WO2017157122A1 - 用于pusch信道的相位补偿方法及装置 - Google Patents

用于pusch信道的相位补偿方法及装置 Download PDF

Info

Publication number
WO2017157122A1
WO2017157122A1 PCT/CN2017/073550 CN2017073550W WO2017157122A1 WO 2017157122 A1 WO2017157122 A1 WO 2017157122A1 CN 2017073550 W CN2017073550 W CN 2017073550W WO 2017157122 A1 WO2017157122 A1 WO 2017157122A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
channel response
channel
response phase
pusch
Prior art date
Application number
PCT/CN2017/073550
Other languages
English (en)
French (fr)
Inventor
吴昊
李军
李�杰
傅强
崔玉萍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017157122A1 publication Critical patent/WO2017157122A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals

Definitions

  • the present disclosure relates to the field of network communications, for example, to a phase compensation method and apparatus for a PUSCH (Physical Uplink Shared Channel) channel.
  • PUSCH Physical Uplink Shared Channel
  • the signal fading is independent in time, frequency, space, angle, and polarization.
  • a corresponding method can be used to obtain multiple signals with independent fading. After obtaining multiple fading independent signals, they need to be combined. The effect of the combination is to add the individual branch signals after phase adjustment and delay, so that the signal to noise ratio is improved.
  • the improvement in signal-to-noise ratio is related to the weighting factor.
  • selection combining maximum ratio combining
  • equal gain combining the maximum ratio combining performance is the best
  • the equal gain combining performance is second
  • the combined merging performance is the worst.
  • the maximum ratio combining performance is the best, when the number of antennas is large, especially for multiple-input multiple-output (MIMO) systems, multiple antennas are used to achieve multiple transmissions and multiple receptions.
  • MIMO multiple-input multiple-output
  • a phase compensation method for a PUSCH channel including:
  • the PUSCH channel is compensated according to the conjugate of the compensated phase of the channel response phase.
  • the acquiring a channel response phase of each resource block RB includes:
  • the channel response phase of the acquired RB is calculated according to the channel response of each RB.
  • the formula for obtaining a channel response phase of each resource element (Resource Element, RE) by using phase linear interpolation according to a phase difference between two adjacent RBs is as follows:
  • P m is the channel response phase of the mth RE
  • P i is the channel response phase of the i th RB
  • P d is the phase difference of the response of the i th RB and the i+1 RB channel
  • m is the RE The index value, where n is the total number of RBs.
  • the method further includes:
  • the channel response phase of the RE in the first RB is obtained according to the channel response phase difference between the second RB and the first RB, and m is an integer between [0, 11];
  • the channel response phase of the RE in the nth RB is obtained according to the channel response phase difference of the nth RB and the n-1th RB, and m is an integer between [12n-12, 12n-1], where n is The total number of RBs;
  • the formula for compensating the PUSCH channel according to the conjugate of the compensated phase of the channel response phase is as follows:
  • Y is the PUSCH channel compensation value of the mth RE;
  • Ym is the PUSCH data received by the mth RE.
  • a phase compensation apparatus for a PUSCH channel including:
  • a first acquiring module configured to acquire a channel response phase of each resource block RB
  • a second acquiring module configured to acquire a channel response phase of each resource unit RE by phase linear interpolation according to a phase difference between two adjacent RBs;
  • the compensation module is configured to compensate the PUSCH channel according to a conjugate of the compensated phase of the channel response phase.
  • the first obtaining module is configured to:
  • the channel response phase of the acquired RB is calculated according to the channel response of each RB.
  • the formula for the second acquisition module to obtain the channel response phase of each resource unit RE by using phase linear interpolation is as follows:
  • P m is the channel response phase of the mth RE
  • P i is the channel response phase of the i th RB
  • P d is the phase difference of the response of the i th RB and the i+1 RB channel
  • m is the RE The index value, where n is the total number of RBs.
  • the second obtaining module is set to:
  • the channel response phase of the RE in the first RB is obtained according to the channel response phase difference between the second RB and the first RB, and m is an integer between [0, 11];
  • the channel response phase of the RE in the nth RB is obtained according to the channel response phase difference of the nth RB and the n-1th RB, and m is an integer between [12n-12, 12n-1], where n is The total number of RBs;
  • the channel response phase of the first 6 REs in the i-th RB is obtained according to the channel response phase difference values of the i-th RB and the i-th RB, and the value of m is [12+12*(i-2), 17 An integer between +12*(i-2)], the channel response phase of the last 6 REs is obtained according to the phase difference of the channel response of the i-th RB and the i+1th RB, and the value of m is [18+12] An integer between *(i-2), 23+12*(i-2)]; where i ⁇ 2.
  • the compensation unit compensates the PUSCH channel according to the conjugate of the channel response phase of each RE as follows:
  • Y is the PUSCH channel compensation value of the mth RE;
  • Y m is the PUSCH data received by the mth RE.
  • a non-transitory storage medium having computer executable instructions arranged to perform the phase compensation method described above for a PUSCH channel.
  • a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program package Program instructions are provided that, when executed by a computer, cause the computer to perform the phase compensation method described above for the PUSCH channel.
  • an electronic device comprising at least one processor and a memory communicatively coupled to the at least one processor, the memory for storing instructions executable by the at least one processor And executing, by the at least one processor, the at least one processor to perform the phase compensation method for the PUSCH channel described above.
  • phase compensation method and apparatus for the PUSCH channel of the present disclosure can make the accuracy of the phase estimation more accurate, and at the same time effectively reduce the computational complexity due to the combined calculation and improve the performance of the receiver.
  • FIG. 1 is a flowchart of a phase compensation method for a PUSCH channel in an embodiment of the present disclosure
  • FIG. 2 is a structural block diagram of a phase compensation apparatus for a PUSCH channel according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of an electronic device according to an embodiment of the present disclosure.
  • the present disclosure provides a phase compensation method for a PUSCH channel, including:
  • Step 1 Obtain a channel response phase of each resource block RB (Resource Block, RB);
  • Step 2 Obtain a channel response phase of each resource unit RE (Resource Element, RE) by phase linear interpolation according to a channel response phase of the adjacent RB;
  • step 3 the PUSCH channel is compensated according to the conjugate of the compensated phase of the channel response phase.
  • the phase compensation method for a PUSCH channel estimates a channel response phase of an RE in each RB according to a channel response phase of two adjacent RBs in a Sounding Reference Signal (SRS) channel, and then according to The resulting channel response phase of each RE compensates for the PUSCH channel.
  • SRS Sounding Reference Signal
  • step 1 is introduced to obtain the signal response phase of each RB, including the following steps:
  • the channel response H of each RB is obtained by using a received SRS signal by a preset least squares LS channel estimation method or a minimum mean square error MMSE channel estimation method.
  • the response phase Pi of the channel response H of each RB is obtained.
  • the absolute value and the imaginary part of the channel response H are respectively taken as absolute values to obtain a channel response H', and the phase Pi' of the channel response H' is obtained.
  • the phase Pi of the channel response H is determined based on the phase Pi' of the channel response H'.
  • the value of the phase Pi is determined according to the quadrant in which the channel response H is located, and the phase Pi', including the following:
  • step 2 is introduced to obtain the channel response phase of each resource unit RE by phase linear interpolation according to the channel response phase of the adjacent RB.
  • the difference is obtained by the phase linear difference value to obtain the channel response phase of each RE in the RB.
  • phase of the i-th RB is Pi
  • phase of the i+1th RB is Pi+1
  • P d is the phase difference between the ith RB and the i+1th RB channel response.
  • Pm is the channel response phase of the mth RE
  • Pi is the channel response phase of the ith RB
  • the channel response phase of the RE in the first RB is obtained according to the channel response phase difference value of the second RB and the first RB, and m is an integer between [0, 11]; in the nth RB
  • the channel response phase of the RE is obtained according to the channel response phase difference between the nth RB and the n-1th RB, and m is an integer between [12n-11, 12n-1], where n is the total number of RBs;
  • the channel response phase of the first 6 REs of the RBs is obtained according to the channel response phase difference values of the i-th RB and the i-th RB, and the value of m is [12+12*(i-2), 17+ An integer between 12*(i-2)], the channel response phase of the last 6 REs is obtained according to the channel response phase difference of the i-th RB and the i+1th RB, and the value of m is [18+12* (i-2), an integer between 23+12*(i-2)]; where
  • step 3 is introduced to compensate the PUSCH channel according to the conjugate of the compensated phase of the RE channel response phase.
  • the PUSCH channel is compensated by the conjugate of the compensated phase of the channel response phase of each RE,
  • the formula is as follows:
  • Y is the PUSCH channel compensation value of the mth RE;
  • Y m is the PUSCH data received by the mth RE.
  • the channel response phase of each RB is acquired according to the received SRS.
  • the channel response phase of each RE is obtained by phase linear interpolation.
  • P1 P1
  • j takes 0, the channel response phase of the RE in the first RB, m is an integer between the intervals [0, 11], and can be rounded according to the above formula [19 -15 -11 -7 -4 0 4 8 11 15 19 23].
  • j takes 0, the channel response phase of the first 6 REs in the second RB, m is an integer between the intervals [12, 17], and the channel response phase of the RE is obtained by rounding according to the above formula [263034384145].
  • j takes 1, the channel response phase of the last 6 REs in the second RB, and the integer between m in the interval [18, 23], rounded up according to the above formula to obtain the channel response phase of the RE [495356606468].
  • the channel response phase of the first 6 REs in the 3rd RB the integer between m in the interval [24, 29]
  • the channel response phase of the RE can be rounded according to the above formula [71 75 79 83 86 90 ].
  • the channel response phase of the first 6 REs in the 3rd RB the integer between m in the interval [30, 35]
  • the channel response phase of the RE can be obtained by rounding according to the above formula [94 98 101 105 109 113 ].
  • the channel response of the RE index 0 to 35 is [-19 -15 -11 -7 -4 0 4 8 11 15 19 23 26 30 34 38 41 45 49 53 56 60 64 68 71 75 79 83 86 90 94 98 101 105 109 113 116 121 124 128 131 135 139 143 146 150 154 158].
  • the PUSCH channel is compensated according to the conjugate of the channel response phase of each RE.
  • each RE compensates the PUSCH channel, and then combines all the compensation values. That is, the received PUSCH channel data.
  • the channel response phase of each RB is acquired according to the received SRS.
  • the channel response phase of each RE is obtained by phase linear interpolation.
  • P1 P1
  • the channel response phase of the RE in the first RB the integer between m in the interval [0, 11]
  • the channel response phase of the RE can be obtained by rounding according to the above formula [-19 -15 -11 -7 - 4 0 4 8 11 15 19 23].
  • j is 1, the channel response phase of the last 6 REs in the second RB, m is an integer between the intervals [18, 23], and the channel response phase of the RE can be rounded according to the above formula. [49 53 56 60 64 68].
  • the channel response of the RE index 0 to 35 is [-19 -15 -11 -7 -4 0 4 8 11 15 19 23 26 30 34 38 41 45 49 53 56 60 64 68 71 75 79 83 86 90 94 98 101 105 109 113].
  • the PUSCH channel is compensated according to the conjugate of the channel response phase of each RE.
  • each RE compensates the PUSCH channel, and then combines all the compensation values. That is, the received PUSCH channel data.
  • the channel response phase of each RB is acquired according to the received SRS.
  • the channel response H [1 + 1i - 1 + 1i] of each RB is obtained using the received SRS signal using LS channel estimation or MMSE channel estimation.
  • the channel response phase of each RE is obtained by phase linear interpolation.
  • the PUSCH channel is compensated according to the conjugate of the channel response phase of each RE.
  • each RE pair compensates the PUSCH channel, and then all the compensation
  • the values are combined, that is, the received PUSCH channel data.
  • the present disclosure further provides a phase compensation apparatus for a PUSCH channel, including:
  • a first acquiring module configured to acquire a channel response phase of each resource block RB
  • a second acquiring module configured to acquire a channel response phase of each resource unit RE by phase linear interpolation according to a phase difference between two adjacent RBs;
  • the compensation module is configured to compensate the PUSCH channel according to the conjugate of the compensated phase of the channel response phase.
  • the first obtaining module is set to:
  • the channel response phase of the acquired RB is calculated according to the channel response of each RB.
  • the formula for obtaining the channel response phase of each resource unit RE by using the phase linear interpolation by the second obtaining module is as follows:
  • P m is the channel response phase of the mth RE
  • P i is the channel response phase of the i th RB
  • P d is the phase difference of the response of the i th RB and the i+1 RB channel
  • m is the RE The index value, where n is the total number of RBs.
  • the second obtaining module is set to:
  • the channel response phase of the RE in the first RB is obtained according to the channel response phase difference between the second RB and the first RB, and m is an integer between [0, 11];
  • the channel response phase of the RE in the nth RB is obtained according to the channel response phase difference of the nth RB and the n-1th RB, and m is an integer between [12n-12, 12n-1], where n is The total number of RBs;
  • the channel response phase of the first 6 REs in the i-th RB is obtained according to the channel response phase difference values of the i-th RB and the i-th RB, and the value of m is [12+12*(i-2), 17 An integer between +12*(i-2)], the channel response phase of the last 6 REs is obtained according to the phase difference of the channel response of the i-th RB and the i+1th RB, and the value of m is [18+12] An integer between *(i-2), 23+12*(i-2)]; where i ⁇ 2.
  • the compensation unit compensates the PUSCH channel according to the conjugate of the channel response phase of each RE as follows:
  • Y is the PUSCH channel compensation value of the mth RE;
  • Y m is the PUSCH data received by the mth RE.
  • the present disclosure also provides a non-transitory storage medium storing computer executable instructions arranged to perform the phase compensation method for the physical uplink shared PUSCH channel of the above-described embodiments.
  • the present disclosure also provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer, The computer is caused to perform the phase compensation method for the physical uplink shared PUSCH channel of the above embodiment.
  • FIG. 3 is a structural block diagram of an electronic device according to an embodiment of the present disclosure.
  • the electronic device may include a processor 51 and a memory 53, and may further include a communication interface 52 and a bus 54.
  • the port 52 and the memory 53 can communicate with each other via the bus 54.
  • Communication interface 52 can be used for information transmission.
  • the processor 51 can call the logic instructions in the memory 53 to perform the phase compensation method for the physical uplink shared PUSCH channel of the above embodiment.
  • the logic instructions in the memory 53 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • a medium that can store program code, or a transitory storage medium including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • phase compensation method and apparatus for the PUSCH channel of the present disclosure can make the accuracy of the phase estimation more accurate, and at the same time effectively reduce the computational complexity due to the combined calculation and improve the performance of the receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种用于PUSCH信道的相位补偿方法及装置。该方法包括:获得每个资源块RB的信道响应相位;根据两个相邻RB之间的相位差值,利用相位线性插值获取每个资源单元RE的信道响应相位;根据信道响应相位的补偿相位的共轭对PUSCH信道进行补偿。

Description

用于PUSCH信道的相位补偿方法及装置 技术领域
本公开涉及网络通信领域,例如涉及一种用于PUSCH(Physical Uplink Shared Channel,物理上行共享信道)信道的相位补偿方法及装置。
背景技术
随着通信技术的发展,移动通信得到广泛应用,并且将在未来个人通信中发挥着重要的作用。在移动通信系统中,由于用户的移动,接收信号不可避免地受到多径衰落和阴影效应的影响。在移动通信中为对抗衰落产生的影响,分集接收是常采用的有效措施之一。
在一个较短距离上接收移动的无线信号,信号衰落在时间、频率、空间、角度和极化都呈现独立性。利用这些特点采用相应的方法可以得到衰落独立的多个信号。在获得多个衰落独立的信号之后,需要对他们进行合并处理。合并的作用就是把经过相位调整和时延之后的各个支路信号相加,使得信噪比得到改善。
信噪比的改善和加权因子有关。根据加权因子选择的不同,有三种基本的合并方式:选择合并,最大比值合并和等增益合并。三种基本的合并方法,最大比值合并性能最好,等增益合并性能次之,选择合并性能最差。虽然最大比值合并性能最好,但是当天线数目很多的时候,尤其对于多输入多输出(Multiple-Input Multiple-Output,MIMO)系统,利用多个天线实现多发多收,合并运算的复杂度是非常高的,致使通信系统的工作性能大大降低。
发明内容
依据本公开的一个方面,提供一种用于PUSCH信道的相位补偿方法,包括:
获取每个资源块(Resource Block,RB)的信道响应相位;
根据两个相邻RB之间的相位差值,利用相位线性插值获取每个资源单元RE的信道响应相位;以及
根据所述信道响应相位的补偿相位的共轭对PUSCH信道进行补偿。
可选地,所述获取每个资源块RB的信道响应相位,包括:
根据接收的探测参考信号SRS信息,利用预设的信道估计方法获取每个RB的信道响应;
根据每个RB的信道响应计算获取RB的信道响应相位。
可选地,所述根据两个相邻RB之间的相位差值,利用相位线性插值获取每个资源单元(Resource Element,RE)的信道响应相位的公式如下:
Figure PCTCN2017073550-appb-000001
并且,
Figure PCTCN2017073550-appb-000002
并且,
Figure PCTCN2017073550-appb-000003
其中,Pm为第m个RE的信道响应相位;Pi为第i个RB的信道响应相位;Pd为第i个RB与第i+1个RB信道响应相位差值;m为RE的索引值,n为RB的总数。
可选地,所述方法还包括:
第1个RB中RE的信道响应相位根据第2个RB与第1个RB的信道响应相位差值获取,且m取值为[0,11]间的整数;
第n个RB中RE的信道响应相位根据第n个RB与第n-1个RB的信道响应相位差值获取,且m取值为[12n-12,12n-1]间的整数,n为RB的总数;
第i个RB中前6个RE的信道响应相位根据第i个RB与第i-1个RB的信道响应 相位差值获取,且m取值为[12+12*(i-2),17+12*(i-2)]间的整数,后6个RE的信道响应相位根据第i个RB与第i+1个RB的信道响应相位差值获取,且m取值为[18+12*(i-2),23+12*(i-2)]间的整数;其中,i≥2。
可选地,所述根据所述信道响应相位的补偿相位的共轭对PUSCH信道进行补偿的公式如下:
Figure PCTCN2017073550-appb-000004
其中,Y为第m个RE的PUSCH信道补偿值;
Figure PCTCN2017073550-appb-000005
为第m个RE的补偿相位的共轭;Ym为第m个RE接收的PUSCH数据。
依据本公开的另一个方面,提供一种用于PUSCH信道的相位补偿装置,包括:
第一获取模块,设置为获取每个资源块RB的信道响应相位;
第二获取模块,设置为根据两个相邻RB之间的相位差值,利用相位线性插值获取每个资源单元RE的信道响应相位;
补偿模块,设置为根据所述信道响应相位的补偿相位的共轭对PUSCH信道进行补偿。
可选地,所述第一获取模块设置为:
根据接收的探测参考信号SRS信息,利用预设的信道估计方法获取每个RB的信道响应;
根据每个RB的信道响应计算获取RB的信道响应相位。
可选地,所述第二获取模块利用相位线性插值获取每个资源单元RE的信道响应相位的公式如下:
Figure PCTCN2017073550-appb-000006
并且,
Figure PCTCN2017073550-appb-000007
并且,
Figure PCTCN2017073550-appb-000008
其中,Pm为第m个RE的信道响应相位;Pi为第i个RB的信道响应相位;Pd为第i个RB与第i+1个RB信道响应相位差值;m为RE的索引值,n为RB的总数。
可选地,第二获取模块设置为:
第1个RB中RE的信道响应相位根据第2个RB与第1个RB的信道响应相位差值获取,且m取值为[0,11]间的整数;
第n个RB中RE的信道响应相位根据第n个RB与第n-1个RB的信道响应相位差值获取,且m取值为[12n-12,12n-1]间的整数,n为RB的总数;
第i个RB中前6个RE的信道响应相位根据第i个RB与第i-1个RB的信道响应相位差值获取,且m取值为[12+12*(i-2),17+12*(i-2)]间的整数,后6个RE的信道响应相位根据第i个RB与第i+1个RB的信道响应相位差值获取,且m取值为[18+12*(i-2),23+12*(i-2)]间的整数;其中,i≥2。
可选地,所述补偿单元根据每个RE的信道响应相位的共轭对PUSCH信道进行补偿的公式如下:
Figure PCTCN2017073550-appb-000009
其中,Y为第m个RE的PUSCH信道补偿值;
Figure PCTCN2017073550-appb-000010
为第m个RE的补偿相位的共轭;Ym为第m个RE接收的PUSCH数据。
根据本公开的又一方面,提供了一种非暂态存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述的用于PUSCH信道的相位补偿方法。
根据本公开的又一方面,提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包 括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述的用于PUSCH信道的相位补偿方法。
根据本公开的又一方面,提供了一种电子设备,包括至少一个处理器和与所述至少一个处理器通信连接的存储器,所述存储器用于存储可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行时,使所述至少一个处理器执行上述的用于PUSCH信道的相位补偿方法。
本公开的用于PUSCH信道的相位补偿方法和装置可以使相位估计的精度更加准确,同时有效降低因合并计算的运算复杂度,提高接收机的性能。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本公开实施例中用于PUSCH信道的相位补偿方法的流程图;
图2为本公开实施例中用于PUSCH信道的相位补偿装置的结构框图;
图3是本公开实施例提供的电子设备的结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,在不冲突的情况下,以下实施例和实施例中的特征可以相互组合。
参见图1,本公开提供了一种用于PUSCH信道的相位补偿方法,包括:
步骤1,获取每个资源块RB(Resource Block,RB)的信道响应相位;
步骤2,根据相邻RB的信道响应相位,利用相位线性插值获取每个资源单元RE(Resource Element,RE)的信道响应相位;
步骤3,根据信道响应相位的补偿相位的共轭对PUSCH信道进行补偿。
本公开所提供的用于PUSCH信道的相位补偿方法,根据探测参考信号(Sounding Reference Signal,SRS)信道中两个相邻的RB的信道响应相位估计每个RB中RE的信道响应相位,再根据得到的每个RE的信道响应相位对PUSCH信道进行补偿。通过本公开可以使相位估计的精度更加准确,同时有效降低因合并计算的运算复杂度,提高接收机的性能。
下面结合附图和具体实施方式对本公开的实施过程进行详细介绍。
首先介绍步骤1,获取每个RB的信号响应相位,包括如下步骤:
本公开实施例中利用接收的SRS信号通过预先设定的最小二乘法LS信道估计方法或最小均方误差MMSE信道估计方法获取每个RB的信道响应H。获取每个RB的信道响应H的响应相位Pi。
具体地,对信道响应H的实部和虚部分别取绝对值得到信道响应H’,并获取信道响应H’的相位Pi’。根据信道响应H’的相位Pi’,确定信道响应H的相位Pi。根据信道响应H所在的象限,以及相位Pi’确定相位Pi的数值,包括如下:
如果H的数值落入第一象限,那么Pi=Pi’;
如果H的数值落入第二象限,那么Pi=180-Pi’;
如果H的数值落入第三象限,那么Pi=Pi’-180;
如果H的数值落入第四象限,那么Pi=-Pi’。
其次介绍步骤2,根据相邻RB的信道响应相位,利用相位线性插值获取每个资源单元RE的信道响应相位。
本公开实施例中,在获取RE的信道响应时,根据相邻RB的信道响应相位的 差值,通过相位线性差值的方式,获取RB中每个RE的信道响应相位。
具体地,设第i个RB的相位为Pi,第i+1个RB的相位为Pi+l,计算相位Pi和Pi+l的差值Pd=Pi+1-Pi。
判断Pd与180的大小,并根据判断结果获取Pn,公式如下:
Figure PCTCN2017073550-appb-000011
其中,Pd为第i个RB与第i+1个RB信道响应相位差值。
根据相位线性插值公式计算每个RE的信道响应相位,具体公式如下:
Figure PCTCN2017073550-appb-000012
其中,Pm为第m个RE的信道响应相位;Pi为第i个RB的信道响应相位;m为RE的索引,取值范围为[0,12n-1]间的整数,n为RB的总数;j通过以下公式获取:
Figure PCTCN2017073550-appb-000013
具体地,第1个RB中RE的信道响应相位根据第2个RB与第1个RB的信道响应相位差值获取,且m取值为[0,11]间的整数;第n个RB中RE的信道响应相位根据第n个RB与第n-1个RB的信道响应相位差值获取,且m取值为[12n-11,12n-1]间的整数,n为RB的总数;第i个RB中前6个RE的信道响应相位根据第i个RB与第i-1个RB的信道响应相位差值获取,且m取值为[12+12*(i-2),17+12*(i-2)]间的整数,后6个RE的信道响应相位根据第i个RB与第i+1个RB的信道响应相位差值获取,且m取值为[18+12*(i-2),23+12*(i-2)]间的整数;其中,i≥2。
接着介绍步骤3,根据RE信道响应相位的补偿相位的共轭对PUSCH信道进行补偿。
通过每个RE的信道响应相位的补偿相位的共轭对PUSCH信道进行补偿,计 算公式如下:
Figure PCTCN2017073550-appb-000014
其中,Y为第m个RE的PUSCH信道补偿值;
Figure PCTCN2017073550-appb-000015
为第m个RE的补偿相位的共轭;Ym为第m个RE接收的PUSCH数据。
以下结合附图以及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不限定本公开。
实施例1
假设PUSCH占用RB数目为4,具体实施方式如下:
首先,根据接收到的SRS获取每个RB的信道响应相位。利用接收的SRS信号使用LS信道估计或者MMSE信道估计获取每个RB的信道响应H=[0 1+1i i 1-i]。对H的实部和虚部分别取绝对值得到H’=[0 1+1i i],求H’的相位Pi’=[0 45 90 135]。根据H落入的象限,得到Pi=[0 45 90 135]。
其次,通过相位线性插值获取每个RE的信道响应相位。
第1个RB的相位为P1=0,第2个RB的相位为P2=45。计算P1和P2的差值Pd=P2-P1=45。因为Pd大于-180并且小于180,所以P=Pd=45。根据相位线性插值公式(2)可得,
Figure PCTCN2017073550-appb-000016
j取0,第1个RB中RE的信道响应相位,m为区间[0,11]之间整数,根据上述公式进行四舍五入可得[-19 -15 -11 -7 -4 0 4 8 11 15 19 23]。
j取0,第2个RB中前6个RE的信道响应相位,m为区间[12,17]之间整数,根据上述公式进行四舍五入可得RE的信道响应相位[263034384145]。
第2个RB的相位为P2=45,第3个RB的相位为P3=90。计算P3和P2的差值Pd=P3-P2=45。因为Pd大于-180并且小于180,所以Pn=Pd=45。Pn以及i带入公式(2) 可得,
Figure PCTCN2017073550-appb-000017
j取1,第2个RB中后6个RE的信道响应相位,m在区间[18,23]之间的整数,根据上述公式进行四舍五入可得RE的信道响应相位[495356606468]。
j取1,第3个RB中前6个RE的信道响应相位,m在区间[24,29]之间的整数,根据上述公式进行四舍五入可得RE的信道响应相位[71 75 79 83 86 90]。
第3个RB的相位为P3=90,第4个RB的相位为P4=135。计算P2和P3的差值Pd=P4-P3=45。因为Pd大于-180并且小于180,所以Pn=Pd=45。Pn以及i带入公式(2)可得,
Figure PCTCN2017073550-appb-000018
j取2,第3个RB中前6个RE的信道响应相位,m在区间[30,35]之间的整数,根据上述公式进行四舍五入可得RE的信道响应相位[94 98 101 105 109 113]。
j取2,第4个RB中RE的信道响应相位,m在区间[35,41]之间的整数,根据上述公式进行四舍五入可得RE的信道响应相位[116 121 124 128 131 135 139 143 146 150 154 158]。
所以RE索引0到35的信道响应为[-19 -15 -11 -7 -4 0 4 8 11 15 19 23 26 30 34 38 41 45 49 53 56 60 64 68 71 75 79 83 86 90 94 98 101 105 109 113 116 121 124 128 131 135 139 143 146 150 154 158]。
最后,根据每个RE的信道响应相位的共轭对PUSCH信道进行补偿。根据获取的每个RE的信道响应相位,计算响应相位的共轭,并将共轭值带入公式(4)可得,每个RE对PUSCH信道进行补偿值,之后将所有补偿值进行合并,即为接收的PUSCH信道数据。
实施例2
假设PUSCH占用RB数目为3,具体实施方式如下:
首先,根据接收到的SRS获取每个RB的信道响应相位。利用接收的SRS信号使用LS信道估计或者MMSE信道估计获取每个RB的信道响应H=[0 1+1i i]。对H的实部和虚部分别取绝对值得到H’=[0 1+1i i],求H’的相位Pi’=[0 45 90]。根据H落入的象限,得到Pi=[0 45 90]。
其次,通过相位线性插值获取每个RE的信道响应相位。
第1个RB的相位为P1=0,第2个RB的相位为P2=45。计算P1和P2的差值Pd=P2-P1=45。因为Pd大于-180并且小于180,所以P=Pd=45。根据相位线性插值公式(2)可得,
Figure PCTCN2017073550-appb-000019
j取0,第1个RB中RE的信道响应相位,m在区间[0,11]之间的整数,根据上述公式进行四舍五入可得RE的信道响应相位[-19 -15 -11 -7 -4 0 4 8 11 15 19 23]。
j取0,第2个RB中前6个RE的信道响应相位,m为区间[12,17]之间整数,根据上述公式进行四舍五入可得RE的信道响应相位进行四舍五入可得[26 30 34 38 41 45]。
第2个RB的相位为P2=45,第3个RB的相位为P3=90。计算P3和P2的差值Pd=P3-P2=45。因为Pd大于-180并且小于180,所以Pn=Pd=45。Pn以及i带入公式(2)可得,
Figure PCTCN2017073550-appb-000020
j取1,第2个RB中后6个RE的信道响应相位,m为区间[18,23]之间整数,根据上述公式进行四舍五入可得RE的信道响应相位进行四舍五入可得[49 53 56 60  64 68]。
j取1,第3个RB中前6个RE的信道响应相位,m为区间[24,35]之间整数,根据上述公式进行四舍五入可得RE的信道响应相位进行四舍五入可得[71 75 79 83 86 90 94 98 101 105 109 113]。
所以RE索引0到35的信道响应为[-19 -15 -11 -7 -4 0 4 8 11 15 19 23 26 30 34 38 41 45 49 53 56 60 64 68 71 75 79 83 86 90 94 98 101 105 109 113]。
最后,根据每个RE的信道响应相位的共轭对PUSCH信道进行补偿。根据获取的每个RE的信道响应相位,计算响应相位的共轭,并将共轭值带入公式(4)可得,每个RE对PUSCH信道进行补偿值,之后将所有补偿值进行合并,即为接收的PUSCH信道数据。
实施例3
假设PUSCH占用RB数目为2,具体实施方式1如下:
首先,根据接收到的SRS获取每个RB的信道响应相位。利用接收的SRS信号使用LS信道估计或者MMSE信道估计获取每个RB的信道响应H=[1+1i -1+1i]。
对H的实部和虚部分别取绝对值得到H’=[1+1i 1+1i],求H’的相位Pi’=[45 45]。根据H落入的象限,得到Pi’=[45 135]。
其次,通过相位线性插值获取每个RE的信道响应相位。由步骤1可得,第1个RB的相位为P1=45,第2个RB的相位为P2=135。计算P0和P1的差值Pd=P2-P1=90,由于-180<Pd<180,则Pn=90。
根据相位线性插值公式(2)可得,
Figure PCTCN2017073550-appb-000021
m的取值范围[0,23]之间的整数,根据上述公式计算第1个RB和第2个RB中每个RE的信道响应相位,进行四舍五入可得[8 15 23 30 38 45 53 60 68 75 83 90  98 105 113 120 128 135 143 150 158 165 173 180]。
最后,根据每个RE的信道响应相位的共轭对PUSCH信道进行补偿。根据步骤102中获取的每个RE的信道响应相位,计算响应相位的共轭,并将共轭值带入公式(4)可得,每个RE对对PUSCH信道进行补偿值,之后将所有补偿值进行合并,即为接收的PUSCH信道数据。
如图2所示,本公开还提供一种用于PUSCH信道的相位补偿装置,包括:
第一获取模块,设置为获取每个资源块RB的信道响应相位;
第二获取模块,设置为根据两个相邻RB之间的相位差值,利用相位线性插值获取每个资源单元RE的信道响应相位;
补偿模块,设置为根据信道响应相位的补偿相位的共轭对PUSCH信道进行补偿。
可选地,第一获取模块设置为:
根据接收的探测参考信号SRS信息,利用预设的信道估计方法获取每个RB的信道响应;
根据每个RB的信道响应计算获取RB的信道响应相位。
可选地,第二获取模块利用相位线性插值获取每个资源单元RE的信道响应相位的公式如下:
Figure PCTCN2017073550-appb-000022
并且,
Figure PCTCN2017073550-appb-000023
并且
Figure PCTCN2017073550-appb-000024
其中,Pm为第m个RE的信道响应相位;Pi为第i个RB的信道响应相位;Pd为第i个RB与第i+1个RB信道响应相位差值;m为RE的索引值,n为RB的总数。
可选地,第二获取模块设置为:
第1个RB中RE的信道响应相位根据第2个RB与第1个RB的信道响应相位差值获取,且m取值为[0,11]间的整数;
第n个RB中RE的信道响应相位根据第n个RB与第n-1个RB的信道响应相位差值获取,且m取值为[12n-12,12n-1]间的整数,n为RB的总数;
第i个RB中前6个RE的信道响应相位根据第i个RB与第i-1个RB的信道响应相位差值获取,且m取值为[12+12*(i-2),17+12*(i-2)]间的整数,后6个RE的信道响应相位根据第i个RB与第i+1个RB的信道响应相位差值获取,且m取值为[18+12*(i-2),23+12*(i-2)]间的整数;其中,i≥2。
可选地,补偿单元根据每个RE的信道响应相位的共轭对PUSCH信道进行补偿的公式如下:
Figure PCTCN2017073550-appb-000025
其中,Y为第m个RE的PUSCH信道补偿值;
Figure PCTCN2017073550-appb-000026
为第m个RE的补偿相位的共轭;Ym为第m个RE接收的PUSCH数据。
本公开还提供了一种非暂态存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述实施例的用于物理上行共享PUSCH信道的相位补偿方法。
本公开还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述实施例的用于物理上行共享PUSCH信道的相位补偿方法。
本公开还提供了一种电子设备。图3是本公开实施例提供的电子设备的结构框图。该电子设备可以包括:处理器(processor)51和存储器(memory)53,还可以包括通信接口(Communications Interface)52和总线54。其中,处理器51、通信接 口52、存储器53可以通过总线54完成相互间的通信。通信接口52可以用于信息传输。处理器51可以调用存储器53中的逻辑指令,以执行上述实施例的用于物理上行共享PUSCH信道的相位补偿方法。
此外,上述的存储器53中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,也可以是暂态存储介质。
工业实用性
本公开的用于PUSCH信道的相位补偿方法和装置可以使相位估计的精度更加准确,同时有效降低因合并计算的运算复杂度,提高接收机的性能。

Claims (13)

  1. 一种用于物理上行共享PUSCH信道的相位补偿方法,包括:
    获取每个资源块RB的信道响应相位;
    根据两个相邻RB之间的相位差值,利用相位线性插值获取每个资源单元RE的信道响应相位;以及
    根据所述信道响应相位的补偿相位的共轭对PUSCH信道进行补偿。
  2. 如权利要求1所述的相位补偿方法,其中,所述获取每个资源块RB的信道响应相位,包括:
    根据接收的探测参考信号SRS信息,利用预设的信道估计方法获取每个RB的信道响应;
    根据每个RB的信道响应计算获取RB的信道响应相位。
  3. 如权利要求1所述的相位补偿方法,其中,所述根据两个相邻RB之间的相位差值,利用相位线性插值获取每个资源单元RE的信道响应相位的公式如下:
    Figure PCTCN2017073550-appb-100001
    并且,
    Figure PCTCN2017073550-appb-100002
    并且,
    Figure PCTCN2017073550-appb-100003
    其中,Pm为第m个RE的信道响应相位;Pi为第i个RB的信道响应相位;Pd为第i个RB与第i+1个RB信道响应相位差值;m为RE的索引值,n为RB的总数。
  4. 如权利要求3所述的相位补偿方法,其中,第1个RB中RE的信道响应相位根据第2个RB与第1个RB的信道响应相位差值获取,且m取值为[0,11]间的整数;
    第n个RB中RE的信道响应相位根据第n个RB与第n-1个RB的信道响 应相位差值获取,且m取值为[12n-12,12n-1]间的整数,n为RB的总数;
    第i个RB中前6个RE的信道响应相位根据第i个RB与第i-1个RB的信道响应相位差值获取,且m取值为[12+12*(i-2),17+12*(i-2)]间的整数,后6个RE的信道响应相位根据第i个RB与第i+1个RB的信道响应相位差值获取,且m取值为[18+12*(i-2),23+12*(i-2)]间的整数;其中,i≥2。
  5. 如权利要求1所述的相位补偿方法,其中,所述根据所述信道响应相位的补偿相位的共轭对PUSCH信道进行补偿的公式如下:
    Figure PCTCN2017073550-appb-100004
    其中,Pm为第m个RE的信道响应相位,Y为第m个RE的PUSCH信道补偿值;
    Figure PCTCN2017073550-appb-100005
    为第m个RE的补偿相位的共轭;Ym为第m个RE接收的PUSCH数据。
  6. 一种用于PUSCH信道的相位补偿装置,包括:
    第一获取模块,设置为获取每个资源块RB的信道响应相位;
    第二获取模块,设置为根据两个相邻RB之间的相位差值,利用相位线性插值获取每个资源单元RE的信道响应相位;以及
    补偿模块,设置为根据所述信道响应相位的补偿相位的共轭对PUSCH信道进行补偿。
  7. 如权利要求6所述的相位补偿装置,其中,所述第一获取模块设置为:
    根据接收的探测参考信号SRS信息,利用预设的信道估计方法获取每个RB的信道响应;
    根据每个RB的信道响应计算获取RB的信道响应相位。
  8. 如权利要求6所述的相位补偿装置,其中,所述第二获取模块利用相位线性插值获取每个资源单元RE的信道响应相位的公式如下:
    Figure PCTCN2017073550-appb-100006
    并且,
    Figure PCTCN2017073550-appb-100007
    并且
    Figure PCTCN2017073550-appb-100008
    其中,Pm为第m个RE的信道响应相位;Pi为第i个RB的信道响应相位;Pd为第i个RB与第i+1个RB信道响应相位差值;m为RE的索引值,n为RB的总数。
  9. 如权利要求8所述的相位补偿装置,其中,所述第二获取模块设置为:
    第1个RB中RE的信道响应相位根据第2个RB与第1个RB的信道响应相位差值获取,且m取值为[0,11]间的整数;
    第n个RB中RE的信道响应相位根据第n个RB与第n-1个RB的信道响应相位差值获取,且m取值为[12n-12,12n-1]间的整数,n为RB的总数;
    第i个RB中前6个RE的信道响应相位根据第i个RB与第i-1个RB的信道响应相位差值获取,且m取值为[12+12*(i-2),17+12*(i-2)]间的整数,后6个RE的信道响应相位根据第i个RB与第i+1个RB的信道响应相位差值获取,且m取值为[18+12*(i-2),23+12*(i-2)]间的整数;其中,i≥2。
  10. 如权利要求1所述的相位补偿方法,其中,所述补偿单元根据每个RE的信道响应相位的共轭对PUSCH信道进行补偿的公式如下:
    Figure PCTCN2017073550-appb-100009
    其中,Pm为第m个RE的信道响应相位,Y为第m个RE的PUSCH信道补偿值;
    Figure PCTCN2017073550-appb-100010
    为第m个RE的补偿相位的共轭;Ym为第m个RE接收的PUSCH数据。
  11. 一种非暂态存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-5任一项所述的用于物理上行共享PUSCH信道的相 位补偿方法。
  12. 一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行权利要求1-5任一项所述的用于物理上行共享PUSCH信道的相位补偿方法。
  13. 一种电子设备,包括至少一个处理器和与所述至少一个处理器通信连接的存储器,所述存储器用于存储可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行时,使所述至少一个处理器执行权利要求1-5任一项所述的用于物理上行共享PUSCH信道的相位补偿方法。
PCT/CN2017/073550 2016-03-18 2017-02-15 用于pusch信道的相位补偿方法及装置 WO2017157122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610159173.7A CN107204946B (zh) 2016-03-18 2016-03-18 一种用于pusch信道的相位补偿方法及装置
CN201610159173.7 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017157122A1 true WO2017157122A1 (zh) 2017-09-21

Family

ID=59850501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073550 WO2017157122A1 (zh) 2016-03-18 2017-02-15 用于pusch信道的相位补偿方法及装置

Country Status (2)

Country Link
CN (1) CN107204946B (zh)
WO (1) WO2017157122A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710027A (zh) * 2018-05-23 2018-10-26 成都玖锦科技有限公司 通道间相位差、幅度差的高精度测量方法
KR20200133273A (ko) * 2018-05-17 2020-11-26 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 위상 교정 방법 및 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404258A (zh) * 2011-11-29 2012-04-04 华为技术有限公司 一种下行信道估计方法及系统、移动终端
US20120099631A1 (en) * 2009-07-03 2012-04-26 Zte Corporation Pilot-based time offset estimation apparatus and method
CN102970253A (zh) * 2011-09-01 2013-03-13 富士通株式会社 基于解调参考信号的信道估计装置、方法和接收机
CN104243381A (zh) * 2013-06-09 2014-12-24 普天信息技术研究院有限公司 一种上行控制信道频率同步的方法
CN104469837A (zh) * 2013-09-24 2015-03-25 富士通株式会社 用于确定参考信号接收功率的方法、终端和系统
CN104580049A (zh) * 2013-10-11 2015-04-29 普天信息技术研究院有限公司 一种上行频偏补偿的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148531A1 (zh) * 2009-06-22 2010-12-29 上海贝尔股份有限公司 预编码协同传输方法和数据传输系统
EP2652885B1 (en) * 2010-12-17 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Beamforming method, apparatus for polarized antenna array and radio communication device and system thereof
CN104104623B (zh) * 2013-04-09 2017-05-10 展讯通信(上海)有限公司 正交频分复用系统中信道估计方法及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120099631A1 (en) * 2009-07-03 2012-04-26 Zte Corporation Pilot-based time offset estimation apparatus and method
CN102970253A (zh) * 2011-09-01 2013-03-13 富士通株式会社 基于解调参考信号的信道估计装置、方法和接收机
CN102404258A (zh) * 2011-11-29 2012-04-04 华为技术有限公司 一种下行信道估计方法及系统、移动终端
CN104243381A (zh) * 2013-06-09 2014-12-24 普天信息技术研究院有限公司 一种上行控制信道频率同步的方法
CN104469837A (zh) * 2013-09-24 2015-03-25 富士通株式会社 用于确定参考信号接收功率的方法、终端和系统
CN104580049A (zh) * 2013-10-11 2015-04-29 普天信息技术研究院有限公司 一种上行频偏补偿的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200133273A (ko) * 2018-05-17 2020-11-26 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 위상 교정 방법 및 장치
EP3796611A4 (en) * 2018-05-17 2021-07-07 Datang Mobile Communications Equipment Co., Ltd. METHOD AND DEVICE FOR PHASE CALIBRATION
US11368276B2 (en) 2018-05-17 2022-06-21 Datang Mobile Communications Equipment Co., Ltd Phase calibration method and device
KR102458095B1 (ko) * 2018-05-17 2022-10-21 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 위상 교정 방법 및 장치
CN108710027A (zh) * 2018-05-23 2018-10-26 成都玖锦科技有限公司 通道间相位差、幅度差的高精度测量方法
CN108710027B (zh) * 2018-05-23 2020-05-15 成都玖锦科技有限公司 通道间相位差、幅度差的高精度测量方法

Also Published As

Publication number Publication date
CN107204946A (zh) 2017-09-26
CN107204946B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN109327248B (zh) 一种广播波束赋形方法及基站
CN116711158A (zh) 电子设备、无线通信方法以及计算机可读存储介质
WO2008021589A2 (en) System and method for improving the robustness of spatial division multiple access via nulling
US10243634B2 (en) Method and device for dual layer beamforming
CN103475401A (zh) 一种下行波束赋形方法与装置
KR20030009227A (ko) 적응형 안테나 어레이 및 그 제어를 위한 방법
WO2015135397A1 (zh) 基站及形成波束的方法
KR20120125806A (ko) 인지 무선 통신 시스템에 포함된 이차 송신국 및 이차 송신국의 통신 방법
CN114389785A (zh) 参考信号的调整方法及装置、终端及网络侧设备
US20160268681A1 (en) Three-Element Antenna Array for Wireless Handsets
CN103178881B (zh) 主瓣干扰抑制方法及装置
WO2020134611A1 (zh) 多普勒频移的确定方法及装置
WO2017157122A1 (zh) 用于pusch信道的相位补偿方法及装置
CN111512571A (zh) 用于mimo通信系统中的信号检测的方法和装置
WO2019010714A1 (zh) 一种波束成形方法及设备
WO2017152732A1 (zh) 通道校正方法及装置
CN106301508B (zh) 一种天线通道的降阶方法及装置
WO2020135227A1 (zh) 一种波束赋形的方法、基站和计算机可读存储介质
US10523302B2 (en) Apparatus and method for selecting beam pattern in communication system supporting beamforming scheme
CN106685501A (zh) 一种波束赋形的方法及装置
CN104022979B (zh) 一种联合稀疏信道估计方法、装置及系统
CN102891817B (zh) 一种信道均衡方法、基站和系统
WO2018068365A1 (zh) 一种基于毫米波mimo系统的多普勒频偏估计方法及装置
US9237459B1 (en) System and method for measuring characteristics of neighbor cells using a synthesized composite antenna pattern
WO2017080359A1 (zh) 一种干扰消除方法、装置及基站

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17765664

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17765664

Country of ref document: EP

Kind code of ref document: A1