WO2017155179A1 - 모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법 - Google Patents

모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법 Download PDF

Info

Publication number
WO2017155179A1
WO2017155179A1 PCT/KR2016/012769 KR2016012769W WO2017155179A1 WO 2017155179 A1 WO2017155179 A1 WO 2017155179A1 KR 2016012769 W KR2016012769 W KR 2016012769W WO 2017155179 A1 WO2017155179 A1 WO 2017155179A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission lines
impedance
phase
length
terminal
Prior art date
Application number
PCT/KR2016/012769
Other languages
English (en)
French (fr)
Inventor
배영환
김정현
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to US16/084,004 priority Critical patent/US10892532B2/en
Publication of WO2017155179A1 publication Critical patent/WO2017155179A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/061Movable joints, e.g. rotating joints the relative movement being a translation along an axis common to at least two rectilinear parts, e.g. expansion joints
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/195A hybrid coupler being used as power measuring circuit at the input of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/207A hybrid coupler being used as power measuring circuit at the output of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to an electronic impedance tuning technique, and more particularly, to an electronic impedance tuner or tuning apparatus and method capable of generating a uniform impedance for load pool measurement of an amplifier.
  • PAs power amplifiers
  • SWR standing wave ratios
  • PA robustness such as stability. This means that if the PA loss between the PA output stage and the antenna is greater than 2.5dB, the PA must meet the linearity and robustness requirements for output conditions with a standing wave ratio of 2.5 or less and output conditions of 6 or less, respectively.
  • a high speed electronic tuner may be a good solution for PA load pool measurements.
  • the fast electronic tuner can cover two SWRs, and is a small, low cost, high speed tuner, and may have limitations in implementing higher SWR impedances.
  • the conventional electronic tuner as shown in Figure 1, because the impedance is implemented by a random process, it is difficult to implement a specific impedance desired regularly.
  • the conventional electronic tuner has the biggest problem that it is difficult to implement a regular impedance, there is a limit to use for load pool measurement in the actual industrial field.
  • Embodiments of the present invention provide an electronic impedance tuning apparatus and method capable of generating a uniform impedance for load pool measurement of an amplifier.
  • Electronic impedance tuning device includes a coupler for transmitting the input voltage input to the input terminal to the transmission line connected to each of the pass terminal and the coupling terminal; A magnitude changer that controls a change in magnitude of impedance through a change in length difference between the transmission lines; And a phase change unit controlling a phase change of impedance through the same length change of the transmission lines.
  • the size change unit may control only a change in the length of the transmission line connected to the pass terminal and maintain the length of the transmission line connected to the coupling terminal in a fixed state.
  • the size change unit may control a change in length of a transmission line connected to the pass terminal by connecting a plurality of transmission lines having different lengths in parallel to the pass terminal and selecting at least one of the plurality of transmission lines.
  • the magnitude change part may have a sum of electrical phases of the transmission lines constituting the magnitude change part 90 degrees.
  • the phase shifter is formed between the magnitude changer and the terminal connected in a short circuit, and the length of each of the transmission lines is equally varied so as to maintain the difference in length of the transmission lines corresponding to the magnitude of the impedance determined by the magnitude changer. can do.
  • the phase shift unit may include: a starting point unit configured to determine a primary phase by connecting a plurality of transmission lines having a first phase difference at a predetermined angle in a parallel manner and selecting at least one of the plurality of transmission lines; And a loading unit configured to determine a final phase by determining a transmission terminal of a plurality of transmission lines having a second angle difference of a predetermined angle in a series manner, and determining one transmission line among the plurality of transmission lines connected in series as a short termination point. can do.
  • the coupler may comprise a 3-dB 90 degree directional coupler.
  • Electronic impedance tuning method comprises the steps of transferring the input voltage to the transmission line connected to each of the pass and coupling terminals of the coupler using a coupler; Controlling the magnitude of the impedance by varying the length difference of the transmission lines; And controlling the phase of the impedance by changing the length of the transmission lines equally.
  • the controlling of the magnitude of the impedance may control only a change in the length of the transmission line connected to the pass terminal and maintain the length of the transmission line connected to the coupling terminal in a fixed state.
  • the controlling of the magnitude of the impedance may control a change in length of the transmission line connected to the pass terminal by selecting at least one transmission line among a plurality of transmission lines having different lengths connected in parallel to the pass terminal.
  • the controlling the magnitude of the impedance may control the change in length of the transmission lines such that the sum of the electrical phases of the transmission lines is 90 degrees.
  • Controlling the phase of the impedance may vary the length of each of the transmission lines equally in order to maintain the difference in length of the transmission lines corresponding to the magnitude of the impedance determined by controlling the magnitude of the impedance.
  • the controlling the phase of the impedance may include determining a primary phase by selecting at least one transmission line among a plurality of transmission lines having a first phase difference of an angle connected in a parallel manner; And determining a final phase by determining one of the plurality of transmission lines having a second phase difference of a predetermined angle connected in a serial manner as a short-circuit termination point.
  • an electronic impedance tuning apparatus and method capable of generating a uniform impedance, it can be used as a load pull equipment in place of a conventional mechanical impedance tuner.
  • an electronic impedance tuner that generates a uniform impedance can be provided, it can have features of low cost, high speed, and weight reduction compared to a mechanical tuner, and can maximize product portability.
  • 1 shows an impedance distribution generated by a conventional electronic impedance tuner.
  • FIG. 2 is a conceptual circuit diagram of an electronic impedance tuning device according to an embodiment of the present invention.
  • FIG. 3 shows the magnitude change trajectory and the phase change trajectory of the impedance generated by the apparatus shown in FIG. 2.
  • FIG. 4 shows a detailed circuit diagram of an embodiment of the apparatus shown in FIG. 2.
  • FIG. 5 shows an exemplary diagram of a phase change of impedance caused by the starting point and the loading unit shown in FIG. 4.
  • FIG 6 shows simulation results and measurement results of an apparatus according to an embodiment of the present invention.
  • Figure 7 shows a uniform impedance distribution produced by the device according to the invention.
  • FIG 8 shows an embodiment configuration for equipment for performing load pool measurements using the device according to the invention.
  • FIG. 9 is a flowchart illustrating an electronic impedance tuning method according to an embodiment of the present invention.
  • Embodiments in accordance with the present invention are directed to providing an electronic impedance tuner or tuning device and a method thereof capable of generating a uniform impedance for measuring a power amplifier load pool.
  • the electronic impedance tuning device of the present invention may employ a basic coupling / reflection type circuit structure, directional coupler, for example, 3-dB 90 degree coupler pass-through terminal
  • a variable transmission line may be connected to each of the through port and the coupled port and terminated in a short circuit.
  • the transmission line connected to each of the pass terminal and coupling terminal of the directional coupler is subdivided into the magnitude part and the phase part of the impedance in detail, and the isolation terminal of the directional coupler is terminated by 50 Ohm.
  • the entire circuit may consist of a single terminal network.
  • FIG. 2 is a conceptual circuit diagram of an electronic impedance tuning device according to an embodiment of the present invention, and has a basic coupling / reflection type circuit structure.
  • the electronic impedance tuner 200 includes a directional coupler 210, a size change unit 220, and a phase change unit 230.
  • the directional coupler 210 includes an input terminal In, an isolation terminal ISO, a pass terminal Thru, and a coupled terminal Coupled.
  • Variable transmission lines are connected to a through port and a coupled port of the directional coupler 210, and each transmission line is terminated in a short circuit.
  • the isolation port of the directional coupler 210 is terminated by 50 Ohm, the entire circuit is composed of a single terminal network, and the impedance generated from the tuner can be confirmed by analyzing the input terminal reflection coefficient.
  • the transmission line connected to the pass terminal and the coupling terminal may be subdivided into a magnitude part 220 and a phase part 230 of the impedance in detail.
  • the input voltage (input) is passed to the pass terminal and coupling terminal, and because each terminal is terminated in a short circuit, the input voltage is reflected back to the input terminal and the isolation terminal.
  • the reflection coefficient ( ⁇ PATH2) from the coupling terminal and the reflection coefficient ( ⁇ PATH1) from passing through the terminal may be expressed as the following ⁇ Equation 2>.
  • Equation 3 the reflection coefficient of the input terminal may be summarized as in Equation 3 below.
  • Equation 3 may be divided into a real part and an imaginary part as shown in Equation 4 below by the Euler formula.
  • Equation 5 the magnitude and phase of the reflection coefficient of the final input terminal from Equation 4 are expressed by Equations 5 and 6 below.
  • FIG. 3 shows the magnitude change trajectory and the phase change trajectory of the impedance generated by the apparatus shown in FIG. 2.
  • the impedance is the magnitude and phase of the positive and negative x-axis directions on the Smith chart. It can be seen that with the change, and the impedance phase trajectory of input reflection coefficient on a Smith chart of the impedance magnitude trajectory change of (impedance magnitude trajectory) and ⁇ of the input reflection coefficient on a Smith chart in accordance with the change in the ⁇ 1 (impedance phase It can be seen that the trajectory is uniform.
  • the electronic impedance tuner 200 may provide a uniform impedance distribution, as shown in FIG. 7.
  • the size change unit 220 controls the magnitude of the impedance generated by the change in the length difference between the transmission lines connected to each of the pass terminal and the coupling terminal, and the phase change unit 230 is the same of the transmission lines connected to each of the pass terminal and the coupling terminal. Controls the phase of the impedance generated by the change in length.
  • the size change unit 220 and the phase change unit 230 will be described in detail with reference to FIG. 4.
  • FIG. 4 shows a detailed circuit diagram of an embodiment of the apparatus shown in FIG. 2.
  • the size change unit 220 is composed of a total of three transmission lines ⁇ M1 , ⁇ M2 , and ⁇ M3 having different lengths (phases), and a pass terminal for implementing a variable transmission line structure.
  • the two transmission lines ⁇ M1 and ⁇ M2 connected to are selectively operated by only one of the two transmission lines by PIN diodes (or switches) D1 and D2.
  • the transmission line ⁇ M3 connected to the coupling terminal must also be variable to correspond to the variation of the transmission lines connected to the pass terminal, but when the number of PIN diodes constituting the circuit increases, the insertion loss of the entire circuit is finally increased. This increases and this may limit the range of the magnitude of the impedance to be implemented, so that for low insertion loss, the magnitude changer transmission line ⁇ M3 connected to the coupling terminal may be designed to be fixed rather than variable.
  • the transmission line of the size change unit 220 connected to the coupling terminal has been described as being designed in a fixed form, it may be designed in a variable form in consideration of the insertion loss of the overall circuit.
  • the transmission line ⁇ M3 of the size change unit 220 connected to the coupling terminal is designed to be fixed rather than variable, the sum of the transmission lines constituting the size change unit 220 may not be 90 degrees. That is, ⁇ M1 + ⁇ M3 ⁇ 90 degrees or ⁇ M2 + ⁇ M3 ⁇ 90 degrees.
  • the starting point of the generated impedances is not in the positive x-axis direction on the smith chart, that is, located above or below the x-axis, but only within the same SWR magnitude, with only the reference point changing.
  • the result of generating impedances with uniform phase spacing at is the same.
  • two different SWRs for example, SWR, may generate impedances having uniform phase intervals within 2.5 and 6.
  • the size change unit 220 may be connected in a parallel manner to connect two switchable transmission lines to the pass terminal, and to connect one transmission line having a fixed impedance size to the coupling terminal.
  • ⁇ M1 + ⁇ M3 can make 72 degrees
  • ⁇ M2 + ⁇ M3 can make 113 degrees.
  • the number of switchable transmission lines for controlling the change in impedance size is three in the size change unit 220, three different SWRs may be provided, and the number of switchable transmission lines may vary according to the number of SWRs to be provided. Can be.
  • the phase shifter 230 is subdivided into a start-point part 231 and a loaded-line part 232, and maintains the magnitude of the impedance determined from the magnitude changer 220 and only the phase. In order to change, the transmission lines of the phase change unit 230 connected to the pass terminal and the coupling terminal are varied in the same phase.
  • the phase change part is composed of a start point part 231 and a loading part 232, and the PIN diode is used by overlapping the loading part 232 corresponding to the change of the start point part 231.
  • the starting point portion 231 is switchable, and a total of three transmission lines ⁇ S1 , ⁇ S2 , ⁇ S3 , each having about 60 degrees electrical phase difference, are configured in a parallel manner, and the PIN diodes D3 to D5.
  • ⁇ S1 , ⁇ S2 , ⁇ S3 each having about 60 degrees electrical phase difference
  • the secondary detail phase is determined by the operation of the loading unit 232.
  • the loading unit 232 is switchable and eight transmission lines having a predetermined phase difference, for example, an electric phase of 7.5 degrees, may be configured in a serial manner.
  • Each transmission line ⁇ L1 , ⁇ L2 , ⁇ L3,... ⁇ L8 of the loading unit 232 is composed of about 7.5 degrees of electrical phase, and finally, the phase difference of 15 degrees on the Smith chart is obtained through Equation 8 described above. May cause.
  • the loading unit 232 employs a basic loading line structure to vary the phase of the transmission line, which is a structure in which a short termination point is determined due to the operation of the PIN diodes D6 to D13 disposed at regular intervals on the transmission line.
  • the phase shifter 230 may have a circuit connected to a pass terminal and a circuit connected to a coupling terminal in the same manner.
  • the electrical length difference is "360 degrees / 2M”
  • each is “360 ° / ( 2 ⁇ M ⁇ N) ”electrical length
  • a phase angle step of“ 360 degrees / (M ⁇ N) ” can be made on the Smith chart. Therefore, the number of transmission lines constituting the phase shifter 230 can be reduced from "MxN” to "M + N” for each terminal as compared with the case where there is no start point 231.
  • the phase change unit 230 may uniformly change the phase angle with a phase angle step of 15 degrees on the Smith chart.
  • the offset can move the starting point of the phase angle while maintaining a constant phase angle step.
  • the phase shifter 230 finally determines the number of transmission lines in the starting point 231 of the terminal 231 and the number of transmission lines in the loading unit 232 with the number of impedance phases that can be generated within the same impedance level. Can be determined. For example, the phase shifter 230 may determine the number of impedance phases as 24 when the number of transmission lines in the start point of one terminal is three and the number of transmission lines in the loading unit is eight.
  • each path to the pass terminal and the coupling terminal becomes a short circuit by closing the switch of the loading part, and only one switch of each part can be turned on at a time. have.
  • the electronic impedance tuner may provide a uniform impedance phase distribution having a predetermined phase angle, for example, a phase difference of 15 degrees on a Smith chart, and may be plural according to the number of switchable lines in the size change unit. It is possible to provide the magnitude of the impedance (SWR) of the circuit, thus shortening the circuit.
  • a predetermined phase angle for example, a phase difference of 15 degrees on a Smith chart
  • the fabricated electronic impedance tuner applies a DC voltage of -25V to the non-operating PIN diode in order to minimize parasitic components of the PIN diode and maximize the power handling capability of the tuner.
  • the last PIN diode in the loading section can always be operated.
  • the electronic impedance tuner 200 may implement a device configuration capable of performing load pull measurement of a mobile amplifier using a single terminal network as shown in the example shown in FIG. 8.
  • ACLR Adjacent Channel Leakage Ratio
  • the electronic impedance tuner can generate a uniform impedance
  • the electronic impedance tuner can be used as a load pull device in place of the conventional mechanical impedance tuner.
  • the electronic impedance tuner can provide an electronic impedance tuner that generates a uniform impedance, it can have the characteristics of low cost, high speed, light weight compared to the mechanical tuner, and the portability of the product It can be maximized.
  • FIG. 9 is a flowchart illustrating an electronic impedance tuning method according to an embodiment of the present invention, and illustrates an operation flowchart of the above-described electronic impedance tuner.
  • an input voltage is transmitted to transmission lines connected to each of a pass terminal and a coupling terminal of a coupler using a coupler (S910).
  • the coupler may include a directional coupler, an input terminal and an isolation terminal, and the isolation terminal may be terminated with 50 Ohm.
  • the change in the magnitude of the impedance is controlled according to the change in the length difference of the transmission lines in the size change unit described above, and at the same time according to the same change in the length of the transmission lines in the phase change unit.
  • the phase change of the impedance is controlled (S920, S930).
  • step S920 may be an operation performed by the above-described size change unit
  • step S930 may be an operation performed by the above-described phase change unit.
  • step S920 may control the change in the length of the transmission line connected to the pass terminal by selecting at least one transmission line among a plurality of transmission lines having different lengths connected in parallel to the pass terminal, the plurality of transmission lines by the switch It may be switchable.
  • the length change of the transmission lines may be controlled such that the sum of the electrical phases of the transmission lines of the size change unit is 90 degrees, and in accordance with a situation, the sum of the electrical phases of the transmission lines of the size change unit is 90 degrees in consideration of insertion loss of the circuit. You may escape.
  • the sum of the transmission lines of the size change part is out of 90 degrees, only the reference point is changed, and thus impedances having a uniform phase interval within the same SWR size may be generated.
  • the lengths of the transmission lines may be equally varied in order to maintain the length difference (impedance size) of the transmission lines determined in operation S920.
  • the primary phase is determined by selecting at least one transmission line among a plurality of transmission lines having a first phase difference of a predetermined angle, for example, a 60 degree electrical phase difference, connected in a parallel manner, and in a serial manner.
  • the final phase may be determined by determining, as the short-circuit termination point, any one of a plurality of transmission lines having a 7.5 degree electric phase difference, for example, a connected second angle difference.
  • the system or apparatus described above may be implemented with hardware components, software components, and / or combinations of hardware components and software components.
  • the systems, devices, and components described in the embodiments may include, for example, processors, controllers, arithmetic logic units (ALUs), digital signal processors, microcomputers, field programmable arrays (FPAs). ), A programmable logic unit (PLU), a microprocessor, or any other device capable of executing and responding to instructions, may be implemented using one or more general purpose or special purpose computers.
  • the processing device may execute an operating system (OS) and one or more software applications running on the operating system.
  • the processing device may also access, store, manipulate, process, and generate data in response to the execution of the software.
  • OS operating system
  • the processing device may also access, store, manipulate, process, and generate data in response to the execution of the software.
  • processing device includes a plurality of processing elements and / or a plurality of types of processing elements. It can be seen that it may include.
  • the processing device may include a plurality of processors or one processor and one controller.
  • other processing configurations are possible, such as parallel processors.
  • the software may include a computer program, code, instructions, or a combination of one or more of the above, and configure the processing device to operate as desired, or process it independently or collectively. You can command the device.
  • Software and / or data may be any type of machine, component, physical device, virtual equipment, computer storage medium or device in order to be interpreted by or to provide instructions or data to the processing device. Or may be permanently or temporarily embodied in a signal wave to be transmitted.
  • the software may be distributed over networked computer systems so that they may be stored or executed in a distributed manner.
  • Software and data may be stored on one or more computer readable recording media.
  • the method according to the embodiments may be embodied in the form of program instructions that may be executed by various computer means and recorded on a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법이 개시된다. 본 발명의 일 실시예에 따른 전자식 임피던스 튜닝 장치는 입력 단자로 입력되는 입력 전압을 통과 단자와 결합 단자 각각에 연결된 전송선들로 전달하는 커플러; 상기 전송선들의 길이 차이의 변화를 통해 임피던스의 크기 변화를 제어하는 크기 변화부; 및 상기 전송선들의 동일한 길이 변화를 통해 임피던스의 위상 변화를 제어하는 위상 변화부를 포함한다.

Description

모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법
본 발명은 전자식 임피던스 튜닝 기술에 관한 것으로서, 보다 상세하게는 증폭기의 로드풀 측정을 위하여 균일한 임피던스를 생성할 수 있는 전자식 임피던스 튜너 또는 튜닝 장치와 방법에 관한 것이다.
임피던스 튜너의 가장 널리 사용되는 분야 중 하나는 안테나 미스매치 조건에서 전력 증폭기(PA; power amplifier)의 로드풀 측정이다. 특히, 기계식 튜너(mechanical tuner)는 높은 정확성, 넓은 임피던스 범위, 고 전력 처리, 및 규칙적인 동작 (programmable operation) 때문에 많은 어플리케이션에서 사용되고 있다.
하지만, 기계식 튜너는 고 비용, 큰 부피와 무게 및 느린 동작 속도와 같은 단점들이 있으며 넓은 임피던스 범위를 가지는 기계식 튜너는 모바일용 전력 증폭기 로드풀 측정을 하기에는 과도한 장비일 수 있다.
폰 업체들은 정재파비(SWR; standing wave ratio)가 6이하인 안테나 미스매치 조건 하에서 전력 증폭기(PA)가 선형성과 같은 RF 시스템 요구 사항을 만족하고, 정재파비가 무한(infinite)한 상태에서 내구성(ruggedness) 및 안정성(stability)과 같은 PA 견고성(robustness)을 보장하길 요구한다. 이는 PA 출력단과 안테나 간의 PA 손실이 2.5dB 이상인 것으로 가정하는 경우 PA가 정재파비가 2.5 이하인 출력 조건과 6이하인 출력 조건에서 각각 선형성과 견고성 요건을 충족시켜야 함을 의미한다.
따라서, 고속 전자식 튜너는 PA 로드풀 측정을 위한 좋은 솔루션일 수 있다. 여기서, 고속 전자식 튜너는 두 SWR을 커버할 수 있고, 소형 및 저비용이면서 고속의 튜너이며, 더 높은 SWR 임피던스를 구현하는데 한계를 가질 수 있다.
현재까지 로드 라인 및/또는 스터브(stub) 기반 구조를 채용하는 다양한 형태의 전자식 튜너들이 연구되어 왔다. 하지만, 보고된 전자식 튜너들은 고 레벨 SWR 임피던스에서 단편적인 위상각을 커버할 뿐 전체 위상 각을 커버할 수 없다.
또한, 종래 전자식 튜너는 도 1에 도시된 바와 같이, 랜덤 프로세스에 의해 임피던스를 구현하였기 때문에 규칙적으로 원하는 특정 임피던스를 구현하기가 어렵다.
즉, 종래 전자식 튜너는 규칙적인 임피던스를 구현하기 어렵다는 가장 큰 문제점을 갖고 있기 때문에 실제 산업현장에서 로드풀 측정을 위해 사용하기에 한계가 있다.
따라서, 균일한 임피던스를 생성할 수 있는 전자식 임피던스 튜너의 필요성이 대두된다.
본 발명의 실시예들은, 증폭기의 로드풀 측정을 위하여 균일한 임피던스를 생성할 수 있는 전자식 임피던스 튜닝 장치와 방법을 제공한다.
본 발명의 일 실시예에 따른 전자식 임피던스 튜닝 장치는 입력 단자로 입력되는 입력 전압을 통과 단자와 결합 단자 각각에 연결된 전송선들로 전달하는 커플러; 상기 전송선들의 길이 차이의 변화를 통해 임피던스의 크기 변화를 제어하는 크기 변화부; 및 상기 전송선들의 동일한 길이변화를 통해 임피던스의 위상 변화를 제어하는 위상 변화부를 포함한다.
상기 크기 변화부는 상기 통과 단자에 연결된 전송선의 길이 변화만을 제어하고, 상기 결합 단자에 연결된 전송선의 길이를 고정된 상태로 유지할 수 있다.
상기 크기 변화부는 길이가 상이한 복수의 전송선들이 상기 통과 단자에 병렬 방식으로 연결되고, 상기 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 상기 통과 단자에 연결된 전송선의 길이 변화를 제어할 수 있다.
상기 크기 변화부는 상기 크기 변화부를 구성하는 전송선들의 전기적 위상의 합이 90도 일 수 있다.
상기 위상 변화부는 상기 크기 변화부와 단락으로 연결된 종단 사이에 형성되고, 상기 크기 변화부에 의해 결정된 임피던스의 크기에 대응하는 상기 전송선들의 길이 차이를 유지하기 위하여 상기 전송선들 각각의 길이를 동일하게 가변 할 수 있다.
상기 위상 변화부는 일정 각도의 제1 위상 차이를 가지는 복수의 전송선들이 병렬 방식으로 연결되고, 상기 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 1차 위상을 결정하는 시작 지점부; 및 일정 각도의 제2 위상 차이를 가지는 복수의 전송선들이 직렬 방식으로 연결되고, 상기 직렬 방식으로 연결된 복수의 전송선들 중 어느 하나의 전송선을 단락 종단 지점으로 결정함으로써, 최종 위상을 결정하는 로딩부를 포함할 수 있다.
상기 커플러는 3-dB 90도 방향성 커플러를 포함할 수 있다.
본 발명의 일 실시예에 따른 전자식 임피던스 튜닝 방법은 커플러를 이용하여 상기 커플러의 통과 단자와 결합 단자 각각에 연결된 전송선들로 입력 전압을 전달하는 단계; 상기 전송선들의 길이 차이를 변화하여 임피던스의 크기를 제어하는 단계; 및 상기 전송선들의 길이를 동일하게 변화하여 임피던스의 위상을 제어하는 단계를 포함한다.
상기 임피던스의 크기를 제어하는 단계는 상기 통과 단자에 연결된 전송선의 길이 변화만을 제어하고, 상기 결합 단자에 연결된 전송선의 길이를 고정된 상태로 유지할 수 있다.
상기 임피던스의 크기를 제어하는 단계는 상기 통과 단자에 병렬 방식으로 연결된 길이가 상이한 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 상기 통과 단자에 연결된 전송선의 길이 변화를 제어할 수 있다.
상기 임피던스의 크기를 제어하는 단계는 상기 전송선들의 전기적 위상의 합이 90도가 되도록 상기 전송선들의 길이 변화를 제어할 수 있다.
상기 임피던스의 위상을 제어하는 단계는 상기 임피던스의 크기를 제어하는 단계에 의해 결정된 임피던스의 크기에 대응하는 상기 전송선들의 길이 차이를 유지하기 위하여, 상기 전송선들 각각의 길이를 동일하게 가변 할 수 있다.
상기 임피던스의 위상을 제어하는 단계는 병렬 방식으로 연결된 일정 각도의 제1 위상 차이를 가지는 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 1차 위상을 결정하는 단계; 및 직렬 방식으로 연결된 일정 각도의 제2 위상 차이를 가지는 복수의 전송선들 중 어느 하나의 전송선을 단락 종단 지점으로 결정함으로써, 최종 위상을 결정하는 단계를 포함할 수 있다.
본 발명의 실시예들에 따르면, 균일한 임피던스를 생성할 수 있는 전자식 임피던스 튜닝 장치와 방법을 제공함으로써, 종래의 기계식 임피던스 튜너를 대체하여 로드풀 장비로 활용할 수 있다.
본 발명의 실시예들에 따르면, 균일한 임피던스를 생성하는 전자식 임피던스 튜너를 제공할 수 있기 때문에 기계식 튜너에 비해 저가, 고속, 경량화의 특징을 가질 수 있고, 제품의 휴대성을 극대화할 수 있다.
도 1은 종래 전자식 임피던스 튜너에 의해 생성된 임피던스 분포를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 전자식 임피던스 튜닝 장치에 대한 개념적 회로도를 나타낸 것이다.
도 3은 도 2에 도시된 장치에 의해 생성되는 임피던스의 크기 변화 궤적과 위상 변화 궤적을 나타낸 것이다.
도 4는 도 2에 도시된 장치에 대한 일 실시예의 상세 회로도를 나타낸 것이다.
도 5는 도 4에 도시된 시작 지점부와 로딩부에 의한 임피던스의 위상 변화에 대한 예시도를 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 장치의 시뮬레이션 결과와 측정 결과를 나타낸 것이다.
도 7은 본 발명에 따른 장치에 의해 생성된 균일한 임피던스 분포를 나타낸 것이다.
도 8은 본 발명에 따른 장치를 이용한 로드풀 측정을 수행하기 위한 장비에 대한 일 실시예 구성을 나타낸 것이다.
도 9는 본 발명의 일 실시예에 따른 전자식 임피던스 튜닝 방법에 대한 동작 흐름도를 나타낸 것이다.
이하, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 그러나 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 또한, 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
본 발명에 따른 실시예들은, 전력 증폭기 로드풀을 측정하기 위하여 균일한 임피던스를 생성할 수 있는 전자식 임피던스 튜너 또는 튜닝 장치 그리고 이에 대한 방법을 제공하는 것을 그 요지로 한다.
여기서, 본 발명의 전자식 임피던스 튜닝 장치(이하, "전자식 임피던스 튜너"라 칭함)은 기본적인 결합/반사 형태의 회로구조를 채용할 수 있으며, 방향성 커플러 예를 들어, 3-dB 90도 커플러의 통과단자(through port)와 결합단자(coupled port)에 각각 가변 가능한 전송선이 연결되고 단락으로 종단될 수 있다.
방향성 커플러의 통과 단자와 결합 단자 각각에 연결된 전송선은 세부적으로 임피던스의 크기변화부(Magnitude part)와 위상변화부(Phase part)로 세분화 되며, 방향성 커플러의 격리(isolation)단자는 50 Ohm 으로 종단됨으로써 전체 회로는 단일 단자 회로망으로 구성될 수 있다.
도 2는 본 발명의 일 실시예에 따른 전자식 임피던스 튜닝 장치에 대한 개념적 회로도를 나타낸 것으로, 기본적인 결합/반사 형태의 회로구조를 가진다.
도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 전자식 임피던스 튜너(200)는 방향성 커플러(210), 크기 변화부(220) 및 위상 변화부(230)를 포함한다.
방향성 커플러(210)는 입력 단자(In)와 격리 단자(ISO), 통과 단자(Thru) 및 결합 단자(Coupled)로 구성된다.
방향성 커플러(210)의 통과단자(through port)와 결합단자(coupled port)에는 각각 가변 가능한 전송선이 연결되고 각 전송선은 단락으로 종단된다.
또한, 방향성 커플러(210)의 격리 단자(isolation port)는 50 Ohm 으로 종단됨으로써 전체 회로는 단일 단자 회로망으로 구성되며 입력단자 반사계수의 해석을 통해 튜너로부터 생성된 임피던스를 확인할 수 있다.
통과 단자와 결합 단자에 연결된 전송선은 세부적으로 임피던스의 크기 변화부(Magnitude part)(220)와 위상 변화부(Phase part)(230)로 세분화될 수 있다.
입력 단자에서 입력전압(input)은 통과 단자와 결합 단자로 전달되며 각 단자가 단락으로 종단되었기 때문에 입력전압은 결국 입력 단자와 격리 단자로 반사된다.
따라서, 입력 단자에서의 반사계수(Γin)는 통과 단자로부터의 반사계수 (ΓPATH1)와 결합 단자로부터의 반사계수(ΓPATH2)의 합으로 아래 <수학식 1>과 같이 나타낼 수 있다.
[수학식 1]
ΓinPATH1PATH2
여기서, 통과 단자로부터의 반사계수(ΓPATH1)와 결합 단자로부터의 반사계수(ΓPATH2)는 아래 <수학식 2>와 같이 나타낼 수 있다.
[수학식 2]
Figure PCTKR2016012769-appb-I000001
여기서, 통과 단자의 종단(ΓT1)및 결합 단자의 종단(ΓT2)의 조건이
ΓT1T2=k일 때 입력 단자의 반사계수는 아래 <수학식 3>과 같이 정리될 수 있다.
[수학식 3]
Figure PCTKR2016012769-appb-I000002
오일러(Euler) 공식에 의해 상기 수학식 3은 아래 <수학식 4>와 같이 실수부와 허수부로 분리되어 표현될 수 있다.
[수학식 4]
Figure PCTKR2016012769-appb-I000003
통과 단자와 결합 단자가 단락으로 종단되어 |k|=1인 것으로 가정하면, 상기 수학식 4로부터 최종적인 입력 단자의 반사계수의 크기와 위상은 아래 <수학식 5>, <수학식 6>과 같이 나타낼 수 있다.
[수학식 5]
Figure PCTKR2016012769-appb-I000004
[수학식 6]
Figure PCTKR2016012769-appb-I000005
여기서, 크기 변화부(220)를 구성하는 각각의 전송선들의 합이 90도인 경우 즉, θ12=90도인 경우 입력 단자 반사계수의 크기와 위상은 아래 <수학식 7>, <수학식 8>과 같이 간략화 될 수 있다.
[수학식 7]
Figure PCTKR2016012769-appb-I000006
[수학식 8]
Figure PCTKR2016012769-appb-I000007
상기 수학식 7과 수학식 8을 통해 알 수 있듯이, 크기 변화부(220) 내 통과 단자에 연결된 전송선의 길이 θ1과 위상 변화부 내 전송선들의 길이 θ를 단순히 제어함으로써, 입력 단자 반사계수의 크기와 위상을 제어할 수 있다.
도 3은 도 2에 도시된 장치에 의해 생성되는 임피던스의 크기 변화 궤적과 위상 변화 궤적을 나타낸 것으로, 도 3을 통해 알 수 있듯이, 임피던스는 스미스 차트 상에서 x축 양의 방향을 기준으로 크기 및 위상 변화를 갖는 것을 알 수 있으며, θ1의 변화에 따른 스미스 차트 상에서 입력 단자 반사계수의 임피던스 크기 궤적(impedance magnitude trajectory)과 θ의 변화에 따른 스미스 차트 상에서 입력 단자 반사계수의 임피던스 위상 궤적(impedance phase trajectory)이 균일한 것을 알 수 있다.
따라서, 본 발명의 실시예에 따른 전자식 임피던스 튜너(200)는 도 7에 도시된 바와 같이, 균일한 임피던스 분포를 제공할 수 있다.
크기 변화부(220)는 통과 단자와 결합 단자 각각에 연결된 전송선들의 길이 차이의 변화에 의해 생성되는 임피던스의 크기를 제어하고, 위상 변화부(230)는 통과 단자와 결합 단자 각각에 연결된 전송선들의 동일한 길이 변화에 의해 생성되는 임피던스의 위상을 제어한다.
이러한 크기 변화부(220)와 위상 변화부(230)에 대해 도 4를 참조하여 상세히 설명한다.
도 4는 도 2에 도시된 장치에 대한 일 실시예의 상세 회로도를 나타낸 것이다.
도 4에 도시된 바와 같이, 크기 변화부(220)는 서로 다른 길이(위상) 차이를 갖는 총 3개의 전송선(θM1, θM2, θM3)으로 구성되며 가변 전송선 구조를 구현하기 위해 통과 단자에 연결된 2개의 전송선(θM1, θM2)은 PIN 다이오드(또는 스위치)(D1, D2)에 의해 2개 중 1개의 전송선만 선택적으로 동작된다.
크기 변화부(220)에서 통과 단자에 연결된 전송선들의 가변에 대응하여 결합 단자에 연결된 전송선(θM3)도 함께 가변 해야 하지만 그로 인해 회로를 구성하는 PIN 다이오드의 수가 증가되면 최종적으로 전체적인 회로의 삽입손실이 증가되고 이는 구현되는 임피던스의 크기변화 범위를 제한 할 수 있기 때문에 낮은 삽입손실을 위해 결합 단자에 연결된 크기 변화부 전송선(θM3)은 가변형태가 아닌 고정형태로 설계될 수 있다.
물론, 결합 단자에 연결된 크기 변화부(220)의 전송선이 고정 형태로 설계되는 것으로 설명하였지만, 전체적인 회로의 삽입 손실을 고려하여 가변 형태로 설계될 수도 있다.
결합 단자에 연결된 크기 변화부(220)의 전송선(θM3)은 가변형태가 아닌 고정형태로 설계되는 경우 크기 변화부(220)를 구성하는 각 전송선들의 합은 90도가 되지 않을 수 있다. 즉,θM1M3 ≠ 90도 또는 θM2M3 ≠ 90도일 수 있다. 이는 생성되는 임피던스들의 시작 지점이 스미스 차트(smith chart)상에서 x축 양의 방향에 있지 않음 다시 말해, x축을 기준으로 위 또는 아래에 위치하는 것을 의미하지만, 그 기준점만 변화할 뿐 동일한 SWR 크기 내에서 균일한 위상 간격을 갖는 임피던스들이 생성되는 결과는 동일하다.
최종적으로 크기 변화부(220) 내에서 2단 가변 전송선의 구현에 의해 두 개의 다른 SWR 예를 들어, SWR이 2.5 와 6 내에서 균일한 위상 간격을 갖는 임피던스들을 생성할 수 있다.
상술한 바와 같이, 크기 변화부(220)는 병렬 방식으로 연결되어 전환 가능한 두 전송선들을 통과 단자에 연결하고, 임피던스 크기가 고정된 하나의 전송선을 결합 단자에 연결할 수 있다.
여기서, SWR 2.5와 6 각각에 대하여, 도 5에 도시된 바와 같이 θM1M3 는 72도, θM2M3는 113도를 만들 수 있다.
물론, 크기 변화부(220)에 임피던스 크기 변화를 제어하기 위한 전환 가능한 전송선들의 수가 3개인 경우에는 세 개의 다른 SWR을 제공할 수 있으며, 제공하고자 하는 SWR의 수에 따라 전환 가능한 전송선들의 수는 달라질 수 있다.
위상 변화부(230)는 시작 지점부(Start-point part)(231)와 로딩부(Loaded-line part)(232)로 세분화되며 크기 변화부(220)로부터 결정된 임피던스의 크기를 유지하며 위상만 변화시키기 위해 통과 단자와 결합 단자에 연결된 위상 변화부(230)의 전송선들은 각각 동일한 위상으로 가변한다.
전체 회로의 낮은 삽입손실을 얻기 위해 위상 변화부를 시작 지점부(231)와 로딩부(232)로 구성하고, 시작 지점부(231)의 가변에 대응하여 로딩부(232)를 중복 활용함으로써 PIN 다이오드의 사용을 최소화할 수 있다.
한 단자에서 시작 지점부(231)는 전환 가능하고 각각 약 60도 전기적 위상 차이를 갖는 총 3개의 전송선들(θS1, θS2, θS3)이 병렬 방식으로 구성되며 PIN 다이오드(D3 내지 D5)에 의해 3개의 전송선들 중 1개의 전송선만 선택적으로 동작되고 상술한 수학식 8을 통해 도 5에 도시된 바와 같이 최종적으로 스미스차트 상에서 120도 간격의 임피던스 위상 차이를 야기할 수 있다.
시작 지점부(231)의 전송선에 의해 1차적인 임피던스의 위상이 결정되면 로딩부(232)의 동작으로 인해 2차적인 세부 위상이 결정된다.
이 때, 로딩부(232)는 전환 가능하고 일정 위상 차이 예를 들어, 전기적 위상 7.5도 차이를 가지는 8 개의 전송선들이 직렬 방식으로 구성될 수 있다.
로딩부(232)의 각 전송선들(θL1, θL2, θL3,... θL8)은 약 7.5도 전기적 위상으로 구성되며 상술한 수학식 8을 통해 최종적으로 스미스 차트 상에서 15도의 위상 차이를 야기할 수 있다.
로딩부(232)의 경우 전송선의 위상을 가변하기 위해 기본적인 로딩라인 구조를 채용하고 있으며 이는 전송선에 일정한 간격으로 배치된 PIN 다이오드(D6 내지 D13)의 동작으로 인해 단락 종단 지점이 결정되는 구조이다.
이러한 위상 변화부(230)는 도 4에 도시된 바와 같이, 통과 단자로 연결되는 회로와 결합 단자로 연결되는 회로가 동일하게 구성될 수 있다.
이 때, 시작 지점부(231)가 M개의 전송선들로 구성되면 "360도/2M"의 전기적 길이 차이를 가지고, 로딩부(232)가 N개의 전송선들로 구성되면 각각은 "360°/(2×M×N)" 전기적 길이를 가지게 되며, 스미스 차트 상에서 "360도/(M×N)"의 위상각 스텝을 만들 수 있다. 따라서, 위상 변화부(230)를 구성하는 전송선들의 수는 시작 지점부(231)가 없는 경우와 비교해서 각 단자에 대해 "M×N"에서 "M+N"으로 줄일 수 있다.
따라서, 위상 변화부(230)는 도 5에 도시된 바와 같이, 스미스 차트 상에서 15도의 위상각 스텝을 가지고 위상각을 균일하게 변화시킬 수 있다.
여기서, 도 4의 경우 θM3가 고정되기 때문에 θM1M3는 전기적 위상 72도, θM2M3는 전기적 위상 113도가 되고, 이는 90도를 벗어나기 때문에 위상 오프셋이 발생되어, θM1M3에 대한 반사계수의 위상각은 스미스 차트 상에서 "18도-2θ"가 되고, θM2M3에 대한 반사계수의 위상각은 스미스 차트 상에서 "-23도-2θ"가 된다.
따라서, 오프셋은 일정 위상 각 스텝을 유지하는 반면 위상각의 시작 지점을 이동시킬 수 있다.
위상 변화부(230)는 최종적으로 동일한 임피던스 크기 내에서 생성 가능한 임피던스 위상의 수를 한 단자의 시작 지점부(231) 내 전송선의 개수(M)와 로딩부(232) 내 전송선의 개수(N)로 결정할 수 있다. 예를 들어, 위상 변화부(230)는 한 단자의 시작 지점부 내 전송선의 개수가 3개이고, 로딩부 내 전송선의 개수가 8개인 경우 임피던스 위상의 수를 24로 결정할 수 있다.
상술한 바와 같이, 통과 단자와 결합 단자에 대한 각각의 경로(path)는 로딩부의 스위치를 클로징(closing)함으로써, 단락 회로가 되며, 각 부의 단 하나의 스위치가 한번에 턴 온(turn on) 될 수 있다.
본 발명의 실시예에 따른 전자식 임피던스 튜너는 일정 위상각 예를 들어, 스미스 차트 상에서 15도의 위상 차이를 가지는 균일한 임피던스 위상 분포를 제공할 수 있으며, 크기 변화부에서 전환 가능한 전송선들의 개수에 따라 복수의 임피던스의 크기(SWR)를 제공할 수 있고, 따라서 회로를 단수화시킬 수 있다.
도 6은 낮은 삽입손실을 얻기 위해 MA-COM사의 MA4P161-134 PIN 다이오드 모델(Ron=1.5 Ohm, Coff=90 fF)과 Rogers사의 10-mil 두께의 RO4350B PCB, Anaren사의 XC0900E-03S chip coupler 모델을 사용하여 824 ~ 915 MHz의 동작 주파수 범위를 갖도록 100x50 mm2의 크기로 제작된 전자식 임피던스 튜너에 대한 시뮬레이션 결과와 측정 결과를 나타낸 것이다.
여기서, 제작된 전자식 임피던스 튜너는 PIN 다이오드의 기생성분을 최소화하고 튜너의 전력처리능력을 극대화하기 위해 비작동 상태의 PIN 다이오드에 -25V의 직류전압을 인가하며, 로딩부에서 결정된 단락 종단지점 이후의 전송선들의 불필요한 영향을 최소화하기 위해 로딩부의 가장 마지막 PIN 다이오드는 항상 작동상태로 동작시킬 수 있다.
도 6a에 도시된 본 발명에 따른 전자식 임피던스 튜너의 시뮬레이션 결과를 통해 알 수 있듯이, 824 ~ 915 MHz의 동작 주파수 범위에서 균일한 임피던스의 분포를 갖는 것을 알 수 있으며, 도 6b에 도시된 본 발명에 따른 전자식 임피던스 튜너의 측정 결과를 통해 알 수 있듯이, 시뮬레이션 결과와 유사하게 SWR=2.5와 6에서 각각 24개의 균일한 위상을 갖는 임피던스들을 생성하는 것을 알 수 있다.
또한, 도 6b에 도시된 바와 같이, 측정 결과를 바탕으로 SWR=2.5와 6에서 각각 최대 0.05와 0.08 이하의 크기 편차와 5도 이하의 위상 편차로 매우 균일한 분포를 가지는 것을 알 수 있으며, 시뮬레이션 결과와 측정 결과가 잘 일치하는 것을 알 수 있다.
이러한 본 발명의 실시예에 따른 전자식 임피던스 튜너(200)는 도 8에 도시된 일 예와 같이, 단일 단자 회로망을 사용하여 모바일용 증폭기의 로드풀 측정을 수행할 수 있는 장비 구성을 구현할 수 있다.
이 때, 본 발명에 따른 장치는 종래의 기계식 상용 임피던스 튜너의 로드풀 측정결과와 비교한 결과, SWR=2.5와 6인 경우 모두 1 dB 이하의 이득편차와 각각 4 dB 와 2.4 dB의 낮은 인접 채널 누설비(ACLR; Adjacent Channel Leakage Ratio) 편차를 가질 수 있다.
이와 같이, 본 발명의 실시예에 따른 전자식 임피던스 튜너는 균일한 임피던스를 생성할 수 있기 때문에 종래의 기계식 임피던스 튜너를 대체하여 로드풀 장비로 활용할 수 있다.
또한, 본 발명의 실시예들에 따른 전자식 임피던스 튜너는 균일한 임피던스를 생성하는 전자식 임피던스 튜너를 제공할 수 있기 때문에 기계식 튜너에 비해 저가, 고속, 경량화의 특징을 가질 수 있고, 제품의 휴대성을 극대화할 수 있다.
도 9는 본 발명의 일 실시예에 따른 전자식 임피던스 튜닝 방법에 대한 동작 흐름도를 나타낸 것으로, 상술한 전자식 임피던스 튜너에서의 동작 흐름도를 나타낸 것이다.
도 9를 참조하면, 본 발명의 실시예에 따른 전자식 임피던스 튜닝 방법은 커플러를 이용하여 커플러의 통과 단자와 결합 단자 각각에 연결된 전송선들로 입력 전압을 전달한다(S910).
여기서, 커플러는 방향성 커플러를 포함하고, 입력 단자와 격리 단자를 포함하며, 격리 단자는 50 Ohm으로 종단될 수 있다.
단계 S910에 의해 전송선들 각각에 입력 전압이 전달되면, 상술한 크기 변화부 내 전송선들의 길이 차이의 변화에 따라 임피던스의 크기 변화를 제어하고, 동시에 상술한 위상 변화부 내 전송선들의 동일한 길이 변화에 따라 임피던스의 위상 변화를 제어한다(S920, S930).
여기서, 단계 S920은 상술한 크기 변화부에서 수행되는 동작일 수 있고, 단계 S930은 상술한 위상 변화부에서 수행되는 동작일 수 있다.
단계 S920은 통과 단자에 연결된 전송선의 길이는 변화하고, 결합 단자에 연결된 전송선의 길이는 고정된 상태로 임피던스의 크기 변화를 제어 할 수 있다.
이 때, 단계 S920은 통과 단자에 병렬 방식으로 연결된 길이가 상이한 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 통과 단자에 연결된 전송선의 길이 변화를 제어할 수 있으며, 복수의 전송선들은 스위치에 의해 전환 가능할 수 있다.
또한, 단계 S920은 크기 변화부의 전송선들의 전기적 위상의 합이 90도가 되도록 전송선들의 길이 변화를 제어할 수 있으며, 상황에 따라 회로의 삽입 손실을 고려하여 크기 변화부의 전송선들의 전기적 위상의 합이 90도를 벗어날 수도 있다. 물론, 크기 변화부의 전송선들의 합이 90도를 벗어나더라도 기준점만 변화될 뿐 동일한 SWR 크기 내에서 균일한 위상 간격을 갖는 임피던스들을 생성할 수 있다.
단계 S930은 단계 S920에서 결정된 전송선들의 길이 차이(임피던스의 크기)를 유지하기 위하여, 전송선들 각각의 길이를 동일하게 가변_할 수 있다.
여기서, 단계 S930은 병렬 방식으로 연결된 일정 각도의 제1 위상 차이 예를 들어, 60도 전기적 위상 차이를 가지는 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 1차 위상을 결정하고, 직렬 방식으로 연결된 일정 각도의 제2 위상 차이 예를 들어, 7.5도 전기적 위상 차이를 가지는 복수의 전송선들 중 어느 하나의 전송선을 단락 종단 지점으로 결정함으로써, 최종 위상을 결정할 수 있다.
이상에서 설명된 시스템 또는 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 시스템, 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예들에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (13)

  1. 입력 단자로 입력되는 입력 전압을 통과 단자와 결합 단자 각각에 연결된 전송선들로 전달하는 커플러;
    상기 전송선들의 길이 차이의 변화를 통해 임피던스의 크기 변화를 제어하는 크기 변화부; 및
    상기 전송선들의 동일한 길이 변화를 통해 임피던스의 위상 변화를 제어하는 위상 변화부
    를 포함하는 전자식 임피던스 튜닝 장치.
  2. 제1항에 있어서,
    상기 크기 변화부는
    상기 통과 단자에 연결된 전송선의 길이 변화만을 제어하고,
    상기 결합 단자에 연결된 전송선의 길이를 고정된 상태로 유지하는 것을 특징으로 하는 전자식 임피던스 튜닝 장치.
  3. 제2항에 있어서,
    상기 크기 변화부는
    길이가 상이한 복수의 전송선들이 상기 통과 단자에 병렬 방식으로 연결되고, 상기 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 상기 통과 단자에 연결된 전송선의 길이 변화를 제어하는 것을 특징으로 하는 전자식 임피던스 튜닝 장치.
  4. 제1항에 있어서,
    상기 크기 변화부는
    상기 크기 변화부를 구성하는 전송선들의 전기적 위상의 합이 90도인 것을 특징으로 하는 전자식 임피던스 튜닝 장치.
  5. 제1항에 있어서,
    상기 위상 변화부는
    상기 크기 변화부와 단락으로 연결된 종단 사이에 형성되고, 상기 크기 변화부에 의해 결정된 임피던스의 크기에 대응하는 상기 전송선들의 길이 차이를 유지하기 위하여 상기 전송선들 각각의 길이를 동일하게 가변 하는 것을 특징으로 하는 전자식 임피던스 튜닝 장치.
  6. 제5항에 있어서,
    상기 위상 변화부는
    일정 각도의 제1 위상 차이를 가지는 복수의 전송선들이 병렬 방식으로 연결되고, 상기 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 1차 위상을 결정하는 시작 지점부; 및
    일정 각도의 제2 위상 차이를 가지는 복수의 전송선들이 직렬 방식으로 연결되고, 상기 직렬 방식으로 연결된 복수의 전송선들 중 어느 하나의 전송선을 단락 종단 지점으로 결정함으로써, 최종 위상을 결정하는 로딩부
    를 포함하는 것을 특징으로 하는 전자식 임피던스 튜닝 장치.
  7. 제1항에 있어서,
    상기 커플러는
    3-dB 90도 방향성 커플러를 포함하는 것을 특징으로 하는 전자식 임피던스 튜닝 장치.
  8. 커플러를 이용하여 상기 커플러의 통과 단자와 결합 단자 각각에 연결된 전송선들로 입력 전압을 전달하는 단계;
    상기 전송선들의 길이 차이를 변화하여 임피던스의 크기를 제어하는 단계; 및
    상기 전송선들의 길이를 동일하게 변화하여 임피던스의 위상을 제어하는 단계
    를 포함하는 전자식 임피던스 튜닝 방법.
  9. 제8항에 있어서,
    상기 임피던스의 크기를 제어하는 단계는
    상기 통과 단자에 연결된 전송선의 길이 변화만을 제어하고, 상기 결합 단자에 연결된 전송선의 길이를 고정된 상태로 유지하는 것을 특징으로 하는 전자식 임피던스 튜닝 방법.
  10. 제9항에 있어서,
    상기 임피던스의 크기를 제어하는 단계는
    상기 통과 단자에 병렬 방식으로 연결된 길이가 상이한 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 상기 통과 단자에 연결된 전송선의 길이 변화를 제어하는 것을 특징으로 하는 전자식 임피던스 튜닝 방법.
  11. 제8항에 있어서,
    상기 임피던스의 크기를 제어하는 단계는
    상기 전송선들의 전기적 위상의 합이 90도가 되도록 상기 전송선들의 길이 변화를 제어하는 것을 특징으로 하는 전자식 임피던스 튜닝 방법.
  12. 제8항에 있어서,
    상기 임피던스의 위상을 제어하는 단계는
    상기 임피던스의 크기를 제어하는 단계에 의해 결정된 임피던스의 크기에 대응하는 상기 전송선들의 길이 차이를 유지하기 위하여, 상기 전송선들 각각의 길이를 동일하게 가변 하는 것을 특징으로 하는 전자식 임피던스 튜닝 방법.
  13. 제12항에 있어서,
    상기 임피던스의 위상을 제어하는 단계는
    병렬 방식으로 연결된 일정 각도의 제1 위상 차이를 가지는 복수의 전송선들 중 적어도 하나의 전송선을 선택함으로써, 1차 위상을 결정하는 단계; 및
    직렬 방식으로 연결된 일정 각도의 제2 위상 차이를 가지는 복수의 전송선들 중 어느 하나의 전송선을 단락 종단 지점으로 결정함으로써, 최종 위상을 결정하는 단계
    를 포함하는 것을 특징으로 하는 전자식 임피던스 튜닝 방법.
PCT/KR2016/012769 2016-03-11 2016-11-08 모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법 WO2017155179A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/084,004 US10892532B2 (en) 2016-03-11 2016-11-08 Electronic impedance tuning apparatus for measuring load-pull of mobile amplifier and electronic impedance tuning method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0029789 2016-03-11
KR1020160029789A KR101725721B1 (ko) 2016-03-11 2016-03-11 모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법

Publications (1)

Publication Number Publication Date
WO2017155179A1 true WO2017155179A1 (ko) 2017-09-14

Family

ID=58580754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012769 WO2017155179A1 (ko) 2016-03-11 2016-11-08 모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법

Country Status (3)

Country Link
US (1) US10892532B2 (ko)
KR (1) KR101725721B1 (ko)
WO (1) WO2017155179A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980083779A (ko) * 1997-05-19 1998-12-05 윤종용 알에프 증폭기에서 전기 제어 임피던스 매칭장치
KR20040048005A (ko) * 2002-12-02 2004-06-07 한국전자통신연구원 가변 임피던스 매칭회로
JP2007535828A (ja) * 2003-03-28 2007-12-06 アンドリュー・コーポレーション 高効率増幅器およびその設計方法
US20120119971A1 (en) * 2009-08-13 2012-05-17 Lg Innotek Co., Ltd. Apparatus For Controlling Impedance in Adaptive Tuning Antenna Circuit
KR20130113240A (ko) * 2012-04-05 2013-10-15 엘지이노텍 주식회사 임피던스 정합 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625328A (en) * 1995-09-15 1997-04-29 E-Systems, Inc. Stripline directional coupler tolerant of substrate variations
JP5747418B2 (ja) * 2010-07-28 2015-07-15 国立大学法人京都工芸繊維大学 マイクロ波共振器
US8798561B2 (en) * 2011-09-08 2014-08-05 Alcatel Lucent Radio-frequency circuit having a transcoupling element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980083779A (ko) * 1997-05-19 1998-12-05 윤종용 알에프 증폭기에서 전기 제어 임피던스 매칭장치
KR20040048005A (ko) * 2002-12-02 2004-06-07 한국전자통신연구원 가변 임피던스 매칭회로
JP2007535828A (ja) * 2003-03-28 2007-12-06 アンドリュー・コーポレーション 高効率増幅器およびその設計方法
US20120119971A1 (en) * 2009-08-13 2012-05-17 Lg Innotek Co., Ltd. Apparatus For Controlling Impedance in Adaptive Tuning Antenna Circuit
KR20130113240A (ko) * 2012-04-05 2013-10-15 엘지이노텍 주식회사 임피던스 정합 장치

Also Published As

Publication number Publication date
US10892532B2 (en) 2021-01-12
KR101725721B1 (ko) 2017-04-11
US20200295421A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2014088323A1 (en) Antenna for wireless power transmission and near field communication
WO2019156281A1 (ko) 배열 안테나
WO2019050284A1 (ko) 안테나 엘리먼트간 격리 구조를 갖는 안테나 장치
WO2020153629A1 (ko) 안테나를 포함하는 전자 장치
WO2019066308A1 (ko) 위상 시프터를 포함하는 안테나 장치
WO2017155179A1 (ko) 모바일용 증폭기의 로드풀 측정을 위한 전자식 임피던스 튜닝 장치 및 그 방법
WO2020106041A1 (ko) 복수의 방향을 갖는 빔포밍 신호를 측정하는 전자 장치 및 이의 동작 방법
WO2021101256A1 (ko) 노이즈 필터 구조를 포함하는 인쇄 회로 기판 및 이를 포함하는 전자 장치
EP3858107A1 (en) Induction heating apparatus
WO2021042565A1 (zh) 用于手持设备的快速充电系统及方法、手持设备
WO2011111888A1 (ko) 일체형 커플러-써큘레이터 및 그를 포함하는 전력 증폭기
WO2019143072A1 (ko) 안테나의 위상을 스윕하기 위한 전자 장치
CN211791528U (zh) 耦合校准网络电路、阵列天线及基站
WO2019151784A1 (ko) 안테나에 대한 반사계수를 결정하기 위한 장치 및 방법
WO2015111768A1 (ko) 빔공간 mimo 기반의 통신 장치, 및 이의 동작 방법
WO2019225945A1 (ko) 빛에 기초하여 전자기파의 전송을 제어하는 방법 및 그 장치
WO2022191537A1 (ko) 캘리브레이션 포인트를 제공하는 전자 장치 및 이의 동작 방법
WO2022203240A1 (ko) 무선 전력 송신 장치 및 무선 전력 송신 장치의 무선 전력 송신 방법
KR20190129566A (ko) 위상보상 기능을 갖는 커플러 회로
WO2021206324A1 (ko) 트랜스포머 디바이스 및 이를 포함하는 전자장치
WO2021091166A1 (ko) 인쇄 회로 기판 및 이를 포함하는 전자 장치
WO2019107853A1 (ko) 빔포밍을 위한 위상을 설정하는 방법, 이를 위한 전자 장치, 및 시스템
WO2020122599A1 (en) Induction heating apparatus
CN106656127B (zh) 射频开关电路
CN206235817U (zh) 分布参数电力传输线路的模拟电路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893693

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893693

Country of ref document: EP

Kind code of ref document: A1