WO2017156722A1 - 一种驱动桥总成和工程车辆 - Google Patents

一种驱动桥总成和工程车辆 Download PDF

Info

Publication number
WO2017156722A1
WO2017156722A1 PCT/CN2016/076452 CN2016076452W WO2017156722A1 WO 2017156722 A1 WO2017156722 A1 WO 2017156722A1 CN 2016076452 W CN2016076452 W CN 2016076452W WO 2017156722 A1 WO2017156722 A1 WO 2017156722A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer case
final drive
drive
assembly
output flange
Prior art date
Application number
PCT/CN2016/076452
Other languages
English (en)
French (fr)
Inventor
单增海
丁宏刚
马飞
李丽
马云旺
刘桂昌
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to EP16893887.6A priority Critical patent/EP3418098A4/en
Priority to BR112018068747A priority patent/BR112018068747A2/pt
Priority to AU2016397976A priority patent/AU2016397976A1/en
Priority to PCT/CN2016/076452 priority patent/WO2017156722A1/zh
Publication of WO2017156722A1 publication Critical patent/WO2017156722A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • B60K17/346Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear the transfer gear being a differential gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators

Definitions

  • the invention relates to the technical field of engineering vehicles, in particular to a drive axle assembly and an engineering vehicle.
  • the integral axle refers to the integral structure of the axle, and the wheels at both ends are interlocked and cannot move relatively independently.
  • the final reducer shell and the axle shell of the axle are rigidly connected to form an integral beam.
  • the disconnected axle refers to the hinge connection in the middle of the axle, and the wheels on both ends can move relatively independently.
  • the final reducer is fixedly connected to the frame.
  • the axle and the frame connecting portion are bounded.
  • the component that is relatively stationary with the frame when moving at one end of the frame belongs to the sprung mass, and the component that jumps with the wheel when moving at one end of the wheel belongs to the unsprung mass.
  • the three axles from front to back are defined as the second bridge, the first bridge and the third bridge, and the transfer box of the three-bridge all-terrain crane is set in one bridge and two.
  • the transfer case is connected to the first bridge and the second bridge through the drive shaft, respectively, because the drive shaft must be secured between the gearbox and the transfer case, between the transfer case and a bridge.
  • the minimum distance which leads to a large limitation of the arrangement space, so that the input end of the transfer case is not enough distance from the input flange end of a bridge main reducer to arrange the transfer case and its associated drive shaft.
  • the invention aims to provide a transaxle assembly and an engineering vehicle, which not only can save layout space, realize more driving schemes, but also has less unsprung mass and less impact on the frame.
  • a transaxle assembly for an industrial vehicle, the drive axle assembly comprising a left wheel, a right wheel, a disconnected axle, a final drive and a transfer case,
  • the reducer is dynamically connected to the left and right wheels via a disconnected axle, the final drive is mechanically coupled to the transfer case and the housing of the final drive is coupled to the housing of the transfer case, the frame of the final drive and the construction vehicle Fixed connection.
  • an auxiliary support device for connecting to the frame is provided on the transfer case.
  • the front end surface of the transfer case is provided with a front output flange
  • the rear end surface of the final reducer is provided with a rear output flange
  • the front output flange is used for powering the front axle assembly of the construction vehicle.
  • the connection, rearward output flange is used to power the rear axle assembly of the construction vehicle.
  • the transfer case transmits power through the forward output axial forward output flange, and the forward output flange is provided with an eddy current retarder, the eddy current retarder has a fixed portion and is rotatable relative to the fixed portion One of the rotating portion, the fixed portion and the rotating portion is disposed on the forward output shaft of the transfer case, and the other is disposed on the forward output flange.
  • the transfer case is provided with at least one power take-off port, and at least one power take-off port is used for connecting with the auxiliary power device.
  • the at least one power take-off port comprises a first power take-off port and a second power take-off
  • the auxiliary power device comprises an oil pump and a steering emergency pump
  • the first power take-off port is used for connecting with the oil pump
  • the second power take-off port is used for Connected to the steering emergency pump.
  • the transfer case has an input flange for connecting to a transmission of the construction vehicle, an output flange for connecting to other drive axles of the construction vehicle, and an input flange at the output flange Above.
  • the transaxle assembly further includes two suspension cylinders and two swing rods, wherein Two suspension cylinders are respectively arranged between the wheel sides of the left and right wheels and the frame, and the two swing bars are respectively arranged corresponding to the left and right wheels, and one end of each swing bar is connected by a ball hinge and corresponding The side wheels are hinged, and the other side end of each swing lever is hinged to the first final drive by two ball hinges arranged in the front-rear direction.
  • the swing lever is a “V”-shaped swing lever, and the rod split ends of the “V”-shaped swing lever are hinged to the lower end surface of the first final drive.
  • an engineering vehicle comprising a frame and a transaxle assembly of the present invention.
  • the construction vehicle is a four-axis engineering vehicle
  • the drive axle assembly is disposed between the front axle assembly and the rear axle assembly of the construction vehicle.
  • the invention integrates the transfer case and the final reducer into an integrated structure based on the disconnected axle, which can not only omit the transmission shaft between the transfer case and the final reducer in the prior art, saves layout space and reduces the drive axle assembly.
  • the weight is convenient for more drive solutions, and since the final drive is fixedly connected to the frame, the transfer case integrated with the final drive can also be independent of the wheel, that is, the final drive and the transfer case It belongs to the sprung mass, so that the transaxle assembly has a small unsprung mass, which can reduce the impact on the whole vehicle and improve the steering stability of the whole vehicle.
  • FIG. 1 shows a front view of a transaxle assembly in accordance with an embodiment of the present invention.
  • Figure 2 is a left side elevational view of the integral structure of the final drive and the transfer case of the drive axle assembly of Figure 1.
  • Figure 3 is a right side elevational view of the integral structure of the final drive and the transfer case of the drive axle assembly of Figure 1.
  • FIG. 4 is a schematic view showing the assembly of a transaxle assembly and a frame according to another embodiment of the present invention.
  • Fig. 5 is a view showing a drive axle layout of an engineering vehicle according to an embodiment of the present invention.
  • Main reducer 12, transfer case; 15, suspension cylinder; 16, pendulum; 17, wheel side; 18, accumulator;
  • FIG. 1-3 is a schematic structural view of a transaxle assembly according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing the assembly of the transaxle assembly and the frame according to another embodiment of the present invention
  • FIG. 5 shows the present invention.
  • a drive axle assembly 1 for an engineering vehicle provided by the present invention includes a left wheel 141, a right wheel 142, a disconnected axle, a final drive 11 and a transfer case 12, wherein
