Thereby, compared with the case where the branch pipe 22 is provided between the intermediate position 65 of the exhaust gas inlet 62 and the bottom 14 side, the gas-liquid contact between the exhaust gas and the liquid can be more sufficiently secured. it can. The number of branch pipes 22 in this example is smaller than the number of branch pipes in the example of FIG.
 図13Aは、第7実施形態における主方向27の向きを説明する図である。図示するように、本例では、最も上部12側に位置する枝管22における噴射部24の主方向27は、底部14側に傾いている。本例において、最も上部12側に位置する枝管22‐1は、排ガス導入口62よりも高い位置にある。それゆえ、枝管22‐1に設けられた噴射部24の主方向は、主方向26ではなく主方向27と記載する。なお、最も上部12側に位置する枝管22に限定される必要はなく、上部12側に位置する少なくとも1つの枝管22における噴射部24の主方向27が底部14側に傾いていてもよい。また、上部12側に位置する枝管22とは、例えば、排ガス導入口62の最上部よりも上に位置する枝管22を意味する。主方向27は、高さ方向と平行に底部14側に向かって液体が噴射されないように調整することが好ましい。噴射角度25が90度である場合に、主方向27は、水平方向に対して数度以上40度以下の所定の角度だけ底部14側に傾けてよく、10度以上30度以下の所定の角度だけ底部14側に傾けてもよい。 FIG. 13A is a diagram for explaining the orientation of the main direction 27 in the seventh embodiment. As shown in the figure, in this example, the main direction 27 of the injection part 24 in the branch pipe 22 located on the uppermost 12 side is inclined toward the bottom part 14 side. In this example, the branch pipe 22-1 located on the uppermost side 12 is at a position higher than the exhaust gas inlet 62. Therefore, the main direction of the injection unit 24 provided in the branch pipe 22-1 is described as the main direction 27, not the main direction 26. It is not necessary to limit to the branch pipe 22 positioned on the uppermost 12 side, and the main direction 27 of the injection unit 24 in the at least one branch pipe 22 positioned on the upper 12 side may be inclined to the bottom 14 side. . Further, the branch pipe 22 positioned on the upper side 12 means, for example, the branch pipe 22 positioned above the uppermost portion of the exhaust gas inlet 62. The main direction 27 is preferably adjusted so that the liquid is not ejected toward the bottom 14 side in parallel with the height direction. When the injection angle 25 is 90 degrees, the main direction 27 may be inclined toward the bottom 14 by a predetermined angle of several degrees to 40 degrees with respect to the horizontal direction, and a predetermined angle of 10 degrees to 30 degrees You may incline only to the bottom part 14 side.
 噴射された液体は、硫黄酸化物等を吸収しているので、煙道部90から外に放出されないことが望ましい。本例では、最も上部12側の噴射部24の噴射口23が底部14側を向くので、煙道部90から排ガス処理装置の外に液体が放出されるのを抑制することができる。なお、図示しないが、枝管22‐1よりも底部14側の枝管22‐2および枝管22‐3等に設けられた噴射部24の主方向26または主方向27は、x‐y平面と平行であってよい。 Since the injected liquid absorbs sulfur oxides and the like, it is desirable that the injected liquid is not discharged from the flue portion 90. In this example, since the injection port 23 of the injection part 24 on the uppermost 12 side faces the bottom part 14 side, it is possible to suppress the liquid from being discharged from the flue part 90 to the outside of the exhaust gas treatment apparatus. Although not shown, the main direction 26 or the main direction 27 of the injection unit 24 provided on the branch pipe 22-2 and the branch pipe 22-3 on the bottom 14 side of the branch pipe 22-1 is an xy plane. And may be parallel.
