WO2014014002A1 - Gas absorption tower - Google Patents

Gas absorption tower Download PDF

Info

Publication number
WO2014014002A1
WO2014014002A1 PCT/JP2013/069353 JP2013069353W WO2014014002A1 WO 2014014002 A1 WO2014014002 A1 WO 2014014002A1 JP 2013069353 W JP2013069353 W JP 2013069353W WO 2014014002 A1 WO2014014002 A1 WO 2014014002A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption tower
liquid
gas
return member
main body
Prior art date
Application number
PCT/JP2013/069353
Other languages
French (fr)
Japanese (ja)
Inventor
小松 正
邦幸 高橋
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2014014002A1 publication Critical patent/WO2014014002A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means

Definitions

  • the present invention relates to a gas absorption tower for treating exhaust gas.
  • a cyclonic scrubber that is an apparatus that absorbs or collects dust by bringing it into contact with a liquid to be sprayed is known (see, for example, Patent Document 1).
  • cyclone scrubber various configurations for preventing the droplets from being scattered in the atmosphere together with the gas discharged from the opening at the upper end of the tower have been proposed.
  • a configuration has been proposed in which a liquid droplet is removed by providing the demister formed inside.
  • the configuration in which the upper part of the tower has a large diameter has a problem that the installation space for the cyclone scrubber increases.
  • the configuration in which the demister is provided has a problem that a pressure loss is generated in the demister and the demister is clogged depending on the combination of the gas to be reacted and the liquid, and thus complicated maintenance is required.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a gas absorption tower that prevents installation of liquid while suppressing installation space and pressure loss.
  • the present invention relates to a gas absorption tower that absorbs gas by bringing a gas and a liquid into contact with each other, and an absorption tower main body formed of a cylindrical body whose central axis is directed in the vertical direction, A spray device that sprays liquid in a predetermined region, a gas supply device that introduces gas into the absorption tower body from a position lower than a region where the spray device sprays liquid, and a region where the spray device sprays liquid A liquid return member provided at an upper position, protruding in an annular shape from the inner wall surface of the absorber tower body toward the central axis, and having a tip on the central axis side folded at least downward; .
  • the liquid rises by the liquid return member provided at a position higher than the area where the spray device inside the absorption tower body sprays the liquid, so that the liquid rises and the absorption tower body It is possible to effectively prevent the situation of flowing out from the opening at the upper end of the. Thereby, it becomes possible to prevent the outflow of the liquid while suppressing the installation space and suppressing the pressure loss.
  • the liquid return member has a liquid pool wall protruding upward so as to form a liquid pool part, and a through hole for dropping the liquid collected in the liquid pool part.
  • the liquid return member may be provided in a plurality of stages in the vertical direction.
  • FIG. 2A is a schematic top view of the gas absorption tower according to the present embodiment
  • FIG. 2B is a schematic cross-sectional view of the gas absorption tower
  • FIG. 3A is a perspective view showing a liquid return member
  • FIG. 3B is a top view showing the liquid return member.
  • It is a cross-sectional schematic diagram which shows the state which attached the liquid return member to the absorption tower main body.
  • FIG. 1 is a schematic diagram showing an exhaust gas treatment system centered on a gas absorption tower according to the present embodiment.
  • an exhaust gas treatment system according to the present embodiment a system that removes sulfur dioxide (SO 2 ) contained in exhaust gas discharged from an engine used in a ship is considered.
  • SO 2 sulfur dioxide
  • the present invention is not limited to this, and the exhaust gas treatment system according to the present embodiment can be applied to the treatment of various exhaust gases containing substances such as nitrogen oxides and sulfur oxides.
  • the exhaust gas treatment system includes a gas absorption tower 10, an engine 20, a seawater pump unit 30 including a seawater pressurization pump and a seawater extraction pump, a drainage tank 40, and a filter unit for filtering wastewater. 50.
  • the exhaust gas discharged from the engine 20 is introduced into the gas absorption tower 10.
  • This exhaust gas contains 50 to 1500 ppm of sulfur dioxide (SO 2 ).
  • SO 2 sulfur dioxide
  • the seawater introduced into the gas absorption tower 10 through the seawater pump unit 30 is sprayed and brought into gas-liquid contact.
  • the exhaust gas from which sulfur dioxide has been removed is exhausted from the upper part of the gas absorption tower 10 into the atmosphere.
  • the seawater sprayed in the gas absorption tower 10 falls by its own weight along the inner wall surface of the gas absorption tower 10 and is stored in a storage section below the gas absorption tower 10.
  • the stored seawater is drained into the drainage tank 40 via the seawater pump unit 30, then filtered by the filter unit 50 and drained to the ocean.
  • FIG. 2A is a schematic top view of the gas absorption tower 10 according to the present embodiment
  • FIG. 2B is a schematic cross-sectional view of the gas absorption tower 10.
  • the gas absorption tower 10 sprays liquid in an absorption tower main body 11 composed of a cylindrical body whose central axis is directed in the vertical direction and a predetermined region in the vertical direction of the internal space of the absorption tower main body 11.
  • the spray device 12, the gas supply device 13 that introduces gas into the absorption tower body 11 from a position below the region where the spray device 12 sprays the liquid, and the position above the region where the spray device 12 sprays the liquid are provided.
  • the liquid return member 14 that protrudes in an annular shape from the inner wall surface of the absorption tower body 11 toward the central axis, and whose tip on the central axis side is folded back at least downward, and the baffle provided at a position lower than the spray device 12 15.
  • the spray device 12 is connected to the seawater pump unit 30 shown in FIG. 1, and the gas supply device 13 is connected to the engine 20 shown in FIG.
  • the absorption tower main body 11 includes a cylindrical peripheral wall portion 11a and a circular bottom wall portion 11b. All the peripheral wall portions 11a are configured to have the same diameter. The upper end part of the surrounding wall part 11a is opened, and the opening part 11c is formed.
  • the absorption tower main body 11 has a cylindrical shape, the shape of the absorption tower main body 11 is not restricted to this, For example, a rectangular tube shape may be sufficient.
  • the spray device 12 is installed on the central axis of the absorption tower body 11.
  • the spray device 12 is inserted into the absorption tower main body 11 from the outside of the absorption tower main body 11 and is connected to a water supply pipe 12a extending to the center position of the absorption tower main body 11 and an insertion end of the water supply pipe 12a.
  • a water conduit 12b extending over a predetermined region in the vertical direction of the internal space of the main body 11, a plurality of branch pipes 12c connected to the water conduit 12b, and a spray nozzle 12d provided at the tip of each branch pipe 12c , Including.
  • the branch pipes 12c adjacent in the vertical direction cross each other so as to be orthogonal to each other.
  • the spray nozzles 12d are provided on the same plane as the branch pipes 12c, and the ejection direction is perpendicular to the branch pipes 12c. With such a configuration, it is possible to spray the liquid uniformly inside the absorption tower body 11.