  • the speed reducer 11 is dynamically connected to the left wheel 141 and the right wheel 142 via a disconnected axle, the final drive 11 is mechanically coupled to the transfer case 12, and the housing of the final drive 11 is coupled to the housing of the transfer case 12, and is mainly decelerated.
  • the device 11 is fixedly connected to the frame 6 of the construction vehicle.
  • the drive axle assembly 1 provided by the present invention, based on the disconnected axle, omits the transmission shaft between the transfer case and the final drive in the prior art, and integrates the transfer case 12 and the final drive 11 into an integrated structure. Not only can the layout space be saved, the weight of the drive axle assembly 1 can be reduced, and more drive schemes can be realized, and since the final drive 11 is fixedly connected to the frame 6 in the disconnected drive axle, the main reducer 11 is
  • the transfer case 12 integrated into the unit structure can also be jumped independently of the wheel, that is, the final drive 11 and the transfer case 12 are all of the sprung mass, so that the drive axle assembly 1 has a small unsprung mass and can Reduce the impact of wheel and axle runout on the whole vehicle during driving, and improve the handling stability of the whole vehicle.
  • transaxle assembly 1 of the present invention will now be further described with reference to the embodiment shown in Figures 1-3.
  • the following "front, back, left, right, up, down” and other orientation words are defined based on the orientation shown in FIG.
  • the transaxle assembly 1 includes a transfer case 12, a final drive 11, a disconnected axle, a left wheel 141, and a right wheel 142, wherein the final drive 11
  • the housing is coupled to the housing of the transfer case 12 such that the final drive 11 and the transfer case 12 are integrated into a unitary structure, and the final drive 11 is dynamically coupled to the left and right wheels 141, 142 via the disconnected axle.
  • the break type axle includes a left half shaft 131 and a right half shaft 132, and the left end surface of the final drive 11 is provided with a left output flange 111, and the right end of the final drive 11 The surface is provided with a rightward output flange 112, wherein the left output flange 111 is connected to one end of the left half shaft 131, the other end of the left half shaft 131 is connected to the left wheel 141, and the right output flange 112 and the right half are connected.
  • the power transmitted to the final drive 11 can be transmitted to the left wheel 141 via the left output flange 111 and the left half shaft 131 while being transmitted to the right via the right output flange 112 and the right half shaft 132.
  • the wheels 142 enable power transfer to the left and right wheels 141, 142 of the transaxle assembly 1.
  • the transfer case 12 of the embodiment is integrated with the final drive unit 11 as an integral structure, and the power transmission can be realized without setting a transmission shaft between the two. Therefore, the drive axle assembly can be reduced to one engineering vehicle. The occupation of the vehicle layout space facilitates the implementation of more drive solutions for the construction vehicle having the drive axle assembly 1.
  • this embodiment integrates the transfer case 12 and the final drive 11 into an integrated structure based on the disconnected axle, and the drive axle having the disconnected axle structure is different from the integral structure of the final reducer and the axle of the integral axle.
  • the final drive is fixedly coupled to the frame 6, that is, the final drive of the disconnected axle belongs to the sprung mass. Therefore, in this embodiment, the final drive 11 is fixedly coupled to the frame 6, the final drive 11
  • the bounce is synchronized with the frame 6 and is independent of the wheel bounce, so that the bounce of the transfer case 12 integrated with the final drive 11 is no longer pulsing with the wheel, that is, the transfer case 12 of this embodiment is also It belongs to the sprung mass. Therefore, compared with the prior art transfer case as the non-sprung mass drive axle structure, the unsprung mass of the transaxle assembly 1 of this embodiment is reduced, and the frame 6 can be lowered. Impact, effectively improving the operational stability and ride comfort of the construction vehicle.
  • the transfer case 12 is fixed to the final drive 11, and the transfer case 12 is usually of a large mass if the transfer case 12 is far away.
  • the transfer case 12 has a cantilever structure as a whole, and when the frame 6 vibrates, the transfer case 12 forms a bending moment for the final drive 11. It is easy to cause the stress state of the connection portion between the transfer case 12 and the final drive 11 to be poor. Therefore, in order to further solve the technical problem, as shown in FIG. 1, the drive axle assembly 1 of this embodiment further includes a setting.
  • the transfer-free case 12 applies a large bending moment to the final drive 11 when the frame 6 vibrates, thereby effectively improving the stress characteristics of the joint portion of the final drive 11 and the transfer case 12 of the integrated structure, and reducing the transfer case.
  • the impact of the combined portion of the main reducer 11 and the main reducer 11 during the running of the vehicle effectively reduces the risk of damage to the integrated structure of the transfer case 12 and the final drive 11, prolongs its service life and reduces its maintenance cost.
  • the transfer case 12 can be equipped with a large-quality accessory such as a steering emergency pump and a retarder to enrich the function of the transfer case 12.
  • the rear end surface of the transfer case 12 is connected to the front end surface of the final drive unit 11 to form an integral structure, and the front end surface of the transfer case 12 is sequentially arranged from top to bottom.
  • There is an input flange 121 and a forward output flange 124 wherein the input flange 121 is for power connection with the engine 4 of the engineering vehicle through the transmission shaft, and the forward output flange 124 is used for power transmission with the front axle assembly 2 through the transmission shaft
  • the transfer case 12 transmits power to the forward output flange 124 through the forward output shaft;
  • the rear end surface of the final drive 11 is provided with a rearward output flange 113, and the rear output flange 113 is used to pass the drive shaft respectively It is dynamically connected to the transfer case 12 and the rear axle assembly 3.
  • an eddy current reducer can be provided at the forward output flange 124, and the eddy current retarder has a fixed portion and a rotating portion rotatably provided with respect to the fixed portion, and one of the fixed portion and the rotating portion is provided
  • the forward output shaft of the moving box 12 is disposed on the forward output flange 124 for auxiliary braking.
  • the input flange of the split case 12 is placed above the output flange. As shown in FIGS. 1-3, in this embodiment, the input flange 121 is disposed above the forward output flange 124 and the rearward output flange 113 to achieve the lowering function of the transfer case 12.
  • At least one power take-off port for connecting with an auxiliary power device such as an air compressor, an oil pump and a steering emergency pump may be disposed on the transfer case 12 to provide auxiliary power for driving the whole vehicle.
  • the front and rear end faces of the transfer case 12 are respectively provided with a second power take-off port 123 and a first power take-off port 122, wherein the first power take-off port 122 is provided with an oil pump.
  • the hydraulic power can be provided for the auxiliary equipment of the vehicle, and the steering emergency pump is installed at the second power take-off port 123, which can provide the steering assist power when the steering pump of the engineering vehicle fails.
  • the steering emergency pump is disposed at the first power take-off port 122, and the oil pump is set at the first The second power port 123 is also possible.
  • This embodiment integrates the large-quality accessories such as the eddy current sensor, the oil pump, and the steering emergency pump into the transfer case 12, thereby not only enriching the function of the transfer case 12, but also making the function of the drive axle assembly 1 more diverse, and also It can further save the layout space of the whole vehicle, make the whole vehicle structure more compact, and further optimize the vehicle driving scheme.
  • the integral structure of the transfer case 12 and the final drive 11 can achieve the following functions: (1) having a high and low gear and its switching device; (2) having a forward and backward axle output torque function, and can be Power arrangement distributes torque; (3) reduces engine power by a distance; (4) adds steering emergency pump, retarder and other components; (5) main deceleration function; (6) wheel side differential / shaft between Differential and differential lock function; (7) Through-type final drive / non-through final drive function. It can be seen that the integrated structure of the transfer case 12 and the final drive 11 of this embodiment can realize all the functions of the separate transfer case (the functions of the above items (1)-(4)) and all the functions of the individual final drive (the above (5) )-(7) function).
  • the transaxle assembly 1 of the present invention may further include two suspension cylinders 15 and two swing levers 16, wherein the two suspension cylinders 15 are respectively disposed on the left wheel 141. And between the wheel side 17 of the right wheel 142 and the frame 6, the two swing rods 16 are respectively disposed corresponding to the left wheel 141 and the right wheel 142, and one end of each swing rod 16 passes through a ball hinge and the corresponding side wheel Hinged, the other side end of each swing lever 16 is hinged to the first final drive 11 by two ball hinges arranged in the front-rear direction.
  • the two swing bars 16 can play the dual role of positioning the tire and withstanding the reaction force from the road surface, and can ensure that the wheel track remains consistent when the wheel is bouncing up and down, and the force state can be improved.
  • the two swing rods 16 may be a "V"-shaped swing rod, wherein the rod connecting end of the "V"-shaped swing rod is hinged to the wheel on the corresponding side, and the split end of the rod is hinged to the final reducer.
  • the lower end surface of the elbow, the rod connection end portion herein refers to a joint connection portion of two rod bodies constituting a "V" shape
  • the rod separation end portion refers to a non-joined connection portion of two rod bodies constituting a "V" shape, That is, the open end.
  • the present invention provides an integral structure of the transfer case 12 and the final drive 11 based on the disconnected axle, and is provided by providing independent of the two suspension cylinders 15 and the two swing bars 16. Suspension makes engineering vehicles no longer limited to the use of integral axle structure, the structure is more compact, and the drive arrangement is more flexible.
  • the transaxle assembly 1 further comprises two accumulators 18, wherein the accumulator 18 has an oil port and a suspension cylinder 15 disposed on the left side (ie A rodless cavity of the suspension cylinder 15) disposed between the wheel side 17 of the left wheel 141 and the frame 6 and a suspension cylinder 15 disposed on the right side (ie, disposed between the wheel edge 17 of the right wheel 142 and the frame 6)
  • the suspension cylinder 15) is connected to the rod chamber
  • the oil port of the other accumulator 18 is connected to the rod chamber of the suspension cylinder 15 disposed on the left side and the rodless chamber of the suspension cylinder 15 disposed on the right side.
  • the rodless cavity of the impact side suspension cylinder 15 is compressed, the hydraulic oil enters the impact side accumulator 18, and the hydraulic pressure of the impact side accumulator 18 is increased while being unimpeded.
  • the rod chamber of the side suspension cylinder 15 replenishes the hydraulic oil, so that the rodless chamber of the unimpeded side suspension cylinder 15 is compressed, the hydraulic oil enters the unimpeded side accumulator 18, and the hydraulic pressure in the unimpeded side accumulator 18 The oil pressure then increases, and in order to maintain balance, the unimpeded side accumulator 18 is impacted.
  • the rod chamber of the side suspension cylinder 15 is supplemented with hydraulic oil, so that the suspension cylinders 15 on both sides are associated, and the vibration of the wheel due to the impact can be quickly weakened. It can be seen that the setting of the suspension cylinder 15 can be controlled by this arrangement. Optimization, based on this control method, only need to set the suspension cylinder 15 with simple structure to obtain better vibration attenuation effect.
  • the hydraulic oil on the impact side enters the rod cavity of the unimpeded side suspension cylinder 15, which can improve the roll stiffness of the whole vehicle, reduce the roll angle of the whole vehicle, and improve the ride comfort.
  • a second aspect of the present invention also provides an engineering vehicle comprising a frame 6 and a transaxle assembly 1 of the present invention.
  • the construction vehicle is a three-bridge engineering vehicle including a frame 6 (not shown), a front axle assembly 2, a rear axle assembly 3, an engine 4, and a transmission 5.
  • the transaxle assembly 1 of the above embodiment wherein the transaxle assembly 1 is disposed between the front axle assembly 2 and the rear axle assembly 3, and the power of the engine 4 is transmitted through the transmission 5 and The bridge assembly 1 is transferred to the front axle assembly 2 and the rear axle assembly 3.
  • the transmission 5 is dynamically connected to the engine 4, and the drive axle assembly 1 and the transmission 5 are dynamically connected by an input flange 121 on the transfer case 12 which is integrally formed with the final drive 11, the drive axle assembly 1 and the front
  • the bridge assembly 2 is dynamically connected by a forward output flange 124 on the transfer case 12, and the drive axle assembly 1 and the rear axle assembly 3 are dynamically connected through a rearward output flange 113 on the final drive 11.
  • the final drive 11 of the transaxle assembly 1 is dynamically coupled to the left and right wheels 141 and 142 via the leftward output flange 111 and the rightward output flange 112 and the disconnected axle thereon.
  • the power of the engine 4 can be transmitted to the transfer case 12 via the transmission 5, and transmitted to the transaxle assembly 1 via the integral transfer case 12 and the first final drive 11 (intermediate bridge assembly, equivalent to the background art)
  • One of the bridges the front axle assembly 2 (equivalent to the second bridge in the background art) and the rear axle assembly 3 (equivalent to the three bridges in the background art).
  • the engineering vehicle of this embodiment can realize not only the front and rear bridges (equivalent to the two or three bridges in the background art) but also the front middle bridge drive scheme (equivalent to one in the background art).
  • the second bridge) and the three-bridge all-drive scheme compared with the existing engineering vehicles that can only be designed as non-drive axles due to space limitation, the engineering vehicle of this embodiment can realize more driving schemes and can meet the engineering vehicles. Higher requirements for gradeability.
  • both the final drive 11 and the transfer case 12 of the transaxle assembly 1 become the sprung mass, the operational stability and ride comfort of the construction vehicle of this embodiment are also improved.
  • FIG. 5 illustrates the construction vehicle of the present invention by taking the three-bridge engineering vehicle as an example.
  • the present invention is not limited to the three-bridge engineering vehicle, and is also applicable to a limited layout space but needs to implement various layout schemes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

一种用于工程车辆的驱动桥总成,包括左车轮(141)、右车轮(142)、断开式车轴、主减速器(11)和分动箱(12),其中,主减速器(11)通过断开式车轴与左车轮(141)和右车轮(142)动力连接,主减速器(11)与分动箱(12)动力连接且主减速器的壳体与分动箱的壳体连接,主减速器(11)与工程车辆的车架(6)固定连接。还公开了一种包括该驱动桥总成的工程车辆。基于断开式车轴将分动箱和主减速器集成为一体结构,不仅能够节约布置空间,实现更多驱动方案,而且具有较小的非簧载质量,能够减少对整车的冲击,提高整车的操纵稳定性。

Description

一种驱动桥总成和工程车辆 技术领域
本发明涉及工程车辆技术领域,特别涉及一种驱动桥总成和工程车辆。
背景技术
整体式车轴是指车轴为整体式结构,两端车轮联动,不能相对独立运动,基于整体式车轴的驱动桥,其主减速器壳与车轴轴壳刚性地相连形成一个整体梁。而断开式车轴则是指车轴中间为铰链连接,两端车轮可以相对独立运动,基于断开式车轴的驱动桥,其主减速器固定连接于车架上。通常以车轴和车架连接部分为界,在车架一端运动时与车架保持相对静止的部件属于簧载质量,而在车轮一端运动时与车轮一起跳动的部件属于非簧载质量。
目前,断开式车轴用于家用轿车中,而现有的工程车辆,例如起重机等,均采用整体式车轴结构,且分动箱与主减速器之间通过传动轴连接。四轴以下的工程车辆,结构布置要求紧凑,在布置驱动方案时,变速箱经传动轴与分动箱连接,分动箱降距分扭后通过传动轴与前后驱动轴连接。由于空间布置限制,分动箱与前车轴或后车轴距离太小,无法布置传动轴,导致相近的车轴只能采用非驱动车轴,进而导致驱动方案设计受到较大限制。
以现有的三桥全地面起重机为例,定义由前至后的三个车桥分别为二桥、一桥和三桥,则三桥全地面起重机的分动箱是设置在一桥及二桥之间的,且距离一桥更近,分动箱通过传动轴分别与一桥及二桥连接,由于变速箱与分动箱之间、分动箱与一桥之间必须要保证传动轴最小距离,这就导致布置空间受到较大限制,以致于分动箱输入端距一桥主减速器输入法兰端的距离不足以布置分动箱及其相关传动轴,目前解决该问题的方法是将一桥设计成非驱动桥,而这意味着工程车辆只能实现二三桥驱动,却无法实现一三桥 驱动或者全桥驱动,由于二三桥轴驱动方案爬坡能力较差,因此,将一桥设计为非驱动桥会制约整车性能的发挥。
发明内容
本发明旨在提供一种驱动桥总成和工程车辆,其不仅能够节约布置空间,实现更多的驱动方案,而且其非簧载质量较小,对车架的冲击较小。
根据本发明的第一方面,本发明提供了一种用于工程车辆的驱动桥总成,该驱动桥总成包括左车轮、右车轮、断开式车轴、主减速器和分动箱,主减速器通过断开式车轴与左车轮和右车轮动力连接,主减速器与分动箱动力连接且主减速器的壳体与分动箱的壳体连接,主减速器与工程车辆的车架固定连接。
可选地,分动箱上设有用于与车架连接的辅助支撑装置。
可选地,分动箱的前端面上设有向前输出法兰,主减速器的后端面上设有向后输出法兰,向前输出法兰用于与工程车辆的前桥总成动力连接,向后输出法兰用于与工程车辆的后桥总成动力连接。
可选地,分动箱通过向前输出轴向向前输出法兰传递动力,向前输出法兰处设有电涡流缓速器,电涡流缓速器具有固定部和相对于固定部可转动地设置的转动部,固定部和转动部中的一个设在分动箱的向前输出轴上,另一个设在向前输出法兰上。
可选地,分动箱上设有至少一个取力口,至少一个取力口用于与辅助动力装置连接。
可选地,至少一个取力口包括第一取力口和第二取力器,辅助动力装置包括油泵和转向应急泵,第一取力口用于与油泵连接,第二取力口用于与转向应急泵连接。
可选地,分动箱具有输入法兰和输出法兰,输入法兰用于与工程车辆的变速器连接,输出法兰用于与工程车辆的其它驱动桥连接,输入法兰位于输出法兰的上方。
可选地,驱动桥总成还包括两个悬挂油缸和两个摆杆,其中, 两个悬挂油缸分别设置在左车轮和右车轮的轮边与车架之间,两个摆杆分别与左车轮和右车轮对应设置,每个摆杆的一侧端部通过一球铰链与相应侧车轮铰接,每个摆杆的另一侧端部通过沿前后方向布置的两个球铰链与第一主减速器分别铰接。
可选地,摆杆为“V”字型摆杆,“V”字型摆杆的杆分离端部均铰接于第一主减速器的下端面。
根据本发明的第二方面,本发明还提供了一种工程车辆,该工程车辆包括车架和本发明的驱动桥总成。
可选地,工程车辆为四轴以下的工程车辆,驱动桥总成设置在工程车辆的前桥总成和后桥总成之间。
本发明基于断开式车轴将分动箱和主减速器集成为一体结构,不仅能够省略现有技术中分动箱与主减速器之间的传动轴,节约布置空间,减轻驱动桥总成的重量,方便实现更多驱动方案,而且由于主减速器与车架固定连接,因此,与主减速器集成一体结构的分动箱也能够独立于车轮跳动,也即主减速器和分动箱均属于簧载质量,从而使得驱动桥总成具有较小的非簧载质量,能够减少对整车的冲击,提高整车的操纵稳定性。
通过以下参照附图对本发明的示例性实施例进行详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明一实施例的驱动桥总成的主视图。
图2示出图1所示驱动桥总成的主减速器与分动箱一体结构的左视图。
图3示出图1所示驱动桥总成的主减速器与分动箱一体结构的右视图。
图4示出本发明另一实施例的驱动桥总成与车架的组装示意图。
图5示出本发明一实施例的工程车辆的驱动桥布置图。
图中:
1、驱动桥总成;2、前桥总成;3、后桥总成;4、发动机;5、变速器;6、车架;
11、主减速器;12、分动箱;15、悬挂油缸;16、摆杆;17、轮边;18、蓄能器;
111、向左输出法兰;112、向右输出法兰;113、向后输出法兰;121、输入法兰;122、第一取力口;123、第二取力口;124、向前输出法兰;125、辅助支撑装置;131、左半轴;132、右半轴;141、左车轮;142、右车轮。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在本发明的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
图1-3示出了本发明一实施例的驱动桥总成的结构示意图,图4示出了本发明另一实施例的驱动桥总成与车架的组装示意图,图5示出了本发明一实施例的工程车辆的结构示意图。参照图1-图4,本发明所提供的用于工程车辆的驱动桥总成1,包括左车轮141、右车轮142、断开式车轴、主减速器11和分动箱12,其中,主减速器11通过断开式车轴与左车轮141和右车轮142动力连接,主减速器11与分动箱12动力连接且主减速器11的壳体与分动箱12的壳体连接,主减速器11与工程车辆的车架6固定连接。
本发明所提供的驱动桥总成1,基于断开式车轴,省略现有技术中分动箱与主减速器之间的传动轴,将分动箱12和主减速器11集成为一体结构,不仅能够节约布置空间,减轻驱动桥总成1的重量,方便实现更多驱动方案,而且由于在断开式驱动桥中,主减速器11与车架6固定连接,因此,与主减速器11集成为一体结构的分动箱12也能够独立于车轮跳动,也即主减速器11和分动箱12均属于簧载质量,从而使得驱动桥总成1具有较小的非簧载质量,能够减少行驶过程中车轮和车轴跳动对整车的冲击,提高整车的操纵稳定性。
下面结合图1-3所示的实施例来对本发明的驱动桥总成1进行进一步地说明。为了描述方便,以下用到的“前、后、左、右、上、下”等方位词均是基于图1所示的方位定义的。
如图1-3所示,在该实施例中,驱动桥总成1包括分动箱12、主减速器11、断开式车轴、左车轮141和右车轮142,其中,主减速器11的壳体与分动箱12的壳体连接,使得主减速器11和分动箱12集成为一体结构,且主减速器11通过断开式车轴与左车轮141和右车轮142动力连接。
如图1所示,在该实施例中,断开式车轴包括左半轴131和右半轴132,主减速器11的左端面上设有向左输出法兰111,主减速器11的右端面上设有向右输出法兰112,其中,向左输出法兰111与左半轴131的一端连接,左半轴131的另一端与左车轮141连接,向右输出法兰112与右半轴132的一端连接,右半轴132的另一端 与右车轮142连接,这样传递至主减速器11的动力可以经由向左输出法兰111和左半轴131传递至左车轮141,同时经由向右输出法兰112和右半轴132传递至右车轮142,从而实现向驱动桥总成1的左车轮141和右车轮142的动力传递。
可见,该实施例的分动箱12与主减速器11集成为一体结构,无须再在二者之间设置传动轴即可实现动力传递,因此,可以减少该驱动桥总成1对工程车辆整车布置空间的占用,便于具有该驱动桥总成1的工程车辆实现更多的驱动方案。
此外,该实施例基于断开式车轴将分动箱12与主减速器11集成为一体结构,由于与整体式车轴的主减速器与车轴一体结构不同,具有断开式车轴结构的驱动桥的主减速器是与车架6固定连接的,即断开式车轴的主减速器属于簧载质量,因此,在该实施例中,主减速器11与车架6固定连接,主减速器11的跳动与车架6同步,而独立于车轮跳动,从而使得与主减速器11集成为一体结构的分动箱12的跳动也不再随着车轮跳动,也即该实施例的分动箱12也属于簧载质量,所以,相对于现有技术中分动箱作为非簧载质量的驱动桥结构,该实施例的驱动桥总成1的非簧载质量减轻,进而能够降低对车架6的冲击,有效改善工程车辆的操作稳定性和行驶平顺性。
由于在该实施例的驱动桥总成1中,主减速器11与车架6固定,分动箱12与主减速器11固定,且分动箱12通常质量较大,如果分动箱12远离主减速器11的一端与车架6之间不设置连接结构,那么分动箱12整体呈悬臂结构,则在车架6振动时,分动箱12会对主减速器11形成一个弯矩,容易导致分动箱12与主减速器11之间的连接部位的受力状态较差,因此,为了进一步解决该技术问题,如图1所示,该实施例的驱动桥总成1还包括设置在分动箱12上的辅助支撑装置125,该辅助支撑装置125用于与工程车辆的车架6连接。通过设置该辅助支撑125,使得分动箱12的两端都有支撑,也即使得分动箱12由悬臂结构变为桥支结构,从而可以避 免分动箱12在车架6振动时对主减速器11施加较大弯矩,进而能够有效改善一体结构的主减速器11与分动箱12的结合部位的受力特性,减轻分动箱12与主减速器11的结合部位在车辆行驶过程中所受到的冲击,有效降低分动箱12与主减速器11的一体结构的破坏风险,延长其使用寿命,降低其维护成本。此外,由于分动箱12与车架6的连接更加牢固稳定,因此,分动箱12上可以加装转向应急泵和缓速器等大质量附件,丰富分动箱12的功能。
如图2和图3所示,在该实施例中,分动箱12的后端面与主减速器11的前端面连接形成一体结构,且分动箱12的前端面上由上至下依次设有输入法兰121和向前输出法兰124,其中输入法兰121用于与工程车辆的发动机4通过传动轴动力连接,向前输出法兰124用于与前桥总成2通过传动轴动力连接,分动箱12通过向前输出轴为向前输出法兰124传递动力;主减速器11的后端面上设有向后输出法兰113,向后输出法兰113用于通过传动轴分别与分动箱12和后桥总成3动力连接。基于此,可以在向前输出法兰124处设置电涡流减速器,电涡流缓速器具有固定部和相对于固定部可转动地设置的转动部,固定部和转动部的一个的设在分动箱12的向前输出轴上,另一个设在向前输出法兰124上,用于辅助制动。
为了实现分动箱12的降距功能,分传动箱12的输入法兰设置在输出法兰的上方。如图1-3所示,在该实施例中,输入法兰121设置在向前输出法兰124以及向后输出法兰113上方,以实现分动箱12的降距功能。
此外,分动箱12上还可以设置至少一个用于与空气压缩机、油泵和转向应急泵等辅助动力装置连接的取力口,以为整车行驶提供辅助动力。如图2-3所示,在该实施例中,分动箱12的前后端面上分别设有第二取力口123和第一取力口122,其中第一取力口122处加装油泵,可以为整车辅助设备提供液压动力,第二取力口123处加装转向应急泵,可以在工程车辆的转向泵失效时提供转向辅助动力。当然,转向应急泵设置在第一取力口122处,油泵设置在第 二取力口123处也是可以的。
该实施例通过将电涡流传感器、油泵和转向应急泵等大质量附件集成于分动箱12上,不仅能够丰富分动箱12的功能,使驱动桥总成1的功能更加多样化,而且也能够进一步节约整车布置空间,使整车结构更加紧凑,便于整车驱动方案的进一步优化。
在该实施例中,分动箱12与主减速器11的一体结构能够实现以下功能:(1)具备高低档及其切换装置;(2)具备向前向后车轴输出扭矩功能,并能根据动力布置分配扭矩;(3)将发动机发出动力降低一段距离;(4)加装转向应急泵、缓速器等部件的功能;(5)主减速功能;(6)轮边差速/轴间差速及其差速锁止功能;(7)贯通式主减速器/非贯通式主减速器功能。可见,该实施例分动箱12与主减速器11的一体结构能够实现单独分动箱的全部功能(上述(1)-(4)项功能)以及单独主减速器的全部功能(上述(5)-(7)项功能)。
如图4所示,作为上述实施例的进一步改进,本发明的驱动桥总成1还可以包括两个悬挂油缸15和两个摆杆16,其中,两个悬挂油缸15分别设置在左车轮141和右车轮142的轮边17与车架6之间,两个摆杆16分别与左车轮141和右车轮142对应设置,每个摆杆16的一侧端部通过一球铰链与相应侧车轮铰接,每个摆杆16的另一侧端部通过沿前后方向布置的两个球铰链与第一主减速器11分别铰接。这样在行驶状态下,两个摆杆16可以起到定位轮胎并承受来自路面的支反力的双重作用,能够确保车轮上下跳动时轮距保持一致,且能够改善受力状态。具体地,两个摆杆16可以为“V”字型摆杆,其中“V”字型摆杆的杆连接端部铰接于相应侧的车轮上,而杆分离端部则铰接于主减速器11的下端面,此处的杆连接端部指构成“V”字型的两个杆体的结合连接部,而杆分离端部指构成“V”字型的两个杆体的非结合连接部,即开口端。
本发明通过设置基于断开式车轴的分动箱12与主减速器11的一体结构,并通过设置包括两个悬挂油缸15和两个摆杆16的独立 悬架,使得工程车辆不再局限于采用整体式车轴结构,其结构更加紧凑,驱动布置方式也更加灵活。
此外,如图4所示,在该进一步的实施例中,驱动桥总成1还包括两个蓄能器18,其中一个蓄能器18的油口与设置在左侧的悬挂油缸15(即设置在左车轮141的轮边17与车架6之间的悬挂油缸15)的无杆腔及设置在右侧的悬挂油缸15(即设置在右车轮142的轮边17与车架6之间的悬挂油缸15)的有杆腔连通,而另一个蓄能器18的油口则与设置在左侧的悬挂油缸15的有杆腔及设置在右侧的悬挂油缸15的无杆腔连通,这样当一侧车轮受到冲击时,受冲击侧悬挂油缸15的无杆腔被压缩,液压油进入受冲击侧蓄能器18,受冲击侧蓄能器18液压油压力增加,同时向未受冲击侧悬挂油缸15的有杆腔补充液压油,致使未受冲击侧悬挂油缸15的无杆腔被压缩,液压油进入未受冲击侧蓄能器18,未受冲击侧蓄能器18内的液压油压力于是也随之增加,而为了保持平衡,未受冲击侧蓄能器18会向受冲击侧悬挂油缸15的有杆腔补充液压油,从而使得两侧悬挂油缸15得以关联,进而车轮因受到冲击所形成的振动能够被迅速削弱,可见,通过该设置,使得悬挂油缸15的控制方式得以优化,基于该控制方式只需要设置结构简单的悬挂油缸15即可获得更佳的振动衰减效果。此外,受冲击侧的液压油进入未受冲击侧悬挂油缸15的有杆腔,可以提高整车的侧倾刚度,减小整车的侧倾角度,提升整车平顺性。
参照图5,本发明第二方面还提供了一种工程车辆,该工程车辆包括车架6和本发明的驱动桥总成1。
下面结合图5所示的实施例来对本发明的工程车辆进行进一步地说明。
如图5所示,在该实施例中,工程车辆为三桥工程车辆,其包括车架6(图中未示出)、前桥总成2、后桥总成3、发动机4、变速器5和上述实施例的驱动桥总成1,其中,驱动桥总成1设置在前桥总成2和后桥总成3之间,发动机4的动力经变速器5和驱动 桥总成1传递至前桥总成2和后桥总成3。
其中,变速器5与发动机4动力连接,驱动桥总成1与变速器5之间通过与主减速器11为一体结构的分动箱12上的输入法兰121动力连接,驱动桥总成1与前桥总成2之间通过分动箱12上的向前输出法兰124动力连接,驱动桥总成1与后桥总成3之间通过主减速器11上的向后输出法兰113动力连接,且驱动桥总成1的主减速器11通过其上的向左输出法兰111和向右输出法兰112及断开式车轴与左车轮141和右车轮142动力连接。这样,发动机4的动力能够经由变速器5传递至分动箱12,并经过一体结构的分动箱12和第一主减速器11传递至驱动桥总成1(中间桥总成,相当于背景技术中的一桥)、前桥总成2(相当于背景技术中的二桥)和后桥总成3(相当于背景技术中的三桥)。
如前所述,由于分动箱12与主减速器11集成为一体结构,本发明的驱动桥总成1所占用的布置空间减少,该驱动桥总成1在整车长度有限的前提下也能被设计为驱动桥,因此,该实施例的工程车辆不仅能够实现前后桥(相当于背景技术中的二三桥)驱动方案,而且能够实现前中桥驱动方案(相当于背景技术中的一二桥)以及三桥全驱方案,相对于因空间限制一桥只能设计为非驱动桥的现有工程车辆而言,该实施例的工程车辆能够实现更多的驱动方案,可以满足工程车辆对爬坡性能的更高要求。而且,由于驱动桥总成1的主减速器11与分动箱12均变为簧载质量,因此,该实施例的工程车辆的操作稳定性和行驶平顺性也得以改善。
图5所示的实施例以三桥工程车辆为例对本发明的工程车辆进行说明,实际上,本发明并不局限于三桥工程车辆,其也适用于布置空间有限但需要实现多种布置方案的其他工程车辆,其中,由于四桥以下的工程车辆的整车长度较短,其布局空间对驱动方案设计的限制更加明显,因此,本发明尤其适用于四桥以下的紧凑型多桥工程车辆。
以上仅为本发明的示例性实施例,并不用以限制本发明,凡在本 发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种驱动桥总成(1),用于工程车辆,其特征在于,所述驱动桥总成(1)包括左车轮(141)、右车轮(142)、断开式车轴、主减速器(11)和分动箱(12),所述主减速器(11)通过所述断开式车轴与所述左车轮(141)和所述右车轮(142)动力连接,所述主减速器(11)与所述分动箱(12)动力连接且所述主减速器(11)的壳体与所述分动箱(12)的壳体连接,所述主减速器(11)与所述工程车辆的车架(6)固定连接。
  2. 根据权利要求1所述的驱动桥总成(1),其特征在于,所述分动箱(12)上设有用于与所述车架(6)连接的辅助支撑装置(125)。
  3. 根据权利要求2所述的驱动桥总成(1),其特征在于,所述分动箱(12)的前端面上设有向前输出法兰(124),所述主减速器(11)的后端面上设有向后输出法兰(113),所述向前输出法兰(124)用于与所述工程车辆的前桥总成(2)动力连接,所述向后输出法兰(113)用于与所述工程车辆的后桥总成(3)动力连接。
  4. 根据权利要求3所述的驱动桥总成(1),其特征在于,所述分动箱(12)通过向前输出轴向所述向前输出法兰(124)传递动力,所述向前输出法兰(124)处设有电涡流缓速器,所述电涡流缓速器具有固定部和相对于所述固定部可转动地设置的转动部,所述固定部和所述转动部中的一个设在所述分动箱(12)的向前输出轴上,另一个设在所述向前输出法兰(124)上。
  5. 根据权利要求2所述的驱动桥总成(1),其特征在于,所述分动箱(12)上设有至少一个取力口,所述至少一个取力口用于与辅助动力装置连接。
  6. 根据权利要求5所述的驱动桥总成(1),其特征在于,所述至少一个取力口包括第一取力口(122)和第二取力口(123),所述辅助动力装置包括油泵和转向应急泵,所述第一取力口(122) 用于与所述油泵连接,所述第二取力口(123)用于与所述转向应急泵连接。
  7. 根据权利要求1所述的驱动桥总成(1),其特征在于,所述分动箱(12)具有输入法兰(121)和输出法兰,所述输入法兰(121)用于与所述工程车辆的变速器(5)连接,所述输出法兰用于与所述工程车辆的其它驱动桥连接,所述输入法兰(121)位于所述输出法兰的上方。
  8. 根据权利要求1-7任一所述的驱动桥总成(1),其特征在于,所述驱动桥总成(1)还包括两个悬挂油缸(15)和两个摆杆(16),其中,两个所述悬挂油缸(15)分别设置在所述左车轮(141)和所述右车轮(142)的轮边(17)与所述车架(6)之间,两个所述摆杆(16)分别与所述左车轮(141)和所述右车轮(142)对应设置,每个所述摆杆(16)的一侧端部通过一球铰链与相应侧车轮铰接,每个所述摆杆(16)的另一侧端部通过沿前后方向布置的两个球铰链与所述第一主减速器(11)分别铰接。
  9. 根据权利要求8所述的驱动桥总成(1),其特征在于,所述摆杆(16)为“V”字型摆杆,所述“V”字型摆杆的杆分离端部均铰接于所述第一主减速器(11)的下端面。
  10. 一种工程车辆,包括车架(6),其特征在于,所述工程车辆还包括如权利要求1-9任一所述的驱动桥总成(1)。
  11. 根据权利要求10所述的工程车辆,其特征在于,所述工程车辆为四轴以下的工程车辆,所述驱动桥总成(1)设置在所述工程车辆的前桥总成(2)和后桥总成(3)之间。
PCT/CN2016/076452 2016-03-16 2016-03-16 一种驱动桥总成和工程车辆 WO2017156722A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16893887.6A EP3418098A4 (en) 2016-03-16 2016-03-16 DRIVE AXLE ASSEMBLY AND CONSTRUCTION VEHICLE
BR112018068747A BR112018068747A2 (pt) 2016-03-16 2016-03-16 montagem de eixo de acionamento e veículo de construção
AU2016397976A AU2016397976A1 (en) 2016-03-16 2016-03-16 Drive axle assembly and engineering vehicle
PCT/CN2016/076452 WO2017156722A1 (zh) 2016-03-16 2016-03-16 一种驱动桥总成和工程车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076452 WO2017156722A1 (zh) 2016-03-16 2016-03-16 一种驱动桥总成和工程车辆

Publications (1)

Publication Number Publication Date
WO2017156722A1 true WO2017156722A1 (zh) 2017-09-21

Family

ID=59851745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076452 WO2017156722A1 (zh) 2016-03-16 2016-03-16 一种驱动桥总成和工程车辆

Country Status (4)

Country Link
EP (1) EP3418098A4 (zh)
AU (1) AU2016397976A1 (zh)
BR (1) BR112018068747A2 (zh)
WO (1) WO2017156722A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104669995A (zh) * 2015-02-12 2015-06-03 苏州紫荆清远新能源汽车技术有限公司 电动汽车的前驱动桥模块及电动汽车
CN112937410A (zh) * 2021-03-31 2021-06-11 北京安邦博大科技有限公司 一种矿用混凝土搅拌运输车
CN114679965A (zh) * 2020-12-31 2022-07-01 盐城市荣南机械制造有限公司 一种玉米收割机驱动桥

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE543431C2 (en) * 2019-06-18 2021-02-16 Scania Cv Ab A powertrain for a vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121227A (ja) * 1990-09-11 1992-04-22 Shinwa Sangyo Kk 常時四輪駆動装置
US5398904A (en) * 1993-03-31 1995-03-21 Itt Corporation Gear reducer
US5702321A (en) * 1996-06-25 1997-12-30 New Venture Gear, Inc. Full-time transfer case with synchronized range shift mechanism and on-demand differentiation control
CN2435276Y (zh) * 2000-07-03 2001-06-20 王焕泰 小型机动建筑工程车
CN2887650Y (zh) * 2006-03-16 2007-04-11 朱柏山 越野汽车一体化的分动箱与驱动桥
KR20120077501A (ko) * 2010-12-30 2012-07-10 현대다이모스(주) 차량의 후륜 및 4륜 가변구동장치
CN103738136A (zh) * 2014-01-27 2014-04-23 徐州重型机械有限公司 独立悬架系统及具有该独立悬架系统的起重机
CN203948609U (zh) * 2014-05-16 2014-11-19 徐工集团工程机械股份有限公司 用于工程车辆的分动箱以及铰接式自卸车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350314B2 (ja) * 1995-09-29 2002-11-25 富士重工業株式会社 ハイブリッド自動車の駆動装置
JP2001180319A (ja) * 1999-12-21 2001-07-03 Kanzaki Kokyukoki Mfg Co Ltd 多輪駆動車両
US6808037B1 (en) * 2003-04-08 2004-10-26 New Venture Gear, Inc. On-demand transfer case
US20060105883A1 (en) * 2004-11-15 2006-05-18 James Krisher Transfer case with variably controlled torque coupling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121227A (ja) * 1990-09-11 1992-04-22 Shinwa Sangyo Kk 常時四輪駆動装置
US5398904A (en) * 1993-03-31 1995-03-21 Itt Corporation Gear reducer
US5702321A (en) * 1996-06-25 1997-12-30 New Venture Gear, Inc. Full-time transfer case with synchronized range shift mechanism and on-demand differentiation control
CN2435276Y (zh) * 2000-07-03 2001-06-20 王焕泰 小型机动建筑工程车
CN2887650Y (zh) * 2006-03-16 2007-04-11 朱柏山 越野汽车一体化的分动箱与驱动桥
KR20120077501A (ko) * 2010-12-30 2012-07-10 현대다이모스(주) 차량의 후륜 및 4륜 가변구동장치
CN103738136A (zh) * 2014-01-27 2014-04-23 徐州重型机械有限公司 独立悬架系统及具有该独立悬架系统的起重机
CN203948609U (zh) * 2014-05-16 2014-11-19 徐工集团工程机械股份有限公司 用于工程车辆的分动箱以及铰接式自卸车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418098A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104669995A (zh) * 2015-02-12 2015-06-03 苏州紫荆清远新能源汽车技术有限公司 电动汽车的前驱动桥模块及电动汽车
CN114679965A (zh) * 2020-12-31 2022-07-01 盐城市荣南机械制造有限公司 一种玉米收割机驱动桥
CN112937410A (zh) * 2021-03-31 2021-06-11 北京安邦博大科技有限公司 一种矿用混凝土搅拌运输车

Also Published As

Publication number Publication date
EP3418098A1 (en) 2018-12-26
EP3418098A4 (en) 2019-10-02
AU2016397976A1 (en) 2018-11-08
BR112018068747A2 (pt) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2017156722A1 (zh) 一种驱动桥总成和工程车辆
CN103522865B (zh) 独立悬架系统及具有该独立悬架系统的起重机
WO2020003835A1 (ja) 車両用バッテリパック支持装置
CN111348068B (zh) 轮对、转向架及轨道车辆
CA1302163C (en) Locomotive and motorized self-steering radial truck therefor
CN105197021A (zh) 电机抱轴安装式永磁直驱转向架
CN209738692U (zh) 轮对、转向架及轨道车辆
CN103738136A (zh) 独立悬架系统及具有该独立悬架系统的起重机
CN102431592B (zh) 一种全地形四驱越野车底盘及其车辆
CA2423646C (en) Radial bogie with steering beam mount unitized brake
CN101190684A (zh) 单电机驱动转向架
CN105584357B (zh) 一种驱动桥总成和工程车辆
CN111348067A (zh) 转向架及轨道车辆
WO2020034347A1 (zh) 一种小轴距紧凑型永磁电机抱轴安装式直驱转向架
CN103832447A (zh) 一种低地板列车转向架
CN100339294C (zh) 公路高速拖行叉车
CN203996256U (zh) 一种低地板列车转向架
CN201006704Y (zh) 单电机驱动转向架
JPH0687446A (ja) 操舵台車
CN217623574U (zh) 一种电驱转向架及铁路工程车辆
CN109204455A (zh) 转向车架
CN203005448U (zh) 无摇枕城际轨道车辆转向架
CN208897166U (zh) 转向车架
CN111114575B (zh) 一种内嵌主动调整纵向位移的对接式轴箱定位装置
CN113276749A (zh) 一种集成式模块化的自卸车悬挂模块、驱动模块及应用其的自卸车

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016893887

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016893887

Country of ref document: EP

Effective date: 20180919

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018068747

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016397976

Country of ref document: AU

Date of ref document: 20160316

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018068747

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180914