 図13Bは、第7実施形態の変形例における主方向26の向きを説明する図である。図示するように、本例では、最も底部14側に位置する枝管22における噴射部24の主方向26は、上部12側に傾いている。本例において、最も底部14側に位置する枝管22‐9は、排ガス導入口62と同じ高さ位置に位置する。それゆえ、枝管22‐9Bに設けられた噴射部24の主方向は、主方向26と記載する。本例では、最も底部14側の噴射部24の噴射口23が上部12側を向くので、第1から第6実施形態と比較して、排ガスの旋回性をさらに向上させることができる。なお、最も底部14側に位置する枝管22に限定される必要はなく、底部14側に位置する少なくとも1つの枝管22における噴射部24の主方向26が上部12側に傾いていてもよい。また、底部14側に位置する枝管22とは、例えば、排ガス導入口62の最上部よりも下に位置する枝管22を意味する。主方向26は、高さ方向と平行に上部12側に向かって液体が噴射されないように調整することが好ましい。噴射角度25が90度である場合に、主方向26は、水平方向に対して数度以上40度以下の所定の角度だけ上部12側に傾けてよく、10度以上30度以下の所定の角度だけ上部12側に傾けてもよい。 FIG. 13B is a diagram illustrating the orientation of the main direction 26 in the modification of the seventh embodiment. As shown in the figure, in this example, the main direction 26 of the injection unit 24 in the branch pipe 22 located closest to the bottom 14 is inclined toward the upper part 12. In this example, the branch pipe 22-9 located closest to the bottom 14 is located at the same height as the exhaust gas inlet 62. Therefore, the main direction of the injection unit 24 provided in the branch pipe 22-9B is referred to as a main direction 26. In this example, since the injection port 23 of the injection unit 24 closest to the bottom portion 14 faces the upper portion 12 side, the swirlability of exhaust gas can be further improved as compared with the first to sixth embodiments. The main pipe 26 of the injection unit 24 in at least one branch pipe 22 located on the bottom 14 side may be inclined to the upper part 12 side. . Further, the branch pipe 22 positioned on the bottom 14 side means, for example, the branch pipe 22 positioned below the uppermost portion of the exhaust gas inlet 62. The main direction 26 is preferably adjusted so that the liquid is not ejected toward the upper portion 12 side in parallel with the height direction. When the injection angle 25 is 90 degrees, the main direction 26 may be inclined to the upper part 12 side by a predetermined angle of several degrees to 40 degrees with respect to the horizontal direction, and a predetermined angle of 10 degrees to 30 degrees Only the upper 12 side may be inclined.
 図14(a)は、第8実施形態における反応塔10の一部を示す概要図である。図14(b)は、図14(a)のC‐C'上面視図である。図14(a)に示すように、本例の反応塔10は、排ガス導入口62の最も上部12側に庇部100を有する。庇部100は、排ガス導入方向63に延伸する板部材である。係る点において第1から第7実施形態と異なる。なお、本例を第1から第7実施形態に適用してよいのは勿論である。 FIG. 14A is a schematic diagram showing a part of the reaction tower 10 in the eighth embodiment. FIG. 14B is a top view of CC ′ of FIG. As shown in FIG. 14A, the reaction tower 10 of the present example has a flange 100 on the uppermost part 12 side of the exhaust gas inlet 62. The flange 100 is a plate member that extends in the exhaust gas introduction direction 63. This is different from the first to seventh embodiments. Of course, this example may be applied to the first to seventh embodiments.
 図14(b)に示すように、庇部100は、反応塔10の内部に設けられる。庇部100は、反応塔10の内壁18に接して設けられた外周領域112を有する。外周領域112は、排ガス導入管60と反応塔10の外形との接合部であってよい。本例の外周領域112は、反応塔10の内壁18と共形の円弧形状である。本例の外周領域112は、反応塔10の外形と内側側面66との交点61から、反応塔10の外形と外側側面64との交点162までにおける円弧形状である。 As shown in FIG. 14 (b), the eaves part 100 is provided inside the reaction tower 10. The eaves part 100 has an outer peripheral region 112 provided in contact with the inner wall 18 of the reaction tower 10. The outer peripheral region 112 may be a joint between the exhaust gas introduction pipe 60 and the outer shape of the reaction tower 10. In this example, the outer peripheral region 112 has a circular arc shape conforming to the inner wall 18 of the reaction tower 10. The outer peripheral region 112 in this example has an arc shape from the intersection 61 between the outer shape of the reaction tower 10 and the inner side surface 66 to the intersection 162 between the outer shape of the reaction tower 10 and the outer side surface 64.
 庇部100は、反応塔10の内壁18から内部空間15へ突出する。本例において、内壁18から突出する庇部100の先端領域を内側領域114とする。本例の内側領域114は、外周領域112の両端を結ぶ直線領域でもある。 The heel part 100 protrudes from the inner wall 18 of the reaction tower 10 into the internal space 15. In the present example, the tip region of the collar portion 100 protruding from the inner wall 18 is referred to as an inner region 114. The inner region 114 in this example is also a straight region connecting both ends of the outer peripheral region 112.
 上述の様に、排ガス導入口62と同じ高さに位置する枝管22において、排ガス導入口62に対して液体を噴射する噴射部24の主方向26を排ガス導入方向63に対して90度以下とする。これに対して、排ガス導入口62と異なる高さに位置する枝管22の噴射部24の主方向27は、排ガス導入方向63に対して90度よりも大きい場合がある。この場合、主方向27は、排ガス導入方向63に対して逆方向のベクトルを有する場合がある。 As described above, in the branch pipe 22 positioned at the same height as the exhaust gas introduction port 62, the main direction 26 of the injection unit 24 that injects liquid to the exhaust gas introduction port 62 is 90 degrees or less with respect to the exhaust gas introduction direction 63. And On the other hand, the main direction 27 of the injection part 24 of the branch pipe 22 located at a different height from the exhaust gas introduction port 62 may be larger than 90 degrees with respect to the exhaust gas introduction direction 63. In this case, the main direction 27 may have a vector opposite to the exhaust gas introduction direction 63.
