WO2017156956A1 - 一种光伏生态大棚及其支承架 - Google Patents

一种光伏生态大棚及其支承架 Download PDF

Info

Publication number
WO2017156956A1
WO2017156956A1 PCT/CN2016/092222 CN2016092222W WO2017156956A1 WO 2017156956 A1 WO2017156956 A1 WO 2017156956A1 CN 2016092222 W CN2016092222 W CN 2016092222W WO 2017156956 A1 WO2017156956 A1 WO 2017156956A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
column
photovoltaic module
support frame
telescopic rod
Prior art date
Application number
PCT/CN2016/092222
Other languages
English (en)
French (fr)
Inventor
王柏兴
倪志春
周建新
胡亚益
严煜
Original Assignee
中利腾晖光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中利腾晖光伏科技有限公司 filed Critical 中利腾晖光伏科技有限公司
Publication of WO2017156956A1 publication Critical patent/WO2017156956A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/243Collecting solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Definitions

  • the invention relates to the field of photovoltaic ecology, in particular to a photovoltaic ecological greenhouse and a support frame thereof.
  • solar photovoltaic modules are used to absorb solar energy and convert it into electrical energy.
  • plants such as crops, flowers, Chinese herbal medicines, or aquatic products such as poultry and livestock are cultivated under the solar photovoltaic modules.
  • Different plants have different growth heights, and the heights of different growth stages of plants are also different. If the height of the PV modules can be adjusted according to the different types of animals and plants or the height of different growth stages, it will be more conducive to plant growth.
  • an object of the present invention is to provide a photovoltaic eco-shed and its support frame, which can adjust the height of the photovoltaic module according to the height of plants of different kinds or different growth stages.
  • the technical solution adopted by the present invention is:
  • a support frame for a photovoltaic eco-shed comprising a post for mounting on a ground to form a support and a frame connected to an upper end of the post for mounting a photovoltaic module unit, the post comprising a post telescopic sleeve slidably coupled to The column telescopic rod of the column telescoping sleeve, one of the column telescopic sleeve and the column telescopic rod is connected to the frame and the other is for mounting on the ground.
  • the column further comprises a hydraulic drive mechanism disposed between the upright telescopic sleeve and the upright telescopic rod.
  • the hydraulic drive mechanism is a hydraulic cylinder.
  • the upper end of the column telescopic rod is fixedly connected to the frame, and the height of the upper end of the column telescopic rod is 3 ⁇ 10 m.
  • the columns are arranged in plurality and arranged in an array.
  • a photovoltaic ecological greenhouse comprising a support frame as described above and a photovoltaic module unit disposed at an upper end of the support frame.
  • the column is a telescopic rod type, and the height of the upper end of the column can be adjusted according to the height adaptability of the plant, thereby adjusting the height of the photovoltaic module and keeping the photovoltaic module from the top of the plant. There is a distance that does not affect plant growth.
  • FIG. 1 is a schematic perspective view of a photovoltaic ecological greenhouse of the present invention
  • FIG. 2 is a top view of a photovoltaic ecological greenhouse of the present invention
  • Figure 3 is a partial front elevational view of the photovoltaic greenhouse of the present invention.
  • Figure 4 is a schematic diagram of the connection at A in Figure 3;
  • Figure 5 is a partial side view of the photovoltaic ecological greenhouse of the present invention.
  • Figure 6 is a schematic diagram of the connection at A in Figure 5;
  • Figure 7 is a schematic view of the photovoltaic module unit of the present invention after folding
  • Figure 8 is a schematic view of the photovoltaic module unit of the present invention after deployment
  • FIG. 9 is a schematic structural view of a transmission mechanism of the present invention.
  • FIG. 10 is a schematic view of the chute of the present invention.
  • Figure 11 is a schematic view showing the operation of the metal contact of the present invention in the chute
  • Figure 12 is a schematic block diagram of a control device of the present invention.
  • Figure 13 is a flow chart of the control method of the present invention.
  • 16 chute; 160, second contact; 161, guiding bevel; 162, guiding bevel; 17, second wire; 170, the second connector;
  • 210 insulated casing; 211, metal contacts; 2110, first contact; 212, first conductor; 213 , the first connector; 214, the compression spring;
  • bottom bracket 220, slider; 23, telescopic bracket; 231, bracket telescopic sleeve; 232, bracket telescopic rod; 233, hydraulic drive mechanism of the telescopic bracket;
  • 60 controller; 61, environmental detector; 62, third-party data platform; 63, soil moisture detector.
  • a photovoltaic ecological greenhouse comprises a support frame 1 and a photovoltaic module unit 2 disposed at the upper end of the support frame 1
  • the components disposed on the side of the support frame 1 are stacked in the warehouse 3, the maintenance store 4 disposed on the side of the stacking warehouse 3, and the transmission device 5 for transporting the photovoltaic module unit 2.
  • the support frame 1 includes a plurality of array-arranged columns 11 and a frame fixedly attached to the upper ends of all the columns 11.
  • Column 11 The telescopic rod type, that is, each of the columns 11 includes a column telescopic sleeve 111, a column telescopic rod 112 that is slidably coupled to the column telescoping sleeve 111, and a column telescoping sleeve 111 and a column telescopic rod. Between 112, it is used to drive the column telescopic rod 112. Relative to the column telescopic sleeve 111 Hydraulic drive mechanism 113 that slides up and down (such as hydraulic cylinders, etc.).
  • the frame includes a plurality of lateral rails that are equally spaced in the longitudinal direction and extend in the lateral direction, respectively. And a plurality of longitudinal rails 13 disposed at equal intervals in the lateral direction and extending in the longitudinal direction, respectively, a plurality of lateral rails 12 and a plurality of longitudinal rails 13 A plurality of array-arranged rectangular frame units are formed to intersect each other, and a part of the frame unit serves as a component placement position for mounting the photovoltaic module.
  • the other frame units serve as the transport unit 15 constituting the transport path of the photovoltaic module unit, and a transport unit 15 is disposed between any adjacent two component placement positions 14 .
  • Component placement 14 A connection mechanism for mechanical connection and/or power transmission to the photovoltaic module unit is provided, as described below.
  • Conveying unit 15 A coupling mechanism is provided on the first conveying section as described below, such as a lateral guide groove and a longitudinal guide groove as described below.
  • the photovoltaic module unit 2 includes a bracket 21 and a photovoltaic module 20 disposed at an upper end of the bracket 21.
  • Photovoltaic modules 20 With the dual-glass photovoltaic module, the main function of the photovoltaic module 20 is that the solar cells of the photovoltaic module 20 are converted into electrical energy after being exposed to sunlight, and the electrical energy is transported through the junction box of the photovoltaic module.
