WO2017155031A1 - 制御装置および制御方法 - Google Patents
制御装置および制御方法 Download PDFInfo
- Publication number
- WO2017155031A1 WO2017155031A1 PCT/JP2017/009457 JP2017009457W WO2017155031A1 WO 2017155031 A1 WO2017155031 A1 WO 2017155031A1 JP 2017009457 W JP2017009457 W JP 2017009457W WO 2017155031 A1 WO2017155031 A1 WO 2017155031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sleep
- sound signal
- unit
- user
- depth
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
Definitions
- the present invention relates to a control device and a control method.
- Patent Literature 1 describes a sleep timer that controls the volume of output sound. This sleep timer determines the timing for starting to lower the volume of the output sound based on the time set by the user. At this timing, the sleep timer executes a fade-out operation that starts to decrease the volume of the output sound.
- Patent Document 2 describes a sleeping device that controls lighting equipment and audiovisual equipment based on a user's sleep state. This sleeping apparatus detects a user's biological information with a sensor. This sleeping device determines the sleep state of the user based on the biological information.
- Patent Document 3 describes a music playback device that controls the volume based on the user's arousal level. This music playback device detects a user's brain waves. This music player determines the user's arousal level based on the detection result. When it is determined that the user is in the sleep state, the music playback device decreases the volume of the music. When the music playback device determines that the user is in a sleep state, the music playback device stops playing the music.
- the sleep timer described in Patent Literature 1 determines the start timing of the fade-out operation based on the time set by the user regardless of the sleep state of the user. For this reason, the volume of the output sound may change when the user is in a sleepless state of sleep. In this case, the user may be awakened by noticing the change in volume.
- the volume of the output sound or the illumination illuminance changes when the user is in the sleep state. Therefore, also in this case, the user may be awakened by noticing the change in the volume of the output sound or the change in the illumination intensity.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to prevent a user who has entered a sleep state from waking up.
- a sleep detection unit that detects that the user has fallen asleep based on biological information indicating a state of a user's biological body, and the sleep detection unit includes the sleep And an adjustment unit that adjusts the magnitude of the output of the control target device to a predetermined value when a predetermined time elapses from the point in time when this is detected.
- An aspect of the control device includes an estimation unit that estimates a sleep depth based on biological information indicating a state of a user's biological body, and the sleep depth estimated by the estimation unit is deeper than falling asleep And a sound signal control unit that executes a fade-out process for controlling the output unit so that the amplitude of the sound signal output from the output unit is gradually reduced to zero when the depth reaches a predetermined depth.
- FIG. 1 is a diagram illustrating an example of a system 1.
- FIG. It is the figure which showed an example of the sleep cycle.
- 7 is a flowchart for explaining an operation of “Aspect 1”. It is the figure which showed the example of amplitude Am1 of the sound signal in "mode 1”. 7 is a flowchart for explaining an operation of “Aspect 2”. It is the figure which showed the example of amplitude Am2 of the sound signal in "mode 2.” It is the figure which showed the modification of 1st Embodiment. It is the figure which showed the system 1B containing the audio equipment 20B which concerns on 2nd Embodiment.
- FIG. 10 is a flowchart for explaining an operation of “Aspect 3”. It is the flowchart which showed the operation
- movement shown in FIG. 10 is a flowchart for explaining an operation of “Aspect 4”. It is the figure which showed the example of amplitude Am4 of the sound signal in "mode 4.” It is the figure which showed the modification of 2nd Embodiment. It is the figure which showed system 1D containing acoustic apparatus 20D which concerns on 3rd Embodiment. It is a flowchart for demonstrating the determination operation
- FIG. 1 is a diagram showing an overall configuration of a system 1 including an acoustic device 20 according to a first embodiment to which the present invention is applied.
- the system 1 includes a sensor 10, an acoustic device 20, and speakers 31 and 32.
- the system 1 outputs sounds from the speakers 31 and 32 so that the user E listens to the user E so that the user E who is in a supine posture on the bed B can relax and sleep at night. Then, when the user E falls asleep, the user E may sleep more deeply than when the user E falls asleep after time has passed so that the user E does not wake up due to a change in volume.
- the sound output is stopped when the becomes high.
- Sensor 10 is, for example, a sheet-like piezoelectric element.
- the sensor 10 is disposed below the mattress of the bed B. When the user E lies on the bed B, the biological information indicating the state of the biological body of the user E is detected by the sensor 10.
- the sensor 10 detects information including various movements of the body of the user E due to the respiration, heartbeat, and body movement of the user E as biological information.
- the sensor 10 may be a sensor that detects biological information of the user E and is mounted on a wearable device such as a wristwatch, for example, instead of a sheet-like piezoelectric element.
- the acoustic device 20 acquires the biological information output from the sensor 10.
- the acoustic device 20 detects the sleep state (sleep state or sleep depth) of the user E based on this biological information.
- Speakers 31 and 32 are arranged at a position where stereo sound can be output to user E in a supine posture.
- the speaker 31 amplifies a stereo left (L) signal output from the audio device 20 with a built-in amplifier.
- the speaker 31 outputs a sound corresponding to the amplified left (L) signal.
- the speaker 32 amplifies a stereo light (R) signal output from the audio device 20 with a built-in amplifier.
- the speaker 32 outputs a sound corresponding to the amplified light (R) signal.
- headphones may be used.
- FIG. 2 is a configuration diagram of the sensor 10, the speaker 30, and the acoustic device 20.
- the acoustic device 20 includes a CPU (Central Processing Unit) 101, a memory 102, a sound signal output unit 21, and a power supply unit 22.
- the CPU 101 is an example of a control device.
- the CPU 101 reads and executes the control program stored in the memory 102, thereby realizing the biological information acquisition unit 23, the sleep detection unit 24, and the sound signal control unit 25.
- the sound signal output unit 21 and the power supply unit 22 are each configured by hardware (for example, a sound signal output circuit and a power supply circuit).
- the biological information acquisition unit 23, the sleep detection unit 24, and the sound signal control unit 25 may each be configured with hardware (for example, a biological information acquisition circuit, a sleep detection circuit, and a sound signal control circuit). .
- the sound signal output unit 21 outputs a sound signal to the speaker 30.
- the speaker 30 outputs a sound corresponding to the sound signal.
- the loudspeaker 30 increases the sound volume according to the sound signal as the amplitude of the sound signal is larger.
- the sound signal output unit 21 is an example of an output unit.
- the power supply unit 22 supplies power to the sound signal output unit 21.
- the biological information acquisition unit 23 acquires biological information by receiving the biological information output by the sensor 10. As another method for the biological information acquisition unit 23 to acquire the biological information, a method in which the biological information acquisition unit 23 acquires the biological information from the sensor 10 may be used.
- the sleep detection unit 24 detects the sleep of the user E based on the biological information acquired by the biological information acquisition unit 23.
- the first detection method is a method for detecting sleep on the basis of the body movement of the user E. Specifically, the sleep detection unit 24 detects sleep onset when the user E stops moving for a certain period of time, such as turning over.
- the biological information includes components of body movement accompanying the movement of the body of the user E in addition to heartbeat and respiration.
- the sleep detection unit 24 extracts a body movement component from the biological information. When the state in which the component of the body movement is below a predetermined level continues for a certain period of time, the sleep detection unit 24 detects sleep falling.
- the sleep detection unit 24 may detect sleep by combining the body movement of the user E and the heartbeat cycle. In the process of a person falling asleep, the heartbeat cycle gradually increases. Therefore, when the heartbeat cycle is longer than the heartbeat cycle at the time of entering the bed by a predetermined time and the state where the body motion component is below the predetermined level continues for a certain time, the sleep detection unit 24 detects the sleep onset. Also good.
- the second detection method is a method for estimating sleep depth based on biological information, and detecting sleep onset when the estimated sleep depth reaches a predetermined depth.
- Human sleep is roughly divided into REM sleep with shallow sleep and non-REM sleep with deep sleep. A person's sleep first shifts to non-REM sleep at the time of falling asleep, and then shifts to REM sleep of shallow sleep. Human sleep consists of two different types of sleep, repeated 4 to 5 times a night with a constant rhythm in a cycle of about 90 minutes. Thus, the depth of human sleep fluctuates with a period of about 90 minutes. In the following description, the fluctuation of the sleep depth in overnight sleep is referred to as a sleep cycle.
- FIG. 3 is a diagram illustrating an example of a sleep cycle. In the example shown in FIG.
- the sleep cycle from the time when the user E shifts from rest to deep sleep and then to wake up is indicated by the sleep depth indicating the depth of sleep.
- the sleep depth is “Standing Stand”, “Awakening Wake”, “REM Sleep REM”, “First Stage ST1”, “Second Stage ST2”, “Third Stage ST3”, and It is shown in 7 stages of “4th stage ST4”.
- the seven levels of sleep depth are “Standing Stand”, “Awakening Wake”, “REM Sleep REM”, “First Stage ST1”, “Second Stage ST2”, “Third Stage ST3”, “Fourth Stage ST4”. It becomes deeper in the order.
- the seven levels of sleep depth are specified based on the biological information acquired by the biological information acquisition unit 23.
- the sleep detection unit 24 estimates the sleep depth using, for example, the heartbeat cycle extracted from the biological information.
- the sleep onset detection unit 24 Based on the biometric information acquired by the biometric information acquisition unit 23, the sleep onset detection unit 24 detects, as sleep onset, a state in which the sleep depth of the user E has reached the first stage ST1 from the awake state. For this reason, the sleep detection unit 24 may not have a function of detecting whether the sleep depth of the user E is the second stage ST2, the third stage ST3, or the fourth stage ST4. When the sleep detection unit 24 does not have this detection function, the function of the sleep detection unit 24 can be simplified compared to the sleep detection unit 24 having this detection function. In addition, although the example of the depth of sleep was shown seven steps, the depth of sleep may be five steps, for example.
- the sleep detection unit 24 detects, as sleep onset, a state in which the sleep depth of the user E has reached “shallow sleep” from the awake state based on the biological information acquired by the biological information acquisition unit 23.
- the sound signal control unit 25 controls the amplitude of the sound signal of the sound signal output unit 21 when the sleep detection unit 24 detects sleep onset.
- the sound signal control unit 25 is an example of an adjustment unit.
- modes of control performed by the sound signal control unit 25 there are the following “mode 1” and “mode 2”.
- “Aspect 1” The amplitude of the sound signal is changed to zero at once (silence, stop).
- “Aspect 2” The amplitude of the sound signal gradually decreases (fade out).
- the aspect 1 and the aspect 2 are mutually independent. That is, the sound signal control unit 25 performs the control of the aspect 1 or the control of the aspect 2.
- the sound signal control unit 25 changes the amplitude of the sound signal of the sound signal output unit 21 to zero after a predetermined time (for example, 20 minutes) has elapsed since the sleep detection unit 24 detected sleep onset.
- the predetermined time will be described. Sleep deepens after falling asleep. For this reason, when the sound signal control unit 25 changes the amplitude of the sound signal to zero at a timing when a predetermined time has elapsed since the detection of sleep onset, the volume is changed when the sleep depth of the user E is deeper than sleep. It becomes possible to do. Therefore, it becomes difficult for the user E to notice the change in volume. In general, it is said that a person enters a deep sleep state after about 15 to 20 minutes have passed since falling asleep. For this reason, if the time required for a person to fall asleep and enter a deep sleep state (for example, 15 minutes to 20 minutes) is used as the predetermined time, the volume is changed with a high probability in the deep sleep state. be able to. Therefore, it becomes difficult for the user E to notice the change in volume.
- the predetermined time is not limited to 15 to 20 minutes and can be changed as appropriate.
- the sound signal control unit 25 outputs a control signal for adjusting the amplitude of the sound signal, which is a control amount of the control target device, to a predetermined value when a predetermined time has elapsed since the sleep detection unit 24 detected sleep onset. Output to the output unit 21.
- the sound signal output unit 21 is an example of a device to be controlled, and zero amplitude is an example of a predetermined value. Further, the predetermined value is not limited to zero amplitude, and an amplitude smaller than the amplitude of the sound signal in a period from when sleep onset is detected until a predetermined time elapses may be used.
- FIG. 4 is a flowchart for explaining the operation of “Aspect 1”.
- the operation shown in FIG. 4 is repeated.
- the sound signal output unit 21 outputs a sound signal to the speaker 30.
- the sound signal output unit 21 outputs the sound signal to the speaker 30 with the amplitude of the sound signal being constant.
- the biological information acquisition unit 23 acquires the biological information output from the sensor 10 (step S401)
- the biological information acquisition unit 23 outputs the biological information to the sleep detection unit 24.
- the sleep detection unit 24 determines whether the user E has fallen asleep based on the biological information (step S402). When it is determined that the user E has fallen asleep (YES in step S402), the sleep detection unit 24 outputs sleep information indicating sleep onset to the sound signal control unit 25.
- the sound signal control unit 25 waits until a predetermined time (for example, 20 minutes) elapses after receiving the sleep information (NO in step S403). Specifically, the sound signal control unit 25 starts timing and waits until a predetermined time is reached when the sleep information is received.
- a predetermined time for example, 20 minutes
- the sound signal control unit 25 controls the sound signal output unit 21 to be output from the sound signal output unit 21.
- the amplitude of the sound signal is set to zero (muted) (step S404).
- FIG. 5 is a diagram illustrating an example in which the amplitude Am1 of the sound signal becomes zero at the timing tb when the predetermined time T10 has elapsed from the timing (sleeping detection timing) ta when the sound signal control unit 25 receives the sleep information.
- step S402 when the sleep detection unit 24 does not detect sleep onset in step S402, the process shown in FIG. 4 ends, and then the process shown in FIG. 4 is executed again.
- the sound signal control unit 25 changes the amplitude of the sound signal to zero when a predetermined time has elapsed since the sleep detection unit 24 detected sleep onset. For this reason, it becomes possible to change the amplitude of the sound signal when the sleep depth becomes deeper than at the time of falling asleep. Therefore, compared with the configuration in which the amplitude of the sound signal is changed at the time of falling asleep, it is possible to prevent the user from waking up by noticing the change in volume accompanying the change in the amplitude of the sound signal.
- the sound signal control unit 25 maintains the amplitude of the sound signal from the sound signal output unit 21 until a predetermined time elapses after sleep onset is detected.
- FIG. 6 is a flowchart for explaining the operation of “Aspect 2”. In aspect 2, the operation shown in FIG. 6 is repeated.
- FIG. 6 processes having the same contents as those shown in FIG. 4 are denoted by the same reference numerals. In the following, the process shown in FIG. 6 will be described focusing on differences from the process shown in FIG.
- the sound signal control unit 25 waits until the first time elapses after receiving the sleep information (NO in step S601).
- the first time may be a time shorter than the predetermined time described above.
- the first time may be a fixed time or may be changed by the sound signal control unit 25 within a time shorter than the predetermined time described above.
- the sound signal control unit 25 controls the sound signal output unit 21 to gradually reduce the amplitude of the sound signal.
- the amplitude of the sound signal is set to zero when the second time has elapsed since the start of reducing the amplitude of the sound signal (step S602).
- step S601 and step S602 constitute a first fade-out process.
- FIG. 7 shows that the amplitude Am2 of the sound signal is maintained for the first time T11 from the timing (sleeping detection timing) ta when the sound signal control unit 25 receives the sleep information, and after the first time T11 has passed
- FIG. 6 is a diagram illustrating an example in which the amplitude of the sound signal becomes zero at a time point (timing tc) when the second time T12 has elapsed since the amplitude of the sound signal is gradually decreased.
- the timing tc corresponds to the timing tb shown in FIG.
- the first fade-out process is executed in a period between timing ta and timing tc.
- the sound signal control unit 25 gradually decreases the amplitude of the sound signal after maintaining the amplitude of the sound signal. For this reason, it becomes possible to start the operation of gradually decreasing the volume of the sound according to the sound signal when the sleep depth becomes deeper than when sleeping. Therefore, according to this aspect, compared to a configuration in which the amplitude of the sound signal is gradually decreased so that the volume gradually decreases from the time of sleep detection, the user is awakened to notice the change in the volume. Can be suppressed.
- FIG. 1 shows an example in which the sensor 10 transmits biological information to the acoustic device 20 by wired communication.
- the biological information may be transmitted to the acoustic device 20A by wireless communication.
- FIG. 8 the same components as those shown in FIG. 2 are denoted by the same reference numerals.
- the configuration shown in FIG. 8 will be described focusing on differences from the processing shown in FIG.
- the sensor 10 transmits biological information to the portable terminal 40 having a wireless communication function by wired communication.
- the portable terminal 40 wirelessly transmits the biological information received from the sensor 10 to the acoustic device 20A.
- the acoustic device 20A includes a communication unit 26 in addition to the configuration of the acoustic device 20 illustrated in FIG.
- the communication unit 26 When receiving the biological information wirelessly transmitted from the portable terminal 40, the communication unit 26 outputs the biological information to the biological information acquisition unit 23.
- the acoustic device 20A can receive the biological information detected by the sensor 10 by wireless communication.
- a device having a wireless communication function for example, a PC (personal computer) may be used.
- the sensor 10 is provided with a wireless communication unit, and the sensor 10 is directly connected to the communication unit 26. Wireless communication may be performed.
- FIG. 9 is a diagram showing a system 1B including an acoustic device 20B according to a second embodiment to which the present invention is applied.
- the sleep detection unit 24 when the sleep detection unit 24 detects sleep onset, the sound signal output unit 21 is controlled.
- the estimation part 27 which estimates the depth of sleep of the user E is used instead of the sleep detection part 24, and the sound signal output part 21 controls based on the estimation result of the estimation part 27. Is done.
- the acoustic device 20B will be described focusing on differences from the acoustic device 20 illustrated in FIG.
- the acoustic device 20 ⁇ / b> B is different from the acoustic device 20 in that it includes an estimation unit 27 instead of the sleep detection unit 24 and a sound signal control unit 25 ⁇ / b> B instead of the sound signal control unit 25.
- the acoustic device 20 ⁇ / b> B includes a CPU 101 ⁇ / b> B, a memory 102 ⁇ / b> B, a sound signal output unit 21, and a power supply unit 22.
- the CPU 101B implements the biological information acquisition unit 23, the estimation unit 27, and the sound signal control unit 25B by reading and executing the control program stored in the memory 102B.
- the biological information acquisition unit 23, the estimation unit 27, and the sound signal control unit 25B may each be configured with hardware (for example, a biological information acquisition circuit, an estimation circuit, and a sound signal control circuit).
- the estimation unit 27 estimates the sleep depth (sleep depth) of the user E based on the biological information acquired by the biological information acquisition unit 23. Hereinafter, it is assumed that the estimation unit 27 estimates which of the seven levels of sleep depth illustrated in FIG. 3 is the sleep depth of the user E based on the biological information.
- the sound signal control unit 25 ⁇ / b> B controls the amplitude of the sound signal of the sound signal output unit 21 based on the estimation result of the estimation unit 27.
- modes of control performed by the sound signal control unit 25B there are the following “mode 3” and “mode 4”.
- “Aspect 3” When the depth of sleep becomes a depth corresponding to falling asleep, the amplitude of the sound signal is controlled. In the following, the first stage ST1 is used as the depth corresponding to falling asleep.
- “Aspect 4” When the sleep depth reaches a predetermined depth deeper than falling asleep, the amplitude of the sound signal is controlled. In the following, the second stage ST2 is used as a predetermined depth deeper than falling asleep.
- the aspect 3 and the aspect 4 are mutually independent. That is, the sound signal control unit 25B performs the control of the aspect 3 or the control of the aspect 4.
- FIG. 10 is a flowchart for explaining the operation of “Aspect 3”.
- the operation shown in FIG. 10 is repeated.
- steps S1001 is executed instead of step S402 shown in FIG.
- the process shown in FIG. 10 will be described focusing on differences from the process shown in FIG.
- the estimation unit 27 receives the biological information from the biological information acquisition unit 23, the estimation unit 27 estimates the sleep depth of the user E based on the biological information. Subsequently, the estimating unit 27 determines whether or not the sleep depth of the user E is the first stage ST1 (step S1001). When the sleep depth of the user E is the first stage ST1 (YES in step S1001), the estimating unit 27 outputs the sleep information to the sound signal control unit 25B. When the sound signal control unit 25B receives the sleep information, step S601 and step S602 are executed.
- step S1001 the process shown in FIG. 10 ends, and then the process shown in FIG. 10 is executed again.
- the transition of the amplitude of the sound signal in the aspect 3 is the same as the transition of the amplitude Am2 shown in FIG.
- the sound signal control unit 25B gradually reduces the amplitude of the sound signal after maintaining the amplitude of the sound signal. For this reason, it becomes possible to start the operation of gradually decreasing the volume of the sound according to the sound signal when the sleep depth becomes deeper than when sleeping. Therefore, according to this aspect, compared to a configuration in which the amplitude of the sound signal is gradually decreased so that the volume gradually decreases from the time of sleep detection, the user is awakened to notice the change in the volume. Can be suppressed.
- the estimation unit 27 can estimate the sleep depth of the user E after detecting sleep onset. Therefore, the sound signal control unit 25B can perform control according to the sleep depth by obtaining the estimation result of the estimation unit 27.
- the sound signal control unit 25B detects that the sleep depth estimated by the estimation unit 27 has become shallow during the first fade-out process, the sound signal control unit 25B interrupts the first fade-out process and changes the amplitude of the sound signal.
- the sound signal output unit 21 may be controlled so as to be maintained. In this case, since the change in volume can be stopped when the sleep depth becomes shallow, it is possible to avoid a situation in which the user who has become shallow in sleep notices the change in the volume and wakes up.
- the sound signal control unit 25B may resume the first fade-out process when detecting that the depth of sleep estimated by the estimation unit 27 is deep after interrupting the first fade-out process. In this case, since the first fade-out process is resumed in a state where sleep is deep, the user can be prevented from waking up by noticing the resumed volume change.
- FIG. 11 shows that the amplitude reduction process is interrupted when the sleep depth becomes shallow during the process of gradually reducing the amplitude of the sound signal (hereinafter referred to as “amplitude reduction process”) in the first fade-out process. Then, after that, when the depth of sleep becomes deeper, it is a flowchart for explaining an example of a process in which the amplitude reduction process is resumed.
- the estimation part 27 shall output the estimation result of sleep depth to the sound signal control part 25B sequentially.
- the sleep depth indicated by the latest estimation result of the estimation unit 27 is a reference for interrupting the amplitude reduction process (hereinafter referred to as “first reference”). It is determined whether or not the sleep depth becomes shallower (step S1102).
- first reference for example, the second stage ST2 is used.
- the first reference is not limited to the second stage ST2, and can be changed as appropriate.
- the sound signal control unit 25B interrupts the amplitude reduction process (step S1103). For example, when the sleep depth changes from the second stage ST2 to the first stage ST1, the sound signal control unit 25B interrupts the amplitude reduction process.
- the sound signal control unit 25B determines that the sleep depth indicated by the latest estimation result of the estimation unit 27 is a reference depth (hereinafter referred to as “second reference”) for restarting the amplitude reduction process. It is determined whether or not it has become deeper (step S1104).
- the second reference for example, the second stage ST2 is used.
- the second reference is not limited to the second stage ST2, and can be changed as appropriate.
- the second reference may not be the same stage (sleep depth) as the first reference.
- step S1104 When the sleep depth indicated by the latest estimation result is not deeper than the second reference (NO in step S1104), the sound signal control unit 25B returns the process to step S1103, and continues the interruption of the amplitude reduction process. On the other hand, when the sleep depth indicated by the latest estimation result is deeper than the second reference (YES in step S1104), the sound signal control unit 25B restarts the interrupted amplitude reduction process (step S1105). .
- the sound signal control unit 25B determines whether the amplitude of the sound signal is zero (step S1106). If the amplitude of the sound signal is not zero (NO in step S1106), the sound signal control unit 25B returns the process to step S1102. On the other hand, when the amplitude of the sound signal is zero (YES in step S1106), the sound signal control unit 25B ends the amplitude reduction process.
- the end of the amplitude reduction process means the end of the fade-out process.
- step S1102 If the sleep depth indicated by the latest estimation result is not shallower than the first reference (NO in step S1102), the sound signal control unit 25B advances the process to step S1106.
- FIG. 12 shows that the amplitude reduction process is started after elapse of the first time T11 from the timing (sleeping detection timing) ta when the sound signal control unit 25B receives the sleep information, and then the sleep depth of the user E is changed to the first at time td
- the amplitude reduction process is interrupted at the timing td when the sleep depth of the user E becomes shallower than the first reference, and at the timing te when the sleep depth of the user E becomes deeper than the second reference. The amplitude reduction process is resumed.
- FIG. 13 is a flowchart for explaining the operation of “Aspect 4”.
- the operation shown in FIG. 13 is repeated.
- processes having the same contents as those shown in FIG. 4 are denoted by the same reference numerals.
- the process shown in FIG. 13 will be described focusing on differences from the process shown in FIG.
- the estimation unit 27 receives the biological information from the biological information acquisition unit 23, the estimation unit 27 estimates the sleep depth of the user E based on the biological information. Subsequently, the estimation unit 27 outputs the estimation result of the sleep depth of the user E to the sound signal control unit 25B.
- the sound signal control unit 25B determines whether or not the estimation result indicates the second stage ST2 (step S1301). When the estimation result of the estimation unit 27 indicates the second stage ST2 (YES in step S1301), the sound signal control unit 25B executes the second fade-out process (step S1302). On the other hand, when the estimation result of the estimation unit 27 does not indicate the second stage ST2 (NO in step S1301), the process illustrated in FIG. 13 ends, and then the process illustrated in FIG. 13 is performed again.
- FIG. 14 shows the sound signal when the sound signal amplitude Am4 is gradually reduced from the timing tf when the sound signal control unit 25B receives the estimation result indicating the second stage ST2 and the third time T13 has elapsed (timing tg). It is the figure which showed the example from which amplitude Am4 of becomes zero.
- the second fade-out process is executed in a period between timing tf and timing tg.
- the second fade-out process is executed when the depth of sleep reaches a predetermined depth deeper than the sleep onset. For this reason, it is possible to prevent the user from waking up by noticing the change in the volume, as compared with the configuration in which the volume of the sound corresponding to the sound signal is gradually reduced from the time of sleep detection.
- the sound signal control unit 25B when the sound signal control unit 25B detects that the depth of sleep estimated by the estimation unit 27 becomes shallow during the second fade-out process.
- the sound signal output unit 21 may be controlled so as to maintain the amplitude of the sound signal by interrupting the second fade-out process.
- the sound signal control unit 25B may resume the second fade-out process when detecting that the depth of sleep estimated by the estimation unit 27 is deep after interrupting the second fade-out process.
- biometric information may be transmitted to the acoustic device 20C by wireless communication, for example, as in the modification shown in FIG.
- the mobile terminal 40 wirelessly transmits the biological information received from the sensor 10 to the acoustic device 20C.
- the acoustic device 20C includes a communication unit 26 in addition to the configuration of the acoustic device 20 illustrated in FIG.
- a device having a wireless communication function for example, a PC (personal computer) may be used.
- the sensor 10 is provided with a wireless communication unit, and the sensor 10 is directly connected to the communication unit 26. Wireless communication may be performed.
- the estimation result of the estimation unit 27 included in the second embodiment represents the sleep pattern of the user E. For this reason, the average sleep pattern of the user E can be obtained by using the history of the estimation result of the estimation unit 27 (the past estimation result of the estimation unit 27). In addition, when the user E is in a deep sleep state, a sound may be generated, and the quality of sleep may be deteriorated, resulting in a phenomenon that the awakening feeling of the next morning is not good.
- the first fade-out is performed using the estimation result history of the estimation unit 27 so that the possibility that the sound becomes zero when the user E enters deep sleep increases. A processing time or a second fade-out processing time is determined.
- FIG. 16 is a diagram showing a system 1D including an acoustic device 20D according to a third embodiment to which the present invention is applied.
- the same components as those shown in FIG. 9 are denoted by the same reference numerals.
- the acoustic device 20D will be described focusing on differences from the acoustic device 20B illustrated in FIG.
- the acoustic device 20D includes a storage unit 28, and is different from the acoustic device 20B in that it includes a sound signal control unit 25D instead of the sound signal control unit 25B.
- the acoustic device 20D includes a CPU 101D, a memory 102D, a sound signal output unit 21, a power supply unit 22, and a storage unit 28.
- the CPU 101D implements the biological information acquisition unit 23, the estimation unit 27, and the sound signal control unit 25D by reading and executing the control program stored in the memory 102D.
- the biological information acquisition unit 23, the estimation unit 27, and the sound signal control unit 25D may each be configured by hardware (for example, a biological information acquisition circuit, an estimation circuit, and a sound signal control circuit).
- the storage unit 28 stores a history of temporal changes (changes) in the sleep depth estimated by the estimation unit 27. This history shows a past sleep pattern of the user E.
- the sound signal control unit 25D determines the time from the start of the first or second fade-out process to the end of the sleep depth stored in the storage unit 28. It has a function of making a decision with reference to a history of time change (hereinafter referred to as “decision function”).
- FIG. 17 is a flowchart for explaining a determination function for determining the first fade-out processing time.
- the sound signal control unit 25D executes the determination process shown in FIG. 17 between the time when YES is determined in step S1001 shown in FIG. 10 and before the execution of step S601.
- the sound signal control unit 25D reads a history of transition times from the first stage ST1 to the third stage ST3 from the storage unit 28 (step S1701). For example, when the estimation result for 20 days estimated by the estimation unit 27 for the sleep of the user E is stored in the storage unit 28, the sound signal control unit 25D indicates that the sleep state of the user E is in the first stage ST1. Information of the time (transition time) required until the transition to the third stage ST3 is read for 20 days. Note that the sound signal control unit 25D has a plurality of estimation results (from the first stage ST1 to the third stage ST3) in the order of newest out of all the estimation results stored in the storage unit 28. The transition time required) may be read.
- the sound signal control unit 25D determines the average of the read transition times from the first stage ST1 to the third stage ST3 as the first fade-out time (step S1702).
- the sound signal control unit 25D executes Step S601 and Step S602 shown in FIG. At this time, the sound signal control unit 25D determines the first time and the second time so that the total time of the first time and the second time matches the first fade-out time determined in step S1702. .
- FIG. 18 is a flowchart for explaining a determination function for determining the second fade-out processing time.
- the sound signal control unit 25D executes the determination process illustrated in FIG. 18 from the time when YES is determined in step S1301 illustrated in FIG. 13 until the step S1302 is performed.
- the sound signal control unit 25D reads the history of transition times from the second stage ST2 to the third stage ST3 from the storage unit 28 (step S1801). For example, when the estimation result for 40 days estimated by the estimation unit 27 for the sleep of the user E is stored in the storage unit 28, the sound signal control unit 25D indicates that the sleep state of the user E is in the second stage ST2. Information on the time (transition time) required from the first to the third stage ST3 is read for 40 days. Note that the sound signal control unit 25D does not include all the estimation results stored in the storage unit 28 but a plurality of estimation results (from the second stage ST2 to the third stage ST3) in the newest order among all the estimation results. The transition time required) may be read.
- the sound signal control unit 25D determines the average transition time required from the second stage ST2 to the third stage ST3 read in step S1801 as the second fade-out time (step S1802).
- the sound signal control unit 25D executes Step S1302 shown in FIG. At this time, the sound signal control unit 25D uses the second fade-out time determined in step S1802 as the time of the second fade-out process performed in step S1302.
- the storage unit 28 stores a history of temporal changes in sleep depth estimated by the estimation unit 27.
- the sound signal control unit 25 ⁇ / b> D determines the time from the start to the end of the fade-out process with reference to the history of changes in the sleep depth stored in the storage unit 28.
- the history of the temporal change in the depth of sleep stored in the storage unit 28 represents the user E's past sleep pattern. For this reason, it becomes possible to adjust the time from the start to the end of the fade-out process according to the sleep pattern of the user. Therefore, the time from the start to the end of the fade-out process can be customized according to the user E. Therefore, it is possible to reduce a phenomenon in which a sound is generated when the user E is in a deep sleep state, the sleep quality of the user E is deteriorated, and the awakening feeling in the next morning is not good.
- the storage unit 28 shown in the present embodiment is provided in the modification of the second embodiment shown in FIG. 15, and the sound signal control unit shown in the present embodiment instead of the sound signal control unit 25B of the modification. 25D may be used. Further, the storage unit 28 may be provided in the cloud. In this case, the estimation unit 27 stores a history of changes in sleep depth in the storage unit 28 on the cloud side via a communication unit (not illustrated). In addition, the sound signal control unit 25B acquires a history of changes in sleep depth from the storage unit 28 on the cloud side via a communication unit (not illustrated) or the like.
- the sound signal control unit 25, the sound signal control unit 25B, and the sound signal control unit 25D set the sound signal output unit 21 after the amplitude of the sound signal output from the sound signal output unit 21 is zero. You may control the power supply part 22 so that the electric power feeding to may be turned off.
- the sound signal control unit 25, the sound signal control unit 25B, and the sound signal control unit 25D set the sound signal output from the sound signal output unit 21 to zero, and then send the sound signal from the power supply unit 22 to the power supply unit 22.
- a stop instruction to stop power supply to the signal output unit 21 is output, and power supply from the power supply unit 22 to the sound signal output unit 21 is turned off.
- the sound signal control unit 25 adjusts the magnitude of the amplitude of the sound signal, which is the output of the control target device, to a predetermined value (for example, zero) when a predetermined time elapses from the time of detection of falling asleep. A signal was output.
- the magnitude of the output of the control target device of the present invention is not limited to the magnitude of the amplitude of the sound signal, and can be changed as appropriate.
- FIG. 19 shows an example in which an external device 301 is used as a control target device. In FIG. 19, the same components as those shown in FIG. For example, when the external device 301 illustrated in FIG. 19 is a lighting device or a fan, the lighting device or the fan is an example of a control target device.
- the control target device is a lighting device
- the illuminance of the lighting device is an example of the output of the control target device
- the setting target illuminance is an example of a predetermined value
- the control target device is a fan
- the air volume of the fan is an example of the output of the control target device
- the air volume that is the setting target is an example of a predetermined value.
- the setting target illuminance and air volume do not necessarily have to be zero.
- the sound signal control unit 25B keeps the amplitude of the sound signal constant until the estimation result of the estimation unit 27 indicates a predetermined depth deeper than falling asleep (for example, the third stage ST3). If the estimation result of the estimation unit 27 indicates the predetermined depth, the amplitude of the sound signal may be set to zero.
- the predetermined depth deeper than falling asleep is not limited to the third stage and can be changed as appropriate.
- the mat-shaped piezoelectric element is exemplified as the sensor 10 that detects biological information.
- the sensor 10 is not limited to this.
- the sensor 10 may be a motion sensor using a camera that detects the movement of an object.
- the motion sensor outputs a signal indicating the movement of the body of the user E as biological information.
- the sleep onset detection unit 24 may detect sleep onset when the body movement of the user E stops for a certain period of time based on the biological information.
- the sensor 10 is also an electrode (hereinafter referred to as “first sensor”) that is attached to the forehead of the user E and detects a brain wave ( ⁇ wave, ⁇ wave, ⁇ wave, ⁇ wave, etc.) of the user E. Good.
- the sensor 10 may be a sensor (hereinafter referred to as “second sensor”) that is attached to the wrist of the user E and detects, for example, a pressure change of the radial artery, that is, a pulse wave. Since the pulse wave is synchronized with the heartbeat, the second sensor indirectly detects the heartbeat.
- the sensor 10 may be a sensor (hereinafter referred to as “third sensor”) that is arranged between the user E's head and a pillow and detects acceleration.
- the third sensor detects user E's body movement, respiration, heartbeat, and the like.
- a plurality of sensors may be used as the sensor 10.
- types of sensors for detecting biological information include pressure sensors, pneumatic sensors, vibration sensors, optical sensors, ultrasonic Doppler, RF Doppler, and laser Doppler.
- a sleep detection unit that detects that the user has fallen asleep based on biological information indicating a state of a user's biological body, and the sleep detection unit includes the sleep And an adjustment unit that adjusts the magnitude of the output of the control target device to a predetermined value when a predetermined time elapses from the point in time when this is detected.
- the output level of the control target device is adjusted to a predetermined value.
- the control target device is an output unit that outputs a sound signal
- an output magnitude of the control target device is a magnitude of an amplitude of the sound signal
- the adjustment unit When the sleep detection unit detects that the user has fallen asleep, the amplitude of the sound signal is gradually decreased after maintaining the amplitude of the sound signal, and a predetermined time has elapsed since the detection of the sleep It is desirable that the sound signal control unit execute a fade-out process for controlling the output unit so that the amplitude of the sound signal becomes zero. According to this aspect, when the user's sleep is detected, the amplitude of the sound signal gradually decreases after the amplitude of the sound signal is maintained.
- an estimation unit that estimates a sleep depth of the user based on biological information indicating a state of the user's biological body, and a sleep depth estimated by the estimation unit
- a sound signal control unit that executes a fade-out process for controlling the output unit so that the amplitude of the sound signal output from the output unit is gradually reduced to zero when the predetermined depth deeper than falling asleep is reached.
- the fade-out process for controlling the output unit is executed so that the amplitude of the sound signal gradually decreases to zero. For this reason, it is possible to prevent the user from waking up by noticing the change in the volume, as compared with the configuration in which the volume of the sound corresponding to the sound signal is gradually reduced from the time of sleep detection.
- the sound signal control unit interrupts the fade-out process and reduces the amplitude of the sound signal when the sleep depth estimated by the estimation unit becomes shallow during the fade-out process. It is desirable to control the output unit to maintain. According to this aspect, the change in volume can be stopped when the sleep depth becomes shallow. For this reason, it becomes possible to avoid the situation where the user whose sleep depth became shallow notices the change of the volume and wakes up.
- the sound signal control unit restarts the fade-out process when the sleep depth estimated by the estimation unit becomes deep after the fade-out process is interrupted.
- the fade-out process is resumed in a state where sleep is deep. For this reason, it becomes possible to prevent the user from waking up by noticing the resumed volume change.
- the sleep detection unit estimates a sleep depth based on the biological information, and when the sleep depth reaches a depth corresponding to the sleep, the user It is desirable to detect that has fallen asleep. According to this aspect, falling asleep can be detected according to the depth of sleep.
- the sound signal control unit determines the time from the start of the fade-out process to the end thereof with reference to the history of changes in the sleep depth.
- the sleep cycle which is a periodic change in the depth of sleep, varies from user to user.
- the history of changes in sleep depth represents the user's past sleep cycle. For this reason, it becomes possible to adjust the time from the start to the end of the fade-out process according to the sleep cycle of the user. Therefore, the time from the start to the end of the fade-out process can be customized according to the user.
- a power supply unit that supplies power to the output unit is provided, and the sound signal control unit is configured to turn off the power supply to the output unit when the fade-out process is completed. It is desirable to control the part. According to this aspect, unnecessary power feeding to the output unit in which the amplitude of the sound signal is zero can be stopped.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
音響装置20は、利用者の生体の状態を示す生体情報を取得する生体情報取得部23と、生体情報に基づいて利用者が入眠したことを検出する入眠検出部24と、入眠検出部24が利用者が入眠したことを検出した時点から所定時間経過してから、音信号出力部21からの音信号の振幅を所定値に変更する音信号制御部25と、を備える。
Description
本発明は、制御装置および制御方法に関する。
利用者が安眠できるように、電子機器等の制御対象を制御する装置が知られている。
特許文献1には、出力音の音量を制御するスリープタイマーが記載されている。このスリープタイマーは、利用者にて設定された時間に基づいて、出力音の音量を下げ始めるタイミングを決定する。このスリープタイマーは、そのタイミングになると、出力音の音量を下げ始めるフェードアウト動作を実行する。
特許文献2には、利用者の睡眠状態に基づいて照明機器および映像音響機器を制御する就寝装置が記載されている。この就寝装置は、センサで利用者の生体情報を検出する。この就寝装置は、その生体情報に基づいて利用者の睡眠状態を判定する。この就寝装置は、利用者が入眠状態であると判定すると、照明の照度を低くしたり、映像音響機器の音量を下げたりする。
特許文献3には、利用者の覚醒度に基づいて音量を制御する音楽再生装置が記載されている。この音楽再生装置は、利用者の脳波を検出する。この音楽再生装置は、その検出結果に基づいて利用者の覚醒度を判定する。この音楽再生装置は、利用者が入眠状態にあると判定すると、音楽の音量を減少させる。この音楽再生装置は、利用者が睡眠状態にあると判定すると、音楽の再生を停止する。
特許文献1には、出力音の音量を制御するスリープタイマーが記載されている。このスリープタイマーは、利用者にて設定された時間に基づいて、出力音の音量を下げ始めるタイミングを決定する。このスリープタイマーは、そのタイミングになると、出力音の音量を下げ始めるフェードアウト動作を実行する。
特許文献2には、利用者の睡眠状態に基づいて照明機器および映像音響機器を制御する就寝装置が記載されている。この就寝装置は、センサで利用者の生体情報を検出する。この就寝装置は、その生体情報に基づいて利用者の睡眠状態を判定する。この就寝装置は、利用者が入眠状態であると判定すると、照明の照度を低くしたり、映像音響機器の音量を下げたりする。
特許文献3には、利用者の覚醒度に基づいて音量を制御する音楽再生装置が記載されている。この音楽再生装置は、利用者の脳波を検出する。この音楽再生装置は、その検出結果に基づいて利用者の覚醒度を判定する。この音楽再生装置は、利用者が入眠状態にあると判定すると、音楽の音量を減少させる。この音楽再生装置は、利用者が睡眠状態にあると判定すると、音楽の再生を停止する。
特許文献1に記載のスリープタイマーは、利用者の睡眠状態に関わりなく、利用者が設定した時間に基づいてフェードアウト動作の開始タイミングを決定する。このため、利用者が眠りの浅い入眠状態であるときに、出力音の音量が変化することがある。この場合、利用者は、その音量の変化に気づいて目が覚めてしまう可能性がある。
特許文献2に記載の就寝装置および特許文献3に記載の音楽再生装置は、利用者が入眠状態であるときに、出力音の音量または照明の照度が変化する。よって、この場合も、利用者は出力音の音量の変化または照明の照度の変化に気づいて目が覚めてしまう可能性がある。
特許文献2に記載の就寝装置および特許文献3に記載の音楽再生装置は、利用者が入眠状態であるときに、出力音の音量または照明の照度が変化する。よって、この場合も、利用者は出力音の音量の変化または照明の照度の変化に気づいて目が覚めてしまう可能性がある。
本発明は上述した事情に鑑みてなされたものであり、入眠状態に入った利用者が目を覚ましてしまうことを抑制することを解決課題とする。
本発明の制御装置の一態様は、利用者の生体の状態を示す生体情報に基づいて前記利用者が入眠したことを検出する入眠検出部と、前記入眠検出部が、前記利用者が入眠したことを検出した時点から所定時間が経過すると、制御対象機器の出力の大きさを所定値に調整する調整部とを備える。
本発明の制御装置の一態様は、利用者の生体の状態を示す生体情報に基づいて睡眠の深さを推定する推定部と、前記推定部で推定された睡眠の深さが入眠よりも深い所定の深さになると、出力部が出力する音信号の振幅を徐々に減らしてゼロとなるように前記出力部を制御するフェードアウト処理を実行する音信号制御部とを備える。
以下、制御対象機器の出力の大きさを所定値に調整する制御装置の一例として、音響装置20を説明する。
<第1実施形態>
図1は、本発明を適用した第1実施形態に係る音響装置20を含むシステム1の全体的な構成を示した図である。
システム1は、センサ10と音響装置20とスピーカ31および32とを含む。システム1は、夜間、ベッドBの上で仰向けの姿勢をとっている利用者Eがリラックスして眠ることができるように、スピーカ31および32から音を出力して利用者Eに聴かせる。
そして、システム1は、利用者Eが入眠すると、音量の変化で利用者Eが目覚めないように、入眠してから時間が経過して利用者Eの眠りが入眠時よりも深くなった可能性が高くなった段階で、音の出力を停止する。
<第1実施形態>
図1は、本発明を適用した第1実施形態に係る音響装置20を含むシステム1の全体的な構成を示した図である。
システム1は、センサ10と音響装置20とスピーカ31および32とを含む。システム1は、夜間、ベッドBの上で仰向けの姿勢をとっている利用者Eがリラックスして眠ることができるように、スピーカ31および32から音を出力して利用者Eに聴かせる。
そして、システム1は、利用者Eが入眠すると、音量の変化で利用者Eが目覚めないように、入眠してから時間が経過して利用者Eの眠りが入眠時よりも深くなった可能性が高くなった段階で、音の出力を停止する。
センサ10は、例えば、シート状の圧電素子である。センサ10は、ベッドBのマットレスの下部などに配置される。利用者EがベッドBに横たわると、利用者Eの生体の状態を示す生体情報が、センサ10によって検出される。センサ10は、利用者Eの呼吸、心拍、および体動などに起因する利用者Eの身体の様々な動きを包含する情報を、生体情報として検出する。なお、センサ10として、シート状の圧電素子ではなく、例えば、腕時計型等のウェアラブル機器に搭載され利用者Eの生体情報を検出するセンサが用いられてもよい。
音響装置20は、センサ10から出力された生体情報を取得する。音響装置20は、この生体情報に基づいて利用者Eの睡眠状態(入眠状態または睡眠深度)を検出する。
スピーカ31および32は、仰向けの姿勢にある利用者Eにステレオの音を出力できる位置に配置されている。スピーカ31は、音響装置20から出力されるステレオのレフト(L)の信号を内蔵アンプで増幅する。スピーカ31は、増幅後のレフト(L)の信号に応じた音を出力する。同様に、スピーカ32は、音響装置20から出力されるステレオのライト(R)の信号を内蔵アンプで増幅する。スピーカ32は、増幅後のライト(R)の信号に応じた音を出力する。なお、スピーカ31および32の代わりに、ヘッドフォンが用いられてもよい。
図2は、センサ10およびスピーカ30と、音響装置20の構成図である。なお、図2では、図1に示したスピーカ31および32をまとめて「スピーカ30」として示している。
音響装置20は、CPU(Central Processing Unit)101と、メモリ102と、音信号出力部21と、電源部22と、を含む。CPU101は、制御装置の一例である。CPU101は、メモリ102に記憶された制御プログラムを読み取り実行することで、生体情報取得部23、入眠検出部24、および音信号制御部25を実現する。音信号出力部21と電源部22は、それぞれ、ハードウェア(例えば、音信号出力回路、電源回路)にて構成される。なお、生体情報取得部23と、入眠検出部24と、音信号制御部25は、それぞれ、ハードウェア(例えば、生体情報取得回路、入眠検出回路、音信号制御回路)にて構成されてもよい。
音響装置20は、CPU(Central Processing Unit)101と、メモリ102と、音信号出力部21と、電源部22と、を含む。CPU101は、制御装置の一例である。CPU101は、メモリ102に記憶された制御プログラムを読み取り実行することで、生体情報取得部23、入眠検出部24、および音信号制御部25を実現する。音信号出力部21と電源部22は、それぞれ、ハードウェア(例えば、音信号出力回路、電源回路)にて構成される。なお、生体情報取得部23と、入眠検出部24と、音信号制御部25は、それぞれ、ハードウェア(例えば、生体情報取得回路、入眠検出回路、音信号制御回路)にて構成されてもよい。
音信号出力部21は、音信号をスピーカ30に出力する。スピーカ30は、音信号に応じた音を出力する。スピーカ30は、音信号の振幅が大きいほど、音信号に応じた音の音量を大きくする。音信号出力部21は、出力部の一例である。電源部22は、音信号出力部21に電力を給電する。
生体情報取得部23は、センサ10が出力した生体情報を受けることで生体情報を取得する。なお、生体情報取得部23が生体情報を取得する他の手法として、生体情報取得部23がセンサ10から生体情報を獲得する手法が用いられてもよい。
入眠検出部24は、生体情報取得部23が取得した生体情報に基づいて、利用者Eの入眠を検出する。入眠を検出する手法として、例えば、以下に述べる2つの検出手法がある。
第1の検出手法は、利用者Eの体動に基づいて入眠を検出する手法である。具体的には、利用者Eの寝返りなどの体の動きがある時間継続して停止した場合に、入眠検出部24は入眠を検出する。上述したように、生体情報には、心拍および呼吸の他に、利用者Eの体の動きに伴う体動の成分が含まれている。入眠検出部24は、生体情報から体動の成分を抽出する。体動の成分が所定レベル以下となる状態がある時間継続すると、入眠検出部24は入眠を検出する。また、利用者Eの体動と心拍周期を組み合わせて、入眠検出部24は入眠を検出してもよい。人が入眠に至る過程では、心拍周期が次第に長くなる。そこで、入床時の心拍周期よりも所定時間だけ心拍周期が長くなり、且つ、体動の成分が所定レベル以下となる状態がある時間継続した場合に、入眠検出部24は入眠を検出してもよい。
第1の検出手法は、利用者Eの体動に基づいて入眠を検出する手法である。具体的には、利用者Eの寝返りなどの体の動きがある時間継続して停止した場合に、入眠検出部24は入眠を検出する。上述したように、生体情報には、心拍および呼吸の他に、利用者Eの体の動きに伴う体動の成分が含まれている。入眠検出部24は、生体情報から体動の成分を抽出する。体動の成分が所定レベル以下となる状態がある時間継続すると、入眠検出部24は入眠を検出する。また、利用者Eの体動と心拍周期を組み合わせて、入眠検出部24は入眠を検出してもよい。人が入眠に至る過程では、心拍周期が次第に長くなる。そこで、入床時の心拍周期よりも所定時間だけ心拍周期が長くなり、且つ、体動の成分が所定レベル以下となる状態がある時間継続した場合に、入眠検出部24は入眠を検出してもよい。
第2の検出手法は、生体情報に基づいて、睡眠の深さを推定し、推定された睡眠の深さが所定の深さになると、入眠を検出する手法である。
人の睡眠は、浅い眠りのレム睡眠と、深い眠りのノンレム睡眠に大別される。人の睡眠は、入眠時には最初にノンレム睡眠に移行し、次に浅い眠りのレム睡眠へと移行する。人の眠りは、性質の異なる2種類の睡眠を、約90分周期で一晩に4~5回、一定のリズムで繰り返している。このように人の睡眠は、その深さが約90分周期で変動する。以下の説明では、一晩の眠りにおける睡眠の深さの変動を睡眠サイクルと称する。
図3は、睡眠サイクルの一例を示した図である。
図3に示した例では、利用者Eが安静から熟睡に移行し、その後、起床に至るまでの睡眠サイクルが、睡眠の深さを示す睡眠深度で示されている。図3に示した例では、睡眠深度が、「離床Stand」、「覚醒Wake」、「レム睡眠REM」、「第1ステージST1」、「第2ステージST2」、「第3ステージST3」、および「第4ステージST4」の7段階で示されている。この7段階の睡眠深度は、「離床Stand」、「覚醒Wake」、「レム睡眠REM」、「第1ステージST1」、「第2ステージST2」、「第3ステージST3」、「第4ステージST4」の順に深くなる。この7段階の睡眠深度は、生体情報取得部23が取得した生体情報に基づいて特定される。入眠検出部24は、例えば、生体情報から抽出した心拍周期を用いて、睡眠深度を推定する。
人の睡眠は、浅い眠りのレム睡眠と、深い眠りのノンレム睡眠に大別される。人の睡眠は、入眠時には最初にノンレム睡眠に移行し、次に浅い眠りのレム睡眠へと移行する。人の眠りは、性質の異なる2種類の睡眠を、約90分周期で一晩に4~5回、一定のリズムで繰り返している。このように人の睡眠は、その深さが約90分周期で変動する。以下の説明では、一晩の眠りにおける睡眠の深さの変動を睡眠サイクルと称する。
図3は、睡眠サイクルの一例を示した図である。
図3に示した例では、利用者Eが安静から熟睡に移行し、その後、起床に至るまでの睡眠サイクルが、睡眠の深さを示す睡眠深度で示されている。図3に示した例では、睡眠深度が、「離床Stand」、「覚醒Wake」、「レム睡眠REM」、「第1ステージST1」、「第2ステージST2」、「第3ステージST3」、および「第4ステージST4」の7段階で示されている。この7段階の睡眠深度は、「離床Stand」、「覚醒Wake」、「レム睡眠REM」、「第1ステージST1」、「第2ステージST2」、「第3ステージST3」、「第4ステージST4」の順に深くなる。この7段階の睡眠深度は、生体情報取得部23が取得した生体情報に基づいて特定される。入眠検出部24は、例えば、生体情報から抽出した心拍周期を用いて、睡眠深度を推定する。
入眠検出部24は、生体情報取得部23が取得した生体情報に基づいて、利用者Eの睡眠深度が覚醒状態から第1ステージST1に到達した状態を、入眠として検出する。このため、入眠検出部24は、利用者Eの睡眠深度が、第2ステージST2、第3ステージST3または第4ステージST4であるか否かを検出する機能を有さなくてよい。入眠検出部24が、この検出機能を有さない場合、この検出機能を有する入眠検出部24に比べて、入眠検出部24の機能の簡略化を図ることができる。
なお、睡眠の深度が7段階の例を示したが、睡眠の深度は、例えば5段階でもよい。この場合、例えば、第1ステージST1および第2ステージST2が「浅い眠り」として1つにまとめられ、第3ステージST3および第4ステージST4が「深い眠り」として1つにまとめられる。この場合、入眠検出部24は、生体情報取得部23が取得した生体情報に基づいて、利用者Eの睡眠深度が覚醒状態から「浅い眠り」に到達した状態を、入眠として検出する。
なお、睡眠の深度が7段階の例を示したが、睡眠の深度は、例えば5段階でもよい。この場合、例えば、第1ステージST1および第2ステージST2が「浅い眠り」として1つにまとめられ、第3ステージST3および第4ステージST4が「深い眠り」として1つにまとめられる。この場合、入眠検出部24は、生体情報取得部23が取得した生体情報に基づいて、利用者Eの睡眠深度が覚醒状態から「浅い眠り」に到達した状態を、入眠として検出する。
音信号制御部25は、入眠検出部24が入眠を検出すると、音信号出力部21の音信号の振幅を制御する。音信号制御部25は、調整部の一例である。
音信号制御部25が行う制御の態様としては、以下の「態様1」と「態様2」とがある。
「態様1」:音信号の振幅が一度にゼロに変更される(消音、停止)。
「態様2」:音信号の振幅が徐々に小さくなる(フェードアウト)。
なお、態様1と態様2とは互いに独立している。つまり、音信号制御部25は、態様1の制御を行うか、または、態様2の制御を行う。
音信号制御部25が行う制御の態様としては、以下の「態様1」と「態様2」とがある。
「態様1」:音信号の振幅が一度にゼロに変更される(消音、停止)。
「態様2」:音信号の振幅が徐々に小さくなる(フェードアウト)。
なお、態様1と態様2とは互いに独立している。つまり、音信号制御部25は、態様1の制御を行うか、または、態様2の制御を行う。
<態様1>
まず、「態様1」について説明する。
態様1では、音信号制御部25は、入眠検出部24が入眠を検出した時点から所定時間(例えば20分)経過してから、音信号出力部21の音信号の振幅をゼロに変更する。
まず、「態様1」について説明する。
態様1では、音信号制御部25は、入眠検出部24が入眠を検出した時点から所定時間(例えば20分)経過してから、音信号出力部21の音信号の振幅をゼロに変更する。
ここで、所定時間について説明する。
睡眠は入眠後に深くなっていく。このため、音信号制御部25が、入眠検出時から所定時間経過したタイミングで音信号の振幅をゼロに変更すると、利用者Eの睡眠深度が入眠よりも深い睡眠状態であるときに音量の変更を行うことが可能になる。よって、音量の変更が利用者Eに気づかれ難くなる。
また、一般的に、人は入眠してから15分から20分程度経過すると深睡眠状態になると言われている。このため、所定時間として、人が入眠してから深睡眠状態になるまでに要する時間(例えば15分~20分の時間)が用いられれば、高い確率で深睡眠状態のときに音量を変更することができる。よって、音量の変更が利用者Eに気づかれ難くなる。なお、所定時間は15分~20分に限らず適宜変更可能である。
睡眠は入眠後に深くなっていく。このため、音信号制御部25が、入眠検出時から所定時間経過したタイミングで音信号の振幅をゼロに変更すると、利用者Eの睡眠深度が入眠よりも深い睡眠状態であるときに音量の変更を行うことが可能になる。よって、音量の変更が利用者Eに気づかれ難くなる。
また、一般的に、人は入眠してから15分から20分程度経過すると深睡眠状態になると言われている。このため、所定時間として、人が入眠してから深睡眠状態になるまでに要する時間(例えば15分~20分の時間)が用いられれば、高い確率で深睡眠状態のときに音量を変更することができる。よって、音量の変更が利用者Eに気づかれ難くなる。なお、所定時間は15分~20分に限らず適宜変更可能である。
ここで、音信号制御部25は、入眠検出部24が入眠を検出した時点から所定時間が経過すると、制御対象機器の制御量である音信号の振幅を所定値に調整する制御信号を音信号出力部21に出力する。なお、音信号出力部21は制御対象機器の一例であり、振幅ゼロは所定値の一例である。また、所定値は、振幅ゼロに限らず、入眠が検出されてから所定時間が経過するまでの期間での音信号の振幅より小さい振幅が用いられればよい。
次に、「態様1」の動作をする。
図4は、「態様1」の動作を説明するためのフローチャートである。態様1では、図4に示した動作が繰り返される。
以下では、図1に示したように、利用者Eがセンサ10の配置されたベッドBに横たわり、音信号出力部21がスピーカ30に音信号を出力しているとする。このとき、音信号出力部21は、音信号の振幅を一定にした状態で、音信号をスピーカ30に出力しているとする。
図4は、「態様1」の動作を説明するためのフローチャートである。態様1では、図4に示した動作が繰り返される。
以下では、図1に示したように、利用者Eがセンサ10の配置されたベッドBに横たわり、音信号出力部21がスピーカ30に音信号を出力しているとする。このとき、音信号出力部21は、音信号の振幅を一定にした状態で、音信号をスピーカ30に出力しているとする。
生体情報取得部23は、センサ10から出力された生体情報を取得すると(ステップS401)、その生体情報を入眠検出部24に出力する。
入眠検出部24は、生体情報取得部23から生体情報を受けると、その生体情報に基づいて、利用者Eが入眠したか否かを判断する(ステップS402)。
入眠検出部24は、利用者Eが入眠したと判断した場合(ステップS402でYES)、入眠を示す入眠情報を音信号制御部25に出力する。
入眠検出部24は、利用者Eが入眠したと判断した場合(ステップS402でYES)、入眠を示す入眠情報を音信号制御部25に出力する。
音信号制御部25は、入眠検出部24から入眠情報を受けると、入眠情報を受けてから所定時間(例えば20分)経過するまで待つ(ステップS403でNO)。具体的には、音信号制御部25は、入眠情報を受け付けた時点で、計時を開始して所定時間に達するまで待機する。
音信号制御部25が入眠情報を受けてから所定時間が経過すると(ステップS403でYES)、音信号制御部25は、音信号出力部21を制御して、音信号出力部21から出力される音信号の振幅をゼロにする(ミュートする)(ステップS404)。
図5は、音信号制御部25が入眠情報を受けたタイミング(入眠検出タイミング)taから所定時間T10が経過したタイミングtbで音信号の振幅Am1がゼロになる例を示した図である。
一方、ステップS402で入眠検出部24が入眠を検出しない場合、図4に示した処理が終了し、その後、再び、図4に示した処理が実行される。
本実施形態の態様1によれば、音信号制御部25は、入眠検出部24が入眠を検出した時点から所定時間が経過すると、音信号の振幅をゼロに変更する。このため、入眠時よりも睡眠深度が深くなった時点で音信号の振幅を変更することが可能になる。よって、入眠時に音信号の振幅を変更する構成に比べて、利用者が音信号の振幅の変更に伴う音量の変更に気づいて目を覚ましてしまうことを抑制できる。
なお、本実施形態では、音信号制御部25は、入眠が検出されてから所定時間が経過するまで、音信号出力部21からの音信号の振幅を維持する。
<態様2>
次に、「態様2」について説明する。
態様2では、音信号制御部25は、入眠検出部24が、利用者Eが入眠したことを検出すると、音信号の振幅を維持した後に音信号の振幅を徐々に減らして入眠の検出時から所定時間(例えば20分)が経過した時点で音信号の振幅がゼロとなるように音信号出力部21を制御するフェードアウト処理を実行する。以下、態様2で実行されるフェードアウト処理を「第1フェードアウト処理」と称する。
次に、「態様2」について説明する。
態様2では、音信号制御部25は、入眠検出部24が、利用者Eが入眠したことを検出すると、音信号の振幅を維持した後に音信号の振幅を徐々に減らして入眠の検出時から所定時間(例えば20分)が経過した時点で音信号の振幅がゼロとなるように音信号出力部21を制御するフェードアウト処理を実行する。以下、態様2で実行されるフェードアウト処理を「第1フェードアウト処理」と称する。
続いて、「態様2」の動作をする。
図6は、「態様2」の動作を説明するためのフローチャートである。態様2では、図6に示した動作が繰り返される。なお、図6において、図4に示した処理と同一内容の処理には同一符号を付してある。以下、図6に示した処理のうち、図4に示した処理と異なる点を中心に説明する。
図6は、「態様2」の動作を説明するためのフローチャートである。態様2では、図6に示した動作が繰り返される。なお、図6において、図4に示した処理と同一内容の処理には同一符号を付してある。以下、図6に示した処理のうち、図4に示した処理と異なる点を中心に説明する。
音信号制御部25は、入眠検出部24から入眠情報を受けると、入眠情報を受けてから第1時間経過するまで待つ(ステップS601でNO)。ここで、第1時間は、上述した所定時間よりも短い時間であればよい。また、第1時間は、固定時間でもよいし、上述した所定時間よりも短い時間内で音信号制御部25にて変更されてもよい。
音信号制御部25が入眠情報を受けてから第1時間が経過すると(ステップS601でYES)、音信号制御部25は、音信号出力部21を制御して、音信号の振幅を徐々に減らし音信号の振幅を減らし始めてから第2時間経過した時点で音信号の振幅をゼロにする(ステップS602)。ここで、第2時間は、上述した所定時間から第1時間を差し引いた時間である。よって、「第1時間+第2時間=上述した所定時間」の関係が成り立つ。
図6に示した処理のうち、ステップS601とステップS602とで第1フェードアウト処理が構成される。
図7は、音信号制御部25が入眠情報を受けたタイミング(入眠検出タイミング)taから第1時間T11の間、音信号の振幅Am2が維持され、第1時間T11が経過した後、音信号の振幅が徐々に減らされて第2時間T12が経過した時点(タイミングtc)で音信号の振幅がゼロになる例を示した図である。なお、タイミングtcは、図5に示したタイミングtbに対応する。
図7に示した例では、第1フェードアウト処理は、タイミングtaからタイミングtcの間の期間で実行される。
図7に示した例では、第1フェードアウト処理は、タイミングtaからタイミングtcの間の期間で実行される。
本実施形態の態様2によれば、音信号制御部25は、入眠検出部24が利用者が入眠したことを検出すると、音信号の振幅を維持した後に音信号の振幅を徐々に減らす。このため、入眠時よりも睡眠深度が深くなった時点で、音信号に応じた音の音量を徐々に小さくする動作を開始することが可能となる。よって、本態様によれば、入眠の検出時から音量が徐々に小さくなるように音信号の振幅を徐々に小さくする構成に比べて、利用者が音量の変更に気づいて目を覚ましてしまうことを抑制できる。
<第1実施形態の変形例>
図1では、センサ10が生体情報を有線通信で音響装置20に伝送する例を示した。しかしながら、例えば図8に示した変形例のように、生体情報は、無線通信で音響装置20Aに伝送されてもよい。なお、図8において、図2に示したものと同一構成のものには同一符号を付してある。以下、図8に示した構成のうち、図2に示した処理と異なる点を中心に説明する。
図8に示したシステム1Aでは、センサ10は、無線通信機能を有した携帯端末40に対して有線通信で生体情報を送信する。携帯端末40は、センサ10から受信した生体情報を、音響装置20Aに無線送信する。音響装置20Aは、図2に示した音響装置20の構成に加えて通信部26を有している。通信部26は、携帯端末40から無線送信された生体情報を受信すると、その生体情報を生体情報取得部23に出力する。
本変形例によれば、音響装置20Aは、センサ10が検出した生体情報を無線通信で受信可能となる。なお、携帯端末40の代わりに、無線通信機能を有した機器、例えば、PC(パーソナルコンピュータ)が用いられてもよいし、センサ10に無線通信部が設けられ、センサ10が直接通信部26と無線通信してもよい。
図1では、センサ10が生体情報を有線通信で音響装置20に伝送する例を示した。しかしながら、例えば図8に示した変形例のように、生体情報は、無線通信で音響装置20Aに伝送されてもよい。なお、図8において、図2に示したものと同一構成のものには同一符号を付してある。以下、図8に示した構成のうち、図2に示した処理と異なる点を中心に説明する。
図8に示したシステム1Aでは、センサ10は、無線通信機能を有した携帯端末40に対して有線通信で生体情報を送信する。携帯端末40は、センサ10から受信した生体情報を、音響装置20Aに無線送信する。音響装置20Aは、図2に示した音響装置20の構成に加えて通信部26を有している。通信部26は、携帯端末40から無線送信された生体情報を受信すると、その生体情報を生体情報取得部23に出力する。
本変形例によれば、音響装置20Aは、センサ10が検出した生体情報を無線通信で受信可能となる。なお、携帯端末40の代わりに、無線通信機能を有した機器、例えば、PC(パーソナルコンピュータ)が用いられてもよいし、センサ10に無線通信部が設けられ、センサ10が直接通信部26と無線通信してもよい。
<第2実施形態>
図9は、本発明を適用した第2実施形態に係る音響装置20Bを含むシステム1Bを示した図である。なお、図9において、図2に示したものと同一構成のものには同一符号を付してある。
図9は、本発明を適用した第2実施形態に係る音響装置20Bを含むシステム1Bを示した図である。なお、図9において、図2に示したものと同一構成のものには同一符号を付してある。
第1実施形態では、入眠検出部24が入眠を検出すると、音信号出力部21が制御された。一方、第2実施形態では、入眠検出部24の代わりに、利用者Eの睡眠の深さを推定する推定部27が用いられ、推定部27の推定結果に基づいて音信号出力部21が制御される。以下、音響装置20Bについて、図2に示した音響装置20と異なる点を中心に説明する。
音響装置20Bは、入眠検出部24の代わりに推定部27を有し音信号制御部25の代わりに音信号制御部25Bを有している点が、音響装置20と異なる。音響装置20Bは、CPU101Bと、メモリ102Bと、音信号出力部21と、電源部22と、を含む。CPU101Bは、メモリ102Bに記憶された制御プログラムを読み取り実行することで、生体情報取得部23、推定部27、および音信号制御部25Bを実現する。なお、生体情報取得部23と、推定部27と、音信号制御部25Bは、それぞれ、ハードウェア(例えば、生体情報取得回路、推定回路、音信号制御回路)にて構成されてもよい。
推定部27は、生体情報取得部23が取得した生体情報に基づいて、利用者Eの睡眠の深さ(睡眠深度)を推定する。以下では、推定部27は、生体情報に基づいて、利用者Eの睡眠深度が、図3に示した7段階の睡眠深度のいずれであるかを推定するとする。
音信号制御部25Bは、推定部27の推定結果に基づいて、音信号出力部21の音信号の振幅を制御する。
音信号制御部25Bが行う制御の態様としては、以下の「態様3」と「態様4」とがある。
「態様3」:睡眠の深さが入眠に対応する深さになると、音信号の振幅が制御される。以下では、入眠に対応する深さとして、第1ステージST1が用いられる。
「態様4」:睡眠の深さが入眠よりも深い所定の深さになると、音信号の振幅が制御される。以下では、入眠よりも深い所定の深さとして、第2ステージST2が用いられる。
なお、態様3と態様4とは互いに独立している。つまり、音信号制御部25Bは、態様3の制御を行うか、または、態様4の制御を行う。
音信号制御部25Bが行う制御の態様としては、以下の「態様3」と「態様4」とがある。
「態様3」:睡眠の深さが入眠に対応する深さになると、音信号の振幅が制御される。以下では、入眠に対応する深さとして、第1ステージST1が用いられる。
「態様4」:睡眠の深さが入眠よりも深い所定の深さになると、音信号の振幅が制御される。以下では、入眠よりも深い所定の深さとして、第2ステージST2が用いられる。
なお、態様3と態様4とは互いに独立している。つまり、音信号制御部25Bは、態様3の制御を行うか、または、態様4の制御を行う。
<態様3>
態様3では、音信号制御部25Bは、推定部27が入眠に対応する深さ(第1ステージST1)を推定したとき、換言すると、推定部27が入眠を検出すると、上述した態様2で説明した第1フェードアウト処理を実行する。
態様3では、音信号制御部25Bは、推定部27が入眠に対応する深さ(第1ステージST1)を推定したとき、換言すると、推定部27が入眠を検出すると、上述した態様2で説明した第1フェードアウト処理を実行する。
次に、「態様3」の動作を説明する。
図10は、「態様3」の動作を説明するためのフローチャートである。態様3では、図10に示した動作が繰り返される。なお、図10において、図6に示した処理と同一内容の処理には同一符号を付してある。図10に示した処理では、図6に示したステップS402の代わりに、ステップS1001が実行される。以下、図10に示した処理のうち、図6に示した処理と異なる点を中心に説明する。
図10は、「態様3」の動作を説明するためのフローチャートである。態様3では、図10に示した動作が繰り返される。なお、図10において、図6に示した処理と同一内容の処理には同一符号を付してある。図10に示した処理では、図6に示したステップS402の代わりに、ステップS1001が実行される。以下、図10に示した処理のうち、図6に示した処理と異なる点を中心に説明する。
推定部27は、生体情報取得部23から生体情報を受けると、その生体情報に基づいて、利用者Eの睡眠深度を推定する。続いて、推定部27は、利用者Eの睡眠深度が第1ステージST1であるか否かを判断する(ステップS1001)。
利用者Eの睡眠深度が第1ステージST1であると(ステップS1001でYES)、推定部27は、入眠情報を音信号制御部25Bに出力する。音信号制御部25Bは、入眠情報を受けると、ステップS601およびステップS602を実行する。
利用者Eの睡眠深度が第1ステージST1であると(ステップS1001でYES)、推定部27は、入眠情報を音信号制御部25Bに出力する。音信号制御部25Bは、入眠情報を受けると、ステップS601およびステップS602を実行する。
一方、ステップS1001で利用者Eの睡眠深度が第1ステージST1でない場合、図10に示した処理が終了し、その後、再び、図10に示した処理が実行される。
態様3における音信号の振幅の推移は、図7に示した振幅Am2の推移と同様となる。
本実施形態の態様3によれば、音信号制御部25Bは、推定部27が利用者Eが入眠したことを検出すると、音信号の振幅を維持した後に音信号の振幅を徐々に減らす。このため、入眠時よりも睡眠深度が深くなった時点で、音信号に応じた音の音量を徐々に小さくする動作を開始することが可能となる。よって、本態様によれば、入眠の検出時から音量が徐々に小さくなるように音信号の振幅を徐々に小さくする構成に比べて、利用者が音量の変更に気づいて目を覚ましてしまうことを抑制できる。
<本実施形態の態様3の変形例>
本実施形態の態様3では、推定部27が、入眠検出後の利用者Eの睡眠深度を推定可能となる。よって、音信号制御部25Bは、推定部27の推定結果を得ることで、睡眠深度に応じた制御を行うことが可能になる。
本実施形態の態様3では、推定部27が、入眠検出後の利用者Eの睡眠深度を推定可能となる。よって、音信号制御部25Bは、推定部27の推定結果を得ることで、睡眠深度に応じた制御を行うことが可能になる。
このため、音信号制御部25Bは、第1フェードアウト処理中に推定部27で推定された睡眠の深さが浅くなったことを検出すると、第1フェードアウト処理を中断して、音信号の振幅を維持するように音信号出力部21を制御してもよい。この場合、睡眠の深さが浅くなると音量の変更を中止できるので、睡眠の深さが浅くなった利用者が音量の変更に気づいて目を覚ます状況を回避可能になる。
また、音信号制御部25Bは、第1フェードアウト処理を中断した後、推定部27で推定された睡眠の深さが深くなったことを検出すると、第1フェードアウト処理を再開してもよい。この場合、睡眠が深くなった状態で、第1フェードアウト処理を再開するので、利用者が、再開された音量の変更に気づいて目を覚ましてしまうことを抑制可能になる。
図11は、第1フェードアウト処理のうち音信号の振幅を徐々に減らす処理(以下「振幅低減処理」と称する)が行われている間に、睡眠の深さが浅くなると、振幅低減処理が中断され、その後、睡眠の深さが深くなると、振幅低減処理が再開される処理の一例を説明するためのフローチャートである。
なお、推定部27は、睡眠深度の推定結果を、逐次、音信号制御部25Bに出力するものとする。
なお、推定部27は、睡眠深度の推定結果を、逐次、音信号制御部25Bに出力するものとする。
音信号制御部25Bは、振幅低減処理を開始すると(ステップS1101)、推定部27の最新の推定結果が示す睡眠深度が、振幅低減処理を中断するための基準(以下「第1基準」と称する)となる睡眠の深さよりも浅くなったか否かを判断する(ステップS1102)。第1基準としては、例えば、第2ステージST2が用いられる。なお、第1基準は、第2ステージST2に限らず適宜変更可能である。
最新の推定結果が示す睡眠深度が第1基準(第2ステージST2)よりも浅くなると(ステップS1102でYES)、音信号制御部25Bは、振幅低減処理を中断する(ステップS1103)。例えば、睡眠深度が第2ステージST2から第1ステージST1へ変わった場合、音信号制御部25Bは振幅低減処理を中断する。
続いて、音信号制御部25Bは、推定部27の最新の推定結果が示す睡眠深度が、振幅低減処理を再開するための基準(以下「第2基準」と称する)となる睡眠の深さよりも深くなったか否かを判断する(ステップS1104)。第2基準としては、例えば、第2ステージST2が用いられる。なお、第2基準は、第2ステージST2に限らず適宜変更可能である。また、第2基準は、第1基準と同一のステージ(睡眠深度)でなくてもよい。
最新の推定結果が示す睡眠深度が、第2基準よりも深くなっていない場合(ステップS1104でNO)、音信号制御部25Bは、処理をステップS1103に戻し、振幅低減処理の中断を継続する。
一方、最新の推定結果が示す睡眠深度が、第2基準よりも深くなっている場合(ステップS1104でYES)、音信号制御部25Bは、中断していた振幅低減処理を再開する(ステップS1105)。
一方、最新の推定結果が示す睡眠深度が、第2基準よりも深くなっている場合(ステップS1104でYES)、音信号制御部25Bは、中断していた振幅低減処理を再開する(ステップS1105)。
続いて、音信号制御部25Bは、音信号の振幅がゼロになっているかを判断する(ステップS1106)。
音信号制御部25Bは、音信号の振幅がゼロになっていないと(ステップS1106でNO)、処理をステップS1102に戻す。一方、音信号の振幅がゼロになっていると(ステップS1106でYES)、音信号制御部25Bは、振幅低減処理を終了する。ここで、振幅低減処理の終了は、フェードアウト処理の終了を意味する。
音信号制御部25Bは、音信号の振幅がゼロになっていないと(ステップS1106でNO)、処理をステップS1102に戻す。一方、音信号の振幅がゼロになっていると(ステップS1106でYES)、音信号制御部25Bは、振幅低減処理を終了する。ここで、振幅低減処理の終了は、フェードアウト処理の終了を意味する。
なお、最新の推定結果が示す睡眠深度が、第1基準よりも浅くなっていないと(ステップS1102でNO)、音信号制御部25Bは、処理をステップS1106に進める。
図12は、音信号制御部25Bが入眠情報を受けたタイミング(入眠検出タイミング)taから第1時間T11の経過後に振幅低減処理が開始され、その後、タイミングtdで利用者Eの睡眠深度が第1基準よりも浅くなり、その後、タイミングteで利用者Eの睡眠深度が第2基準よりも深くなった状況での音信号の振幅Am3の例を示した図である。
図12に示すように、利用者Eの睡眠深度が第1基準よりも浅くなったタイミングtdで振幅低減処理が中断され、利用者Eの睡眠深度が第2基準よりも深くなったタイミングteで振幅低減処理が再開される。
図12に示すように、利用者Eの睡眠深度が第1基準よりも浅くなったタイミングtdで振幅低減処理が中断され、利用者Eの睡眠深度が第2基準よりも深くなったタイミングteで振幅低減処理が再開される。
<態様4>(第2フェードアウト処理)
次に、「態様4」について説明する。
態様4では、音信号制御部25Bは、推定部27で推定された睡眠の深さが入眠よりも深い所定の深さ(例えば、第2ステージST2)になったことを検出すると、音信号の振幅を徐々に減らしてゼロとなるように音信号出力部21を制御するフェードアウト処理(以下「第2フェードアウト処理」と称する)を実行する。
次に、「態様4」について説明する。
態様4では、音信号制御部25Bは、推定部27で推定された睡眠の深さが入眠よりも深い所定の深さ(例えば、第2ステージST2)になったことを検出すると、音信号の振幅を徐々に減らしてゼロとなるように音信号出力部21を制御するフェードアウト処理(以下「第2フェードアウト処理」と称する)を実行する。
続いて、「態様4」の動作を説明する。
図13は、「態様4」の動作を説明するためのフローチャートである。態様4では、図13に示した動作が繰り返される。なお、図13において、図4に示した処理と同一内容の処理には同一符号を付してある。以下、図13に示した処理のうち、図4に示した処理と異なる点を中心に説明する。
図13は、「態様4」の動作を説明するためのフローチャートである。態様4では、図13に示した動作が繰り返される。なお、図13において、図4に示した処理と同一内容の処理には同一符号を付してある。以下、図13に示した処理のうち、図4に示した処理と異なる点を中心に説明する。
推定部27は、生体情報取得部23から生体情報を受けると、その生体情報に基づいて、利用者Eの睡眠深度を推定する。続いて、推定部27は、利用者Eの睡眠深度の推定結果を音信号制御部25Bに出力する。
音信号制御部25Bは、推定部27の推定結果を受けると、その推定結果が第2ステージST2を示すか否かを判断する(ステップS1301)。
音信号制御部25Bは、推定部27の推定結果が第2ステージST2を示す場合(ステップS1301のYES)、第2フェードアウト処理を実行する(ステップS1302)。
一方、推定部27の推定結果が第2ステージST2を示さない場合(ステップS1301でNO)、図13に示した処理が終了し、その後、再び、図13に示した処理が実行される。
音信号制御部25Bは、推定部27の推定結果を受けると、その推定結果が第2ステージST2を示すか否かを判断する(ステップS1301)。
音信号制御部25Bは、推定部27の推定結果が第2ステージST2を示す場合(ステップS1301のYES)、第2フェードアウト処理を実行する(ステップS1302)。
一方、推定部27の推定結果が第2ステージST2を示さない場合(ステップS1301でNO)、図13に示した処理が終了し、その後、再び、図13に示した処理が実行される。
図14は、音信号制御部25Bが第2ステージST2を示す推定結果を受けたタイミングtfから音信号の振幅Am4が徐々に減らされて第3時間T13が経過した時点(タイミングtg)で音信号の振幅Am4がゼロになる例を示した図である。
図14に示した例では、第2フェードアウト処理は、タイミングtfからタイミングtgの間の期間で実行される。
図14に示した例では、第2フェードアウト処理は、タイミングtfからタイミングtgの間の期間で実行される。
本実施形態の態様4によれば、睡眠の深さが入眠よりも深い所定の深さになると、第2フェードアウト処理が実行される。このため、入眠の検出時から音信号に応じた音の音量を徐々に小さくする構成に比べて、利用者が音量の変更に気づいて目を覚ましてしまうことを抑制できる。
本態様においても、本実施形態の態様3の変形例に準じて、音信号制御部25Bは、第2フェードアウト処理中に推定部27で推定された睡眠の深さが浅くなったことを検知すると、第2フェードアウト処理を中断して、音信号の振幅を維持するように音信号出力部21を制御してもよい。また、音信号制御部25Bは、第2フェードアウト処理を中断した後、推定部27で推定された睡眠の深さが深くなったことを検知すると、第2フェードアウト処理を再開してもよい。
<第2実施形態の変形例>
第2実施形態においても、例えば図15に示した変形例のように、生体情報が、無線通信で音響装置20Cに伝送されてもよい。図15において、図8または図9に示したものと同一構成のものには同一符号を付してある。図15に示したシステム1Cでは、携帯端末40は、センサ10から受信した生体情報を、音響装置20Cに無線送信する。音響装置20Cは、図9に示した音響装置20の構成の他に通信部26を有している。なお、携帯端末40の代わりに、無線通信機能を有した機器、例えば、PC(パーソナルコンピュータ)が用いられてもよいし、センサ10に無線通信部が設けられ、センサ10が直接通信部26と無線通信してもよい。
第2実施形態においても、例えば図15に示した変形例のように、生体情報が、無線通信で音響装置20Cに伝送されてもよい。図15において、図8または図9に示したものと同一構成のものには同一符号を付してある。図15に示したシステム1Cでは、携帯端末40は、センサ10から受信した生体情報を、音響装置20Cに無線送信する。音響装置20Cは、図9に示した音響装置20の構成の他に通信部26を有している。なお、携帯端末40の代わりに、無線通信機能を有した機器、例えば、PC(パーソナルコンピュータ)が用いられてもよいし、センサ10に無線通信部が設けられ、センサ10が直接通信部26と無線通信してもよい。
<第3実施形態>
第2実施形態に含まれている推定部27の推定結果は、利用者Eの睡眠パターンを表す。このため、推定部27の推定結果の履歴(推定部27の過去の推定結果)を用いることで、利用者Eの平均的な睡眠パターンを得ることが可能になる。
また、利用者Eが深い睡眠状態のときに音が鳴っていると、睡眠の質が悪くなり、翌朝の目覚め感が良くないという現象が生じることもある。
本発明を適用した第3実施形態は、利用者Eが深い睡眠に入ったときに音がゼロになる可能性が高くなるように、推定部27の推定結果の履歴を用いて、第1フェードアウト処理時間または第2フェードアウト処理時間を決定する。
第2実施形態に含まれている推定部27の推定結果は、利用者Eの睡眠パターンを表す。このため、推定部27の推定結果の履歴(推定部27の過去の推定結果)を用いることで、利用者Eの平均的な睡眠パターンを得ることが可能になる。
また、利用者Eが深い睡眠状態のときに音が鳴っていると、睡眠の質が悪くなり、翌朝の目覚め感が良くないという現象が生じることもある。
本発明を適用した第3実施形態は、利用者Eが深い睡眠に入ったときに音がゼロになる可能性が高くなるように、推定部27の推定結果の履歴を用いて、第1フェードアウト処理時間または第2フェードアウト処理時間を決定する。
図16は、本発明を適用した第3実施形態に係る音響装置20Dを含むシステム1Dを示した図である。なお、図16において、図9に示したものと同一構成のものには同一符号を付してある。以下、音響装置20Dにおいて、図9に示した音響装置20Bと異なる点を中心に説明する。
音響装置20Dは、記憶部28を有し、音信号制御部25Bの代わりに音信号制御部25Dを有している点が、音響装置20Bと異なる。音響装置20Dは、CPU101Dと、メモリ102Dと、音信号出力部21と、電源部22と、記憶部28と、を含む。CPU101Dは、メモリ102Dに記憶された制御プログラムを読み取り実行することで、生体情報取得部23、推定部27、および音信号制御部25Dを実現する。なお、生体情報取得部23と、推定部27と、音信号制御部25Dは、それぞれ、ハードウェア(例えば、生体情報取得回路、推定回路、音信号制御回路)にて構成されてもよい。
記憶部28は、推定部27が推定した睡眠の深さの時間変化(変化)の履歴を記憶する。この履歴は、利用者Eの過去の睡眠パターンを示す。
音信号制御部25Dは、音信号制御部25Bが有する機能に加えて、第1または第2フェードアウト処理を開始してから終了するまでの時間を、記憶部28に記憶された睡眠の深さの時間変化の履歴を参照して決定する機能(以下「決定機能」と称する)を有する。
音信号制御部25Dは、音信号制御部25Bが有する機能に加えて、第1または第2フェードアウト処理を開始してから終了するまでの時間を、記憶部28に記憶された睡眠の深さの時間変化の履歴を参照して決定する機能(以下「決定機能」と称する)を有する。
図17は、第1フェードアウト処理時間を決定する決定機能を説明するためのフローチャートである。
音信号制御部25Dは、図17に示した決定処理を、図10に示したステップS1001でYESになったときからステップS601を実行する前までの間に実行する。
音信号制御部25Dは、図17に示した決定処理を、図10に示したステップS1001でYESになったときからステップS601を実行する前までの間に実行する。
音信号制御部25Dは、記憶部28から、第1ステージST1から第3ステージST3までの遷移時間の履歴を読み取る(ステップS1701)。
例えば、記憶部28に、利用者Eの睡眠について推定部27が推定した20日分の推定結果が記憶されている場合、音信号制御部25Dは、利用者Eの睡眠状態が第1ステージST1から第3ステージST3に遷移するまでに要した時間(遷移時間)の情報を20日分読み取る。なお、音信号制御部25Dは、記憶部28に記憶されているすべての推定結果ではなく、すべての推定結果のうち、新しい順に複数個の推定結果(第1ステージST1から第3ステージST3までに要した遷移時間)を読み取ってもよい。
例えば、記憶部28に、利用者Eの睡眠について推定部27が推定した20日分の推定結果が記憶されている場合、音信号制御部25Dは、利用者Eの睡眠状態が第1ステージST1から第3ステージST3に遷移するまでに要した時間(遷移時間)の情報を20日分読み取る。なお、音信号制御部25Dは、記憶部28に記憶されているすべての推定結果ではなく、すべての推定結果のうち、新しい順に複数個の推定結果(第1ステージST1から第3ステージST3までに要した遷移時間)を読み取ってもよい。
続いて、音信号制御部25Dは、その読み取った第1ステージST1から第3ステージST3までに要した遷移時間の平均を、第1フェードアウト時間として決定する(ステップS1702)。
続いて、音信号制御部25Dは、図10に示したステップS601とステップS602を実行する。この際、音信号制御部25Dは、第1時間と第2時間との合計時間が、ステップS1702で決定された第1フェードアウト時間と一致するように、第1時間と第2時間とを決定する。
図18は、第2フェードアウト処理時間を決定する決定機能を説明するためのフローチャートである。
音信号制御部25Dは、図18に示した決定処理を、図13に示したステップS1301でYESになったときからステップS1302を実行する前までの間に実行する。
音信号制御部25Dは、図18に示した決定処理を、図13に示したステップS1301でYESになったときからステップS1302を実行する前までの間に実行する。
音信号制御部25Dは、記憶部28から、第2ステージST2から第3ステージST3までの遷移時間の履歴を読み取る(ステップS1801)。
例えば、記憶部28に、利用者Eの睡眠について推定部27が推定した40日分の推定結果が記憶されている場合、音信号制御部25Dは、利用者Eの睡眠状態が第2ステージST2から第3ステージST3に遷移するまでに要した時間(遷移時間)の情報を40日分読み取る。なお、音信号制御部25Dは、記憶部28に記憶されているすべての推定結果ではなく、すべての推定結果のうち、新しい順に複数個の推定結果(第2ステージST2から第3ステージST3までに要した遷移時間)を読み取ってもよい。
例えば、記憶部28に、利用者Eの睡眠について推定部27が推定した40日分の推定結果が記憶されている場合、音信号制御部25Dは、利用者Eの睡眠状態が第2ステージST2から第3ステージST3に遷移するまでに要した時間(遷移時間)の情報を40日分読み取る。なお、音信号制御部25Dは、記憶部28に記憶されているすべての推定結果ではなく、すべての推定結果のうち、新しい順に複数個の推定結果(第2ステージST2から第3ステージST3までに要した遷移時間)を読み取ってもよい。
続いて、音信号制御部25Dは、ステップS1801で読み取った第2ステージST2から第3ステージST3までに要した遷移時間の平均を、第2フェードアウト時間として決定する(ステップS1802)。
続いて、音信号制御部25Dは、図13に示したステップS1302を実行する。この際、音信号制御部25Dは、ステップS1302で行う第2フェードアウト処理の時間として、ステップS1802で決定した第2フェードアウト時間を用いる。
本実施形態によれば、記憶部28は、推定部27が推定した睡眠の深さの時間変化の履歴を記憶する。音信号制御部25Dは、フェードアウト処理を開始してから終了するまでの時間を、記憶部28に記憶された睡眠の深さの時間変化の履歴を参照して決定する。
記憶部28に記憶された睡眠の深さの時間変化の履歴は、利用者Eの過去の睡眠パターンを表す。このため、フェードアウト処理を開始してから終了するまでの時間を、利用者の睡眠パターンに合わせて調整することが可能になる。よって、フェードアウト処理を開始してから終了するまでの時間を、利用者Eに合わせてカスタマイズすることが可能になる。よって、利用者Eが深い睡眠状態のときに音が鳴っていて、利用者Eの睡眠の質が悪くなり、翌朝の目覚め感が良くないという現象を低減することが可能になる。
記憶部28に記憶された睡眠の深さの時間変化の履歴は、利用者Eの過去の睡眠パターンを表す。このため、フェードアウト処理を開始してから終了するまでの時間を、利用者の睡眠パターンに合わせて調整することが可能になる。よって、フェードアウト処理を開始してから終了するまでの時間を、利用者Eに合わせてカスタマイズすることが可能になる。よって、利用者Eが深い睡眠状態のときに音が鳴っていて、利用者Eの睡眠の質が悪くなり、翌朝の目覚め感が良くないという現象を低減することが可能になる。
なお、本実施形態で示した記憶部28が図15に示した第2実施形態の変形例に備えられ、該変形例の音信号制御部25Bの代わりに本実施形態で示した音信号制御部25Dが用いられてもよい。また、記憶部28がクラウドに設けられてもよい。この場合、推定部27は、不図示の通信部等を介して、クラウド側の記憶部28に睡眠の深さの変化の履歴を記憶する。また、音信号制御部25Bは、不図示の通信部等を介して、クラウド側の記憶部28から睡眠の深さの変化の履歴を取得する。
<変形例>
本発明は、上述した実施形態に限定されるものではなく、例えば、次に述べるような各種の応用または変形が可能である。また、次に述べる変形の態様は、任意に選択された一または複数の変形を適宜組み合わせることもできる。
本発明は、上述した実施形態に限定されるものではなく、例えば、次に述べるような各種の応用または変形が可能である。また、次に述べる変形の態様は、任意に選択された一または複数の変形を適宜組み合わせることもできる。
<変形例1>
上述した各実施形態において、音信号制御部25、音信号制御部25Bおよび音信号制御部25Dは、音信号出力部21から出力される音信号の振幅をゼロにした後、音信号出力部21への給電をオフするように電源部22を制御してもよい。例えば、音信号制御部25、音信号制御部25Bおよび音信号制御部25Dは、音信号出力部21から出力される音信号の振幅をゼロにした後、電源部22に、電源部22から音信号出力部21への給電を停止する停止指示を出力して、電源部22から音信号出力部21への給電をオフする。
上述した各実施形態において、音信号制御部25、音信号制御部25Bおよび音信号制御部25Dは、音信号出力部21から出力される音信号の振幅をゼロにした後、音信号出力部21への給電をオフするように電源部22を制御してもよい。例えば、音信号制御部25、音信号制御部25Bおよび音信号制御部25Dは、音信号出力部21から出力される音信号の振幅をゼロにした後、電源部22に、電源部22から音信号出力部21への給電を停止する停止指示を出力して、電源部22から音信号出力部21への給電をオフする。
<変形例2>
上述した実施形態では、音信号制御部25は、入眠の検出の時点から所定時間が経過すると、制御対象機器の出力である音信号の振幅の大きさを所定値(例えばゼロ)に調整する制御信号を出力した。本発明の制御対象機器の出力の大きさは、音信号の振幅の大きさに限定されず、適宜変更可能である。
図19は、制御対象機器として外部機器301が用いられた例を示したである。なお、図19において、図2に示した構成と同一構成のものには同一符号を付してある。
例えば、図19に示した外部機器301が照明装置または扇風機である場合、照明装置または扇風機は、制御対象機器の一例となる。そして、制御対象機器が照明装置である場合、例えば、照明装置の照度が制御対象機器の出力の一例となり、設定目標となる照度が所定値の一例となる。また、制御対象機器が扇風機である場合、例えば、扇風機の風量が制御対象機器の出力の一例となり、設定目標となる風量が所定値の一例となる。これらの場合、設定目標となる照度および風量は、必ずしもゼロでなくてもよい。
上述した実施形態では、音信号制御部25は、入眠の検出の時点から所定時間が経過すると、制御対象機器の出力である音信号の振幅の大きさを所定値(例えばゼロ)に調整する制御信号を出力した。本発明の制御対象機器の出力の大きさは、音信号の振幅の大きさに限定されず、適宜変更可能である。
図19は、制御対象機器として外部機器301が用いられた例を示したである。なお、図19において、図2に示した構成と同一構成のものには同一符号を付してある。
例えば、図19に示した外部機器301が照明装置または扇風機である場合、照明装置または扇風機は、制御対象機器の一例となる。そして、制御対象機器が照明装置である場合、例えば、照明装置の照度が制御対象機器の出力の一例となり、設定目標となる照度が所定値の一例となる。また、制御対象機器が扇風機である場合、例えば、扇風機の風量が制御対象機器の出力の一例となり、設定目標となる風量が所定値の一例となる。これらの場合、設定目標となる照度および風量は、必ずしもゼロでなくてもよい。
<変形例3>
上述した第2実施形態において、音信号制御部25Bは、推定部27の推定結果が、入眠よりも深い所定の深さ(例えば、第3ステージST3)を示すまでは、音信号の振幅を一定値に維持し、推定部27の推定結果が該所定の深さを示したら、音信号の振幅をゼロにしてもよい。なお、入眠よりも深い所定の深さは、第3ステージに限らず適宜変更可能である。
上述した第2実施形態において、音信号制御部25Bは、推定部27の推定結果が、入眠よりも深い所定の深さ(例えば、第3ステージST3)を示すまでは、音信号の振幅を一定値に維持し、推定部27の推定結果が該所定の深さを示したら、音信号の振幅をゼロにしてもよい。なお、入眠よりも深い所定の深さは、第3ステージに限らず適宜変更可能である。
<変形例4>
上述した各実施形態では、生体情報を検出するセンサ10として、マット状の圧電素子が例示されたが、センサ10はこれに限定されるものではない。例えば、センサ10は、物体の動きを検出するカメラを用いたモーションセンサであってもよい。この場合、モーションセンサは、生体情報として、利用者Eの体の動きを示す信号を出力する。そして、入眠検出部24は、生体情報に基づいて利用者Eの体の動きがある時間継続して停止した場合に、入眠を検出してもよい。
また、センサ10は、利用者Eの額に取り付けられて利用者Eの脳波(α波、β波、δ波、またはθ波など)を検出する電極(以下「第1センサ」と称する)でもよい。
また、センサ10は、利用者Eの手首に装着されて、例えば橈骨動脈の圧力変化、すなわち脈波を検出するセンサ(以下「第2センサ」と称する)でもよい。脈波は心拍に同期しているので、第2センサは、間接的に心拍を検出していることになる。
また、センサ10は、利用者Eの頭部と枕との間に配置されて加速度を検出するセンサ(以下「第3センサ」と称する)でもよい。第3センサは、利用者Eの体動、呼吸および心拍などを検出する。
また、センサ10として、複数のセンサ(例えば、第1センサと第2センサと第3センサ)が用いられてもよい。
なお、生体情報を検出するためのセンサの種類としては、圧力センサ、空気圧センサ、振動センサ、光学センサ、超音波ドップラー、RFドップラー、およびレーザードップラーなどがある。
上述した各実施形態では、生体情報を検出するセンサ10として、マット状の圧電素子が例示されたが、センサ10はこれに限定されるものではない。例えば、センサ10は、物体の動きを検出するカメラを用いたモーションセンサであってもよい。この場合、モーションセンサは、生体情報として、利用者Eの体の動きを示す信号を出力する。そして、入眠検出部24は、生体情報に基づいて利用者Eの体の動きがある時間継続して停止した場合に、入眠を検出してもよい。
また、センサ10は、利用者Eの額に取り付けられて利用者Eの脳波(α波、β波、δ波、またはθ波など)を検出する電極(以下「第1センサ」と称する)でもよい。
また、センサ10は、利用者Eの手首に装着されて、例えば橈骨動脈の圧力変化、すなわち脈波を検出するセンサ(以下「第2センサ」と称する)でもよい。脈波は心拍に同期しているので、第2センサは、間接的に心拍を検出していることになる。
また、センサ10は、利用者Eの頭部と枕との間に配置されて加速度を検出するセンサ(以下「第3センサ」と称する)でもよい。第3センサは、利用者Eの体動、呼吸および心拍などを検出する。
また、センサ10として、複数のセンサ(例えば、第1センサと第2センサと第3センサ)が用いられてもよい。
なお、生体情報を検出するためのセンサの種類としては、圧力センサ、空気圧センサ、振動センサ、光学センサ、超音波ドップラー、RFドップラー、およびレーザードップラーなどがある。
上述した各実施形態および各変形例の少なくとも1つから以下の態様が把握される。
本発明の制御装置の一態様は、利用者の生体の状態を示す生体情報に基づいて前記利用者が入眠したことを検出する入眠検出部と、前記入眠検出部が、前記利用者が入眠したことを検出した時点から所定時間が経過すると、制御対象機器の出力の大きさを所定値に調整する調整部とを備える。
この態様によれば、入眠検出部が、利用者が入眠したことを検出した時点から所定時間が経過すると、制御対象機器の出力の大きさが所定値に調整される。このため、入眠時よりも睡眠深度が深くなった時点で制御対象機器の出力を変更することが可能となる。よって、入眠時に制御対象機器の出力を変更する構成に比べて、利用者が出力の変更に気づいて目を覚ましてしまうことを抑制できる。
本発明の制御装置の一態様は、利用者の生体の状態を示す生体情報に基づいて前記利用者が入眠したことを検出する入眠検出部と、前記入眠検出部が、前記利用者が入眠したことを検出した時点から所定時間が経過すると、制御対象機器の出力の大きさを所定値に調整する調整部とを備える。
この態様によれば、入眠検出部が、利用者が入眠したことを検出した時点から所定時間が経過すると、制御対象機器の出力の大きさが所定値に調整される。このため、入眠時よりも睡眠深度が深くなった時点で制御対象機器の出力を変更することが可能となる。よって、入眠時に制御対象機器の出力を変更する構成に比べて、利用者が出力の変更に気づいて目を覚ましてしまうことを抑制できる。
上述した制御装置の一態様において、前記制御対象機器は、音信号を出力する出力部であり、前記制御対象機器の出力の大きさは、前記音信号の振幅の大きさであり、前記調整部は、前記入眠検出部が、前記利用者が入眠したことを検出すると、前記音信号の振幅を維持した後に前記音信号の振幅を徐々に減らして前記入眠の検出時から所定時間が経過した時点で前記音信号の振幅がゼロとなるように前記出力部を制御するフェードアウト処理を実行する音信号制御部であることが望ましい。
この態様によれば、利用者の入眠が検出されると、音信号の振幅が維持した後に音信号の振幅が徐々に減る。このため、入眠時よりも睡眠深度が深くなった時点で、音信号に応じた音の音量を徐々に小さくする動作を開始することが可能となる。よって、入眠の検出時から音信号に応じた音の音量を徐々に小さくする構成に比べて、利用者が音量の変更に気づいて目を覚ましてしまうことを抑制できる。
この態様によれば、利用者の入眠が検出されると、音信号の振幅が維持した後に音信号の振幅が徐々に減る。このため、入眠時よりも睡眠深度が深くなった時点で、音信号に応じた音の音量を徐々に小さくする動作を開始することが可能となる。よって、入眠の検出時から音信号に応じた音の音量を徐々に小さくする構成に比べて、利用者が音量の変更に気づいて目を覚ましてしまうことを抑制できる。
本発明の制御装置の一態様は、利用者の生体の状態を示す生体情報に基づいて前記利用者の睡眠の深さを推定する推定部と、前記推定部で推定された睡眠の深さが入眠よりも深い所定の深さになると、出力部が出力する音信号の振幅を徐々に減らしてゼロとなるように前記出力部を制御するフェードアウト処理を実行する音信号制御部とを備える。
この態様によれば、睡眠の深さが入眠よりも深い所定の深さになると、音信号の振幅が徐々に減ってゼロとなるように出力部を制御するフェードアウト処理が実行される。このため、入眠の検出時から音信号に応じた音の音量を徐々に小さくする構成に比べて、利用者が音量の変更に気づいて目を覚ましてしまうことを抑制できる。
この態様によれば、睡眠の深さが入眠よりも深い所定の深さになると、音信号の振幅が徐々に減ってゼロとなるように出力部を制御するフェードアウト処理が実行される。このため、入眠の検出時から音信号に応じた音の音量を徐々に小さくする構成に比べて、利用者が音量の変更に気づいて目を覚ましてしまうことを抑制できる。
上述した制御装置の一態様において、前記音信号制御部は、前記フェードアウト処理中に前記推定部で推定された睡眠の深さが浅くなると、前記フェードアウト処理を中断して、前記音信号の振幅を維持するように前記出力部を制御することが望ましい。
この態様によれば、睡眠の深さが浅くなると音量の変更を中止することができる。このため、睡眠の深さが浅くなった利用者が音量の変更に気づいて目を覚ます状況を回避することが可能になる。
この態様によれば、睡眠の深さが浅くなると音量の変更を中止することができる。このため、睡眠の深さが浅くなった利用者が音量の変更に気づいて目を覚ます状況を回避することが可能になる。
上述した制御装置の一態様において、前記音信号制御部は、前記フェードアウト処理を中断した後、前記推定部で推定された睡眠の深さが深くなると、前記フェードアウト処理を再開することが望ましい。
この態様によれば、睡眠が深くなった状態で、フェードアウト処理が再開される。このため、利用者が再開された音量の変更に気づいて目を覚ましてしまうことを抑制可能になる。
この態様によれば、睡眠が深くなった状態で、フェードアウト処理が再開される。このため、利用者が再開された音量の変更に気づいて目を覚ましてしまうことを抑制可能になる。
上述した制御装置の一態様において、前記入眠検出部は、前記生体情報に基づいて睡眠の深さを推定し、前記睡眠の深さが前記入眠に対応する深さになったとき、前記利用者が入眠したことを検出することが望ましい。
この態様によれば、睡眠の深さに応じて入眠を検出することができる。
この態様によれば、睡眠の深さに応じて入眠を検出することができる。
上述した制御装置の一態様において、前記音信号制御部は、前記フェードアウト処理を開始してから終了するまでの時間を、前記睡眠の深さの変化の履歴を参照して決定することが望ましい。
一回の睡眠において、睡眠の深さは周期的に変化する。周期的な睡眠の深さの変化である睡眠サイクルは、利用者によって相違する。この態様によれば、睡眠の深さの変化の履歴は、利用者の過去の睡眠サイクルを表す。このため、フェードアウト処理を開始してから終了するまでの時間を、利用者の睡眠サイクルに合わせて調整することが可能になる。よって、フェードアウト処理を開始してから終了するまでの時間を、利用者に合わせてカスタマイズすることが可能になる。
一回の睡眠において、睡眠の深さは周期的に変化する。周期的な睡眠の深さの変化である睡眠サイクルは、利用者によって相違する。この態様によれば、睡眠の深さの変化の履歴は、利用者の過去の睡眠サイクルを表す。このため、フェードアウト処理を開始してから終了するまでの時間を、利用者の睡眠サイクルに合わせて調整することが可能になる。よって、フェードアウト処理を開始してから終了するまでの時間を、利用者に合わせてカスタマイズすることが可能になる。
上述した制御装置の一態様において、前記出力部に電力を給電する電源部が備えられ、前記音信号制御部は、前記フェードアウト処理が終了すると、前記出力部への給電をオフするように前記電源部を制御することが望ましい。
この態様によれば、音信号の振幅がゼロになっている出力部に対する不要な給電を停止できる。
この態様によれば、音信号の振幅がゼロになっている出力部に対する不要な給電を停止できる。
1…システム、10…センサ、20…音響装置、21…音信号出力部、22…電源部、23…生体情報取得部、24…入眠検出部、25…音信号制御部、30…スピーカ
Claims (10)
- 利用者の生体の状態を示す生体情報に基づいて前記利用者が入眠したことを検出する入眠検出部と、
前記入眠検出部が、前記利用者が入眠したことを検出した時点から所定時間が経過すると、制御対象機器の出力の大きさを所定値に調整する調整部と、
を備える制御装置。 - 前記制御対象機器の出力の大きさは、出力部が出力する音信号の振幅の大きさであり、
前記調整部は、
前記入眠検出部が、前記利用者が入眠したことを検出すると、前記音信号の振幅を維持した後に前記音信号の振幅を徐々に減らして前記入眠の検出時から所定時間が経過した時点で前記音信号の振幅がゼロとなるように前記出力部を制御するフェードアウト処理を実行する音信号制御部である請求項1に記載の制御装置。 - 前記入眠検出部は、前記生体情報に基づいて睡眠の深さを推定し、前記睡眠の深さが前記入眠に対応する深さになったとき、前記利用者が入眠したことを検出する請求項2に記載の制御装置。
- 利用者の生体の状態を示す生体情報に基づいて前記利用者の睡眠の深さを推定する推定部と、
前記推定部で推定された睡眠の深さが入眠よりも深い所定の深さになると、出力部が出力する音信号の振幅を徐々に減らしてゼロとなるように前記出力部を制御するフェードアウト処理を実行する音信号制御部と、
を備える制御装置。 - 前記音信号制御部は、前記フェードアウト処理中に前記推定部で推定された睡眠の深さが浅くなると、前記フェードアウト処理を中断して、前記音信号の振幅を維持するように前記出力部を制御する請求項4に記載の制御装置。
- 前記音信号制御部は、前記フェードアウト処理を中断した後、前記推定部で推定された睡眠の深さが深くなると、前記フェードアウト処理を再開する請求項5に記載の制御装置。
- 前記音信号制御部は、前記フェードアウト処理を開始してから終了するまでの時間を、前記睡眠の深さの変化の履歴を参照して、決定する、
請求項3又は4に記載の制御装置。 - 前記出力部に電力を給電する電源部を備え、
前記音信号制御部は、前記フェードアウト処理が終了すると、前記出力部への給電をオフするように前記電源部を制御する、
請求項2乃至7のうちいずれか1項に記載の制御装置。 - 利用者の生体の状態を示す生体情報に基づいて前記利用者が入眠したことを検出するステップと、
前記利用者が入眠したことを検出した時点から所定時間が経過すると、制御対象機器の出力の大きさを所定値に調整するステップと、
を備える制御方法。 - 利用者の生体の状態を示す生体情報に基づいて前記利用者の睡眠の深さを推定するステップと、
前記睡眠の深さが入眠よりも深い所定の深さになると、出力部が出力する音信号の振幅を徐々に減らしてゼロとなるように前記出力部を制御するフェードアウト処理を実行するステップと、
を備える制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016047241A JP6790386B2 (ja) | 2016-03-10 | 2016-03-10 | 制御装置および音響装置 |
JP2016-047241 | 2016-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017155031A1 true WO2017155031A1 (ja) | 2017-09-14 |
Family
ID=59789529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009457 WO2017155031A1 (ja) | 2016-03-10 | 2017-03-09 | 制御装置および制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6790386B2 (ja) |
WO (1) | WO2017155031A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022240498A1 (en) * | 2021-05-14 | 2022-11-17 | Arris Enterprises Llc | Electronic device and its execution method and computer-readable medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0415064A (ja) * | 1990-05-10 | 1992-01-20 | Matsushita Electric Ind Co Ltd | 就寝装置 |
WO2015107748A1 (ja) * | 2014-01-17 | 2015-07-23 | 任天堂株式会社 | 情報処理システム、情報処理サーバ、情報処理プログラム、および情報提供方法 |
-
2016
- 2016-03-10 JP JP2016047241A patent/JP6790386B2/ja active Active
-
2017
- 2017-03-09 WO PCT/JP2017/009457 patent/WO2017155031A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0415064A (ja) * | 1990-05-10 | 1992-01-20 | Matsushita Electric Ind Co Ltd | 就寝装置 |
WO2015107748A1 (ja) * | 2014-01-17 | 2015-07-23 | 任天堂株式会社 | 情報処理システム、情報処理サーバ、情報処理プログラム、および情報提供方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022240498A1 (en) * | 2021-05-14 | 2022-11-17 | Arris Enterprises Llc | Electronic device and its execution method and computer-readable medium |
Also Published As
Publication number | Publication date |
---|---|
JP6790386B2 (ja) | 2020-11-25 |
JP2017163402A (ja) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2888890B1 (en) | Portable device with power management controls | |
WO2016121755A1 (ja) | 睡眠誘導装置、制御方法、およびコンピュータ読み取り可能な記録媒体 | |
US10485474B2 (en) | Sleep monitoring system | |
US9891592B2 (en) | Information processing to improve sleep efficiency | |
JP6368073B2 (ja) | 音源装置およびプログラム | |
US9078070B2 (en) | Hearing instrument controller | |
WO2016136450A1 (ja) | 音源制御装置、音源制御方法、およびコンピュータ読み取り可能な記録媒体 | |
CN107005764A (zh) | 具有活动控制输出的耳机 | |
US20110267196A1 (en) | System and method for providing sleep quality feedback | |
JP2015147034A (ja) | 制御方法、制御装置、およびアイマスク | |
JP2007519276A (ja) | 電気装置を制御するための方法 | |
JP6707938B2 (ja) | アラーム装置およびプログラム | |
JP2006271894A (ja) | 目覚まし装置、目覚まし方法および目覚ましプログラム | |
CN108353226B (zh) | 声音信号控制设备、声音信号控制方法和记录介质 | |
WO2017155031A1 (ja) | 制御装置および制御方法 | |
JP4374929B2 (ja) | 安眠促進装置 | |
JP2011021857A (ja) | 空調制御装置 | |
JP2006043304A (ja) | 睡眠サイクル制御装置及びプログラム | |
JP2008292439A (ja) | 目覚まし装置 | |
JP2012112664A (ja) | 目覚まし装置 | |
JP2007040859A (ja) | 覚醒状態を検知する目覚時計 | |
JP2015161542A (ja) | 報知装置及び制御方法 | |
WO2018100664A1 (ja) | 睡眠評価装置、睡眠評価方法 | |
JP7391073B2 (ja) | 電子機器、制御システム、制御方法、および制御プログラム | |
JP6519562B2 (ja) | 機器制御装置および機器制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17763371 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17763371 Country of ref document: EP Kind code of ref document: A1 |