 そこで、本例では、庇部100を設ける。これにより、庇部100よりも上に位置する噴射部24から噴射された液体のうち、排ガス導入方向63に対して逆方向のベクトルを有する液体が、排ガス導入管60に入ることを抑制することができる。また、庇部100は、内壁18を伝って大粒径に成長した液体が排ガス導入管60に入ることを防止することもできる。 Therefore, in this example, the buttocks 100 are provided. Thereby, the liquid which has a vector of the reverse direction with respect to the exhaust gas introduction direction 63 among the liquids injected from the injection part 24 located above the collar part 100 is suppressed from entering the exhaust gas introduction pipe 60. Can do. In addition, the flange portion 100 can also prevent the liquid that has grown to a large particle diameter along the inner wall 18 from entering the exhaust gas introduction pipe 60.
 図15Aは、図14のC‐C'上面視図における第1変形例である。図15Bは、図14のC‐C'上面視図における第2変形例である。図15Aおよび図15Bの例は、庇部100の形状が図14の例と異なる。なお、図15Bは、図15Aの枝管22を中心軸11の周りにおいて時計回りに45度だけ回転した例である。 FIG. 15A is a first modification in the top view of CC ′ of FIG. FIG. 15B is a second modification of the CC ′ top view of FIG. The example of FIGS. 15A and 15B is different from the example of FIG. FIG. 15B is an example in which the branch pipe 22 of FIG. 15A is rotated about 45 degrees clockwise around the central axis 11.
 庇部100の少なくとも一部は、庇部100よりも上部12側に位置する枝管22と上面から見た場合に重なってよい。本例において、上面から見るとは、上部12から底部14の向きに見ることを意味する。本例において、庇部100は枝管22‐5と枝管22‐6との間に位置する。本例の庇部100の一部は、枝管22‐5Aと上面から見た場合において重なる。 At least a part of the collar part 100 may overlap with the branch pipe 22 positioned on the upper part 12 side of the collar part 100 when viewed from the upper surface. In this example, viewing from the top means viewing from the top 12 to the bottom 14. In this example, the collar part 100 is located between the branch pipe 22-5 and the branch pipe 22-6. A part of the collar part 100 of this example overlaps the branch pipe 22-5A when viewed from the upper surface.
 本例の外周領域112は、反応塔10の外形と内側側面66との交点61から、反応塔10の外形と外側側面64との交点162よりも更に時計回りに進んだ位置164までにおける円弧形状である。これにより、庇部100を上面視した場合の庇部100の面積は、第9実施形態と比較して大きい。したがって、第9実施例よりもさらに効果的に液体が排ガス導入管60に入ることを防止することができる。 In this example, the outer peripheral region 112 has an arc shape from an intersection 61 between the outer shape of the reaction tower 10 and the inner side surface 66 to a position 164 that advances further clockwise than the intersection 162 between the outer shape of the reaction tower 10 and the outer side surface 64. It is. Thereby, the area of the collar part 100 when the collar part 100 is viewed from above is larger than that of the ninth embodiment. Therefore, the liquid can be prevented from entering the exhaust gas introduction pipe 60 more effectively than the ninth embodiment.
 図16は、第8実施形態の第2変形例における反応塔10の一部を示す概要図である。庇部100の外周領域112は、排ガス導入口62の内側端部から外側端部に進むにつれて高さ方向の高さが増加してよい。本例において、内側端部とは、内側側面66の最も上部12側の端部である。また、本例において、外側端部とは、外側側面64の最も上部12側の端部である。なお、他の例においては、外側端部は位置164であってもよい。 FIG. 16 is a schematic diagram showing a part of the reaction tower 10 in the second modification of the eighth embodiment. The height in the height direction of the outer peripheral region 112 of the flange portion 100 may increase as it proceeds from the inner end to the outer end of the exhaust gas inlet 62. In the present example, the inner end portion is the end portion on the uppermost 12 side of the inner side surface 66. In the present example, the outer end portion is the end portion on the uppermost 12 side of the outer side surface 64. In other examples, the outer end may be at the position 164.
 本例において、任意のx方向における外周領域112および内側領域114の高さは同じであってよい。本例の外周領域112の高さは、交点61から交点162に向けて単調増加する。なお、他の例においては、排ガスの旋回に対応するように、外周領域112の高さは、交点61から交点162に向けて増加する内壁18に沿った円弧状であってもよい。 In this example, the height of the outer peripheral region 112 and the inner region 114 in an arbitrary x direction may be the same. The height of the outer peripheral region 112 in this example monotonously increases from the intersection point 61 toward the intersection point 162. In another example, the height of the outer peripheral region 112 may be an arc shape along the inner wall 18 that increases from the intersection point 61 toward the intersection point 162 so as to correspond to the turning of the exhaust gas.