  • Bracket 21 The bottom bracket 22 includes a telescopic bracket 23 disposed on the bottom bracket 22, and the telescopic bracket 23 is disposed at one side of the bottom bracket 22, one side of the photovoltaic module 20 and the telescopic bracket 23 One side is connected and the other side of the photovoltaic module 20 is connected to the other side of the bottom bracket 22.
  • the bottom bracket 22 is slidably coupled to the frame.
  • the lateral guide rail 12 defines a lateral guide groove 120 extending in the lateral direction
  • the longitudinal guide rail 13 is provided with a longitudinal guide groove 130 extending in the longitudinal direction, at the intersection of the transverse rail 12 and the longitudinal rail 13, that is, at the top corner of each frame unit, the lateral guide groove 120 and the longitudinal guide groove 130 Connected to each other.
  • the bottom of the bottom bracket 22 has a slider 220 that cooperates with the lateral guide groove 120 and the longitudinal guide groove 130, and the slider 220 is slidably inserted in the lateral guide groove 120 or the longitudinal guide groove 130, and may enter the longitudinal guide groove 130/transverse guide groove 120 from the transverse guide groove 120/longitudinal guide groove 130 at the intersection of the lateral guide rail 12 and the longitudinal guide rail 13.
  • the telescopic bracket 23 includes a bracket telescopic sleeve 231, and a bracket telescopic rod 232 that can be slidably coupled to the bracket telescopic sleeve 231 And a hydraulic drive mechanism 233 (such as a hydraulic cylinder, etc.) disposed between the bracket telescopic sleeve 231 and the bracket telescopic rod 232, and a hydraulic drive mechanism 233 driving bracket telescopic rod 232 relative bracket telescopic sleeve 231 Slide up and down.
  • a hydraulic drive mechanism 233 such as a hydraulic cylinder, etc.
  • bracket telescopic sleeve 231 and the bottom bracket 22 are fixedly connected, and the upper end of the bracket telescopic rod 232 is movably connected with the frame of the photovoltaic module 20, specifically, the bracket telescopic rod 232
  • the upper end and the frame of the photovoltaic module 20 are slidably and rotatably coupled.
  • a secondary telescopic bracket that is, a bracket telescopic rod 232 is preferably used.
  • the second-stage bracket telescopic rod can also be connected to the upper and lower sliding joints, and the second-level bracket telescopic rod and the bracket telescopic rod 232 are provided with a driving secondary bracket telescopic rod relative to the bracket telescopic rod 232
  • a two-stage hydraulic drive mechanism that slides up and down, which increases the stroke of the up and down slide adjustment.
  • the photovoltaic module unit 2 further includes a transport mechanism disposed at a lower portion of the bracket 21 for delivering electrical energy generated by the photovoltaic module 20.
  • the transport mechanism includes a hollow insulating housing 210 fixedly disposed at a lower portion of the bracket 21, and a metal contact 211 movably disposed in the insulating housing 210.
  • Metal contact 211 One end has a first contact 2110 and the other end is electrically connected to the first wire 212.
  • One end of the insulating housing 210 is provided with a first contact 2110 The through hole is extended, and the other end is provided with a through hole through which the first wire 212 passes.
  • a driving metal contact 211 is disposed between the metal contact 211 and the insulating housing 210 opposite the insulating housing 210
  • the sliding elastic member specifically, the other end of the insulating housing 210 is fixedly connected to a fastening ring piece, and the other end of the metal contact 211 and the metal ring piece are provided with a compression spring for driving the metal contact 211. 214, the compression spring 214 is in a compressed state, providing an elastic force for the extension of the first contact 2110.
  • a first connector 213 is fixedly connected to one end of the first wire 212, and the first connector 213 The upper end is provided with a thread, and the other end of the metal contact 211 is provided with a matching threaded hole, and the first joint 213 is connected to the metal contact 211 by a thread.
  • First lead 212 The other end is electrically connected to the junction box of the photovoltaic module 20.
  • the transverse rails 12 and/or the longitudinal rails 13 are spaced apart from each other with a plurality of chutes 16 that cooperate with the metal contacts 211. Chute 16
  • a second contact 160 is provided on the bottom of the groove to cooperate with the first contact 2110.
  • one end of a second wire 17 is fixedly connected to the second connector 170, and the second connector 170
  • the upper contact is threaded, the second connector 170 is connected by the thread and the transverse rail 12 and/or the longitudinal rail 13, and the end of the second connector 170 extends to the bottom of the slot of the chute 16, the second contact 160 is electrically connected to the second connector 170, and the other end of the second wire 17 is connected to the external power grid.
  • the one end portion of the metal contact 211 is slidably inserted into the chute 16, when the first contact 2110 When the second contact 160 is in contact with the conduction, the photovoltaic module unit 2 is mounted in position, that is, to the designated component placement position.
  • the chute 16 is provided with guiding slopes 161, 162, guiding slopes 161, 162 from the sliding slot 16
  • the end portion extends obliquely toward the second contact 160 in such a manner as to gradually move away from the bracket 21.
  • the guiding slopes 161 and 162 are two and are respectively located on opposite sides of the second contact 160.
  • the metal contact 211 With photovoltaic module unit 2 sliding on the lateral rail 12 or the longitudinal rail 13, the metal contact 211 is inserted into the chute 16, and under the action of the guiding bevel 161 on one side, the compression spring 214 Gradually releasing, pushing the metal contact 211 to slide outward, and when moving to the second contact 160, the first contact 2110 and the second contact 160 are in abutting contact with each other to conduct electrical connection, the photovoltaic module unit 2 Installed in place, the electrical energy generated by the photovoltaic module 20 is output through the first wire 212 and the second wire 17; when the photovoltaic module unit 2 needs to be removed, the photovoltaic module unit 2 is along the lateral rail 12 Or the longitudinal guide 13 continues to move, and under the action of the guide bevel 162 on the other side, the metal contact 211 is gradually retracted into the insulative housing 210, and the compression spring 214 is compressed.
  • the assembly stacking warehouse 3 is set on the ground side of the photovoltaic ecological greenhouse for storing the photovoltaic module unit 2 It is convenient to supplement the PV module unit 2 to the photovoltaic greenhouse or to recycle the excess PV module unit 2.
  • the maintenance library 4 is placed on the ground on the side of the component stacking warehouse 3 to recover the faulty PV module unit 2 for maintenance.
  • the transmission 5 is composed of a component conveying mechanism and a component lifting mechanism 54.
  • the frame unit located at one of the corners of the frame is used as the upper /
  • the conveying mechanism comprises a first conveying section 51, a second conveying section 52 and a third conveying section 53, the first conveying section 51 extending from the assembly stacking warehouse 3 directly below the upper/lowering point, the second conveying section 52
  • Each conveying unit 15 and the upper/lower material point are connected to each other on the conveying unit 15 of the frame
  • the third conveying section 53 extends from the maintenance library 4 to the upper/ Just below the blanking point.
  • the component lifting device is disposed below the upper/lowering point for feeding the photovoltaic module on the first conveying section 51 to the upper/lowering point or to the photovoltaic component of the upper/lowering point to the first conveying section 51. Or on the second conveying section 52.
  • the first conveying section 51, the second conveying section 52 and the third conveying section of the conveying device 53 The belt lifting mechanism or the chain conveying mechanism in the prior art is used, and the component lifting device adopts a pneumatic or electric lifting platform in the prior art, etc., and will not be described in detail herein.
  • the control device is composed of components stacked in the warehouse 3, the maintenance library 4, the transmission device 5, the hydraulic drive mechanism of the column 11 113, the telescopic bracket 23 hydraulic drive mechanism 233, environmental detector 61, soil moisture tester 63 and controller 60 constitute the control center of the entire photovoltaic ecological greenhouse operation.
  • the controller 60 It is the core part of the control unit.
  • the environmental detector 61 is used to detect the amount of solar radiation and air moisture in the area on the day, and the soil moisture tester 63 is used to detect the water content of the soil below the photovoltaic module.
  • Controller 60 The PLC controller 60 and the like which are common in the prior art are used.
  • Controller 60 and environmental detector 61 and soil moisture tester 63 By connecting the wires electrically or wirelessly to obtain the solar radiation and air moisture content of the area on that day and the moisture content of the soil under the photovoltaic module on that day, the controller 60 and the third-party data platform 63 The connection is used to obtain a large range of meteorological data of the area on the day to verify the solar radiation quantity of the area on the acquired day, and to ensure the accuracy of the solar radiation quantity data detection. Controller 60 According to the water content and air moisture content of the obtained soil, it is judged whether the current soil water content meets the needs of the current plant. When it is not satisfied, the soil is replenished in time.
  • the controller 60 is also used to drive the transmission 5
  • the action may send a control signal to the transmission device 5 by way of wire electrical connection or wireless transmission to the first conveying section 51, the second conveying section 52, and the third conveying section of the transmission device 5, respectively.
  • a control signal for shutdown, forward delivery, and reverse delivery is issued to send a rise or fall control signal to the component lift mechanism 54.
  • the controller 60 also controls the telescoping of the column 11 when the crop height exceeds 3 m At this time, the hydraulic drive mechanism 113 of the column 11 is extended with a control signal, and the column telescopic rod 112 is extended to adaptively adjust the height of the greenhouse frame, and the maximum height is not more than 10 m. Controller 60
  • the telescopic support 23 is also controlled to expand and contract.
  • the controller 60 sends out a control signal to the hydraulic drive mechanism 233 of the telescopic support 23, and the support telescopic rod 232 is extended, the PV module unit 2 is unfolded; when the PV module unit 2 is transported to the stacking warehouse 3 or the repair library 4, the controller 60 is directed to the hydraulic drive mechanism of the telescopic bracket 23 233 A return control signal is issued, the bracket telescopic rod 232 is retracted, and the photovoltaic module unit 2 is folded.
  • Timing detection analyzes the operating state of each photovoltaic module unit 2, and when the operation fails, the controller 60 goes to the second conveying section 52 a reversed delivery control signal, a falling control signal to the component lifting mechanism 54 and a reverse delivery control signal to the third delivery section 53 to cause a failed photovoltaic module unit 2 Delivered to the repair library 4 from its component placement position for repair.
  • the above control method of the photovoltaic greenhouse includes the following steps:
  • the controller calculates the required irradiation amount of the plant on the day according to the plant variety and the growth cycle;
  • the environmental detector obtains the amount of solar radiation in the area on the day, and the controller converts the obtained required irradiation amount into the occlusion of the photovoltaic module unit according to the acquired solar radiation amount and the meteorological data of the received third-party data platform. Area, the total number of required PV module units;
  • the controller converts the number of rows and columns of the photovoltaic module unit according to the total number of the obtained photovoltaic module units;
  • the controller determines whether the photovoltaic module unit placed on the previous day satisfies the step S3 If the number of rows and columns are not satisfied, the excess PV module unit is transferred to the component stacking warehouse, or the insufficient PV module unit is transferred from the component stacking warehouse and transferred to the designated placement position;
  • the soil moisture tester monitors the water content of the soil under the photovoltaic module in real time, and the environmental detector obtains the air moisture content of the area on the day, and the controller determines whether the water in the soil meets the current plant requirement according to the water content of the soil and the air moisture content. If the water content is insufficient, the soil is replenished with water;
  • step S4 if the photovoltaic module unit placed on the previous day satisfies the number of rows and columns obtained in step S3, the transmission device 5 If the PV module unit placed on the previous day does not meet the number of rows and columns obtained in step S3, the controller sends a control signal to drive the transmission device 5 to operate.
  • the controller 60 drives the second conveying section 52 and the first conveying section 51 to reversely convey and drive the assembly lifting mechanism 54 Decrease, transporting the excess PV module unit from its deployment position to the component stacking warehouse 3; if the PV module unit placed on the previous day exceeds the number of rows and/or columns obtained in step S3, the controller 60 Controlling the first conveying section 51 and the second conveying section 52 Forward conveying The insufficient photovoltaic module unit is forwardly transported from the component stacking warehouse 3 to its designated deployment position.
  • the controller 60 also controls the telescopic support 23
  • the controller 60 sends out a control signal to the hydraulic drive mechanism 113 of the telescopic bracket 23, and the bracket telescopic rod 232 is extended, and the photovoltaic module unit 2 unfolding; when the PV module unit 2 is transported to the component stacking warehouse or the repair library 4, the controller 60 sends a return control signal to the hydraulic drive mechanism 113 of the telescopic bracket 23, the bracket telescopic rod 232 Return, PV module unit 2 folded.

Abstract

一种光伏大棚的支承架,包括用于安装在地面形成支承的立柱(11)和连接于所述立柱(11)的上端用于安装光伏组件单元(2)的框架,所述立柱(11)包括立柱伸缩套(111)、可滑动地连接于所述立柱伸缩套(111)的立柱伸缩杆(112),所述立柱伸缩套(111)和立柱伸缩杆(112)二者中的一者和所述框架连接且另一者用于安装在地面上。该结构可根据植物的高度适应性的调整立柱上端的高度,从而调整光伏组件的高度,保持光伏组件距离植物顶端始终有一段距离,不影响植物生长。一种光伏大棚,包括所述的支架。

Description

一种光伏生态大棚及其支承架
技术领域
本发明涉及一种光伏生态领域,特别涉及一种光伏生态大棚及其支承架。
背景技术
目前,太阳能光伏组件被应用于吸收太阳能并转化为电能。而为了提高土地利用率,在太阳能光伏组件下方会种植农作物、花卉、中草药等植物,或养殖家禽家畜水产等。而不同植物的生长高度不同,植物各个不同生长阶的高度也不同,若还能够根据动植物的不同种类或不同生长阶段的高度调节光伏组件的高度,则会更利于植物生长。
发明内容
针对上述问题,本发明的目的是提供一种光伏生态大棚及其支承架,其可以根据不同种类或不同生长阶段的植物的高度调节光伏组件的高度。
为解决上述技术问题,本发明采用的技术方案为:
一种光伏生态大棚的支承架,包括用于安装在地面上形成支承的立柱和连接于所述立柱的上端用于安装光伏组件单元的框架,所述立柱包括立柱伸缩套、可滑动地连接于所述立柱伸缩套的立柱伸缩杆,所述立柱伸缩套、所述立柱伸缩杆二者中的一者和所述框架连接且另一者用于安装在地面上。
优选地,所述立柱还包括设置于所述立柱伸缩套和所述立柱伸缩杆之间的液压驱动机构。
更优选地,所述液压驱动机构为液压油缸。
优选地,所述立柱伸缩杆的上端和所述框架固定连接,所述立柱伸缩杆上端的高度为 3~10m 。
优选地,所述立柱为多个且呈阵列式间隔排布。
本发明采用的又一技术方案为:
一种光伏生态大棚,包括如上所述的支承架及设置在所述支承架上端的光伏组件单元。
本发明采用上述技术方案,相比现有技术具有如下优点:立柱为伸缩杆式,可根据植物的高度适应性的调整立柱上端的高度,从而调整光伏组件的高度,保持光伏组件距离植物顶端始终有一段距离,不影响植物生长。
附图说明
图 1 为本发明的光伏生态大棚的立体结构示意图;
图 2 为本发明的光伏生态大棚的俯视图;
图 3 为本发明的光伏生态大棚的部分主视图;
图 4 为图 3 中 A 处的连接示意图;
图 5 为本发明的光伏生态大棚的部分侧视图;
图 6 为图 5 中 A 处的连接示意图;
图 7 为本发明的光伏组件单元在折叠后的示意图;
图 8 为本发明的光伏组件单元在展开后的示意图;
图 9 为本发明的传输机构的结构示意图;
图 10 为本发明的滑槽示意图;
图 11 为本发明的金属触头在滑槽内的工作示意图;
图 12 为本发明的控制装置的模块示意图;
图 13 为本发明的控制方法的流程图。
上述附图中:
1 、支承架; 11 、立柱; 111 、立柱伸缩套; 112 、立柱伸缩杆; 113 、立柱的液压驱动机构; 12 、横向导轨; 120 、横向导槽; 13 、纵向导轨; 130 、纵向导槽; 14 、组件布放位置; 15 、输送单元;
16 、滑槽; 160 、第二触点; 161 、导向斜面; 162 、导向斜面; 17 、第二导线; 170 、第二连接头;
2 、光伏组件单元; 20 、光伏组件; 21 、支架;
210 、绝缘外壳; 211 、金属触头; 2110 、第一触点; 212 、第一导线; 213 、第一连接头; 214 、压簧;
22 、底支架; 220 、滑块; 23 、伸缩支架; 231 、支架伸缩套; 232 、支架伸缩杆; 233 、伸缩支架的液压驱动机构;
3 、组件叠放仓库;
4 、维修库;
5 、传动装置; 51 、第一输送段; 52 、第二输送段; 53 、第三输送段; 54 、组件升降机构;
60 、控制器; 61 、环境检测仪; 62 、第三方数据平台; 63 、土壤湿度检测仪。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
参见图 1 至图 12 所示,一种光伏生态大棚,包括支承架 1 、设在支承架 1 上端的光伏组件单元 2 、设在支承架 1 旁侧的组件叠放仓库 3 、设在组件叠放仓库 3 旁侧的维修库 4 、用于运输光伏组件单元 2 的传动装置 5 。
支承架 1 ,包括多个阵列式排布的立柱 11 、一个固定连接在所有立柱 11 上端的框架。立柱 11 为伸缩杆式,即,各立柱 11 分别包括立柱伸缩套 111 、可上下滑动地连接于立柱伸缩套 111 的立柱伸缩杆 112 及设于立柱伸缩套 111 和立柱伸缩杆 112 之间的用于驱动立柱伸缩杆 112 相对立柱伸缩套 111 上下滑动的液压驱动机构 113 (如液压油缸等)。立柱伸缩套 111 的下端固定安装在地面上形成稳定支撑,立柱伸缩杆 112 的上端和框架固定连接。框架包括多个沿纵向等间隔设置且分别沿横向延伸的横向导轨 12 和多个沿横向等间隔设置且分别沿纵向延伸的纵向导轨 13 ,多个横向导轨 12 和多个纵向导轨 13 相互交叉形成多个阵列式排布的呈矩形的框架单元,部分的框架单元作为用于安装光伏组件的组件布放位置 14 ,其它的框架单元则作为构成光伏组件单元的输送通道的输送单元 15 ,任意相邻两个组件布放位置 14 间都间隔有一个输送单元 15 。组件布放位置 14 上设置有与光伏组件单元进行机械连接和 / 或电力传输的连接机构,如下文所述的传输机构。输送单元 15 上设置有与下文所述的第一输送段相滑动配合的连接机构,如下文所述的横向导槽和纵向导槽等。
光伏组件单元 2 包括支架 21 及设在支架 21 上端的光伏组件 20 。光伏组件 20 采用双玻光伏组件,光伏组件 20 的主要作用是光伏组件 20 的太阳能电池片接受阳光照射后将太阳能转化为电能,电能通过光伏组件的接线盒进行输送。支架 21 包括底支架 22 及设置在底支架 22 上的伸缩支架 23 ,伸缩支架 23 设置于底支架 22 的一侧部,光伏组件 20 的一侧部和伸缩支架 23 的一侧部相连,光伏组件 20 的另一侧部和底支架 22 的另一侧部相连。
底支架 22 和框架滑动配合地连接。具体地,横向导轨 12 上开设沿横向延伸的横向导槽 120 ,纵向导轨 13 上开设有沿纵向延伸的纵向导槽 130 ,在横向导轨 12 和纵向导轨 13 的交叉处,即各框架单元的顶角处,横向导槽 120 和纵向导槽 130 相互连通。底支架 22 的底部具有与横向导槽 120 和纵向导槽 130 相配合的滑块 220 ,所述滑块 220 可滑动地插设在横向导槽 120 或纵向导槽 130 中,并可在横向导轨 12 和纵向导轨 13 的交叉处自横向导槽 120/ 纵向导槽 130 进入纵向导槽 130/ 横向导槽 120 中。
伸缩支架 23 包括支架伸缩套 231 、可上下滑动地连接于支架伸缩套 231 的支架伸缩杆 232 及设置于支架伸缩套 231 和支架伸缩杆 232 之间的液压驱动机构 233 (如液压油缸等),液压驱动机构 233 驱动支架伸缩杆 232 相对支架伸缩套 231 上下滑动。支架伸缩套 231 的下端和底支架 22 固定连接,支架伸缩杆 232 的上端和光伏组件 20 的边框活动连接,具体地,支架伸缩杆 232 的上端和光伏组件 20 的边框可滑动且可转动地连接。当支架伸缩杆 232 伸出时,光伏组件 20 的上述一侧部抬升,光伏组件 20 倾斜设置,如图 8 所示;当支架伸缩杆 232 退回时,光伏组件 20 的上述一侧部下降,光伏组件 20 靠向底支架 22 ,光伏组件单元 2 处于折叠状态,如图 7 所示,从而便于在组件叠放仓库 3 中叠放,节省空间。本实施例中优选采用二级伸缩支架,即支架伸缩杆 232 上还可上下滑动地连接有二级支架伸缩杆,二级支架伸缩杆和支架伸缩杆 232 之间设有驱动二级支架伸缩杆相对支架伸缩杆 232 上下滑动的二级液压驱动机构,这样可以增大上下滑动调节的行程。
光伏组件单元 2 还包括设在支架 21 下部的用于将光伏组件 20 产生的电能输送出去的传输机构。参见图 9-11 所示,传输机构包括固定设置在支架 21 下部的中空的绝缘外壳 210 、可移动地设置在绝缘外壳 210 内的金属触头 211 。金属触头 211 的一端上具有第一触点 2110 ,另一端和第一导线 212 相电连接。绝缘外壳 210 的一端上开设有可供第一触点 2110 伸出的通孔,另一端上开设有供第一导线 212 穿出的通孔。金属触头 211 和绝缘外壳 210 之间设置有驱动金属触头 211 相对绝缘外壳 210 滑动的弹性件,具体地,绝缘外壳 210 的上述另一端上固定连接一紧固环片,金属触头 211 的上述另一端和金属环片之间设置有一驱动金属触头 211 动作的压簧 214 ,压簧 214 为压缩状态,为第一触点 2110 的伸出提供弹性力。第一导线 212 的一端部固定连接有第一连接头 213 ,第一连接头 213 上开设有螺纹,金属触头 211 的上述另一端上开设有相配合的螺纹孔,第一连接头 213 通过螺纹和金属触头 211 相连接。第一导线 212 的另一端部和光伏组件 20 的接线盒相电连接。横向导轨 12 和 / 或纵向导轨 13 上间隔地设有多个与金属触头 211 相配合的滑槽 16 。滑槽 16 的槽底上设有与第一触点 2110 相配合的第二触点 160 。具体地,一第二导线 17 的一端部与第二连接头 170 相固定连接,第二连接头 170 上开设有螺纹,第二连接头 170 通过螺纹和横向导轨 12 和 / 或纵向导轨 13 连接,且第二连接头 170 的端部伸至滑槽 16 的槽底处,第二触点 160 与第二连接头 170 电连,第二导线 17 的另一端和外部电网相接。金属触头 211 的上述一端部可滑动地插设于滑槽 16 内,当第一触点 2110 和第二触点 160 相接触导通时,光伏组件单元 2 安装到位,即到达指定的组件布放位置。
滑槽 16 内设置有导向斜面 161 、 162 ,导向斜面 161 、 162 自滑槽 16 的端部向第二触点 160 处以逐渐远离支架 21 的方式倾斜延伸。导向斜面 161 、 162 为两个且分别位于第二触点 160 的相对两侧。随着光伏组件单元 2 在横向导轨 12 或纵向导轨 13 上滑动,金属触头 211 插入滑槽 16 内,并在一侧的导向斜面 161 的作用下,压簧 214 逐渐释放,推动金属触头 211 向外滑动,至移动到第二触点 160 处时,第一触点 2110 和第二触点 160 相互抵紧接触以导通实现电连接,光伏组件单元 2 安装到位,通过第一导线 212 、第二导线 17 将光伏组件 20 产生的电能输出;当需要移除光伏组件单元 2 时,光伏组件单元 2 沿着横向导轨 12 或纵向导轨 13 继续移动,在另一侧的导向斜面 162 的作用下,金属触头 211 逐渐回缩至绝缘外壳 210 内,压簧 214 被压缩。
组件叠放仓库 3 ,设置在位于光伏生态大棚旁侧的地面上,用于存放光伏组件单元 2 ,便于向光伏生态大棚补充光伏组件单元 2 或将多余的光伏组件单元 2 回收。光伏组件单元 2 折叠后层叠堆放在组件叠放仓库 3 内,减小储藏体积,节省仓库空间。
维修库 4 ,设置在位于组件叠放仓库 3 旁侧的地面上,用于收回故障的光伏组件单元 2 进行维修。
传动装置 5 由组件输送机构和组件升降机构 54 构成。具体地,以位于框架其中一顶角处的框架单元作为上 / 下料点,输送机构包括第一输送段 51 、第二输送段 52 及第三输送段 53 ,第一输送段 51 自组件叠放仓库 3 延伸至上 / 下料点的正下方,第二输送段 52 设置在框架的各输送单元 15 上将各输送单元 15 和上 / 下料点相互连通,第三输送段 53 自维修库 4 延伸至上 / 下料点的正下方。组件升降装置设置在上 / 下料点的下方用于将第一输送段 51 上的光伏组件送至上 / 下料点或将上 / 下料点的光伏组件送至第一输送段 51 或第二输送段 52 上。输送装置的第一输送段 51 、第二输送段 52 及第三输送段 53 采用现有技术中的皮带输送机构或链条输送机构等,组件升降装置采用现有技术中的气动或电动升降平台等,在此不做详细描述。
控制装置由组件叠放仓库 3 、维修库 4 、传动装置 5 、立柱 11 的液压驱动机构 113 、伸缩支架 23 的液压驱动机构 233 、环境检测仪 61 、土壤湿度测试仪 63 以及控制器 60 构成,是整个光伏生态大棚的运行的控制中枢。其中,控制器 60 是控制装置的核心部分。环境检测仪 61 用来检测当日该地区的太阳辐照量和空气含水量,土壤湿度测试仪 63 用来检测当日光伏组件下方的土壤的含水量。控制器 60 采用现有技术中常见的 PLC 控制器 60 等。控制器 60 和环境检测仪 61 及土壤湿度测试仪 63 通过导线电连接或无线传输的方式连接,从而获取当日该地区的太阳辐照量和空气含水量及当日光伏组件下方的土壤的含水量,控制器 60 还和第三方数据平台 63 连接以获取当日该地区大范围的气象数据以对获取的当日该地区的太阳辐照量进行比对验证,保证太阳辐照量数据检测的准确度。控制器 60 还根据获取的土壤的含水量和空气含水量判断当前土壤的含水量是否满足当前植物所需,不满足时,及时向土壤补水。控制器 60 还用来驱动传动装置 5 动作,可通过导线电连接或无线传输的方式向传动装置 5 发送控制信号,分别向传动装置 5 的第一输送段 51 、第二输送段 52 、第三输送段 53 发出停机、正向输送和反向输送的控制信号,向组件升降机构 54 发送上升或下降的控制信号。控制器 60 还控制立柱 11 的伸缩,当作物高度超过 3m 时,向立柱 11 的液压驱动机构 113 发出伸出的控制信号,立柱伸缩杆 112 伸出对大棚框架高度作出自适应调整,最大高度不超过 10m 。控制器 60 还控制伸缩支架 23 的伸缩,当光伏组件单元 2 向框架上输送时,控制器 60 向伸缩支架 23 的液压驱动机构 233 发出伸出的控制信号,支架伸缩杆 232 伸出,光伏组件单元 2 展开;当光伏组件单元 2 向组件叠放仓库 3 或维修库 4 输送时,控制器 60 向伸缩支架 23 的液压驱动机构 233 发出退回的控制信号,支架伸缩杆 232 退回,光伏组件单元 2 折叠。定时检测分析各光伏组件单元 2 的运行状态,当运行故障时,控制器 60 向第二输送段 52 发出反向输送的控制信号、向组件升降机构 54 发出下降的控制信号、向第三输送段 53 发出反向输送的控制信号,将发生故障的光伏组件单元 2 自其组件布放位置输送至维修库 4 进行维修。
参照附图 13 所示,上述光伏生态大棚的控制方法,包括如下步骤:
S1 、控制器根据植物品种及生长周期计算出植物当天的所需辐照量;
S2 、环境检测仪获取当日该地区的太阳辐照量,控制器根据获取的太阳辐照量和接收到的第三方数据平台的气象数据,将所得的所需辐照量换算成光伏组件单元的遮挡面积,得出所需光伏组件单元的总数;
S3 、控制器根据所得的光伏组件单元的总数换算出光伏组件单元的行数及列数;
S4 、控制器判断前一天所布放的光伏组件单元是否满足步骤 S3 得出的行数及列数,若不满足,将超出的光伏组件单元调入组件叠放仓库,或将不足的光伏组件单元自组件叠放仓库调出并调运至指定布放位置;
S5 、土壤湿度测试仪实时监控光伏组件下方土壤的含水量,环境检测仪获取当日该地区的空气含水量,控制器根据土壤的含水量和空气含水量判断土壤中的水分是否满足当前植物所需,若含水量不足,则向土壤补充水分;
S6 、检测农作物高度,当农作物高度与光伏组件单元的高度差小于设定值时,控制器向立柱 11 的液压驱动机构 113 发出伸出的控制信号,立柱伸缩杆 112 伸出将光伏组件单元 2 向上抬升。
具体地,步骤 S4 中,若前一天所布放的光伏组件单元满足步骤 S3 得出的行数及列数,则传动装置 5 停机;若前一天所布放的光伏组件单元不满足步骤 S3 得出的行数及列数,则控制器发出控制信号驱动传动装置 5 动作。具体地,若前一天所布放的光伏组件单元超出步骤 S3 得出的行数和 / 或列数,控制器 60 驱动第二输送段 52 和第一输送段 51 反向输送、驱动组件升降机构 54 下降,将超出的光伏组件单元自其布放位置输送至组件叠放仓库 3 ;若前一天所布放的光伏组件单元超出步骤 S3 得出的行数和 / 或列数,控制器 60 控制第一输送段 51 、第二输送段 52 正向输送将不足的光伏组件单元自组件叠放仓库 3 正向输送至其指定布放位置。此外,控制器 60 还控制伸缩支架 23 的伸缩,当光伏组件单元 2 向框架上输送时,控制器 60 向伸缩支架 23 的液压驱动机构 113 发出伸出的控制信号,支架伸缩杆 232 伸出,光伏组件单元 2 展开;当光伏组件单元 2 向组件层叠仓库或维修库 4 输送时,控制器 60 向伸缩支架 23 的液压驱动机构 113 发出退回的控制信号,支架伸缩杆 232 退回,光伏组件单元 2 折叠。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种光伏生态大棚的支承架,包括用于安装在地面上形成支承的立柱和连接于所述立柱的上端用于安装光伏组件单元的框架,其特征在于:所述立柱包括立柱伸缩套、可滑动地连接于所述立柱伸缩套的立柱伸缩杆,所述立柱伸缩套、所述立柱伸缩杆二者中的一者和所述框架连接且另一者用于安装在地面上。
  2. 根据权利要求 1 所述的支承架,其特征在于:所述立柱还包括设置于所述立柱伸缩套和所述立柱伸缩杆之间的液压驱动机构。
  3. 根据权利要求 2 所述的支承架,其特征在于:所述液压驱动机构为液压油缸。
  4. 根据权利要求 1 所述的支承架,其特征在于:所述立柱伸缩杆的上端和所述框架固定连接,所述立柱伸缩杆上端的高度为 3~10m 。
  5. 根据权利要求 1 所述的支承架,其特征在于:所述立柱为多个且呈阵列式间隔排布。
  6. 一种光伏生态大棚,其特征在于:包括如权利要求 1-5 任一所述的支承架及设置在所述支承架上端的光伏组件单元。
PCT/CN2016/092222 2016-03-15 2016-07-29 一种光伏生态大棚及其支承架 WO2017156956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610146327.9 2016-03-15
CN201610146327.9A CN105613125B (zh) 2016-03-15 2016-03-15 一种光伏生态大棚及其支承架

Publications (1)

Publication Number Publication Date
WO2017156956A1 true WO2017156956A1 (zh) 2017-09-21

Family

ID=56028838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092222 WO2017156956A1 (zh) 2016-03-15 2016-07-29 一种光伏生态大棚及其支承架

Country Status (2)

Country Link
CN (1) CN105613125B (zh)
WO (1) WO2017156956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400557A (zh) * 2020-11-18 2021-02-26 王磊 一种西瓜抗病育种用新型设施大棚及其使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105613125B (zh) * 2016-03-15 2019-01-18 苏州腾晖光伏技术有限公司 一种光伏生态大棚及其支承架
CN105978446A (zh) * 2016-07-06 2016-09-28 中利腾晖光伏科技有限公司 农业光伏设施
CN106577025B (zh) * 2016-12-29 2019-10-01 张莹莹 一种光伏日光温室
CN110535413B (zh) * 2019-07-11 2024-05-07 张家港大洋铝业有限公司 一种可调节太阳能光伏板支架

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203968803U (zh) * 2014-06-06 2014-12-03 特变电工新疆新能源股份有限公司 一种光伏农业大棚
JP3199175U (ja) * 2015-05-29 2015-08-06 三朗 宇梶 ソーラーパネルを備えた栽培ハウス
CN105159370A (zh) * 2015-10-10 2015-12-16 内蒙古山路光伏应用技术研究有限公司 太阳能光伏农业温棚
CN204860326U (zh) * 2015-07-05 2015-12-16 新疆石河子职业技术学院 一种新型光伏农业大棚
CN105613125A (zh) * 2016-03-15 2016-06-01 中利腾晖光伏科技有限公司 一种光伏生态大棚及其支承架

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137723A (zh) * 2011-11-23 2013-06-05 西安大昱光电科技有限公司 节能环保型太阳光全自动跟踪装置
CN102884962B (zh) * 2012-11-06 2014-04-09 河南豫新太阳能应用工程有限公司 可调光量式光伏农业大棚
CN202948957U (zh) * 2012-12-05 2013-05-22 内蒙古电力勘测设计院 一种可伸缩太阳能光伏方阵支架
CN104201971B (zh) * 2014-08-28 2017-02-15 山东科技大学 一种海洋波浪能和太阳能集成发电装置及其工作方法与应用
CN204103840U (zh) * 2014-09-28 2015-01-14 南京交通职业技术学院 一种无妨碍交通的车用太阳能板收展装置
CN204669996U (zh) * 2015-02-15 2015-09-30 中联西北工程设计研究院有限公司 一种混合多功能光伏生态大棚
CN205378614U (zh) * 2016-03-15 2016-07-13 中利腾晖光伏科技有限公司 一种光伏生态大棚及其支承架

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203968803U (zh) * 2014-06-06 2014-12-03 特变电工新疆新能源股份有限公司 一种光伏农业大棚
JP3199175U (ja) * 2015-05-29 2015-08-06 三朗 宇梶 ソーラーパネルを備えた栽培ハウス
CN204860326U (zh) * 2015-07-05 2015-12-16 新疆石河子职业技术学院 一种新型光伏农业大棚
CN105159370A (zh) * 2015-10-10 2015-12-16 内蒙古山路光伏应用技术研究有限公司 太阳能光伏农业温棚
CN105613125A (zh) * 2016-03-15 2016-06-01 中利腾晖光伏科技有限公司 一种光伏生态大棚及其支承架

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400557A (zh) * 2020-11-18 2021-02-26 王磊 一种西瓜抗病育种用新型设施大棚及其使用方法

Also Published As

Publication number Publication date
CN105613125A (zh) 2016-06-01
CN105613125B (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2017156956A1 (zh) 一种光伏生态大棚及其支承架
EP3432469B1 (en) Photovoltaic ecological greenhouse and photovoltaic module unit thereof
CN105594512A (zh) 光伏生态大棚及其支承架
US10903779B2 (en) Photovoltaic module unit and photovoltaic ecological greenhouse
CN105613136B (zh) 光伏生态大棚的控制方法及控制装置
CN208158770U (zh) 一种可靠性高的物联网数据采集装置
CN205378614U (zh) 一种光伏生态大棚及其支承架
CN205389724U (zh) 光伏生态大棚及其支承架
CN206135778U (zh) 一种光伏发电系统
CN211091478U (zh) 一种针对茶园假眼小绿叶蝉的诱捕装置
CN219056626U (zh) 一种自然资源动态检测装置
CN205389743U (zh) 光伏生态大棚的控制装置
CN205389723U (zh) 光伏生态大棚及其光伏组件单元
CN207400236U (zh) 一种森林害虫灭虫装置
CN112495824B (zh) 一种太阳能电板的传输机构
CN220392525U (zh) 一种光伏接线盒杆式挂料及伺服推料机构
CN208316644U (zh) 一种无框双玻组件的模块化安装结构
CN207380036U (zh) 一种基于互联网的土壤环境检测装置
CN108901475B (zh) 一种电动式葡萄种植大棚
CN112429671A (zh) 一种可升降式光伏折叠升降系统
CN206533474U (zh) 一种高度可调式监控设备
CN215708586U (zh) 具有堆叠防倾倒机构的高低压电气元件转运装置
CN205884457U (zh) 新型农用智能杀虫灯
CN217664753U (zh) 一种基于现代物流供应链的自动分拣装置
CN217808697U (zh) 一种杀虫剂生产用传送装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894117

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894117

Country of ref document: EP

Kind code of ref document: A1