  • the gas supply device 13 is provided so that the gas ejection direction is along the tangential direction of the peripheral wall portion 11 a of the absorption tower body 11. Therefore, the exhaust gas introduced from the gas supply device 13 is injected in the horizontal direction along the inner peripheral surface of the peripheral wall portion 11a.
  • the liquid return member 14 includes a folded surface portion 14a that protrudes in an annular shape from the peripheral wall portion 11a of the absorber tower body 11 toward the central axis, a folded piece 14b that is folded downward from the tip on the central axis side of the folded surface portion 14a, and a folded surface. It has a liquid reservoir wall 14d protruding upward so as to form a liquid reservoir 14c from the tip of the surface portion 14a, and a through hole 14e for dropping the liquid accumulated in the liquid reservoir 14c.
  • FIG. 3A is a perspective view showing the liquid return member 14, and FIG. 3B is a top view showing the liquid return member 14.
  • the liquid return member 14 includes a cylindrical member 141 and a flange portion 142 that protrudes outward from the center position in the vertical direction of the cylindrical member 141.
  • the flange portion 142 constitutes the folded surface portion 14a.
  • a part of the cylindrical member 141 protruding downward from the flange portion 142 constitutes a bent piece 14b.
  • a part of the cylindrical member 141 protruding above the flange portion 142 constitutes a liquid pool wall 14d.
  • the outer diameter of the flange portion 142 is configured to be larger than the outer diameter of the peripheral wall portion 11a in the absorber tower body 11.
  • the flange portion 142 has a plurality of through holes 14e on the inner peripheral side and a plurality of screw holes 14f on the outer peripheral side.
  • FIG. 4 is a schematic cross-sectional view showing a state in which the liquid return member 14 is attached to the absorption tower body 11.
  • the liquid return member 14 moves up and down the outer peripheral edge portion of the flange portion 142 protruding from the absorption tower body 11 with the central axis of the liquid return member 14 and the central axis of the absorption tower body 11 aligned.
  • the absorber tower body 11 by being fastened with bolts 144 passed through the screw holes 14f.
  • the flange part 142 will be in the state protruded horizontally from the surrounding wall part 11a of the absorption tower main body 11 toward the central axis.
  • the region on the central axis side surrounded by the cylindrical member 141 of the liquid return member 14 attached to the absorption tower body 11 constitutes an opening 14g (see FIG. 2B).
  • the opening 14g is configured to have an inner diameter of about 50 to 80% of the opening 11c of the absorber tower body 11. With this configuration, it is possible to suppress pressure loss caused by attaching the liquid return member 14 to the absorption tower body 11.
  • the baffle 15 includes a disk part 15 a and leg parts 15 b that connect the disk part 15 a and the peripheral wall part 11 a of the absorption tower body 11. A gap for flowing droplets is formed between the outer peripheral portion of the disk portion 15a and the peripheral wall portion 11a of the absorber tower body 11.
  • the baffle 15 divides the inside of the absorption tower main body 11 into a region where the liquid is sprayed by the spray device 12 and a region where the liquid for draining outside the absorption tower main body 11 is stored. Below the baffle 15, a drain pipe 16 for draining the liquid outside the absorption tower body 11 is provided below the baffle 15, a drain pipe 16 for draining the liquid outside the absorption tower body 11 is provided.
  • exhaust gas treatment in the gas absorption tower 10 thus configured will be described.
  • the exhaust gas discharged from the engine is introduced by the gas supply device 13 below the region where the spray device 12 sprays liquid.
  • the exhaust gas rises in the absorption tower body 11 while circling along the peripheral wall portion 11a.
  • seawater is introduced into the water conduit 12b through the water supply pipe 12a. And seawater is sprayed toward the surrounding wall part 11a of the absorption tower main body 11 from the spray nozzle 12d provided in the multistage branch pipe 12c.
  • the exhaust gas swirling up in the absorption tower body 11 comes into gas-liquid contact with seawater sprayed from the spray nozzle 12d provided in the branch pipe 12c installed in each stage, and sulfur dioxide in the exhaust gas is absorbed and removed.
  • the exhaust gas from which sulfur dioxide has been removed is exhausted into the atmosphere from an opening 11c provided in the upper part of the absorption tower body 11.
  • the seawater that has become droplets is pressed against the peripheral wall 11a by the centrifugal force due to the swirling flow and falls by its own weight. However, part of the seawater rises through the inside of the absorption tower body 11 by the swirling upward flow.
  • the central portion of the absorption tower body 11 has a gas flow velocity of 0 m / s or a value close to it, and the vicinity of the peripheral wall portion 11a has a higher gas flow velocity than the central portion, so seawater rises along the peripheral wall portion 11a by centrifugal force. To do. Seawater rising along the peripheral wall portion 11a is prevented from rising by the lowermost liquid return member 14, and stays on the lower surface of the flange portion 142 and the periphery of the folded piece 14b. When the staying liquid exceeds a certain size, it becomes droplets and falls by its own weight.
  • the vicinity of the peripheral wall portion 11a of the absorption tower body 11 has a higher gas flow rate than the central portion of the absorption tower body 11, and therefore, if the through hole 14e is provided in the vicinity of the peripheral wall portion 11a, it penetrates under the influence of the upward flow. There may be a situation in which the droplet does not fall from the hole 14e. Therefore, by providing the through hole 14e at a position where the gas flow rate is slow compared to the vicinity of the peripheral wall portion 11a and away from the peripheral wall portion 11a, the influence of the upward flow can be weakened to drop the droplet from the through hole 14e. .
  • the liquid return member 14 Since the liquid return member 14 is provided in a plurality of stages in the vertical direction, the rise of seawater by the liquid return member 14 is prevented a plurality of times. Therefore, the situation where seawater rises and flows out from the opening 11c of the absorption tower body 11 can be effectively prevented.
  • the liquid return member 14 has a shape protruding in an annular shape from the peripheral wall portion 11a of the absorption tower main body 11 toward the central axis. Since the opening 14g is formed, pressure loss due to the attachment of the liquid return member 14 can be reduced. Moreover, clogging does not occur due to the liquid return member 14, and complicated maintenance is unnecessary.
  • the dropped liquid droplet is stopped by a baffle 15 installed below the absorption tower main body 11, and then connected to the bottom wall 11b of the absorption tower main body 11 and its surroundings by connecting the baffle 15 and the peripheral wall 11a. It stores in the storage part comprised with the surrounding wall part 11a. The stored liquid is drained out of the absorption tower body 11 through the drain pipe 16.
  • the liquid return provided above the region where the spray device 12 inside the absorption tower body 11 sprays liquid (for example, seawater). Since the member 14 prevents the liquid from rising, it is possible to effectively prevent the liquid from rising and flowing out from the opening at the upper end of the absorption tower body. Thereby, it becomes possible to prevent the outflow of the liquid while suppressing the installation space and suppressing the pressure loss.
  • liquid for example, seawater

Abstract

The purpose of the present invention is to provide a gas absorption tower for which installation space is limited and which prevents the outflow of liquid while limiting pressure loss. The gas absorption tower (10) that absorbs gas by bringing a gas and a liquid into contact is provided with: a main absorption tower body (11) obtained from a cylinder, the central axis of which is oriented in the vertical direction; a spray device (12) for spraying the liquid in a specific region in the vertical direction of the internal space of the main absorption tower body (11); a gas supplying device (13) for introducing the gas into the main absorption tower body (11) from a position lower than the region in which the spray device (12) sprays the liquid; and a liquid return member (14), which is provided at a position above the region in which the spray device (12) sprays the liquid, protrudes from the inner wall surface of the main absorption tower body (11) toward the central axis in a circular shape, and the edge on the central axis side of which is at least folded downward.

Description

ガス吸収塔Gas absorption tower
 本発明は、排ガスを処理するガス吸収塔に関する。 The present invention relates to a gas absorption tower for treating exhaust gas.
 排ガスを処理するガス吸収塔として、円筒状の塔の底部から接線方向に導入され旋回上昇するガスを、塔の中心軸上に垂直に設置された多数の小穴を有する分散管から塔内半径方向に噴霧される液と接触させて、吸収または集塵を行う装置であるサイクロンスクラバーが知られている(たとえば、特許文献1参照)。 As a gas absorption tower for treating exhaust gas, gas that is swirled and raised in a tangential direction from the bottom of a cylindrical tower is moved radially from the dispersion pipe having a large number of small holes vertically installed on the central axis of the tower. 2. Description of the Related Art A cyclonic scrubber that is an apparatus that absorbs or collects dust by bringing it into contact with a liquid to be sprayed is known (see, for example, Patent Document 1).
 サイクロンスクラバーにおいては、塔の上端の開口部から排出されるガスとともに液滴が大気中に飛散することを防ぐための構成が種々提案されている。たとえば、塔上部の径を塔下部や中間部の径よりも大径に設けることによって、塔上部におけるガス流速を下げて液滴の流出を防ぐ構成や、あるいは、厚さ100mm程度の金網で形成されたデミスタを内部に設けることによって、液滴を除去する構成などが提案されている。 In the cyclone scrubber, various configurations for preventing the droplets from being scattered in the atmosphere together with the gas discharged from the opening at the upper end of the tower have been proposed. For example, a structure in which the diameter of the upper part of the tower is set larger than the diameter of the lower part or the middle part to lower the gas flow rate in the upper part of the tower to prevent the outflow of liquid droplets, or it is formed with a wire net having a thickness of about 100 mm. A configuration has been proposed in which a liquid droplet is removed by providing the demister formed inside.
実用新案登録第3160792号公報Utility Model Registration No. 3160792
 しかしながら、塔上部を大径に設ける構成は、サイクロンスクラバーの設置スペースが増大するという課題があった。また、デミスタを設ける構成は、デミスタでの圧力損失が発生するとともに、反応させるガスと液体との組み合わせによってはデミスタの詰まりが発生するため煩雑なメンテナンスが必要となるという課題があった。 However, the configuration in which the upper part of the tower has a large diameter has a problem that the installation space for the cyclone scrubber increases. Further, the configuration in which the demister is provided has a problem that a pressure loss is generated in the demister and the demister is clogged depending on the combination of the gas to be reacted and the liquid, and thus complicated maintenance is required.
 本発明は、かかる点に鑑みてなされたものであり、設置スペースを抑制し、かつ、圧力損失を抑制しつつも、液の流出を防ぐガス吸収塔を提供することを目的とする。 The present invention has been made in view of such a point, and an object of the present invention is to provide a gas absorption tower that prevents installation of liquid while suppressing installation space and pressure loss.
 本発明は、気体と液体とを接触させてガス吸収を行うガス吸収塔において、中心軸が上下方向に向いた筒状体からなる吸収塔本体と、前記吸収塔本体の内部空間の上下方向の所定領域において液体を噴霧するスプレー装置と、前記スプレー装置が液体を噴霧する領域よりも下方位置から前記吸収塔本体に気体を導入するガス供給装置と、前記スプレー装置が液体を噴霧する領域よりも上方位置に設けられ、前記吸収塔本体の内壁面から中心軸へ向けて環状に突出するとともに、中心軸側の先端が少なくとも下方に折り返された液返し部材と、を備えたことを特徴とする。 The present invention relates to a gas absorption tower that absorbs gas by bringing a gas and a liquid into contact with each other, and an absorption tower main body formed of a cylindrical body whose central axis is directed in the vertical direction, A spray device that sprays liquid in a predetermined region, a gas supply device that introduces gas into the absorption tower body from a position lower than a region where the spray device sprays liquid, and a region where the spray device sprays liquid A liquid return member provided at an upper position, protruding in an annular shape from the inner wall surface of the absorber tower body toward the central axis, and having a tip on the central axis side folded at least downward; .
 上記ガス吸収塔によれば、吸収塔本体内部のスプレー装置が液体を噴霧する領域よりも上方位置に設けられた液返し部材によって、液体の上昇が妨げられるため、液体が上昇して吸収塔本体の上端の開口部から流出する事態を効果的に防止することができる。これにより、設置スペースを抑制し、かつ、圧力損失を抑制しつつも、液の流出を防ぐことが可能となる。 According to the gas absorption tower, the liquid rises by the liquid return member provided at a position higher than the area where the spray device inside the absorption tower body sprays the liquid, so that the liquid rises and the absorption tower body It is possible to effectively prevent the situation of flowing out from the opening at the upper end of the. Thereby, it becomes possible to prevent the outflow of the liquid while suppressing the installation space and suppressing the pressure loss.
 上記ガス吸収塔において、前記液返し部材は、液溜まり部を形成するように上側に突出された液溜まり壁と、前記液溜まり部に溜まった液体を落下させる貫通孔と、を有することが好ましい。 In the gas absorption tower, it is preferable that the liquid return member has a liquid pool wall protruding upward so as to form a liquid pool part, and a through hole for dropping the liquid collected in the liquid pool part. .
 上記ガス吸収塔において、前記液返し部材は、上下方向に複数段設けられてもよい。 In the gas absorption tower, the liquid return member may be provided in a plurality of stages in the vertical direction.
 本発明によれば、設置スペースを抑制し、かつ、圧力損失を抑制しつつも、液の流出を防ぐガス吸収塔を提供できる。 According to the present invention, it is possible to provide a gas absorption tower that suppresses liquid outflow while suppressing installation space and pressure loss.
本実施の形態に係るガス吸収塔を中心とする排ガス処理システムを示す概略図である。It is the schematic which shows the exhaust gas processing system centering on the gas absorption tower which concerns on this Embodiment. 図2Aは、本実施の形態に係るガス吸収塔の上面模式図であり、図2Bは、ガス吸収塔の断面模式図である。FIG. 2A is a schematic top view of the gas absorption tower according to the present embodiment, and FIG. 2B is a schematic cross-sectional view of the gas absorption tower. 図3Aは、液返し部材を示す斜視図であり、図3Bは、液返し部材を示す上面図である。FIG. 3A is a perspective view showing a liquid return member, and FIG. 3B is a top view showing the liquid return member. 液返し部材を吸収塔本体に取り付けた状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state which attached the liquid return member to the absorption tower main body.
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 図1は、本実施の形態に係るガス吸収塔を中心とする排ガス処理システムを示す概略図である。なお、本実施の形態に係る排ガス処理システムとしては、船舶に使用されるエンジンから排出される排ガス中に含まれる二酸化硫黄(SO)を除去するシステムを考える。ただし、これに限られず、本実施の形態に係る排ガス処理システムは、窒素酸化物や硫黄酸化物などの物質を含む種々の排ガスの処理に適用可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing an exhaust gas treatment system centered on a gas absorption tower according to the present embodiment. As an exhaust gas treatment system according to the present embodiment, a system that removes sulfur dioxide (SO 2 ) contained in exhaust gas discharged from an engine used in a ship is considered. However, the present invention is not limited to this, and the exhaust gas treatment system according to the present embodiment can be applied to the treatment of various exhaust gases containing substances such as nitrogen oxides and sulfur oxides.
 図1に示すように、排ガス処理システムは、ガス吸収塔10と、エンジン20と、海水加圧ポンプおよび海水引抜ポンプを備える海水ポンプユニット30と、排水タンク40と、排水をろ過するろ過器ユニット50と、から主に構成される。 As shown in FIG. 1, the exhaust gas treatment system includes a gas absorption tower 10, an engine 20, a seawater pump unit 30 including a seawater pressurization pump and a seawater extraction pump, a drainage tank 40, and a filter unit for filtering wastewater. 50.
 エンジン20から排出された排ガスは、ガス吸収塔10に導入される。この排ガスには、二酸化硫黄(SO)が50~1500ppm含まれる。この排ガスがガス吸収塔10内を上昇する過程で、海水ポンプユニット30を介してガス吸収塔10に導入された海水を噴霧して、気液接触させる。 The exhaust gas discharged from the engine 20 is introduced into the gas absorption tower 10. This exhaust gas contains 50 to 1500 ppm of sulfur dioxide (SO 2 ). In the process in which the exhaust gas rises in the gas absorption tower 10, the seawater introduced into the gas absorption tower 10 through the seawater pump unit 30 is sprayed and brought into gas-liquid contact.
 排ガス内の二酸化硫黄は、アルカリ性である海水によって、下記式(1)および(2)に示すように吸収除去される。
  SO+NaHCO → NaHSO+CO↑ (1)
  NaHSO+NaHCO+1/2O→NaSO+HO+CO↑(2)
 
The sulfur dioxide in the exhaust gas is absorbed and removed by alkaline seawater as shown in the following formulas (1) and (2).
SO 2 + NaHCO 3 → NaHSO 3 + CO 2 ↑ (1)
NaHSO 3 + NaHCO 3 + 1 / 2O 2 → Na 2 SO 4 + H 2 O + CO 2 ↑ (2)
 このようにして二酸化硫黄が除去された排ガスは、ガス吸収塔10の上部から大気中へ排気される。 The exhaust gas from which sulfur dioxide has been removed is exhausted from the upper part of the gas absorption tower 10 into the atmosphere.
 ガス吸収塔10内に噴霧された海水は、ガス吸収塔10の内壁面に沿って自重で落下し、ガス吸収塔10下方の貯留部に貯留する。貯留した海水は、海水ポンプユニット30を介して排水タンク40に排水された後、ろ過器ユニット50でろ過されて海洋へ排水される。 The seawater sprayed in the gas absorption tower 10 falls by its own weight along the inner wall surface of the gas absorption tower 10 and is stored in a storage section below the gas absorption tower 10. The stored seawater is drained into the drainage tank 40 via the seawater pump unit 30, then filtered by the filter unit 50 and drained to the ocean.
 続いて、本実施の形態に係るガス吸収塔10について具体的に説明する。図2Aは、本実施の形態に係るガス吸収塔10の上面模式図であり、図2Bは、ガス吸収塔10の断面模式図である。 Subsequently, the gas absorption tower 10 according to the present embodiment will be specifically described. FIG. 2A is a schematic top view of the gas absorption tower 10 according to the present embodiment, and FIG. 2B is a schematic cross-sectional view of the gas absorption tower 10.
 図2に示すように、ガス吸収塔10は、中心軸が上下方向に向いた筒状体からなる吸収塔本体11と、吸収塔本体11の内部空間の上下方向の所定領域において液体を噴霧するスプレー装置12と、スプレー装置12が液体を噴霧する領域よりも下方位置から吸収塔本体11に気体を導入するガス供給装置13と、スプレー装置12が液体を噴霧する領域よりも上方位置に設けられ、吸収塔本体11の内壁面から中心軸へ向けて環状に突出するとともに、中心軸側の先端が少なくとも下方に折り返された液返し部材14と、スプレー装置12よりも下方位置に設けられたバッフル15と、を備えている。ここで、スプレー装置12は、図1に示す海水ポンプユニット30に接続され、ガス供給装置13は、図1に示すエンジン20に接続されている。 As shown in FIG. 2, the gas absorption tower 10 sprays liquid in an absorption tower main body 11 composed of a cylindrical body whose central axis is directed in the vertical direction and a predetermined region in the vertical direction of the internal space of the absorption tower main body 11. The spray device 12, the gas supply device 13 that introduces gas into the absorption tower body 11 from a position below the region where the spray device 12 sprays the liquid, and the position above the region where the spray device 12 sprays the liquid are provided. The liquid return member 14 that protrudes in an annular shape from the inner wall surface of the absorption tower body 11 toward the central axis, and whose tip on the central axis side is folded back at least downward, and the baffle provided at a position lower than the spray device 12 15. Here, the spray device 12 is connected to the seawater pump unit 30 shown in FIG. 1, and the gas supply device 13 is connected to the engine 20 shown in FIG.
 吸収塔本体11は、円筒形状の周壁部11aと円形状の底壁部11bと、で構成される。周壁部11aは、いずれの部分も同径に構成されている。周壁部11aの上端部は開口しており、開口部11cが形成されている。なお、本実施の形態において吸収塔本体11は円筒形状を有しているが、吸収塔本体11の形状はこれに限られず、たとえば、角筒形状であってもよい。 The absorption tower main body 11 includes a cylindrical peripheral wall portion 11a and a circular bottom wall portion 11b. All the peripheral wall portions 11a are configured to have the same diameter. The upper end part of the surrounding wall part 11a is opened, and the opening part 11c is formed. In addition, in this Embodiment, although the absorption tower main body 11 has a cylindrical shape, the shape of the absorption tower main body 11 is not restricted to this, For example, a rectangular tube shape may be sufficient.
 スプレー装置12は、吸収塔本体11の中心軸上に設置される。スプレー装置12は、吸収塔本体11外から吸収塔本体11内に挿入され、吸収塔本体11の中心位置まで延在する給水管12aと、この給水管12aの挿入端部に連結され、吸収塔本体11の内部空間の上下方向の所定領域にかけて延在する水導管12bと、この水導管12bに連結された複数段の枝管12cと、各枝管12cの先端に設けられたスプレーノズル12dと、を含んで構成される。上下方向に隣接する枝管12cは、それぞれ直交するように交差している。スプレーノズル12dは、各枝管12cと同一平面上であって、各枝管12cに対して噴出方向を垂直方向にして設けられている。このような構成により、吸収塔本体11内部に均一に液体を噴霧することが可能となる。 The spray device 12 is installed on the central axis of the absorption tower body 11. The spray device 12 is inserted into the absorption tower main body 11 from the outside of the absorption tower main body 11 and is connected to a water supply pipe 12a extending to the center position of the absorption tower main body 11 and an insertion end of the water supply pipe 12a. A water conduit 12b extending over a predetermined region in the vertical direction of the internal space of the main body 11, a plurality of branch pipes 12c connected to the water conduit 12b, and a spray nozzle 12d provided at the tip of each branch pipe 12c , Including. The branch pipes 12c adjacent in the vertical direction cross each other so as to be orthogonal to each other. The spray nozzles 12d are provided on the same plane as the branch pipes 12c, and the ejection direction is perpendicular to the branch pipes 12c. With such a configuration, it is possible to spray the liquid uniformly inside the absorption tower body 11.
 ガス供給装置13は、吸収塔本体11の周壁部11aの接線方向にガス噴出方向が沿うように設けられている。したがって、ガス供給装置13から導入される排ガスは、周壁部11aの内周面に沿って水平方向に噴射される。 The gas supply device 13 is provided so that the gas ejection direction is along the tangential direction of the peripheral wall portion 11 a of the absorption tower body 11. Therefore, the exhaust gas introduced from the gas supply device 13 is injected in the horizontal direction along the inner peripheral surface of the peripheral wall portion 11a.
 液返し部材14は、吸収塔本体11の周壁部11aから中心軸へ向けて環状に突出した折り返し面部14aと、折り返し面部14aの中心軸側の先端から下方に折り返された折り曲げ片14bと、折り返し面部14aの先端から液溜まり部14cを形成するように上側に突出された液溜まり壁14dと、液溜まり部14cに溜まった液体を落下させる貫通孔14eと、を有している。 The liquid return member 14 includes a folded surface portion 14a that protrudes in an annular shape from the peripheral wall portion 11a of the absorber tower body 11 toward the central axis, a folded piece 14b that is folded downward from the tip on the central axis side of the folded surface portion 14a, and a folded surface. It has a liquid reservoir wall 14d protruding upward so as to form a liquid reservoir 14c from the tip of the surface portion 14a, and a through hole 14e for dropping the liquid accumulated in the liquid reservoir 14c.
 図3Aは、液返し部材14を示す斜視図であり、図3Bは、液返し部材14を示す上面図である。図3Aに示すように、液返し部材14は、円筒部材141と、円筒部材141の上下方向の中心位置から外方に突出するフランジ部142と、で構成される。フランジ部142は、折り返し面部14aを構成する。また、フランジ部142の下方側に突出する円筒部材141の一部は、折り曲げ片14bを構成する。一方、フランジ部142の上方側に突出する円筒部材141の一部は、液溜まり壁14dを構成する。 FIG. 3A is a perspective view showing the liquid return member 14, and FIG. 3B is a top view showing the liquid return member 14. As illustrated in FIG. 3A, the liquid return member 14 includes a cylindrical member 141 and a flange portion 142 that protrudes outward from the center position in the vertical direction of the cylindrical member 141. The flange portion 142 constitutes the folded surface portion 14a. Further, a part of the cylindrical member 141 protruding downward from the flange portion 142 constitutes a bent piece 14b. On the other hand, a part of the cylindrical member 141 protruding above the flange portion 142 constitutes a liquid pool wall 14d.
 フランジ部142の外径は、吸収塔本体11における周壁部11aの外径よりも大径に構成されている。また、フランジ部142には、内周側に複数の貫通孔14eが、外周側に複数のねじ孔14fが形成されている。 The outer diameter of the flange portion 142 is configured to be larger than the outer diameter of the peripheral wall portion 11a in the absorber tower body 11. The flange portion 142 has a plurality of through holes 14e on the inner peripheral side and a plurality of screw holes 14f on the outer peripheral side.
 図4は、液返し部材14を吸収塔本体11に取り付けた状態を示す断面模式図である。図4に示すように、液返し部材14は、液返し部材14の中心軸と吸収塔本体11の中心軸を一致させた状態で吸収塔本体11から突出したフランジ部142の外周縁部を上下からリング状固定部材143で挟むとともに、ねじ孔14fに通したボルト144で締結して吸収塔本体11に取り付けている。このように液返し部材14を吸収塔本体11に取り付けると、フランジ部142が、吸収塔本体11の周壁部11aから中心軸に向けて水平に突出した状態となる。 FIG. 4 is a schematic cross-sectional view showing a state in which the liquid return member 14 is attached to the absorption tower body 11. As shown in FIG. 4, the liquid return member 14 moves up and down the outer peripheral edge portion of the flange portion 142 protruding from the absorption tower body 11 with the central axis of the liquid return member 14 and the central axis of the absorption tower body 11 aligned. Are attached to the absorber tower body 11 by being fastened with bolts 144 passed through the screw holes 14f. Thus, when the liquid return member 14 is attached to the absorption tower main body 11, the flange part 142 will be in the state protruded horizontally from the surrounding wall part 11a of the absorption tower main body 11 toward the central axis.
 吸収塔本体11に取り付けた液返し部材14の円筒部材141で囲まれた中心軸側の領域は、開口部14gを構成する(図2B参照)。この開口部14gは、吸収塔本体11の開口部11cの5~8割程度の内径を有するように構成される。この構成により、液返し部材14を吸収塔本体11に取り付けることによる圧力損失を抑制することが可能となる。 The region on the central axis side surrounded by the cylindrical member 141 of the liquid return member 14 attached to the absorption tower body 11 constitutes an opening 14g (see FIG. 2B). The opening 14g is configured to have an inner diameter of about 50 to 80% of the opening 11c of the absorber tower body 11. With this configuration, it is possible to suppress pressure loss caused by attaching the liquid return member 14 to the absorption tower body 11.
 バッフル15は、円盤部15aと、円盤部15aと吸収塔本体11の周壁部11aとを連結する脚部15bと、で構成される。円盤部15aの外周部分と吸収塔本体11の周壁部11aとの間には、液滴を流すための隙間が形成されている。バッフル15は、吸収塔本体11内部を、スプレー装置12によって液体が噴霧される領域と、吸収塔本体11外に排水するための液体を貯留する領域を区切っている。バッフル15の下方には、吸収塔本体11外に液体を排水するための排水管16が設けられている。 The baffle 15 includes a disk part 15 a and leg parts 15 b that connect the disk part 15 a and the peripheral wall part 11 a of the absorption tower body 11. A gap for flowing droplets is formed between the outer peripheral portion of the disk portion 15a and the peripheral wall portion 11a of the absorber tower body 11. The baffle 15 divides the inside of the absorption tower main body 11 into a region where the liquid is sprayed by the spray device 12 and a region where the liquid for draining outside the absorption tower main body 11 is stored. Below the baffle 15, a drain pipe 16 for draining the liquid outside the absorption tower body 11 is provided.
 このように構成されたガス吸収塔10における排ガス処理について説明する。エンジンから排出された排ガスは、ガス供給装置13によって、スプレー装置12が液体を噴霧する領域よりも下方位置に導入される。この排ガスは、周壁部11aに沿うように周回しながら吸収塔本体11内を上昇する。 Exhaust gas treatment in the gas absorption tower 10 thus configured will be described. The exhaust gas discharged from the engine is introduced by the gas supply device 13 below the region where the spray device 12 sprays liquid. The exhaust gas rises in the absorption tower body 11 while circling along the peripheral wall portion 11a.
 一方、海水は、給水管12aを介して水導管12bに導入される。そして、海水は、複数段の枝管12cに設けられたスプレーノズル12dから、吸収塔本体11の周壁部11aに向けて噴霧される。 Meanwhile, seawater is introduced into the water conduit 12b through the water supply pipe 12a. And seawater is sprayed toward the surrounding wall part 11a of the absorption tower main body 11 from the spray nozzle 12d provided in the multistage branch pipe 12c.
 したがって、吸収塔本体11内を旋回上昇する排ガスは、各段に設置された枝管12cに設けられたスプレーノズル12dから噴霧される海水と気液接触し、排ガス内の二酸化硫黄が吸収除去される。二酸化硫黄が除去された排ガスは、吸収塔本体11の上部に設けられた開口部11cから大気中へ排気される。 Therefore, the exhaust gas swirling up in the absorption tower body 11 comes into gas-liquid contact with seawater sprayed from the spray nozzle 12d provided in the branch pipe 12c installed in each stage, and sulfur dioxide in the exhaust gas is absorbed and removed. The The exhaust gas from which sulfur dioxide has been removed is exhausted into the atmosphere from an opening 11c provided in the upper part of the absorption tower body 11.
 液滴となった海水は、旋回流による遠心力によって周壁部11aに押し付けられて自重で落下する。しかし、一部の海水は、旋回上昇流によって吸収塔本体11内部をつたって上昇する。 The seawater that has become droplets is pressed against the peripheral wall 11a by the centrifugal force due to the swirling flow and falls by its own weight. However, part of the seawater rises through the inside of the absorption tower body 11 by the swirling upward flow.
 吸収塔本体11の中心部はガス流速が0m/sまたはその近傍値であり、周壁部11a近傍は中心部と比較してガス流速が速いため、海水は遠心力によって周壁部11aに沿って上昇する。周壁部11aに沿って上昇した海水は、最下段の液返し部材14によって上昇を妨げられ、フランジ部142の下面と折り返し片14bの周辺に滞留する。滞留した液体が一定の大きさを超えると、液滴となって自重で落下する。 The central portion of the absorption tower body 11 has a gas flow velocity of 0 m / s or a value close to it, and the vicinity of the peripheral wall portion 11a has a higher gas flow velocity than the central portion, so seawater rises along the peripheral wall portion 11a by centrifugal force. To do. Seawater rising along the peripheral wall portion 11a is prevented from rising by the lowermost liquid return member 14, and stays on the lower surface of the flange portion 142 and the periphery of the folded piece 14b. When the staying liquid exceeds a certain size, it becomes droplets and falls by its own weight.
 しかし、海水の一部は、液滴とならずにこの折り返し片14bを超えて、遠心力によって液返し部材14の円筒部材141の内周面に沿って上昇し、液返し部材14と液返し部材14との間の周壁部11aをさらに上昇する。このように、次段の液返し部材14まで到達した海水は、この液返し部材14によって上昇を妨げられ、フランジ部142の下面と折り返し片14bの周辺に滞留する。滞留した液体が一定の大きさを超えると、液滴となって自重で落下する。落下した液滴は、下段の液溜まり部14cに集まり、一定量を超えると、貫通孔14eを通って吸収塔本体11の下方に落下する。 However, a part of the seawater does not become droplets but passes over the folded piece 14b and rises along the inner peripheral surface of the cylindrical member 141 of the liquid return member 14 by centrifugal force, and the liquid return member 14 and the liquid return. The peripheral wall part 11a between the members 14 is further raised. Thus, the seawater that has reached the liquid return member 14 at the next stage is prevented from rising by the liquid return member 14 and stays on the lower surface of the flange portion 142 and around the folded piece 14b. When the staying liquid exceeds a certain size, it becomes droplets and falls by its own weight. The dropped liquid droplets collect in the lower liquid reservoir portion 14c and, when exceeding a certain amount, fall through the through holes 14e and below the absorber tower body 11.
 吸収塔本体11の周壁部11a近傍は、吸収塔本体11の中心部に比べてガス流速が速いため、貫通孔14eが周壁部11a近傍に設けられていると、上昇流の影響を受けて貫通孔14eから液滴が落下しない事態が起こり得る。そこで、貫通孔14eは、周壁部11a近傍に比べてガス流速の遅い、周壁部11aから離れた位置に設けることで、上昇流の影響を弱めて貫通孔14eから液滴を落下させることができる。 The vicinity of the peripheral wall portion 11a of the absorption tower body 11 has a higher gas flow rate than the central portion of the absorption tower body 11, and therefore, if the through hole 14e is provided in the vicinity of the peripheral wall portion 11a, it penetrates under the influence of the upward flow. There may be a situation in which the droplet does not fall from the hole 14e. Therefore, by providing the through hole 14e at a position where the gas flow rate is slow compared to the vicinity of the peripheral wall portion 11a and away from the peripheral wall portion 11a, the influence of the upward flow can be weakened to drop the droplet from the through hole 14e. .
 液返し部材14は上下方向に複数段設けられているため、液返し部材14による海水の上昇は複数回にわたって妨げられる。したがって、海水が上昇して吸収塔本体11の開口部11cから流出する事態を、効果的に防止することができる。 Since the liquid return member 14 is provided in a plurality of stages in the vertical direction, the rise of seawater by the liquid return member 14 is prevented a plurality of times. Therefore, the situation where seawater rises and flows out from the opening 11c of the absorption tower body 11 can be effectively prevented.
 また、液返し部材14を吸収塔本体11に取り付けたとしても、液返し部材14は吸収塔本体11の周壁部11aから中心軸に向けて環状に突出した形状を有し、中心軸側には開口部14gが形成されていることから、液返し部材14を取り付けることによる圧力損失を軽減することができる。また、液返し部材14により詰まりが発生することもなく、煩雑なメンテナンスは不要である。 Moreover, even if the liquid return member 14 is attached to the absorption tower main body 11, the liquid return member 14 has a shape protruding in an annular shape from the peripheral wall portion 11a of the absorption tower main body 11 toward the central axis. Since the opening 14g is formed, pressure loss due to the attachment of the liquid return member 14 can be reduced. Moreover, clogging does not occur due to the liquid return member 14, and complicated maintenance is unnecessary.
 落下した液滴は、吸収塔本体11の下方に設置されたバッフル15でその旋回が止められた後、バッフル15および周壁部11aをつたって、吸収塔本体11の底壁部11bとその周囲の周壁部11aとで構成される貯留部に貯留する。貯留した液体は、排水管16を介して吸収塔本体11の外へ排水される。 The dropped liquid droplet is stopped by a baffle 15 installed below the absorption tower main body 11, and then connected to the bottom wall 11b of the absorption tower main body 11 and its surroundings by connecting the baffle 15 and the peripheral wall 11a. It stores in the storage part comprised with the surrounding wall part 11a. The stored liquid is drained out of the absorption tower body 11 through the drain pipe 16.
 以上説明したように、本実施の形態に係るガス吸収塔10によれば、吸収塔本体11内部のスプレー装置12が液体(たとえば、海水)を噴霧する領域よりも上方位置に設けられた液返し部材14によって、液体の上昇が妨げられるため、液体が上昇して吸収塔本体の上端の開口部から流出する事態を効果的に防止することができる。これにより、設置スペースを抑制し、かつ、圧力損失を抑制しつつも、液の流出を防ぐことが可能となる。 As described above, according to the gas absorption tower 10 according to the present embodiment, the liquid return provided above the region where the spray device 12 inside the absorption tower body 11 sprays liquid (for example, seawater). Since the member 14 prevents the liquid from rising, it is possible to effectively prevent the liquid from rising and flowing out from the opening at the upper end of the absorption tower body. Thereby, it becomes possible to prevent the outflow of the liquid while suppressing the installation space and suppressing the pressure loss.
 なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited thereto, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.
 本出願は、2012年7月19日出願の特願2012-160809に基づく。この内容は、すべてここに含めておく。 This application is based on Japanese Patent Application No. 2012-160809 filed on July 19, 2012. All this content is included here.

Claims (3)

  1.  気体と液体とを接触させてガス吸収を行うガス吸収塔において、
     中心軸が上下方向に向いた筒状体からなる吸収塔本体と、前記吸収塔本体の内部空間の上下方向の所定領域において液体を噴霧するスプレー装置と、前記スプレー装置が液体を噴霧する領域よりも下方位置から前記吸収塔本体に気体を導入するガス供給装置と、前記スプレー装置が液体を噴霧する領域よりも上方位置に設けられ、前記吸収塔本体の内壁面から中心軸へ向けて環状に突出するとともに、中心軸側の先端が少なくとも下方に折り返された液返し部材と、を備えたことを特徴とするガス吸収塔。
    In a gas absorption tower that absorbs gas by contacting gas and liquid,
    From an absorption tower main body made of a cylindrical body whose central axis is directed in the vertical direction, a spray device for spraying liquid in a predetermined region in the vertical direction of the internal space of the absorption tower main body, and a region in which the spray device sprays liquid A gas supply device for introducing gas into the absorption tower main body from a lower position, and an upper position than the region where the spray device sprays liquid, and annularly from the inner wall surface of the absorption tower main body toward the central axis A gas absorption tower comprising: a liquid return member that protrudes and has a tip on the center axis side folded back at least downward.
  2.  前記液返し部材は、液溜まり部を形成するように上側に突出された液溜まり壁と、前記液溜まり部に溜まった液体を落下させる貫通孔と、を有することを特徴とする請求項1に記載のガス吸収塔。 The liquid return member has a liquid pool wall protruding upward so as to form a liquid pool part, and a through hole for dropping the liquid collected in the liquid pool part. The gas absorption tower as described.
  3.  前記液返し部材は、上下方向に複数段設けられていることを特徴とする請求項1または請求項2に記載のガス吸収塔。 The gas absorption tower according to claim 1 or 2, wherein the liquid return member is provided in a plurality of stages in the vertical direction.
PCT/JP2013/069353 2012-07-19 2013-07-17 Gas absorption tower WO2014014002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-160809 2012-07-19
JP2012160809 2012-07-19