 本例では、側面視した場合における庇部100の中心軸11側の高さ(交点61)を相対的に低くすることにより、反応塔10に導入される排ガスの旋回性を助長することができる。なお、他の例においては、本例を図16の例に適用してもよい。その場合、外周領域112の高さは、交点61から位置164に向けて増加してよい。 In this example, the swirlability of the exhaust gas introduced into the reaction tower 10 can be promoted by relatively reducing the height (intersection 61) on the central axis 11 side of the flange portion 100 when viewed from the side. . In another example, this example may be applied to the example of FIG. In that case, the height of the outer peripheral region 112 may increase from the intersection 61 toward the position 164.
 図17は、第9実施形態における排ガス導入管60の概要を示す図である。排ガス導入管60は、第1直線部68と、第2直線部69とを有してよい。第1直線部68は、高さ方向に延伸して設けられてよい。第2直線部69は、排ガスの流路において第1直線部68と排ガス導入口62との間に設けられてよい。第2直線部69は、高さ方向に直交する直線部を含んでよい。本例の第2直線部69は、底部14側において第1直線部68と接続する。 FIG. 17 is a diagram showing an outline of the exhaust gas introduction pipe 60 in the ninth embodiment. The exhaust gas introduction pipe 60 may have a first straight part 68 and a second straight part 69. The first straight portion 68 may be provided extending in the height direction. The second straight portion 69 may be provided between the first straight portion 68 and the exhaust gas inlet 62 in the exhaust gas flow path. The second straight part 69 may include a straight part perpendicular to the height direction. The second straight portion 69 of this example is connected to the first straight portion 68 on the bottom portion 14 side.
 本例の排ガス導入管60は、いわゆる逆L字形状を有する。それゆえ、第1直線部68が上部12側において第2直線部69と接続する場合と比較して、噴射された液体がエンジンに逆流しやすくなる恐れがある。そこで、本例の排ガス導入管60を用いる場合は、図1から図16における記載の主方向26および噴射部24の構成ならびに庇部100の構成を適用してよい。これにより、液体がエンジンに逆流することを抑制してよい。 The exhaust gas introduction pipe 60 of this example has a so-called inverted L shape. Therefore, compared with the case where the first straight portion 68 is connected to the second straight portion 69 on the upper portion 12 side, the injected liquid may easily flow back to the engine. Therefore, when the exhaust gas introduction pipe 60 of this example is used, the configuration of the main direction 26 and the injection unit 24 and the configuration of the flange unit 100 described in FIGS. 1 to 16 may be applied. This may prevent the liquid from flowing back to the engine.
 図18は、排ガス導入管60の他の例を示す図である。本例の第2直線部69は、上部12側において第1直線部68と接続する。つまり、本例の排ガス導入管60は、反応塔10と接続する位置の近傍において、L字形状を有する。係る点において、第9実施形態と異なる。なお、第1直線部68よりも排ガスの上流側において、排ガス導入管60の構成は適宜定めてよい。 FIG. 18 is a view showing another example of the exhaust gas introduction pipe 60. The second straight part 69 of this example is connected to the first straight part 68 on the upper part 12 side. That is, the exhaust gas introduction pipe 60 of this example has an L shape in the vicinity of the position where it is connected to the reaction tower 10. This is different from the ninth embodiment. In addition, the configuration of the exhaust gas introduction pipe 60 may be appropriately determined on the upstream side of the exhaust gas from the first straight portion 68.
 本例の排ガス導入管60は、排ガスの上流から下流の順に、第4直線部169、第3直線部168、第5直線部167、第1直線部68および第2直線部69を有する。第3直線部168は、第1直線部68と同様に高さ方向に延伸する。第4直線部169は、第3直線部168の底部14側において高さ方向に直交する直線部を含む。第5直線部167は、第1直線部68および第3直線部168の間に設けられる。第5直線部167は、第1直線部68および第3直線部168の上部12側において高さ方向に直交する直線部を含む。これにより、排ガスの流路において、高さ方向において上に凸状の部分が設けられる。 The exhaust gas introduction pipe 60 of this example includes a fourth straight portion 169, a third straight portion 168, a fifth straight portion 167, a first straight portion 68, and a second straight portion 69 in order from upstream to downstream of the exhaust gas. The third straight portion 168 extends in the height direction similarly to the first straight portion 68. The fourth straight part 169 includes a straight part perpendicular to the height direction on the bottom 14 side of the third straight part 168. The fifth straight part 167 is provided between the first straight part 68 and the third straight part 168. The fifth straight part 167 includes a straight part perpendicular to the height direction on the upper part 12 side of the first straight part 68 and the third straight part 168. Thereby, in the flow path of exhaust gas, a convex part is provided upward in the height direction.
 本例の排ガス導入管60は、第1直線部68の高さ方向長さが液体の逆流を防ぐ壁として機能する。それゆえ、第9実施形態と比較して、排ガス導入管60の構成自体により、液体の逆流を抑制することができる。なお、図1から図16における記載の主方向26および噴射部24の構成ならびに庇部100の構成を適用してよいのは勿論である。 In the exhaust gas introduction pipe 60 of the present example, the height direction length of the first straight part 68 functions as a wall that prevents the back flow of the liquid. Therefore, the back flow of the liquid can be suppressed by the configuration of the exhaust gas introduction pipe 60 as compared with the ninth embodiment. Of course, the main direction 26 and the configuration of the injection unit 24 and the configuration of the collar unit 100 described in FIGS. 1 to 16 may be applied.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order is not.
 10・・反応塔、11・・中心軸、12・・上部、13・・仮想面、14・・底部、15・・内部空間、17・・排水導出部、18・・内壁、20・・幹管、21・・外壁、22・・枝管、23・・噴射口、24・・噴射部、25・・噴射角度、26・・主方向、27・・主方向、28・・液体導入管、29・・バッフル、30・・上部幹管、31・・上部連結部、32・・枝管、34・・噴射部、38・・液体導入管、40・・中部幹管、41・・下部連結部、42・・枝管、44・・噴射部、48・・液体導入管、50・・下部幹管、52・・枝管、54・・噴射部、60・・排ガス導入管、61・・交点、62・・排ガス導入口、63・・排ガス導入方向、64・・外側側面、65・・中間位置、66・・内側側面、68・・第1直線部、69・・第2直線部、72・・上部液返しリング、74・・下部液返しリング、76・・上側継手部、78・・下側継手部、80・・レデューサ部、90・・煙道部、100・・庇部、112・・外周領域、114・・内側領域、162・・交点、164・・位置、167・・第5直線部、168・・第3直線部、169・・第4直線部、200・・排ガス処理装置、210・・排ガス処理装置、220・・排ガス処理装置、230・・排ガス処理装置、240・・排ガス処理装置、250・・排ガス処理装置、260・・排ガス処理装置 10 .. Reaction tower, 11 .... Central axis, 12 .... Top, 13 .... Virtual plane, 14 .... Bottom, 15 .... Internal space, 17 .... Drainage outlet, 18 .... Inner wall, 20 .... Trunk Pipe, 21 ... outer wall, 22 ... branch pipe, 23 ... jet port, 24 ... jetting section, 25 ... jet angle, 26 ... main direction, 27 ... main direction, 28 ... liquid introduction pipe, 29 .... Baffle, 30 ... Upper trunk pipe, 31 ... Upper connection part, 32 ... Branch pipe, 34 ... Injection section, 38 ... Liquid introduction pipe, 40 ... Middle trunk pipe, 41 ... Lower connection , 42 .. Branch pipe, 44 .. Injection section, 48 .. Liquid introduction pipe, 50 .. Lower trunk pipe, 52 .. Branch pipe, 54 .. Injection section, 60 .. Exhaust gas introduction pipe, 61. Intersection, 62 ·· Exhaust gas inlet, 63 ·· Exhaust gas introduction direction, 64 ·· Outside side surface, 65 ·· Intermediate position, 66 ·· Inside side surface, 68 ·· First straight , 69 ··· 2nd straight portion, 72 ··· Upper liquid return ring, 74 · · Lower liquid return ring, 76 · · Upper joint portion, 78 · · Lower joint portion, 80 · · Reducer portion, 90 · · · • Flue section, 100 ·· Hut, 112 ·· Outer peripheral area, 114 ·· Inner area, 162 ·· Intersection, 164 ·· Position, 167 ·· Fifth straight section, 168 ·· Third straight section, 169 ·・ Fourth straight section, 200 ..Exhaust gas treatment device, 210 ..Exhaust gas treatment device, 220 ..Exhaust gas treatment device, 230 ..Exhaust gas treatment device, 240 ..Exhaust gas treatment device, 250.・ Exhaust gas treatment equipment

Claims (15)

  1.  排ガスを処理する排ガス処理装置であって、
     排ガスが導入される底部側から排ガスが排出される上部側への高さ方向に延伸する内部空間を有する反応塔と、
     前記反応塔の前記内部空間において前記高さ方向に延伸し、液体を搬送する幹管と、
     前記幹管の外壁から前記反応塔の内壁に向けて延伸して設けられ、前記幹管から供給される液体を噴射する噴射部を各々有し、各々異なる高さ位置に設けられた、複数の枝管と
    を備え、
     前記反応塔は、排ガスを導入して前記反応塔の内面に沿って旋回上昇させる排ガス導入口を前記底部側の側面に有し、
     前記複数の枝管のうち前記高さ方向において前記排ガス導入口と同じ高さに位置し、排ガス導入方向に直交し且つ前記反応塔の中心軸を通る面よりも前記排ガス導入口側に位置する枝管において、前記排ガス導入口に対して液体を噴射する前記噴射部の噴射角度の中心で規定される主方向が、前記排ガス導入口から導入される排ガスの前記排ガス導入方向に対して90度以下である
    排ガス処理装置。
    An exhaust gas treatment device for treating exhaust gas,
    A reaction tower having an internal space extending in the height direction from the bottom side where the exhaust gas is introduced to the upper side where the exhaust gas is discharged;
    A trunk pipe extending in the height direction in the internal space of the reaction tower and conveying a liquid;
    A plurality of injection portions that are provided to extend from the outer wall of the main tube toward the inner wall of the reaction tower, each of the injection units that injects the liquid supplied from the main tube, are provided at different height positions. With branch pipes,
    The reaction tower has an exhaust gas introduction port on the side surface on the bottom side for introducing exhaust gas to swirl up along the inner surface of the reaction tower,
    Among the plurality of branch pipes, it is located at the same height as the exhaust gas inlet in the height direction, and is located closer to the exhaust gas inlet than a plane orthogonal to the exhaust gas introduction direction and passing through the central axis of the reaction tower. In the branch pipe, the main direction defined by the center of the injection angle of the injection unit that injects the liquid to the exhaust gas introduction port is 90 degrees with respect to the exhaust gas introduction direction of the exhaust gas introduced from the exhaust gas introduction port. An exhaust gas treatment device that is:
  2.  前記噴射部の前記主方向は、前記排ガス導入方向に対して45度以下である
    請求項1に記載の排ガス処理装置。
    The exhaust gas treatment apparatus according to claim 1, wherein the main direction of the injection unit is 45 degrees or less with respect to the exhaust gas introduction direction.
  3.  前記高さ方向において前記排ガス導入口と同じ高さに位置する前記噴射部の密度は、前記高さ方向において前記排ガス導入口と異なる高さに位置する前記噴射部の密度よりも小さい
    請求項1または2に記載の排ガス処理装置。
    The density of the injection unit located at the same height as the exhaust gas inlet in the height direction is smaller than the density of the injection unit located at a height different from the exhaust gas inlet in the height direction. Or the exhaust gas treatment apparatus according to 2;
  4.  前記幹管は、
     最も前記上部側に位置する上部幹管と、
     最も前記底部側に位置する下部幹管と
    を有し、
     前記下部幹管に設けられた枝管における前記噴射部から噴射される液体の液滴の粒径は、前記上部幹管に設けられた枝管における前記噴射部から噴射される液体の液滴の粒径よりも大きく、
     前記高さ方向において前記排ガス導入口と同じ高さに位置する前記枝管は、前記下部幹管に設けられる
    請求項1から3のいずれか一項に記載の排ガス処理装置。
    The stem pipe is
    An upper trunk located on the uppermost side;
    The lower trunk located on the bottom side most,
    The particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the lower trunk pipe is the size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the upper trunk pipe. Larger than the particle size,
    The exhaust gas processing apparatus according to any one of claims 1 to 3, wherein the branch pipe positioned at the same height as the exhaust gas inlet in the height direction is provided in the lower trunk pipe.
  5.  前記幹管は、前記上部幹管と前記下部幹管との間に中部幹管を有し、
     前記中部幹管に設けられた枝管における前記噴射部から噴射される液体の液滴の粒径は、前記下部幹管に設けられた枝管における前記噴射部から噴射される液体の液滴の粒径よりも小さく、かつ、前記上部幹管に設けられた枝管における前記噴射部から噴射される液体の液滴の粒径よりも大きい
    請求項4に記載の排ガス処理装置。
    The stem pipe has a middle trunk pipe between the upper trunk pipe and the lower trunk pipe,
    The particle size of the liquid droplets ejected from the ejection unit in the branch pipe provided in the middle trunk pipe is the same as that of the liquid droplets ejected from the ejection unit in the branch pipe provided in the lower trunk pipe. The exhaust gas treatment apparatus according to claim 4, wherein the exhaust gas treatment apparatus is smaller than a particle diameter and larger than a particle diameter of a liquid droplet ejected from the ejection section in a branch pipe provided in the upper trunk pipe.
  6.  前記中部幹管に設けられた少なくとも1つの枝管が、前記高さ方向において前記排ガス導入口と同じ高さに位置し、
     前記中部幹管に設けられた枝管において、前記排ガス導入口に対して液体を噴射する前記噴射部の噴射角度の中心で規定される前記主方向は、前記排ガス導入方向に対して0度以上180度以下である
    請求項5に記載の排ガス処理装置。
    At least one branch pipe provided in the middle trunk pipe is located at the same height as the exhaust gas inlet in the height direction;
    In the branch pipe provided in the middle trunk pipe, the main direction defined by the center of the injection angle of the injection unit that injects liquid to the exhaust gas inlet is 0 degree or more with respect to the exhaust gas introduction direction. The exhaust gas treatment apparatus according to claim 5, wherein the exhaust gas treatment apparatus is 180 degrees or less.
  7.  前記上部幹管に設けられた少なくとも1つの枝管が、前記高さ方向において前記排ガス導入口と同じ高さに位置し、
     前記上部幹管に設けられた枝管において、前記排ガス導入口に対して液体を噴射する前記噴射部の噴射角度の中心で規定される前記主方向は、前記排ガス導入方向に対して0度以上180度以下である
    請求項5または6に記載の排ガス処理装置。
    At least one branch pipe provided in the upper trunk pipe is located at the same height as the exhaust gas inlet in the height direction;
    In the branch pipe provided in the upper trunk pipe, the main direction defined by the center of the injection angle of the injection unit for injecting liquid to the exhaust gas introduction port is 0 degree or more with respect to the exhaust gas introduction direction. The exhaust gas treatment apparatus according to claim 5 or 6, which is 180 degrees or less.
  8.  前記複数の枝管のうち最も前記底部側に位置する枝管は、前記排ガス導入口の前記底部側と前記上部側との中間位置よりも前記上部側に位置する
    請求項1から7のいずれか一項に記載の排ガス処理装置。
    The branch pipe located closest to the bottom side among the plurality of branch pipes is located on the upper side of an intermediate position between the bottom side and the upper side of the exhaust gas inlet. The exhaust gas treatment apparatus according to one item.
  9.  前記複数の枝管のうち前記底部側に位置する少なくとも1つの枝管における前記噴射部の前記主方向は、前記上部側に傾いている
    請求項8に記載の排ガス処理装置。
    The exhaust gas treatment apparatus according to claim 8, wherein the main direction of the injection unit in at least one branch pipe located on the bottom side among the plurality of branch pipes is inclined toward the upper side.
  10.  前記複数の枝管のうち前記上部側に位置する少なくとも1つの枝管における前記噴射部の前記主方向は、前記底部側に傾いている
    請求項8または9に記載の排ガス処理装置。
    The exhaust gas treatment apparatus according to claim 8 or 9, wherein the main direction of the injection unit in at least one branch pipe located on the upper side among the plurality of branch pipes is inclined toward the bottom side.
  11.  前記反応塔は、前記排ガス導入口の最も前記上部側に庇部を有する
    請求項1から10のいずれか一項に記載の排ガス処理装置。
    The exhaust gas treatment apparatus according to any one of claims 1 to 10, wherein the reaction tower has a flange on the uppermost side of the exhaust gas inlet.
  12.  前記庇部は、前記排ガス導入方向に延伸し、
     上面から見た場合、前記庇部の少なくとも一部は、前記複数の枝管のうち前記庇部よりも上部側に位置する枝管と重なる
    請求項11に記載の排ガス処理装置。
    The flange extends in the exhaust gas introduction direction,
    The exhaust gas treatment apparatus according to claim 11, wherein when viewed from above, at least a part of the flange portion overlaps a branch tube located on an upper side of the flange portion among the plurality of branch tubes.
  13.  前記庇部は、前記反応塔の前記内壁に接して設けられた外周領域を有し、
     前記外周領域は、前記排ガス導入口の内側端部から外側端部に進むにつれて前記高さ方向の高さが増加する
     請求項11または12に記載の排ガス処理装置。
    The flange has an outer peripheral region provided in contact with the inner wall of the reaction tower,
    The exhaust gas treatment device according to claim 11 or 12, wherein the height in the height direction of the outer peripheral region increases as it proceeds from an inner end portion to an outer end portion of the exhaust gas introduction port.
  14.  前記反応塔の外側から前記排ガス導入口に接続する排ガス導入管をさらに備え、
     前記排ガス導入管は、
     前記反応塔の外形の接線方向に延伸する外側側面と、
     前記外側側面に対向して設けられ、前記反応塔の外形と交差する方向に延伸する内側側面と
    を有し、
     前記内側側面は、前記反応塔の前記内部空間に突出しない
     請求項1から13のいずれか一項に記載の排ガス処理装置。
    An exhaust gas inlet pipe connected to the exhaust gas inlet from the outside of the reaction tower;
    The exhaust gas introduction pipe is
    An outer side surface extending in a tangential direction of the outer shape of the reaction tower;
    An inner side surface provided facing the outer side surface and extending in a direction intersecting the outer shape of the reaction tower;
    The exhaust gas treatment apparatus according to any one of claims 1 to 13, wherein the inner side surface does not protrude into the internal space of the reaction tower.
  15.  前記排ガス導入管は、
     前記高さ方向に延伸する第1直線部と、
     前記高さ方向に直交する直線部を含み、排ガスの流路において前記第1直線部と前記排ガス導入口との間に設けられる第2直線部と
    を有する
     請求項14に記載の排ガス処理装置。
    The exhaust gas introduction pipe is
    A first straight portion extending in the height direction;
    The exhaust gas treatment apparatus according to claim 14, further comprising a straight line portion orthogonal to the height direction and having a second straight line portion provided between the first straight line portion and the exhaust gas inlet in the exhaust gas flow path.
PCT/JP2017/003873 2016-03-16 2017-02-02 Exhaust gas processing device WO2017159102A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016052494A JP2019076799A (en) 2016-03-16 2016-03-16 Exhaust gas treatment equipment
JP2016-052494 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017159102A1 true WO2017159102A1 (en) 2017-09-21

Family

ID=59852100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003873 WO2017159102A1 (en) 2016-03-16 2017-02-02 Exhaust gas processing device

Country Status (2)

Country Link
JP (1) JP2019076799A (en)
WO (1) WO2017159102A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854449A (en) * 2018-06-29 2018-11-23 平顶山金晶生物科技股份有限公司 A kind of soluble soybean polysaccharide solvent tail gas recyclable device
CN113230879A (en) * 2021-04-29 2021-08-10 派尔实验装备有限公司 VOCS catalytic oxidation equipment for waste gas treatment and use method
EP3875166A4 (en) * 2019-06-28 2022-01-26 Fuji Electric Co., Ltd. Exhaust gas treatment apparatus and scrubber nozzle
CN115348890A (en) * 2020-10-01 2022-11-15 富士电机株式会社 Exhaust gas treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6977830B1 (en) * 2020-08-14 2021-12-08 富士電機株式会社 Exhaust gas treatment equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56176029U (en) * 1980-05-30 1981-12-25
WO2014014002A1 (en) * 2012-07-19 2014-01-23 富士電機株式会社 Gas absorption tower
JP2014117685A (en) * 2012-12-19 2014-06-30 Fuji Electric Co Ltd Exhaust gas treatment apparatus
JP5999226B1 (en) * 2015-06-26 2016-09-28 富士電機株式会社 Exhaust gas treatment equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56176029U (en) * 1980-05-30 1981-12-25
WO2014014002A1 (en) * 2012-07-19 2014-01-23 富士電機株式会社 Gas absorption tower
JP2014117685A (en) * 2012-12-19 2014-06-30 Fuji Electric Co Ltd Exhaust gas treatment apparatus
JP5999226B1 (en) * 2015-06-26 2016-09-28 富士電機株式会社 Exhaust gas treatment equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854449A (en) * 2018-06-29 2018-11-23 平顶山金晶生物科技股份有限公司 A kind of soluble soybean polysaccharide solvent tail gas recyclable device
EP3875166A4 (en) * 2019-06-28 2022-01-26 Fuji Electric Co., Ltd. Exhaust gas treatment apparatus and scrubber nozzle
CN115348890A (en) * 2020-10-01 2022-11-15 富士电机株式会社 Exhaust gas treatment device
CN113230879A (en) * 2021-04-29 2021-08-10 派尔实验装备有限公司 VOCS catalytic oxidation equipment for waste gas treatment and use method
CN113230879B (en) * 2021-04-29 2022-02-15 派尔实验装备有限公司 VOCS catalytic oxidation equipment for exhaust-gas treatment

Also Published As

Publication number Publication date
JP2019076799A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2017159102A1 (en) Exhaust gas processing device
JP7015794B2 (en) Systems and methods to reduce the amount of sulfur oxides in exhaust gas
JP5983802B2 (en) Exhaust gas treatment equipment
WO2016208273A1 (en) Exhaust gas treatment apparatus
JP5999228B1 (en) Exhaust gas treatment equipment
WO2017159099A1 (en) Exhaust gas processing device
CN102383426B (en) Gas-liquid two-phase flow jetting pile shoe
JP2016172205A (en) Exhaust gas treatment device
WO2017203837A1 (en) Exhaust gas treatment device
CN105749710B (en) A kind of rotary spray backflow bubble tower removing ship tail gas SOXDevice
TWI707720B (en) Gas-liquid mixing device and exhaust desulfurization device with gas-liquid mixing device
TW202021662A (en) Gas-liquid mixing device, and exhaust gas desulfurization device comprising gas-liquid mixing device
TWI735030B (en) Exhaust desulfurization device
JP6139911B2 (en) Ship mist remover
WO2018159557A1 (en) Marine vessel desulfurization device and ship having the marine vessel desulfurization device mounted thereto
KR101606688B1 (en) Air spray device of floating ocean structure having bulk tank
CN107249723B (en) Water discharge nozzle and mixing tank
KR102126830B1 (en) Apparatus for purifying marine exhaust gas
KR102402332B1 (en) Reductant supply system
CN113244763A (en) Device is administered to high-speed thoughtlessly dissolving waste gas
JP2023000649A (en) Exhaust gas processing device
CN108159867A (en) A kind of venturi effect tower
JPH07116646A (en) Aeration device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766110

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP