WO2017158791A1 - 人工臓器用のセルチャンバー - Google Patents

人工臓器用のセルチャンバー Download PDF

Info

Publication number
WO2017158791A1
WO2017158791A1 PCT/JP2016/058514 JP2016058514W WO2017158791A1 WO 2017158791 A1 WO2017158791 A1 WO 2017158791A1 JP 2016058514 W JP2016058514 W JP 2016058514W WO 2017158791 A1 WO2017158791 A1 WO 2017158791A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cell
chamber
substrate
artificial
recess
Prior art date
Application number
PCT/JP2016/058514
Other languages
English (en)
French (fr)
Inventor
泰弘 山下
神藤 高広
水野 正明
勝 堀
史隆 吉川
Original Assignee
富士機械製造株式会社
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社, 国立大学法人名古屋大学 filed Critical 富士機械製造株式会社
Priority to JP2018505164A priority Critical patent/JPWO2017158791A1/ja
Priority to PCT/JP2016/058514 priority patent/WO2017158791A1/ja
Publication of WO2017158791A1 publication Critical patent/WO2017158791A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a cell chamber for an artificial organ, and more particularly to a cell chamber that can be used as an artificial organ by inserting and holding a differentiated stem cell and placing it in a living body.
  • pancreatic cell that can replace the original pancreas lost in a container V formed by adhering an immune isolation membrane made of polycarbonate to both opening end faces of the silicone rubber ring 2 and a cell culture bed 5 that maintains its function are provided.
  • an artificial organ chamber that is sealed and filled with sponge chitin as a carrier for pancreatic cells in a container V (see Patent Document 2).
  • Patent Documents 1 and 2 are merely putting the cultured cells into the chamber.
  • the described invention has a problem that the production volume cannot be predicted.
  • the present invention has been made in order to solve the above-mentioned conventional problems, and as a result of extensive research, a recess having a size capable of inserting and holding stem cells is formed on the substrate of the cell chamber. Since the number of stem cells that can be inserted and held in one cell chamber is known, the production amount of substances such as hormones produced by the stem cells can be predicted, and the present invention has been completed.
  • an object of the present invention is to provide a cell chamber for an artificial organ.
  • the present invention relates to a cell chamber for an artificial organ shown below.
  • (1) including a substrate, a through-hole penetrating the substrate, and a recess formed on the substrate; A cell chamber for an artificial organ, wherein the through hole is sized to allow insertion of a blood vessel, and the recess is sized to insert and hold a stem cell.
  • the cell chamber for an artificial organ according to the above (1) wherein the opening of the concave portion has a substantially circular shape with a diameter of 1 mm to 3 mm or a polygon with a diagonal line of 1 mm to 3.5 mm.
  • (3) The cell chamber for artificial organs according to (1) or (2) above, wherein the bottom of the concave portion has a continuous curved shape.
  • the substrate includes a pedestal portion and a stem cell storage portion formed on one surface of the pedestal portion, and the through hole and the recess are formed in the stem cell storage portion.
  • the cell chamber for an artificial organ according to any one of (3).
  • the cell chamber for artificial organs according to (4) above which includes a cover member that covers the stem cell storage unit.
  • the stem cell storage portion includes a wall surface extending upward from the pedestal portion, and a stem cell storage surface in which the through hole and the recess are formed, and the stem cell storage surface is connected to a top portion of the wall surface.
  • the cell chamber for an artificial organ of the present invention is provided with a recess having a size capable of inserting and holding a stem cell. Therefore, the production amount of hormones and the like per cell chamber can be predicted from the number of recesses into which stem cells are inserted and held.
  • FIG. 1A is a perspective view illustrating an outline of a cell chamber 1 for an artificial organ according to the present invention
  • FIG. 1B is a top view of the chamber 1.
  • FIG. 2 shows an example in which the recesses 4 of the chamber 1 are arranged in a closely packed structure.
  • FIG. 3 is a cross-sectional view for explaining another embodiment of the chamber 1 of the present invention.
  • the cell chamber for artificial organs of the present invention will be described in detail below.
  • FIG. 1A is a perspective view illustrating the outline of a cell chamber 1 for artificial organs of the present invention (hereinafter sometimes referred to as “chamber”), and FIG. It is a top view.
  • the chamber 1 of the present invention includes at least a substrate 2, a through hole 3 penetrating the substrate 2, and a recess 4 formed on the substrate 2.
  • the substrate 2 includes a pedestal portion 21 and a stem cell storage portion 22 formed on one surface of the pedestal portion 21.
  • a shaped substrate may be used.
  • the pedestal portion 21 has a means for fixing to the body tissue when the chamber 1 is placed in the living body, for example, an insertion hole 23 for inserting a thread or the like. May be formed.
  • the insertion hole 23 is not indispensable.
  • the pedestal 21 (the substrate 2 when the pedestal 21 is not provided) may be pierced and penetrated with a needle.
  • the stem cell storage portion 22 is formed in a convex shape on one surface of the pedestal portion 21 and has a substantially trapezoidal cross section including a wall surface 221 and a stem cell storage surface 222 extending upward from the pedestal portion 21. .
  • the through hole 3 and the recess 4 are preferably formed in the cell storage part 22.
  • the substrate 2 is not particularly limited as long as it is a material that hardly causes a rejection reaction when placed in a living body, and examples thereof include silicon and polypropylene.
  • the substrate 2 may be formed by forming a mold and performing injection molding, press molding, cutting, or the like.
  • the chamber 1 since the chamber 1 is used while being placed in a living body, it is desirable that the living tissue with which the chamber 1 abuts is not damaged. Therefore, it is desirable that the periphery of the substrate 2 (the pedestal portion 21 and the stem cell storage portion 22) has a smooth shape with no corners. Further, it is desirable that the substrate 2 is formed so as not to have a corner such as a circle or an ellipse.
  • the through-hole 3 is a hole for acting on a stem cell inserted into the recess 4 when a blood vessel grows from a living tissue when the chamber 1 is placed in the living body. Therefore, the size of the through hole 3 is not particularly limited as long as it is a size capable of forming a blood vessel. Further, the position and the number of the through holes 3 are not particularly limited. However, if the number of the through holes 3 is too small with respect to the number of the recessed parts 4 to be provided, there is a possibility that the recessed parts 4 that cannot reach the blood vessels grown from the living tissue may come out. Substances such as hormones produced by stem cells may not be carried into the body. Therefore, the through holes 3 may be arranged in a distributed manner according to the number and arrangement of the recesses 4.
  • the recess 4 is not particularly limited as long as it can insert and hold stem cells.
  • the artificial organ using the chamber of the present invention since the artificial organ using the chamber of the present invention is placed in the living body, it becomes a foreign object for the living body. Accordingly, the number of substances produced by one artificial organ is increased as much as possible, that is, if the production amount of the substance is the same, the smaller the artificial organ, the better.
  • the concave portion 4 may be formed in a closely packed structure.
  • FIG. 2 shows an example in which the recesses 4 are arranged in a finely packed structure.
  • the through holes 3 may be formed between the recesses 4 at an appropriate interval so that blood vessels grown from the living tissue reach the recesses 4.
  • the stem cells inserted / held in the recesses 4 can be either ES cells or iPS cells.
  • ES cells and iPS cells may be cells cultured and differentiated by known methods. Further, the same type of stem cells may be inserted into one chamber 1 or different types of stem cells may be inserted.
  • the size of the differentiated stem cells is approximately 1 to 3 mm. Accordingly, it is desirable that the shape of the opening 41 of the recess 4 is such that a substantially spherical stem cell having a diameter of 1 mm to 3 mm can pass through, for example, a substantially circular shape having a diameter of 1 mm to 3 mm, preferably a diameter of 2 mm to 3 mm. Can be mentioned. Further, it may be a polygon such as a hexagon, a heptagon, or an octagon instead of a substantially circular shape. In the case of a polygon, the size of the opening 41 may be such that the length of the diagonal line passing through the center is 1 mm to 3.5 mm, preferably about 2.5 mm to 3.5 mm.
  • the bottom 42 of the recess 4 is a continuous curved surface.
  • Stem cells especially iPS cells, can be transformed into other cells when placed on a flat surface. Therefore, it is preferable that the bottom 42 of the concave portion 4 has a continuous curved surface shape because the stem cell does not include a flat surface portion, so that the stem cells can easily maintain a spherical state.
  • continuous curved shapes a substantially hemispherical shape is more preferable.
  • the water repellent treatment is not particularly limited as long as it is a known method, and for example, a plasma apparatus or the like may be used. By subjecting the inner surface of the recess 4 to water repellency, the stem cells inserted into the recess 4 can be made more spherical.
  • the stem cell When the chamber 1 is used as an artificial organ, if the stem cell is placed in the living body with the stem cell inserted and held in the recess 4, the stem cell may flow out into the living body. If ES cells flow into the body, they may cause rejection, and if iPS cells flow into the body, they may become cancerous. Therefore, it is preferable to attach a semipermeable membrane that does not pass through the stem cells but can pass through the substance such as the produced hormone or can enter the capillaries, at least in the upper part of the recess 4 containing the stem cells in the chamber 1. In addition, when attaching the cover member mentioned later to the chamber 1, you may attach a semipermeable membrane to the lower side of the base part 21. FIG.
  • the semipermeable membrane is not particularly limited as long as it satisfies the above characteristics.
  • capillaries grow from the surrounding living tissue, and the capillaries can pass through the semipermeable membrane and be integrated with the stem cells to be organized. Even if the capillary does not pass through the semipermeable membrane, it can take up substances such as hormones that have passed through the semipermeable membrane if it grows to the vicinity of the semipermeable membrane.
  • the recess 4 When producing an artificial organ, it is preferable to fill the recess 4 with an artificial cerebrospinal fluid instead of a stem cell culture solution.
  • the chamber 1 may be used independently, after inserting a stem cell in the recessed part 4, you may laminate
  • FIG. 3 is a cross-sectional view for explaining another embodiment of the chamber 1 of the present invention, and a cover member 5 is attached to the chamber 1 of the embodiment shown in FIG.
  • Artificial organs can be placed in various places, such as the cap aponeurosis and the abdominal cavity under the scalp, but depending on the place of placement, it may take some time for the capillaries to grow and interact with the stem cells. It may take. If the artificial cerebrospinal fluid filled in the recesses 4 disappears before the capillaries grow and interact with each other, the stem cells may die.
  • the stem cell 3 can replenish artificial cerebrospinal fluid between the substrate 2 and the cover member 5 by providing a cover member 5 on the substrate 2 and inserting a needle of a syringe from outside the body. . Therefore, even when the artificial organ is placed in a place where the capillary blood vessel is difficult to grow, the stem cell can be kept alive until the function is started as the artificial organ.
  • the cover member 5 may be manufactured using polypropylene, silicon, or the like, similar to the substrate 2. In the embodiment shown in FIG. 3, the cover member 5 is engaged with the groove portion 23 formed near the boundary between the pedestal portion 21 and the stem cell storage portion 22 and the end portion 51 of the cover member 5. There is no particular limitation as long as it can be mounted on. Moreover, it is preferable that the cover member 5 has a smooth shape with no corners so as not to damage surrounding biological tissues when placed in the living body.
  • the convex portion 52 may be formed on a part of the cover member 5. By touching with a hand from above the skin and confirming the convex portion, the position to be injected with the needle can be grasped.
  • the cover member 5 is formed of a flexible material such as silicon
  • the injected artificial cerebrospinal fluid is filled between the cover member 5 and the stem cell storage portion 22, so that each concave portion 4 is interposed via the semipermeable membrane.
  • Artificial cerebrospinal fluid can be supplied.
  • a space may be positively provided between the stem cell storage unit 22 and the cover member 5 so that more artificial cerebrospinal fluid can be injected.
  • the stem cell storage surface 222 provided with the through hole 3 and the recess 4 is not formed from the top of the wall surface 221 extending upward from the pedestal 21, but the pedestal is formed from the top.
  • the stem cell storage surface 22 may be formed so as to provide the step 223 in the direction of the portion 21 and connect the end 224 of the step 223 on the side of the pedestal 21.
  • the stem cell storage surface 222 is positioned closer to the pedestal 21 than the surface connecting the top of the wall surface 221, so that a space is formed between the stem cell storage surface 222 and the top of the wall surface 221, and more Artificial cerebrospinal fluid can be injected.
  • iPS cells When an artificial organ is produced using iPS cells, iPS cells may become cancerous. Since the artificial organ is provided with a semipermeable membrane, cancerous iPS cells do not enter the living body, but for safety reasons, the solution in the artificial organ is sampled every predetermined period to obtain iPS cells. It is preferable to examine the presence or absence of canceration. Canceration may be examined by a known method such as measuring a cancer marker protein or gene contained in a sampled solution. A cancerous artificial organ may be removed from the living body by surgery.
  • the solution may be sampled by piercing a needle from outside the living body as in the case of artificial cerebrospinal fluid injection.
  • a predetermined period elapses after the artificial organ is placed in the living body, capillaries and the like pass through the through holes 3 and grow around the recesses 4 and in the recesses 4.
  • damage to the grown capillaries with a needle may cause bleeding and the blood may irritate surrounding iPS cells. Therefore, it is preferable that there is no iPS cell at the place where the needle is inserted.
  • the iPS cell may be left empty without being inserted into the concave portion 4 immediately below the convex portion 52.
  • the semipermeable membrane may be damaged each time a needle is punctured, and fragments or the like may be generated. For this reason, the semipermeable membrane may be shaped so as not to cover the recess 4 where no iPS cells are inserted.
  • the production amount of substances such as hormones per artificial organ can be predicted. Therefore, it is useful for surgery in the medical device industry and medical institutions that produce artificial organs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Cardiology (AREA)
  • Sustainable Development (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Prostheses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 幹細胞が生産するホルモン等の物質の生産量を予測できるチャンバーを作製することを課題とする。 基板、該基板を貫通する貫通孔、前記基板上に形成された凹部を含み、前記貫通孔は血管が挿通できる大きさで、前記凹部は幹細胞 を挿入・保持できる大きさである、人工臓器用のセルチャンバーにより、幹細胞が生産するホルモン等の物質の生産量を予測できる。

Description

人工臓器用のセルチャンバー
 本発明は、人工臓器用のセルチャンバーに関し、特に、分化した幹細胞を挿入・保持して生体内に留置することで人工臓器として使用できるセルチャンバーに関する。
 心臓、肺、肝臓、腎臓、膵臓などの臓器、骨、目等の生体を構成する組織の機能が損なわれると種々の病気になり、重い場合には生命の危機にさらされる。生体組織の病気が比較的軽症の場合は、投薬・手術等により病変部分を治癒することが可能である。しかしながら、生体組織の機能が著しく低下し治癒が困難な場合は、生体組織の機能を代行するために、人工臓器が用いられている。
 人工臓器は、セラミック製の人工骨やインプラント、ペースメーカー等の機械要素からなる人工臓器、生きた細胞を用いた組織工学により作製した人工臓器が知られている。後者の人工臓器としては、例えば、3次元培養した膵島および/または膵島細胞塊を高分子膜によって膵内分泌細胞を被包し、患者の皮下あるいは腹膣内等に移植できるようにした拡散チャンバー型人工臓器が知られている(特許文献1参照)。また、シリコーンゴムリング2の両開口端面にポリカーボネイト製の免疫隔離膜を接着してなる容器Vの中に失われた本来の膵臓の代替となりうる膵細胞とその機能を維持する細胞培養床5を封入してなる人工臓器用チャンバーであって、容器Vの中に、膵細胞の担体としてスポンジ状キチンを充填した人工臓器用チャンバーも知られている(特許文献2参照)。
特公平7-28730号公報 特開2003-190259号公報
 上記のとおり、細胞を入れたチャンバーを生体内に留置することは知られている。しかしながら、上記特許文献1及び2に記載されている発明は、培養した細胞を単にチャンバー内に投入しているに過ぎない。人工臓器として実際に使用するためには、生体内に人工臓器を留置することで、当該人工臓器が所期の物質をどの程度生産するのか予測する必要があるが、前記特許文献1及び2に記載されている発明では、生産量が予測できないという問題がある。
 また、最近は、ES細胞やiPS細胞等の幹細胞を用いた研究が盛んにおこなわれている。しかしながら、上記特許文献1及び2に記載されている人工臓器は、幹細胞とは異なる培養細胞を用いたものである。そのため、特許文献1及び2に記載されているチャンバーを、そのまま幹細胞用として用いることができないという問題がある。
 本発明は、上記従来の問題を解決するためになされた発明であり、鋭意研究を行ったところ、セルチャンバーの基板上に、幹細胞を挿入・保持できる大きさの凹部を形成することで、一つのセルチャンバーに挿入・保持できる幹細胞の数が分かることから、幹細胞が生産するホルモン等の物質の生産量が予測できること、を新たに見出し、本発明を完成した。
 すなわち、本発明の目的は、人工臓器用のセルチャンバーを提供することである。
 本発明は、以下に示す、人工臓器用のセルチャンバーに関する。
(1)基板、該基板を貫通する貫通孔、前記基板上に形成された凹部を含み、
 前記貫通孔は血管が挿通できる大きさで、前記凹部は幹細胞を挿入・保持できる大きさである、人工臓器用のセルチャンバー。
(2)前記凹部の開口部が直径1mm~3mmの略円形状、又は対角線が1mm~3.5mmの多角形である、上記(1)に記載の人工臓器用のセルチャンバー。
(3)前記凹部の底部が連続した曲面形状である、上記(1)又は(2)に記載の人工臓器用のセルチャンバー。
(4)前記基板が、台座部及び該台座部の一方の面上に形成された幹細胞収納部を含み、前記貫通孔及び前記凹部が前記幹細胞収納部に形成されている、上記(1)~(3)の何れか一に記載の人工臓器用のセルチャンバー。
(5)前記幹細胞収納部を覆うカバー部材を含む上記(4)に記載の人工臓器用のセルチャンバー。
(6)前記幹細胞収納部は、前記台座部から上方に伸びた壁面、並びに前記貫通孔及び前記凹部が形成される幹細胞収納面を含み、前記幹細胞収納面が前記壁面の頂部を結んだ面より台座側に位置することで、前記幹細胞収納面と前記壁面の頂部との間で空間を形成する、上記(4)又は(5)に記載の人工臓器用のセルチャンバー。
(7)前記台座部に、前記セルチャンバーを体内組織に固定する手段を挿通するための挿通孔が形成されている、上記(4)~(6)の何れか一に記載の人工臓器用のセルチャンバー。
 本発明の人工臓器用のセルチャンバーは、幹細胞を挿入・保持できる大きさの凹部が設けられている。そのため、幹細胞を挿入・保持する凹部の個数からセルチャンバー1個当たりのホルモン等の生産量を予測できる。
図1(A)は、本発明の人工臓器用のセルチャンバー1の概略を説明する斜視図で、図1(B)は、チャンバー1の上面図である。 図2は、チャンバー1の凹部4を細密充填構造に配置した例を示している。 図3は、本発明のチャンバー1の他の実施形態を説明するための断面図である。
 以下に、本発明の人工臓器用のセルチャンバーについて詳しく説明する。
 図1(A)は、本発明の人工臓器用のセルチャンバー1(以下、「チャンバー」と記載することがある。)の概略を説明する斜視図で、図1(B)は、チャンバー1の上面図である。本発明のチャンバー1は、基板2、基板2を貫通する貫通孔3、基板2上に形成された凹部4を少なくとも含んでいる。
 図1(A)及び(B)に示す実施形態では、基板2は、台座部21、台座部21の一方の面上に形成された幹細胞収納部22を含んでいるが、段差を設けない平面状の基板であってもよい。チャンバー1が台座部21及び幹細胞収納部22を含む場合、台座部21には、チャンバー1を生体内に留置する際に体内組織に固定する手段、例えば、糸等を挿通するための挿通孔23を形成してもよい。なお、挿通孔23は必須ではなく、生体組織に固定する際に、針で台座部21(台座部21を設けない場合は基板2)を突き刺して貫通させればよい。
 幹細胞収納部22は、台座部21の一方の面上に凸状に形成されており、台座部21から上方に伸びた壁面221及び幹細胞収納面222を含む、略台形状の断面をしている。幹細胞収納部22を形成する場合、貫通孔3及び凹部4は細胞収納部22に形成されることが好ましい。
 基板2は、生体内に留置した際に、拒絶反応が起き難い材料であれば特に制限はなく、例えば、シリコン、ポリプロピレン等が挙げられる。基材2は、モールドを形成して射出成形又はプレス成形、或いは、切削加工等により形成すればよい。また、チャンバー1は、生体内に留置して用いることから、チャンバー1が当接する生体組織に損傷を与えないことが望ましい。そのため、基板2(台座部21及び幹細胞収納部22)の周囲は角が無い滑らかな形状にすることが望ましい。また、基板2の形状も円形、楕円形等、角が無いように形成することが望ましい。
 貫通孔3は、生体内にチャンバー1を留置した際に、生体組織から血管が成長して凹部4に挿入した幹細胞に作用するための孔である。したがって、貫通孔3の大きさは、血管が形成されるサイズであれば特に制限はない。また、貫通孔3を設ける位置、個数は特に制限はないが、設ける凹部4の個数に対し貫通孔3が少なすぎると、生体組織から成長した血管が到達できない凹部4が出る可能性があり、幹細胞が生産したホルモン等の物質を体内に運ぶことができない可能性がある。したがって、貫通孔3は、凹部4の個数及び配置に応じて分散して配置すればよい。
 凹部4は、幹細胞を挿入・保持できれば特に制限はない。なお、本発明のチャンバーを利用した人工臓器は生体内に留置することから生体にとっては異物となる。したがって、一つの人工臓器が生産する物質を可能な限り多くする、つまり、物質の生産量が同じであれば人工臓器は小さいほど好ましく、例えば、凹部4は細密充填構造に形成すればよい。図2は、凹部4を細密充填構造に配置した例を示している。生体組織から成長した血管が凹部4に届くように、貫通孔3も適当な間隔で凹部4の間に形成すればよい。
 凹部4に挿入・保持する幹細胞は、ES細胞又はiPS細胞の何れも可能である。ES細胞、iPS細胞は、公知の方法により培養・分化した細胞を用いればよい。また、一つのチャンバー1に、同じ種類の幹細胞を挿入してもよいし、異なる種類の幹細胞を挿入してもよい。
 なお、人工臓器として所期の特性を得るためには、幹細胞を分化するまで培養した細胞を用いることが好ましい。分化した幹細胞の大きさは、約1~3mmの略球形である。したがって、凹部4の開口部41の形状としては直径1mm~3mmの略球形の幹細胞がほぼ通過できる大きさとすることが望ましく、例えば、直径1mm~3mm、好ましくは直径2mm~3mmの略円形状が挙げられる。また、略円形状に代え、6角形、7角形、8角形等の多角形でもよい。多角形の場合、開口部41の大きさは、中心を通る対角線の長さが1mm~3.5mm、好ましくは2.5mm~3.5mm程度にすればよい。
 また、凹部4の底部42は連続した曲面にすることが好ましい。幹細胞、特にiPS細胞は平らな面に置くと別の細胞に変化することがある。したがって、凹部4の底部42を連続した曲面形状とすると、平面部を含まないことから幹細胞が球形の状態を保持し易くなるので好ましい。連続した曲面形状の中でも、略半球状がより好ましい。また、必要に応じて、凹部4の内面を撥水処理してもよい。撥水処理は、公知の方法であれば特に制限はなく、例えば、プラズマ装置等を用いればよい。凹部4の内面を撥水処理することで、凹部4に挿入した幹細胞をより球形状にし易くなる。
 チャンバー1を人工臓器として用いる場合、凹部4に幹細胞を挿入・保持した状態で生体内に留置すると、幹細胞が生体内に流出する恐れがある。ES細胞が体内に流出すると拒絶反応を起こす可能性があり、また、iPS細胞が体内に流入するとがん化する恐れがある。そのため、チャンバー1の少なくとも幹細胞を入れた凹部4の上部には、幹細胞は通過しないが、生産したホルモン等の物質を通過できる又は毛細血管が入り込める半透膜を取付けることが好ましい。なお、チャンバー1に後述するカバー部材を取付ける場合は、台座部21の下側に半透膜を取り付けてもよい。
 半透膜は、前記特性を満たせば特に制限はない。半透膜を取付けたチャンバー1を生体内に留置すると、留置した周りの生体組織から毛細血管が成長し、毛細血管が半透膜を通過して幹細胞と一体となり組織化することができる。また、毛細血管は半透膜を通過しなくても、半透膜付近まで成長すれば、半透膜を通過したホルモン等の物質を取り込むことができる。
 人工臓器を作製する際、凹部4には幹細胞の培養液ではなく、人工髄液を充填することが好ましい。また、チャンバー1は、単独で用いてもよいが、凹部4に幹細胞を挿入後に、複数積層してもよい。
 図3は、本発明のチャンバー1の他の実施形態を説明するための断面図で、図1に示す実施形態のチャンバー1にカバー部材5を取付けている。人工臓器は、頭皮の下の帽状腱膜、腹腔等、様々な場所に留置することが可能であるが、留置する場所によっては、毛細血管が成長して幹細胞と相互作用するまでに時間を要する場合がある。毛細血管が成長して相互作用するまでに、凹部4に充填した人工髄液がなくなると、幹細胞が死滅する恐れがある。図3に示す実施形態のチャンバー1は、基板2の上にカバー部材5を設けることで、体外から注射器の針を刺して基板2とカバー部材5の間に人工髄液を補充することができる。したがって、毛細血管が成長し難い場所に人工臓器を留置した場合でも、人工臓器として機能を開始するまで幹細胞を生存した状態に保つことができる。
 カバー部材5は、基板2と同様、ポリプロピレン、シリコン等を用いて作製すればよい。図3に示す実施形態では、カバー部材5は台座部21と幹細胞収納部22の境界付近に形成した溝部23とカバー部材5の端部51を嵌合しているが、カバー部材5を基板2に取付けることができれば特に制限はない。また、カバー部材5は、生体内に留置した際に周りの生体組織に損傷を与えないために、角のない滑らかな形状にすることが好ましい。
 また、人工臓器を生体内に留置した場合、針で人工髄液を注入するためには、生体の外から人工臓器の位置を把握する必要がある。そのため、カバー部材5の一部に凸部52を形成してもよい。皮膚の上から手で触わり凸部を確認することで、針で注射すべき位置を把握することができる。
 カバー部材5を、シリコン等の柔軟性のある材料で形成すれば、注入した人工髄液はカバー部材5と幹細胞収納部22の間に充填されることから、半透膜を介して各凹部4に人工髄液を供給することができる。なお、必要に応じて、幹細胞収納部22とカバー部材5の間に積極的に空間を設け、より多くの人工髄液を注入できるようにしてもよい。具体的には、図1(A)に示すように、台座部21から上方に伸びた壁面221の頂部から貫通孔3や凹部4を設ける幹細胞収納面222を形成するのではなく、頂部から台座部21方向に段差223を設け、段差223の台座部21側の端部224を結ぶように幹細胞収納面22を形成すればよい。段差222を設けることで、幹細胞収納面222が壁面221の頂部を結んだ面より台座部21側に位置するので、幹細胞収納面222と壁面221の頂部との間で空間を形成し、より多くの人工髄液を注入することができる。
 iPS細胞を用いて人工臓器を作製した場合、iPS細胞ががん化する可能性がある。人工臓器には半透膜が設けられているので、がん化したiPS細胞が生体内に入ることはないが、安全を考えると、所定期間毎に人工臓器内の溶液をサンプリングし、iPS細胞のがん化の有無を調べることが好ましい。がん化は、サンプリングした溶液に含まれるがんマーカータンパク質や遺伝子を測定する等、公知の方法で検査すればよい。がん化した人工臓器は、手術により生体内から取り出せばよい。
 溶液のサンプリングは、人工髄液の注入と同様、生体外から針を突き刺してサンプリングすればよい。なお、人工臓器を生体内に留置した後所定期間が経過すると、毛細血管等が貫通孔3を通過し、凹部4の周囲並びに凹部4内に成長する。溶液をサンプリングする際に、成長した毛細血管を針で損傷すると出血し、その血が周囲のiPS細胞に炎症を起こす可能性がある。したがって、針を刺す場所にはiPS細胞が無いことが好ましく、例えば、凸部52のすぐ下の凹部4にはiPS細胞を挿入せず、空にしておけばよい。また、幹細胞収納面222の全面に半透膜を取付けると、針を刺すたびに半透膜を損傷して破片等が発生する可能性がある。そのため、半透膜を、iPS細胞を挿入しない凹部4はカバーしないような形状にしてもよい。
 本発明の人工臓器用のセルチャンバーを用いると、人工臓器1個当たりのホルモン等の物質の生産量が予測できる。したがって、人工臓器を作製する医療機器産業や医療機関における手術に有用である。
 

Claims (7)

  1.  基板、該基板を貫通する貫通孔、前記基板上に形成された凹部を含み、
     前記貫通孔は血管が挿通できる大きさで、前記凹部は幹細胞を挿入・保持できる大きさである、人工臓器用のセルチャンバー。
  2.  前記凹部の開口部が直径1mm~3mmの略円形状、又は対角線が1mm~3.5mmの多角形である、請求項1に記載の人工臓器用のセルチャンバー。
  3.  前記凹部の底部が連続した曲面形状である、請求項1又は2に記載の人工臓器用のセルチャンバー。
  4.  前記基板が、台座部及び該台座部の一方の面上に形成された幹細胞収納部を含み、前記貫通孔及び前記凹部が前記幹細胞収納部に形成されている、請求項1~3の何れか一項に記載の人工臓器用のセルチャンバー。
  5.  前記幹細胞収納部を覆うカバー部材を含む請求項4に記載の人工臓器用のセルチャンバー。
  6.  前記幹細胞収納部は、前記台座部から上方に伸びた壁面、並びに前記貫通孔及び前記凹部が形成される幹細胞収納面を含み、前記幹細胞収納面が前記壁面の頂部を結んだ面より台座側に位置することで、前記幹細胞収納面と前記壁面の頂部との間で空間を形成する、請求項4又は5に記載の人工臓器用のセルチャンバー。
  7.  前記台座部に、前記セルチャンバーを体内組織に固定する手段を挿通するための挿通孔が形成されている、請求項4~6の何れか一項に記載の人工臓器用のセルチャンバー。
     
PCT/JP2016/058514 2016-03-17 2016-03-17 人工臓器用のセルチャンバー WO2017158791A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018505164A JPWO2017158791A1 (ja) 2016-03-17 2016-03-17 人工臓器用のセルチャンバー
PCT/JP2016/058514 WO2017158791A1 (ja) 2016-03-17 2016-03-17 人工臓器用のセルチャンバー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058514 WO2017158791A1 (ja) 2016-03-17 2016-03-17 人工臓器用のセルチャンバー

Publications (1)

Publication Number Publication Date
WO2017158791A1 true WO2017158791A1 (ja) 2017-09-21

Family

ID=59850158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058514 WO2017158791A1 (ja) 2016-03-17 2016-03-17 人工臓器用のセルチャンバー

Country Status (2)

Country Link
JP (1) JPWO2017158791A1 (ja)
WO (1) WO2017158791A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502577A (ja) * 1991-07-30 1994-03-24 バクスター、インターナショナル、インコーポレイテッド 有孔埋め込み物
JP2000004870A (ja) * 1998-06-23 2000-01-11 Terumo Corp 細胞支持基材、培養装置および液体処理装置
JP2011092065A (ja) * 2009-10-28 2011-05-12 Genomix Co Ltd 埋め込み式生体内物質採取デバイス
JP2013526999A (ja) * 2010-06-04 2013-06-27 アソシアシオン プール レ トランスフェルト ドゥ テクノロジ デュ マン 治療上有益な少なくとも1種の物質を生成する細胞を封入するためのチャンバ用の機能化膜、およびそのような膜を備えるバイオ人工臓器
WO2013176131A1 (ja) * 2012-05-22 2013-11-28 独立行政法人国立循環器病研究センター 移植用人工組織体製造のための鋳型基材
JP2016002023A (ja) * 2014-06-16 2016-01-12 日東電工株式会社 細胞培養用シートおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502577A (ja) * 1991-07-30 1994-03-24 バクスター、インターナショナル、インコーポレイテッド 有孔埋め込み物
JP2000004870A (ja) * 1998-06-23 2000-01-11 Terumo Corp 細胞支持基材、培養装置および液体処理装置
JP2011092065A (ja) * 2009-10-28 2011-05-12 Genomix Co Ltd 埋め込み式生体内物質採取デバイス
JP2013526999A (ja) * 2010-06-04 2013-06-27 アソシアシオン プール レ トランスフェルト ドゥ テクノロジ デュ マン 治療上有益な少なくとも1種の物質を生成する細胞を封入するためのチャンバ用の機能化膜、およびそのような膜を備えるバイオ人工臓器
WO2013176131A1 (ja) * 2012-05-22 2013-11-28 独立行政法人国立循環器病研究センター 移植用人工組織体製造のための鋳型基材
JP2016002023A (ja) * 2014-06-16 2016-01-12 日東電工株式会社 細胞培養用シートおよびその製造方法

Also Published As

Publication number Publication date
JPWO2017158791A1 (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
US8703074B2 (en) Container assembly and method for containing biological graft
US8198086B2 (en) Method for production of three-dimensional structure of cells
US5713888A (en) Tissue implant systems
US9521840B2 (en) Film-shaped tissue storage transport container and storage transport method
WO1991000119A1 (en) Implantable device
CZ302458B6 (cs) Zarízení pro implantaci biologického materiálu
US10099046B2 (en) Skull implant type medication injection port
US11338068B2 (en) Two-part implantable therapy delivery device
CN108882697A (zh) 向移植细胞提供氧气的系统和方法
US5928936A (en) Cell culture container that self-seals after cannula penetration made of porous sheets
EP1174156A2 (en) Ported tissue implant systems and methods of using same
JP4511777B2 (ja) 細胞保存容器
WO2017158791A1 (ja) 人工臓器用のセルチャンバー
EP1351740B1 (en) Apparatus for inducing an immune response in cancer therapy
JP6035106B2 (ja) 膜状組織の保持部材および、それを用いる保存輸送容器
US20180353742A1 (en) Implantable medical port
KR101141568B1 (ko) 생체조직에 대한 세포 주입방법 및 장치
CN108359604A (zh) 一种干细胞种子输送及微环境调节系统
JP2017164370A (ja) 生体内留置用チャンバー
EP2647351A1 (en) Flat device for facilitating the transplant of biological material
WO2017158790A1 (ja) 細胞搬送装置、細胞搬送方法、及び人工臓器の製造方法
JP6522946B2 (ja) 懸濁液中の細胞を移植するためのデバイス
JPH11506951A (ja) インプラント可能な生物学的デバイスのための組織装填システム
KR101684901B1 (ko) 골 삽입형 스캐폴드
RU2265446C2 (ru) Имплантат для лечения болезни паркинсона

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505164

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894409

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894409

Country of ref document: EP

Kind code of ref document: A1