Publications (1)

Publication Number Publication Date
WO2014014002A1 true WO2014014002A1 (en) 2014-01-23

Family

ID=49948828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069353 WO2014014002A1 (en) 2012-07-19 2013-07-17 Gas absorption tower

Country Status (1)

Country Link
WO (1) WO2014014002A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910798B2 (en) * 2013-10-17 2016-04-27 富士電機株式会社 Gas absorption tower, gas absorption tower manufacturing method and ship
JP5910785B1 (en) * 2015-09-14 2016-04-27 富士電機株式会社 Exhaust gas treatment device and maintenance method of exhaust gas treatment device
JP5910789B1 (en) * 2015-11-17 2016-04-27 富士電機株式会社 Exhaust gas treatment device and method for taking out trunk pipe division from absorption tower
WO2017159102A1 (en) * 2016-03-16 2017-09-21 富士電機株式会社 Exhaust gas processing device
JP2020525273A (en) * 2017-08-24 2020-08-27 パンアジア カンパニー リミテッド Exhaust gas treatment system
JPWO2021176880A1 (en) * 2020-03-06 2021-09-10

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577528B2 (en) * 1975-11-04 1982-02-10
JPS6320920U (en) * 1986-07-21 1988-02-12
JPH11239715A (en) * 1998-02-24 1999-09-07 Ishikawajima Harima Heavy Ind Co Ltd Desulfurizing stack and its installation
JP2000084352A (en) * 1998-09-09 2000-03-28 Ishikawajima Harima Heavy Ind Co Ltd Stack-integrated flue gas desulfurization unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577528B2 (en) * 1975-11-04 1982-02-10
JPS6320920U (en) * 1986-07-21 1988-02-12
JPH11239715A (en) * 1998-02-24 1999-09-07 Ishikawajima Harima Heavy Ind Co Ltd Desulfurizing stack and its installation
JP2000084352A (en) * 1998-09-09 2000-03-28 Ishikawajima Harima Heavy Ind Co Ltd Stack-integrated flue gas desulfurization unit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910798B2 (en) * 2013-10-17 2016-04-27 富士電機株式会社 Gas absorption tower, gas absorption tower manufacturing method and ship
JPWO2015056562A1 (en) * 2013-10-17 2017-03-09 富士電機株式会社 Gas absorption tower, gas absorption tower manufacturing method and ship
WO2017047292A1 (en) * 2015-09-14 2017-03-23 富士電機株式会社 Exhaust gas processing device and maintenance method for exhaust gas processing device
JP5910785B1 (en) * 2015-09-14 2016-04-27 富士電機株式会社 Exhaust gas treatment device and maintenance method of exhaust gas treatment device
JP2017056385A (en) * 2015-09-14 2017-03-23 富士電機株式会社 Exhaust gas treatment equipment and maintenance method for exhaust gas treatment equipment
CN106999843A (en) * 2015-11-17 2017-08-01 富士电机株式会社 Emission-control equipment and the method that the dividing body being responsible for is taken out from absorption tower
JP2017087193A (en) * 2015-11-17 2017-05-25 富士電機株式会社 Exhaust gas treatment equipment, and method for extracting the split body of trunk pipe from absorption column
WO2017086024A1 (en) * 2015-11-17 2017-05-26 富士電機株式会社 Exhaust gas treatment device and method for extracting segment of stem pipe from absorption column
JP5910789B1 (en) * 2015-11-17 2016-04-27 富士電機株式会社 Exhaust gas treatment device and method for taking out trunk pipe division from absorption tower
WO2017159102A1 (en) * 2016-03-16 2017-09-21 富士電機株式会社 Exhaust gas processing device
JP2020525273A (en) * 2017-08-24 2020-08-27 パンアジア カンパニー リミテッド Exhaust gas treatment system
JP2022058368A (en) * 2017-08-24 2022-04-12 パンアジア カンパニー リミテッド Exhaust gas treatment system
JP7282151B2 (en) 2017-08-24 2023-05-26 パンアジア カンパニー リミテッド Exhaust gas treatment system
JPWO2021176880A1 (en) * 2020-03-06 2021-09-10
WO2021176880A1 (en) * 2020-03-06 2021-09-10 富士電機株式会社 Exhaust gas treatment device and liquid discharge unit
CN114206476A (en) * 2020-03-06 2022-03-18 富士电机株式会社 Exhaust gas treatment device and liquid discharge unit
JP7323052B2 (en) 2020-03-06 2023-08-08 富士電機株式会社 Exhaust gas treatment device and liquid discharge unit

Similar Documents

Publication Publication Date Title
JP5998915B2 (en) Exhaust gas treatment equipment
JP5958645B2 (en) Exhaust gas treatment device and ship
WO2014014002A1 (en) Gas absorption tower
KR101874338B1 (en) Complex type odor eliminator
KR101331002B1 (en) Cleaning apparatus for exhaust gas of ship
CN204170594U (en) Rubber powder modified asphalt produces spray washing tower
JP5166791B2 (en) Flue gas desulfurization equipment
WO2017159099A1 (en) Exhaust gas processing device
JP5304499B2 (en) strainer
JP6559873B1 (en) Gas-liquid mixing device and exhaust gas desulfurization device equipped with gas-liquid mixing device
JPH11151425A (en) Flue gas desulfurizer integrated to chimney
KR101713158B1 (en) Passive type scrubber nozzle
CN105944547B (en) A kind of flue gas minimum discharge absorbs tower apparatus and application
JP2016068029A (en) Gas-liquid contactor
KR101588882B1 (en) Scrubber Nozzle with an Annular Diffuser and Wet Scrubbing Method Using the Combined Scrubber Nozzle
CN204233963U (en) Dynamic wave waste gas absorption tower
JP2007248015A (en) Exhaust stack structure for preventing stack rain
CN202270454U (en) Flue gas desulphurizing and dust removing device
WO2020095886A1 (en) Drainage discharging device
CN208865358U (en) - kind of the spray scrubber with sewage disposal apparatus
CN210729134U (en) Stable and efficient desulfurizing tower
CN209362111U (en) Exhaust gas is atomized adsorption cleaning processing system
JP2016068030A (en) Spray nozzle and gas-liquid contactor comprising the same
KR101948275B1 (en) A flue gas purification device
JP2008086454A (en) Foam extinguishing system and its foaming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP