WO2017154937A1 - Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method - Google Patents

Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method Download PDF

Info

Publication number
WO2017154937A1
WO2017154937A1 PCT/JP2017/009104 JP2017009104W WO2017154937A1 WO 2017154937 A1 WO2017154937 A1 WO 2017154937A1 JP 2017009104 W JP2017009104 W JP 2017009104W WO 2017154937 A1 WO2017154937 A1 WO 2017154937A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
dispersion
frequency
fine particles
substrate
Prior art date
Application number
PCT/JP2017/009104
Other languages
French (fr)
Japanese (ja)
Inventor
奈良圭
西康孝
中積誠
岩堀恒一郎
山田研太郎
鈴木涼子
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201780016625.9A priority Critical patent/CN108778527B/en
Priority to JP2018504532A priority patent/JP6984587B2/en
Priority to KR1020217042290A priority patent/KR20210158882A/en
Priority to KR1020187025355A priority patent/KR102344403B1/en
Publication of WO2017154937A1 publication Critical patent/WO2017154937A1/en
Priority to HK18115009.7A priority patent/HK1255940A1/en
Priority to JP2021191027A priority patent/JP2022046463A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • B05D1/06Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a mist generating apparatus and a mist generating method for generating a mist containing fine particles, a film forming apparatus and a film forming method for forming a thin film on a substrate using the generated mist, and the formed thin film. And a device manufacturing method for manufacturing an electronic device.
  • a film forming method using a film forming apparatus a method in which a thin film is formed on a base material in a high temperature environment in a vacuum, or a solution containing a substance (fine particles) to be formed is applied to the surface of the base material and dried.
  • Various methods are known, such as a method of making them.
  • a film forming method that does not use a vacuum method has attracted attention because of a reduction in manufacturing cost and an improvement in productivity.
  • Japanese Patent Application Laid-Open No. 2011-210422 discloses a film forming method in which a solution or dispersion containing a metal substance is sprayed onto a substrate in a mist to form a transparent conductive film on the surface of the substrate that is a base material. It is disclosed.
  • a solution of dehydrated ethanol or hydrochloric acid containing a zinc compound (zinc chloride powder) and a tin compound (tin chloride powder) at a predetermined concentration with the substrate set at a predetermined temperature. Is formed into a mist, and the mist is sprayed onto the surface of the substrate to form a transparent conductive amorphous film.
  • the dehydrated ethanol and hydrochloric acid function as a surfactant that suppresses aggregation of zinc chloride powder and tin chloride powder in the solution.
  • a mist generating device for generating a mist containing fine particles, the first container holding a mist generating solution containing the fine particles, and a vibration having a first frequency.
  • a first vibrating part that suppresses aggregation of the fine particles in the solution by being applied to the solution in a container, and a mist that is higher than the first frequency and includes the fine particles from the surface of the solution.
  • a second vibration unit that applies vibration of the second frequency to the solution in the first container.
  • a film forming apparatus for forming a thin film on a substrate using a mist containing fine particles, a container for holding a dispersion containing the fine particles, and a vibration at a first frequency.
  • a first vibrating part that is in a dispersed state in which the size at which the fine particles aggregate in the dispersion is suppressed to be equal to or less than the size of the mist by applying to the dispersion in the container, and a first frequency higher than the first frequency.
  • a second vibration unit that generates mist containing the fine particles from the surface of the dispersion by applying vibration of frequency 2 to the dispersion.
  • a mist generating method for generating mist from a dispersion containing fine particles, wherein the dispersion is imparted with vibrations of a first frequency so that the fine particles are dispersed in the dispersion. And suppressing the agglomeration, and applying to the dispersion a vibration having a second frequency higher than the first frequency for generating mist containing the fine particles from the surface of the dispersion.
  • a fourth aspect of the present invention is a film forming method for forming a thin film on a substrate by using a mist generated from a dispersion containing fine particles, and applying a vibration having a first frequency to the dispersion, A mist containing the fine particles from the surface of the dispersion liquid is suppressed by suppressing aggregation of the fine particles in the dispersion liquid and applying a vibration having a second frequency higher than the first frequency to the dispersion liquid. Generating.
  • a device manufacturing method for manufacturing an electronic device by subjecting a substrate to a predetermined treatment wherein the dispersion of the fine particles is performed by applying a vibration having a first frequency to a dispersion containing the fine particles. Suppressing agglomeration in the liquid, applying a vibration of a second frequency higher than the first frequency to the dispersion to generate a mist containing the fine particles from the surface of the dispersion; Exposing the substrate to the mist to form a thin film of the fine particles on the surface of the substrate; patterning the thin film formed on the surface of the substrate; and at least a part of a circuit constituting the electronic device Forming a pattern.
  • a device manufacturing method for manufacturing an electronic device by performing a predetermined treatment on a substrate wherein the dispersion of the fine particles is performed by applying a vibration having a first frequency to a dispersion liquid containing fine particles. Suppressing agglomeration in the liquid, applying a vibration of a second frequency higher than the first frequency to the dispersion to generate a mist containing the fine particles from the surface of the dispersion; Exposing the substrate to the mist, and selectively forming a thin film of the fine particles on a portion of the surface of the substrate corresponding to a predetermined pattern for the electronic device.
  • a mist generating device for generating a mist containing fine particles, a first container for holding a dispersion liquid containing the fine particles, and vibration at a first frequency in the first container.
  • a first vibration unit that applies to the dispersion liquid; and a second vibration unit that applies vibration of a second frequency different from the first frequency to the dispersion liquid in the first container.
  • the mist is generated from the liquid surface of the dispersion liquid by vibration of at least one of the second vibrating parts.
  • a mist generating device for generating a mist containing fine particles, a first container for holding a solution containing the fine particles, and a vibration having a first frequency in the first container.
  • the first vibration part that suppresses aggregation of the fine particles in the solution by applying to the solution, and a second higher than the first frequency in order to generate mist containing the fine particles from the liquid surface of the solution.
  • a second vibrating part that applies vibrations at a frequency of from the outside of the first container, and the first vibrating part and the second vibrating part are spaced at a predetermined interval in a plane parallel to the liquid level of the solution. Place them apart.
  • a mist generating method for generating a mist containing fine particles, wherein a solution in which the fine particles are mixed at a predetermined concentration in a liquid not containing a chemical component serving as a surfactant is added to the first container. Storing and generating a first oscillating wave to the solution or heating the solution to generate a mist containing the fine particles from a liquid surface of the solution; and the fine particles of the mist in the solution. Applying to the solution a second vibration wave that suppresses agglomeration beyond the size.
  • FIG. 1 It is a schematic block diagram which shows schematic structure of the device manufacturing system which performs a predetermined process with respect to the board
  • the ZrO 2 nanoparticles mist generating device of FIG. 14 is a graph showing the measurement results of the particle size distribution when dispersed in water.
  • 20A and 20B are graphs showing the measurement results of the haze ratio of the ZrO 2 nanoparticle film formed on the sample substrate using the mist generator of FIG. 14 and the mist film forming unit of FIG. .
  • Mist generation method and mist generation apparatus for implementing the same, film formation method for forming a thin film using the mist generation method, film formation apparatus for implementing the same, and electronic device using the mist generation method A device manufacturing method for manufacturing the device will be described in detail below with reference to the accompanying drawings by listing preferred embodiments.
  • the aspect of this invention is not limited to these embodiment, What added the various change or improvement is included. That is, the constituent elements described below include those that can be easily assumed by those skilled in the art and substantially the same elements, and the constituent elements described below can be appropriately combined.
  • various omissions, substitutions, or changes of the components can be made without departing from the scope of the present invention.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of a device manufacturing system (substrate processing system) 10 according to the first embodiment.
  • a device manufacturing system substrate processing system
  • an X, Y, Z orthogonal coordinate system with the gravity direction as the Z direction is set, and the X direction, the Y direction, and the Z direction are set according to the arrows shown in the figure.
  • the device manufacturing system 10 is a manufacturing system that manufactures an electronic device by applying a predetermined process to a flexible film-like sheet substrate FS.
  • the device manufacturing system 10 manufactures, for example, a flexible display (film-like display) as an electronic device, a film-like touch panel, a film-like color filter for a liquid crystal display panel, flexible wiring, or a flexible sensor.
  • a flexible display film-like display
  • This is a production system in which a production line is constructed. The following description is based on the assumption that a flexible display is used as the electronic device.
  • Examples of the flexible display include an organic EL display and a liquid crystal display.
  • the device manufacturing system 10 sends out a substrate FS from a supply roll FR1 obtained by winding a sheet substrate (hereinafter referred to as a substrate) FS in a roll shape, and continuously performs each process on the delivered substrate FS. It has a so-called roll-to-roll structure in which the processed substrate FS is wound up by a recovery roll FR2.
  • the substrate FS has a belt-like shape in which the moving direction (transport direction) of the substrate FS is the longitudinal direction (long) and the width direction is the short direction (short).
  • the sheet-like substrate FS is wound up on the collection roll FR2 through at least each processing in the processing apparatuses PR1 to PR6.
  • the X direction is the direction in which the substrate FS is directed from the supply roll FR1 to the collection roll FR2 in the horizontal plane parallel to the installation surface of the device manufacturing system 10 (the transport direction of the substrate FS). ).
  • the Y direction is a direction orthogonal to the X direction in the horizontal plane, and is the width direction (short direction) of the substrate FS.
  • the Z direction is a direction (upward direction) orthogonal to the X direction and the Y direction, and is parallel to the direction in which gravity acts.
  • the material of the substrate FS for example, a resin film or a foil (foil) made of a metal or alloy such as stainless steel is used.
  • the resin film material include polyethylene resin, polyether resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, polyphenylene sulfide resin, polyarylate resin, cellulose resin, polyamide resin, polyimide resin. , Polycarbonate resin, polystyrene resin, and vinyl acetate resin containing at least one may be used.
  • the thickness and rigidity (Young's modulus) of the substrate FS may be in a range that does not cause folds or irreversible wrinkles due to buckling in the substrate FS.
  • films such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and PES (polyethersulfone) having a thickness of about 25 ⁇ m to 200 ⁇ m are typical of sheet substrates.
  • the substrate FS may receive heat in processing performed in each of the processing apparatuses PR1 to PR6 of the device manufacturing system 10, it is preferable to select a substrate having a material whose thermal expansion coefficient is not significantly large.
  • the thermal expansion coefficient can be suppressed by mixing an inorganic filler with a resin film.
  • the inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, or silicon oxide.
  • the substrate FS may be a single layer of ultra-thin glass having a thickness of 100 ⁇ m or less manufactured by a float process or the like, and the above resin film or foil is bonded to the ultra-thin glass. A laminated body may be sufficient.
  • a copper foil layer of a certain thickness is uniformly formed on one surface of ultra-thin glass by vacuum evaporation or plating (electrolysis or electroless), and the copper foil layer is processed to form an electronic circuit wiring.
  • electrodes may be formed.
  • the flexibility of the substrate FS means a property that the substrate FS can be bent without being sheared or broken even when a force of its own weight is applied to the substrate FS. .
  • flexibility includes a property of bending by a force of about its own weight.
  • the degree of flexibility varies depending on the material, size, and thickness of the substrate FS, the layer structure formed on the substrate FS, the environment such as temperature, and humidity.
  • the substrate FS when the substrate FS is correctly wound around the conveyance direction changing members such as various conveyance rollers and rotary drums provided in the conveyance path in the device manufacturing system 10 according to the first embodiment, If the substrate FS can be smoothly transported without being bent and creased or damaged (breaking or cracking), it can be said to be a flexible range.
  • the conveyance direction changing members such as various conveyance rollers and rotary drums provided in the conveyance path in the device manufacturing system 10 according to the first embodiment
  • the processing apparatus PR1 transports the substrate FS transported from the supply roll FR1 toward the processing apparatus PR2 at a predetermined speed in the transport direction (+ X direction) along the longitudinal direction, while providing a base on the substrate FS.
  • It is a processing device that performs processing.
  • the base treatment include ultrasonic cleaning processing and UV ozone cleaning processing.
  • organic contamination adhering to the surface of the substrate FS is removed and the surface of the substrate FS is modified to be lyophilic. Accordingly, the adhesion of the thin film formed by the processing apparatus PR2 described later to the substrate FS is improved.
  • plasma surface treatment may be performed as the base treatment.
  • the plasma surface treatment can remove organic contaminants adhering to the surface of the substrate FS and improve the surface of the substrate FS to be lyophilic.
  • the processing apparatus PR2 transfers the substrate FS transported from the processing apparatus PR1 toward the processing apparatus PR3 with respect to the substrate FS while transporting the substrate FS at a predetermined speed in the transport direction along the longitudinal direction (+ X direction).
  • the processing apparatus PR2 generates mist containing fine particles, and forms a thin film on the substrate FS using the generated mist.
  • a metallic thin film is formed on the substrate FS.
  • organic fine particles or inorganic fine particles are used, an organic or inorganic thin film is formed on the substrate FS.
  • the processing apparatus PR3 coats the substrate FS while transporting the substrate FS transported from the processing apparatus PR2 toward the processing apparatus PR4 in a transport direction (+ X direction) along the longitudinal direction at a predetermined speed. It is a processing apparatus which performs a process.
  • the processing apparatus PR3 applies a photosensitive functional liquid on the metallic thin film of the substrate FS to form a photosensitive functional layer.
  • a photoresist is used as the photosensitive functional liquid (layer).
  • the processing apparatus PR4 while transporting the substrate FS transported from the processing apparatus PR3 toward the processing apparatus PR5 at a predetermined speed in the transport direction (+ X direction) along the longitudinal direction, is performed.
  • the photosensitive surface surface of the photosensitive functional layer
  • the processing apparatus PR4 exposes a pattern corresponding to the wiring or electrodes of the display circuit on the substrate FS. Thereby, a latent image (modified portion) corresponding to the pattern is formed on the photosensitive functional layer.
  • the processing apparatus PR5 wets the substrate FS while transporting the substrate FS transported from the processing apparatus PR4 toward the processing apparatus PR6 at a predetermined speed in the transport direction along the longitudinal direction (+ X direction). Apply processing.
  • the processing apparatus PR5 performs development processing (including cleaning processing) as wet processing. As a result, a resist layer having a shape corresponding to the pattern formed as a latent image on the photosensitive functional layer appears.
  • the processing apparatus PR6 wets the substrate FS while transporting the substrate FS transported from the processing apparatus PR5 toward the collection roll FR2 at a predetermined speed in the transport direction (+ X direction) along the longitudinal direction. Apply processing.
  • the processing apparatus PR6 performs an etching process (including a cleaning process) as a wet process. As a result, an etching process is performed using the resist layer as a mask, and a pattern corresponding to the wiring or electrode of the circuit for display appears on the metallic thin film.
  • the metallic thin film on which this pattern is formed becomes a pattern layer constituting a flexible display which is an electronic device.
  • Each of the plurality of processing apparatuses PR1 to PR6 includes a transport mechanism that transports the substrate FS in the transport direction (+ X direction).
  • the host controller 12 controls the processing apparatuses PR1 to PR6, the supply roll FR1, and the collection roll FR2 of the device manufacturing system 10.
  • the host controller 12 controls the rotational speeds of the supply roll FR1 and the recovery roll FR2 by controlling the motors of the rotation drive source (not shown) provided in each of the supply roll FR1 and the recovery roll FR2.
  • Each of the processing devices PR1 to PR6 includes a lower level control device 14 (14a to 14f). , Processing unit, etc.).
  • the host control device 12 and the lower control devices 14a to 14f include a computer and a storage medium storing a program, and the computer executes the program stored in the storage medium so that the first embodiment is implemented. Functions as the upper control device 12 and the lower control devices 14a to 14f.
  • the lower level control device 14 may be part of the higher level control device 12 or may be a control device different from the higher level control device 12.
  • FIG. 2 is a diagram showing a configuration of the processing apparatus (film forming apparatus) PR2.
  • the processing device PR2 includes mist generating devices MG1 and MG2, a gas supply unit (gas supply unit) SG, spray nozzles NZ1 and NZ2, a film forming chamber 22, a substrate transport mechanism 24, and a drying processing unit 26.
  • the mist generators MG1 and MG2 atomize the dispersion (slurry) DIL containing the dispersoid (fine particles NP), which is a thin film raw material for forming a thin film, and generate atomized fine liquid, that is, mist MT To do.
  • the particle diameter of the mist MT is 2 to 5 ⁇ m, and nano-sized fine particles NP sufficiently smaller than this are encapsulated in the mist MT and released from the surface of the dispersion DIL.
  • the fine particles NP may include at least one of metallic fine particles, organic fine particles, and inorganic fine particles. Therefore, the fine particles included in the mist MT include at least one of metal nanoparticles, organic nanoparticles, and inorganic nanoparticles.
  • the dispersion DIL is an aqueous dispersion in which ITO fine particles NP are dispersed in water.
  • the mist generators MG1 and MG2 generate mist MT using ultrasonic vibration.
  • a dispersion medium supply unit SW that supplies a dispersion medium (water) to the mist generation apparatuses MG1 and MG2 is connected to the mist generation apparatuses MG1 and MG2 via a liquid flow path WT. Water from the dispersion medium supply unit SW is supplied to containers 30a and 30b (see FIG. 3), which will be described later, provided in each of the mist generators MG1 and MG2.
  • the spray nozzles NZ1 and NZ2 are connected to the mist generators MG1 and MG2 through supply pipes ST1 and ST2.
  • the mist generators MG1 and MG2 are connected to a gas supply unit SG that generates a carrier gas, which is a compressed gas, via a gas flow path GT.
  • the carrier gas generated by the gas supply unit SG is a gas flow Through the route GT, the mist generators MG1 and MG2 are supplied at a predetermined flow rate.
  • the carrier gas supplied to the mist generators MG1 and MG2 is discharged from the spray nozzles NZ1 and NZ2 through the supply pipes ST1 and ST2.
  • the mist MT generated by the mist generators MG1 and MG2 is transported to the spray nozzles NZ1 and NZ2 by the carrier gas and discharged from the spray nozzles NZ1 and NZ2.
  • the flow rate of the mist MT supplied to the spray nozzles NZ1 and NZ2 can be changed.
  • the carrier gas an inert gas such as nitrogen or a rare gas can be used. In the first embodiment, nitrogen is used.
  • the supply pipes ST1 and ST2 are bellows-like hoses, and the flow path can be arbitrarily bent.
  • the tip portions of the spray nozzles NZ1 and NZ2 provided on the downstream side of the supply pipes ST1 and ST2 are inserted into the film forming chamber 22.
  • the mist MT supplied to the spray nozzles NZ1 and NZ2 is sprayed from the spray ports OP1 and OP2 of the spray nozzles NZ1 and NZ2 together with the carrier gas.
  • an ITO metallic thin film (functional material layer) can be formed on the surface of the substrate FS that is continuously transported in the film forming chamber 22 on the ⁇ Z direction side of the spray nozzles NZ1 and NZ2. .
  • This film formation formation (formation of a thin film) may be performed under atmospheric pressure or under a predetermined pressure.
  • the film forming chamber (film forming unit, mist processing unit) 22 is provided with an exhaust unit 22a for exhausting the gas in the film forming chamber 22 to the outside, and a supply unit for supplying gas into the film forming chamber 22 22b is provided.
  • the exhaust part 22 a and the supply part 22 b are provided on the wall of the film forming chamber 22.
  • the exhaust unit 22a is provided with a suction device (not shown) that sucks gas. As a result, the gas in the film forming chamber 22 is sucked into the exhaust unit 22a and exhausted to the outside of the film forming chamber 22, and the gas is sucked into the film forming chamber 22 from the supply unit 22b.
  • the film forming chamber 22 is provided with a drain flow path 22c.
  • the drain flow path 22c discharges the thin film raw material and the dispersion medium (water etc.) that have not been fixed to the substrate FS toward the waste water treatment apparatus DR.
  • the exhaust port of the exhaust part 22a has a direction in which gravity acts on the spray ports OP1 and OP2 of the spray nozzles NZ1 and NZ2.
  • the substrate FS is transported in the processing apparatus PR2 while being inclined with respect to a plane orthogonal to gravity (a plane parallel to the XY plane).
  • the film thickness of the thin film formed can be made uniform.
  • the substrate transport mechanism 24 constitutes a part of the substrate transport apparatus of the device manufacturing system 10, and after the substrate FS transported from the processing apparatus PR1 is transported at a predetermined speed in the processing apparatus PR2, the processing is performed. It sends out to the apparatus PR2 at a predetermined speed.
  • the substrate transport mechanism 24 includes a nip roller NR1, guide rollers R1 to R3, an air turn bar AT1, a guide roller R4, an air turn bar AT2, a guide roller R5, an air turn bar in order from the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS.
  • the film formation chamber 22 is provided between the guide roller R1 and the guide roller R2, and the guide rollers R2 to R6, the air turn bars AT1 to AT3, and the nip roller NR2 are disposed in the drying processing unit 26. Accordingly, the substrate FS having a thin film formed on the surface in the film forming chamber 22 is sent to the drying processing unit 26.
  • the guide roller R2 is disposed on the + Z direction side with respect to the guide roller R1 in order to convey the substrate FS in the film forming chamber 22 while being inclined, but the guide roller R2 is disposed on the ⁇ Z direction side with respect to the guide roller R1. You may let them.
  • the nip rollers NR1 and NR2 rotate while holding both front and back surfaces of the substrate FS and transport the substrate FS.
  • the rollers that contact the back side of the substrate FS of each nip roller NR1 and NR2 are drive rollers, and the front side of the substrate FS.
  • the roller that contacts is a driven roller.
  • the driven roller is configured to be in contact with only both end portions in the width direction (Y direction) of the substrate FS, and is set so as not to contact the region (device forming region) where a thin film is formed on the surface of the substrate FS as much as possible.
  • the air turn bars AT1 to AT3 are formed from the film formation surface (the surface on which the thin film is formed) on the surface of the substrate FS by blowing gas (air, etc.) from a number of fine ejection holes formed on the outer peripheral surface.
  • the substrate FS is supported in a non-contact state (or low friction state) with the film surface.
  • the guide rollers R1 to R6 are arranged so as to rotate while being in contact with a surface (back surface) opposite to the film formation surface of the substrate FS.
  • the subordinate control device 14b shown in FIG. 1 controls the conveyance speed of the substrate FS in the processing apparatus PR2 by controlling the motor of a rotational drive source (not shown) provided on each drive roller of the nip rollers NR1 and NR2.
  • the drying processing unit 26 performs a drying process on the formed substrate FS.
  • the drying processing unit 26 uses a blower, an infrared light source, a ceramic heater, or the like that blows drying air (hot air) such as dry air to the surface of the substrate FS to remove a dispersion medium (solvent) such as water contained on the surface of the substrate FS.
  • the metal thin film thus formed is dried.
  • the drying unit 26 functions as a storage unit (buffer) that can store the substrate FS over a predetermined length.
  • the drying processing unit 26 can be mainly divided into a drying unit 26a and a storage unit 26b.
  • the drying unit 26a dries the thin film formed on the surface of the substrate FS, and dries the thin film between the guide roller R2 and the guide roller R3.
  • the accumulation unit 26b changes the accumulation length between the guide roller R3 and the nip roller NR2.
  • the guide rollers R3 to R5 and the nip roller NR2 are arranged on the + X direction side with respect to the air turn bars AT1 to AT3 in order to increase the predetermined length (maximum storage length) in which the substrate FS can be stored.
  • the substrate FS is conveyed in the ⁇ Z direction by meandering the conveyance path of the substrate FS.
  • the air turn bars AT1 to AT3 are configured to fold the substrate FS sent in the ⁇ X direction in the + X direction and to be movable in the ⁇ X direction within a predetermined stroke range.
  • the air turn bars AT1 to AT3 are always urged so as to be displaced by a predetermined force (tension) in the ⁇ X direction side. Therefore, the difference in the conveyance speed of the substrate FS entering / exiting the drying processing unit 26, specifically, the difference in the conveyance speed of the substrate FS at each position of the two nip rollers NR1 and NR2, is caused by the difference in the substrate FS in the drying processing unit 26.
  • the air turn bars AT1 to AT3 move in the X direction (+ X direction or -X direction) according to the change in the accumulation length.
  • the drying processing unit 26 can accumulate the substrate FS over a predetermined length in a state where a predetermined tension is applied to the substrate FS.
  • FIG. 3 is a diagram showing a configuration of the mist generator MG1.
  • the mist generator MG1 includes containers 30a and 30b.
  • the containers 30a and 30b hold the dispersion liquid DIL.
  • This dispersion DIL is a solution to which a surfactant for suppressing aggregation of the fine particles NP is not added, that is, a dispersion having substantially no chemical component as a surfactant.
  • the container 30a is provided with vibration parts 32a and 34a, and the container 30b is provided with a vibration part 34b.
  • the vibration units 32a, 34a, and 34b include ultrasonic vibrators and apply ultrasonic vibrations to the dispersion DIL.
  • the dispersion liquid (first dispersion liquid) DIL retained in the container 30a may be represented by DIL1
  • the dispersion liquid (second dispersion liquid) DIL retained in the container 30b may be represented by DIL2.
  • the fine particles NP will aggregate in the dispersion DIL over time.
  • the vibration part (first vibration part) 32a pulverizes (disperses) the aggregated fine particles NP and suppresses the vibration of the first frequency in order to suppress the aggregation of the fine particles NP in the dispersion DIL1.
  • the dispersion (particle dispersion) DIL1 in 30a is given. Thereby, the fine particles NP in the dispersion DIL1 are diffused.
  • the higher the frequency of ultrasonic vibration the higher the energy, but the higher the energy in the liquid, the more the energy is absorbed by the liquid, and the vibration does not spread widely.
  • the first frequency is a frequency lower than 1 MHz, and preferably 200 kHz or less.
  • an aqueous dispersion (particle dispersion) DIL1 containing ITO fine particles NP is used, and the first frequency is set to 20 kHz.
  • the diameter of the ITO fine particles NP pulverized by the vibration of the vibration part 32a varies from a large one to a small one. By providing the vibration part 32a, it is not necessary to add a surfactant that suppresses the aggregation of the fine particles NP to the dispersion DIL1.
  • the vibration part (second vibration part) 34a generates a mist MT atomized from the surface of the dispersion liquid DIL1 (hereinafter sometimes referred to as MTa), and the second frequency of the dispersion liquid DIL1 in the container 30a.
  • MTa dispersion liquid
  • the liquid is misted by cavitation and continuously released from the liquid surface into the atmosphere.
  • the second frequency is 1 MHz or higher. In the first embodiment, the second frequency is 2.4 MHz.
  • the diameter (particle diameter) of the mist MTa atomized by the vibration of the vibration part 34a is, for example, 2 ⁇ m to 5 ⁇ m, and ITO fine particles (nanoparticles) NP having a sufficiently smaller particle diameter are included in the mist MTa. And released from the surface of the dispersion DIL1 in the container 30a. That is, relatively large ITO fine particles NP remain in the dispersion DIL1.
  • the fine particles (nanoparticles) NP encapsulated in the size of one mist MT (diameter 2 to 5 ⁇ m) do not have to be finely dispersed one by one. It may be.
  • the size of one particle of the fine particle NP is several nm to several tens of nm, even if about 10 particles of the fine particle NP are aggregated as a lump, the size of the lump is several tens nm to This is about several hundred nm, which is sufficiently smaller than the size of one grain of the mist MT, and is included in the mist MT at the time of atomization.
  • suppressing the aggregation of the fine particles (nanoparticles) NP in the dispersion liquid DIL by the vibration part 32a is not limited to dispersing the fine particles (nanoparticles) NP to one particle unit, For example, even if there is an aggregate of fine particles (nanoparticles) NP, it may be dispersed by the vibrating part 32a so that the size of the aggregate is sufficiently smaller than the size of the mist MT.
  • the container 30a and the container 30b are connected by a mist transport channel 36a, and the mist MTa generated in the container 30a is transported to the container 30b by the carrier gas supplied from the gas supply unit SG. That is, the processing gas MPa in which the carrier gas and the mist MTa are mixed is transported into the container 30b.
  • a funnel-shaped mist collecting member 38a is provided in the container 30a, and the mist MTa generated by being atomized is collected by the mist collecting member 38a and then carried into the mist conveying flow path 36a.
  • the container 30b holds a dispersion liquid (nanoparticle dispersion liquid) DIL2 in which the mist MTa conveyed by the carrier gas is liquefied. That is, the liquefied mist MTa transported to the container 30b is accumulated in the container 30b as the dispersion DIL2.
  • the fine particles NP in the dispersion DIL2 in the container 30b are fine particles (nanoparticles) NP having a particle diameter sufficiently smaller than the diameter of the mist MT (for example, 2 ⁇ m to 5 ⁇ m).
  • the vibrating part (fourth vibrating part) 34b provided in the container 30b generates vibrations of the second frequency (2.4 MHz in the first embodiment) in the dispersion liquid (nanoparticle dispersion liquid) DIL2 in the container 30b.
  • mist MT hereinafter also referred to as MTb
  • mist MT that is atomized again from the surface of the dispersion liquid (nanoparticle dispersion liquid) DIL2 is generated. Therefore, the ITO fine particles (nanoparticles) NP in the dispersion DIL2 are also included in the mist MTb and released from the surface of the dispersion in the container 30b.
  • the fine particles NP gradually aggregate after a certain amount of time has elapsed, and therefore do not immediately start to aggregate even when the application of vibration at the first frequency is stopped.
  • a vibration section (third vibration section) that also applies vibration of the first frequency to the dispersion liquid DIL2 in the container 30b. ) 32b (illustrated by an alternate long and short dash line) may be provided.
  • the ultrasonic vibration given to the dispersion liquid DIL by the vibration parts 32a and 32b may be intermittent every predetermined time.
  • the container 30b and the supply pipe ST1 are connected by a mist transport flow path 36b, and the mist MTa transported into the container 30b and the mist MTb generated in the container 30b by the carrier gas supplied into the container 30b.
  • the processing gas MPb in which the mist MTa, MTb and the carrier gas present in the container 30b are mixed is transferred to the supply pipe ST1 through the mist transfer flow path 36b.
  • the mists MTa and MTb existing in the container 30b are sprayed from the spray port OP1 of the spray nozzle NZ1. That is, the processing gas MPb is sprayed from the spray nozzle NZ1.
  • a mist collecting member 38b is provided in the container 30b, and the mists MTa and MTb existing in the container 30b are collected by the mist collecting member 38b and then carried into the mist conveying flow path 36b.
  • the container 30b is connected to the supply pipe ST2 by the mist transport channel 36b, and the mists MTa and MTb existing in the container 30b by the carrier gas supplied from the gas supply unit SG. Is conveyed to the supply pipe ST2.
  • the mist MTa conveyed into the container 30b and the mist MTb generated in the container 30b are sprayed from the spray port OP2 of the spray nozzle NZ2.
  • the container 30a is provided with a dispersoid supply part DD for supplying ITO fine particles NP as a dispersoid into the container 30a. Therefore, the dispersion medium (water) supplied from the dispersion medium supply unit SW (see FIG. 2) into the container 30a and the dispersoid (fine particles NP) supplied from the dispersoid supply unit DD accumulate in the container 30a.
  • the dispersion DIL1 to be produced is generated, and the concentration of the fine particles NP in the dispersion DIL1 is adjusted.
  • the fine particles NP in the generated dispersion liquid DIL may not be dispersed, but are dispersed by vibration by the vibration part 32a.
  • the concentration of the fine particles NP in the dispersion DIL2 in the container 30b is adjusted by the dispersion medium supply unit SW.
  • the containers 30a and 30b are provided with coolers CO1 and CO2 for cooling the dispersion DIL in order to promote atomization.
  • the coolers CO1 and CO2 are constituted by, for example, annular tubes wound around the outer circumferences of the containers 30a and 30b, and cool the dispersion liquids DIL1 and DIL2 by flowing cooled air or liquid in the tubes. Can do.
  • Concentration sensors SC1 and SC2 are provided in the mist transport channels 36a and 36b.
  • the concentration sensor SC1 detects the concentration of the fine particles (nanoparticles) NP contained in the processing gas MPa in the mist transport flow path 36a
  • the concentration sensor SC2 detects the fine particles (in the processing gas MPb in the mist transport flow path 36b ( Nanoparticle) NP concentration is detected.
  • the concentration sensors SC1 and SC2 detect the concentration of the fine particles NP by measuring the absorbance of the processing gases MPa and MPb.
  • spectrophotometers can be used as the concentration sensors SC1 and SC2.
  • the concentration of the fine particles NP in the dispersions DIL1 and DIL2 in the containers 30a and 30b may be detected.
  • the lower level control device 14b determines the concentration of the fine particles (nanoparticles) NP in the mist transport channels 36a and 36b or the dispersion DIL1, Control is performed so that the concentration of the fine particles NP in the DIL 2 becomes a predetermined concentration.
  • the low-order control device 14b includes the flow rate of the carrier gas supplied by the gas supply unit SG, the flow rate of water supplied by the dispersion medium supply unit SW, the amount of fine particles NP supplied by the dispersoid supply unit DD, and the vibration unit By controlling 32a, 34a, and 34b, the concentration of the fine particles (nanoparticles) NP is controlled.
  • a mixing unit MX is provided at a connection portion between the mist transport flow path 36b and the supply pipe ST1 (ST2), and a compressed gas (for example, supplied to the containers 30a and 30b is supplied to the mixing unit MX.
  • a compressed gas for example, supplied to the containers 30a and 30b is supplied to the mixing unit MX.
  • An inert gas other than (nitrogen) for example, a compressed gas of argon is supplied.
  • the mist MTa generated in the container 30a is transported to the container 30b, the mist MTa generated in the container 30a is directly passed through the spray nozzle NZ1 (NZ2) to the film forming chamber (mist processing section, film forming section) 22. May be supplied.
  • the container 30b and the mist transport channel 36b are not necessary, and the mist transport channel 36a may be connected to the supply pipe ST1 (ST2).
  • FIG. 4 is a diagram showing a configuration of the processing apparatus (coating apparatus) PR3.
  • the processing apparatus PR3 includes a substrate transport mechanism 42, a die coater head DCH, an alignment microscope AMm (AM1 to AM3), and a drying processing unit 44.
  • the substrate transport mechanism 42 constitutes a part of the substrate transport apparatus of the device manufacturing system 10, and after the substrate FS transported from the processing apparatus PR2 is transported at a predetermined speed in the processing apparatus PR3, the processing is performed. It sends out to the apparatus PR4 at a predetermined speed. By transporting the substrate FS over a roller or the like of the substrate transport mechanism 42, the transport path of the substrate FS transported in the processing apparatus PR3 is defined.
  • the substrate transport mechanism 42 sequentially includes a nip roller NR11, a tension adjustment roller RT11, a rotary drum DR1, a guide roller R11, an air turn bar AT11, a guide roller R12, and an air turn bar AT12 from the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS.
  • the guide rollers R11 to R14 and the air turn bars AT11 to AT14 are arranged in the drying processing unit 44.
  • the nip rollers NR11 and NR12 are composed of a driving roller and a driven roller that are configured in the same manner as the nip rollers NR1 and NR2 in FIG. 3, rotate while holding both front and back surfaces of the substrate FS, and transport the substrate FS.
  • the rotary drum DR1 has a central axis AXo1 extending in the Y direction and extending in a direction crossing the direction of gravity, and a cylindrical outer peripheral surface having a constant radius from the central axis AXo1.
  • the rotating drum DR1 rotates around the central axis AXo1 and supports the substrate FS in the transport direction (+ X) while supporting a part of the substrate FS curved along the longitudinal direction along the outer peripheral surface (cylindrical surface). Direction).
  • the rotary drum DR1 supports the substrate FS from the surface (back surface) opposite to the coating surface of the substrate FS.
  • the tension adjusting roller RT11 is urged in the ⁇ Z direction, and applies a predetermined tension in the longitudinal direction to the substrate FS that is wound around and supported by the rotary drum DR1. As a result, the longitudinal tension applied to the substrate FS applied to the rotary drum DR1 is stabilized within a predetermined range.
  • the tension adjusting roller RT11 is provided so as to rotate while being in contact with the application surface of the substrate FS.
  • the air turn bars AT11 to AT14 support the substrate FS from the application surface side of the substrate FS in a non-contact state (or low friction state) with the application surface.
  • the guide rollers R11 to R14 are arranged to rotate while being in contact with the back surface of the substrate FS.
  • the subordinate control device 14c shown in FIG. 1 controls the conveyance speed of the substrate FS in the processing device PR3 by controlling the motors of the rotational drive source (not shown) provided in each of the nip rollers NR11 and NR12 and the rotary drum DR1. .
  • the alignment microscope AMm (AM1 to AM3) is used to detect alignment marks MKm (MK1 to MK3) formed on a substrate FS, which will be described later (see FIG. 6), and is provided at three locations along the Y direction. Is provided.
  • the alignment microscope AMm (AM1 to AM3) images the mark MKm (MK1 to MK3) on the substrate FS supported by the circumferential surface of the rotary drum DR1.
  • the alignment microscope AMm has a light source that projects alignment illumination light onto the substrate FS and an image sensor such as a CCD or CMOS that images the reflected light.
  • the alignment microscope AM1 images the mark MK1 formed at the end in the + Y direction of the substrate FS present in the observation region (detection region).
  • the alignment microscope AM2 images the mark MK2 formed at the ⁇ Y direction end of the substrate FS present in the observation region.
  • the alignment microscope AM3 images the mark MK3 formed at the center in the width direction of the substrate FS present in the observation region.
  • the imaging signal imaged by the alignment microscope AMm (AM1 to AM3) is sent to the lower control device 14c.
  • the lower-level control device 14c detects the position information on the substrate FS of the mark MKm (MK1 to MK3) based on the imaging signal.
  • the illumination light for alignment is light in a wavelength region that has little sensitivity to the photosensitive functional layer of the substrate FS, for example, light having a wavelength of about 500 to 800 nm.
  • the size of the observation region of the alignment microscope AMm is set according to the size of the marks MK1 to MK3 and the alignment accuracy (position measurement accuracy), but is about 100 to 500 ⁇ m square.
  • the alignment microscope AMm (AM1 to AM3) has the same configuration as an alignment microscope AMm (AM1 to AM3) described later.
  • the die coater head DCH applies the photosensitive functional liquid widely and uniformly to the substrate FS supported by the circumferential surface of the rotary drum DR1.
  • the length in the Y direction of the slit-like opening for discharging the coating liquid (photosensitive functional liquid) of the die coater head DCH to the substrate FS is set shorter than the dimension in the width direction of the substrate FS. Therefore, the coating liquid is not applied to both ends in the width direction of the substrate FS.
  • the die coater head DCH is provided on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the alignment microscope AMm (AM1 to AM3).
  • the die coater head DCH applies a photosensitive functional liquid to at least an exposure area W (see FIG.
  • the subordinate control device 14c controls the die coater head DCH based on the position on the substrate FS of the mark MKm (MK1 to MK3) detected by using the alignment microscope AMm (AM1 to AM3), and supplies the photosensitive functional liquid to the substrate. Apply on FS.
  • the processing apparatus PR3 includes an encoder system similar to an encoder system ES described later. That is, a pair of scale portions (scale disks) provided at both ends of the rotary drum DR1 and a plurality of pairs of encoder heads provided to face the scale portions are provided. A pair of encoder heads are provided on an installation orientation line Lg1 passing through the central axis AXo1 of the rotary drum DR1 and the observation region of the alignment microscope AMm (AM1 to AM3) with respect to the XZ plane.
  • an encoder system similar to an encoder system ES described later. That is, a pair of scale portions (scale disks) provided at both ends of the rotary drum DR1 and a plurality of pairs of encoder heads provided to face the scale portions are provided. A pair of encoder heads are provided on an installation orientation line Lg1 passing through the central axis AXo1 of the rotary drum DR1 and the observation region of the alignment microscope AMm (AM1 to AM3) with respect to the XZ plane.
  • the other pair of encoder heads is provided on the installation direction line Lg2 passing through the central axis AXo1 of the rotary drum DR1 and the application position (processing position) on the substrate FS by the die coater head DCH with respect to the XZ plane.
  • the position of the mark MKm on the substrate FS can be associated with the rotational angle position of the rotary drum DR1.
  • the position of the mark MKm (MK1 to MK3), the exposure area (device formation area) W and the application position (processing position) on the substrate FS.
  • the positional relationship in the transport direction (X direction) can be specified.
  • the processing apparatus PR3 may include an inkjet head instead of the die coater head DCH, and may include an inkjet head together with the die coater head DCH.
  • This ink jet head can selectively apply the photosensitive functional liquid to the substrate FS. Therefore, the measurement resolution of the encoder system that measures the rotation angle position of the rotary drum DR1 is set in accordance with the positioning accuracy of selective application of the photosensitive functional liquid in the processing device PR3.
  • the drying processing unit 44 performs a drying process on the substrate FS coated with the photosensitive functional liquid by the die coater head DCH.
  • the drying processing unit 44 removes the solute (solvent or water) contained in the photosensitive functional liquid using a blower, an infrared light source, or a ceramic heater that blows drying air (hot air) such as dry air onto the surface of the substrate FS. Remove and dry the photosensitive functional solution. Thereby, a photosensitive functional layer is formed.
  • the guide rollers R11 to R14 and the air turn bars AT11 to AT14 provided in the drying processing unit 44 are arranged to form a meandering conveyance path so as to lengthen the conveyance path of the substrate FS.
  • the guide rollers R11 to R14 are arranged on the + X direction side with respect to the air turn bars AT11 to AT14, thereby causing the transport path of the substrate FS to meander and transport the substrate FS in the ⁇ Z direction. I am letting. By lengthening the conveyance path, the photosensitive functional liquid can be effectively dried.
  • the drying processing unit 44 functions as a storage unit (buffer) that can store the substrate FS over a predetermined length. As a result, even when the transport speed of the substrate FS sent from the processing apparatus PR2 and the transport speed of the substrate FS sent to the processing apparatus PR4 are different, the speed difference is absorbed by the drying processing unit 44. can do. In order for the drying processing unit 44 to function as an accumulating unit, the air turn bars AT11 to AT14 can be moved in the X direction and are always urged in the ⁇ X direction side with a constant force (tension).
  • the drying processing unit 44 can accumulate the substrate FS over a predetermined length in a state where a predetermined tension is applied to the substrate FS.
  • the predetermined length (maximum accumulation length) that can be accumulated by the drying processing unit 44 can be increased by meandering and lengthening the transport path of the substrate FS.
  • FIG. 5 is a diagram showing a configuration of the processing apparatus (exposure apparatus) PR4.
  • the processing apparatus PR4 is a direct drawing type exposure apparatus that does not use a mask, that is, a so-called raster scan type pattern drawing apparatus.
  • the processing apparatus PR4 applies the spot light SP of the pulsed beam LB for exposure to the irradiated surface (on the substrate FS) while transporting the substrate FS in the longitudinal direction (sub-scanning direction).
  • the intensity of the spot light SP is modulated (ON / OFF) at high speed according to the pattern data (drawing data) while scanning one-dimensionally (main scanning) in a predetermined scanning direction (Y direction) on the photosensitive surface.
  • the spot light SP is relatively two-dimensionally scanned on the irradiated surface of the substrate FS by the sub-scanning of the substrate FS and the main scanning of the spot light SP, and a predetermined pattern is drawn and exposed on the substrate FS.
  • the exposure region W where the pattern is exposed by the processing apparatus PR4 has a predetermined interval Td along the longitudinal direction of the substrate FS. are provided (see FIG. 6). Since an electronic device is formed in the exposure area W, the exposure area W is also a device formation area.
  • the processing apparatus PR4 further includes a substrate transport mechanism 52, a post-bake processing unit 54, a light source device 56, a beam distribution optical member 58, an exposure head 60, an alignment microscope AMm (AM1 to AM3), and an encoder system ES.
  • the substrate transport mechanism 52, the post bake processing unit 54, the light source device 56, the beam distribution optical member 58, the exposure head 60, and the alignment microscope AMm (AM1 to AM3) are provided in a temperature control chamber (not shown). This temperature control chamber keeps the inside at a predetermined temperature, thereby suppressing the shape change due to the temperature of the substrate FS transported inside, and the internal humidity is static electricity generated due to the hygroscopicity and transport of the substrate FS. Set the humidity to take into account the charging of the battery.
  • the substrate transport mechanism 52 constitutes a part of the substrate transport apparatus of the device manufacturing system 10, and after the substrate FS transported from the processing apparatus PR3 is transported at a predetermined speed in the processing apparatus PR4, the processing is performed. It sends out to the apparatus PR5 at a predetermined speed.
  • the substrate transport mechanism 52 is arranged in order from the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS.
  • an air turn bar AT22 and a nip roller NR23 an air turn bar AT22 and a nip roller NR23.
  • the nip rollers NR22 and NR23, the air turn bars AT21 and AT22, and the guide roller R21 are disposed in the post bake processing unit 54.
  • the nip rollers NR21 to NR23 are composed of a driving roller and a driven roller similar to the nip rollers NR1 and NR2 described above, and rotate while holding the front and back surfaces of the substrate FS to convey the substrate FS.
  • the rotary drum DR2 has the same configuration as the rotary drum DR1, and has a center axis AXo2 extending in the Y direction and extending in the Y direction intersecting the gravity direction, and a cylindrical outer peripheral surface having a constant radius from the center axis AXo2. .
  • the rotary drum DR2 rotates around the central axis AXo2 while supporting a part of the substrate FS curved along the longitudinal direction following the outer peripheral surface (cylindrical surface), and the substrate FS is moved in the transport direction (+ X Direction).
  • the rotary drum DR2 supports the substrate FS from the surface (back surface) opposite to the photosensitive surface of the substrate FS.
  • the tension adjustment rollers RT21 and RT22 are urged in the ⁇ Z direction, and apply a predetermined tension in the longitudinal direction to the substrate FS that is wound around and supported by the rotary drum DR2. As a result, the longitudinal tension applied to the substrate FS applied to the rotary drum DR2 is stabilized within a predetermined range.
  • the tension adjusting rollers RT21 and RT22 are provided so as to rotate while being in contact with the photosensitive surface of the substrate FS, an elastic body (rubber sheet, resin, etc.) that hardly damages the photosensitive surface of the substrate FS on the outer peripheral surface. Sheet).
  • the air turn bars AT21 and AT22 support the substrate FS from the photosensitive surface side of the substrate FS in a non-contact state (or low friction state) with the photosensitive surface.
  • the guide roller R21 is arranged to rotate while being in contact with the back surface of the substrate FS.
  • a plane including the central axis AXo2 and parallel to the YZ plane is referred to as a central plane Poc.
  • the post-bake processing unit 54 performs post-bake (PEB: Post-Exposure-Bake) on the substrate FS drawn and exposed by the exposure head 60 described later.
  • PEB Post-Exposure-Bake
  • the nip rollers NR22 and NR23, the air turn bars AT21 and AT22, and the guide roller R21 provided in the post-bake processing unit 54 are arranged to form a meandering conveyance path so as to lengthen the conveyance path of the substrate FS. Yes.
  • the nip rollers NR22 and NR23 and the guide roller R21 are arranged on the + Z direction side with respect to the air turn bars AT21 and AT22, and the substrate FS is meandered to meander the substrate FS. It is conveyed to. Post baking can be effectively performed by lengthening the conveyance path.
  • the post-bake processing unit 54 functions as a storage unit (buffer) that can store the substrate FS over a predetermined length. As a result, even when the transport speed of the substrate FS sent from the processing apparatus PR3 and the transport speed of the substrate FS sent to the processing apparatus PR5 are different from each other, the difference between the speeds is post-baked by the post-bake processing unit 54. Can be absorbed.
  • the air turn bars AT21 and AT22 can be moved in the Z direction, and are always urged in the ⁇ Z direction side with a predetermined force (tension). .
  • the air turn bars AT21 and AT22 are moved in the Z direction (+ Z direction or ⁇ Z direction) according to the change in the accumulation length of the substrate FS in the post bake processing unit 54 caused by the difference in the transport speed of the substrate FS entering and exiting the post bake processing unit 54 Direction). Accordingly, the post-bake processing unit 54 can accumulate the substrate FS over a predetermined length in a state where a predetermined tension is applied to the substrate FS.
  • the predetermined length (maximum accumulation length) that can be accumulated by the post-baking processing unit 54 can be increased by meandering the length of the transport path of the substrate FS.
  • the light source device (light source) 56 generates and emits a pulsed beam (pulse beam, pulsed light, laser) LB.
  • This beam LB is ultraviolet light having a peak wavelength at a specific wavelength (for example, 355 nm) in a wavelength band of 370 nm or less, and emits light at an emission frequency (oscillation frequency) Fa.
  • the beam LB emitted from the light source device 56 enters the exposure head 60 via the beam distribution optical member 58.
  • the light source device 56 may be a fiber amplifier laser light source device capable of emitting a high-luminance beam LB in the ultraviolet wavelength region at a high emission frequency Fa.
  • the fiber amplifier laser light source device is a semiconductor laser that can emit pulsed light in the infrared wavelength region at a high emission frequency Fa of 100 MHz or higher, a fiber amplifier that amplifies the pulsed light in the infrared wavelength region, and the amplified It is comprised with the wavelength conversion element (harmonic generator) which converts the pulsed light of an infrared wavelength range into the pulsed light of an ultraviolet wavelength range.
  • Pulsed light in the infrared wavelength range from a semiconductor laser is also called seed light.
  • seed light By changing the emission characteristics of the seed light (pulse duration, steepness of rise and fall, etc.), amplification efficiency (amplification) in the fiber amplifier
  • the intensity of the beam LB in the ultraviolet wavelength region that is finally output can be modulated at high speed.
  • the ultraviolet light beam LB output from the fiber amplifier laser light source device can have a very short emission duration of several picoseconds to several tens of picoseconds. For this reason, even in raster scan drawing exposure, the spot light SP of the beam LB projected on the irradiated surface (photosensitive surface) of the substrate FS hardly fluctuates, and the cross section of the spot light SP of the beam LB.
  • the inner shape and the intensity distribution (for example, a circular Gaussian distribution) are kept constant.
  • a configuration in which such a fiber amplifier laser light source device is combined with a direct drawing pattern drawing device is disclosed in, for example, International Publication No. 2015/166910.
  • the exposure head 60 is a so-called multi-beam type exposure head in which a plurality of scanning units Un (U1 to U6) having the same configuration are arranged.
  • the exposure head 60 draws a pattern on a part of the substrate FS supported by the outer peripheral surface (circumferential surface) of the rotary drum DR2 by a plurality of scanning units Un (U1 to U6).
  • Each scanning unit Un (U1 to U6) projects the beam LB from the light source device 56 so as to converge on the spot light SP on the irradiated surface of the substrate FS, and the spot light SP is projected in the main scanning direction (Y direction). ) In one dimension.
  • the scanning unit Un includes a polygon mirror PM for deflecting the beam LB and an F ⁇ lens for projecting the spot light SP of the beam LB deflected by the rotated polygon mirror PM onto the irradiated surface of the substrate FS in a telecentric state.
  • FT By scanning with the spot light SP, linear drawing lines SLn (SL1 to SL6) on which a pattern for one line is drawn are defined on the substrate FS (on the irradiated surface of the substrate FS).
  • the drawing lines SLn (SL1 to SL6) are scanning lines indicating the scanning trajectory of the spot light SP scanned by each scanning unit Un (U1 to U6).
  • the beam LB from the light source device 56 incident on the scanning unit Un (U1 to U6) may be represented by LBn (LB1 to LB6).
  • the plurality of scanning units Un are arranged so that the plurality of drawing lines SLn (SL1 to SL6) are joined together without being separated from each other in the Y direction. That is, each scanning unit Un (U1 to U6) shares the scanning area so that all of the plurality of scanning units Un (U1 to U6) cover the entire width direction of the exposure area W. Accordingly, each scanning unit Un (U1 to U6) can draw a pattern for each of a plurality of regions divided in the width direction of the substrate FS.
  • the width in the Y direction that can be drawn is increased to about 120 to 300 mm.
  • the lengths of the drawing lines SL1 to SL6 are the same. That is, the scanning distances of the spot lights SP of the beams LBn (LB1 to LB6) scanned along the drawing lines SL1 to SL6 are basically the same. If it is desired to increase the width of the exposure region W, it can be handled by increasing the length of the drawing line SLn itself or increasing the number of scanning units Un arranged in the Y direction.
  • the plurality of scanning units Un are arranged so that the plurality of drawing lines SLn (SL1 to SL6) are arranged in a staggered arrangement in two rows in the circumferential direction of the rotary drum DR2 with the center surface Poc interposed therebetween. Arranged in a staggered arrangement in two rows in the circumferential direction of the rotary drum DR2 across Poc.
  • the odd-numbered scanning units U1, U3, and U5 are arranged on the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc and at a predetermined interval along the Y direction. Yes.
  • the even-numbered scanning units U2, U4, U6 are arranged at a predetermined interval along the Y direction on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc. Therefore, the odd-numbered drawing lines SL1, SL3, SL5 are straight lines separated from the center plane Poc by the predetermined distance along the Y direction on the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS. Placed on top.
  • the even-numbered drawing lines SL2, SL4, SL6 are arranged on a straight line on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc and at a predetermined interval along the Y direction. Is done.
  • the drawing line SL2 is arranged between the drawing line SL1 and the drawing line SL3 in the width direction of the substrate FS.
  • the drawing line SL3 is disposed between the drawing line SL2 and the drawing line SL4 in the width direction of the substrate FS.
  • the drawing line SL4 is arranged between the drawing line SL3 and the drawing line SL5 with respect to the width direction of the substrate FS, and the drawing line SL5 is arranged between the drawing line SL4 and the drawing line SL6 with respect to the width direction of the substrate FS.
  • the scanning direction of the spot light SP of the beam LBn scanned along the drawing lines SL1, SL3, and SL5 is the -Y direction, and scanning is performed along the drawing lines SL2, SL4, and SL6.
  • the scanning direction of the spot light SP of the beam LBn is defined as the + Y direction.
  • the drawing start point side ends of the drawing lines SL1, SL3, SL5 and the drawing start point side ends of the drawing lines SL2, SL4, SL6 are adjacent or partially overlapped in the Y direction.
  • the end of the drawing lines SL3 and SL5 on the drawing end point side and the end of the drawing lines SL2 and SL4 on the drawing end point side are adjacent or partially overlap in the Y direction.
  • each drawing line SLn When arranging each drawing line SLn so that the ends of the drawing lines SLn adjacent in the Y direction partially overlap, for example, the drawing start point or the drawing end with respect to the length of each drawing line SLn It is preferable to overlap in the Y direction within a range of several percent or less of the scanning length including points. Note that joining the drawing lines SLn in the Y direction means that the ends of the drawing lines SLn are adjacent to each other or partially overlap in the Y direction.
  • the spot light SP projected onto the drawing line SLn during the main scanning is the oscillation frequency Fa (for example, the beam LB) , 100 MHz). Therefore, it is necessary to overlap the spot light SP projected by one pulse light of the beam LB and the spot light SP projected by the next one pulse light in the main scanning direction.
  • the amount of overlap is set by the size ⁇ of the spot light SP, the scanning speed (main scanning speed) of the spot light SP, and the oscillation frequency Fa of the beam LB.
  • the effective size ⁇ of the spot light SP is determined by 1 / e 2 (or 1/2) of the peak intensity of the spot light SP when the intensity distribution of the spot light SP is approximated by a Gaussian distribution.
  • the scanning speed Vs and the oscillation frequency Fa of the spot light SP are set so that the spot light SP overlaps by about ⁇ ⁇ 1 ⁇ 2 with respect to the effective size (dimension) ⁇ . Is done. Therefore, the projection interval of the spot light SP along the main scanning direction is ⁇ / 2. Therefore, also in the sub-scanning direction (the direction orthogonal to the drawing line SLn), the substrate FS is effective for the spot light SP between one scanning of the spot light SP along the drawing line SLn and the next scanning. It is desirable to set so as to move by a distance of about 1 ⁇ 2 of a large size ⁇ . Note that the scanning speed of the spot light SP is determined according to the rotational speed of the polygon mirror PM.
  • Each scanning unit Un (U1 to U6) emits each beam LBn toward the substrate FS so that each beam LBn travels toward the central axis AXo2 of the rotary drum DR2 at least in the XZ plane.
  • the optical path (beam central axis) of the beam LBn traveling from each scanning unit Un (U1 to U6) toward the substrate FS is parallel to the normal line of the irradiated surface of the substrate FS in the XZ plane.
  • each scanning unit Un (U1 to U6) is configured such that the beam LBn irradiated to the drawing line SLn (SL1 to SL6) is perpendicular to the irradiated surface of the substrate FS in a plane parallel to the YZ plane.
  • the beam LBn is irradiated toward the substrate FS. That is, with respect to the main scanning direction of the spot light SP on the irradiated surface, the beams LBn (LB1 to LB6) projected onto the substrate FS are scanned in a telecentric state.
  • the optical axis of the beam LB emitted from each scanning unit Un (U1 to U6) to an arbitrary point (for example, the middle point) on the drawing line SLn (SL1 to SL6) is the irradiation axis Len (Le1 to Le6).
  • Each irradiation axis Le (Le1 to Le6) is a line connecting the drawing line SLn (SL1 to SL6) and the central axis AXo2 in the XZ plane.
  • the irradiation axes Le1, Le3, Le5 of the odd-numbered scanning units U1, U3, U5 are in the same direction in the XZ plane, and the irradiation axes Le2, Le4 of the even-numbered scanning units U2, U4, U6, respectively. , Le6 are in the same direction in the XZ plane. Further, the irradiation axes Le1, Le3, Le5 and the irradiation axes Le2, Le4, Le6 are set so that the angle is ⁇ ⁇ 1 with respect to the center plane Poc in the XZ plane.
  • the beam distribution optical member 58 guides the beam LB from the light source device 56 to the plurality of scanning units Un (U1 to U6).
  • the beam distribution optical member 58 includes a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) corresponding to each of the plurality of scanning units Un (U1 to U6).
  • the beam distribution optical system BDU1 guides the beam LB (LB1) from the light source device 56 to the scanning unit U1, and similarly the beam distribution optical systems BDU2 to BDU6 scan the beam LB (LB2 to LB6) from the light source device 56. Guide to U2-U6.
  • the plurality of beam distribution optical systems BDUn (BDU1 to BDU6) emit beams LBn (LB1 to LB6) onto the scanning units Un (U1 to U6) along the irradiation axis Len (Le1 to Le6). That is, the beam LB1 guided from the beam distribution optical system BDU1 to the scanning unit U1 passes on the irradiation axis Le1. Similarly, the beams LB2 to LB6 guided from the beam distribution optical systems BDU2 to BDU6 to the scanning units U2 to U6 pass on the irradiation axes Le2 to Le6.
  • the beam distribution optical member 58 branches the beam LB from the light source device 56 by a beam splitter (not shown) or the like and makes it incident on each of the plurality of beam distribution optical systems BDUn (BDU1 to BDU6).
  • the beam distribution optical member 58 includes a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) by time-sharing the beam LB from the light source device 56 with a switching optical deflector (for example, an acousto-optic modulator). You may make it selectively inject into any one.
  • Each of the plurality of beam distribution optical systems BDUn (BDU1 to BDU6) modulates the intensity of the beam LBn (LB1 to LB6) guided to the plurality of scanning units Un (U1 to U6) at high speed according to the pattern data (ON / OFF).
  • a drawing optical element AOMn (AOM1 to AOM6).
  • the beam distribution optical system BDU1 has a drawing optical element AOM1, and similarly, the beam distribution optical systems BDU2 to BDU6 have drawing optical elements AOM2 to AOM6.
  • the drawing optical elements AOMn (AOM1 to AOM6) are acousto-optic modulators that are transmissive to the beam LB.
  • the drawing optical elements AOMn (AOM1 to AOM6) generate first-order diffracted light that diffracts the beam LB from the light source device 56 at a diffraction angle corresponding to the frequency of the high-frequency signal as a drive signal, and the first-order diffracted light is generated.
  • the beams LBn (LB1 to LB6) are emitted toward the scanning units Un (U1 to U6).
  • the drawing optical elements AOMn (AOM1 to AOM6) turn on the generation of the first-order diffracted light (beam LBn) obtained by diffracting the incident beam LB in accordance with the on / off of the drive signal (high frequency signal) from the low order control device 14d. / Turn off.
  • the drawing optical elements AOMn (AOM1 to AOM6) transmit the incident beam LB (0th-order light) without being diffracted when the drive signal (high-frequency signal) from the low-order control device 14d is off.
  • the beam LB is guided to an absorber (not shown) provided in the beam distribution optical system BDUn (BDU1 to BDU6). Therefore, when the drive signal is off, the beams LBn (LB1 to LB6) transmitted through the drawing optical elements AOMn (AOM1 to AOM6) do not enter the scanning units Un (U1 to U6). That is, the intensity of the beam LBn passing through the scanning unit Un becomes a low level (zero).
  • the drawing optical elements AOMn diffract the incident beam LB and emit the first-order diffracted light when the drive signal (high-frequency signal) from the low order control device 14d is on.
  • the beams LBn (LB1 to LB6) are guided to the scanning units Un (U1 to U6). Therefore, when the drive signal is on, the intensity of the beam LBn passing through the scanning unit Un becomes high.
  • the intensity of the spot light SP of the beam LBn irradiated on the irradiated surface is modulated to a high level.
  • the drawing optical element AOMn (AOM1 to AOM6), the drawing optical element AOMn (AOM1 to AOM6) can be switched on / off.
  • the pattern data is provided for each scanning unit Un (U1 to U6), and the lower-level control device 14d uses the pattern data (for example, a predetermined pixel unit) drawn by each scanning unit Un (U1 to U6).
  • a drawing operation corresponding to the pattern data is performed for each scanning unit Un (U1 to U6), and an exposure region (pattern formation region) of the substrate FS is formed by each of the six scanning units Un (U1 to U6).
  • the drawing pattern is exposed in the Y direction.
  • the main body frame UB holds a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) and a plurality of scanning units Un (U1 to U6).
  • the main body frame UB includes a first frame Ub1 that holds a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) and a second frame Ub2 that holds a plurality of scanning units Un (U1 to U6).
  • the first frame Ub1 holds a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) above the plurality of scanning units Un (U1 to U6) held by the second frame Ub2 (on the + Z direction side).
  • the first frame Ub1 supports a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) from below ( ⁇ Z direction side).
  • the odd-numbered beam distribution optical systems BDU1, BDU3, and BDU5 correspond to the positions of the odd-numbered scanning units U1, U3, and U5 on the upstream side ( ⁇ X direction side) with respect to the center plane Poc in the transport direction of the substrate FS.
  • the even-numbered beam distribution optical systems BDU2, BDU4, and BDU6 correspond to the positions of the even-numbered scanning units U2, U4, and U6, and are located downstream (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc.
  • the first frame Ub1 is supported so as to be arranged in a line along the Y direction.
  • the first frame Ub1 has an opening through which the beams LBn (LB1 to LB6) emitted from each of the plurality of beam distribution optical systems BDUn (BDU1 to BDU6) enter the corresponding scanning units Un (U1 to U6).
  • Part Hsn Hs1 to Hs6 is provided.
  • the second frame Ub2 is configured so that the scanning units Un (U1 to U6) can be rotated by a minute amount (for example, about ⁇ 2 °) around the irradiation axis Len (Le1 to Le6). Is held rotatably.
  • the rotation of the scanning unit Un (U1 to U6) causes the drawing line SLn (SL1 to SL6) to rotate about the irradiation axis Len (Le1 to Le6), so that the drawing line SLn (SL1 to SL6) is parallel to the Y axis. It is possible to tilt within a slight range (for example, ⁇ 2 °) with respect to a normal state.
  • the rotation of the scanning unit Un (U1 to U6) about the irradiation axis Len (Le1 to Le6) is performed by an actuator (not shown) under the control of the low order control device 14d.
  • the alignment microscope AMm (AM1 to AM3) constituting the alignment system detects position information (mark position information) of alignment marks MKm (MK1 to MK3) formed on the substrate FS. It is provided along the Y direction.
  • the marks MKm relatively position a predetermined pattern drawn in the exposure region W on the irradiated surface of the substrate FS and the substrate FS or the base pattern layer already formed on the substrate FS. This is a reference mark for alignment.
  • the marks MKm (MK1 to MK3) are formed at both ends in the width direction of the substrate FS at regular intervals along the length direction of the substrate FS, and are also exposed regions aligned along the length direction of the substrate FS.
  • the alignment microscope AMm (AM1 to AM3) images the mark MKm (MK1 to MK3) on the substrate FS supported by the circumferential surface of the rotary drum DR2.
  • the alignment microscope AMm (AM1 to AM3) is located upstream of the position of the spot light SP projected from the exposure head 60 onto the irradiated surface of the substrate FS (position of the drawing lines SL1 to SL6) in the transport direction of the substrate FS ( -X direction side).
  • the alignment microscope AMm has a light source that projects alignment illumination light onto the substrate FS and an image sensor such as a CCD or CMOS that images the reflected light.
  • the alignment microscope AM1 images the mark MK1 formed at the end in the + Y direction of the substrate FS present in the observation region (detection region) Vw1.
  • the alignment microscope AM2 images the mark MK2 formed at the ⁇ Y direction end of the substrate FS present in the observation region Vw2.
  • the alignment microscope AM3 images the mark MK3 formed at the center in the width direction of the substrate FS present in the observation region Vw3.
  • the image signal picked up by the alignment microscope AMm (AM1 to AM3) is sent to the lower control device 14d.
  • the low-order control device 14d detects position information on the substrate FS of the mark MKm (MK1 to MK3) based on the imaging signal.
  • the illumination light for alignment is light in a wavelength region that has little sensitivity to the photosensitive functional layer of the substrate FS, for example, light having a wavelength of about 500 to 800 nm.
  • the size of the observation regions Vw1 to Vw3 of the alignment microscopes AM1 to AM3 is set according to the size of the marks MK1 to MK3 and the alignment accuracy (position measurement accuracy), but is about 100 to 500 ⁇ m square.
  • the encoder system ES accurately measures the rotation angle position of the rotary drum DR2 (that is, the movement position and movement amount of the substrate FS). Specifically, as shown in FIGS. 5 and 6, the encoder system ES is opposed to the scale parts (scale disks) SDa and SDb provided at both ends of the rotary drum DR2 and the scale parts SDa and SDb. A plurality of encoder heads ENja (EN1a to EN3a) and ENjb (EN1b to 3b) are provided.
  • the scale portions SDa and SDb have a scale formed in an annular shape over the entire circumferential direction of the outer peripheral surface of the rotary drum DR2.
  • the scale portions SDa and SDb are diffraction gratings in which concave or convex lattice lines (scales) are engraved at a constant pitch (for example, 20 ⁇ m) in the circumferential direction of the outer peripheral surface of the rotary drum DR2, and an incremental scale. Configured as The scale portions SDa and SDb rotate integrally with the rotary drum DR2 around the central axis AXo2.
  • the encoder heads ENja and ENjb project a measurement light beam to the scale portions SDa and SDb, and photoelectrically detect the reflected light beam (diffracted light), thereby detecting a detection signal (two-phase signal) that is a pulse signal. Output to the lower control device 14d.
  • the low-order control device 14d interpolates the detection signals (two-phase signals) for the encoder heads ENja and ENjb, and digitally counts the movement amounts of the lattices of the scale portions SDa and SDb, so that the rotation drum DR2
  • the rotational angle position and angle change, or the amount of movement of the substrate FS is measured with submicron resolution. From the change in the angle of the rotary drum DR2, the transport speed of the substrate FS can also be measured.
  • the pair of encoder heads EN1a and EN1b and the alignment microscope AMm are provided on the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc.
  • the pair of encoder heads EN1a and EN1b and the alignment microscope AMm are arranged on an installation direction line Lx1 passing through the central axis AXo2 of the rotary drum DR2 with respect to the XZ plane.
  • the mark MKm on the substrate FS is sampled.
  • the pair of encoder heads EN2a and EN2b is provided on the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc, and is further downstream in the transport direction of the substrate FS than the encoder heads EN1a and EN1b.
  • the encoder heads EN2a and EN2b are arranged on an installation direction line Lx2 passing through the central axis AXo2 of the rotary drum DR2 with respect to the XZ plane.
  • the installation azimuth line Lx2 overlaps with the irradiation axes Le1, Le3, Le5 at the same angular position with respect to the XZ plane. Therefore, the digital count values (count values) based on the encoder heads EN2a and EN2b indicate the rotation angle position of the rotary drum DR2 on the drawing lines SL1, SL3, and SL5.
  • the pair of encoder heads EN3a and EN3b is provided on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc, and the installation orientation line passing through the center axis AXo2 of the rotary drum DR2 with respect to the XZ plane. Arranged on Lx3.
  • the installation orientation line Lx3 overlaps with the irradiation axes Le2, Le4, Le6 at the same angular position with respect to the XZ plane. Therefore, the digital count value (count value) based on the encoder heads EN3a and EN3b indicates the rotation angle position of the rotary drum DR2 on the drawing lines SL2, SL4, and SL6.
  • the mark MKm MK1 to The position of MK3
  • the positional relationship between the exposure region W on the substrate FS and each drawing line SLn processing position
  • an address position in the sub-scanning direction of a memory unit that stores drawing data (for example, bitmap data) of a pattern to be drawn on the substrate FS can be designated.
  • the processing device PR4 has the above-described configuration, and the low-order control device 14d determines the sub-scanning direction of the exposure area W based on the detected position information of the mark MKm and the digital count value based on the encoder heads EN1a and EN1b ( The exposure start position in the X direction) is determined. Then, the low order control device 14d determines whether or not the exposure start position of the exposure area W has reached the drawing lines SL1, SL3, and SL5 based on the digital count values based on the encoder heads EN2a and EN2b.
  • the lower-level control device 14d When it is determined that the exposure start position of the exposure area W has reached the drawing lines SL1, SL3, and SL5, the lower-level control device 14d starts switching the drawing optical elements AOM1, AOM3, and AOM5, thereby scanning units. Drawing exposure by scanning of the spot light SP by U1, U3, and U5 is started. At this time, the lower-level control device 14d designates the access address of the memory unit in which the drawing data is stored based on the digital count value based on the encoder heads EN2a and EN2b, and serially calls the data at the designated access address. The drawing optical elements AOM1, AOM3, and AOM5 are switched.
  • the drawing is performed.
  • the drawing exposure by the scanning of the spot light SP by the scanning units U2, U4, and U6 is started.
  • the lower-level control device 14d designates the access address of the memory unit in which the drawing data is stored based on the digital count value based on the encoder heads EN3a and EN3b, and serially calls the data at the designated access address.
  • the drawing optical elements AOM2, AOM4, and AOM6 are switched. Thereby, the pattern for electronic devices is drawn and exposed on the irradiated surface of the substrate FS.
  • the lower control device 14d performs the light emission control of the beam LB by the light source device 56, the rotation control of the polygon mirror PM, and the like in addition to the switching control of the drawing optical element AOMn.
  • the processing apparatus PR4 is a raster scan type exposure apparatus, but may be an exposure apparatus using a mask, such as a digital micromirror device (DMD) or a spatial light modulator (SLM). An exposure apparatus that exposes a predetermined pattern using a light modulator device may be used.
  • a mask pattern formed on the outer peripheral surface of a cylindrical transmission type or reflection type cylindrical mask is used.
  • a projection exposure system that projects onto the substrate FS via the projection optical system, or a proximity exposure system exposure apparatus in which the outer peripheral surface of the transmissive cylindrical mask and the substrate FS are brought close to each other with a certain gap can be used.
  • the projection exposure apparatus disclosed in International Publication No. 2014/010274 pamphlet or International Publication No. 2013/133321 pamphlet is used. It can also be used.
  • the mask is not limited to the rotating mask as described above, and may be a flat mask in which a pattern is formed by a light shielding layer or a reflective layer on a flat quartz substrate.
  • FIG. 7 is a diagram showing the configuration of the processing apparatuses (wet processing apparatuses) PR5 and PR6.
  • the processing apparatus PR5 is a developing apparatus that performs a developing process that is a type of wet process
  • the processing apparatus PR6 is an etching apparatus that performs an etching process that is a type of wet process.
  • the processing apparatus PR5 and the processing apparatus PR6 differ only in the processing liquid LQ1 in which the substrate FS is immersed, and the configuration is the same.
  • the processing apparatus PR5 (PR6) includes a substrate transport mechanism 62, a processing tank 64, a cleaning tank 66, a liquid draining tank 68, and a drying processing unit 70.
  • the substrate transport mechanism 62 constitutes a part of the substrate transport apparatus of the device manufacturing system 10, and the substrate FS transported from the processing apparatus PR4 (or PR5) is predetermined within the processing apparatus PR5 (or PR6). Then, it is sent out to the processing device PR6 (or the recovery roll FR2) at a predetermined speed. By transporting the substrate FS over a roller or the like of the substrate transport mechanism 62, the transport path of the substrate FS transported in the processing apparatus PR5 (or PR6) is defined.
  • the substrate transport mechanism 62 includes a nip roller NR51, an air turn bar AT51, guide rollers R51 to R59, an air turn bar AT52, a guide roller R60, an air turn bar AT53, and a guide roller in order from the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS.
  • the guide rollers R60 to R62, the air turn bars AT53 to AT55, and the nip roller NR52 are disposed in the drying processing unit 70.
  • the nip rollers NR51 and NR52 are composed of a driving roller and a driven roller similar to the nip rollers NR1 and NR2 described above, rotate while holding the front and back surfaces of the substrate FS, and transport the substrate FS.
  • the air turn bars AT51 to AT55 support the substrate FS in a non-contact state (or low friction state) with the processing surface from the processing surface side where the wet processing of the substrate FS is performed.
  • the guide rollers R53, R56, and R58 rotate while being in contact with the processing surface (photosensitive surface) of the substrate FS, and the other guide rollers R are in contact with the surface (back surface) opposite to the processing surface of the substrate FS. It is arranged to rotate while.
  • the subordinate control device 14e (or 14f) shown in FIG. 1 controls the motor of a rotational drive source (not shown) provided in each of the nip rollers NR51 and NR52, thereby transporting the substrate FS in the processing device PR5 (or PR6). Control the speed.
  • the vertical processing tank 64 holds the processing liquid LQ1 and is used for performing wet processing on the substrate FS.
  • the guide roller R53 is provided in the processing tank 64 so that the substrate FS is immersed in the processing liquid LQ1, and the guide rollers R52 and R54 are provided on the + Z direction side with respect to the processing tank 64.
  • the guide roller R53 is located on the ⁇ Z direction side from the liquid surface (front surface) of the processing liquid LQ1 held in the processing tank 64. Thereby, the substrate FS can be transported so that a part of the surface of the substrate FS between the guide roller R52 and the guide roller R54 comes into contact with the processing liquid LQ1 held by the processing tank 64.
  • the processing tank 64 holds a developing solution as the processing solution LQ1. Thereby, the development process is performed on the substrate FS. That is, the photosensitive functional layer (photoresist) that has been drawn and exposed by the processing apparatus PR4 is developed, and a resist layer etched in a shape corresponding to the latent image formed on the photosensitive functional layer appears.
  • the processing tank 64 holds an etching solution as the processing solution LQ1. Thereby, the etching process is performed on the substrate FS.
  • the metallic thin film formed under the photosensitive functional layer is etched using the photoresist layer (photosensitive functional layer with a pattern) as a mask, and the metallic thin film is adapted to a circuit for an electronic device, etc. A pattern layer appears.
  • the vertical cleaning tank 66 is for performing a cleaning process on the substrate FS subjected to the wet process.
  • a plurality of cleaning nozzles 66a for discharging a cleaning liquid (for example, water) LQ2 to the surface of the substrate FS are provided along the Z direction.
  • Each of the plurality of cleaning nozzles 66a discharges the cleaning liquid LQ2 in a shower shape in two directions, the ⁇ X direction side and the + X direction side.
  • the guide roller R56 is provided in the cleaning tank 66 on the ⁇ Z direction side with respect to the plurality of cleaning nozzles 66a, and the guide rollers R55 and R57 are provided on the + Z direction side with respect to the cleaning tank 66.
  • the substrate FS directed from the guide roller R55 to the guide roller R56 is ⁇ Z so that the surface (processing surface) faces the cleaning nozzle 66a side at a position on the ⁇ X direction side with respect to the plurality of cleaning nozzles 66a. It is conveyed to the direction side. Further, the substrate FS from the guide roller R56 toward the guide roller R57 is conveyed in the + Z direction side so that the surface (processing surface) faces the cleaning nozzle 66a at a position on the + X direction side with respect to the plurality of cleaning nozzles 66a.
  • the surface of the substrate FS from the guide roller R55 toward the guide roller R56 is cleaned by the cleaning liquid LQ2 discharged to the ⁇ X direction side from the plurality of cleaning nozzles 66a provided in the cleaning tank 66.
  • the surface of the substrate FS from the guide roller R56 toward the guide roller R57 is cleaned by the cleaning liquid LQ2 discharged to the + X direction side from the plurality of cleaning nozzles 66a provided in the cleaning tank 66.
  • a discharge port 66 b for discharging the cleaning liquid LQ ⁇ b> 2 discharged from the plurality of cleaning nozzles 66 a to the outside of the cleaning tank 66 is provided in the bottom wall of the cleaning tank 66.
  • the liquid draining tank 68 is for performing a liquid draining process on the substrate FS that has been subjected to the cleaning process, that is, for cutting off the cleaning liquid (for example, water) LQ2 attached to the substrate FS.
  • a plurality of air nozzles 68 a that discharge a gas such as air to the substrate FS are provided in the liquid draining tank 68.
  • a plurality of air nozzles 68 a are provided along the Z direction on each inner wall surface parallel to the Z direction of the liquid draining tank 68. Thereby, the plurality of air nozzles 68a release gas from the ⁇ X direction side and the ⁇ Y direction side to the substrate FS.
  • the guide roller R58 is provided in the liquid cutting tank 68 on the ⁇ Z direction side from the plurality of air nozzles 68a, and the guide rollers R57 and R59 are provided on the + Z direction side with respect to the liquid cutting tank 68. .
  • the substrate FS heading from the guide roller R57 to the guide roller R58 is at a position on the + X direction side with respect to the air nozzles 68a provided on the inner wall surface on the ⁇ X direction side of the liquid draining tank 68 along the Z direction. It is conveyed to the direction side.
  • the substrate FS heading from the guide roller R58 toward the guide roller R59 is in the + Z direction at a position on the ⁇ X direction side of the plurality of air nozzles 68a provided along the Z direction on the inner wall surface on the + X direction side of the liquid draining tank 68. Conveyed to the side.
  • the gas is discharged from the plurality of air nozzles 68a provided in the liquid draining tank 68 to the ⁇ X direction side and the ⁇ Y direction side, and the cleaning liquid LQ2 attached to the substrate FS directed from the guide roller R57 toward the guide roller R59. Is removed.
  • a discharge port 68 b for discharging the cleaning liquid LQ 2 removed from the substrate FS by the plurality of air nozzles 68 a to the outside of the liquid draining tank 68 is provided in the bottom wall of the liquid draining tank 68.
  • the discharge port 68b also functions as an exhaust port for releasing the gas discharged from the plurality of air nozzles 68a.
  • the drying processing unit 70 performs a drying process on the substrate FS that has been subjected to the liquid draining process.
  • the drying processing unit 70 dries and removes the cleaning liquid LQ2 remaining on the substrate FS with a blower, an infrared light source, or a ceramic heater that blows drying air (hot air) such as dry air onto the surface of the substrate FS.
  • a blower an infrared light source
  • a ceramic heater that blows drying air (hot air) such as dry air onto the surface of the substrate FS.
  • the guide rollers R60 to R62, the air turn bars AT53 to AT55, and the nip roller NR52 provided in the drying processing unit 70 are arranged to form a meandering conveyance path so as to lengthen the conveyance path of the substrate FS. .
  • the guide rollers R60 to R62 and the nip roller NR52 are disposed on the + Z direction side with respect to the air turn bars AT53 to AT55, and the substrate FS is meandered to meander the substrate FS. It is conveyed to.
  • the drying processing unit 70 functions as a storage unit (buffer) that can store the substrate FS over a predetermined length. Thereby, even when the conveyance speed of the substrate FS sent from the processing apparatus PR4 (or PR5) and the conveyance speed of the substrate FS sent to the processing apparatus PR6 (or the recovery roll FR2) are set to different speeds, The speed difference can be absorbed by the drying processing unit 70.
  • the air turn bars AT53 to AT55 are movable in the Z direction and are always urged in the ⁇ Z direction side with a predetermined force (tension).
  • the air turn bars AT53 to AT55 are moved in the Z direction (+ Z direction or ⁇ Z direction) according to the change in the accumulation length of the substrate FS in the drying processing unit 70 caused by the difference in the transport speed of the substrate FS entering and exiting the drying processing unit 70.
  • the drying processing unit 70 can accumulate the substrate FS over a predetermined length in a state where a predetermined tension is applied to the substrate FS.
  • the predetermined length (maximum accumulation length) that can be increased can also be increased.
  • the mist generator MG1 (MG2) constituting a part of the processing apparatus (film forming apparatus) PR2 includes the container 30a that holds the dispersion DIL1 containing the fine particles NP and the vibration of the first frequency.
  • a vibration part 32a that suppresses aggregation of the fine particles NP in the dispersion liquid DIL1 and a mist MTa that is higher than the first frequency and contains the fine particles NP from the surface of the dispersion liquid DIL1 is generated.
  • a vibration part 34a that applies vibrations of a second frequency to the dispersion DIL1 in the container 30a. This eliminates the need to add a surfactant that suppresses the aggregation of the fine particles NP to the dispersion DIL, reduces the number of steps and processes for film formation, and improves film formation accuracy.
  • the mist generator MG1 (MG2) includes a container 30b that holds the dispersion liquid DIL2 in which the mist MTa generated in the container 30a is liquefied, and a vibration unit 34b that applies a second frequency to the dispersion liquid DIL2 in the container 30b.
  • the mist MTa generated in the container 30a is transported to the container 30b by the carrier gas.
  • the first frequency of vibration given to the dispersion DIL by the vibration part 32a (32b) is a frequency lower than 1 MHz. Therefore, the fine particles NP aggregated by the vibration part 32a (32b) can be effectively pulverized (dispersed), and the aggregation of the fine particles NP in the dispersion DIL1 can be effectively suppressed.
  • the second frequency of vibration given to the dispersion liquid DIL by the vibration part 34a (34b) is a frequency of 1 MHz or more. Therefore, the mist MT atomized from the surface of the dispersion DIL by the vibration part 34a (34b) can be generated effectively.
  • FIG. 8 is a diagram showing a simple configuration of the mist generator MGa in the second embodiment.
  • the mist generator MGa includes containers 30a and 30b, a mist transport channel 36a, and vibration units 32a, 32b, and 34a.
  • the container 30a holds the dispersion DIL1.
  • the vibration part 32a gives a vibration of a first frequency (a frequency lower than 1 MHz, for example, 20 kHz) to the dispersion DIL1 held in the container 30a.
  • a first frequency a frequency lower than 1 MHz, for example, 20 kHz
  • the vibration unit 34a applies vibration of a second frequency (a frequency of 1 MHz or more, for example, 2.4 MHz) to the dispersion DIL1 held in the container 30a.
  • a second frequency a frequency of 1 MHz or more, for example, 2.4 MHz
  • Each particle of mist MT having a size of about several ⁇ m contains fine particles NP sufficiently smaller than the diameter of mist MT, but does not contain a mass of fine particles NP larger than the size of mist MT.
  • the vibration part 32a is immersed in the dispersion liquid DIL1 and the vibration part 34a is provided on the outer wall of the container 30a.
  • the installation positions of the vibration parts 32a and 34a are not limited to this. In short, it is only necessary that the vibration parts 32a and 34a can give vibrations of a predetermined frequency to the dispersion DIL1. This is the same in the first embodiment, and the same is true in a third embodiment described later.
  • the mist MT generated in the container 30a by the carrier gas (for example, compressed nitrogen gas) supplied into the container 30a is transported to the container 30b through the mist transport channel 36a.
  • the container 30b holds a dispersion liquid (nanoparticle dispersion liquid) DIL2 in which the mist MT conveyed from the container 30a is liquefied. Therefore, the fine particles NP in the dispersion DIL2 in the container 30b are nanoparticles that are sufficiently smaller than the dimensions of the mist MT.
  • the container 30b is not provided with the mist transport channel 36b, and is sealed except for the connection port with the mist transport channel 36a. Therefore, the container 30b can efficiently liquefy the mist MT supplied from the container 30a via the mist transport flow path 36a.
  • the vibration part (third vibration part) 32b gives vibration of a first frequency (for example, 20 kHz) to the dispersion DIL2 held in the container 30b. Thereby, aggregation of the fine particles NP in the dispersion DIL2 can be suppressed. Therefore, the dispersion DIL2 can be stored in a state where the fine particles NP which are nanoparticles are dispersed, that is, in a state where the fine particles NP are not aggregated (nanoparticle dispersion).
  • the vibration part 32b is provided on the outer wall of the container 30b.
  • the installation position of the vibration part 32b is not limited to this. In short, it is only necessary that the vibration part 32b can give a vibration of a predetermined frequency to the dispersion DIL2. The same applies to the first embodiment.
  • the dispersion DIL2 retained and stored in the container 30b may be used.
  • the dispersion DIL2 in the container 30b may be transferred to a container of another mist generating device used for film formation.
  • the mist transport flow path 36b connected to the supply pipe ST1 (ST2) is connected to the container 30b, and the vibrating section vibrates at the second frequency in the container 30b. 34b may be provided. Accordingly, even in the second embodiment, it is not necessary to add a surfactant that suppresses the aggregation of the fine particles NP to the dispersion DIL, the number of steps and processes for film formation are reduced, and the film formation accuracy is improved. be able to.
  • the temperature in the container 30b (the inner wall temperature of the container 30b) is set lower than the temperature in the container 30a. It may be set to promote condensation.
  • FIG. 9 is a diagram showing a simple configuration of the mist generating device MGb in the third embodiment.
  • the mist generating device MGb includes containers 30a and 30b, mist transport channels 36a and 36b, and vibration units 32a, 34a, and 34b.
  • the difference from the first embodiment is that a separator 82 that divides the internal space of the container 30b into a first space 80a and a second space 80b is provided in the container 30b, and the gas in the first space 80a (
  • a carrier gas for example, nitrogen and argon
  • a carrier gas for example, a compressed gas such as nitrogen
  • a gas flow path GT2 for supplying a compressed gas mixed with the gas.
  • the carrier gas supplied to the container 30a is referred to as a first carrier gas
  • the carrier gas supplied into the second space 80b is referred to as a second carrier gas.
  • MTa the mist MT generated from the dispersion DIL1 in the first space 80a
  • MTb the mist MT generated from the dispersion DIL2 in the second space 80b.
  • the mist transport channel 36a communicates with the first space 80a, and the mist MTa transported from the container 30a via the mist transport channel 36a enters the first space 80a together with the first carrier gas. . That is, the mist MTa transported from the container 30a exists in the first space 80a.
  • the separator 82 prevents the mist MTa and the first carrier gas conveyed from the container 30a from entering the second space 80b. It is preferable that the lower end of the separator 82 is immersed in the dispersion DIL2 held in the container 30b, and the upper end extends to the upper wall of the container 30b.
  • the dispersion DIL2 obtained by liquefying the mist MTa conveyed from the container 30a cannot enter the second space 80b, and is not allowed to enter the first space 80a. Since it stays, the lower end of the separator 82 is located above the lower wall (bottom plate) of the container 30b.
  • the first space 80a and the second space 80b are communicated with the lower end of the separator 82 (a position lower than the liquid level of the dispersion DIL2). These holes may be provided.
  • the exhaust part 84 communicates with the first space 80a, and mainly exhausts the first carrier gas that has been supplied from the container 30a to the first space 80a of the container 30b.
  • the exhaust part 84 may also exhaust mist MTa, it is preferable to provide the exhaust part 84 with a filter for reducing exhaust of the mist MTa.
  • mist MTb atomized from the surface of the dispersion DIL2 in the container 30b by vibration by the vibration part 34b is present. It is preferable to provide the vibration part 34b on the second space 80b side so that most or all of the mist MTb generated from the surface of the dispersion DIL2 due to vibration by the vibration part 34b is discharged into the second space 80b.
  • the second space 80b and the mist transport channel 36b communicate with each other, and the second space 80b and the gas channel GT2 communicate with each other.
  • the mist MTb is transferred to the mist processing section (film forming section) via the mist transport flow path 36b by the second carrier gas supplied into the second space 80b from the gas supply section (not shown) via the gas flow path GT2. ).
  • the second carrier gas is prevented from entering the first space 80 a by the separator 82.
  • the mist processing unit performs a film forming process on the surface of the substrate FS using the mist MTb.
  • the separator 82 by providing the separator 82, the carrier gas supplied to the container 30a can be made different from the carrier gas supplied to the mist processing section. Therefore, it becomes possible to supply the carrier gas suitable for the film forming process by the mist processing unit to the mist processing unit. Since the carrier gas is separated by the separator 82, the concentration or amount of the fine particles NP supplied to the mist processing unit can be easily controlled by controlling the flow rate of the second carrier gas. This control is performed by the subordinate control device 14b of the processing device PR2.
  • At least one of the first to third embodiments can be modified as follows.
  • the same components as those described in the first to third embodiments are denoted by the same reference numerals, and the description and illustration of components that do not need to be described in particular are omitted.
  • the mist MT generated by the mist generators MG1, MG2, and MGb and an inert carrier gas for example, argon, helium, neon, xenon, nitrogen, etc.
  • an inert carrier gas for example, argon, helium, neon, xenon, nitrogen, etc.
  • a thin film is formed using a mist deposition method in which a processing gas mixed with is sprayed on the surface of the substrate FS and fine particles (nanoparticles) contained in the mist MT are deposited on the surface of the substrate FS.
  • This mist deposition method is applied, for example, to a plasma processing apparatus that forms a functional thin film on the surface of a sheet-like substrate under a pressure near atmospheric pressure, as disclosed in Japanese Patent Laid-Open No. 10-130551. can do.
  • a sheet-like substrate is disposed between an upper electrode and a lower electrode, and a processing gas such as a metal-hydrogen compound, a metal-halogen compound, or a metal alcoholate is sprayed on the surface of the sheet-like substrate. Then, a high voltage pulse electric field is applied between the upper electrode and the lower electrode to generate discharge plasma, thereby forming a metal oxide thin film such as SiO 2 , TiO 2 or SnO 2 on the surface of the sheet-like substrate. Is disclosed.
  • plasma processing apparatuses with respect to the configuration and arrangement of electrodes, a method of applying a high voltage, etc., all of which generate a uniform plasma by generating a uniform plasma in a region where the processing gas contacts the surface of the substrate.
  • a thin film having a thickness is formed.
  • plasma assist is added to the mist deposition method (or mist CVD method)
  • non-thermal equilibrium atmospheric pressure plasma is generated in the space where the processing gas containing mist is sprayed near the surface of the substrate to be deposited.
  • an atmospheric pressure plasma generator using a helicon wave may be used.
  • An apparatus for forming a film by non-thermal equilibrium atmospheric pressure plasma treatment in a low temperature (200 ° C. or lower) environment is disclosed in, for example, Japanese Translation of PCT International Publication No. 2014-514454.
  • the mist generators MG1, MG2, and MGb described above are used, the aggregation of the fine particles NP is suppressed by the ultrasonic vibration even when the mist MT is generated. Or, even if they are aggregated, they reach a surface of the substrate FS as a lump having a size sufficiently smaller than the size of the mist MT. Therefore, in combination with the above-described plasma processing apparatus, the thin film to be formed becomes dense with a uniform thickness, and the film formation rate (the amount of film deposited per unit time) is also improved.
  • a plasma processing apparatus including an upper electrode and a lower electrode
  • FIG. 10 is a schematic configuration diagram showing a schematic configuration of a device manufacturing system 10a in Modification 2.
  • the substrate FS supplied from the supply roll FR1 is conveyed so as to pass through the processing apparatuses PR1 to PR4 in the order of the processing apparatus PR1, the processing apparatus PR3, the processing apparatus PR4, and the processing apparatus PR2, and is collected. It is wound up by a roll FR2. Therefore, each process is performed on the substrate FS in the order of the base process, the coating process, the exposure process, and the film forming process.
  • the photosensitive functional liquid (layer) applied by the application process by the processing apparatus PR3 is made lyophilic and liquid repellent by ultraviolet irradiation as disclosed in International Publication No. 2013/176222 pamphlet.
  • a photosensitive silane coupling agent photosensitive SAM
  • a photosensitive functional layer of a photosensitive silane coupling agent is formed on the surface of the substrate FS transported from the processing apparatus PR3 to the processing apparatus PR4.
  • the processing apparatus RP4 exposes the pattern on the substrate FS
  • the photosensitive functional layer of the photosensitive silane coupling agent formed on the surface of the substrate FS has a liquid-repellent portion exposed according to the pattern. It is modified to be lyophilic and the unexposed part remains lyophobic.
  • the processing device PR2 sprays mist MT on the surface of the substrate FS to form a thin film on the substrate FS sent from the processing device PR4, the mist MT attached to the unexposed portion has weak adhesion. It becomes a state. For this reason, the mist attached to the unexposed portion is caused to flow by the blower or the like in the film forming chamber 22 or the drying processing unit 26 in FIG. On the contrary, the mist MT adhering to the exposed part is formed without being blown by a blower or the like. In this way, by performing processing on the substrate FS, a thin film can be selectively formed on the substrate FS according to the shape and size of the pattern by the mist deposition method.
  • a dedicated air nozzle that blows off the mist MT adhering to the unexposed portion may be provided on the downstream side of the spray nozzles NZ1 and NZ2 and on the upstream side of the drying processing unit 26 when viewed from the transport direction of the substrate FS. .
  • Mode 4 In the mist generators MG1, MG2, MGa, and MGb shown in FIGS. 3, 8, and 9 above, when generating the mist MT, the aggregation of the fine particles NP in the dispersion DIL is suppressed.
  • the first vibrating parts 32a and 32b and the second vibrating parts 34a and 34b for generating mist MT from the surface of the dispersion DIL may be operated substantially simultaneously.
  • the fine particle NP is dispersed in a size (size that can be contained in one mist) such that the fine particle NP is efficiently contained in the mist MT (effective diameter 2 to 5 ⁇ m).
  • the size is such that the dispersed fine particles NP are not effectively contained in the mist MT (size that cannot be contained in one mist).
  • the time for transition to the first vibration unit 32a, 32b may be driven intermittently.
  • Dispersion using ultrasonic waves is considered to have a cavity effect in the dispersion. This is because, when the ultrasonic wave applied to the dispersion DIL tears the liquid, a cavity (cavity) is generated in the liquid, and the agglomerated fine particles are generated by a very high energy shock wave generated when the generated cavity is destroyed. The mass is thought to be crushed. Therefore, the frequency and output of the ultrasonic wave applied to the dispersion are greatly affected by the efficiency of dispersion.
  • the frequency required for dispersion is not limited as long as it generates cavities in the dispersion, but is generally about several tens of KHz.
  • the frequency is higher than that, the number of cavities increases, but the size of each cavity decreases, so the energy of the shock wave tends to decrease relatively.
  • mist (droplet) generation mechanisms include cavitation theory and capillary wave theory, but are described in Earozoru Kenkyu, 26 (1). According to the paper “Generation of Nanodroplets by Ultrasonic Atomization” published in 18-23 (2011), the generated mist diameter D is theoretically obtained by the following Lang formula based on the capillary wave theory.
  • ⁇ (cm) represents the wavelength of the capillary wave generated on the liquid surface
  • ⁇ (g / cm 3 ) is the density of the liquid
  • ⁇ (mN / m) is the surface tension of the liquid
  • F (Hz) is super The frequency of the sound wave.
  • X is a proportionality constant obtained experimentally, and is set to 0.34.
  • the ultrasonic frequency for generating mist having a diameter of several ⁇ m or less from the dispersion DIL is preferably 2.4 MHz when the dispersion medium of the dispersion DIL is water, but the dispersion medium is a liquid other than water, such as ethylene glycol.
  • mist is generated even in the vicinity of a lower frequency of 1.1 MHz. Therefore, it can be seen that in order to efficiently generate a mist having a desired diameter, it is preferable to adjust the frequency of the ultrasonic wave depending on the dispersion medium of the dispersion DIL. Further, since the atomization of the dispersion liquid DIL occurs from the liquid surface, the ultrasonic transducers such as the vibrating portions 34a and 34b direct the traveling direction of the ultrasonic waves to the liquid surface direction, and the propagating ultrasonic waves are not attenuated. It is arranged in a state that reaches the liquid level.
  • FIG. 11 shows an example in which the mist generator in the first and second embodiments is modified based on the above.
  • the same members and structures as those shown in FIG. 3 are given the same reference numerals, and the description thereof is omitted or simplified.
  • a sealed container 30a, a gas flow path (pipe) GT for supplying a carrier gas such as nitrogen (N 2 ) into the container 30a, and mist generated in the container 30a A transport channel (pipe) 36a that guides MT to the outside together with the carrier gas is provided.
  • a carrier gas such as nitrogen (N 2 )
  • an inner container 33 for storing the dispersion DIL and generating mist MT is provided in the container 30a, and a funnel-shaped mist collecting member that collects the generated mist MT and guides it to the transport channel (pipe) 36a.
  • 38 c is provided so as to cover the opening above the inner container 33.
  • the carrier gas supplied from the gas flow path (pipe) GT passes through the gap between the outer peripheral wall of the inner container 33 and the inner peripheral wall of the lower part of the mist collecting member 38c, and is conveyed through the mist collecting member 38c. (Piping) Flowed through 36a.
  • the inner container 33 is filled with the dispersion liquid DIL at a predetermined depth, and the height of the liquid level is sequentially measured by the liquid level sensor LLS. Measurement information Sv related to the liquid level measured by the liquid level sensor LLS is sent to the dispersion liquid generation unit 90.
  • the dispersion generation unit 90 supplies fine particles NP supplied from the dispersoid supply unit DD having the same configuration as shown in FIG. 3 to pure water (H 2 O) as a dispersion medium (liquid) at a predetermined concentration (weight%).
  • a tank for temporarily storing the generated dispersion DIL and a liquid flow path (pipe) WT1 for sending the dispersion DIL in the tank to the internal container 33.
  • a pump mechanism As the mist MT is generated, the liquid level of the dispersion liquid DIL in the inner container 33 is lowered, so that the pump mechanism of the dispersion liquid generating unit 90 is operated in the inner container 33 based on the measurement information Sv from the liquid level sensor LLS. Servo-controlled so that the liquid level of the dispersion liquid DIL is maintained at a specified height.
  • a mist MT is generated from the vibration part (ultrasonic vibrator) 32a for suppressing aggregation (promoting dispersion) of the fine particles NP in the dispersion DIL and the liquid surface of the dispersion DIL.
  • a vibration part (ultrasonic vibrator) 34a is provided.
  • the vibration part (ultrasonic transducer) 32a for suppressing the aggregation of the fine particles NP is provided on the side wall inside the inner container 33, and vibrates at 20 KHz, for example.
  • the vibration wave from the vibrating part 32a travels in the dispersion DIL in a direction parallel to the liquid surface to suppress the aggregation of the fine particles NP, or when the fine particles NP aggregate to form a large lump, Crush the mass.
  • the vibration part 32a for making the fine particles NP dispersed (non-aggregated) in the dispersion DIL may be anywhere inside the inner container 33, and may be fixed to the outer wall part of the inner container 33 depending on the conditions. .
  • the vibrating portion (ultrasonic transducer) 34a in the inner container 33 is supported by an adjustment mechanism 92 that can adjust the position and posture in the dispersion liquid DIL.
  • the adjustment mechanism 92 includes a plurality of rod-shaped support members 92a and 92b that pass through the bottom wall of the inner container 33 and hold the vibrating portion 34a, and each of the support members 92a and 92b moves in the vertical direction (Z direction). By doing so, the posture such as the height position and the tilt of the vibration part 34a is adjusted.
  • the vibration part 34a is set so that the vibration wave for generating the mist MT is directed toward the liquid surface of the dispersion liquid DIL.
  • the vibration part 34a starts from the liquid surface of the dispersion liquid DIL. It is preferable to adjust the angle DP (usually 90 degrees) formed by the depth DP up to or the direction in which the vibration wave travels and the liquid surface (here, parallel to the XY plane). This is because, when the type of the dispersoid (fine particles) and the type of the dispersion medium (liquid) of the dispersion DIL are changed, there is a possibility that the arrangement conditions of the vibration part 34a for efficient mist generation may change.
  • the depth DP can be adjusted by moving the plurality of support members 92a and 92b by the same distance in the Z direction, and the angle ⁇ can be adjusted by moving each of the plurality of support members 92a and 92b by a different distance in the Z direction. It can be adjusted with.
  • the angle ⁇ may normally be 90 degrees, but if it is tilted within the range of about 90 degrees to ⁇ 10 degrees (80 degrees to 100 degrees), the efficiency of mist generation may be improved.
  • the liquid level adjustment function capable of adjusting the height of the liquid level of the dispersion liquid DIL, and the installation adjustment function capable of adjusting the installation state of the vibration part 34a for generating mist in the dispersion liquid DIL Since at least one of the functions is used, the concentration of the generated mist MT in the carrier gas can be stabilized. Furthermore, according to the installation adjustment function, the efficiency of mist generation can be kept high.
  • the liquid level adjustment function of the dispersion DIL and the installation adjustment function of the vibration part 34a (34b) for generating mist are the same as in the previous embodiments (FIGS. 3, 8, and 9). Can be provided in the same manner.
  • FIG. 12 shows an example in which the mist generator in the first and second embodiments is modified.
  • the same members and structures as those shown in FIG. 3 are given the same reference numerals, and the description thereof is omitted or simplified.
  • a second inner container 33A (which has good metallic properties) for storing the dispersion DIL is provided inside the container 30a.
  • the bottom of the inner container 33A is formed in a spherical shape and is installed so as to be immersed in water (H 2 O) stored in the container 30a.
  • a vibration wave is given to the water in the container 30a by a vibration unit 32a (such as a ceramic vibrator) that is vibrated by a drive signal Ds1 of 20 KHz.
  • the vibration wave propagates to the dispersion liquid DIL through the wall surface of the inner container 33A, and a vibration wave that effectively disperses the fine particles NP is given to the dispersion liquid DIL.
  • a vibration part 34a that is vibrated with a drive signal Ds2 of 2.4 MHz is installed in the inner container 33A.
  • the mist MT generated in the inner container 33A is collected by the mist collecting member 38a together with the carrier gas such as nitrogen (N 2 ) introduced through the gas flow path (pipe) GT, and penetrates the mist transport flow path 36a. Go.
  • the dispersion DIL produced by the dispersion producing unit 90 shown in FIG. 11 is injected into the inner container 33A via the liquid channel (pipe) WT1.
  • the mist collecting member 38a is shown shifted from the position directly above the inner container 33A in the X direction. However, like the mist collecting member 38c in FIG. 11, it covers the opening above the inner container 33A. It is good to have a configuration.
  • the wall surface of the inner container 33A is vibrated by the vibration wave from the vibration part 32a through the liquid (water), thereby bringing the fine particles NP in the dispersion DIL into a dispersed state. Therefore, in this modification, the vibration part that applies the vibration for dispersion to the dispersion liquid DIL is configured by the vibration part 32a, water (liquid) in the container 30a, and the wall of the inner container 33A.
  • the inner container 33A is supported in the container 30a, a holding structure using an elastic material or the like is used so as not to hinder the wall of the inner container 33A from vibrating at the frequency of the drive signal Ds1 (for example, 20 KHz). Is good.
  • a space for storing water (H 2 O) in the container 30a and a mist MT from the dispersion liquid DIL are used. It is preferable to separate the space in which this occurs from the partition member (inner container) 33B. Thereby, the space for storing water (H 2 O) in the container 30a becomes a sealed space. Therefore, it is not necessary to frequently supply water (H 2 O) through the liquid flow path (pipe) WT as shown in FIG. 12, but if the same water is used for a long period of time, bacteria, mold, and bacteria In some cases, it is preferable to exchange water (H 2 O) through the liquid flow path (pipe) WT from time to time.
  • the volume of the inner container 33A can be reduced as compared with the modification of FIG.
  • the capacity of the DIL can be reduced. Also in this modification, it is possible to provide the same liquid level adjustment function of the dispersion DIL as the modification of FIG. 11 and the arrangement adjustment function of the vibration part 34a for generating the mist MT.
  • FIG. 13 is a circuit block diagram showing an example of a drive control circuit section for the vibration sections 32a and 34a in the modification of FIG.
  • the drive system of FIG. 13 is not limited to the configuration of FIG. 11, and can be applied in the same manner to the configurations of the first embodiment, the second embodiment, and other modifications.
  • fine particles NP are pulverized by a circuit configuration including an oscillation circuit 200 that oscillates a high-frequency signal SF0 having a mist generation frequency (for example, 2.4 MHz), a frequency synthesizer circuit 202, and amplification circuits 204A and 204B.
  • the vibration unit 32a for suppressing aggregation and the vibration unit 34a for generating mist are driven.
  • the vibrating units 32a and 34a are driven in one of two modes depending on the form of the vibrating units 32a and 34a.
  • the vibration part 32a is an ultrasonic vibrator tuned to a frequency (for example, 100 KHz or less) suitable for pulverization and aggregation suppression of the fine particles NP
  • the vibration part 34a has a frequency (for example, 1 MHz to This is an ultrasonic transducer tuned to several MHz), and the frequencies of the drive signal Ds1 for driving the vibration part 32a and the drive signal Ds2 for driving the vibration part 34a are greatly different.
  • both of the two vibrating parts 32a and 34a are ultrasonic vibrators tuned to a frequency suitable for mist generation (for example, 1 MHz to several MHz), and fine particles are present between the frequencies of the drive signals Ds1 and Ds2.
  • a difference corresponding to a frequency (for example, 100 KHz or less) suitable for NP crushing and aggregation suppression is given, and a vibration wave with a beat frequency of the difference is generated in the dispersion DIL.
  • the selection between the first mode and the second mode is performed by the frequency synthesizer circuit 202.
  • the frequency synthesizer circuit 202 inputs setting information SFv designating a frequency (for example, 20 KHz) suitable for pulverization and aggregation suppression of the fine particles NP from the low-order control device 14b of the film forming apparatus PR2 shown in FIG.
  • the frequency synthesizer circuit 202 applies the high frequency signal SF0 (for example, 2.4 MHz) from the oscillation circuit 200 as it is to the amplifier circuit 204A as the high frequency signal SF2, and the amplified drive signal Ds2 is used for generating mist. Applied to the vibrating part 34a.
  • the frequency synthesizer circuit 202 generates a high-frequency signal SF1 obtained by dividing the frequency (for example, 2.4 MHz) of the input high-frequency signal SF0 by a predetermined frequency division ratio.
  • the frequency division ratio is set to 1/120, for example, the frequency of the high-frequency signal SF1 is 20 KHz, and the vibration unit 32a is suitable for dispersing the fine particles NP via the amplifier circuit 204B.
  • a drive signal Ds1 having a frequency (20 KHz) is applied.
  • the frequency dividing ratio of the high frequency signal SF0 by the frequency synthesizer circuit 202 is not limited to 1/120, and is automatically set based on the ratio between the frequency of the high frequency signal SF0 and the frequency specified by the setting information SFv.
  • the frequency synthesizer circuit 202 applies the high-frequency signal SF0 from the oscillation circuit 200 to the amplifier circuit 204A as it is as the high-frequency signal SF2 and mists the amplified drive signal Ds2 as in the first mode. It is applied to the vibration part 34a for generation.
  • the frequency synthesizer circuit 202 generates a high frequency signal SF1 having a frequency that is higher or lower than the frequency of the high frequency signal SF0 by the frequency specified by the setting information SFv.
  • Such frequency synthesis can be performed by either a digital processing circuit or an analog processing circuit.
  • the vibration unit 34a vibrates in response to a drive signal Ds2 of 2.40 MHz, for example, and the vibration unit 32a vibrates in response to a drive signal Ds1 of 2.42 MHz (or 2.38 MHz), for example.
  • the vibration wave with the beat frequency has a frequency suitable for pulverizing the mass of the fine particles NP in the dispersion DIL and suppressing aggregation.
  • an ultrasonic vibrator such as a piezoelectric ceramic element has a specific resonance frequency
  • the frequency difference between the drive signals Ds1 and Ds2 applied to each of the two ultrasonic transducers (32a and 34a) having a resonance frequency of 2.4 MHz is as extremely small as 0.02 MHz. All the two ultrasonic vibrators are driven in the resonance frequency band.
  • the vibration part 32a for suppressing the pulverization and aggregation of the mass of the fine particles NP and the vibration part 34a for mist generation are performed with respect to a high frequency for mist generation.
  • the same ultrasonic transducer can be tuned.
  • the two vibration parts 32a and 34a are arranged so that the vibration wave travels from the inside of the dispersion DIL toward the liquid surface, and the vibration wave from the vibration part 32a and the vibration part.
  • the vibration waves from 34a may be arranged slightly tilted so as to intersect with each other below the surface of the dispersion liquid DIL.
  • the two vibrating parts 32a and 34a are both ultrasonic vibrators that vibrate at a high frequency suitable for mist generation, and are suitable for suppressing crushing and agglomeration of the particles NP.
  • the state of vibrating one of the two vibrating portions 32a and 34a and the state of vibrating both the two vibrating portions 32a and 34a are switched at predetermined time intervals.
  • pulverization (cancellation of aggregation) of the fine particles NP in the dispersion DIL and promotion of the dispersion state can be performed at regular time intervals.
  • a plurality of (or three or more) vibrating portions (ultrasonic vibrators) that give vibrations of different frequencies to the dispersion DIL are provided, so that the fine particles NP in the dispersion DIL are provided. It is possible to simultaneously achieve both the function of promoting the dispersion state by suppressing the aggregation of the liquid and the function of generating the mist containing the fine particles NP from the liquid surface of the dispersion liquid DIL.
  • the frequency different from each other means that the ratio of the frequencies of two vibrations is 10 times or more (1 MHz or more and 100 KHz or less), and that the difference between the frequencies of the two vibrations is 1 / 10 or less (100 KHz or less / 1 MHz or more).
  • the two vibrating parts 32a and 34a are configured such that the ultrasonic vibrators are housed in separate housings (metal cases).
  • each of the drive signals Ds1 and Ds2 having different frequencies is used.
  • a configuration may be adopted in which the ultrasonic transducer to be applied is housed in one housing (metal case).
  • the vibration frequency (SF2) given to the dispersion liquid for generating mist is about 1 MHz, and the vibration given to the dispersion liquid for fine particle dispersion.
  • the frequency (SF1) is about 100 KHz
  • one of the two vibrating parts 32a and 34a is, for example, 1 MHz in terms of the natural resonance frequency for driving in the second mode by the drive control circuit part of FIG.
  • the other is a piezoelectric ceramic element having a natural resonance frequency of 0.9 MHz or 1.1 MHz.
  • FIG. 14 shows the configuration of the mist generating apparatus according to the fourth embodiment.
  • the overall configuration is the same as that of the mist generating apparatus shown in FIG. 12, but the fine particles NP in the dispersion DIL are forcibly forced.
  • the arrangement of the vibration part 32a for dispersing (preventing aggregation) and the vibration part 34a for generating mist MT from the surface of the dispersion DIL are reversed with respect to the arrangement of FIG. That is, an inner container 33B (first container) is provided inside the container 30a (second container) so that the bottom surface portion is immersed in the liquid LW (water: H2O) stored in the container 30a.
  • LW water: H2O
  • the dispersion liquid DIL containing the fine particles NP is stored at a predetermined depth DOL, and the probe-like (rod-like) vibration part 32a for dispersing the fine particles NP in the dispersion liquid DIL has an opening 33Bo above the inner container 33B.
  • a vibrating portion 34a for generating mist is provided in the dispersion DIL.
  • the surface SQ of the dispersion DIL is parallel to the XY plane.
  • the inner container 33B is made of, for example, polypropylene, and the bottom surface is formed in a planar shape parallel to the XY plane, and the exhaust port EP is formed on the side wall surface at a position (+ Z direction) higher than the liquid surface SQ of the dispersion DIL.
  • the air flowing in from the gap of the opening 33Bo of the inner container 33B is accompanied by the mist MT by making the film forming unit side have a negative pressure (intake air).
  • intake air intake air
  • the vibration part 34a provided in the liquid LW at the bottom of the container 30a is an ultrasonic wave having a vibration frequency of 2.4 MHz or 1.6 MHz in order to efficiently generate mist MT from the dispersion DIL using pure water as a medium.
  • a vibrator is used.
  • the vibration direction (the generation direction of the ultrasonic waves) of the vibration unit 34a is set to the + Z direction, and the ultrasonic waves are projected substantially perpendicularly onto the planar bottom surface of the inner container 33B via the liquid LW. Furthermore, it is assumed that the position in the XY plane of the probe-like vibrating portion 32a for dispersion and the position in the XY plane of the vibrating portion 34a for generating mist are separated by an interval SPL.
  • the vibration frequency of the vibration unit 32a for dispersion is set to about 20 KHz.
  • the conditions for efficiently generating the mist MT from the dispersion DIL were confirmed by experiments.
  • zirconium dioxide (ZrO 2 , 5 wt.%) Manufactured by Sakai Chemical Industry Co., Ltd. was dispersed in water (pure water), and a dispersion containing ZrO 2 nanoparticles (particle size: 3 to 5 nm) (mist generation) Solution) DIL was prepared, and a 20 KHz ultrasonic homogenizer (VC series or VCX series manufactured by SONICS) sold by Iida Trading Co., Ltd. was used as a mist for the probe-like vibrating part 32a for dispersion.
  • VC series or VCX series manufactured by SONICS 20 KHz ultrasonic homogenizer
  • a throwing type ultrasonic atomizing unit IM1-24 / LW (vibrator diameter 20 mm ⁇ , driving frequency 1.6 MHz) sold by Hoshi Kogyo Co., Ltd. was used.
  • the vibration part 32a of the ultrasonic homogenizer is formed on the upper end of a titanium alloy round rod (probe rod) having a diameter of several mm to several tens of mm. Z.
  • a vibration source by a T element is attached, and the vibration (20 KHz) of the vibration source is applied to the dispersion DIL through the probe rod.
  • a gas (air) containing the mist MT in the inner container 33B was adjusted from the exhaust port EP of the inner container 33B shown in FIG.
  • the dispersion liquid DIL in a state where 100 cc of the dispersion liquid DIL is placed in the inner container 33B and the distance SPL is set to about several centimeters, the dispersion liquid DIL is not applied to the vibration unit 32a for dispersion without applying the drive signal Ds1 of 20 KHz.
  • the dispersion liquid DIL is atomized while applying a drive signal Ds1 of 20 KHz to the vibration unit 32a for dispersion (atomized state in combination with forced dispersion) ) And investigated whether the efficiency of atomization changes.
  • the amount of residual liquid remaining in the inner container 33B was compared, and the atomization without forced dispersion was performed.
  • the residual liquid amount at about 97 cc (3% atomization amount) was about 95 cc (5% atomization amount). From this, it was found that atomization efficiency is improved when atomization is performed in combination with forced dispersion.
  • the distance SPL is zero, or the vibration part 32a for dispersion (for preventing aggregation) and the vibration part 34a for atomization overlap at least partially. If there is, mist MT may hardly occur.
  • the ultrasonic vibration for atomization (1.6 MHz) is transmitted to the dispersion DIL through the bottom surface of the polypropylene inner container 33B. Therefore, depending on the depth DOL that is the distance from the bottom surface of the inner container 33B to the liquid level SQ of the dispersion DIL, the liquid column that should appear on the liquid level SQ when the mist MT is generated is not efficiently generated. In some cases, mist MT is not generated. Therefore, in the configuration of FIG. 14, the change in the atomization efficiency was examined by changing the height of the liquid surface SQ of the dispersion DIL, that is, the depth DOL of the dispersion DIL. FIG.
  • the dispersion DIL is forcibly dispersed at 20 KHz by a probe-like vibration part 32a (ultrasonic homogenizer), and the depth DOL is several points between 10 and 50 mm, here 10 mm, 20 mm, 40 mm, and 50 mm.
  • the vertical axis represents the percentage (%) of the remaining liquid amount of the dispersion DIL representing the atomization efficiency
  • the horizontal axis represents the depth DOL (mm).
  • the residual liquid amount is 100% and mist MT is hardly generated.
  • the residual liquid amount is about 99%, and although mist MT is slightly generated, it cannot be said that it is efficiently generated.
  • the residual liquid amount is about 95%, and it was found that the atomization efficiency is the highest.
  • the depth DOL of the dispersion DIL in the inner container 33B is maintained in the range of 10 to 20 mm as described in FIG. It is preferable to provide such a liquid level sensor LLS and provide a mechanism for injecting the dispersion DIL from time to time based on the measurement information Sv.
  • the initial volume of the dispersion DIL is the same, and the depth DOL is set to 20 mm, and the probe-like vibrating portion 32a (ultrasonic homogenizer) is used.
  • the distance SPL with the atomizing vibration part 34a is changed to some point between 5 and 50 mm, here 5 mm, 20 mm, 35 mm, and 50 mm, and the atomization efficiency when atomizing is performed for a certain time. The change was examined by experiment. FIG.
  • the change characteristic A1 in FIG. 16 shows an atomization state without forced dispersion in which only the vibration part 34a (1.6 MHz) for atomization is vibrated without vibrating the vibration part 32a (20 KHz) for dispersion.
  • the change characteristic B1 is obtained when the atomizing state in the forced dispersion combination in which the vibration unit 32a (20 KHz) for dispersion and the vibration unit 34a (1.6 MHz) for atomization are vibrated together is used. It is a characteristic.
  • the residual liquid amount (%) when the interval SPL was 20 mm to 50 mm was approximately 97% (atomization efficiency 3%) and became almost constant.
  • the interval SPL is 20 mm or less, an obstacle may be formed between the bottom surface portion of the inner container 33B to which the vibration wave from the vibration part 34a is most strongly irradiated and the liquid surface SQ portion of the dispersion DIL above the inner container 33B. Since the vibration unit 32a for dispersion approaches, the 1.6 MHz vibration wave propagating to the liquid level SQ is weakened, and the generation efficiency of the mist MT is considered to decrease due to the decrease of the liquid column appearing on the liquid level SQ. .
  • the residual liquid amount (%) is about 95% (the atomization efficiency is 5%) when the interval SPL is between 20 mm and 35 mm.
  • the remaining liquid amount was 97%, which was almost the same as the change characteristic A1.
  • the generation efficiency (atomization efficiency) of the mist MT is reduced.
  • the cause is that the dispersion vibration part 32a that becomes an obstacle approaches the propagation of the atomizing vibration wave (1.6 MHz), and the liquid column appearing on the liquid surface SQ is stabilized. It is because it does not occur.
  • the dispersion vibration part is at a distance (interval SPL) that does not physically interfere with the irradiation range toward the liquid surface SQ of the dispersion liquid DIL with a strong vibration wave (1.6 MHz or 2.4 MHz) for atomization.
  • the atomization efficiency can be increased by arranging 32a close to the vibration part 34a for atomization.
  • Such an arrangement condition is the same as the arrangement relationship between the vibration part 32a for dispersion and the vibration part 34a for atomization of the mist generation device (mist generation part) shown in each of FIG. 3, FIG. 8, and FIG. It can be applied as well.
  • the atomization efficiency of the mist MT is maximized when the depth DOL of the dispersion DIL shown in FIG. 15 is in the range of 10 to 20 mm (optimum depth range).
  • the interval SPL between the portion 32a and the atomizing vibration portion 34a is larger than the lower limit value (10 mm) of the optimum depth range and more than twice the upper limit value (20 mm) of the optimum depth range.
  • the distance range is small, the maximum atomization efficiency is obtained.
  • good atomization efficiency can be obtained by setting the interval SPL to the same level as the depth DOL of the dispersion DIL.
  • FIG. 17 is a view showing a modified example of the mist generating apparatus of the fourth embodiment shown in FIG. 14, and members having the same configuration or the same function as members in FIG. It is.
  • two configurations are changed from the configuration of FIG. 14.
  • the first change is that, when viewed in the XY plane, the probe-like vibration part 32a is arranged near the center of the inner container 33B, and the atomization vibration part 34a arranged in the liquid LW in the outer container 30a.
  • the probe-like vibration part 32a is arranged near the center of the inner container 33B, and the atomization vibration part 34a arranged in the liquid LW in the outer container 30a.
  • SPL an interval in the + X direction and the ⁇ X direction from the vibrating portion 32a.
  • the second change is that of the inner container 33B (made of polypropylene).
  • a cylindrical pipe 33Bp extending in the ⁇ Z direction is provided below the opening 33Bo through which the probe-like vibrating portion 32a is passed so as to surround the vibrating portion 32a and close to the liquid surface SQ of the dispersion liquid DIL. .
  • the 1.6 MHz (or 2.4 MHZ) vibration wave for atomization irradiated to the bottom surface of the inner container 33B via the liquid LW is generated on the bottom surface. Since irradiation is performed over a wide range, the atomization amount (mist MT concentration) can be increased.
  • the lower end ( ⁇ Z direction side) opening of the pipe 33Bp is set near the liquid surface SQ, so that the gas flowing in from the opening 33Bo is changed to the liquid surface SQ.
  • the mist MT generated from the liquid level SQ is efficiently collected and sent to the exhaust port EP.
  • a plurality of atomizing vibrating portions 34a may be arranged in a ring shape around the probe-like vibrating portion 32a by an interval SPL when viewed in the XY plane.
  • the sample substrate PF is disposed so as to be inclined at a certain angle ⁇ with respect to a horizontal plane (XY plane) perpendicular to the direction of gravity, and a mist transport path (from the ceiling above the chamber 30a) (
  • a spray nozzle NZ1 having a spray port OP1 oriented in the ⁇ Z direction is provided at the end of the (piping) 36a.
  • the reason why the sample substrate PF is inclined by the angle ⁇ is the same as the reason why the substrate FS is inclined in the film forming chamber 22 as described above with reference to FIG.
  • an exhaust port EX1 is formed at a position higher than the spray nozzle NZ1 on the side wall (which may be the ceiling side) of the chamber 30a and on the side where the tilted sample substrate FP has a higher position in the Z direction,
  • the gas in the chamber 30a is sucked from the exhaust port EX1 at a constant flow rate by an aspirator (not shown).
  • the gas containing the mist MT generated in the inner container 33B of the mist generating device of FIG. 14 is discharged from the spray port OP1 in the chamber 30a on the negative pressure side through the mist conveyance path (pipe) 36a.
  • the gas containing the mist MT discharged from the spray port OP1 is easy to flow in the direction along the surface of the sample substrate P due to the arrangement of the exhaust port EX1 and the inclination of the sample substrate PF, and a liquid pool is formed on the sample substrate PF. It can be prevented from occurring. Therefore, the mist MT efficiently adheres to the surface of the sample substrate PF.
  • mist conveyance path (pipe) 36a in the case of extrusion)
  • the gas (mist MT) from the spray port OP1 is easily dispersed in all directions, and the deposition efficiency of the mist MT may be reduced.
  • the sample substrate PF is a heat-resistant glass substrate, and the sample substrate PF is tilted and held on a hot plate (heater) HPT heated to a temperature of 200.degree. This is because when the mist MT from the spray port OP1 adheres to or approaches the sample substrate PF, the water that is the main component of the mist is instantly evaporated, and can be deposited on the sample substrate PF within a certain time. This is for grasping the maximum film thickness due to the particles NP.
  • the dispersion liquid DIL containing particles (5 wt.%) Of zirconia dioxide (ZrO 2 ) as the nanoparticles NP is stored in the inner container 33B of the mist generating device of FIG.
  • the average particle size of one particle of ZrO 2 is 3 to 5 nm, but in the dispersion DIL with pure water, it is distributed as a lump of various particle sizes due to aggregation. Therefore, the particle size distribution of ZrO 2 in the dispersion DIL is measured by the dynamic light scattering method, and in the case of atomization without forced dispersion (applying 1.6 MHz only), the fog with forced dispersion combined use Comparison was made in the case of conversion (application of 1.6 MHz + 20 KHz).
  • FIG. 19 is a graph in which the vertical axis represents the scattering intensity distribution obtained by the dynamic light scattering method, the horizontal axis represents the estimated particle size (nm), and the characteristic SC is a static state (1.6 MHz).
  • the characteristic SA represents the particle size distribution in the case of atomization without forced dispersion (applying only 1.6 MHz) and the characteristic SB. Represents the particle size distribution in the case of atomization with combined use of forced dispersion (application of 1.6 MHz + 20 KHz).
  • the characteristic SA in the case of atomization without forced dispersion (only application of 1.6 MHz) has a broad particle size distribution, and in the case of atomization with combined use of forced dispersion (1
  • the characteristic SB (applied at .6 MHz + 20 KHz) has a particle size distribution having a sharper peak than the characteristic SA.
  • the characteristic SB in the graph of FIG. 19 means that a large amount of ZrO 2 particle aggregates aggregated to a particle size of 20 to 50 nm is contained in the dispersion DIL, and the characteristic SA has a particle size in the range of 20 to 100 nm.
  • ZrO 2 particle aggregates aggregated in the dispersion DIL are contained in the dispersion DIL at a similar rate. That is, in the case of atomization using forced dispersion, even if aggregation occurs due to the superimposing effect of 1.6 MHz vibration by the vibration part 34a and 20 KHz vibration by the vibration part 32a, relatively uniform particles It will be dispersed as a lump of particles with a diameter.
  • the characteristics of the particle size distribution when only the dispersing vibration part 32a is vibrated without vibrating the atomizing vibration part 34a are as follows. The band width of (nm) was almost the same with a slight narrowing.
  • the gas containing the mist MT generated by the mist generating device of FIG. 14 is sprayed on the sample substrate PF in the film forming unit of FIG. 18 for a predetermined time, the ZrO 2 deposited on the sample substrate PF.
  • the film thickness of the nanoparticles was compared between the case of atomization without forced dispersion and the case of atomization with forced dispersion.
  • the temperature of the hot plate HPT (sample substrate PF) in FIG. 18 was set to 200 ° C., and the flow rate taken from the exhaust port EX1 was set to be constant.
  • the film thickness of the ZrO 2 particles obtained by spraying the mist MT on the sample substrate PF for a certain period of time in an atomized state without forced dispersion is about 2 ⁇ m. It was found that the film thickness of the ZrO 2 particles obtained by spraying the mist MT on the sample substrate PF in the atomized state in combination with dispersion was about 3 ⁇ m, and the film formation efficiency was increased 1.5 times.
  • the mist MT generated by the mist generating device of FIG. 14 is introduced into the film forming unit of FIG. 18, and a film (sample 1) of ZrO 2 particles having a film thickness of 60 nm on the sample substrate PF (glass), A film (sample 2) made of ZrO 2 particles having a thickness of 2 ⁇ m was prepared, and the haze ratio of each film of samples 1 and 2 was measured.
  • the haze ratio is represented by the ratio (%) of the diffuse transmitted light amount in the total transmitted light amount that passes through the film body. The smaller this ratio, the smaller the particle diameter (or the particle lump) of the ZrO 2 nanoparticles constituting the film. (Diameter) is also reduced, and is considered a dense film.
  • the measurement result of the haze (HAZE) rate of each film of Samples 1 and 2 is shown in FIG.
  • FIG. 20A shows haze ratio characteristics A1 and B1 of sample 1 (film thickness 60 nm)
  • FIG. 20B shows haze ratio characteristics A2 and B2 of sample 2 (film thickness 2 ⁇ m)
  • the vertical axis represents haze (HAZE). ) Rate (%)
  • the horizontal axis represents wavelength (nm).
  • the measured wavelength range was 380 nm to 780 nm.
  • the average haze ratio of the ZrO 2 particle film (60 nm thickness) formed in the atomized state without forced dispersion is about 0.38% from the characteristic A1
  • the average haze ratio of the ZrO 2 particle film (thickness: 60 nm) formed in the atomized state is reduced to about 0.2% from the characteristic B1.
  • the average haze ratio of the ZrO 2 particle film (2 ⁇ m thickness) formed in the atomized state without forced dispersion is about 14% from the characteristic A2
  • the average haze ratio of the ZrO 2 particle film (2 ⁇ m thick) formed in the atomized state is reduced to about 10% from the characteristic B2.
  • the frequency of the ultrasonic vibration wave for suppressing aggregation of the nanoparticles in the dispersion DIL is set to 20 KHz. However, the frequency is not fixed, and the size of the nanoparticle alone.
  • the frequency of the ultrasonic vibration wave for atomization was set to 1.6 MHz, but this is not fixed and is atomized in the range of about 1 MHz to 3 MHz. It is set to a frequency at which efficiency increases.
  • the vibration waves from both the atomizing vibration part 34a and the dispersion vibration part 32a are used as the surfactant.
  • the particle size of the mass of the nanoparticle NP so as to be included in the mist MT even if it is agglomerated by applying to the dispersion DIL (DIL1) with a solution in which the content of the chemical composition component becomes substantially zero. Can be made small. Therefore, the film quality formed on the substrate FS can be improved.
  • Such an effect is obtained by applying the vibration wave from the vibration part 32a for dispersion to the dispersion liquid (solution that does not substantially contain a chemical composition component serving as a surfactant), and the vibration part 34a for atomization.
  • the mist MT is generated by heating the dispersion DIL (DIL1) with a heating element (heater) without using it, the same is obtained.
  • the temperature of the gas containing the mist MT generated from the dispersion DIL and the mist MT passing through the mist transport flow path 36a may be around 100 ° C.
  • the temperature in the chamber 30a shown in FIG. 18 is also set to a temperature close thereto.
  • a method of generating a mist (droplet having a diameter of several tens of ⁇ m or less) containing fine particles from a dispersion DIL (solution) in which fine particles are dispersed is a vibration wave (frequency is 1 MHz or more) in the dispersion DIL.
  • a vibration method for applying a mist and a heating method for generating steam (steam) from the liquid surface of the dispersion DIL may be used.

Abstract

A mist generating device (MG1) for generating a mist (MT) including fine particles (NP) is provided with: a container (30a) for retaining a dispersion liquid (DIL) including the fine particles (NP); a first oscillating part (32a) for imparting oscillation at a first frequency to the dispersion liquid (DIL) in the container (30a) and thereby suppressing aggregation of the fine particles (NP) in the dispersion liquid (DIL); and a second oscillating part (34a) for imparting, to the dispersion liquid (DIL) in the container (30a), oscillation at a second frequency higher than the first frequency to generate a mist (MT) including the fine particles (NP) from the surface of the dispersion liquid (DIL).

Description

ミスト発生装置、成膜装置、ミスト発生方法、成膜方法、および、デバイス製造方法Mist generating apparatus, film forming apparatus, mist generating method, film forming method, and device manufacturing method
 本発明は、微粒子を含むミストを発生するミスト発生装置およびそのミスト発生方法と、発生したミストを用いて基板上に薄膜を形成する成膜装置およびその成膜方法と、形成された薄膜を用いて電子デバイスを製造するデバイス製造方法とに関する。 The present invention relates to a mist generating apparatus and a mist generating method for generating a mist containing fine particles, a film forming apparatus and a film forming method for forming a thin film on a substrate using the generated mist, and the formed thin film. And a device manufacturing method for manufacturing an electronic device.
 半導体デバイス、表示デバイス、配線基板、および、センサー素子などの製造の際には、金属基板またはプラスチック基板などの母材の表面に、成膜装置を使って様々な種類の物質による薄膜を形成している。成膜装置による成膜方法としては、真空中の高温度の環境下で母材に薄膜を形成する方式や、成膜すべき物質(微粒子)を含む溶液を母材の表面に塗布して乾燥させる方式など、様々な方式のものが知られている。近年においては、製造コストの低減、生産性の向上から、真空方式を使わない成膜法が注目を浴びている。 When manufacturing semiconductor devices, display devices, wiring boards, and sensor elements, thin films of various types of substances are formed on the surface of a base material such as a metal substrate or plastic substrate using a film deposition system. ing. As a film forming method using a film forming apparatus, a method in which a thin film is formed on a base material in a high temperature environment in a vacuum, or a solution containing a substance (fine particles) to be formed is applied to the surface of the base material and dried. Various methods are known, such as a method of making them. In recent years, a film forming method that does not use a vacuum method has attracted attention because of a reduction in manufacturing cost and an improvement in productivity.
 その一例として、特開2011-210422号公報には、金属物質を含む溶液または分散液を霧状にして基板に吹き付けて、母材となる基板の表面に透明導電膜を形成する成膜法が開示されている。この特開2011-210422号公報では、基板を所定の温度に設定した状態で、亜鉛化合物(塩化亜鉛粉末)と錫化合物(塩化錫粉末)とを所定の濃度で含む脱水エタノールや塩酸などによる溶液をミスト化し、そのミストを基板の表面に吹き付けることで透明導電性非晶質膜を形成している。この脱水エタノールや塩酸は、塩化亜鉛粉末および塩化錫粉末が溶液中で凝集することを抑える界面活性剤として機能する。 As an example, Japanese Patent Application Laid-Open No. 2011-210422 discloses a film forming method in which a solution or dispersion containing a metal substance is sprayed onto a substrate in a mist to form a transparent conductive film on the surface of the substrate that is a base material. It is disclosed. In Japanese Patent Application Laid-Open No. 2011-210422, a solution of dehydrated ethanol or hydrochloric acid containing a zinc compound (zinc chloride powder) and a tin compound (tin chloride powder) at a predetermined concentration with the substrate set at a predetermined temperature. Is formed into a mist, and the mist is sprayed onto the surface of the substrate to form a transparent conductive amorphous film. The dehydrated ethanol and hydrochloric acid function as a surfactant that suppresses aggregation of zinc chloride powder and tin chloride powder in the solution.
 しかしながら、溶液に界面活性剤を添加すると、形成された薄膜内および薄膜上に界面活性剤が残り、この残った界面活性剤が、不純物として電気的または光学的或いは化学的に薄膜の特性を劣化させる虞がある。したがって、アニール処理などの加熱処理を薄膜に施すことで残存する界面活性剤を取り除く必要があるため、成膜のための工程、工数が多くなる他、耐熱性のある金属物質や基板材料しか使用することができないという制約が生じる。 However, when a surfactant is added to the solution, the surfactant remains in and on the formed thin film, and the remaining surfactant deteriorates the characteristics of the thin film electrically, optically, or chemically as impurities. There is a risk of causing it. Therefore, it is necessary to remove the remaining surfactant by applying heat treatment such as annealing to the thin film, which increases the number of processes and man-hours for film formation, and uses only heat-resistant metal materials and substrate materials. There is a restriction that it cannot be done.
 本発明の第1の態様は、微粒子を含むミストを発生するミスト発生装置であって、前記微粒子を含むミスト生成用の溶液を保持する第1容器と、第1の周波数の振動を前記第1容器内の前記溶液に与えることで、前記微粒子の前記溶液中での凝集を抑える第1振動部と、前記第1の周波数よりも高く、前記溶液の表面から前記微粒子を含むミストを発生させるための第2の周波数の振動を前記第1容器内の前記溶液に与える第2振動部と、を備える。 According to a first aspect of the present invention, there is provided a mist generating device for generating a mist containing fine particles, the first container holding a mist generating solution containing the fine particles, and a vibration having a first frequency. A first vibrating part that suppresses aggregation of the fine particles in the solution by being applied to the solution in a container, and a mist that is higher than the first frequency and includes the fine particles from the surface of the solution. A second vibration unit that applies vibration of the second frequency to the solution in the first container.
 本発明の第2の態様は、微粒子を含むミストを用いて基板上に薄膜を形成する成膜装置であって、前記微粒子を含む分散液を保持する容器と、第1の周波数の振動を前記容器内の前記分散液に与えることで、前記微粒子が前記分散液中で凝集するサイズを前記ミストのサイズ以下に抑えた分散状態にする第1振動部と、前記第1の周波数よりも高い第2の周波数の振動を前記分散液に与えることで、前記分散液の表面から前記微粒子を含むミストを発生させる第2振動部と、を備える。 According to a second aspect of the present invention, there is provided a film forming apparatus for forming a thin film on a substrate using a mist containing fine particles, a container for holding a dispersion containing the fine particles, and a vibration at a first frequency. A first vibrating part that is in a dispersed state in which the size at which the fine particles aggregate in the dispersion is suppressed to be equal to or less than the size of the mist by applying to the dispersion in the container, and a first frequency higher than the first frequency. And a second vibration unit that generates mist containing the fine particles from the surface of the dispersion by applying vibration of frequency 2 to the dispersion.
 本発明の第3の態様は、微粒子を含む分散液からミストを発生するミスト発生方法であって、第1の周波数の振動を前記分散液に与えることで、前記微粒子の前記分散液中での凝集を抑えることと、前記第1の周波数よりも高く、前記分散液の表面から前記微粒子を含むミストを発生させるための第2の周波数の振動を前記分散液に与えることと、を含む。 According to a third aspect of the present invention, there is provided a mist generating method for generating mist from a dispersion containing fine particles, wherein the dispersion is imparted with vibrations of a first frequency so that the fine particles are dispersed in the dispersion. And suppressing the agglomeration, and applying to the dispersion a vibration having a second frequency higher than the first frequency for generating mist containing the fine particles from the surface of the dispersion.
 本発明の第4の態様は、微粒子を含む分散液から発生するミストを用いて基板上に薄膜を形成する成膜方法であって、第1の周波数の振動を前記分散液に与えることで、前記微粒子の前記分散液中での凝集を抑えることと、前記第1の周波数よりも高い第2の周波数の振動を前記分散液に与えることで、前記分散液の表面から前記微粒子を含むミストを発生させることと、を含む。 A fourth aspect of the present invention is a film forming method for forming a thin film on a substrate by using a mist generated from a dispersion containing fine particles, and applying a vibration having a first frequency to the dispersion, A mist containing the fine particles from the surface of the dispersion liquid is suppressed by suppressing aggregation of the fine particles in the dispersion liquid and applying a vibration having a second frequency higher than the first frequency to the dispersion liquid. Generating.
 本発明の第5の態様は、基板に所定の処理を施すことで電子デバイスを製造するデバイス製造方法であって、第1の周波数の振動を微粒子を含む分散液に与えて前記微粒子の前記分散液中での凝集を抑えることと、前記第1の周波数よりも高い第2の周波数の振動を前記分散液に与えて、前記分散液の表面から前記微粒子を含むミストを発生させることと、前記基板を前記ミストに曝して、前記基板の表面に前記微粒子による薄膜を形成することと、記基板の表面に形成された前記薄膜をパターニングして、前記電子デバイスを構成する回路の少なくとも一部のパターンを形成することと、を含む。 According to a fifth aspect of the present invention, there is provided a device manufacturing method for manufacturing an electronic device by subjecting a substrate to a predetermined treatment, wherein the dispersion of the fine particles is performed by applying a vibration having a first frequency to a dispersion containing the fine particles. Suppressing agglomeration in the liquid, applying a vibration of a second frequency higher than the first frequency to the dispersion to generate a mist containing the fine particles from the surface of the dispersion; Exposing the substrate to the mist to form a thin film of the fine particles on the surface of the substrate; patterning the thin film formed on the surface of the substrate; and at least a part of a circuit constituting the electronic device Forming a pattern.
 本発明の第6の態様は、基板に所定の処理を施すことで電子デバイスを製造するデバイス製造方法であって、第1の周波数の振動を微粒子を含む分散液に与えて前記微粒子の前記分散液中での凝集を抑えることと、前記第1の周波数よりも高い第2の周波数の振動を前記分散液に与えて、前記分散液の表面から前記微粒子を含むミストを発生させることと、前記基板を前記ミストに曝し、前記基板の表面のうち前記電子デバイスのための所定のパターンに対応した部分に、前記微粒子による薄膜を選択的に形成することと、を含む。 According to a sixth aspect of the present invention, there is provided a device manufacturing method for manufacturing an electronic device by performing a predetermined treatment on a substrate, wherein the dispersion of the fine particles is performed by applying a vibration having a first frequency to a dispersion liquid containing fine particles. Suppressing agglomeration in the liquid, applying a vibration of a second frequency higher than the first frequency to the dispersion to generate a mist containing the fine particles from the surface of the dispersion; Exposing the substrate to the mist, and selectively forming a thin film of the fine particles on a portion of the surface of the substrate corresponding to a predetermined pattern for the electronic device.
 本発明の第7の態様は、微粒子を含むミストを発生するミスト発生装置であって、前記微粒子を含む分散液を保持する第1容器と、第1の周波数の振動を前記第1容器内の前記分散液に与える第1振動部と、前記第1の周波数と異なる第2の周波数の振動を前記第1容器内の前記分散液に与える第2振動部と、を備え、前記第1振動部と前記第2振動部の少なくとも一方の振動によって、前記分散液の液面から前記ミストを発生させる。 According to a seventh aspect of the present invention, there is provided a mist generating device for generating a mist containing fine particles, a first container for holding a dispersion liquid containing the fine particles, and vibration at a first frequency in the first container. A first vibration unit that applies to the dispersion liquid; and a second vibration unit that applies vibration of a second frequency different from the first frequency to the dispersion liquid in the first container. And the mist is generated from the liquid surface of the dispersion liquid by vibration of at least one of the second vibrating parts.
 本発明の第8の態様は、微粒子を含むミストを発生するミスト発生装置であって、前記微粒子を含む溶液を保持する第1容器と、第1の周波数の振動を前記第1容器内の前記溶液に与えることで、前記微粒子の前記溶液中での凝集を抑える第1振動部と、前記溶液の液面から前記微粒子を含むミストを発生させるために、前記第1の周波数よりも高い第2の周波数の振動を前記第1容器の外部から与える第2振動部と、を備え、前記溶液の液面と平行な面内において、前記第1振動部と前記第2振動部とを所定間隔で離して配置する。 According to an eighth aspect of the present invention, there is provided a mist generating device for generating a mist containing fine particles, a first container for holding a solution containing the fine particles, and a vibration having a first frequency in the first container. The first vibration part that suppresses aggregation of the fine particles in the solution by applying to the solution, and a second higher than the first frequency in order to generate mist containing the fine particles from the liquid surface of the solution. A second vibrating part that applies vibrations at a frequency of from the outside of the first container, and the first vibrating part and the second vibrating part are spaced at a predetermined interval in a plane parallel to the liquid level of the solution. Place them apart.
 本発明の第9の態様は、微粒子を含むミストを発生させるミスト発生方法であって、界面活性剤となる化学成分を含まない液体に前記微粒子を所定の濃度で混ぜた溶液を第1容器に貯留し、前記溶液に第1の振動波を与える、又は前記溶液を加熱することによって、前記溶液の液面から前記微粒子を含むミストを発生させる段階と、前記微粒子が前記溶液中で前記ミストのサイズ以上に凝集することを抑えるような第2の振動波を前記溶液に与える段階と、を含む。 According to a ninth aspect of the present invention, there is provided a mist generating method for generating a mist containing fine particles, wherein a solution in which the fine particles are mixed at a predetermined concentration in a liquid not containing a chemical component serving as a surfactant is added to the first container. Storing and generating a first oscillating wave to the solution or heating the solution to generate a mist containing the fine particles from a liquid surface of the solution; and the fine particles of the mist in the solution. Applying to the solution a second vibration wave that suppresses agglomeration beyond the size.
第1の実施の形態における基板に対して所定の処理を施して電子デバイスを製造するデバイス製造システムの概略構成を示す概略構成図である。It is a schematic block diagram which shows schematic structure of the device manufacturing system which performs a predetermined process with respect to the board | substrate in 1st Embodiment, and manufactures an electronic device. 図1に示す成膜処理を行う処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus which performs the film-forming process shown in FIG. 図2に示すミスト発生装置の構成を示す図である。It is a figure which shows the structure of the mist generator shown in FIG. 図1に示す塗布処理を行う処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus which performs the application | coating process shown in FIG. 図1に示す露光処理を行う処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus which performs the exposure process shown in FIG. 図5に示す回転ドラムを+Z方向側からみた図である。It is the figure which looked at the rotating drum shown in FIG. 5 from the + Z direction side. 図1に示す湿式処理を行う処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus which performs the wet process shown in FIG. 第2の実施の形態におけるミスト発生装置の簡略的な構成を示す図である。It is a figure which shows the simple structure of the mist generator in 2nd Embodiment. 第3の実施の形態におけるミスト発生装置の簡略的な構成を示す図である。It is a figure which shows the simple structure of the mist generator in 3rd Embodiment. 変形例2におけるデバイス製造システムの概略的な構成を示す概略構成図である。It is a schematic block diagram which shows the schematic structure of the device manufacturing system in the modification 2. 変形例5によるミスト発生装置の簡略的な構成を示す図である。It is a figure which shows the simple structure of the mist generator by the modification 5. 変形例6によるミスト発生装置の簡略的な構成を示す図である。It is a figure which shows the simple structure of the mist generator by the modification 6. 変形例7によるミスト発生装置の駆動制御回路部の構成を示す図である。It is a figure which shows the structure of the drive control circuit part of the mist generator by the modification 7. 第4の実施の形態におけるミスト発生装置の簡略的な構成を示す図である。It is a figure which shows the simple structure of the mist generator in 4th Embodiment. 図14のミスト発生装置における分散液の深さと霧化効率の変化との関係を実験により求めたグラフである。It is the graph which calculated | required the relationship between the depth of the dispersion liquid in the mist generator of FIG. 14, and the change of the atomization efficiency by experiment. 図14のミスト発生装置における2つの振動部の間隔と霧化効率の変化との関係を実験により求めたグラフである。It is the graph which calculated | required the relationship between the space | interval of two vibration parts in the mist generator of FIG. 14, and the change of atomization efficiency by experiment. 第4の実施の形態の変形例によるミスト発生装置の簡略的な構成を示す図である。It is a figure which shows the simple structure of the mist generator by the modification of 4th Embodiment. 図14のミスト発生装置で発生したミストを使って基板にナノ粒子を堆積させるミスト成膜部の概略的な構成を示す図である。It is a figure which shows schematic structure of the mist film-forming part which deposits a nanoparticle on a board | substrate using the mist generated with the mist generator of FIG. 図14のミスト発生装置でZrO2ナノ粒子を水に分散させたときの粒度分布の測定結果を示すグラフである。The ZrO 2 nanoparticles mist generating device of FIG. 14 is a graph showing the measurement results of the particle size distribution when dispersed in water. 図20A、図20Bは、図14のミスト発生装置と図18のミスト成膜部とを用いて、サンプル基板上に形成されたZrO2ナノ粒子の膜のヘイズ率の測定結果を表すグラフである。20A and 20B are graphs showing the measurement results of the haze ratio of the ZrO 2 nanoparticle film formed on the sample substrate using the mist generator of FIG. 14 and the mist film forming unit of FIG. .
 本発明の態様に係るミスト発生方法およびそれを実施するミスト発生装置、ミスト発生方法を用いて薄膜を形成する成膜方法およびそれを実施する成膜装置、並びに、ミスト発生方法を用いて電子デバイスを製造するデバイス製造方法について、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。なお、本発明の態様は、これらの実施の形態に限定されるものではなく、多様な変更または改良を加えたものも含まれる。つまり、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれ、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。 Mist generation method and mist generation apparatus for implementing the same, film formation method for forming a thin film using the mist generation method, film formation apparatus for implementing the same, and electronic device using the mist generation method A device manufacturing method for manufacturing the device will be described in detail below with reference to the accompanying drawings by listing preferred embodiments. In addition, the aspect of this invention is not limited to these embodiment, What added the various change or improvement is included. That is, the constituent elements described below include those that can be easily assumed by those skilled in the art and substantially the same elements, and the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of the components can be made without departing from the scope of the present invention.
[第1の実施の形態]
 図1は、第1の実施の形態のデバイス製造システム(基板処理システム)10の概略的な構成を示す概略構成図である。なお、以下の説明においては、特に断わりのない限り、重力方向をZ方向とするX・Y・Zの直交座標系を設定し、図に示す矢印にしたがって、X方向、Y方向、および、Z方向を説明する。
[First Embodiment]
FIG. 1 is a schematic configuration diagram showing a schematic configuration of a device manufacturing system (substrate processing system) 10 according to the first embodiment. In the following description, unless otherwise specified, an X, Y, Z orthogonal coordinate system with the gravity direction as the Z direction is set, and the X direction, the Y direction, and the Z direction are set according to the arrows shown in the figure. Explain the direction.
 デバイス製造システム10は、可撓性のフィルム状のシート基板FSに所定の処理を施して、電子デバイスを製造する製造システムである。デバイス製造システム10は、例えば、電子デバイスとしてのフレキシブル・ディスプレイ(フィルム状のディスプレイ)、フィルム状のタッチパネル、液晶表示パネル用のフィルム状のカラーフィルター、フレキシブル配線、または、フレキシブル・センサなどを製造する製造ラインが構築された製造システムである。以下、電子デバイスとしてフレキシブル・ディスプレイを前提として説明する。フレキシブル・ディスプレイとしては、例えば、有機ELディスプレイ、液晶ディスプレイなどがある。 The device manufacturing system 10 is a manufacturing system that manufactures an electronic device by applying a predetermined process to a flexible film-like sheet substrate FS. The device manufacturing system 10 manufactures, for example, a flexible display (film-like display) as an electronic device, a film-like touch panel, a film-like color filter for a liquid crystal display panel, flexible wiring, or a flexible sensor. This is a production system in which a production line is constructed. The following description is based on the assumption that a flexible display is used as the electronic device. Examples of the flexible display include an organic EL display and a liquid crystal display.
 デバイス製造システム10は、シート基板(以下、基板という)FSをロール状に巻いた供給ロールFR1から基板FSが送出され、送出された基板FSに対して各処理を連続的に施した後、各種処理後の基板FSを回収ロールFR2で巻き取る、いわゆる、ロール・ツー・ロール(Roll To Roll)方式の構造を有する。基板FSは、基板FSの移動方向(搬送方向)が長手方向(長尺)となり、幅方向が短手方向(短尺)となる帯状の形状を有する。本第1の実施の形態では、シート状の基板FSが、少なくとも処理装置PR1~PR6における各々の処理を経て、回収ロールFR2に巻き取られるまでの例を示している。 The device manufacturing system 10 sends out a substrate FS from a supply roll FR1 obtained by winding a sheet substrate (hereinafter referred to as a substrate) FS in a roll shape, and continuously performs each process on the delivered substrate FS. It has a so-called roll-to-roll structure in which the processed substrate FS is wound up by a recovery roll FR2. The substrate FS has a belt-like shape in which the moving direction (transport direction) of the substrate FS is the longitudinal direction (long) and the width direction is the short direction (short). In the first embodiment, an example is shown in which the sheet-like substrate FS is wound up on the collection roll FR2 through at least each processing in the processing apparatuses PR1 to PR6.
 なお、本第1の実施の形態では、X方向は、デバイス製造システム10の設置面に対して平行な水平面内において、基板FSが供給ロールFR1から回収ロールFR2に向かう方向(基板FSの搬送方向)である。Y方向は、前記水平面内においてX方向と直交する方向であり、基板FSの幅方向(短尺方向)である。Z方向は、X方向とY方向とに直交する方向(上方向)であり、重力が働く方向と平行である。 In the first embodiment, the X direction is the direction in which the substrate FS is directed from the supply roll FR1 to the collection roll FR2 in the horizontal plane parallel to the installation surface of the device manufacturing system 10 (the transport direction of the substrate FS). ). The Y direction is a direction orthogonal to the X direction in the horizontal plane, and is the width direction (short direction) of the substrate FS. The Z direction is a direction (upward direction) orthogonal to the X direction and the Y direction, and is parallel to the direction in which gravity acts.
 基板FSの材料としては、例えば、樹脂フィルム、または、ステンレス鋼などの金属または合金からなる箔(フォイル)などが用いられる。樹脂フィルムの材質としては、例えば、ポリエチレン樹脂、ポリエーテル樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、ポリフェニレンスルフィド樹脂、ポリアリレート樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、および、酢酸ビニル樹脂のうち、少なくとも1つ以上を含んだものを用いてもよい。また、基板FSの厚みや剛性(ヤング率)は、基板FSに座屈による折れ目や非可逆的なシワが生じないような範囲であればよい。基板FSの母材として、厚みが25μm~200μm程度のPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、PES(ポリエーテルスルホン)などのフィルムは、シート基板の典型である。 As the material of the substrate FS, for example, a resin film or a foil (foil) made of a metal or alloy such as stainless steel is used. Examples of the resin film material include polyethylene resin, polyether resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, polyphenylene sulfide resin, polyarylate resin, cellulose resin, polyamide resin, polyimide resin. , Polycarbonate resin, polystyrene resin, and vinyl acetate resin containing at least one may be used. Further, the thickness and rigidity (Young's modulus) of the substrate FS may be in a range that does not cause folds or irreversible wrinkles due to buckling in the substrate FS. As the base material of the substrate FS, films such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and PES (polyethersulfone) having a thickness of about 25 μm to 200 μm are typical of sheet substrates.
 基板FSは、デバイス製造システム10の各処理装置PR1~PR6の各々で施される処理において熱を受ける場合があるため、熱膨張係数が顕著に大きくない材質の基板を選定することが好ましい。例えば、無機フィラーを樹脂フィルムに混合することによって熱膨張係数を抑えることができる。無機フィラーは、例えば、酸化チタン、酸化亜鉛、アルミナ、または酸化ケイ素などでもよい。また、基板FSは、フロート法などで製造された厚さ100μm以下の極薄ガラスの単層体であってもよいし、この極薄ガラスに上記の樹脂フィルム、または、箔などを貼り合わせた積層体であってもよい。例えば、極薄ガラスの一方の表面に真空蒸着やメッキ(電解または無電解)によって一定厚み(数μm)の銅箔層を一様に形成し、その銅箔層を加工して電子回路の配線や電極などを形成するようにしてもよい。 Since the substrate FS may receive heat in processing performed in each of the processing apparatuses PR1 to PR6 of the device manufacturing system 10, it is preferable to select a substrate having a material whose thermal expansion coefficient is not significantly large. For example, the thermal expansion coefficient can be suppressed by mixing an inorganic filler with a resin film. The inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, or silicon oxide. The substrate FS may be a single layer of ultra-thin glass having a thickness of 100 μm or less manufactured by a float process or the like, and the above resin film or foil is bonded to the ultra-thin glass. A laminated body may be sufficient. For example, a copper foil layer of a certain thickness (several μm) is uniformly formed on one surface of ultra-thin glass by vacuum evaporation or plating (electrolysis or electroless), and the copper foil layer is processed to form an electronic circuit wiring. Or electrodes may be formed.
 ところで、基板FSの可撓性(flexibility)とは、基板FSに自重程度の力を加えてもせん断したり破断したりすることはなく、その基板FSを撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、基板FSの材質、大きさ、厚さ、基板FS上に成膜される層構造、温度、または、湿度などの環境に応じて、可撓性の程度は変わる。いずれにしろ、本第1の実施の形態によるデバイス製造システム10内の搬送路に設けられる各種の搬送用ローラ、回転ドラムなどの搬送方向転換用の部材に基板FSを正しく巻き付けた場合に、座屈して折り目がついたり、破損(破れや割れが発生)したりせずに、基板FSを滑らかに搬送できれば、可撓性の範囲といえる。 By the way, the flexibility of the substrate FS means a property that the substrate FS can be bent without being sheared or broken even when a force of its own weight is applied to the substrate FS. . In addition, flexibility includes a property of bending by a force of about its own weight. In addition, the degree of flexibility varies depending on the material, size, and thickness of the substrate FS, the layer structure formed on the substrate FS, the environment such as temperature, and humidity. In any case, when the substrate FS is correctly wound around the conveyance direction changing members such as various conveyance rollers and rotary drums provided in the conveyance path in the device manufacturing system 10 according to the first embodiment, If the substrate FS can be smoothly transported without being bent and creased or damaged (breaking or cracking), it can be said to be a flexible range.
 処理装置PR1は、供給ロールFR1から搬送されてきた基板FSを処理装置PR2に向けて、長尺方向に沿った搬送方向(+X方向)に所定の速度で搬送しつつ、基板FSに対して下地処理を施す処理装置である。この下地処理としては、例えば、超音波洗浄処理やUVオゾン洗浄処理などが挙げられる。特に、UVオゾン洗浄処理を行うことによって、基板FSの表面に付着している有機物汚染が除去されるとともに、基板FSの表面が親液性に改質される。したがって、後述する処理装置PR2によって形成される薄膜の基板FSに対する密着性が向上する。なお、下地処理として、プラズマ表面処理を行ってもよい。プラズマ表面処理でも同様に、基板FSの表面に付着している有機物汚染を除去し、基板FSの表面を親液性に改質させることができる。 The processing apparatus PR1 transports the substrate FS transported from the supply roll FR1 toward the processing apparatus PR2 at a predetermined speed in the transport direction (+ X direction) along the longitudinal direction, while providing a base on the substrate FS. It is a processing device that performs processing. Examples of the base treatment include ultrasonic cleaning processing and UV ozone cleaning processing. In particular, by performing the UV ozone cleaning treatment, organic contamination adhering to the surface of the substrate FS is removed and the surface of the substrate FS is modified to be lyophilic. Accordingly, the adhesion of the thin film formed by the processing apparatus PR2 described later to the substrate FS is improved. Note that plasma surface treatment may be performed as the base treatment. Similarly, the plasma surface treatment can remove organic contaminants adhering to the surface of the substrate FS and improve the surface of the substrate FS to be lyophilic.
 処理装置PR2は、処理装置PR1から搬送されてきた基板FSを処理装置PR3に向けて、長尺方向に沿った搬送方向(+X方向)に所定の速度で搬送しつつ、基板FSに対して成膜処理を施す処理装置である。処理装置PR2は、微粒子を含むミストを発生させ、発生させたミストを用いて基板FS上の薄膜を形成する。本第1の実施の形態では、金属性の微粒子を用いるので、基板FS上に金属性の薄膜(金属性薄膜)が形成されることになる。なお、有機性の微粒子または無機性の微粒子を用いる場合は、基板FS上に有機性または無機性の薄膜が形成されることになる。 The processing apparatus PR2 transfers the substrate FS transported from the processing apparatus PR1 toward the processing apparatus PR3 with respect to the substrate FS while transporting the substrate FS at a predetermined speed in the transport direction along the longitudinal direction (+ X direction). A processing apparatus for performing a film processing. The processing apparatus PR2 generates mist containing fine particles, and forms a thin film on the substrate FS using the generated mist. In the first embodiment, since metallic fine particles are used, a metallic thin film (metallic thin film) is formed on the substrate FS. When organic fine particles or inorganic fine particles are used, an organic or inorganic thin film is formed on the substrate FS.
 処理装置PR3は、処理装置PR2から搬送されてきた基板FSを処理装置PR4に向けて、長尺方向に沿った搬送方向(+X方向)に所定の速度で搬送しつつ、基板FSに対して塗布処理を施す処理装置である。処理装置PR3は、基板FSの金属性薄膜の上に感光性機能液を塗布して、感光性機能層を形成する。本第1の実施の形態では、感光性機能液(層)としてフォトレジストを用いる。 The processing apparatus PR3 coats the substrate FS while transporting the substrate FS transported from the processing apparatus PR2 toward the processing apparatus PR4 in a transport direction (+ X direction) along the longitudinal direction at a predetermined speed. It is a processing apparatus which performs a process. The processing apparatus PR3 applies a photosensitive functional liquid on the metallic thin film of the substrate FS to form a photosensitive functional layer. In the first embodiment, a photoresist is used as the photosensitive functional liquid (layer).
 処理装置(露光装置)PR4は、処理装置PR3から搬送されてきた基板FSを処理装置PR5に向けて、長尺方向に沿った搬送方向(+X方向)に所定の速度で搬送しつつ、基板FSの感光面(感光性機能層の表面)に対して露光処理を施す。処理装置PR4は、基板FSに対してディスプレイ用の回路の配線または電極などに応じたパターンを露光する。これにより、感光性機能層にパターンに応じた潜像(改質部)が形成される。 The processing apparatus (exposure apparatus) PR4, while transporting the substrate FS transported from the processing apparatus PR3 toward the processing apparatus PR5 at a predetermined speed in the transport direction (+ X direction) along the longitudinal direction, is performed. The photosensitive surface (surface of the photosensitive functional layer) is exposed. The processing apparatus PR4 exposes a pattern corresponding to the wiring or electrodes of the display circuit on the substrate FS. Thereby, a latent image (modified portion) corresponding to the pattern is formed on the photosensitive functional layer.
 処理装置PR5は、処理装置PR4から搬送されてきた基板FSを処理装置PR6に向けて、長尺方向に沿った搬送方向(+X方向)に所定の速度で搬送しつつ、基板FSに対して湿式処理を施す。処理装置PR5は、湿式処理として現像処理(洗浄処理も含む)を行う。これにより、感光性機能層に潜像として形成されたパターンに対応した形状のレジスト層が出現する。 The processing apparatus PR5 wets the substrate FS while transporting the substrate FS transported from the processing apparatus PR4 toward the processing apparatus PR6 at a predetermined speed in the transport direction along the longitudinal direction (+ X direction). Apply processing. The processing apparatus PR5 performs development processing (including cleaning processing) as wet processing. As a result, a resist layer having a shape corresponding to the pattern formed as a latent image on the photosensitive functional layer appears.
 処理装置PR6は、処理装置PR5から搬送されてきた基板FSを回収ロールFR2に向けて、長尺方向に沿った搬送方向(+X方向)に所定の速度で搬送しつつ、基板FSに対して湿式処理を施す。処理装置PR6は、湿式処理としてエッチング処理(洗浄処理も含む)を行う。これにより、レジスト層をマスクとしてエッチング処理が行なわれて、金属性薄膜に、ディスプレイ用の回路の配線や電極などに応じたパターンが出現する。このパターンが形成された金属性薄膜は、電子デバイスであるフレキシブル・ディスプレイを構成するパターン層となる。なお、複数の処理装置PR1~PR6の各々は、基板FSを搬送方向(+X方向)に搬送する搬送機構を備えているが、それら個々の搬送機構はデバイス製造システム10の全体の基板搬送装置として機能するように上位制御装置12によって統括的に制御される。原則として、各処理装置PR1~PR6における基板FSの搬送速度は互いに同一とするが、各処理装置PR1~PR6の処理状態、処理状況などによって各処理装置PR1~PR6における基板FSの搬送速度を互いに異ならせることも可能である。 The processing apparatus PR6 wets the substrate FS while transporting the substrate FS transported from the processing apparatus PR5 toward the collection roll FR2 at a predetermined speed in the transport direction (+ X direction) along the longitudinal direction. Apply processing. The processing apparatus PR6 performs an etching process (including a cleaning process) as a wet process. As a result, an etching process is performed using the resist layer as a mask, and a pattern corresponding to the wiring or electrode of the circuit for display appears on the metallic thin film. The metallic thin film on which this pattern is formed becomes a pattern layer constituting a flexible display which is an electronic device. Each of the plurality of processing apparatuses PR1 to PR6 includes a transport mechanism that transports the substrate FS in the transport direction (+ X direction). These individual transport mechanisms serve as the entire substrate transport apparatus of the device manufacturing system 10. Overall control is performed by the host controller 12 so as to function. In principle, the transport speeds of the substrates FS in the processing apparatuses PR1 to PR6 are the same, but the transport speeds of the substrates FS in the processing apparatuses PR1 to PR6 are mutually different depending on the processing state and processing status of the processing apparatuses PR1 to PR6. It is also possible to make them different.
 上位制御装置12は、デバイス製造システム10の各処理装置PR1~PR6、供給ロールFR1、および、回収ロールFR2を制御する。上位制御装置12は、供給ロールFR1および回収ロールFR2の各々に設けられた図示しない回転駆動源のモータを制御することで、供給ロールFR1および回収ロールFR2の回転速度を制御する。処理装置PR1~PR6の各々は、下位制御装置14(14a~14f)を含み、下位制御装置14a~14fは、上位制御装置12の制御下で、処理装置PR1~PR6内の各機能(搬送機構、処理部など)を制御する。上位制御装置12および下位制御装置14a~14fは、コンピュータと、プログラムが記憶された記憶媒体とを含み、前記コンピュータが前記記憶媒体に記憶されたプログラムを実行することで、本第1の実施の形態の上位制御装置12および下位制御装置14a~14fとして機能する。なお、この下位制御装置14は、上位制御装置12の一部であってもよく、上位制御装置12とは別の制御装置であってもよい。 The host controller 12 controls the processing apparatuses PR1 to PR6, the supply roll FR1, and the collection roll FR2 of the device manufacturing system 10. The host controller 12 controls the rotational speeds of the supply roll FR1 and the recovery roll FR2 by controlling the motors of the rotation drive source (not shown) provided in each of the supply roll FR1 and the recovery roll FR2. Each of the processing devices PR1 to PR6 includes a lower level control device 14 (14a to 14f). , Processing unit, etc.). The host control device 12 and the lower control devices 14a to 14f include a computer and a storage medium storing a program, and the computer executes the program stored in the storage medium so that the first embodiment is implemented. Functions as the upper control device 12 and the lower control devices 14a to 14f. The lower level control device 14 may be part of the higher level control device 12 or may be a control device different from the higher level control device 12.
 〔処理装置PR2の構成〕
 図2は、処理装置(成膜装置)PR2の構成を示す図である。処理装置PR2は、ミスト発生装置MG1、MG2、ガス供給部(気体供給部)SG、噴霧ノズルNZ1、NZ2、成膜室22、基板搬送機構24、および、乾燥処理ユニット26を備える。
[Configuration of Processing Apparatus PR2]
FIG. 2 is a diagram showing a configuration of the processing apparatus (film forming apparatus) PR2. The processing device PR2 includes mist generating devices MG1 and MG2, a gas supply unit (gas supply unit) SG, spray nozzles NZ1 and NZ2, a film forming chamber 22, a substrate transport mechanism 24, and a drying processing unit 26.
 ミスト発生装置MG1、MG2は、薄膜を形成するための薄膜原料である分散質(微粒子NP)を含む分散液(スラリー)DILを霧化させ、霧化した微粒状液体、つまり、ミストMTを発生する。このミストMTの粒径は、2~5μmであり、これよりも十分に小さいナノサイズの微粒子NPが、ミストMTに内包されて分散液DILの表面から放出される。微粒子NPは、金属性の微粒子、有機性の微粒子、および、無機性の微粒子のうち、少なくとも1つを含むものであってもよい。したがって、ミストMTに包含される微粒子は、金属ナノ粒子、有機ナノ粒子、および、無機ナノ粒子の少なくとも1つを含むことになる。本第1の実施の形態では、微粒子NPとして金属性であるITO(酸化インジウムスズ)の微粒子を用い、溶媒(分散媒)として水(純水)を用いる。したがって、分散液DILは、ITOの微粒子NPが水中に分散した水分散液となる。ミスト発生装置MG1、MG2は、超音波振動を用いてミストMTを発生する。なお、ミスト発生装置MG1、MG2には、分散媒(水)をミスト発生装置MG1、MG2に供給する分散媒供給部SWが液体流路WTを介して接続されている。分散媒供給部SWからの水は、ミスト発生装置MG1、MG2の各々に設けられた後述する容器30a、30b(図3参照)に供給される。 The mist generators MG1 and MG2 atomize the dispersion (slurry) DIL containing the dispersoid (fine particles NP), which is a thin film raw material for forming a thin film, and generate atomized fine liquid, that is, mist MT To do. The particle diameter of the mist MT is 2 to 5 μm, and nano-sized fine particles NP sufficiently smaller than this are encapsulated in the mist MT and released from the surface of the dispersion DIL. The fine particles NP may include at least one of metallic fine particles, organic fine particles, and inorganic fine particles. Therefore, the fine particles included in the mist MT include at least one of metal nanoparticles, organic nanoparticles, and inorganic nanoparticles. In the first embodiment, metallic ITO (indium tin oxide) fine particles are used as the fine particles NP, and water (pure water) is used as the solvent (dispersion medium). Therefore, the dispersion DIL is an aqueous dispersion in which ITO fine particles NP are dispersed in water. The mist generators MG1 and MG2 generate mist MT using ultrasonic vibration. Note that a dispersion medium supply unit SW that supplies a dispersion medium (water) to the mist generation apparatuses MG1 and MG2 is connected to the mist generation apparatuses MG1 and MG2 via a liquid flow path WT. Water from the dispersion medium supply unit SW is supplied to containers 30a and 30b (see FIG. 3), which will be described later, provided in each of the mist generators MG1 and MG2.
 ミスト発生装置MG1、MG2には、供給管ST1、ST2を介して噴霧ノズルNZ1、NZ2が接続されている。また、ミスト発生装置MG1、MG2には、圧縮ガスであるキャリアガスを発生するガス供給部SGがガス流路GTを介して接続されており、ガス供給部SGが発生したキャリアガスは、ガス流路GTを通って、所定の流量でミスト発生装置MG1、MG2に供給される。このミスト発生装置MG1、MG2に供給されたキャリアガスは、供給管ST1、ST2を通って噴霧ノズルNZ1、NZ2から放出される。したがって、ミスト発生装置MG1、MG2が発生したミストMTは、このキャリアガスによって噴霧ノズルNZ1、NZ2に搬送され、噴霧ノズルNZ1、NZ2から放出される。ミスト発生装置MG1、MG2に供給するキャリアガスの流量(NL/min)を変えることによって、噴霧ノズルNZ1、NZ2に供給するミストMTの流量を変えることができる。キャリアガスとしては、窒素や希ガスなどの不活性ガスを用いることができ、本第1の実施の形態では窒素を用いるものとする。なお、供給管ST1、ST2は、蛇腹状のホースであり、流路を任意に折り曲げることができる。 The spray nozzles NZ1 and NZ2 are connected to the mist generators MG1 and MG2 through supply pipes ST1 and ST2. The mist generators MG1 and MG2 are connected to a gas supply unit SG that generates a carrier gas, which is a compressed gas, via a gas flow path GT. The carrier gas generated by the gas supply unit SG is a gas flow Through the route GT, the mist generators MG1 and MG2 are supplied at a predetermined flow rate. The carrier gas supplied to the mist generators MG1 and MG2 is discharged from the spray nozzles NZ1 and NZ2 through the supply pipes ST1 and ST2. Therefore, the mist MT generated by the mist generators MG1 and MG2 is transported to the spray nozzles NZ1 and NZ2 by the carrier gas and discharged from the spray nozzles NZ1 and NZ2. By changing the flow rate (NL / min) of the carrier gas supplied to the mist generating devices MG1 and MG2, the flow rate of the mist MT supplied to the spray nozzles NZ1 and NZ2 can be changed. As the carrier gas, an inert gas such as nitrogen or a rare gas can be used. In the first embodiment, nitrogen is used. The supply pipes ST1 and ST2 are bellows-like hoses, and the flow path can be arbitrarily bent.
 供給管ST1、ST2の下流側に設けられている噴霧ノズルNZ1、NZ2の先端部分は、成膜室22内に挿入されている。噴霧ノズルNZ1、NZ2に供給されたミストMTは、キャリアガスとともに噴霧ノズルNZ1、NZ2の噴霧口OP1、OP2から噴霧される。これにより、成膜室22内で、噴霧ノズルNZ1、NZ2の-Z方向側で、連続的に搬送される基板FSの表面にITOの金属性薄膜(機能性材料層)を形成することができる。この成膜(薄膜の形成)は、大気圧下で行ってもよいし、所定の圧力下で行ってもよい。 The tip portions of the spray nozzles NZ1 and NZ2 provided on the downstream side of the supply pipes ST1 and ST2 are inserted into the film forming chamber 22. The mist MT supplied to the spray nozzles NZ1 and NZ2 is sprayed from the spray ports OP1 and OP2 of the spray nozzles NZ1 and NZ2 together with the carrier gas. As a result, an ITO metallic thin film (functional material layer) can be formed on the surface of the substrate FS that is continuously transported in the film forming chamber 22 on the −Z direction side of the spray nozzles NZ1 and NZ2. . This film formation (formation of a thin film) may be performed under atmospheric pressure or under a predetermined pressure.
 成膜室(成膜部、ミスト処理部)22には、成膜室22内の気体を外部に排気する排気部22aが設けられるとともに、成膜室22内へ気体を供給するための供給部22bが設けられている。この排気部22aおよび供給部22bは、成膜室22の壁に設けられている。排気部22aには、気体を吸引する図示しない吸引装置が設けられている。これにより、成膜室22内の気体が排気部22aに吸い込まれて成膜室22の外に排気されるとともに、供給部22bから気体が成膜室22内に吸気される。また、成膜室22には、ドレイン流路22cが設けられている。このドレイン流路22cは、基板FSに定着しなかった薄膜原料や分散媒(水など)を、排水処理装置DRへ向けて排出するものである。 The film forming chamber (film forming unit, mist processing unit) 22 is provided with an exhaust unit 22a for exhausting the gas in the film forming chamber 22 to the outside, and a supply unit for supplying gas into the film forming chamber 22 22b is provided. The exhaust part 22 a and the supply part 22 b are provided on the wall of the film forming chamber 22. The exhaust unit 22a is provided with a suction device (not shown) that sucks gas. As a result, the gas in the film forming chamber 22 is sucked into the exhaust unit 22a and exhausted to the outside of the film forming chamber 22, and the gas is sucked into the film forming chamber 22 from the supply unit 22b. The film forming chamber 22 is provided with a drain flow path 22c. The drain flow path 22c discharges the thin film raw material and the dispersion medium (water etc.) that have not been fixed to the substrate FS toward the waste water treatment apparatus DR.
 なお、本第1の実施の形態では、国際公開第2015/159983号パンフレットに示すように、排気部22aの排気口を噴霧ノズルNZ1、NZ2の噴霧口OP1、OP2に対して重力が働く方向とは反対側(+Z方向側)に配置し、且つ、処理装置PR2内で、重力と直交する平面(XY平面と平行な平面)に対して基板FSを傾斜させて搬送している。これにより、形成される薄膜の膜厚を均一化することができる。 In the first embodiment, as shown in the pamphlet of International Publication No. 2015/159983, the exhaust port of the exhaust part 22a has a direction in which gravity acts on the spray ports OP1 and OP2 of the spray nozzles NZ1 and NZ2. Are disposed on the opposite side (+ Z direction side), and the substrate FS is transported in the processing apparatus PR2 while being inclined with respect to a plane orthogonal to gravity (a plane parallel to the XY plane). Thereby, the film thickness of the thin film formed can be made uniform.
 基板搬送機構24は、デバイス製造システム10の前記基板搬送装置の一部を構成するものであり、処理装置PR1から搬送される基板FSを、処理装置PR2内で所定の速度で搬送した後、処理装置PR2に所定の速度で送り出す。基板FSが基板搬送機構24の複数のローラなどに掛け渡されて搬送されることによって、処理装置PR2内で搬送される基板FSの搬送路が規定される。基板搬送機構24は、基板FSの搬送方向の上流側(-X方向側)から順に、ニップローラNR1、案内ローラR1~R3、エアーターンバーAT1、案内ローラR4、エアーターンバーAT2、案内ローラR5、エアーターンバーAT3、ニップローラNR2、および、案内ローラR6を備える。成膜室22は、案内ローラR1と案内ローラR2との間に設けられ、案内ローラR2~R6、エアーターンバーAT1~AT3、および、ニップローラNR2は、乾燥処理ユニット26内に配置されている。したがって、成膜室22内で表面に薄膜が形成された基板FSが乾燥処理ユニット26に送られる。成膜室22内で基板FSを傾斜させて搬送すべく、案内ローラR2を案内ローラR1に対して+Z方向側に配置したが、案内ローラR2を案内ローラR1に対して-Z方向側に配置させてもよい。 The substrate transport mechanism 24 constitutes a part of the substrate transport apparatus of the device manufacturing system 10, and after the substrate FS transported from the processing apparatus PR1 is transported at a predetermined speed in the processing apparatus PR2, the processing is performed. It sends out to the apparatus PR2 at a predetermined speed. By transporting the substrate FS across a plurality of rollers or the like of the substrate transport mechanism 24, the transport path of the substrate FS transported in the processing apparatus PR2 is defined. The substrate transport mechanism 24 includes a nip roller NR1, guide rollers R1 to R3, an air turn bar AT1, a guide roller R4, an air turn bar AT2, a guide roller R5, an air turn bar in order from the upstream side (−X direction side) in the transport direction of the substrate FS. AT3, nip roller NR2, and guide roller R6 are provided. The film formation chamber 22 is provided between the guide roller R1 and the guide roller R2, and the guide rollers R2 to R6, the air turn bars AT1 to AT3, and the nip roller NR2 are disposed in the drying processing unit 26. Accordingly, the substrate FS having a thin film formed on the surface in the film forming chamber 22 is sent to the drying processing unit 26. The guide roller R2 is disposed on the + Z direction side with respect to the guide roller R1 in order to convey the substrate FS in the film forming chamber 22 while being inclined, but the guide roller R2 is disposed on the −Z direction side with respect to the guide roller R1. You may let them.
 ニップローラNR1、NR2は、基板FSの表裏両面を保持しながら回転し、基板FSを搬送するが、各ニップローラNR1、NR2の基板FSの裏面側に接触するローラは駆動ローラとし、基板FSの表面側に接触するローラは従動ローラとする。従動ローラは、基板FSの幅方向(Y方向)の両端部のみと接触するように構成され、基板FSの表面で薄膜が形成される領域(デバイス形成領域)には極力接触しないように設定される。エアーターンバーAT1~AT3は、外周面に形成された多数の微細な噴出孔から気体(空気など)を吹き出すことによって、基板FSの表面の成膜面(薄膜が形成された面)側から、成膜面と非接触状態(または低摩擦状態)で基板FSを支持する。案内ローラR1~R6は、基板FSの成膜面とは反対側の面(裏面)と接触しながら回転するように配置されている。図1に示す下位制御装置14bは、ニップローラNR1、NR2の各駆動ローラに設けられた図示しない回転駆動源のモータを制御することで、処理装置PR2内における基板FSの搬送速度を制御する。 The nip rollers NR1 and NR2 rotate while holding both front and back surfaces of the substrate FS and transport the substrate FS. The rollers that contact the back side of the substrate FS of each nip roller NR1 and NR2 are drive rollers, and the front side of the substrate FS The roller that contacts is a driven roller. The driven roller is configured to be in contact with only both end portions in the width direction (Y direction) of the substrate FS, and is set so as not to contact the region (device forming region) where a thin film is formed on the surface of the substrate FS as much as possible. The The air turn bars AT1 to AT3 are formed from the film formation surface (the surface on which the thin film is formed) on the surface of the substrate FS by blowing gas (air, etc.) from a number of fine ejection holes formed on the outer peripheral surface. The substrate FS is supported in a non-contact state (or low friction state) with the film surface. The guide rollers R1 to R6 are arranged so as to rotate while being in contact with a surface (back surface) opposite to the film formation surface of the substrate FS. The subordinate control device 14b shown in FIG. 1 controls the conveyance speed of the substrate FS in the processing apparatus PR2 by controlling the motor of a rotational drive source (not shown) provided on each drive roller of the nip rollers NR1 and NR2.
 乾燥処理ユニット26は、成膜された基板FSに対して乾燥処理を施す。乾燥処理ユニット26は、ドライエアーなどの乾燥用エアー(温風)を基板FSの表面に吹き付けるブロワー、赤外線光源、セラミックヒータなどによって、基板FSの表面に含まれる水などの分散媒(溶媒)を除去して、形成された金属性薄膜を乾燥させる。また、乾燥処理ユニット26は、基板FSを所定長に亘って蓄積可能は蓄積部(バッファ)として機能する。これにより、処理装置PR1から送られてくる基板FSの搬送速度と、処理装置PR3に送る基板FSの搬送速度とを異なる速度にした場合であっても、その速度差を乾燥処理ユニット26で吸収することができる。乾燥処理ユニット26は、主に、乾燥部26aと蓄積部26bとに区分けすることができる。乾燥部26aは、上述したように基板FSの表面に形成された薄膜を乾燥させるものであり、案内ローラR2と案内ローラR3との間で薄膜の乾燥を行う。そして、蓄積部26bは、案内ローラR3とニップローラNR2との間で、その蓄積長を変化させる。蓄積部26b内では、基板FSを蓄積することができる所定長(最大蓄積長)を長くするために、案内ローラR3~R5およびニップローラNR2を、エアーターンバーAT1~AT3に対して+X方向側に配置することで、基板FSの搬送路を蛇行させて基板FSを-Z方向に搬送させている。 The drying processing unit 26 performs a drying process on the formed substrate FS. The drying processing unit 26 uses a blower, an infrared light source, a ceramic heater, or the like that blows drying air (hot air) such as dry air to the surface of the substrate FS to remove a dispersion medium (solvent) such as water contained on the surface of the substrate FS. The metal thin film thus formed is dried. The drying unit 26 functions as a storage unit (buffer) that can store the substrate FS over a predetermined length. Thus, even when the transport speed of the substrate FS sent from the processing apparatus PR1 and the transport speed of the substrate FS sent to the processing apparatus PR3 are different from each other, the speed difference is absorbed by the drying processing unit 26. can do. The drying processing unit 26 can be mainly divided into a drying unit 26a and a storage unit 26b. As described above, the drying unit 26a dries the thin film formed on the surface of the substrate FS, and dries the thin film between the guide roller R2 and the guide roller R3. The accumulation unit 26b changes the accumulation length between the guide roller R3 and the nip roller NR2. In the storage unit 26b, the guide rollers R3 to R5 and the nip roller NR2 are arranged on the + X direction side with respect to the air turn bars AT1 to AT3 in order to increase the predetermined length (maximum storage length) in which the substrate FS can be stored. Thus, the substrate FS is conveyed in the −Z direction by meandering the conveyance path of the substrate FS.
 エアーターンバーAT1~AT3は、-X方向に送られる基板FSを+X方向に折り返すように構成されるとともに、所定のストロークの範囲内で±X方向に移動可能に構成される。そしてエアーターンバーAT1~AT3は、常時、-X方向側に所定の力(テンション)で変位するように付勢されている。したがって、乾燥処理ユニット26に入出する基板FSの搬送速度の差、具体的には2つのニップローラNR1、NR2の各々の位置における基板FSの搬送速度の差によって生じる乾燥処理ユニット26内の基板FSの蓄積長の変化に応じてエアーターンバーAT1~AT3がX方向(+X方向または-X方向)に移動する。これにより、乾燥処理ユニット26は、基板FSに所定のテンションを付与した状態で所定長に亘って基板FSを蓄積することができる。 The air turn bars AT1 to AT3 are configured to fold the substrate FS sent in the −X direction in the + X direction and to be movable in the ± X direction within a predetermined stroke range. The air turn bars AT1 to AT3 are always urged so as to be displaced by a predetermined force (tension) in the −X direction side. Therefore, the difference in the conveyance speed of the substrate FS entering / exiting the drying processing unit 26, specifically, the difference in the conveyance speed of the substrate FS at each position of the two nip rollers NR1 and NR2, is caused by the difference in the substrate FS in the drying processing unit 26. The air turn bars AT1 to AT3 move in the X direction (+ X direction or -X direction) according to the change in the accumulation length. Thus, the drying processing unit 26 can accumulate the substrate FS over a predetermined length in a state where a predetermined tension is applied to the substrate FS.
 次に、ミスト発生装置MG1、MG2の具体的な構成について説明する。ミスト発生装置MG1、MG2は、互いに同一の構成を有することから、ミスト発生装置MG1についてのみ説明する。図3は、ミスト発生装置MG1の構成を示す図である。ミスト発生装置MG1は、容器30a、30bを有する。容器30a、30bは、分散液DILを保持するものである。この分散液DILは、微粒子NPの凝集を抑えるための界面活性剤が添加されていない溶液、つまり、界面活性剤としての化学成分の含有量が実質的に零の分散液である。容器30aには、振動部32a、34aが設けられており、容器30bには、振動部34bが設けられている。振動部32a、34a、34bは、超音波振動子を含み、分散液DILに超音波振動を与える。なお、便宜的に、容器30aが保持する分散液(第1の分散液)DILをDIL1で表し、容器30bが保持する分散液(第2の分散液)DILをDIL2で表す場合がある。 Next, a specific configuration of the mist generators MG1 and MG2 will be described. Since the mist generators MG1 and MG2 have the same configuration, only the mist generator MG1 will be described. FIG. 3 is a diagram showing a configuration of the mist generator MG1. The mist generator MG1 includes containers 30a and 30b. The containers 30a and 30b hold the dispersion liquid DIL. This dispersion DIL is a solution to which a surfactant for suppressing aggregation of the fine particles NP is not added, that is, a dispersion having substantially no chemical component as a surfactant. The container 30a is provided with vibration parts 32a and 34a, and the container 30b is provided with a vibration part 34b. The vibration units 32a, 34a, and 34b include ultrasonic vibrators and apply ultrasonic vibrations to the dispersion DIL. For convenience, the dispersion liquid (first dispersion liquid) DIL retained in the container 30a may be represented by DIL1, and the dispersion liquid (second dispersion liquid) DIL retained in the container 30b may be represented by DIL2.
 ここで、微粒子NPは、時間の経過とともに分散液DIL中で凝集してしまう。また、微粒子NPが分散液DIL中で一様に拡散していない場合もある。そのため、振動部(第1振動部)32aは、その凝集した微粒子NPを粉砕(分散)し、且つ、微粒子NPの分散液DIL1中での凝集を抑えるために、第1の周波数の振動を容器30a中の分散液(粒子分散液)DIL1に与える。これにより、分散液DIL1中の微粒子NPが拡散する。一般的に、超音波振動は周波数が高いほどエネルギーが高いが、液中においてはエネルギーが高い分、液による吸収が発生し、振動が広く拡散しない。そのため、凝集した微粒子NPを効率よく分散するためには比較的低い周波数の方が好ましい。例えば、溶媒が水の場合は、第1の周波数は、1MHzより低い周波数であり、好ましくは200kHz以下である。本第1の実施の形態では、ITOの微粒子NPを含む水分散液(粒子分散液)DIL1を用い、第1の周波数を20kHzとする。振動部32aの振動によって粉砕されたITOの微粒子NPの径は、大きなものから、小さいものまで様々である。振動部32aを設けることによって、微粒子NPの凝集を抑える界面活性剤を分散液DIL1に添加する必要がなくなる。 Here, the fine particles NP will aggregate in the dispersion DIL over time. In some cases, the fine particles NP are not uniformly diffused in the dispersion DIL. Therefore, the vibration part (first vibration part) 32a pulverizes (disperses) the aggregated fine particles NP and suppresses the vibration of the first frequency in order to suppress the aggregation of the fine particles NP in the dispersion DIL1. The dispersion (particle dispersion) DIL1 in 30a is given. Thereby, the fine particles NP in the dispersion DIL1 are diffused. In general, the higher the frequency of ultrasonic vibration, the higher the energy, but the higher the energy in the liquid, the more the energy is absorbed by the liquid, and the vibration does not spread widely. Therefore, in order to disperse the aggregated fine particles NP efficiently, a relatively low frequency is preferable. For example, when the solvent is water, the first frequency is a frequency lower than 1 MHz, and preferably 200 kHz or less. In the first embodiment, an aqueous dispersion (particle dispersion) DIL1 containing ITO fine particles NP is used, and the first frequency is set to 20 kHz. The diameter of the ITO fine particles NP pulverized by the vibration of the vibration part 32a varies from a large one to a small one. By providing the vibration part 32a, it is not necessary to add a surfactant that suppresses the aggregation of the fine particles NP to the dispersion DIL1.
 振動部(第2振動部)34aは、分散液DIL1の表面から霧化したミストMT(以下、MTaと呼ぶ場合がある)を発生させるために、第2の周波数を容器30a中の分散液DIL1に与える。比較的高い周波数では、液体がキャビテーションによりミスト化して、液表面から連続して大気中に放出される。例えば、溶媒が水の場合は、第2の周波数は、1MHz以上の周波数である。本第1の実施の形態では、第2の周波数を2.4MHzとする。振動部34aの振動によって霧化されたミストMTaの径(粒径)は、例えば、2μm~5μmであり、これより十分に小さい粒径のITOの微粒子(ナノ粒子)NPがミストMTaに内包されて、容器30a中の分散液DIL1の表面から放出される。つまり、比較的大きいITOの微粒子NPは、そのまま分散液DIL1中に残ることになる。なお、ミストMTの一粒のサイズ(直径2~5μm)に内包される微粒子(ナノ粒子)NPは、一粒ずつ綺麗に分散されている必要は無く、数粒~十数粒が凝集した塊であっても良い。例えば、微粒子NPの一粒のサイズが数nm~数十nmである場合、この微粒子NPの粒の10個程度が塊となって凝集していたとしても、その塊のサイズは数十nm~数百nm程度となり、これはミストMTの一粒のサイズよりは十分に小さく、霧化時にミストMTに内包される。従って、振動部32aによって分散液DIL中での微粒子(ナノ粒子)NPの凝集を抑えるとは、微粒子(ナノ粒子)NPを、必ずしも一粒単位にまで分散させることに限定されるものではなく、例え微粒子(ナノ粒子)NPの凝集した塊が有っても、その塊のサイズがミストMTのサイズよりも十分に小さくなる程度に振動部32aによって分散されていれば良い。 The vibration part (second vibration part) 34a generates a mist MT atomized from the surface of the dispersion liquid DIL1 (hereinafter sometimes referred to as MTa), and the second frequency of the dispersion liquid DIL1 in the container 30a. To give. At a relatively high frequency, the liquid is misted by cavitation and continuously released from the liquid surface into the atmosphere. For example, when the solvent is water, the second frequency is 1 MHz or higher. In the first embodiment, the second frequency is 2.4 MHz. The diameter (particle diameter) of the mist MTa atomized by the vibration of the vibration part 34a is, for example, 2 μm to 5 μm, and ITO fine particles (nanoparticles) NP having a sufficiently smaller particle diameter are included in the mist MTa. And released from the surface of the dispersion DIL1 in the container 30a. That is, relatively large ITO fine particles NP remain in the dispersion DIL1. The fine particles (nanoparticles) NP encapsulated in the size of one mist MT (diameter 2 to 5 μm) do not have to be finely dispersed one by one. It may be. For example, when the size of one particle of the fine particle NP is several nm to several tens of nm, even if about 10 particles of the fine particle NP are aggregated as a lump, the size of the lump is several tens nm to This is about several hundred nm, which is sufficiently smaller than the size of one grain of the mist MT, and is included in the mist MT at the time of atomization. Therefore, suppressing the aggregation of the fine particles (nanoparticles) NP in the dispersion liquid DIL by the vibration part 32a is not limited to dispersing the fine particles (nanoparticles) NP to one particle unit, For example, even if there is an aggregate of fine particles (nanoparticles) NP, it may be dispersed by the vibrating part 32a so that the size of the aggregate is sufficiently smaller than the size of the mist MT.
 容器30aと容器30bとは、ミスト搬送流路36aによって接続されており、ガス供給部SGから供給されたキャリアガスによって、容器30a内で発生したミストMTaが容器30bに搬送される。つまり、容器30b内に、キャリアガスとミストMTaとが混合した処理ガスMPaが搬送される。なお、容器30a内には、ロート状のミスト収集部材38aが設けられ、霧化されて発生したミストMTaはミスト収集部材38aによって収集された後ミスト搬送流路36aに搬入される。 The container 30a and the container 30b are connected by a mist transport channel 36a, and the mist MTa generated in the container 30a is transported to the container 30b by the carrier gas supplied from the gas supply unit SG. That is, the processing gas MPa in which the carrier gas and the mist MTa are mixed is transported into the container 30b. A funnel-shaped mist collecting member 38a is provided in the container 30a, and the mist MTa generated by being atomized is collected by the mist collecting member 38a and then carried into the mist conveying flow path 36a.
 容器30bは、キャリアガスによって搬送されてきたミストMTaが液化した分散液(ナノ粒子分散液)DIL2を保持する。つまり、容器30bに搬送されてきたミストMTaのうち、液化したものが分散液DIL2として容器30b内に蓄積される。容器30b内の分散液DIL2中の微粒子NPは、ミストMTの径(例えば、2μm~5μm)よりも十分に小さい粒径の微粒子(ナノ粒子)NPとなっている。容器30bに設けられた振動部(第4振動部)34bが第2の周波数(本第1の実施の形態では、2.4MHz)の振動を容器30b中の分散液(ナノ粒子分散液)DIL2に与える。これにより、分散液(ナノ粒子分散液)DIL2の表面から再び霧化したミストMT(以下、MTbと呼ぶ場合がある)が発生する。したがって、分散液DIL2中のITOの微粒子(ナノ粒子)NPもミストMTbに内包されて、容器30b中の分散液の表面から放出されることになる。 The container 30b holds a dispersion liquid (nanoparticle dispersion liquid) DIL2 in which the mist MTa conveyed by the carrier gas is liquefied. That is, the liquefied mist MTa transported to the container 30b is accumulated in the container 30b as the dispersion DIL2. The fine particles NP in the dispersion DIL2 in the container 30b are fine particles (nanoparticles) NP having a particle diameter sufficiently smaller than the diameter of the mist MT (for example, 2 μm to 5 μm). The vibrating part (fourth vibrating part) 34b provided in the container 30b generates vibrations of the second frequency (2.4 MHz in the first embodiment) in the dispersion liquid (nanoparticle dispersion liquid) DIL2 in the container 30b. To give. As a result, mist MT (hereinafter also referred to as MTb) that is atomized again from the surface of the dispersion liquid (nanoparticle dispersion liquid) DIL2 is generated. Therefore, the ITO fine particles (nanoparticles) NP in the dispersion DIL2 are also included in the mist MTb and released from the surface of the dispersion in the container 30b.
 なお、微粒子NPは、時間がある程度経過した後徐々に凝集していくので、第1の周波数による振動の付与を停止しても直ちに凝集し始めることはない。しかし、容器30bが分散液(ナノ粒子分散液)DIL2を一定時間以上保持する必要がある場合には、容器30bにも第1の周波数の振動を分散液DIL2に与える振動部(第3振動部)32b(一点鎖線で図示)を設けるようにしてもよい。これにより、容器30b内の分散液(ナノ粒子分散液)DIL2中のナノ粒子である微粒子NPが凝集することを抑えることができる。なお、振動部32a、32bによって分散液DILに与える超音波振動は所定時間毎に間欠的であってもよい。 Note that the fine particles NP gradually aggregate after a certain amount of time has elapsed, and therefore do not immediately start to aggregate even when the application of vibration at the first frequency is stopped. However, when the container 30b needs to hold the dispersion liquid (nanoparticle dispersion liquid) DIL2 for a certain period of time or longer, a vibration section (third vibration section) that also applies vibration of the first frequency to the dispersion liquid DIL2 in the container 30b. ) 32b (illustrated by an alternate long and short dash line) may be provided. Thereby, it can suppress that fine particle NP which is the nanoparticle in the dispersion liquid (nanoparticle dispersion liquid) DIL2 in the container 30b aggregates. In addition, the ultrasonic vibration given to the dispersion liquid DIL by the vibration parts 32a and 32b may be intermittent every predetermined time.
 容器30bと供給管ST1とは、ミスト搬送流路36bによって接続されており、容器30b内に供給されたキャリアガスによって、容器30b内に搬送されてきたミストMTaと容器30b内で発生したミストMTbとが供給管ST1に搬送される。つまり、容器30b内に存在するミストMTa、MTbとキャリアガスとが混合した処理ガスMPbがミスト搬送流路36bを通って供給管ST1に搬送される。これにより、容器30b内に存在するミストMTa、MTbが噴霧ノズルNZ1の噴霧口OP1から噴霧される。つまり、噴霧ノズルNZ1から処理ガスMPbが噴霧される。容器30b内には、ミスト収集部材38bが設けられ、容器30b内に存在するミストMTa、MTbはミスト収集部材38bによって収集された後ミスト搬送流路36bに搬入される。なお、ミスト発生装置MG2の場合は、ミスト搬送流路36bによって容器30bが供給管ST2と接続されており、ガス供給部SGから供給されたキャリアガスによって、容器30b内に存在するミストMTa、MTbが供給管ST2に搬送される。これにより、容器30b内に搬送されてきたミストMTaと容器30b内で発生したミストMTbとが噴霧ノズルNZ2の噴霧口OP2から噴霧される。 The container 30b and the supply pipe ST1 are connected by a mist transport flow path 36b, and the mist MTa transported into the container 30b and the mist MTb generated in the container 30b by the carrier gas supplied into the container 30b. Are conveyed to the supply pipe ST1. That is, the processing gas MPb in which the mist MTa, MTb and the carrier gas present in the container 30b are mixed is transferred to the supply pipe ST1 through the mist transfer flow path 36b. Thereby, the mists MTa and MTb existing in the container 30b are sprayed from the spray port OP1 of the spray nozzle NZ1. That is, the processing gas MPb is sprayed from the spray nozzle NZ1. A mist collecting member 38b is provided in the container 30b, and the mists MTa and MTb existing in the container 30b are collected by the mist collecting member 38b and then carried into the mist conveying flow path 36b. In the case of the mist generating device MG2, the container 30b is connected to the supply pipe ST2 by the mist transport channel 36b, and the mists MTa and MTb existing in the container 30b by the carrier gas supplied from the gas supply unit SG. Is conveyed to the supply pipe ST2. As a result, the mist MTa conveyed into the container 30b and the mist MTb generated in the container 30b are sprayed from the spray port OP2 of the spray nozzle NZ2.
 容器30aには、分散質であるITOの微粒子NPを容器30a内に供給する分散質供給部DDが設けられている。したがって、分散媒供給部SW(図2参照)から容器30a内に供給された分散媒(水)と、分散質供給部DDから供給された分散質(微粒子NP)とによって、容器30a内に蓄積される分散液DIL1が生成されるとともに、分散液DIL1中の微粒子NPの濃度が調整される。生成された分散液DIL中の微粒子NPは、分散していない場合もあるが、振動部32aによる振動によって分散される。また、分散媒供給部SWによって、容器30b内の分散液DIL2中の微粒子NPの濃度が調整される。容器30a、30bには、霧化を促進するために分散液DILを冷却するためのクーラCO1、CO2が設けられている。このクーラCO1、CO2は、例えば、容器30a、30bの外周に巻き付けられた環状の管によって構成され、その管の中に冷却された空気や液体を流すことで分散液DIL1、DIL2を冷却することができる。 The container 30a is provided with a dispersoid supply part DD for supplying ITO fine particles NP as a dispersoid into the container 30a. Therefore, the dispersion medium (water) supplied from the dispersion medium supply unit SW (see FIG. 2) into the container 30a and the dispersoid (fine particles NP) supplied from the dispersoid supply unit DD accumulate in the container 30a. The dispersion DIL1 to be produced is generated, and the concentration of the fine particles NP in the dispersion DIL1 is adjusted. The fine particles NP in the generated dispersion liquid DIL may not be dispersed, but are dispersed by vibration by the vibration part 32a. Further, the concentration of the fine particles NP in the dispersion DIL2 in the container 30b is adjusted by the dispersion medium supply unit SW. The containers 30a and 30b are provided with coolers CO1 and CO2 for cooling the dispersion DIL in order to promote atomization. The coolers CO1 and CO2 are constituted by, for example, annular tubes wound around the outer circumferences of the containers 30a and 30b, and cool the dispersion liquids DIL1 and DIL2 by flowing cooled air or liquid in the tubes. Can do.
 ミスト搬送流路36a、36bには、濃度センサーSC1、SC2が設けられている。濃度センサーSC1は、ミスト搬送流路36a内の処理ガスMPaに含まれる微粒子(ナノ粒子)NPの濃度を検出し、濃度センサーSC2は、ミスト搬送流路36b内の処理ガスMPbに含まれる微粒子(ナノ粒子)NPの濃度を検出する。濃度センサーSC1、SC2は、処理ガスMPa、MPbの吸光度を測定することで、微粒子NPの濃度を検出する。例えば、濃度センサーSC1、SC2として、分光光度計を用いることができる。なお、濃度センサーSC1、SC2を容器30a、30bに設けることで、容器30a、30bの分散液DIL1、DIL2中の微粒子NPの濃度を検出するようにしてもよい。 Concentration sensors SC1 and SC2 are provided in the mist transport channels 36a and 36b. The concentration sensor SC1 detects the concentration of the fine particles (nanoparticles) NP contained in the processing gas MPa in the mist transport flow path 36a, and the concentration sensor SC2 detects the fine particles (in the processing gas MPb in the mist transport flow path 36b ( Nanoparticle) NP concentration is detected. The concentration sensors SC1 and SC2 detect the concentration of the fine particles NP by measuring the absorbance of the processing gases MPa and MPb. For example, spectrophotometers can be used as the concentration sensors SC1 and SC2. In addition, by providing the concentration sensors SC1 and SC2 in the containers 30a and 30b, the concentration of the fine particles NP in the dispersions DIL1 and DIL2 in the containers 30a and 30b may be detected.
 下位制御装置14bは、濃度センサーSC1、SC2が検出した微粒子(ナノ粒子)NPの濃度に基づいて、ミスト搬送流路36a、36b内の微粒子(ナノ粒子)NPの濃度、または、分散液DIL1、DIL2中の微粒子NPの濃度が、所定の濃度となるように制御する。具体的には、下位制御装置14bは、ガス供給部SGが供給するキャリアガスの流量、分散媒供給部SWが供給する水の流量、分散質供給部DDが供給する微粒子NPの量、振動部32a、34a、34bを制御することで、微粒子(ナノ粒子)NPの濃度を制御する。 Based on the concentration of the fine particles (nanoparticles) NP detected by the concentration sensors SC1 and SC2, the lower level control device 14b determines the concentration of the fine particles (nanoparticles) NP in the mist transport channels 36a and 36b or the dispersion DIL1, Control is performed so that the concentration of the fine particles NP in the DIL 2 becomes a predetermined concentration. Specifically, the low-order control device 14b includes the flow rate of the carrier gas supplied by the gas supply unit SG, the flow rate of water supplied by the dispersion medium supply unit SW, the amount of fine particles NP supplied by the dispersoid supply unit DD, and the vibration unit By controlling 32a, 34a, and 34b, the concentration of the fine particles (nanoparticles) NP is controlled.
 なお、成膜する微粒子NPの種類によっては、噴霧ノズルNZ1、NZ2に供給するキャリアガスを混合ガスにしたい場合がある。したがって、このような場合には、ミスト搬送流路36bと供給管ST1(ST2)との接続部分に混合部MXを設け、混合部MXに、容器30a、30bに供給される圧縮ガス(例えば、窒素)とは別の不活性ガス、例えば、アルゴンの圧縮ガスを供給する。これにより、供給管ST1(ST2)に供給されるキャリアガスを窒素とアルゴンとの混合ガスにすることができる。 Note that, depending on the type of fine particles NP to be formed, it may be desired to use a carrier gas supplied to the spray nozzles NZ1 and NZ2 as a mixed gas. Therefore, in such a case, a mixing unit MX is provided at a connection portion between the mist transport flow path 36b and the supply pipe ST1 (ST2), and a compressed gas (for example, supplied to the containers 30a and 30b is supplied to the mixing unit MX. An inert gas other than (nitrogen), for example, a compressed gas of argon is supplied. Thereby, the carrier gas supplied to supply pipe ST1 (ST2) can be made into the mixed gas of nitrogen and argon.
 容器30aで発生したミストMTaを容器30bに搬送するようにしたが、容器30aで発生したミストMTaを、そのまま噴霧ノズルNZ1(NZ2)を介して成膜室(ミスト処理部、成膜部)22に供給してもよい。この場合は、容器30bとミスト搬送流路36bは不要となり、ミスト搬送流路36aを供給管ST1(ST2)に接続すればよい。 Although the mist MTa generated in the container 30a is transported to the container 30b, the mist MTa generated in the container 30a is directly passed through the spray nozzle NZ1 (NZ2) to the film forming chamber (mist processing section, film forming section) 22. May be supplied. In this case, the container 30b and the mist transport channel 36b are not necessary, and the mist transport channel 36a may be connected to the supply pipe ST1 (ST2).
 〔処理装置PR3の構成〕
 図4は、処理装置(塗布装置)PR3の構成を示す図である。処理装置PR3は、基板搬送機構42、ダイコータヘッドDCH、アライメント顕微鏡AMm(AM1~AM3)、および、乾燥処理部44を備える。
[Configuration of Processing Apparatus PR3]
FIG. 4 is a diagram showing a configuration of the processing apparatus (coating apparatus) PR3. The processing apparatus PR3 includes a substrate transport mechanism 42, a die coater head DCH, an alignment microscope AMm (AM1 to AM3), and a drying processing unit 44.
 基板搬送機構42は、デバイス製造システム10の前記基板搬送装置の一部を構成するものであり、処理装置PR2から搬送される基板FSを、処理装置PR3内で所定の速度で搬送した後、処理装置PR4に所定の速度で送り出す。基板FSが基板搬送機構42のローラなどに掛け渡されて搬送されることによって、処理装置PR3内で搬送される基板FSの搬送路が規定される。基板搬送機構42は、基板FSの搬送方向の上流側(-X方向側)から順に、ニップローラNR11、テンション調整ローラRT11、回転ドラムDR1、案内ローラR11、エアーターンバーAT11、案内ローラR12、エアーターンバーAT12、案内ローラR13、エアーターンバーAT13、案内ローラR14、エアーターンバーAT14、および、ニップローラNR12を備える。案内ローラR11~R14およびエアーターンバーAT11~AT14は、乾燥処理部44内に配置されている。 The substrate transport mechanism 42 constitutes a part of the substrate transport apparatus of the device manufacturing system 10, and after the substrate FS transported from the processing apparatus PR2 is transported at a predetermined speed in the processing apparatus PR3, the processing is performed. It sends out to the apparatus PR4 at a predetermined speed. By transporting the substrate FS over a roller or the like of the substrate transport mechanism 42, the transport path of the substrate FS transported in the processing apparatus PR3 is defined. The substrate transport mechanism 42 sequentially includes a nip roller NR11, a tension adjustment roller RT11, a rotary drum DR1, a guide roller R11, an air turn bar AT11, a guide roller R12, and an air turn bar AT12 from the upstream side (−X direction side) in the transport direction of the substrate FS. , A guide roller R13, an air turn bar AT13, a guide roller R14, an air turn bar AT14, and a nip roller NR12. The guide rollers R11 to R14 and the air turn bars AT11 to AT14 are arranged in the drying processing unit 44.
 ニップローラNR11、NR12は、図3中のニップローラNR1、NR2と同様に構成された駆動ローラと従動ローラとで構成され、基板FSの表裏両面を保持しながら回転し、基板FSを搬送する。回転ドラムDR1は、Y方向に延びるとともに重力方向と交差した方向に延びた中心軸AXo1と、中心軸AXo1から一定半径の円筒状の外周面を有する。回転ドラムDR1は、外周面(円筒面)に倣って基板FSの一部を長尺方向に沿って湾曲させて支持しつつ、中心軸AXo1を中心に回転して、基板FSを搬送方向(+X方向)に移動させる。回転ドラムDR1は、基板FSの塗布面とは反対側の面(裏面)側から基板FSを支持する。テンション調整ローラRT11は、-Z方向に付勢されており、回転ドラムDR1に巻き付けられて支持されている基板FSに長尺方向に所定のテンションを与えている。これにより、回転ドラムDR1にかかる基板FSに付与される長尺方向のテンションを所定の範囲内に安定化させている。このテンション調整ローラRT11は、基板FSの塗布面と接触しながら回転するように設けられている。エアーターンバーAT11~AT14は、基板FSの塗布面側から、塗布面と非接触状態(または低摩擦状態)で基板FSを支持する。案内ローラR11~R14は、基板FSの裏面と接触しながら回転するように配置されている。図1に示す下位制御装置14cは、ニップローラNR11、NR12および回転ドラムDR1の各々に設けられた図示しない回転駆動源のモータを制御することで、処理装置PR3内における基板FSの搬送速度を制御する。 The nip rollers NR11 and NR12 are composed of a driving roller and a driven roller that are configured in the same manner as the nip rollers NR1 and NR2 in FIG. 3, rotate while holding both front and back surfaces of the substrate FS, and transport the substrate FS. The rotary drum DR1 has a central axis AXo1 extending in the Y direction and extending in a direction crossing the direction of gravity, and a cylindrical outer peripheral surface having a constant radius from the central axis AXo1. The rotating drum DR1 rotates around the central axis AXo1 and supports the substrate FS in the transport direction (+ X) while supporting a part of the substrate FS curved along the longitudinal direction along the outer peripheral surface (cylindrical surface). Direction). The rotary drum DR1 supports the substrate FS from the surface (back surface) opposite to the coating surface of the substrate FS. The tension adjusting roller RT11 is urged in the −Z direction, and applies a predetermined tension in the longitudinal direction to the substrate FS that is wound around and supported by the rotary drum DR1. As a result, the longitudinal tension applied to the substrate FS applied to the rotary drum DR1 is stabilized within a predetermined range. The tension adjusting roller RT11 is provided so as to rotate while being in contact with the application surface of the substrate FS. The air turn bars AT11 to AT14 support the substrate FS from the application surface side of the substrate FS in a non-contact state (or low friction state) with the application surface. The guide rollers R11 to R14 are arranged to rotate while being in contact with the back surface of the substrate FS. The subordinate control device 14c shown in FIG. 1 controls the conveyance speed of the substrate FS in the processing device PR3 by controlling the motors of the rotational drive source (not shown) provided in each of the nip rollers NR11 and NR12 and the rotary drum DR1. .
 アライメント顕微鏡AMm(AM1~AM3)は、後述する基板FS上に形成されたアライメント用のマークMKm(MK1~MK3)を検出するためのものであり(図6参照)、Y方向に沿って3ヶ所に設けられている。アライメント顕微鏡AMm(AM1~AM3)は、回転ドラムDR1の円周面で支持されている基板FS上のマークMKm(MK1~MK3)を撮像する。 The alignment microscope AMm (AM1 to AM3) is used to detect alignment marks MKm (MK1 to MK3) formed on a substrate FS, which will be described later (see FIG. 6), and is provided at three locations along the Y direction. Is provided. The alignment microscope AMm (AM1 to AM3) images the mark MKm (MK1 to MK3) on the substrate FS supported by the circumferential surface of the rotary drum DR1.
 アライメント顕微鏡AMmは、アライメント用の照明光を基板FSに投射する光源と、その反射光を撮像するCCD、CMOSなどの撮像素子とを有する。アライメント顕微鏡AM1は、観察領域(検出領域)内に存在する基板FSの+Y方向の端部に形成されたマークMK1を撮像する。アライメント顕微鏡AM2は、観察領域内に存在する基板FSの-Y方向の端部に形成されたマークMK2を撮像する。アライメント顕微鏡AM3は、観察領域内に存在する基板FSの幅方向中央に形成されたマークMK3を撮像する。アライメント顕微鏡AMm(AM1~AM3)が撮像した撮像信号は、下位制御装置14cに送られる。下位制御装置14cは、撮像信号に基づいて、マークMKm(MK1~MK3)の基板FS上の位置情報を検出する。なお、アライメント用の照明光は、基板FSの感光性機能層に対してほとんど感度を持たない波長域の光、例えば、波長500~800nm程度の光である。アライメント顕微鏡AMmの観察領域の大きさは、マークMK1~MK3の大きさやアライメント精度(位置計測精度)に応じて設定されるが、100~500μm角程度の大きさである。このアライメント顕微鏡AMm(AM1~AM3)は、後述するアライメント顕微鏡AMm(AM1~AM3)と同様の構成を有する。 The alignment microscope AMm has a light source that projects alignment illumination light onto the substrate FS and an image sensor such as a CCD or CMOS that images the reflected light. The alignment microscope AM1 images the mark MK1 formed at the end in the + Y direction of the substrate FS present in the observation region (detection region). The alignment microscope AM2 images the mark MK2 formed at the −Y direction end of the substrate FS present in the observation region. The alignment microscope AM3 images the mark MK3 formed at the center in the width direction of the substrate FS present in the observation region. The imaging signal imaged by the alignment microscope AMm (AM1 to AM3) is sent to the lower control device 14c. The lower-level control device 14c detects the position information on the substrate FS of the mark MKm (MK1 to MK3) based on the imaging signal. The illumination light for alignment is light in a wavelength region that has little sensitivity to the photosensitive functional layer of the substrate FS, for example, light having a wavelength of about 500 to 800 nm. The size of the observation region of the alignment microscope AMm is set according to the size of the marks MK1 to MK3 and the alignment accuracy (position measurement accuracy), but is about 100 to 500 μm square. The alignment microscope AMm (AM1 to AM3) has the same configuration as an alignment microscope AMm (AM1 to AM3) described later.
 ダイコータヘッドDCHは、回転ドラムDR1の円周面で支持されている基板FSに対して感光性機能液を幅広く一様に塗布する。但し、ダイコータヘッドDCHの塗布液(感光性機能液)を基板FSに吐出するスリット状開口のY方向の長さは、基板FSの幅方向の寸法よりも短く設定されている。そのため、基板FSの幅方向の両端部には塗布液が塗布されない。ダイコータヘッドDCHは、アライメント顕微鏡AMm(AM1~AM3)に対して基板FSの搬送方向の下流側(+X方向側)に設けられている。ダイコータヘッドDCHは、少なくとも、後述する処理装置PR4によってパターンが描画露光される基板FS上の電子デバイスの形成領域である露光領域W(図6参照)に感光性機能液を塗布する。下位制御装置14cは、アライメント顕微鏡AMm(AM1~AM3)を用いて検出したマークMKm(MK1~MK3)の基板FS上の位置に基づいて、ダイコータヘッドDCHを制御して、感光性機能液を基板FS上に塗布する。 The die coater head DCH applies the photosensitive functional liquid widely and uniformly to the substrate FS supported by the circumferential surface of the rotary drum DR1. However, the length in the Y direction of the slit-like opening for discharging the coating liquid (photosensitive functional liquid) of the die coater head DCH to the substrate FS is set shorter than the dimension in the width direction of the substrate FS. Therefore, the coating liquid is not applied to both ends in the width direction of the substrate FS. The die coater head DCH is provided on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the alignment microscope AMm (AM1 to AM3). The die coater head DCH applies a photosensitive functional liquid to at least an exposure area W (see FIG. 6) that is a formation area of an electronic device on a substrate FS on which a pattern is drawn and exposed by a processing apparatus PR4 described later. The subordinate control device 14c controls the die coater head DCH based on the position on the substrate FS of the mark MKm (MK1 to MK3) detected by using the alignment microscope AMm (AM1 to AM3), and supplies the photosensitive functional liquid to the substrate. Apply on FS.
 ここで、処理装置PR3は、後述するエンコーダシステムESと同様のエンコーダシステムを備える。つまり、回転ドラムDR1の両端部に設けられた一対のスケール部(スケール円盤)と、スケール部に対向して設けられた複数の一対のエンコーダヘッドとを備える。ある一対のエンコーダヘッドは、XZ平面に関して、回転ドラムDR1の中心軸AXo1とアライメント顕微鏡AMm(AM1~AM3)の観察領域とを通る設置方位線Lg1上に設けられている。また、他の一対のエンコーダヘッドは、XZ平面に関して、回転ドラムDR1の中心軸AXo1とダイコータヘッドDCHによる基板FSへの塗布位置(処理位置)とを通る設置方位線Lg2上に設けられている。このようなエンコーダシステムを設けることで、基板FS上のマークMKmの位置を回転ドラムDR1の回転角度位置に対応づけることができる。そして、複数の一対のエンコーダヘッドの各々が検出した検出信号に基づいて、マークMKm(MK1~MK3)の位置、および、基板FS上の露光領域(デバイス形成領域)Wと塗布位置(処理位置)との搬送方向(X方向)における位置関係などを特定することができる。 Here, the processing apparatus PR3 includes an encoder system similar to an encoder system ES described later. That is, a pair of scale portions (scale disks) provided at both ends of the rotary drum DR1 and a plurality of pairs of encoder heads provided to face the scale portions are provided. A pair of encoder heads are provided on an installation orientation line Lg1 passing through the central axis AXo1 of the rotary drum DR1 and the observation region of the alignment microscope AMm (AM1 to AM3) with respect to the XZ plane. The other pair of encoder heads is provided on the installation direction line Lg2 passing through the central axis AXo1 of the rotary drum DR1 and the application position (processing position) on the substrate FS by the die coater head DCH with respect to the XZ plane. By providing such an encoder system, the position of the mark MKm on the substrate FS can be associated with the rotational angle position of the rotary drum DR1. Based on the detection signals detected by each of the plurality of encoder heads, the position of the mark MKm (MK1 to MK3), the exposure area (device formation area) W and the application position (processing position) on the substrate FS. The positional relationship in the transport direction (X direction) can be specified.
 なお、処理装置PR3は、ダイコータヘッドDCHに代えてインクジェットヘッドを備えてもよく、ダイコータヘッドDCHとともにインクジェットヘッドを備えてもよい。このインクジェッヘッドは、感光性機能液を基板FSに対して選択的に塗布することが可能である。そのため、回転ドラムDR1の回転角度位置を計測するエンコーダシステムの計測分解能は、処理装置PR3での感光性機能液の選択的な塗布の位置決め精度に対応して設定される。 The processing apparatus PR3 may include an inkjet head instead of the die coater head DCH, and may include an inkjet head together with the die coater head DCH. This ink jet head can selectively apply the photosensitive functional liquid to the substrate FS. Therefore, the measurement resolution of the encoder system that measures the rotation angle position of the rotary drum DR1 is set in accordance with the positioning accuracy of selective application of the photosensitive functional liquid in the processing device PR3.
 乾燥処理部44は、ダイコータヘッドDCHによって感光性機能液が塗布された基板FSに対して乾燥処理を施す。乾燥処理部44は、ドライエアーなどの乾燥用エアー(温風)を基板FSの表面に吹き付けるブロワー、赤外線光源、または、セラミックヒータなどによって、感光性機能液に含まれる溶質(溶剤または水)を除去して感光性機能液を乾燥させる。これにより、感光性機能層が形成される。乾燥処理部44内に設けられた案内ローラR11~R14およびエアーターンバーAT11~AT14は、基板FSの搬送経路を長くすべく、蛇行状の搬送路となるように配置されている。本第1の実施の形態では、案内ローラR11~R14を、エアーターンバーAT11~AT14に対して+X方向側に配置することで、基板FSの搬送路を蛇行させて基板FSを-Z方向に搬送させている。搬送経路を長くすることで、感光性機能液を効果的に乾燥させることができる。 The drying processing unit 44 performs a drying process on the substrate FS coated with the photosensitive functional liquid by the die coater head DCH. The drying processing unit 44 removes the solute (solvent or water) contained in the photosensitive functional liquid using a blower, an infrared light source, or a ceramic heater that blows drying air (hot air) such as dry air onto the surface of the substrate FS. Remove and dry the photosensitive functional solution. Thereby, a photosensitive functional layer is formed. The guide rollers R11 to R14 and the air turn bars AT11 to AT14 provided in the drying processing unit 44 are arranged to form a meandering conveyance path so as to lengthen the conveyance path of the substrate FS. In the first embodiment, the guide rollers R11 to R14 are arranged on the + X direction side with respect to the air turn bars AT11 to AT14, thereby causing the transport path of the substrate FS to meander and transport the substrate FS in the −Z direction. I am letting. By lengthening the conveyance path, the photosensitive functional liquid can be effectively dried.
 また、乾燥処理部44は、基板FSを所定長に亘って蓄積可能な蓄積部(バッファ)として機能する。これにより、処理装置PR2から送られてくる基板FSの搬送速度と、処理装置PR4に送る基板FSの搬送速度とを異なる速度にした場合であっても、その速度差を乾燥処理部44で吸収することができる。乾燥処理部44を蓄積部としても機能させるために、エアーターンバーAT11~AT14をX方向に移動可能とし、且つ、-X方向側に常時一定の力(テンション)で付勢している。したがって、乾燥処理部44(或いは処理装置PR3)に入出する基板FSの搬送速度の差、具体的には回転ドラムDR1の回転(或いはニップローラNR11の回転駆動)による基板FSの送り速度とニップローラNR12の回転駆動による基板FSの送り速度との差によって生じる乾燥処理部44内の基板FSの蓄積長の変化に応じてエアーターンバーAT11~AT14はX方向(+X方向または-X方向)に移動する。これにより、乾燥処理部44は、基板FSに所定のテンションを付与した状態で所定長に亘って基板FSを蓄積することができる。なお、基板FSの搬送経路を蛇行させて長くしたことによって、乾燥処理部44が蓄積することができる所定長(最大蓄積長)も長くすることができる。 The drying processing unit 44 functions as a storage unit (buffer) that can store the substrate FS over a predetermined length. As a result, even when the transport speed of the substrate FS sent from the processing apparatus PR2 and the transport speed of the substrate FS sent to the processing apparatus PR4 are different, the speed difference is absorbed by the drying processing unit 44. can do. In order for the drying processing unit 44 to function as an accumulating unit, the air turn bars AT11 to AT14 can be moved in the X direction and are always urged in the −X direction side with a constant force (tension). Therefore, the difference in the conveyance speed of the substrate FS entering / exiting the drying processing unit 44 (or the processing apparatus PR3), specifically, the feeding speed of the substrate FS by the rotation of the rotating drum DR1 (or the rotational driving of the nip roller NR11) and the nip roller NR12 The air turn bars AT11 to AT14 move in the X direction (+ X direction or −X direction) in accordance with the change in the accumulated length of the substrate FS in the drying processing unit 44 caused by the difference from the feed speed of the substrate FS due to the rotation drive. Accordingly, the drying processing unit 44 can accumulate the substrate FS over a predetermined length in a state where a predetermined tension is applied to the substrate FS. Note that the predetermined length (maximum accumulation length) that can be accumulated by the drying processing unit 44 can be increased by meandering and lengthening the transport path of the substrate FS.
 〔処理装置PR4の構成〕
 図5は、処理装置(露光装置)PR4の構成を示す図である。処理装置PR4は、マスクを用いない直描方式の露光装置、いわゆるラスタースキャン方式のパターン描画装置である。後で詳細に説明するが、処理装置PR4は、基板FSを長尺方向(副走査方向)に搬送しながら、露光用のパルス状のビームLBのスポット光SPを、基板FSの被照射面(感光面)上で所定の走査方向(Y方向)に1次元に走査(主走査)しつつ、スポット光SPの強度をパターンデータ(描画データ)に応じて高速に変調(オン/オフ)する。これにより、基板FSの被照射面に電子デバイスの回路構成に対応した所定のパターンに応じた光パターンが描画露光される。つまり、基板FSの副走査と、スポット光SPの主走査とで、スポット光SPが基板FSの被照射面上で相対的に2次元走査されて、基板FSに所定のパターンが描画露光される。また、基板FSは、長尺方向に沿って連続的に搬送されているので、処理装置PR4によってパターンが露光される露光領域Wは、基板FSの長尺方向に沿って所定の間隔Tdをあけて複数設けられることになる(図6参照)。この露光領域Wに電子デバイスが形成されるので、露光領域Wは、デバイス形成領域でもある。
[Configuration of Processing Apparatus PR4]
FIG. 5 is a diagram showing a configuration of the processing apparatus (exposure apparatus) PR4. The processing apparatus PR4 is a direct drawing type exposure apparatus that does not use a mask, that is, a so-called raster scan type pattern drawing apparatus. As will be described in detail later, the processing apparatus PR4 applies the spot light SP of the pulsed beam LB for exposure to the irradiated surface (on the substrate FS) while transporting the substrate FS in the longitudinal direction (sub-scanning direction). The intensity of the spot light SP is modulated (ON / OFF) at high speed according to the pattern data (drawing data) while scanning one-dimensionally (main scanning) in a predetermined scanning direction (Y direction) on the photosensitive surface. Thereby, a light pattern corresponding to a predetermined pattern corresponding to the circuit configuration of the electronic device is drawn and exposed on the irradiated surface of the substrate FS. That is, the spot light SP is relatively two-dimensionally scanned on the irradiated surface of the substrate FS by the sub-scanning of the substrate FS and the main scanning of the spot light SP, and a predetermined pattern is drawn and exposed on the substrate FS. . In addition, since the substrate FS is continuously transported along the longitudinal direction, the exposure region W where the pattern is exposed by the processing apparatus PR4 has a predetermined interval Td along the longitudinal direction of the substrate FS. Are provided (see FIG. 6). Since an electronic device is formed in the exposure area W, the exposure area W is also a device formation area.
 処理装置PR4は、基板搬送機構52、ポストベーク処理部54、光源装置56、ビーム分配光学部材58、露光ヘッド60、アライメント顕微鏡AMm(AM1~AM3)、および、エンコーダシステムESをさらに備えている。基板搬送機構52、ポストベーク処理部54、光源装置56、ビーム分配光学部材58、露光ヘッド60、および、アライメント顕微鏡AMm(AM1~AM3)は、図示しない温調チャンバー内に設けられている。この温調チャンバーは、内部を所定の温度に保つことで、内部において搬送される基板FSの温度による形状変化を抑制するとともに、内部の湿度を基板FSの吸湿性や搬送に伴って発生する静電気の帯電などを考慮した湿度に設定する。 The processing apparatus PR4 further includes a substrate transport mechanism 52, a post-bake processing unit 54, a light source device 56, a beam distribution optical member 58, an exposure head 60, an alignment microscope AMm (AM1 to AM3), and an encoder system ES. The substrate transport mechanism 52, the post bake processing unit 54, the light source device 56, the beam distribution optical member 58, the exposure head 60, and the alignment microscope AMm (AM1 to AM3) are provided in a temperature control chamber (not shown). This temperature control chamber keeps the inside at a predetermined temperature, thereby suppressing the shape change due to the temperature of the substrate FS transported inside, and the internal humidity is static electricity generated due to the hygroscopicity and transport of the substrate FS. Set the humidity to take into account the charging of the battery.
 基板搬送機構52は、デバイス製造システム10の前記基板搬送装置の一部を構成するものであり、処理装置PR3から搬送される基板FSを、処理装置PR4内で所定の速度で搬送した後、処理装置PR5に所定の速度で送り出す。基板FSが基板搬送機構52のローラなどに掛け渡されて搬送されることによって、処理装置PR4内で搬送される基板FSの搬送路が規定される。基板搬送機構52は、基板FSの搬送方向の上流側(-X方向側)から順に、ニップローラNR21、テンション調整ローラRT21、回転ドラムDR2、テンション調整ローラRT22、ニップローラNR22、エアーターンバーAT21、案内ローラR21、エアーターンバーAT22、および、ニップローラNR23を備える。ニップローラNR22、NR23、エアーターンバーAT21、AT22、および、案内ローラR21は、ポストベーク処理部54内に配置されている。 The substrate transport mechanism 52 constitutes a part of the substrate transport apparatus of the device manufacturing system 10, and after the substrate FS transported from the processing apparatus PR3 is transported at a predetermined speed in the processing apparatus PR4, the processing is performed. It sends out to the apparatus PR5 at a predetermined speed. By transporting the substrate FS over a roller or the like of the substrate transport mechanism 52, the transport path of the substrate FS transported in the processing apparatus PR4 is defined. The substrate transport mechanism 52 is arranged in order from the upstream side (−X direction side) in the transport direction of the substrate FS. And an air turn bar AT22 and a nip roller NR23. The nip rollers NR22 and NR23, the air turn bars AT21 and AT22, and the guide roller R21 are disposed in the post bake processing unit 54.
 ニップローラNR21~NR23は、先に説明したニップローラNR1、NR2と同様の駆動ローラと従動ローラとで構成され、基板FSの表裏両面を保持しながら回転し、基板FSを搬送する。回転ドラムDR2は、回転ドラムDR1と同様の構成を有し、Y方向に延びるとともに重力方向と交差したY方向に延びた中心軸AXo2と、中心軸AXo2から一定半径の円筒状の外周面を有する。回転ドラムDR2は、外周面(円筒面)に倣って基板FSの一部を長尺方向に沿って湾曲させて支持しつつ、中心軸AXo2を中心に回転して、基板FSを搬送方向(+X方向)に移動させる。回転ドラムDR2は、基板FSの感光面とは反対側の面(裏面)側から基板FSを支持する。テンション調整ローラRT21、RT22は、-Z方向に付勢されており、回転ドラムDR2に巻き付けられて支持されている基板FSに長尺方向に所定のテンションを与えている。これにより、回転ドラムDR2にかかる基板FSに付与される長尺方向のテンションを所定の範囲内に安定化させている。このテンション調整ローラRT21、RT22は、基板FSの感光面と接触しながら回転するように設けられているため、外周面には基板FSの感光面に傷などを付け難い弾性体(ラバーシート、樹脂シートなど)が被覆されている。エアーターンバーAT21、AT22は、基板FSの感光面側から、感光面と非接触状態(或いは低摩擦状態)で基板FSを支持する。案内ローラR21は、基板FSの裏面と接触しながら回転するように配置されている。図1に示す下位制御装置14dは、ニップローラNR21~NR23および回転ドラムDR2の各々に設けられた図示しない回転駆動源のモータを制御することで、処理装置PR4内における基板FSの搬送速度を制御する。なお、便宜的に、中心軸AXo2を含み、YZ平面と平行な平面を中心面Pocと呼ぶ。 The nip rollers NR21 to NR23 are composed of a driving roller and a driven roller similar to the nip rollers NR1 and NR2 described above, and rotate while holding the front and back surfaces of the substrate FS to convey the substrate FS. The rotary drum DR2 has the same configuration as the rotary drum DR1, and has a center axis AXo2 extending in the Y direction and extending in the Y direction intersecting the gravity direction, and a cylindrical outer peripheral surface having a constant radius from the center axis AXo2. . The rotary drum DR2 rotates around the central axis AXo2 while supporting a part of the substrate FS curved along the longitudinal direction following the outer peripheral surface (cylindrical surface), and the substrate FS is moved in the transport direction (+ X Direction). The rotary drum DR2 supports the substrate FS from the surface (back surface) opposite to the photosensitive surface of the substrate FS. The tension adjustment rollers RT21 and RT22 are urged in the −Z direction, and apply a predetermined tension in the longitudinal direction to the substrate FS that is wound around and supported by the rotary drum DR2. As a result, the longitudinal tension applied to the substrate FS applied to the rotary drum DR2 is stabilized within a predetermined range. Since the tension adjusting rollers RT21 and RT22 are provided so as to rotate while being in contact with the photosensitive surface of the substrate FS, an elastic body (rubber sheet, resin, etc.) that hardly damages the photosensitive surface of the substrate FS on the outer peripheral surface. Sheet). The air turn bars AT21 and AT22 support the substrate FS from the photosensitive surface side of the substrate FS in a non-contact state (or low friction state) with the photosensitive surface. The guide roller R21 is arranged to rotate while being in contact with the back surface of the substrate FS. The subordinate control device 14d shown in FIG. 1 controls the conveyance speed of the substrate FS in the processing device PR4 by controlling the motors of the rotational drive source (not shown) provided in each of the nip rollers NR21 to NR23 and the rotary drum DR2. . For convenience, a plane including the central axis AXo2 and parallel to the YZ plane is referred to as a central plane Poc.
 ポストベーク処理部54は、後述する露光ヘッド60によって描画露光された基板FSに対してポストベーク(PEB;Post Exposure Bake)を行う。ポストベーク処理部54内に設けられたニップローラNR22、NR23、エアーターンバーAT21、AT22、および、案内ローラR21は、基板FSの搬送経路を長くすべく、蛇行状の搬送路となるように配置されている。本第1の実施の形態では、ニップローラNR22、NR23および案内ローラR21を、エアーターンバーAT21、AT22に対して+Z方向側に配置することで、基板FSの搬送路を蛇行させて基板FSを+X方向に搬送させている。搬送経路を長くすることで、ポストベークを効果的に行うことができる。 The post-bake processing unit 54 performs post-bake (PEB: Post-Exposure-Bake) on the substrate FS drawn and exposed by the exposure head 60 described later. The nip rollers NR22 and NR23, the air turn bars AT21 and AT22, and the guide roller R21 provided in the post-bake processing unit 54 are arranged to form a meandering conveyance path so as to lengthen the conveyance path of the substrate FS. Yes. In the first embodiment, the nip rollers NR22 and NR23 and the guide roller R21 are arranged on the + Z direction side with respect to the air turn bars AT21 and AT22, and the substrate FS is meandered to meander the substrate FS. It is conveyed to. Post baking can be effectively performed by lengthening the conveyance path.
 また、ポストベーク処理部54は、基板FSを所定長に亘って蓄積可能な蓄積部(バッファ)として機能する。これにより、処理装置PR3から送られてくる基板FSの搬送速度と、処理装置PR5に送る基板FSの搬送速度とを異なる速度にした場合であっても、その速度差をポストベーク処理部54で吸収することができる。ポストベーク処理部54を蓄積部としても機能させるために、エアーターンバーAT21、AT22をZ方向に移動可能とし、且つ、-Z方向側に、常時、所定の力(テンション)で付勢している。したがって、ポストベーク処理部54に入出する基板FSの搬送速度の差によって生じるポストベーク処理部54内の基板FSの蓄積長の変化に応じてエアーターンバーAT21、AT22はZ方向(+Z方向または-Z方向)に移動する。これにより、ポストベーク処理部54は、基板FSに所定のテンションを付与した状態で所定長に亘って基板FSを蓄積することができる。なお、基板FSの搬送経路を蛇行させて長くしたことによって、ポストベーク処理部54が蓄積することができる所定長(最大蓄積長)も長くすることができる。 The post-bake processing unit 54 functions as a storage unit (buffer) that can store the substrate FS over a predetermined length. As a result, even when the transport speed of the substrate FS sent from the processing apparatus PR3 and the transport speed of the substrate FS sent to the processing apparatus PR5 are different from each other, the difference between the speeds is post-baked by the post-bake processing unit 54. Can be absorbed. In order for the post-bake processing unit 54 to function also as a storage unit, the air turn bars AT21 and AT22 can be moved in the Z direction, and are always urged in the −Z direction side with a predetermined force (tension). . Therefore, the air turn bars AT21 and AT22 are moved in the Z direction (+ Z direction or −Z direction) according to the change in the accumulation length of the substrate FS in the post bake processing unit 54 caused by the difference in the transport speed of the substrate FS entering and exiting the post bake processing unit 54 Direction). Accordingly, the post-bake processing unit 54 can accumulate the substrate FS over a predetermined length in a state where a predetermined tension is applied to the substrate FS. The predetermined length (maximum accumulation length) that can be accumulated by the post-baking processing unit 54 can be increased by meandering the length of the transport path of the substrate FS.
 光源装置(光源)56は、パルス状のビーム(パルスビーム、パルス光、レーザ)LBを発生して射出する。このビームLBは、370nm以下の波長帯域の特定波長(例えば、355nm)にピーク波長を有する紫外線光であり、発光周波数(発振周波数)Faで発光する。光源装置56が射出したビームLBは、ビーム分配光学部材58を介して露光ヘッド60に入射する。光源装置56は、紫外波長域で高輝度なビームLBを高い発光周波数Faで発光可能なファイバーアンプレーザ光源装置であってもよい。ファイバーアンプレーザ光源装置は、100MHz以上の高い発光周波数Faで、赤外波長域のパルス光を発光することができる半導体レーザと、赤外波長域のパルス光を増幅するファイバーアンプと、増幅された赤外波長域のパルス光を紫外波長域のパルス光に変換する波長変換素子(高調波発生素子)とで構成される。半導体レーザからの赤外波長域のパルス光は種光とも呼ばれ、種光の発光特性(パルス持続時間、立ち上がりおよび立ち下がりの急峻性など)を変えることで、ファイバーアンプでの増幅効率(増幅率)を変えることができ、最終的に出力される紫外波長域のビームLBの強度を高速に変調することもできる。また、ファイバーアンプレーザ光源装置から出力される紫外波長域のビームLBは、その発光持続時間を数ピコ秒~数十ピコ秒と極めて短くすることができる。そのため、ラスタースキャン方式の描画露光であっても、基板FSの被照射面(感光面)上で投射されるビームLBのスポット光SPは、殆どぶれることがなく、ビームLBのスポット光SPの断面内での形状と強度分布(例えば、円形のガウス分布)とが一定に保たれる。このようなファイバーアンプレーザ光源装置を直描方式のパターン描画装置に組み合せた構成は、例えば国際公開第2015/166910号パンフレットに開示されている。 The light source device (light source) 56 generates and emits a pulsed beam (pulse beam, pulsed light, laser) LB. This beam LB is ultraviolet light having a peak wavelength at a specific wavelength (for example, 355 nm) in a wavelength band of 370 nm or less, and emits light at an emission frequency (oscillation frequency) Fa. The beam LB emitted from the light source device 56 enters the exposure head 60 via the beam distribution optical member 58. The light source device 56 may be a fiber amplifier laser light source device capable of emitting a high-luminance beam LB in the ultraviolet wavelength region at a high emission frequency Fa. The fiber amplifier laser light source device is a semiconductor laser that can emit pulsed light in the infrared wavelength region at a high emission frequency Fa of 100 MHz or higher, a fiber amplifier that amplifies the pulsed light in the infrared wavelength region, and the amplified It is comprised with the wavelength conversion element (harmonic generator) which converts the pulsed light of an infrared wavelength range into the pulsed light of an ultraviolet wavelength range. Pulsed light in the infrared wavelength range from a semiconductor laser is also called seed light. By changing the emission characteristics of the seed light (pulse duration, steepness of rise and fall, etc.), amplification efficiency (amplification) in the fiber amplifier The intensity of the beam LB in the ultraviolet wavelength region that is finally output can be modulated at high speed. Further, the ultraviolet light beam LB output from the fiber amplifier laser light source device can have a very short emission duration of several picoseconds to several tens of picoseconds. For this reason, even in raster scan drawing exposure, the spot light SP of the beam LB projected on the irradiated surface (photosensitive surface) of the substrate FS hardly fluctuates, and the cross section of the spot light SP of the beam LB. The inner shape and the intensity distribution (for example, a circular Gaussian distribution) are kept constant. A configuration in which such a fiber amplifier laser light source device is combined with a direct drawing pattern drawing device is disclosed in, for example, International Publication No. 2015/166910.
 露光ヘッド60は、同一構成の複数の走査ユニットUn(U1~U6)を配列した、いわゆるマルチビーム型の露光ヘッドとなっている。露光ヘッド60は、回転ドラムDR2の外周面(円周面)で支持されている基板FSの一部分に、複数の走査ユニットUn(U1~U6)によってパターンを描画する。各走査ユニットUn(U1~U6)は、光源装置56からのビームLBを基板FSの被照射面上でスポット光SPに収斂するように投射しつつ、そのスポット光SPを主走査方向(Y方向)に1次元に走査する。走査ユニットUnは、ビームLBを偏向させるためのポリゴンミラーPMと、回転したポリゴンミラーPMによって偏向されたビームLBのスポット光SPをテレセントリック状態で基板FSの被照射面上に投射するためのFθレンズFTとを備える。このスポット光SPの走査によって、基板FS上(基板FSの被照射面上)に、1ライン分のパターンが描画される直線的な描画ラインSLn(SL1~SL6)が規定される。この描画ラインSLn(SL1~SL6)は、各走査ユニットUn(U1~U6)によって走査されるスポット光SPの走査軌跡を示す走査線である。なお、便宜上、走査ユニットUn(U1~U6)に入射する光源装置56からのビームLBをLBn(LB1~LB6)で表す場合がある。 The exposure head 60 is a so-called multi-beam type exposure head in which a plurality of scanning units Un (U1 to U6) having the same configuration are arranged. The exposure head 60 draws a pattern on a part of the substrate FS supported by the outer peripheral surface (circumferential surface) of the rotary drum DR2 by a plurality of scanning units Un (U1 to U6). Each scanning unit Un (U1 to U6) projects the beam LB from the light source device 56 so as to converge on the spot light SP on the irradiated surface of the substrate FS, and the spot light SP is projected in the main scanning direction (Y direction). ) In one dimension. The scanning unit Un includes a polygon mirror PM for deflecting the beam LB and an Fθ lens for projecting the spot light SP of the beam LB deflected by the rotated polygon mirror PM onto the irradiated surface of the substrate FS in a telecentric state. FT. By scanning with the spot light SP, linear drawing lines SLn (SL1 to SL6) on which a pattern for one line is drawn are defined on the substrate FS (on the irradiated surface of the substrate FS). The drawing lines SLn (SL1 to SL6) are scanning lines indicating the scanning trajectory of the spot light SP scanned by each scanning unit Un (U1 to U6). For convenience, the beam LB from the light source device 56 incident on the scanning unit Un (U1 to U6) may be represented by LBn (LB1 to LB6).
 複数の走査ユニットUn(U1~U6)は、図6に示すように、複数の描画ラインSLn(SL1~SL6)が、Y方向に関して互いに分離することなく継ぎ合わせるように配置されている。つまり、複数の走査ユニットUn(U1~U6)全部で露光領域Wの幅方向の全てをカバーするように、各走査ユニットUn(U1~U6)は、走査領域を分担している。これにより、各走査ユニットUn(U1~U6)は、基板FSの幅方向に分割された複数の領域毎にパターンを描画することができる。例えば、1つの走査ユニットUnによるY方向の走査長(描画ラインSLnの長さ)を20~50mm程度とすると、奇数番の走査ユニットU1、U3、U5の3個と、偶数番の走査ユニットU2、U4、U6の3個との計6個の走査ユニットUnをY方向に配置することによって、描画可能なY方向の幅を120~300mm程度に広げている。各描画ラインSL1~SL6の長さは、原則として同一とする。つまり、描画ラインSL1~SL6の各々に沿って走査されるビームLBn(LB1~LB6)のスポット光SPの走査距離は、原則として同一とする。なお、露光領域Wの幅を長くしたい場合は、描画ラインSLn自体の長さを長くするか、Y方向に配置する走査ユニットUnの数を増やすことで対応することができる。 As shown in FIG. 6, the plurality of scanning units Un (U1 to U6) are arranged so that the plurality of drawing lines SLn (SL1 to SL6) are joined together without being separated from each other in the Y direction. That is, each scanning unit Un (U1 to U6) shares the scanning area so that all of the plurality of scanning units Un (U1 to U6) cover the entire width direction of the exposure area W. Accordingly, each scanning unit Un (U1 to U6) can draw a pattern for each of a plurality of regions divided in the width direction of the substrate FS. For example, if the scanning length in the Y direction (the length of the drawing line SLn) by one scanning unit Un is about 20 to 50 mm, the odd numbered scanning units U1, U3, U5 and the even numbered scanning unit U2 , U4, and U6, a total of six scanning units Un in the Y direction, the width in the Y direction that can be drawn is increased to about 120 to 300 mm. In principle, the lengths of the drawing lines SL1 to SL6 are the same. That is, the scanning distances of the spot lights SP of the beams LBn (LB1 to LB6) scanned along the drawing lines SL1 to SL6 are basically the same. If it is desired to increase the width of the exposure region W, it can be handled by increasing the length of the drawing line SLn itself or increasing the number of scanning units Un arranged in the Y direction.
 複数の走査ユニットUn(U1~U6)は、複数の描画ラインSLn(SL1~SL6)が中心面Pocを挟んで回転ドラムDR2の周方向に2列に千鳥配列で配置されるように、中心面Pocを挟んで回転ドラムDR2の周方向に2列に千鳥配列で配置される。奇数番の走査ユニットU1、U3、U5は、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)で、且つ、Y方向に沿って所定の間隔だけ離して配置されている。偶数番の走査ユニットU2、U4、U6は、中心面Pocに対して基板FSの搬送方向の下流側(+X方向側)で、Y方向に沿って所定の間隔だけ離して配置されている。したがって、奇数番の描画ラインSL1、SL3、SL5は、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)で、且つ、Y方向に沿って所定の間隔だけ離して直線上に配置される。偶数番の描画ラインSL2、SL4、SL6は、中心面Pocに対して基板FSの搬送方向の下流側(+X方向側)で、且つ、Y方向に沿って所定の間隔だけ離して直線上に配置される。 The plurality of scanning units Un (U1 to U6) are arranged so that the plurality of drawing lines SLn (SL1 to SL6) are arranged in a staggered arrangement in two rows in the circumferential direction of the rotary drum DR2 with the center surface Poc interposed therebetween. Arranged in a staggered arrangement in two rows in the circumferential direction of the rotary drum DR2 across Poc. The odd-numbered scanning units U1, U3, and U5 are arranged on the upstream side (−X direction side) in the transport direction of the substrate FS with respect to the center plane Poc and at a predetermined interval along the Y direction. Yes. The even-numbered scanning units U2, U4, U6 are arranged at a predetermined interval along the Y direction on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc. Therefore, the odd-numbered drawing lines SL1, SL3, SL5 are straight lines separated from the center plane Poc by the predetermined distance along the Y direction on the upstream side (−X direction side) in the transport direction of the substrate FS. Placed on top. The even-numbered drawing lines SL2, SL4, SL6 are arranged on a straight line on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc and at a predetermined interval along the Y direction. Is done.
 このとき、描画ラインSL2は、基板FSの幅方向に関して、描画ラインSL1と描画ラインSL3との間に配置される。同様に、描画ラインSL3は、基板FSの幅方向に関して、描画ラインSL2と描画ラインSL4との間に配置されている。描画ラインSL4は、基板FSの幅方向に関して、描画ラインSL3と描画ラインSL5との間に配置され、描画ラインSL5は、基板FSの幅方向に関して、描画ラインSL4と描画ラインSL6との間に配置されている。本第1の実施の形態では、描画ラインSL1、SL3、SL5に沿って走査されるビームLBnのスポット光SPの走査方向を-Y方向とし、描画ラインSL2、SL4、SL6に沿って走査されるビームLBnのスポット光SPの走査方向を+Y方向とする。これにより、描画ラインSL1、SL3、SL5の描画開始点側の端部と、描画ラインSL2、SL4、SL6の描画開始点側の端部とはY方向に関して隣接または一部重複する。また、描画ラインSL3、SL5の描画終了点側の端部と、描画ラインSL2、SL4の描画終了点側の端部とはY方向に関して隣接または一部重複する。Y方向に隣り合う描画ラインSLnの端部同士を一部重複させるように、各描画ラインSLnを配置する場合は、例えば、各描画ラインSLnの長さに対して、描画開始点、または描画終了点を含んでY方向に走査長の数%以下の範囲で重複させるとよい。なお、描画ラインSLnをY方向に継ぎ合わせるとは、描画ラインSLnの端部同士をY方向に関して隣接または一部重複させることを意味する。 At this time, the drawing line SL2 is arranged between the drawing line SL1 and the drawing line SL3 in the width direction of the substrate FS. Similarly, the drawing line SL3 is disposed between the drawing line SL2 and the drawing line SL4 in the width direction of the substrate FS. The drawing line SL4 is arranged between the drawing line SL3 and the drawing line SL5 with respect to the width direction of the substrate FS, and the drawing line SL5 is arranged between the drawing line SL4 and the drawing line SL6 with respect to the width direction of the substrate FS. Has been. In the first embodiment, the scanning direction of the spot light SP of the beam LBn scanned along the drawing lines SL1, SL3, and SL5 is the -Y direction, and scanning is performed along the drawing lines SL2, SL4, and SL6. The scanning direction of the spot light SP of the beam LBn is defined as the + Y direction. Thereby, the drawing start point side ends of the drawing lines SL1, SL3, SL5 and the drawing start point side ends of the drawing lines SL2, SL4, SL6 are adjacent or partially overlapped in the Y direction. Further, the end of the drawing lines SL3 and SL5 on the drawing end point side and the end of the drawing lines SL2 and SL4 on the drawing end point side are adjacent or partially overlap in the Y direction. When arranging each drawing line SLn so that the ends of the drawing lines SLn adjacent in the Y direction partially overlap, for example, the drawing start point or the drawing end with respect to the length of each drawing line SLn It is preferable to overlap in the Y direction within a range of several percent or less of the scanning length including points. Note that joining the drawing lines SLn in the Y direction means that the ends of the drawing lines SLn are adjacent to each other or partially overlap in the Y direction.
 本第1の実施の形態の場合、光源装置56からのビームLBがパルス光であるため、主走査の間に描画ラインSLn上に投射されるスポット光SPは、ビームLBの発振周波数Fa(例えば、100MHz)に応じて離散的になる。そのため、ビームLBの1パルス光によって投射されるスポット光SPと次の1パルス光によって投射されるスポット光SPとを、主走査方向にオーバーラップさせる必要がある。そのオーバーラップの量は、スポット光SPのサイズφ、スポット光SPの走査速度(主走査の速度)、および、ビームLBの発振周波数Faによって設定される。スポット光SPの実効的なサイズφは、スポット光SPの強度分布がガウス分布で近似される場合、スポット光SPのピーク強度の1/e2(または1/2)で決まる。本第1の実施の形態では、実効的なサイズ(寸法)φに対して、φ×1/2程度スポット光SPがオーバーラップするように、スポット光SPの走査速度Vsおよび発振周波数Faが設定される。したがって、スポット光SPの主走査方向に沿った投射間隔は、φ/2となる。そのため、副走査方向(描画ラインSLnと直交した方向)に関しても、描画ラインSLnに沿ったスポット光SPの1回の走査と、次の走査との間で、基板FSがスポット光SPの実効的なサイズφの略1/2の距離だけ移動するように設定することが望ましい。なお、スポット光SPの走査速度は、ポリゴンミラーPMの回転速度に応じて決定される。 In the case of the first embodiment, since the beam LB from the light source device 56 is pulsed light, the spot light SP projected onto the drawing line SLn during the main scanning is the oscillation frequency Fa (for example, the beam LB) , 100 MHz). Therefore, it is necessary to overlap the spot light SP projected by one pulse light of the beam LB and the spot light SP projected by the next one pulse light in the main scanning direction. The amount of overlap is set by the size φ of the spot light SP, the scanning speed (main scanning speed) of the spot light SP, and the oscillation frequency Fa of the beam LB. The effective size φ of the spot light SP is determined by 1 / e 2 (or 1/2) of the peak intensity of the spot light SP when the intensity distribution of the spot light SP is approximated by a Gaussian distribution. In the first embodiment, the scanning speed Vs and the oscillation frequency Fa of the spot light SP are set so that the spot light SP overlaps by about φ × ½ with respect to the effective size (dimension) φ. Is done. Therefore, the projection interval of the spot light SP along the main scanning direction is φ / 2. Therefore, also in the sub-scanning direction (the direction orthogonal to the drawing line SLn), the substrate FS is effective for the spot light SP between one scanning of the spot light SP along the drawing line SLn and the next scanning. It is desirable to set so as to move by a distance of about ½ of a large size φ. Note that the scanning speed of the spot light SP is determined according to the rotational speed of the polygon mirror PM.
 各走査ユニットUn(U1~U6)は、少なくともXZ平面において、各ビームLBnが回転ドラムDR2の中心軸AXo2に向かって進むように、各ビームLBnを基板FSに向けて射出する。これにより、各走査ユニットUn(U1~U6)から基板FSに向かって進むビームLBnの光路(ビーム中心軸)は、XZ平面において、基板FSの被照射面の法線と平行となる。また、各走査ユニットUn(U1~U6)は、描画ラインSLn(SL1~SL6)に照射するビームLBnが、YZ平面と平行な面内では基板FSの被照射面に対して垂直となるように、ビームLBnを基板FSに向けて照射する。すなわち、被照射面でのスポット光SPの主走査方向に関して、基板FSに投射されるビームLBn(LB1~LB6)はテレセントリックな状態で走査される。ここで、各走査ユニットUn(U1~U6)から描画ラインSLn(SL1~SL6)上の任意の点(例えば、中点)に照射されるビームLBの光軸を照射軸Len(Le1~Le6)とする。この各照射軸Le(Le1~Le6)は、XZ平面において、描画ラインSLn(SL1~SL6)と中心軸AXo2とを結ぶ線となっている。 Each scanning unit Un (U1 to U6) emits each beam LBn toward the substrate FS so that each beam LBn travels toward the central axis AXo2 of the rotary drum DR2 at least in the XZ plane. As a result, the optical path (beam central axis) of the beam LBn traveling from each scanning unit Un (U1 to U6) toward the substrate FS is parallel to the normal line of the irradiated surface of the substrate FS in the XZ plane. Further, each scanning unit Un (U1 to U6) is configured such that the beam LBn irradiated to the drawing line SLn (SL1 to SL6) is perpendicular to the irradiated surface of the substrate FS in a plane parallel to the YZ plane. The beam LBn is irradiated toward the substrate FS. That is, with respect to the main scanning direction of the spot light SP on the irradiated surface, the beams LBn (LB1 to LB6) projected onto the substrate FS are scanned in a telecentric state. Here, the optical axis of the beam LB emitted from each scanning unit Un (U1 to U6) to an arbitrary point (for example, the middle point) on the drawing line SLn (SL1 to SL6) is the irradiation axis Len (Le1 to Le6). And Each irradiation axis Le (Le1 to Le6) is a line connecting the drawing line SLn (SL1 to SL6) and the central axis AXo2 in the XZ plane.
 奇数番の走査ユニットU1、U3、U5の各々の照射軸Le1、Le3、Le5は、XZ平面において同じ方向となっており、偶数番の走査ユニットU2、U4、U6の各々の照射軸Le2、Le4、Le6は、XZ平面において同じ方向となっている。また、照射軸Le1、Le3、Le5と照射軸Le2、Le4、Le6とは、XZ平面において、中心面Pocに対して角度が±θ1となるように設定されている。 The irradiation axes Le1, Le3, Le5 of the odd-numbered scanning units U1, U3, U5 are in the same direction in the XZ plane, and the irradiation axes Le2, Le4 of the even-numbered scanning units U2, U4, U6, respectively. , Le6 are in the same direction in the XZ plane. Further, the irradiation axes Le1, Le3, Le5 and the irradiation axes Le2, Le4, Le6 are set so that the angle is ± θ1 with respect to the center plane Poc in the XZ plane.
 ビーム分配光学部材58は、光源装置56からのビームLBを複数の走査ユニットUn(U1~U6)に導く。ビーム分配光学部材58は、複数の走査ユニットUn(U1~U6)の各々に対応した複数のビーム分配光学系BDUn(BDU1~BDU6)を備える。ビーム分配光学系BDU1は、光源装置56からのビームLB(LB1)を走査ユニットU1に導き、同様にビーム分配光学系BDU2~BDU6は、光源装置56からのビームLB(LB2~LB6)を走査ユニットU2~U6に導く。複数のビーム分配光学系BDUn(BDU1~BDU6)は、ビームLBn(LB1~LB6)を照射軸Len(Le1~Le6)上に沿って走査ユニットUn(U1~U6)に射出する。つまり、ビーム分配光学系BDU1から走査ユニットU1に導かれるビームLB1は、照射軸Le1上を通る。同様に、ビーム分配光学系BDU2~BDU6から走査ユニットU2~U6に導かれるビームLB2~LB6は、照射軸Le2~Le6上を通る。ビーム分配光学部材58は、不図示のビームスプリッタなどによって、光源装置56からのビームLBを分岐させて複数のビーム分配光学系BDUn(BDU1~BDU6)の各々に入射させる。なお、ビーム分配光学部材58は、スイッチング用の光偏向器など(例えば、音響光学変調器)によって、光源装置56からビームLBを時分割にして複数のビーム分配光学系BDUn(BDU1~BDU6)のいずれか1つに選択的に入射させてもよい。 The beam distribution optical member 58 guides the beam LB from the light source device 56 to the plurality of scanning units Un (U1 to U6). The beam distribution optical member 58 includes a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) corresponding to each of the plurality of scanning units Un (U1 to U6). The beam distribution optical system BDU1 guides the beam LB (LB1) from the light source device 56 to the scanning unit U1, and similarly the beam distribution optical systems BDU2 to BDU6 scan the beam LB (LB2 to LB6) from the light source device 56. Guide to U2-U6. The plurality of beam distribution optical systems BDUn (BDU1 to BDU6) emit beams LBn (LB1 to LB6) onto the scanning units Un (U1 to U6) along the irradiation axis Len (Le1 to Le6). That is, the beam LB1 guided from the beam distribution optical system BDU1 to the scanning unit U1 passes on the irradiation axis Le1. Similarly, the beams LB2 to LB6 guided from the beam distribution optical systems BDU2 to BDU6 to the scanning units U2 to U6 pass on the irradiation axes Le2 to Le6. The beam distribution optical member 58 branches the beam LB from the light source device 56 by a beam splitter (not shown) or the like and makes it incident on each of the plurality of beam distribution optical systems BDUn (BDU1 to BDU6). The beam distribution optical member 58 includes a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) by time-sharing the beam LB from the light source device 56 with a switching optical deflector (for example, an acousto-optic modulator). You may make it selectively inject into any one.
 複数のビーム分配光学系BDUn(BDU1~BDU6)の各々は、複数の走査ユニットUn(U1~U6)に導くビームLBn(LB1~LB6)の強度をパターンデータに応じて高速に変調(オン/オフ)する描画用光学素子AOMn(AOM1~AOM6)を有する。ビーム分配光学系BDU1は、描画用光学素子AOM1を有し、同様に、ビーム分配光学系BDU2~BDU6は、描画用光学素子AOM2~AOM6を有する。描画用光学素子AOMn(AOM1~AOM6)は、ビームLBに対して透過性を有する音響光学変調器(Acousto-Optic Modulator)である。描画用光学素子AOMn(AOM1~AOM6)は、駆動信号としての高周波信号の周波数に応じた回折角で、光源装置56からのビームLBを回折させた1次回折光を発生し、その1次回折光を、各走査ユニットUn(U1~U6)に向かうビームLBn(LB1~LB6)として射出する。描画用光学素子AOMn(AOM1~AOM6)は、下位制御装置14dからの駆動信号(高周波信号)のオン/オフにしたがって、入射したビームLBを回折させた1次回折光(ビームLBn)の発生をオン/オフする。 Each of the plurality of beam distribution optical systems BDUn (BDU1 to BDU6) modulates the intensity of the beam LBn (LB1 to LB6) guided to the plurality of scanning units Un (U1 to U6) at high speed according to the pattern data (ON / OFF). A drawing optical element AOMn (AOM1 to AOM6). The beam distribution optical system BDU1 has a drawing optical element AOM1, and similarly, the beam distribution optical systems BDU2 to BDU6 have drawing optical elements AOM2 to AOM6. The drawing optical elements AOMn (AOM1 to AOM6) are acousto-optic modulators that are transmissive to the beam LB. The drawing optical elements AOMn (AOM1 to AOM6) generate first-order diffracted light that diffracts the beam LB from the light source device 56 at a diffraction angle corresponding to the frequency of the high-frequency signal as a drive signal, and the first-order diffracted light is generated. The beams LBn (LB1 to LB6) are emitted toward the scanning units Un (U1 to U6). The drawing optical elements AOMn (AOM1 to AOM6) turn on the generation of the first-order diffracted light (beam LBn) obtained by diffracting the incident beam LB in accordance with the on / off of the drive signal (high frequency signal) from the low order control device 14d. / Turn off.
 描画用光学素子AOMn(AOM1~AOM6)は、下位制御装置14dからの駆動信号(高周波信号)がオフの状態のときは、入射したビームLB(0次光)を回折させずに透過することで、ビーム分配光学系BDUn(BDU1~BDU6)内に設けられた図示しない吸収体にビームLBを導く。したがって、駆動信号がオフの状態のときは、描画用光学素子AOMn(AOM1~AOM6)を透過したビームLBn(LB1~LB6)は、走査ユニットUn(U1~U6)に入射しない。つまり、走査ユニットUn内を通るビームLBnの強度が低レベル(ゼロ)になる。このことは、基板FSの被照射面上でみると、被照射面上に照射されるビームLBnのスポット光SPの強度が低レベル(ゼロ)に変調されていることを意味する。一方、描画用光学素子AOMn(AOM1~AOM6)は、下位制御装置14dからの駆動信号(高周波信号)がオンの状態のときは、入射したビームLBを回折させて1次回折光を射出することで、走査ユニットUn(U1~U6)にビームLBn(LB1~LB6)を導く。したがって、駆動信号がオンの状態のときは、走査ユニットUn内を通るビームLBnの強度が高レベルになる。このことは、基板FSの被照射面上でみると、被照射面上に照射されるビームLBnのスポット光SPの強度が高レベルに変調されていることを意味する。このように、オン/オフの駆動信号を描画用光学素子AOMn(AOM1~AOM6)に印加することで、描画用光学素子AOMn(AOM1~AOM6)をオン/オフにスイッチングすることができる。 The drawing optical elements AOMn (AOM1 to AOM6) transmit the incident beam LB (0th-order light) without being diffracted when the drive signal (high-frequency signal) from the low-order control device 14d is off. The beam LB is guided to an absorber (not shown) provided in the beam distribution optical system BDUn (BDU1 to BDU6). Therefore, when the drive signal is off, the beams LBn (LB1 to LB6) transmitted through the drawing optical elements AOMn (AOM1 to AOM6) do not enter the scanning units Un (U1 to U6). That is, the intensity of the beam LBn passing through the scanning unit Un becomes a low level (zero). This means that when viewed on the irradiated surface of the substrate FS, the intensity of the spot light SP of the beam LBn irradiated on the irradiated surface is modulated to a low level (zero). On the other hand, the drawing optical elements AOMn (AOM1 to AOM6) diffract the incident beam LB and emit the first-order diffracted light when the drive signal (high-frequency signal) from the low order control device 14d is on. The beams LBn (LB1 to LB6) are guided to the scanning units Un (U1 to U6). Therefore, when the drive signal is on, the intensity of the beam LBn passing through the scanning unit Un becomes high. This means that when viewed on the irradiated surface of the substrate FS, the intensity of the spot light SP of the beam LBn irradiated on the irradiated surface is modulated to a high level. Thus, by applying the on / off drive signal to the drawing optical element AOMn (AOM1 to AOM6), the drawing optical element AOMn (AOM1 to AOM6) can be switched on / off.
 パターンデータは、走査ユニットUn(U1~U6)毎に設けられており、下位制御装置14dは、各走査ユニットUn(U1~U6)によって描画されるパターンのパターンデータ(例えば、所定の画素単位を1ビットに対応させて、論理値「0」、または「1」でオフ状態とオン状態とを表すデータ列)に基づいて、各描画用光学素子AOMn(AOM1~AOM6)に印加する駆動信号を高速にオン状態/オフ状態にスイッチングする。これによって、走査ユニットUn(U1~U6)毎にパターンデータに応じた描画動作が行われ、基板FSの露光領域(パターン形成領域)には、6つの走査ユニットUn(U1~U6)の各々による描画パターンがY方向に継いで露光される。 The pattern data is provided for each scanning unit Un (U1 to U6), and the lower-level control device 14d uses the pattern data (for example, a predetermined pixel unit) drawn by each scanning unit Un (U1 to U6). Corresponding to 1 bit, a drive signal to be applied to each drawing optical element AOMn (AOM1 to AOM6) based on a logical value “0” or a data string indicating an off state and an on state by “1”) Switch to ON / OFF state at high speed. As a result, a drawing operation corresponding to the pattern data is performed for each scanning unit Un (U1 to U6), and an exposure region (pattern formation region) of the substrate FS is formed by each of the six scanning units Un (U1 to U6). The drawing pattern is exposed in the Y direction.
 本体フレームUBは、複数のビーム分配光学系BDUn(BDU1~BDU6)と複数の走査ユニットUn(U1~U6)を保持する。本体フレームUBは、複数のビーム分配光学系BDUn(BDU1~BDU6)を保持する第1フレームUb1と、複数の走査ユニットUn(U1~U6)を保持する第2フレームUb2とを有する。第1フレームUb1は、第2フレームUb2によって保持された複数の走査ユニットUn(U1~U6)の上方(+Z方向側)で、複数のビーム分配光学系BDUn(BDU1~BDU6)を保持する。第1フレームUb1は、複数のビーム分配光学系BDUn(BDU1~BDU6)を下方(-Z方向側)から支持する。奇数番のビーム分配光学系BDU1、BDU3、BDU5は、奇数番の走査ユニットU1、U3、U5の位置に対応して、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)で、Y方向に沿って1列に配置されるように、第1フレームUb1に支持されている。偶数番のビーム分配光学系BDU2、BDU4、BDU6は、偶数番の走査ユニットU2、U4、U6の位置に対応して、中心面Pocに対して基板FSの搬送方向の下流側(+X方向側)で、Y方向に沿って1列に配置されるように、第1フレームUb1に支持されている。第1フレームUb1には、複数のビーム分配光学系BDUn(BDU1~BDU6)の各々から射出されるビームLBn(LB1~LB6)が、対応する走査ユニットUn(U1~U6)に入射するための開口部Hsn(Hs1~Hs6)が設けられている。 The main body frame UB holds a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) and a plurality of scanning units Un (U1 to U6). The main body frame UB includes a first frame Ub1 that holds a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) and a second frame Ub2 that holds a plurality of scanning units Un (U1 to U6). The first frame Ub1 holds a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) above the plurality of scanning units Un (U1 to U6) held by the second frame Ub2 (on the + Z direction side). The first frame Ub1 supports a plurality of beam distribution optical systems BDUn (BDU1 to BDU6) from below (−Z direction side). The odd-numbered beam distribution optical systems BDU1, BDU3, and BDU5 correspond to the positions of the odd-numbered scanning units U1, U3, and U5 on the upstream side (−X direction side) with respect to the center plane Poc in the transport direction of the substrate FS. ) Is supported by the first frame Ub1 so as to be arranged in a line along the Y direction. The even-numbered beam distribution optical systems BDU2, BDU4, and BDU6 correspond to the positions of the even-numbered scanning units U2, U4, and U6, and are located downstream (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc. Thus, the first frame Ub1 is supported so as to be arranged in a line along the Y direction. The first frame Ub1 has an opening through which the beams LBn (LB1 to LB6) emitted from each of the plurality of beam distribution optical systems BDUn (BDU1 to BDU6) enter the corresponding scanning units Un (U1 to U6). Part Hsn (Hs1 to Hs6) is provided.
 第2フレームUb2は、各走査ユニットUn(U1~U6)が照射軸Len(Le1~Le6)回りに微少量(例えば±2°程度)だけ回動できるように、走査ユニットUn(U1~U6)を回動可能に保持する。この走査ユニットUn(U1~U6)の回転によって、描画ラインSLn(SL1~SL6)が照射軸Len(Le1~Le6)を中心に回転するので、描画ラインSLn(SL1~SL6)をY軸と平行な状態に対して僅かな範囲(例えば±2°)内で傾けることができる。なお、この走査ユニットUn(U1~U6)の照射軸Len(Le1~Le6)回りの回動は、下位制御装置14dの制御の下、図示しないアクチュエータによって行われる。 The second frame Ub2 is configured so that the scanning units Un (U1 to U6) can be rotated by a minute amount (for example, about ± 2 °) around the irradiation axis Len (Le1 to Le6). Is held rotatably. The rotation of the scanning unit Un (U1 to U6) causes the drawing line SLn (SL1 to SL6) to rotate about the irradiation axis Len (Le1 to Le6), so that the drawing line SLn (SL1 to SL6) is parallel to the Y axis. It is possible to tilt within a slight range (for example, ± 2 °) with respect to a normal state. Note that the rotation of the scanning unit Un (U1 to U6) about the irradiation axis Len (Le1 to Le6) is performed by an actuator (not shown) under the control of the low order control device 14d.
 図6に示すように、アライメント系を構成するアライメント顕微鏡AMm(AM1~AM3)は、基板FSに形成されたアライメント用のマークMKm(MK1~MK3)の位置情報(マーク位置情報)を検出するためのものであり、Y方向に沿って設けられている。マークMKm(MK1~MK3)は、基板FSの被照射面上の露光領域Wに描画される所定のパターンと、基板FS、或いは基板FSに既に形成された下地パターンの層とを相対的に位置合わせする(アライメントする)ための基準マークである。マークMKm(MK1~MK3)は、基板FSの幅方向の両端部に、基板FSの長尺方向に沿って一定間隔で形成されているとともに、基板FSの長尺方向に沿って並んだ露光領域W間で、基板FSの幅方向中央に形成されている。アライメント顕微鏡AMm(AM1~AM3)は、回転ドラムDR2の円周面で支持されている基板FS上のマークMKm(MK1~MK3)を撮像する。アライメント顕微鏡AMm(AM1~AM3)は、露光ヘッド60から基板FSの被照射面上に投射されるスポット光SPの位置(描画ラインSL1~SL6の位置)よりも基板FSの搬送方向の上流側(-X方向側)に設けられている。 As shown in FIG. 6, the alignment microscope AMm (AM1 to AM3) constituting the alignment system detects position information (mark position information) of alignment marks MKm (MK1 to MK3) formed on the substrate FS. It is provided along the Y direction. The marks MKm (MK1 to MK3) relatively position a predetermined pattern drawn in the exposure region W on the irradiated surface of the substrate FS and the substrate FS or the base pattern layer already formed on the substrate FS. This is a reference mark for alignment. The marks MKm (MK1 to MK3) are formed at both ends in the width direction of the substrate FS at regular intervals along the length direction of the substrate FS, and are also exposed regions aligned along the length direction of the substrate FS. Between W, it forms in the center of the width direction of the board | substrate FS. The alignment microscope AMm (AM1 to AM3) images the mark MKm (MK1 to MK3) on the substrate FS supported by the circumferential surface of the rotary drum DR2. The alignment microscope AMm (AM1 to AM3) is located upstream of the position of the spot light SP projected from the exposure head 60 onto the irradiated surface of the substrate FS (position of the drawing lines SL1 to SL6) in the transport direction of the substrate FS ( -X direction side).
 アライメント顕微鏡AMmは、アライメント用の照明光を基板FSに投射する光源と、その反射光を撮像するCCD、CMOSなどの撮像素子とを有する。アライメント顕微鏡AM1は、観察領域(検出領域)Vw1内に存在する基板FSの+Y方向の端部に形成されたマークMK1を撮像する。アライメント顕微鏡AM2は、観察領域Vw2内に存在する基板FSの-Y方向の端部に形成されたマークMK2を撮像する。アライメント顕微鏡AM3は、観察領域Vw3内に存在する基板FSの幅方向中央に形成されたマークMK3を撮像する。アライメント顕微鏡AMm(AM1~AM3)が撮像した撮像信号は、下位制御装置14dに送られる。下位制御装置14dは、撮像信号に基づいて、マークMKm(MK1~MK3)の基板FS上の位置情報を検出する。なお、アライメント用の照明光は、基板FSの感光性機能層に対してほとんど感度を持たない波長域の光、例えば、波長500~800nm程度の光である。アライメント顕微鏡AM1~AM3の観察領域Vw1~Vw3の大きさは、マークMK1~MK3の大きさやアライメント精度(位置計測精度)に応じて設定されるが、100~500μm角程度の大きさである。 The alignment microscope AMm has a light source that projects alignment illumination light onto the substrate FS and an image sensor such as a CCD or CMOS that images the reflected light. The alignment microscope AM1 images the mark MK1 formed at the end in the + Y direction of the substrate FS present in the observation region (detection region) Vw1. The alignment microscope AM2 images the mark MK2 formed at the −Y direction end of the substrate FS present in the observation region Vw2. The alignment microscope AM3 images the mark MK3 formed at the center in the width direction of the substrate FS present in the observation region Vw3. The image signal picked up by the alignment microscope AMm (AM1 to AM3) is sent to the lower control device 14d. The low-order control device 14d detects position information on the substrate FS of the mark MKm (MK1 to MK3) based on the imaging signal. The illumination light for alignment is light in a wavelength region that has little sensitivity to the photosensitive functional layer of the substrate FS, for example, light having a wavelength of about 500 to 800 nm. The size of the observation regions Vw1 to Vw3 of the alignment microscopes AM1 to AM3 is set according to the size of the marks MK1 to MK3 and the alignment accuracy (position measurement accuracy), but is about 100 to 500 μm square.
 エンコーダシステムESは、回転ドラムDR2の回転角度位置(すなわち基板FSの移動位置や移動量)を精密に計測する。具体的には、図5および図6に示すように、エンコーダシステムESは、回転ドラムDR2の両端部に設けられたスケール部(スケール円盤)SDa、SDbと、スケール部SDa、SDbに対向して設けられた複数の一対のエンコーダヘッドENja(EN1a~EN3a)、ENjb(EN1b~3b)とを有する。スケール部SDa、SDbは、回転ドラムDR2の外周面の周方向の全体に亘って環状に形成された目盛を有する。このスケール部SDa、SDbは、回転ドラムDR2の外周面の周方向に一定のピッチ(例えば、20μm)で凹状または凸状の格子線(目盛)を刻設した回折格子であり、インクリメンタル型のスケールとして構成される。このスケール部SDa、SDbは、中心軸AXo2回りに回転ドラムDR2と一体に回転する。 The encoder system ES accurately measures the rotation angle position of the rotary drum DR2 (that is, the movement position and movement amount of the substrate FS). Specifically, as shown in FIGS. 5 and 6, the encoder system ES is opposed to the scale parts (scale disks) SDa and SDb provided at both ends of the rotary drum DR2 and the scale parts SDa and SDb. A plurality of encoder heads ENja (EN1a to EN3a) and ENjb (EN1b to 3b) are provided. The scale portions SDa and SDb have a scale formed in an annular shape over the entire circumferential direction of the outer peripheral surface of the rotary drum DR2. The scale portions SDa and SDb are diffraction gratings in which concave or convex lattice lines (scales) are engraved at a constant pitch (for example, 20 μm) in the circumferential direction of the outer peripheral surface of the rotary drum DR2, and an incremental scale. Configured as The scale portions SDa and SDb rotate integrally with the rotary drum DR2 around the central axis AXo2.
 エンコーダヘッドENja、ENjbは、スケール部SDa、SDbに対して計測用の光ビームを投射し、その反射光束(回折光)を光電検出することにより、パルス信号である検出信号(2相信号)を下位制御装置14dに出力する。下位制御装置14dは、エンコーダヘッドENja、ENjbごとの検出信号(2相信号)を内挿処理してスケール部SDa、SDbの格子の移動量をデジタル計数(カウント)することで、回転ドラムDR2の回転角度位置および角度変化、或いは基板FSの移動量をサブミクロンの分解能で計測する。回転ドラムDR2の角度変化からは、基板FSの搬送速度も計測することができる。 The encoder heads ENja and ENjb project a measurement light beam to the scale portions SDa and SDb, and photoelectrically detect the reflected light beam (diffracted light), thereby detecting a detection signal (two-phase signal) that is a pulse signal. Output to the lower control device 14d. The low-order control device 14d interpolates the detection signals (two-phase signals) for the encoder heads ENja and ENjb, and digitally counts the movement amounts of the lattices of the scale portions SDa and SDb, so that the rotation drum DR2 The rotational angle position and angle change, or the amount of movement of the substrate FS is measured with submicron resolution. From the change in the angle of the rotary drum DR2, the transport speed of the substrate FS can also be measured.
 一対のエンコーダヘッドEN1a、EN1bおよびアライメント顕微鏡AMm(AM1~AM3)は、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)に設けられている。一対のエンコーダヘッドEN1a、EN1bおよびアライメント顕微鏡AMm(AM1~AM3)は、XZ平面に関して、回転ドラムDR2の中心軸AXo2を通る設置方位線Lx1上に配置されている。したがって、アライメント顕微鏡AM1~AM3の観察領域Vw1~Vw3内でマークMK1~MK3を撮像した瞬間のエンコーダヘッドEN1a、EN1bに基づくデジタル計数値(カウント値)をサンプリングすることで、基板FS上のマークMKmの位置を回転ドラムDR2の回転角度位置に対応づけることができる。 The pair of encoder heads EN1a and EN1b and the alignment microscope AMm (AM1 to AM3) are provided on the upstream side (−X direction side) in the transport direction of the substrate FS with respect to the center plane Poc. The pair of encoder heads EN1a and EN1b and the alignment microscope AMm (AM1 to AM3) are arranged on an installation direction line Lx1 passing through the central axis AXo2 of the rotary drum DR2 with respect to the XZ plane. Therefore, by sampling the digital count value (count value) based on the encoder heads EN1a and EN1b at the moment when the marks MK1 to MK3 are imaged in the observation regions Vw1 to Vw3 of the alignment microscopes AM1 to AM3, the mark MKm on the substrate FS is sampled. Can be associated with the rotational angle position of the rotary drum DR2.
 一対のエンコーダヘッドEN2a、EN2bは、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)に設けられており、且つ、エンコーダヘッドEN1a、EN1bより基板FSの搬送方向の下流側(+X方向側)に設けられている。エンコーダヘッドEN2a、EN2bは、XZ平面に関して、回転ドラムDR2の中心軸AXo2を通る設置方位線Lx2上に配置されている。この設置方位線Lx2は、XZ平面に関して、照射軸Le1、Le3、Le5と同角度位置となって重なっている。したがって、エンコーダヘッドEN2a、EN2bに基づくデジタル計数値(カウント値)は、描画ラインSL1、SL3、SL5上における回転ドラムDR2の回転角度位置を示していることになる。 The pair of encoder heads EN2a and EN2b is provided on the upstream side (−X direction side) in the transport direction of the substrate FS with respect to the center plane Poc, and is further downstream in the transport direction of the substrate FS than the encoder heads EN1a and EN1b. On the side (+ X direction side). The encoder heads EN2a and EN2b are arranged on an installation direction line Lx2 passing through the central axis AXo2 of the rotary drum DR2 with respect to the XZ plane. The installation azimuth line Lx2 overlaps with the irradiation axes Le1, Le3, Le5 at the same angular position with respect to the XZ plane. Therefore, the digital count values (count values) based on the encoder heads EN2a and EN2b indicate the rotation angle position of the rotary drum DR2 on the drawing lines SL1, SL3, and SL5.
 一対のエンコーダヘッドEN3a、EN3bは、中心面Pocに対して基板FSの搬送方向の下流側(+X方向側)に設けられており、XZ平面に関して、回転ドラムDR2の中心軸AXo2を通る設置方位線Lx3上に配置されている。この設置方位線Lx3は、XZ平面に関して、照射軸Le2、Le4、Le6と同角度位置となって重なっている。したがって、エンコーダヘッドEN3a、EN3bに基づくデジタル計数値(カウント値)は、描画ラインSL2、SL4、SL6上における回転ドラムDR2の回転角度位置を示していることになる。 The pair of encoder heads EN3a and EN3b is provided on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc, and the installation orientation line passing through the center axis AXo2 of the rotary drum DR2 with respect to the XZ plane. Arranged on Lx3. The installation orientation line Lx3 overlaps with the irradiation axes Le2, Le4, Le6 at the same angular position with respect to the XZ plane. Therefore, the digital count value (count value) based on the encoder heads EN3a and EN3b indicates the rotation angle position of the rotary drum DR2 on the drawing lines SL2, SL4, and SL6.
 このように、アライメント顕微鏡AMmおよびエンコーダヘッドENja、ENjbを配置したので、エンコーダヘッドENja(EN1a~EN3a)、ENjb(EN1b~EN3b)の各々に対応したデジタル計数値に基づいて、マークMKm(MK1~MK3)の位置、および、基板FS上の露光領域Wと各描画ラインSLn(処理位置)との副走査方向(搬送方向、X方向)における位置関係などを特定することができる。その他、そのデジタル計数値に基づいて、基板FS上に描画すべきパターンの描画データ(例えばビットマップデータ)を記憶するメモリ部の副走査方向に関するアドレス位置を指定することもできる。 Since the alignment microscope AMm and the encoder heads ENja and ENjb are arranged in this way, the mark MKm (MK1 to The position of MK3) and the positional relationship between the exposure region W on the substrate FS and each drawing line SLn (processing position) in the sub-scanning direction (conveyance direction, X direction) can be specified. In addition, based on the digital count value, an address position in the sub-scanning direction of a memory unit that stores drawing data (for example, bitmap data) of a pattern to be drawn on the substrate FS can be designated.
 処理装置PR4は、以上のような構成を有し、下位制御装置14dは、検出したマークMKmの位置情報とエンコーダヘッドEN1a、EN1bに基づくデジタル計数値に基づいて、露光領域Wの副走査方向(X方向)における露光開始位置を決定する。そして、下位制御装置14dは、エンコーダヘッドEN2a、EN2bに基づくデジタル計数値に基づいて、描画ラインSL1、SL3、SL5上に露光領域Wの露光開始位置が達したか否かを判断する。露光領域Wの露光開始位置が描画ラインSL1、SL3、SL5上に到達したと判断した場合は、下位制御装置14dは、描画用光学素子AOM1、AOM3、AOM5のスイッチングを開始することで、走査ユニットU1、U3、U5によるスポット光SPの走査による描画露光を開始させる。このとき、下位制御装置14dは、エンコーダヘッドEN2a、EN2bに基づくデジタル計数値に基づいて、描画データが記憶されるメモリ部のアクセス番地を指定し、該指定したアクセス番地のデータをシリアルに呼び出して描画用光学素子AOM1、AOM3、AOM5をスイッチングする。同様にして、下位制御装置14dは、エンコーダヘッドEN3a、EN3bに基づくデジタル計数値に基づいて、描画ラインSL2、SL4、SL6上に露光領域Wの露光開始位置が達したと判断した場合は、描画用光学素子AOM2、AOM4、AOM6のスイッチングを開始することで、走査ユニットU2、U4、U6によるスポット光SPの走査による描画露光を開始させる。このとき、下位制御装置14dは、エンコーダヘッドEN3a、EN3bに基づくデジタル計数値に基づいて、描画データが記憶されるメモリ部のアクセス番地を指定し、該指定したアクセス番地のデータをシリアルに呼び出して描画用光学素子AOM2、AOM4、AOM6をスイッチングする。これにより、基板FSの被照射面上に電子デバイス用のパターンが描画露光される。 The processing device PR4 has the above-described configuration, and the low-order control device 14d determines the sub-scanning direction of the exposure area W based on the detected position information of the mark MKm and the digital count value based on the encoder heads EN1a and EN1b ( The exposure start position in the X direction) is determined. Then, the low order control device 14d determines whether or not the exposure start position of the exposure area W has reached the drawing lines SL1, SL3, and SL5 based on the digital count values based on the encoder heads EN2a and EN2b. When it is determined that the exposure start position of the exposure area W has reached the drawing lines SL1, SL3, and SL5, the lower-level control device 14d starts switching the drawing optical elements AOM1, AOM3, and AOM5, thereby scanning units. Drawing exposure by scanning of the spot light SP by U1, U3, and U5 is started. At this time, the lower-level control device 14d designates the access address of the memory unit in which the drawing data is stored based on the digital count value based on the encoder heads EN2a and EN2b, and serially calls the data at the designated access address. The drawing optical elements AOM1, AOM3, and AOM5 are switched. Similarly, if the lower level control device 14d determines that the exposure start position of the exposure area W has reached the drawing lines SL2, SL4, SL6 based on the digital count values based on the encoder heads EN3a, EN3b, the drawing is performed. By starting the switching of the optical elements AOM2, AOM4, and AOM6, the drawing exposure by the scanning of the spot light SP by the scanning units U2, U4, and U6 is started. At this time, the lower-level control device 14d designates the access address of the memory unit in which the drawing data is stored based on the digital count value based on the encoder heads EN3a and EN3b, and serially calls the data at the designated access address. The drawing optical elements AOM2, AOM4, and AOM6 are switched. Thereby, the pattern for electronic devices is drawn and exposed on the irradiated surface of the substrate FS.
 なお、下位制御装置14dは、描画用光学素子AOMnのスイッチング制御などの他に、光源装置56によるビームLBの発光制御、ポリゴンミラーPMの回転制御なども行う。また、処理装置PR4は、ラスタースキャン方式の露光装置としたが、マスクを用いた露光装置であってもよく、デジタルマイクロミラーデバイス(DMD:Digital Micromirror Device)、或いは空間光変調器(SLM:Spatial Light Modulator)デバイスを用いて所定のパターンを露光する露光装置であってもよい。 The lower control device 14d performs the light emission control of the beam LB by the light source device 56, the rotation control of the polygon mirror PM, and the like in addition to the switching control of the drawing optical element AOMn. The processing apparatus PR4 is a raster scan type exposure apparatus, but may be an exposure apparatus using a mask, such as a digital micromirror device (DMD) or a spatial light modulator (SLM). An exposure apparatus that exposes a predetermined pattern using a light modulator device may be used.
 マスクを用いる露光装置としては、例えば国際公開第2013/146184号パンフレットに開示されているように、円筒状の透過型または反射型の円筒マスク(回転マスク)の外周面に形成されたマスクパターンを、投影光学系を介して基板FSに投影する投影露光方式、或いは透過型の円筒マスクの外周面と基板FSとを一定のギャップで近接させた近接(プロキシミティ)露光方式の露光装置が使用できる。また、反射型の円筒面状の回転マスクや部分球面状の回転マスクを用いる場合は、例えば、国際公開第2014/010274号パンフレットや国際公開第2013/133321号パンフレットに開示された投影露光装置を用いることもできる。なお、マスクは以上のような回転マスクに限られず、平面の石英による基板上に遮光層や反射層でパターンを形成した平面マスクであってもよい。 As an exposure apparatus using a mask, for example, as disclosed in International Publication No. 2013/146184, a mask pattern formed on the outer peripheral surface of a cylindrical transmission type or reflection type cylindrical mask (rotating mask) is used. A projection exposure system that projects onto the substrate FS via the projection optical system, or a proximity exposure system exposure apparatus in which the outer peripheral surface of the transmissive cylindrical mask and the substrate FS are brought close to each other with a certain gap can be used. . In the case of using a reflection type cylindrical surface rotation mask or a partial spherical surface rotation mask, for example, the projection exposure apparatus disclosed in International Publication No. 2014/010274 pamphlet or International Publication No. 2013/133321 pamphlet is used. It can also be used. The mask is not limited to the rotating mask as described above, and may be a flat mask in which a pattern is formed by a light shielding layer or a reflective layer on a flat quartz substrate.
 〔処理装置PR5、PR6の構成〕
 図7は、処理装置(湿式処理装置)PR5、PR6の構成を示す図である。処理装置PR5は、湿式処理の一種である現像処理を施す現像装置であり、処理装置PR6は、湿式処理の一種であるエッチング処理を施すエッチング装置である。処理装置PR5と処理装置PR6とは基板FSを浸す処理液LQ1が異なるだけであって、その構成は同一である。処理装置PR5(PR6)は、基板搬送機構62、処理槽64、洗浄槽66、液切槽68、および、乾燥処理部70を備える。
[Configuration of Processing Devices PR5 and PR6]
FIG. 7 is a diagram showing the configuration of the processing apparatuses (wet processing apparatuses) PR5 and PR6. The processing apparatus PR5 is a developing apparatus that performs a developing process that is a type of wet process, and the processing apparatus PR6 is an etching apparatus that performs an etching process that is a type of wet process. The processing apparatus PR5 and the processing apparatus PR6 differ only in the processing liquid LQ1 in which the substrate FS is immersed, and the configuration is the same. The processing apparatus PR5 (PR6) includes a substrate transport mechanism 62, a processing tank 64, a cleaning tank 66, a liquid draining tank 68, and a drying processing unit 70.
 基板搬送機構62は、デバイス製造システム10の前記基板搬送装置の一部を構成するものであり、処理装置PR4(またはPR5)から搬送される基板FSを、処理装置PR5(またはPR6)内で所定の速度で搬送した後、処理装置PR6(または回収ロールFR2)に所定の速度で送り出す。基板FSが基板搬送機構62のローラなどに掛け渡されて搬送されることによって、処理装置PR5(またはPR6)内で搬送される基板FSの搬送路が規定される。基板搬送機構62は、基板FSの搬送方向の上流側(-X方向側)から順に、ニップローラNR51、エアーターンバーAT51、案内ローラR51~R59、エアーターンバーAT52、案内ローラR60、エアーターンバーAT53、案内ローラR61、エアーターンバーAT54、案内ローラR62、エアーターンバーAT55、および、ニップローラNR52を備える。案内ローラR60~R62、エアーターンバーAT53~AT55、および、ニップローラNR52は、乾燥処理部70内に配置されている。 The substrate transport mechanism 62 constitutes a part of the substrate transport apparatus of the device manufacturing system 10, and the substrate FS transported from the processing apparatus PR4 (or PR5) is predetermined within the processing apparatus PR5 (or PR6). Then, it is sent out to the processing device PR6 (or the recovery roll FR2) at a predetermined speed. By transporting the substrate FS over a roller or the like of the substrate transport mechanism 62, the transport path of the substrate FS transported in the processing apparatus PR5 (or PR6) is defined. The substrate transport mechanism 62 includes a nip roller NR51, an air turn bar AT51, guide rollers R51 to R59, an air turn bar AT52, a guide roller R60, an air turn bar AT53, and a guide roller in order from the upstream side (−X direction side) in the transport direction of the substrate FS. R61, air turn bar AT54, guide roller R62, air turn bar AT55, and nip roller NR52. The guide rollers R60 to R62, the air turn bars AT53 to AT55, and the nip roller NR52 are disposed in the drying processing unit 70.
 ニップローラNR51、NR52は、先に説明したニップローラNR1、NR2と同様の駆動ローラと従動ローラとで構成され、基板FSの表裏両面を保持しながら回転し、基板FSを搬送する。エアーターンバーAT51~AT55は、基板FSの湿式処理が施される処理面側から、処理面と非接触状態(或いは低摩擦状態)で基板FSを支持する。案内ローラR53、R56、R58は、基板FSの処理面(感光面)と接触しながら回転し、それ以外の案内ローラRは、基板FSの処理面とは反対側の面(裏面)と接触しながら回転するように配置されている。なお、基板FSの処理面(感光面)と接触する案内ローラR53、R56、R58は、基板FSの幅方向(Y方向)の両端部のみで基板FSと接触して基板FSの搬送方向を180度折り曲げる構成としてもよい。図1に示す下位制御装置14e(または14f)は、ニップローラNR51、NR52の各々に設けられた図示しない回転駆動源のモータを制御することで、処理装置PR5(またはPR6)内における基板FSの搬送速度を制御する。 The nip rollers NR51 and NR52 are composed of a driving roller and a driven roller similar to the nip rollers NR1 and NR2 described above, rotate while holding the front and back surfaces of the substrate FS, and transport the substrate FS. The air turn bars AT51 to AT55 support the substrate FS in a non-contact state (or low friction state) with the processing surface from the processing surface side where the wet processing of the substrate FS is performed. The guide rollers R53, R56, and R58 rotate while being in contact with the processing surface (photosensitive surface) of the substrate FS, and the other guide rollers R are in contact with the surface (back surface) opposite to the processing surface of the substrate FS. It is arranged to rotate while. Note that the guide rollers R53, R56, and R58 that are in contact with the processing surface (photosensitive surface) of the substrate FS are in contact with the substrate FS only at both ends in the width direction (Y direction) of the substrate FS so that the transport direction of the substrate FS is 180 degrees. It is good also as a structure bent once. The subordinate control device 14e (or 14f) shown in FIG. 1 controls the motor of a rotational drive source (not shown) provided in each of the nip rollers NR51 and NR52, thereby transporting the substrate FS in the processing device PR5 (or PR6). Control the speed.
 縦型の処理槽64は、処理液LQ1を保持するものであり、基板FSに対して湿式処理を施すためのものである。案内ローラR53は、基板FSが処理液LQ1に浸るように処理槽64内に設けられ、案内ローラR52、R54は、処理槽64に対して+Z方向側に設けられている。案内ローラR53は、処理槽64によって保持される処理液LQ1の液面(表面)より-Z方向側に位置する。これにより、案内ローラR52と案内ローラR54の間にある基板FSの一部の表面が処理槽64によって保持されている処理液LQ1と接触するように、基板FSを搬送することができる。処理装置RP5の場合は、処理槽64は、処理液LQ1として現像液を保持する。これにより、基板FSに対して現像処理が施される。つまり、処理装置PR4によって描画露光された感光性機能層(フォトレジスト)が現像され、感光性機能層に形成された潜像に応じた形状で食刻されたレジスト層が出現する。処理装置RP6の場合は、処理槽64は、処理液LQ1としてエッチング液を保持する。これにより、基板FSに対してエッチング処理が施される。つまり、フォトレジスト層(パターンが形成された感光性機能層)をマスクとして、感光性機能層の下層に形成された金属性薄膜がエッチングされ、金属性薄膜に電子デバイス用の回路などに応じたパターン層が出現する。 The vertical processing tank 64 holds the processing liquid LQ1 and is used for performing wet processing on the substrate FS. The guide roller R53 is provided in the processing tank 64 so that the substrate FS is immersed in the processing liquid LQ1, and the guide rollers R52 and R54 are provided on the + Z direction side with respect to the processing tank 64. The guide roller R53 is located on the −Z direction side from the liquid surface (front surface) of the processing liquid LQ1 held in the processing tank 64. Thereby, the substrate FS can be transported so that a part of the surface of the substrate FS between the guide roller R52 and the guide roller R54 comes into contact with the processing liquid LQ1 held by the processing tank 64. In the case of the processing apparatus RP5, the processing tank 64 holds a developing solution as the processing solution LQ1. Thereby, the development process is performed on the substrate FS. That is, the photosensitive functional layer (photoresist) that has been drawn and exposed by the processing apparatus PR4 is developed, and a resist layer etched in a shape corresponding to the latent image formed on the photosensitive functional layer appears. In the case of the processing apparatus RP6, the processing tank 64 holds an etching solution as the processing solution LQ1. Thereby, the etching process is performed on the substrate FS. In other words, the metallic thin film formed under the photosensitive functional layer is etched using the photoresist layer (photosensitive functional layer with a pattern) as a mask, and the metallic thin film is adapted to a circuit for an electronic device, etc. A pattern layer appears.
 縦型の洗浄槽66は、湿式処理が施された基板FSに対して洗浄処理を施すためのものである。洗浄槽66内には、洗浄液(例えば、水)LQ2を基板FSの表面に対して放出する洗浄ノズル66aがZ方向沿って複数設けられている。複数の洗浄ノズル66aの各々は、-X方向側と+X方向側との2方向に洗浄液LQ2をシャワー状に放出する。案内ローラR56は、洗浄槽66内であって、複数の洗浄ノズル66aより-Z方向側に設けられ、案内ローラR55、R57は、洗浄槽66に対して+Z方向側に設けられている。これにより、案内ローラR55から案内ローラR56に向かう基板FSは、複数の洗浄ノズル66aに対して-X方向側の位置で、その表面(処理面)が洗浄ノズル66a側を向くように、-Z方向側に搬送される。また、案内ローラR56から案内ローラR57に向かう基板FSは、複数の洗浄ノズル66aに対して+X方向側の位置で、その表面(処理面)が洗浄ノズル66aを向くように+Z方向側に搬送される。したがって、案内ローラR55から案内ローラR56に向かう基板FSの表面は、洗浄槽66に設けられた複数の洗浄ノズル66aから-X方向側に放出される洗浄液LQ2によって洗浄される。同様にして、案内ローラR56から案内ローラR57に向かう基板FSの表面は、洗浄槽66に設けられた複数の洗浄ノズル66aから+X方向側に放出される洗浄液LQ2によって洗浄される。また、複数の洗浄ノズル66aから放出された洗浄液LQ2を洗浄槽66の外部へ排出するための排出口66bが洗浄槽66の底壁に設けられている。 The vertical cleaning tank 66 is for performing a cleaning process on the substrate FS subjected to the wet process. In the cleaning tank 66, a plurality of cleaning nozzles 66a for discharging a cleaning liquid (for example, water) LQ2 to the surface of the substrate FS are provided along the Z direction. Each of the plurality of cleaning nozzles 66a discharges the cleaning liquid LQ2 in a shower shape in two directions, the −X direction side and the + X direction side. The guide roller R56 is provided in the cleaning tank 66 on the −Z direction side with respect to the plurality of cleaning nozzles 66a, and the guide rollers R55 and R57 are provided on the + Z direction side with respect to the cleaning tank 66. As a result, the substrate FS directed from the guide roller R55 to the guide roller R56 is −Z so that the surface (processing surface) faces the cleaning nozzle 66a side at a position on the −X direction side with respect to the plurality of cleaning nozzles 66a. It is conveyed to the direction side. Further, the substrate FS from the guide roller R56 toward the guide roller R57 is conveyed in the + Z direction side so that the surface (processing surface) faces the cleaning nozzle 66a at a position on the + X direction side with respect to the plurality of cleaning nozzles 66a. The Accordingly, the surface of the substrate FS from the guide roller R55 toward the guide roller R56 is cleaned by the cleaning liquid LQ2 discharged to the −X direction side from the plurality of cleaning nozzles 66a provided in the cleaning tank 66. Similarly, the surface of the substrate FS from the guide roller R56 toward the guide roller R57 is cleaned by the cleaning liquid LQ2 discharged to the + X direction side from the plurality of cleaning nozzles 66a provided in the cleaning tank 66. A discharge port 66 b for discharging the cleaning liquid LQ <b> 2 discharged from the plurality of cleaning nozzles 66 a to the outside of the cleaning tank 66 is provided in the bottom wall of the cleaning tank 66.
 液切槽68は、洗浄処理が施された基板FSに対して液切処理を施す、つまり、基板FSに付着した洗浄液(例えば、水)LQ2を切るためのものである。液切槽68内には、空気などの気体を基板FSに対して放出するエアーノズル68aが複数設けられている。このエアーノズル68aは、液切槽68のZ方向と平行な各内壁面に、Z方向に沿って複数設けられている。これにより、複数のエアーノズル68aは、±X方向側および±Y方向側から気体を基板FSに対して放出する。案内ローラR58は、液切槽68内であって、複数のエアーノズル68aより-Z方向側に設けられ、案内ローラR57、R59は、液切槽68に対して+Z方向側に設けられている。案内ローラR57から案内ローラR58に向かう基板FSは、液切槽68の-X方向側の内壁面にZ方向に沿って複数設けられたエアーノズル68aに対して+X方向側の位置で、-Z方向側に搬送される。案内ローラR58から案内ローラR59に向かう基板FSは、液切槽68の+X方向側の内壁面にZ方向に沿って複数設けられたエアーノズル68aに対して-X方向側の位置で、+Z方向側に搬送される。液切槽68の±Y方向側の内壁面にZ方向に沿って複数設けられたエアーノズル68aは、X方向に関して、案内ローラR57から案内ローラR58に向かって搬送される基板FSの位置と、案内ローラR58から案内ローラR59に向かって搬送される基板FSの位置との間に設けられている。これにより、液切槽68内に設けられた複数のエアーノズル68aから±X方向側および±Y方向側に気体が放出されて、案内ローラR57から案内ローラR59に向かう基板FSに付着した洗浄液LQ2が除去される。また、複数のエアーノズル68aによって基板FSから除去された洗浄液LQ2を液切槽68の外部へ排出するための排出口68bが液切槽68の底壁に設けられている。この排出口68bは、複数のエアーノズル68aから放出された気体を逃がすための排気口としても機能する。 The liquid draining tank 68 is for performing a liquid draining process on the substrate FS that has been subjected to the cleaning process, that is, for cutting off the cleaning liquid (for example, water) LQ2 attached to the substrate FS. A plurality of air nozzles 68 a that discharge a gas such as air to the substrate FS are provided in the liquid draining tank 68. A plurality of air nozzles 68 a are provided along the Z direction on each inner wall surface parallel to the Z direction of the liquid draining tank 68. Thereby, the plurality of air nozzles 68a release gas from the ± X direction side and the ± Y direction side to the substrate FS. The guide roller R58 is provided in the liquid cutting tank 68 on the −Z direction side from the plurality of air nozzles 68a, and the guide rollers R57 and R59 are provided on the + Z direction side with respect to the liquid cutting tank 68. . The substrate FS heading from the guide roller R57 to the guide roller R58 is at a position on the + X direction side with respect to the air nozzles 68a provided on the inner wall surface on the −X direction side of the liquid draining tank 68 along the Z direction. It is conveyed to the direction side. The substrate FS heading from the guide roller R58 toward the guide roller R59 is in the + Z direction at a position on the −X direction side of the plurality of air nozzles 68a provided along the Z direction on the inner wall surface on the + X direction side of the liquid draining tank 68. Conveyed to the side. A plurality of air nozzles 68a provided along the Z direction on the inner wall surface on the ± Y direction side of the liquid draining tank 68, with respect to the X direction, the position of the substrate FS conveyed from the guide roller R57 toward the guide roller R58, It is provided between the position of the substrate FS conveyed from the guide roller R58 toward the guide roller R59. As a result, the gas is discharged from the plurality of air nozzles 68a provided in the liquid draining tank 68 to the ± X direction side and the ± Y direction side, and the cleaning liquid LQ2 attached to the substrate FS directed from the guide roller R57 toward the guide roller R59. Is removed. A discharge port 68 b for discharging the cleaning liquid LQ 2 removed from the substrate FS by the plurality of air nozzles 68 a to the outside of the liquid draining tank 68 is provided in the bottom wall of the liquid draining tank 68. The discharge port 68b also functions as an exhaust port for releasing the gas discharged from the plurality of air nozzles 68a.
 乾燥処理部70は、液切処理が施された基板FSに対して乾燥処理を施す。乾燥処理部70は、ドライエアーなどの乾燥用エアー(温風)を基板FSの表面に吹き付けるブロワー、赤外線光源、または、セラミックヒータなどによって、基板FSに残存している洗浄液LQ2を乾燥させて除去する。乾燥処理部70内に設けられた案内ローラR60~R62、エアーターンバーAT53~AT55、および、ニップローラNR52は、基板FSの搬送経路を長くすべく、蛇行状の搬送路となるように配置されている。本第1の実施の形態では、案内ローラR60~R62およびニップローラNR52を、エアーターンバーAT53~AT55に対して+Z方向側に配置することで、基板FSの搬送路を蛇行させて基板FSを+X方向に搬送させている。 The drying processing unit 70 performs a drying process on the substrate FS that has been subjected to the liquid draining process. The drying processing unit 70 dries and removes the cleaning liquid LQ2 remaining on the substrate FS with a blower, an infrared light source, or a ceramic heater that blows drying air (hot air) such as dry air onto the surface of the substrate FS. To do. The guide rollers R60 to R62, the air turn bars AT53 to AT55, and the nip roller NR52 provided in the drying processing unit 70 are arranged to form a meandering conveyance path so as to lengthen the conveyance path of the substrate FS. . In the first embodiment, the guide rollers R60 to R62 and the nip roller NR52 are disposed on the + Z direction side with respect to the air turn bars AT53 to AT55, and the substrate FS is meandered to meander the substrate FS. It is conveyed to.
 また、乾燥処理部70は、基板FSを所定長に亘って蓄積可能な蓄積部(バッファ)として機能する。これにより、処理装置PR4(またはPR5)から送られてくる基板FSの搬送速度と、処理装置PR6(または回収ロールFR2)に送る基板FSの搬送速度とを異なる速度にした場合であっても、その速度差を乾燥処理部70で吸収することができる。乾燥処理部70を蓄積部としても機能させるために、エアーターンバーAT53~AT55は、Z方向に移動可能とし、且つ、-Z方向側に常時所定の力(テンション)で付勢されている。したがって、乾燥処理部70に入出する基板FSの搬送速度の差によって生じる乾燥処理部70内の基板FSの蓄積長の変化に応じてエアーターンバーAT53~AT55はZ方向(+Z方向または-Z方向)に移動する。これにより、乾燥処理部70は、基板FSに所定のテンションを付与した状態で所定長に亘って基板FSを蓄積することができる。なお、搬送経路を蛇行させて長くすることで、基板FSに残留した液体の残渣、基板FSに浸潤した液体の分子などを効果的に乾燥させることができるとともに、乾燥処理部70が蓄積することができる所定長(最大蓄積長)も長くすることができる。 The drying processing unit 70 functions as a storage unit (buffer) that can store the substrate FS over a predetermined length. Thereby, even when the conveyance speed of the substrate FS sent from the processing apparatus PR4 (or PR5) and the conveyance speed of the substrate FS sent to the processing apparatus PR6 (or the recovery roll FR2) are set to different speeds, The speed difference can be absorbed by the drying processing unit 70. In order for the drying processing unit 70 to function as a storage unit, the air turn bars AT53 to AT55 are movable in the Z direction and are always urged in the −Z direction side with a predetermined force (tension). Accordingly, the air turn bars AT53 to AT55 are moved in the Z direction (+ Z direction or −Z direction) according to the change in the accumulation length of the substrate FS in the drying processing unit 70 caused by the difference in the transport speed of the substrate FS entering and exiting the drying processing unit 70. Move to. Accordingly, the drying processing unit 70 can accumulate the substrate FS over a predetermined length in a state where a predetermined tension is applied to the substrate FS. In addition, by making the conveyance path meander and lengthen, the liquid residue remaining on the substrate FS, the liquid molecules infiltrating the substrate FS, and the like can be effectively dried, and the drying processing unit 70 accumulates. The predetermined length (maximum accumulation length) that can be increased can also be increased.
 以上のように、処理装置(成膜装置)PR2の一部を構成するミスト発生装置MG1(MG2)は、微粒子NPを含む分散液DIL1を保持する容器30aと、第1の周波数の振動を容器30a内の分散液DILに与えることで、微粒子NPの分散液DIL1中での凝集を抑える振動部32aと、第1の周波数よりも高く、分散液DIL1の表面から微粒子NPを含むミストMTaを発生させるための第2の周波数の振動を容器30a内の分散液DIL1に与える振動部34aと、を備える。これにより、微粒子NPの凝集を抑える界面活性剤を分散液DILに添加する必要がなくなり、成膜のための工程、工数が減り、且つ、成膜精度を向上させることができる。 As described above, the mist generator MG1 (MG2) constituting a part of the processing apparatus (film forming apparatus) PR2 includes the container 30a that holds the dispersion DIL1 containing the fine particles NP and the vibration of the first frequency. By giving to the dispersion liquid DIL in 30a, a vibration part 32a that suppresses aggregation of the fine particles NP in the dispersion liquid DIL1, and a mist MTa that is higher than the first frequency and contains the fine particles NP from the surface of the dispersion liquid DIL1 is generated. And a vibration part 34a that applies vibrations of a second frequency to the dispersion DIL1 in the container 30a. This eliminates the need to add a surfactant that suppresses the aggregation of the fine particles NP to the dispersion DIL, reduces the number of steps and processes for film formation, and improves film formation accuracy.
 また、ミスト発生装置MG1(MG2)は、容器30a内に発生したミストMTaが液化した分散液DIL2を保持する容器30bと、容器30b内の分散液DIL2に第2の周波数を与える振動部34bとをさらに備え、容器30a内に発生したミストMTaは、キャリアガスによって容器30bに搬送される。これにより、容器30a内で分散しきれなかった粒径が比較的大きい微粒子NP(或いは凝集状態で残留する微粒子の塊)がミストMTaと一緒に容器30aから供給された場合であっても、容器30bが存在することでフィルタリングすることができる。したがって、別途、特別なフィルタリング機能を設ける必要はない。 The mist generator MG1 (MG2) includes a container 30b that holds the dispersion liquid DIL2 in which the mist MTa generated in the container 30a is liquefied, and a vibration unit 34b that applies a second frequency to the dispersion liquid DIL2 in the container 30b. The mist MTa generated in the container 30a is transported to the container 30b by the carrier gas. As a result, even if the fine particles NP having a relatively large particle size that could not be dispersed in the container 30a (or a lump of fine particles remaining in an aggregated state) is supplied from the container 30a together with the mist MTa, the container The presence of 30b allows filtering. Therefore, it is not necessary to provide a special filtering function separately.
 振動部32a(32b)が分散液DILに与える振動の第1の周波数は、1MHzより低い周波数である。したがって、振動部32a(32b)によって凝集した微粒子NPを効果的に粉砕(分散)し、且つ、微粒子NPの分散液DIL1中での凝集を効果的に抑えることができる。また、振動部34a(34b)が分散液DILに与える振動の第2の周波数は、1MHz以上の周波数である。したがって、振動部34a(34b)によって分散液DILの表面から霧化したミストMTを効果的に発生させることができる。 The first frequency of vibration given to the dispersion DIL by the vibration part 32a (32b) is a frequency lower than 1 MHz. Therefore, the fine particles NP aggregated by the vibration part 32a (32b) can be effectively pulverized (dispersed), and the aggregation of the fine particles NP in the dispersion DIL1 can be effectively suppressed. Further, the second frequency of vibration given to the dispersion liquid DIL by the vibration part 34a (34b) is a frequency of 1 MHz or more. Therefore, the mist MT atomized from the surface of the dispersion DIL by the vibration part 34a (34b) can be generated effectively.
[第2の実施の形態]
 次に、第2の実施の形態について説明する。第2の実施の形態では、上記第1の実施の形態で説明した構成と同様の構成については同一の符号を付し、特に説明する必要のない構成についてはその説明および図示を省略する。
[Second Embodiment]
Next, a second embodiment will be described. In the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description and illustration of components that do not need to be described in particular are omitted.
 図8は、第2の実施の形態におけるミスト発生装置MGaの簡略的な構成を示す図である。ミスト発生装置MGaは、容器30a、30b、ミスト搬送流路36a、および、振動部32a、32b、34aなどを備える。容器30aは分散液DIL1を保持する。振動部32aは、容器30aで保持されている分散液DIL1に対して第1の周波数(1MHzより低い周波数であり、例えば、20kHz)の振動を与える。これにより、分散液DIL1中で凝集した微粒子NPが粉砕(分散)されるとともに、微粒子NPの分散液DIL1中での凝集が抑えられる。振動部34aは、容器30aで保持されている分散液DIL1に対して第2の周波数(1MHz以上の周波数であり、例えば、2.4MHz)の振動を与える。これにより、分散液DIL1の表面から霧化したミストMTが発生する。数μm程度の大きさのミストMTの粒の各々には、ミストMTの径よりも十分小さい微粒子NPは内包されるが、ミストMTの大きさよりも大きい微粒子NPの塊は内包されない。なお、第2の実施の形態では、振動部32aを分散液DIL1に浸し、振動部34aを容器30aの外壁に設けるようにしたが、振動部32a、34aの設置位置はこれに限定されない。要は、振動部32a、34aが分散液DIL1に対して所定の周波数の振動を与えることができればよい。このことは、上記第1の実施の形態でも同様であり、後述する第3の実施の形態でも同様である。 FIG. 8 is a diagram showing a simple configuration of the mist generator MGa in the second embodiment. The mist generator MGa includes containers 30a and 30b, a mist transport channel 36a, and vibration units 32a, 32b, and 34a. The container 30a holds the dispersion DIL1. The vibration part 32a gives a vibration of a first frequency (a frequency lower than 1 MHz, for example, 20 kHz) to the dispersion DIL1 held in the container 30a. Thereby, the fine particles NP aggregated in the dispersion DIL1 are pulverized (dispersed), and aggregation of the fine particles NP in the dispersion DIL1 is suppressed. The vibration unit 34a applies vibration of a second frequency (a frequency of 1 MHz or more, for example, 2.4 MHz) to the dispersion DIL1 held in the container 30a. Thereby, the atomized mist MT is generated from the surface of the dispersion DIL1. Each particle of mist MT having a size of about several μm contains fine particles NP sufficiently smaller than the diameter of mist MT, but does not contain a mass of fine particles NP larger than the size of mist MT. In the second embodiment, the vibration part 32a is immersed in the dispersion liquid DIL1 and the vibration part 34a is provided on the outer wall of the container 30a. However, the installation positions of the vibration parts 32a and 34a are not limited to this. In short, it is only necessary that the vibration parts 32a and 34a can give vibrations of a predetermined frequency to the dispersion DIL1. This is the same in the first embodiment, and the same is true in a third embodiment described later.
 容器30a内に供給されたキャリアガス(例えば、窒素の圧縮ガス)によって、容器30a内で発生したミストMTは、ミスト搬送流路36aを介して容器30bに搬送される。容器30bは、容器30aから搬送されてきたミストMTが液化した分散液(ナノ粒子分散液)DIL2を保持する。したがって、容器30b内の分散液DIL2中の微粒子NPは、ミストMTの寸法よりも十分に小さいナノ粒子となっている。容器30bは、ミスト搬送流路36bが設けられておらず、ミスト搬送流路36aとの接続口以外は密閉されている。そのため、容器30bは、ミスト搬送流路36aを介して容器30aから供給されたミストMTを効率よく液化させることができる。 The mist MT generated in the container 30a by the carrier gas (for example, compressed nitrogen gas) supplied into the container 30a is transported to the container 30b through the mist transport channel 36a. The container 30b holds a dispersion liquid (nanoparticle dispersion liquid) DIL2 in which the mist MT conveyed from the container 30a is liquefied. Therefore, the fine particles NP in the dispersion DIL2 in the container 30b are nanoparticles that are sufficiently smaller than the dimensions of the mist MT. The container 30b is not provided with the mist transport channel 36b, and is sealed except for the connection port with the mist transport channel 36a. Therefore, the container 30b can efficiently liquefy the mist MT supplied from the container 30a via the mist transport flow path 36a.
 振動部(第3振動部)32bは、容器30bで保持されている分散液DIL2に対して第1の周波数(例えば、20kHz)の振動を与える。これにより、分散液DIL2中の微粒子NPの凝集を抑えることができる。したがって、分散液DIL2をナノ粒子である微粒子NPが分散した状態、つまり、微粒子NPが凝集されていない分散液(ナノ粒子分散液)の状態で保存しておくことができる。なお、第2の実施の形態では、振動部32bを容器30bの外壁に設けるようにしたが、振動部32bの設置位置はこれに限定されない。要は、振動部32bは、分散液DIL2に対して所定の周波数の振動を与えることができればよい。このことは、上記第1の実施の形態でも同様である。 The vibration part (third vibration part) 32b gives vibration of a first frequency (for example, 20 kHz) to the dispersion DIL2 held in the container 30b. Thereby, aggregation of the fine particles NP in the dispersion DIL2 can be suppressed. Therefore, the dispersion DIL2 can be stored in a state where the fine particles NP which are nanoparticles are dispersed, that is, in a state where the fine particles NP are not aggregated (nanoparticle dispersion). In the second embodiment, the vibration part 32b is provided on the outer wall of the container 30b. However, the installation position of the vibration part 32b is not limited to this. In short, it is only necessary that the vibration part 32b can give a vibration of a predetermined frequency to the dispersion DIL2. The same applies to the first embodiment.
 そして、成膜を行う際に、容器30bで保持、保存されている分散液DIL2を使用すればよい。この場合は、容器30bの分散液DIL2を、成膜のために用いられる別のミスト発生装置の容器に移してもよい。また、上記第1の実施の形態のように、供給管ST1(ST2)に接続されるミスト搬送流路36bを容器30bに接続し、且つ、容器30bに、第2の周波数で振動する振動部34bを設ければよい。したがって、本第2の実施の形態でも、微粒子NPの凝集を抑える界面活性剤を分散液DILに添加する必要がなくなり、成膜のための工程、工数が減り、且つ、成膜精度を向上させることができる。なお、容器30aで発生させたミストMTを容器30bで効率的に液体(分散液DIL2)に戻すために、容器30a内の温度に対して容器30b内の温度(容器30bの内壁温度)を低く設定して、結露を促進してもよい。 Then, when the film is formed, the dispersion DIL2 retained and stored in the container 30b may be used. In this case, the dispersion DIL2 in the container 30b may be transferred to a container of another mist generating device used for film formation. Further, as in the first embodiment, the mist transport flow path 36b connected to the supply pipe ST1 (ST2) is connected to the container 30b, and the vibrating section vibrates at the second frequency in the container 30b. 34b may be provided. Accordingly, even in the second embodiment, it is not necessary to add a surfactant that suppresses the aggregation of the fine particles NP to the dispersion DIL, the number of steps and processes for film formation are reduced, and the film formation accuracy is improved. be able to. In order to efficiently return the mist MT generated in the container 30a to the liquid (dispersion liquid DIL2) in the container 30b, the temperature in the container 30b (the inner wall temperature of the container 30b) is set lower than the temperature in the container 30a. It may be set to promote condensation.
[第3の実施の形態]
 次に、第3の実施の形態について説明する。第3の実施の形態においても、上記第1の実施の形態で説明した構成と同様の構成については同一の符号を付し、特に説明する必要のない構成についてはその説明および図示を省略する。
[Third Embodiment]
Next, a third embodiment will be described. Also in the third embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and descriptions and illustrations of components that do not need to be described in particular are omitted.
 図9は、第3の実施の形態におけるミスト発生装置MGbの簡略的な構成を示す図である。ミスト発生装置MGbは、容器30a、30b、ミスト搬送流路36a、36b、および、振動部32a、34a、34bなどを備える。上記第1の実施の形態と異なる点は、容器30b内に容器30bの内部空間を第1空間80aと第2空間80bとに区切るセパレータ82を設けた点と、第1空間80a内の気体(ミストMTも含む)を排気する排気部84を設けた点と、第2空間80b内に、容器30aに供給するキャリアガス(例えば、窒素などの圧縮ガス)と異なるキャリアガス(例えば、窒素とアルゴンとが混合された圧縮ガス)を供給するためのガス流路GT2を設けた点とである。なお、両者のキャリアガスを区別するために、便宜的に、容器30aに供給されるキャリアガスを第1のキャリアガスと呼び、第2空間80b内に供給されるキャリアガスを第2のキャリアガスと呼ぶ場合がある。また、第1空間80a内の分散液DIL1から発生したミストMTをMTaとし、第2空間80b内の分散液DIL2から発生したミストMTをMTbとする。 FIG. 9 is a diagram showing a simple configuration of the mist generating device MGb in the third embodiment. The mist generating device MGb includes containers 30a and 30b, mist transport channels 36a and 36b, and vibration units 32a, 34a, and 34b. The difference from the first embodiment is that a separator 82 that divides the internal space of the container 30b into a first space 80a and a second space 80b is provided in the container 30b, and the gas in the first space 80a ( A carrier gas (for example, nitrogen and argon) different from a carrier gas (for example, a compressed gas such as nitrogen) supplied to the container 30a in the second space 80b is provided with an exhaust part 84 for exhausting the mist MT. And a gas flow path GT2 for supplying a compressed gas mixed with the gas. In order to distinguish between the two carrier gases, for convenience, the carrier gas supplied to the container 30a is referred to as a first carrier gas, and the carrier gas supplied into the second space 80b is referred to as a second carrier gas. Sometimes called. The mist MT generated from the dispersion DIL1 in the first space 80a is referred to as MTa, and the mist MT generated from the dispersion DIL2 in the second space 80b is referred to as MTb.
 ミスト搬送流路36aは、第1空間80aと連通しており、ミスト搬送流路36aを介して容器30aから搬送されてきたミストMTaは、第1のキャリアガスとともにこの第1空間80a内に入り込む。つまり、第1空間80aには、容器30aから搬送されてきたミストMTaが存在している。セパレータ82は、容器30aから搬送されてきたミストMTaおよび第1のキャリアガスの第2空間80b内への侵入を阻止する。セパレータ82は、その下端が容器30b内で保持されている分散液DIL2に浸かっており、上端が容器30bの上壁まで延びていることが好ましい。なお、セパレータ82の下端が容器30bの下壁まで延びていると、容器30aから搬送されてきたミストMTaが液化した分散液DIL2は、第2空間80bに浸入できず、第1空間80a内で留まるので、セパレータ82の下端は、容器30bの下壁(底板)より上方に位置している。また、セパレータ82の下端を容器30bの下壁まで延ばす場合は、セパレータ82の下端部(分散液DIL2の液面よりも低い位置)に、第1空間80aと第2空間80bとを連通させるための孔を設ければよい。 The mist transport channel 36a communicates with the first space 80a, and the mist MTa transported from the container 30a via the mist transport channel 36a enters the first space 80a together with the first carrier gas. . That is, the mist MTa transported from the container 30a exists in the first space 80a. The separator 82 prevents the mist MTa and the first carrier gas conveyed from the container 30a from entering the second space 80b. It is preferable that the lower end of the separator 82 is immersed in the dispersion DIL2 held in the container 30b, and the upper end extends to the upper wall of the container 30b. When the lower end of the separator 82 extends to the lower wall of the container 30b, the dispersion DIL2 obtained by liquefying the mist MTa conveyed from the container 30a cannot enter the second space 80b, and is not allowed to enter the first space 80a. Since it stays, the lower end of the separator 82 is located above the lower wall (bottom plate) of the container 30b. When the lower end of the separator 82 is extended to the lower wall of the container 30b, the first space 80a and the second space 80b are communicated with the lower end of the separator 82 (a position lower than the liquid level of the dispersion DIL2). These holes may be provided.
 排気部84は、第1空間80aと連通しており、主に、容器30aから容器30bの第1空間80aに供給されてきた第1のキャリアガスを排気するものである。なお、排気部84はミストMTaも排気する場合があり得るため、ミストMTaの排気を低減させるためのフィルタを排気部84に設けることが好ましい。 The exhaust part 84 communicates with the first space 80a, and mainly exhausts the first carrier gas that has been supplied from the container 30a to the first space 80a of the container 30b. In addition, since the exhaust part 84 may also exhaust mist MTa, it is preferable to provide the exhaust part 84 with a filter for reducing exhaust of the mist MTa.
 第2空間80bには、振動部34bによる振動によって容器30b内の分散液DIL2の表面から霧化したミストMTbが存在している。振動部34bによる振動によって分散液DIL2の表面から発生したミストMTbの殆どまたは全部が第2空間80b内へ放出されるように、振動部34bを第2空間80b側に設けることが好ましい。第2空間80bとミスト搬送流路36bとは連通し、第2空間80bとガス流路GT2とは連通している。そのため、ガス流路GT2を介して図示しないガス供給部から第2空間80b内へ供給された第2のキャリアガスによって、ミストMTbは、ミスト搬送流路36bを介してミスト処理部(成膜部)に供給される。この第2のキャリアガスの第1空間80a内への侵入はセパレータ82によって阻止される。このミスト処理部は、ミストMTbを用いて基板FSの表面に対して成膜処理を施す。 In the second space 80b, mist MTb atomized from the surface of the dispersion DIL2 in the container 30b by vibration by the vibration part 34b is present. It is preferable to provide the vibration part 34b on the second space 80b side so that most or all of the mist MTb generated from the surface of the dispersion DIL2 due to vibration by the vibration part 34b is discharged into the second space 80b. The second space 80b and the mist transport channel 36b communicate with each other, and the second space 80b and the gas channel GT2 communicate with each other. Therefore, the mist MTb is transferred to the mist processing section (film forming section) via the mist transport flow path 36b by the second carrier gas supplied into the second space 80b from the gas supply section (not shown) via the gas flow path GT2. ). The second carrier gas is prevented from entering the first space 80 a by the separator 82. The mist processing unit performs a film forming process on the surface of the substrate FS using the mist MTb.
 このように、セパレータ82を設けることによって容器30aに供給するキャリアガスとミスト処理部に供給するキャリアガスとを異ならせることができる。したがって、ミスト処理部による成膜処理に適したキャリアガスをミスト処理部に供給することが可能となる。セパレータ82によってキャリアガスを分離しているので、第2のキャリアガスの流量を制御することで、ミスト処理部に供給する微粒子NPの濃度または量を簡単に制御することができる。この制御は、処理装置PR2の下位制御装置14bによって行われる。 Thus, by providing the separator 82, the carrier gas supplied to the container 30a can be made different from the carrier gas supplied to the mist processing section. Therefore, it becomes possible to supply the carrier gas suitable for the film forming process by the mist processing unit to the mist processing unit. Since the carrier gas is separated by the separator 82, the concentration or amount of the fine particles NP supplied to the mist processing unit can be easily controlled by controlling the flow rate of the second carrier gas. This control is performed by the subordinate control device 14b of the processing device PR2.
 [変形例]
 上記第1~第3の実施の形態の少なくとも1つは、以下のような変形が可能である。なお、上記第1~第3の実施の形態で説明した構成と同様の構成については同一の符号を付し、特に説明する必要のない構成についてはその説明および図示を省略する。
[Modification]
At least one of the first to third embodiments can be modified as follows. The same components as those described in the first to third embodiments are denoted by the same reference numerals, and the description and illustration of components that do not need to be described in particular are omitted.
 (変形例1)上記第1または第3の実施の形態では、ミスト発生装置MG1、MG2、MGbによって発生したミストMTと不活性なキャリアガス(例えば、アルゴン、ヘリウム、ネオン、キセノン、窒素など)とが混合された処理ガスを基板FSの表面に噴霧して、ミストMTに含まれる微粒子(ナノ粒子)を基板FSの表面に堆積させるミストデポジション法を用いて薄膜を形成している。このミストデポジション法は、例えば、特開平10-130851号公報に開示されているように、大気圧近傍の圧力下で、シート状基板の表面に機能性の薄膜を形成するプラズマ処理装置に適用することができる。この特許公開公報には、上部電極と下部電極との間にシート状基板を配置して、金属-水素化合物、金属-ハロゲン化合物、金属アルコラートなどの処理ガスをシート状基板の表面に噴霧した状態で、上部電極と下部電極との間に高電圧のパルス電界を印加して放電プラズマを発生させることで、シート状基板の表面にSiO2、TiO2、SnO2などの金属酸化物薄膜を形成することが開示されている。 (Modification 1) In the first or third embodiment, the mist MT generated by the mist generators MG1, MG2, and MGb and an inert carrier gas (for example, argon, helium, neon, xenon, nitrogen, etc.) A thin film is formed using a mist deposition method in which a processing gas mixed with is sprayed on the surface of the substrate FS and fine particles (nanoparticles) contained in the mist MT are deposited on the surface of the substrate FS. This mist deposition method is applied, for example, to a plasma processing apparatus that forms a functional thin film on the surface of a sheet-like substrate under a pressure near atmospheric pressure, as disclosed in Japanese Patent Laid-Open No. 10-130551. can do. In this patent publication, a sheet-like substrate is disposed between an upper electrode and a lower electrode, and a processing gas such as a metal-hydrogen compound, a metal-halogen compound, or a metal alcoholate is sprayed on the surface of the sheet-like substrate. Then, a high voltage pulse electric field is applied between the upper electrode and the lower electrode to generate discharge plasma, thereby forming a metal oxide thin film such as SiO 2 , TiO 2 or SnO 2 on the surface of the sheet-like substrate. Is disclosed.
 プラズマ処理装置は、電極の構成や配置、高電圧の印加方法などに関して種々の方式があるが、いずれも処理ガスが基板の表面と接触する領域に均一なプラズマを発生させることで、一様な厚さの薄膜を形成するものである。ミストデポジション法(或いはミストCVD法)にプラズマアシストを加える場合は、成膜すべき基板の表面の近くで、ミストを含む処理ガスが噴霧される空間中に非熱平衡の大気圧プラズマを発生させるのが好ましく、ヘリコン波を用いた大気圧プラズマ発生装置を用いてもよい。低温(200℃以下)環境下で非熱平衡大気圧プラズマ処理によって成膜する装置は、例えば、特表2014-514454号公報に開示されている。 There are various types of plasma processing apparatuses with respect to the configuration and arrangement of electrodes, a method of applying a high voltage, etc., all of which generate a uniform plasma by generating a uniform plasma in a region where the processing gas contacts the surface of the substrate. A thin film having a thickness is formed. When plasma assist is added to the mist deposition method (or mist CVD method), non-thermal equilibrium atmospheric pressure plasma is generated in the space where the processing gas containing mist is sprayed near the surface of the substrate to be deposited. Preferably, an atmospheric pressure plasma generator using a helicon wave may be used. An apparatus for forming a film by non-thermal equilibrium atmospheric pressure plasma treatment in a low temperature (200 ° C. or lower) environment is disclosed in, for example, Japanese Translation of PCT International Publication No. 2014-514454.
 上記したミスト発生装置MG1、MG2、MGbを用いると、ミストMTの発生時にも超音波振動によって微粒子NPの凝集が抑えられているため、個々のミストMTに含まれる微粒子NPは殆ど凝集することなく、或いは凝集したとしてもミストMTのサイズよりは十分に小さいサイズの塊となって基板FSの表面に達する。したがって、上述したプラズマ処理装置と組み合わせることで、形成される薄膜が一様な厚さで緻密になるとともに、成膜レート(単位時間当たりに堆積する膜厚量)も向上する。なお、プラズマ処理装置を上記した実施の形態に適用する場合は、ミスト処理部(図2の成膜室22)内に、プラズマ処理装置(上部電極および下部電極などを含む)を設ければよい。 When the mist generators MG1, MG2, and MGb described above are used, the aggregation of the fine particles NP is suppressed by the ultrasonic vibration even when the mist MT is generated. Or, even if they are aggregated, they reach a surface of the substrate FS as a lump having a size sufficiently smaller than the size of the mist MT. Therefore, in combination with the above-described plasma processing apparatus, the thin film to be formed becomes dense with a uniform thickness, and the film formation rate (the amount of film deposited per unit time) is also improved. When the plasma processing apparatus is applied to the above-described embodiment, a plasma processing apparatus (including an upper electrode and a lower electrode) may be provided in the mist processing unit (the film formation chamber 22 in FIG. 2). .
 (変形例2)図10は、変形例2におけるデバイス製造システム10aの概略的な構成を示す概略構成図である。デバイス製造システム10aにおいては、供給ロールFR1から供給された基板FSは、処理装置PR1、処理装置PR3、処理装置PR4、処理装置PR2の順に、処理装置PR1~PR4内を通るように搬送され、回収ロールFR2によって巻き取られる。したがって、基板FSには、下地処理、塗布処理、露光処理、成膜処理の順で、各処理が施されることになる。 (Modification 2) FIG. 10 is a schematic configuration diagram showing a schematic configuration of a device manufacturing system 10a in Modification 2. In the device manufacturing system 10a, the substrate FS supplied from the supply roll FR1 is conveyed so as to pass through the processing apparatuses PR1 to PR4 in the order of the processing apparatus PR1, the processing apparatus PR3, the processing apparatus PR4, and the processing apparatus PR2, and is collected. It is wound up by a roll FR2. Therefore, each process is performed on the substrate FS in the order of the base process, the coating process, the exposure process, and the film forming process.
 本変形例2においては、処理装置PR3による塗布処理によって塗布される感光性機能液(層)を、国際公開第2013/176222号パンフレットに開示されているような、紫外線の照射によって親撥液性でコントラストを付けることができる感光性シランカップリング剤(感光性SAM)とする。したがって、処理装置PR3から処理装置PR4に搬送される基板FSの表面には、感光性シランカップリング剤の感光性機能層が形成されている。そして、処理装置RP4が、基板FS上にパターンを露光すると、基板FSの表面に形成された感光性シランカップリング剤の感光性機能層は、パターンに応じて露光された部分が撥液性から親液性に改質され、未露光の部分が撥液性のままとなる。 In the second modification, the photosensitive functional liquid (layer) applied by the application process by the processing apparatus PR3 is made lyophilic and liquid repellent by ultraviolet irradiation as disclosed in International Publication No. 2013/176222 pamphlet. And a photosensitive silane coupling agent (photosensitive SAM) that can provide contrast. Therefore, a photosensitive functional layer of a photosensitive silane coupling agent is formed on the surface of the substrate FS transported from the processing apparatus PR3 to the processing apparatus PR4. Then, when the processing apparatus RP4 exposes the pattern on the substrate FS, the photosensitive functional layer of the photosensitive silane coupling agent formed on the surface of the substrate FS has a liquid-repellent portion exposed according to the pattern. It is modified to be lyophilic and the unexposed part remains lyophobic.
 そして、処理装置PR2が処理装置PR4から送られてきた基板FSに対して薄膜を形成するために基板FSの表面にミストMTを噴霧すると、未露光の部分に付着したミストMTは密着力が弱い状態となる。そのため、図2中の成膜室22内、または、乾燥処理ユニット26内のブロワーなどによって、未露光の部分に付着したミストは流されてしまう。これとは逆に、露光された部分に付着したミストMTは、ブロワーなどによって流されることなく、成膜される。このように、基板FSに対して処理を施すことで、ミストデポジション法で、基板FS上にパターンの形状やサイズに応じて選択的に薄膜を形成することができる。なお、基板FSの搬送方向からみて、噴霧ノズルNZ1、NZ2の下流側であって乾燥処理ユニット26の上流側に、未露光の部分に付着したミストMTを吹き飛ばす専用のエアーノズルを設けてもよい。 When the processing device PR2 sprays mist MT on the surface of the substrate FS to form a thin film on the substrate FS sent from the processing device PR4, the mist MT attached to the unexposed portion has weak adhesion. It becomes a state. For this reason, the mist attached to the unexposed portion is caused to flow by the blower or the like in the film forming chamber 22 or the drying processing unit 26 in FIG. On the contrary, the mist MT adhering to the exposed part is formed without being blown by a blower or the like. In this way, by performing processing on the substrate FS, a thin film can be selectively formed on the substrate FS according to the shape and size of the pattern by the mist deposition method. Note that a dedicated air nozzle that blows off the mist MT adhering to the unexposed portion may be provided on the downstream side of the spray nozzles NZ1 and NZ2 and on the upstream side of the drying processing unit 26 when viewed from the transport direction of the substrate FS. .
 (変形例3)ミスト発生装置MG1、MG2、MGa、MGbの容器30aによって保持される分散液DILに、例えば、発生するミストMTの粒子の径よりも大きい粒子、例えば、粒径が5~30μm以上の大きな粒子を混入させてもよい。粒径が比較的大きな粒子(以下、粉砕用粒子)を混在させることで、凝集した微粒子NPを効率良く粉砕することができる。粉砕用粒子の粒径を2.4MHzの超音波で発生するミストMTよりも大きな粒径とすることで、ミストMTに含まれるナノ粒子の微粒子NPと粉砕用粒子を分別することができるため、凝集した微粒子NPの粉砕後に、粉砕用粒子の沈殿を待って上澄み液を採取する、と言った手間が不要となり、連続してナノ粒子の微粒子NPを作り出すことができる。 (Modification 3) In the dispersion DIL held by the container 30a of the mist generators MG1, MG2, MGa, MGb, for example, particles larger than the diameter of the generated mist MT, for example, a particle diameter of 5 to 30 μm The above large particles may be mixed. By mixing particles having a relatively large particle size (hereinafter referred to as pulverizing particles), the aggregated fine particles NP can be efficiently pulverized. By setting the particle size of the pulverizing particles to a particle size larger than the mist MT generated by 2.4 MHz ultrasonic waves, it is possible to separate the fine particles NP of the nanoparticles contained in the mist MT from the pulverizing particles. After the agglomerated fine particles NP are pulverized, it is not necessary to wait for the pulverized particles to settle and then collect the supernatant, and nanoparticle fine particles NP can be continuously produced.
 (変形例4)以上の図3、図8、図9に示したミスト発生装置MG1、MG2、MGa、MGbでは、ミストMTを発生させる場合、分散液DIL中の微粒子NPの凝集を抑えるための第1の振動部32a、32bと、分散液DILの表面からミストMTを発生させるための第2の振動部34a、34bを略同時に作動させるのがよい。分散液DIL中の微粒子NPの材料によっては、微粒子NPがミストMT(実効的な径2~5μm)中に効率的に含有されるようなサイズ(1粒のミストに含有可能なサイズ)に分散された状態で、第1の振動部32a、32bの駆動を停止した後、分散していた微粒子NPがミストMTに有効に含有されないようなサイズ(1粒のミストに含有不可能なサイズ)以上に凝集するまでの時間に差異がある場合もある。そこで、分散液DIL中の微粒子NPがミストMTの1粒に含有可能なサイズまで分散したエントロピーが大きい状態から、微粒子NPがミストMTの1粒に含有不可能なサイズまで凝集したエントロピーが小さい状態に遷移する時間を考慮して、第1の振動部32a、32bの駆動を間欠的に行ってもよい。 (Modification 4) In the mist generators MG1, MG2, MGa, and MGb shown in FIGS. 3, 8, and 9 above, when generating the mist MT, the aggregation of the fine particles NP in the dispersion DIL is suppressed. The first vibrating parts 32a and 32b and the second vibrating parts 34a and 34b for generating mist MT from the surface of the dispersion DIL may be operated substantially simultaneously. Depending on the material of the fine particle NP in the dispersion DIL, the fine particle NP is dispersed in a size (size that can be contained in one mist) such that the fine particle NP is efficiently contained in the mist MT (effective diameter 2 to 5 μm). In such a state, after the drive of the first vibrating parts 32a and 32b is stopped, the size is such that the dispersed fine particles NP are not effectively contained in the mist MT (size that cannot be contained in one mist). There may be a difference in the time until aggregation occurs. Therefore, a state in which the entropy in which the fine particles NP in the dispersion DIL are dispersed to a size that can be contained in one mist MT is small to a state in which the entropy in which the fine particles NP are aggregated to a size that cannot be contained in one mist MT is small. In consideration of the time for transition to the first vibration unit 32a, 32b may be driven intermittently.
 ここで、超音波振動を用いた分散と霧化について、さらに詳しく説明する。超音波を用いた分散は、分散液中でのキャビティ効果が作用していると考えられる。これは、分散液DILに付与した超音波が液体を引きちぎる際に液体中にキャビティ(空洞)が発生し、発生したキャビティが破壊されるときに生じる非常に高いエネルギーの衝撃波によって、凝集した微粒子の塊が粉砕されるものと考えられる。したがって、分散の効率化のためには、分散液に付与する超音波の周波数と出力が大きく影響する。分散に必要とされる周波数は、分散液中にキャビティを発生させるものであれば限定されないが、一般的には数十KHz程度である。それよりも周波数が高くなると、キャビティの発生数は増加するものの、一つ一つのキャビティの大きさが小さくなるため、衝撃波のエネルギーは相対的に低下してくる傾向となる。分散液に付与する超音波の出力(振動振幅)は、大きいほど効率的であって、大容量の分散液DIL中での微粒子NPの分散を短時間で達成できる。 Here, the dispersion and atomization using ultrasonic vibration will be described in more detail. Dispersion using ultrasonic waves is considered to have a cavity effect in the dispersion. This is because, when the ultrasonic wave applied to the dispersion DIL tears the liquid, a cavity (cavity) is generated in the liquid, and the agglomerated fine particles are generated by a very high energy shock wave generated when the generated cavity is destroyed. The mass is thought to be crushed. Therefore, the frequency and output of the ultrasonic wave applied to the dispersion are greatly affected by the efficiency of dispersion. The frequency required for dispersion is not limited as long as it generates cavities in the dispersion, but is generally about several tens of KHz. If the frequency is higher than that, the number of cavities increases, but the size of each cavity decreases, so the energy of the shock wave tends to decrease relatively. The higher the output (vibration amplitude) of the ultrasonic wave applied to the dispersion liquid, the more efficient, and the dispersion of the fine particles NP in the large volume dispersion liquid DIL can be achieved in a short time.
 一方、分散液DILからミストを発生させる超音波の周波数帯域では、分散液中で大きなキャビティが発生し難く、微粒子NPの凝集した塊を粉砕する能力は低い。しかしながら、分散液の液中から液面に向けて超音波を照射すると、液面付近の分散液が数μm程度の大きさの液滴に引きちぎられてミストが発生する。ミスト(液滴)発生のメカニズムには、キャビテーション説とキャピラリ波説があるが、Earozoru Kenkyu,26(1).18-23(2011)に掲載された論文「超音波霧化によるナノ液滴の発生」によると、キャピラリ波説に基づく以下のラングの式によって、発生するミスト径Dが理論的に求められる。 On the other hand, in the ultrasonic frequency band in which mist is generated from the dispersion DIL, large cavities are hardly generated in the dispersion, and the ability to pulverize agglomerates of fine particles NP is low. However, when an ultrasonic wave is irradiated from the inside of the dispersion liquid toward the liquid surface, the dispersion liquid near the liquid surface is torn off into droplets having a size of about several μm, and mist is generated. Mist (droplet) generation mechanisms include cavitation theory and capillary wave theory, but are described in Earozoru Kenkyu, 26 (1). According to the paper “Generation of Nanodroplets by Ultrasonic Atomization” published in 18-23 (2011), the generated mist diameter D is theoretically obtained by the following Lang formula based on the capillary wave theory.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この式で、Λ(cm)は液面に生じるキャピラリ波の波長を表し、ρ(g/cm3)は液体の密度、γ(mN/m)は液体の表面張力、F(Hz)は超音波の周波数である。Xは実験的に求められている比例定数で、0.34とされている。分散液DILから数μm以下の径のミストを発生させる超音波周波数は、分散液DILの分散媒が水の場合は2.4MHzが好適であるが、分散媒が水以外の液体、例えばエチレングリコールでは、上記の式に基づくと、さらに低い周波数の1.1MHz付近でもミストが発生することになる。したがって、効率的に所望する径のミストを発生させるためには、分散液DILの分散媒の違いによって超音波の周波数を調整するのがよいことが判る。さらに、分散液DILの霧化は液面より発生するため、振動部34a、34bなどの超音波振動子は、超音波の進行方向を液面方向に向けるとともに、伝搬する超音波が減衰せずに液面に到達するような状態で配置される。 In this equation, Λ (cm) represents the wavelength of the capillary wave generated on the liquid surface, ρ (g / cm 3 ) is the density of the liquid, γ (mN / m) is the surface tension of the liquid, and F (Hz) is super The frequency of the sound wave. X is a proportionality constant obtained experimentally, and is set to 0.34. The ultrasonic frequency for generating mist having a diameter of several μm or less from the dispersion DIL is preferably 2.4 MHz when the dispersion medium of the dispersion DIL is water, but the dispersion medium is a liquid other than water, such as ethylene glycol. Then, based on the above equation, mist is generated even in the vicinity of a lower frequency of 1.1 MHz. Therefore, it can be seen that in order to efficiently generate a mist having a desired diameter, it is preferable to adjust the frequency of the ultrasonic wave depending on the dispersion medium of the dispersion DIL. Further, since the atomization of the dispersion liquid DIL occurs from the liquid surface, the ultrasonic transducers such as the vibrating portions 34a and 34b direct the traveling direction of the ultrasonic waves to the liquid surface direction, and the propagating ultrasonic waves are not attenuated. It is arranged in a state that reaches the liquid level.
 (変形例5)図11は、以上のことを踏まえて第1、第2の実施の形態におけるミスト発生装置を変形した例を示す。図11において、先の図3中に示した部材や構成と同じものには同じ符号を付し、その説明は省略、または簡略化する。本変形例では、図3と同様に、密閉された容器30aと、容器30a内に窒素(N2)などのキャリアガスを供給するガス流路(配管)GTと、容器30a内で発生したミストMTをキャリアガスとともに外部に導く搬送流路(配管)36aとが設けられている。本変形例では、分散液DILを溜めてミストMTを発生する内部容器33が容器30a内に設けられ、発生したミストMTを収集して搬送流路(配管)36aに導くロート状のミスト収集部材38cが内部容器33の上方の開口部を覆うように設けられる。ガス流路(配管)GTから供給されるキャリアガスは、内部容器33の外周壁とミスト収集部材38cの下方部の内周壁との間の隙間を通り、ミスト収集部材38cを介して搬送流路(配管)36aに貫けるように流される。 (Modification 5) FIG. 11 shows an example in which the mist generator in the first and second embodiments is modified based on the above. In FIG. 11, the same members and structures as those shown in FIG. 3 are given the same reference numerals, and the description thereof is omitted or simplified. In this modified example, as in FIG. 3, a sealed container 30a, a gas flow path (pipe) GT for supplying a carrier gas such as nitrogen (N 2 ) into the container 30a, and mist generated in the container 30a A transport channel (pipe) 36a that guides MT to the outside together with the carrier gas is provided. In the present modification, an inner container 33 for storing the dispersion DIL and generating mist MT is provided in the container 30a, and a funnel-shaped mist collecting member that collects the generated mist MT and guides it to the transport channel (pipe) 36a. 38 c is provided so as to cover the opening above the inner container 33. The carrier gas supplied from the gas flow path (pipe) GT passes through the gap between the outer peripheral wall of the inner container 33 and the inner peripheral wall of the lower part of the mist collecting member 38c, and is conveyed through the mist collecting member 38c. (Piping) Flowed through 36a.
 内部容器33内には所定の深さで分散液DILが満たされ、その液面の高さは液面レベルセンサLLSによって逐次計測される。液面レベルセンサLLSで計測される液面レベルに関する計測情報Svは分散液生成部90に送られる。分散液生成部90は、図3に示した構成と同様の分散質供給部DDから供給される微粒子NPを、分散媒(液体)としての純水(H2O)に所定の濃度(重量%)で混ぜて分散液DILを生成する混合機構と、生成された分散液DILを一時的に蓄積するタンクと、タンク内の分散液DILを内部容器33に送り込む液体流路(配管)WT1に送出するポンプ機構とで構成される。ミストMTの発生に伴って内部容器33内の分散液DILの液面は低下するので、分散液生成部90のポンプ機構は、液面レベルセンサLLSからの計測情報Svに基づいて内部容器33内の分散液DILの液面が指定された高さに維持されるようにサーボ制御される。 The inner container 33 is filled with the dispersion liquid DIL at a predetermined depth, and the height of the liquid level is sequentially measured by the liquid level sensor LLS. Measurement information Sv related to the liquid level measured by the liquid level sensor LLS is sent to the dispersion liquid generation unit 90. The dispersion generation unit 90 supplies fine particles NP supplied from the dispersoid supply unit DD having the same configuration as shown in FIG. 3 to pure water (H 2 O) as a dispersion medium (liquid) at a predetermined concentration (weight%). ) To generate a dispersion DIL, a tank for temporarily storing the generated dispersion DIL, and a liquid flow path (pipe) WT1 for sending the dispersion DIL in the tank to the internal container 33. And a pump mechanism. As the mist MT is generated, the liquid level of the dispersion liquid DIL in the inner container 33 is lowered, so that the pump mechanism of the dispersion liquid generating unit 90 is operated in the inner container 33 based on the measurement information Sv from the liquid level sensor LLS. Servo-controlled so that the liquid level of the dispersion liquid DIL is maintained at a specified height.
 さらに内部容器33内には、分散液DIL中の微粒子NPの凝集を抑える(分散を促進する)ための振動部(超音波振動子)32aと、分散液DILの液面からミストMTを発生するための振動部(超音波振動子)34aとが設けられる。微粒子NPの凝集を抑えるための振動部(超音波振動子)32aは、内部容器33の内部の側壁に設けられ、例えば20KHzで振動する。この場合、振動部32aからの振動波は分散液DIL中を液面と平行な方向に進行して、微粒子NPの凝集を抑えたり、微粒子NPが凝集して大きな塊となった場合は、その塊を破砕したりする。分散液DIL中で微粒子NPを分散状態(非凝集状態)にするための振動部32aは、内部容器33の内部であればどこでも良く、条件によっては内部容器33の外壁部に固定してもよい。 Further, in the inner container 33, a mist MT is generated from the vibration part (ultrasonic vibrator) 32a for suppressing aggregation (promoting dispersion) of the fine particles NP in the dispersion DIL and the liquid surface of the dispersion DIL. A vibration part (ultrasonic vibrator) 34a is provided. The vibration part (ultrasonic transducer) 32a for suppressing the aggregation of the fine particles NP is provided on the side wall inside the inner container 33, and vibrates at 20 KHz, for example. In this case, the vibration wave from the vibrating part 32a travels in the dispersion DIL in a direction parallel to the liquid surface to suppress the aggregation of the fine particles NP, or when the fine particles NP aggregate to form a large lump, Crush the mass. The vibration part 32a for making the fine particles NP dispersed (non-aggregated) in the dispersion DIL may be anywhere inside the inner container 33, and may be fixed to the outer wall part of the inner container 33 depending on the conditions. .
 内部容器33内の振動部(超音波振動子)34aは、本変形例では、分散液DIL内での位置や姿勢を調整できる調整機構92によって支持されている。調整機構92は、内部容器33の底部壁を貫通して振動部34aを保持する複数のロッド状の支持部材92a、92bを備え、支持部材92a、92bの各々を上下方向(Z方向)に移動させることで、振動部34aの高さ位置や傾きなどの姿勢を調整する。振動部34aは、ミストMTを発生するための振動波が分散液DILの液面に向かうように設定されるが、ミスト発生を効率的にするために、分散液DILの液面から振動部34aまでの深さDP、或いは振動波が進行する方向と液面(ここではXY平面と平行)との成す角度α(通常は90度)を調整するのがよい。これは、分散液DILの分散質(微粒子)の種類や分散媒(液体)の種類を変える場合、効率的なミスト発生のための振動部34aの配置条件が変わる可能性があるからである。なお、深さDPは、複数の支持部材92a、92bを同じ距離だけZ方向に移動させることで調整でき、角度αは複数の支持部材92a、92bの各々を異なる距離だけZ方向に移動させることで調整できる。角度αは、通常は90度でよいが、90度から±10度程度の範囲(80度~100度)で傾けると、ミスト発生の効率が向上する場合もある。 In the present modification, the vibrating portion (ultrasonic transducer) 34a in the inner container 33 is supported by an adjustment mechanism 92 that can adjust the position and posture in the dispersion liquid DIL. The adjustment mechanism 92 includes a plurality of rod-shaped support members 92a and 92b that pass through the bottom wall of the inner container 33 and hold the vibrating portion 34a, and each of the support members 92a and 92b moves in the vertical direction (Z direction). By doing so, the posture such as the height position and the tilt of the vibration part 34a is adjusted. The vibration part 34a is set so that the vibration wave for generating the mist MT is directed toward the liquid surface of the dispersion liquid DIL. In order to make the generation of mist efficient, the vibration part 34a starts from the liquid surface of the dispersion liquid DIL. It is preferable to adjust the angle DP (usually 90 degrees) formed by the depth DP up to or the direction in which the vibration wave travels and the liquid surface (here, parallel to the XY plane). This is because, when the type of the dispersoid (fine particles) and the type of the dispersion medium (liquid) of the dispersion DIL are changed, there is a possibility that the arrangement conditions of the vibration part 34a for efficient mist generation may change. The depth DP can be adjusted by moving the plurality of support members 92a and 92b by the same distance in the Z direction, and the angle α can be adjusted by moving each of the plurality of support members 92a and 92b by a different distance in the Z direction. It can be adjusted with. The angle α may normally be 90 degrees, but if it is tilted within the range of about 90 degrees to ± 10 degrees (80 degrees to 100 degrees), the efficiency of mist generation may be improved.
 以上の本変形例によれば、分散液DILの液面の高さを調整できる液面調整機能と、ミスト発生用の振動部34aの分散液DIL中での設置状態を調整できる設置調整機能とを設けたので、少なくともいずれか一方の機能を用いることによって、発生するミストMTのキャリアガス中での濃度を安定にすることが可能となる。さらに、設置調整機能によれば、ミスト発生の効率を高い状態に保つことが可能となる。また、本変形例のように、分散液DILの液面調整機能やミスト発生用の振動部34a(34b)の設置調整機能は、先の各実施の形態(図3、図8、図9)に対しても、同様に設けることができる。 According to the present modification described above, the liquid level adjustment function capable of adjusting the height of the liquid level of the dispersion liquid DIL, and the installation adjustment function capable of adjusting the installation state of the vibration part 34a for generating mist in the dispersion liquid DIL, Since at least one of the functions is used, the concentration of the generated mist MT in the carrier gas can be stabilized. Furthermore, according to the installation adjustment function, the efficiency of mist generation can be kept high. In addition, as in this modification, the liquid level adjustment function of the dispersion DIL and the installation adjustment function of the vibration part 34a (34b) for generating mist are the same as in the previous embodiments (FIGS. 3, 8, and 9). Can be provided in the same manner.
 (変形例6)図12は、第1、第2の実施の形態におけるミスト発生装置を変形した例を示す。図12において、先の図3中に示した部材や構成と同じものには同じ符号を付し、その説明は省略、または簡略化する。本変形例では、先の図11と同様に、分散液DILを溜める第2の内部容器33A(金属性がよい)を容器30aの内部に設ける。この内部容器33Aの底部は球面状に形成されており、容器30a内に貯留された水(H2O)の中に浸かるように設置される。容器30a内の水には、例えば20KHzの駆動信号Ds1で加振される振動部32a(セラミック振動子など)によって振動波が与えられる。その振動波は、内部容器33Aの壁面を介して分散液DILに伝搬し、分散液DILには微粒子NPを有効に分散する振動波が与えられる。内部容器33Aの内部には、分散液DILの液面からミストMTを発生するために、例えば2.4MHzの駆動信号Ds2で加振される振動部34aが設置される。内部容器33Aで発生したミストMTは、ガス流路(配管)GTを介して導入される窒素(N2)などのキャリアガスとともに、ミスト収集部材38aで収集されてミスト搬送流路36aに貫けていく。本変形例でも、図11に示した分散液生成部90で作られた分散液DILが、液体流路(配管)WT1を介して内部容器33Aに注入される。なお、図12では、ミスト収集部材38aを内部容器33Aの直上の位置からX方向にずらして示したが、図11のミスト収集部材38cのように、内部容器33Aの上方の開口部を覆うような構成とするのがよい。 (Modification 6) FIG. 12 shows an example in which the mist generator in the first and second embodiments is modified. In FIG. 12, the same members and structures as those shown in FIG. 3 are given the same reference numerals, and the description thereof is omitted or simplified. In the present modification, as in the previous FIG. 11, a second inner container 33A (which has good metallic properties) for storing the dispersion DIL is provided inside the container 30a. The bottom of the inner container 33A is formed in a spherical shape and is installed so as to be immersed in water (H 2 O) stored in the container 30a. For example, a vibration wave is given to the water in the container 30a by a vibration unit 32a (such as a ceramic vibrator) that is vibrated by a drive signal Ds1 of 20 KHz. The vibration wave propagates to the dispersion liquid DIL through the wall surface of the inner container 33A, and a vibration wave that effectively disperses the fine particles NP is given to the dispersion liquid DIL. In order to generate mist MT from the liquid level of the dispersion liquid DIL, for example, a vibration part 34a that is vibrated with a drive signal Ds2 of 2.4 MHz is installed in the inner container 33A. The mist MT generated in the inner container 33A is collected by the mist collecting member 38a together with the carrier gas such as nitrogen (N 2 ) introduced through the gas flow path (pipe) GT, and penetrates the mist transport flow path 36a. Go. Also in this modified example, the dispersion DIL produced by the dispersion producing unit 90 shown in FIG. 11 is injected into the inner container 33A via the liquid channel (pipe) WT1. In FIG. 12, the mist collecting member 38a is shown shifted from the position directly above the inner container 33A in the X direction. However, like the mist collecting member 38c in FIG. 11, it covers the opening above the inner container 33A. It is good to have a configuration.
 本変形例では、内部容器33Aの壁面が液体(水)を媒介として振動部32aからの振動波によって振動することによって、分散液DIL中の微粒子NPを分散状態にする。したがって、本変形例では、分散のための振動を分散液DILに与える振動部が、振動部32aと容器30a内の水(液体)と内部容器33Aの壁とによって構成される。内部容器33Aは容器30a内に支持されるが、内部容器33Aの壁が駆動信号Ds1の周波数(例えば20KHz)で振動することを極力阻害しないように、弾性材料などを用いた保持構造とするのがよい。また、本変形例では、容器30a内の水(H2O)からはミストが発生しない構成とするため、容器30a内の水(H2O)を溜める空間と、分散液DILからのミストMTが発生する空間とを仕切り部材(内部容器)33Bによって分離しておくのがよい。それによって、容器30a内の水(H2O)を溜める空間は密閉された空間になる。そのため、図12のように液体流路(配管)WTを介して頻繁に水(H2O)を供給する必要はないが、長期間に渡って同じ水を使い続けると、バクテリア、カビ、雑菌の繁殖などの問題もあるので、時々、液体流路(配管)WTを介して水(H2O)を交換するのがよい。 In this modification, the wall surface of the inner container 33A is vibrated by the vibration wave from the vibration part 32a through the liquid (water), thereby bringing the fine particles NP in the dispersion DIL into a dispersed state. Therefore, in this modification, the vibration part that applies the vibration for dispersion to the dispersion liquid DIL is configured by the vibration part 32a, water (liquid) in the container 30a, and the wall of the inner container 33A. Although the inner container 33A is supported in the container 30a, a holding structure using an elastic material or the like is used so as not to hinder the wall of the inner container 33A from vibrating at the frequency of the drive signal Ds1 (for example, 20 KHz). Is good. Further, in this modified example, since mist is not generated from water (H 2 O) in the container 30a, a space for storing water (H 2 O) in the container 30a and a mist MT from the dispersion liquid DIL are used. It is preferable to separate the space in which this occurs from the partition member (inner container) 33B. Thereby, the space for storing water (H 2 O) in the container 30a becomes a sealed space. Therefore, it is not necessary to frequently supply water (H 2 O) through the liquid flow path (pipe) WT as shown in FIG. 12, but if the same water is used for a long period of time, bacteria, mold, and bacteria In some cases, it is preferable to exchange water (H 2 O) through the liquid flow path (pipe) WT from time to time.
 以上の本変形例によれば、内部容器33A内にはミスト発生用の振動部34aだけが設けられるので、図11の変形例に比べて内部容器33Aの容積を小さくすることができ、分散液DILの容量を少なくすることができる。なお、本変形例においても、図11の変形例と同様の分散液DILの液面調整機能やミストMTを発生するための振動部34aの配置調整機能を設けることができる。 According to the present modification described above, since only the vibrating portion 34a for generating mist is provided in the inner container 33A, the volume of the inner container 33A can be reduced as compared with the modification of FIG. The capacity of the DIL can be reduced. Also in this modification, it is possible to provide the same liquid level adjustment function of the dispersion DIL as the modification of FIG. 11 and the arrangement adjustment function of the vibration part 34a for generating the mist MT.
 (変形例7)図13は、図11の変形例における振動部32a、34aのための駆動制御回路部の一例を示す回路ブロック図である。図13の駆動方式は、図11の構成に限られず、先の第1の実施の形態、第2の実施の形態、その他の各変形例の各々の構成に対しても、全く同様に適用できる。本変形例では、ミスト発生用の周波数(例えば2.4MHz)を持った高周波信号SF0を発振する発振回路200、周波数シンセサイザー回路202、増幅回路204A、204Bを備えた回路構成によって、微粒子NPの粉砕や凝集抑制のための振動部32aと、ミスト発生用の振動部34aとを駆動する。この図13の回路構成では、振動部32a、34aの形態によって、2つのモードのうちのいずれか一方のモードで振動部32a、34aを駆動する。第1モードでは、振動部32aが微粒子NPの粉砕や凝集抑制に適した周波数(例えば100KHz以下)にチューニングされた超音波振動子であり、振動部34aがミスト発生に適した周波数(例えば1MHz~数MHz)にチューニングされた超音波振動子であり、振動部32aを駆動する駆動信号Ds1と、振動部34aを駆動する駆動信号Ds2との各周波数を大きく異ならせるものである。第2モードでは、2つの振動部32a、34aの両方をミスト発生に適した周波数(例えば1MHz~数MHz)にチューニングされた超音波振動子とし、駆動信号Ds1、Ds2の周波数の間に、微粒子NPの粉砕や凝集抑制に適した周波数(例えば100KHz以下)分の差を与え、その差分のビート周波数による振動波を分散液DIL中に発生させるものである。第1モードか第2モードかの選択は周波数シンセサイザー回路202によって行われる。 (Modification 7) FIG. 13 is a circuit block diagram showing an example of a drive control circuit section for the vibration sections 32a and 34a in the modification of FIG. The drive system of FIG. 13 is not limited to the configuration of FIG. 11, and can be applied in the same manner to the configurations of the first embodiment, the second embodiment, and other modifications. . In this modification, fine particles NP are pulverized by a circuit configuration including an oscillation circuit 200 that oscillates a high-frequency signal SF0 having a mist generation frequency (for example, 2.4 MHz), a frequency synthesizer circuit 202, and amplification circuits 204A and 204B. The vibration unit 32a for suppressing aggregation and the vibration unit 34a for generating mist are driven. In the circuit configuration of FIG. 13, the vibrating units 32a and 34a are driven in one of two modes depending on the form of the vibrating units 32a and 34a. In the first mode, the vibration part 32a is an ultrasonic vibrator tuned to a frequency (for example, 100 KHz or less) suitable for pulverization and aggregation suppression of the fine particles NP, and the vibration part 34a has a frequency (for example, 1 MHz to This is an ultrasonic transducer tuned to several MHz), and the frequencies of the drive signal Ds1 for driving the vibration part 32a and the drive signal Ds2 for driving the vibration part 34a are greatly different. In the second mode, both of the two vibrating parts 32a and 34a are ultrasonic vibrators tuned to a frequency suitable for mist generation (for example, 1 MHz to several MHz), and fine particles are present between the frequencies of the drive signals Ds1 and Ds2. A difference corresponding to a frequency (for example, 100 KHz or less) suitable for NP crushing and aggregation suppression is given, and a vibration wave with a beat frequency of the difference is generated in the dispersion DIL. The selection between the first mode and the second mode is performed by the frequency synthesizer circuit 202.
 周波数シンセサイザー回路202は、微粒子NPの粉砕や凝集抑制に適した周波数(例えば20KHz)を指定する設定情報SFvを、図1または図10に示した成膜装置PR2の下位制御装置14bから入力する。第1モードの場合、周波数シンセサイザー回路202は、発振回路200からの高周波信号SF0(例えば2.4MHz)をそのまま高周波信号SF2として増幅回路204Aに印加し、増幅された駆動信号Ds2がミスト発生用の振動部34aに印加される。さらに、第1モードの場合、周波数シンセサイザー回路202は、入力した高周波信号SF0の周波数(例えば2.4MHz)を所定の分周比で分周した高周波信号SF1を生成する。本変形例の場合、その分周比は、例えば1/120に設定されるため、高周波信号SF1の周波数は20KHzとなり、振動部32aには、増幅回路204Bを介して微粒子NPの分散用に適した周波数(20KHz)の駆動信号Ds1が印加される。なお、周波数シンセサイザー回路202による高周波信号SF0の分周比は1/120に限られず、高周波信号SF0の周波数と設定情報SFvで指定される周波数との比に基づいて自動設定される。 The frequency synthesizer circuit 202 inputs setting information SFv designating a frequency (for example, 20 KHz) suitable for pulverization and aggregation suppression of the fine particles NP from the low-order control device 14b of the film forming apparatus PR2 shown in FIG. In the first mode, the frequency synthesizer circuit 202 applies the high frequency signal SF0 (for example, 2.4 MHz) from the oscillation circuit 200 as it is to the amplifier circuit 204A as the high frequency signal SF2, and the amplified drive signal Ds2 is used for generating mist. Applied to the vibrating part 34a. Further, in the first mode, the frequency synthesizer circuit 202 generates a high-frequency signal SF1 obtained by dividing the frequency (for example, 2.4 MHz) of the input high-frequency signal SF0 by a predetermined frequency division ratio. In the case of this modification, since the frequency division ratio is set to 1/120, for example, the frequency of the high-frequency signal SF1 is 20 KHz, and the vibration unit 32a is suitable for dispersing the fine particles NP via the amplifier circuit 204B. A drive signal Ds1 having a frequency (20 KHz) is applied. The frequency dividing ratio of the high frequency signal SF0 by the frequency synthesizer circuit 202 is not limited to 1/120, and is automatically set based on the ratio between the frequency of the high frequency signal SF0 and the frequency specified by the setting information SFv.
 一方、第2モードの場合、周波数シンセサイザー回路202は、第1モードと同様に、発振回路200からの高周波信号SF0をそのまま高周波信号SF2として増幅回路204Aに印加し、増幅された駆動信号Ds2をミスト発生用の振動部34aに印加する。第2モードの場合、周波数シンセサイザー回路202は、高周波信号SF0の周波数に対して設定情報SFvで指定される周波数分だけ高い周波数、または低い周波数の高周波信号SF1を生成する。すなわち、周波数シンセサイザー回路202は、周波数がSF2=SF0、SF1=SF2+SFv(或いは、SF2-SFv)の関係になるように周波数合成を行う。このような周波数合成は、デジタル処理回路とアナログ処理回路のいずれであっても可能である。これによって、振動部34aは、例えば2.40MHzの駆動信号Ds2に応答して振動し、振動部32aは、例えば2.42MHz(または2.38MHz)の駆動信号Ds1に応答して振動する。振動部34aからの振動波と振動部32aからの振動波との間には、0.02MHz(20KHz)の差があるため、その差分のビート周波数による振動波が分散液DIL中に生成される。ビート周波数による振動波は、分散液DIL中の微粒子NPの塊を粉砕したり、凝集を抑制したりするのに適した周波数となる。 On the other hand, in the second mode, the frequency synthesizer circuit 202 applies the high-frequency signal SF0 from the oscillation circuit 200 to the amplifier circuit 204A as it is as the high-frequency signal SF2 and mists the amplified drive signal Ds2 as in the first mode. It is applied to the vibration part 34a for generation. In the second mode, the frequency synthesizer circuit 202 generates a high frequency signal SF1 having a frequency that is higher or lower than the frequency of the high frequency signal SF0 by the frequency specified by the setting information SFv. That is, the frequency synthesizer circuit 202 performs frequency synthesis so that the frequencies have a relationship of SF2 = SF0, SF1 = SF2 + SFv (or SF2-SFv). Such frequency synthesis can be performed by either a digital processing circuit or an analog processing circuit. Accordingly, the vibration unit 34a vibrates in response to a drive signal Ds2 of 2.40 MHz, for example, and the vibration unit 32a vibrates in response to a drive signal Ds1 of 2.42 MHz (or 2.38 MHz), for example. Since there is a difference of 0.02 MHz (20 KHz) between the vibration wave from the vibration part 34a and the vibration wave from the vibration part 32a, a vibration wave with the beat frequency of the difference is generated in the dispersion liquid DIL. . The vibration wave with the beat frequency has a frequency suitable for pulverizing the mass of the fine particles NP in the dispersion DIL and suppressing aggregation.
 一般に、圧電セラミック素子などの超音波振動子は固有の共振周波数を有するため、その共振周波数の駆動信号で駆動するのが効率的である。本変形例の第2モードでは、共振周波数が例えば2.4MHzの2つの超音波振動子(32a、34a)の各々に印加する駆動信号Ds1、Ds2の周波数差は0.02MHzと極めて小さく、2つの超音波振動子はいずれも共振周波数帯域で駆動されることになる。 Generally, since an ultrasonic vibrator such as a piezoelectric ceramic element has a specific resonance frequency, it is efficient to drive the ultrasonic vibrator with a drive signal of the resonance frequency. In the second mode of this modification, for example, the frequency difference between the drive signals Ds1 and Ds2 applied to each of the two ultrasonic transducers (32a and 34a) having a resonance frequency of 2.4 MHz is as extremely small as 0.02 MHz. All the two ultrasonic vibrators are driven in the resonance frequency band.
 以上、本変形例の第2モードによれば、微粒子NPの塊の粉砕や凝集の抑制のための振動部32aと、ミスト発生用の振動部34aとは、ミスト発生用の高い周波数に対してチューニングされた同じ超音波振動子にすることができる。また、第2モードの場合、2つの振動部32a、34aはいずれも分散液DILの内部から液面に向けて振動波が進行するように配置するとともに、振動部32aからの振動波と振動部34aからの振動波とが分散液DILの液面下で交差するように互いに少し傾けて配置するとよい。本変形例の第2モードの場合、2つの振動部32a、34aは、いずれもミスト発生に適した高い周波数で振動する超音波振動子とされ、微粒子NPの塊の粉砕や凝集の抑制に適した低い周波数で直接的に振動する超音波振動子は存在しない。しかしながら、2つの振動部32a、34aを僅かに異なる周波数でともに振動させることで、分散液DIL中の微粒子NPの塊の粉砕や凝集の抑制と、ミスト発生とを同時に行うことができる。このことから、本変形例の第2モードでは、2つの振動部32a、34aのいずれか一方を振動する状態と、2つの振動部32a、34aの両方を振動する状態とを所定時間毎に切替えることで、分散液DIL中の微粒子NPの塊の粉砕(凝集の解除)や分散状態の促進を、一定の時間間隔で行うこともできる。 As described above, according to the second mode of the present modified example, the vibration part 32a for suppressing the pulverization and aggregation of the mass of the fine particles NP and the vibration part 34a for mist generation are performed with respect to a high frequency for mist generation. The same ultrasonic transducer can be tuned. In the case of the second mode, the two vibration parts 32a and 34a are arranged so that the vibration wave travels from the inside of the dispersion DIL toward the liquid surface, and the vibration wave from the vibration part 32a and the vibration part. The vibration waves from 34a may be arranged slightly tilted so as to intersect with each other below the surface of the dispersion liquid DIL. In the case of the second mode of this modification, the two vibrating parts 32a and 34a are both ultrasonic vibrators that vibrate at a high frequency suitable for mist generation, and are suitable for suppressing crushing and agglomeration of the particles NP. There is no ultrasonic transducer that vibrates directly at a low frequency. However, by vibrating the two vibrating parts 32a and 34a together at slightly different frequencies, it is possible to simultaneously suppress pulverization and aggregation of the fine particles NP in the dispersion DIL and generation of mist. For this reason, in the second mode of the present modification, the state of vibrating one of the two vibrating portions 32a and 34a and the state of vibrating both the two vibrating portions 32a and 34a are switched at predetermined time intervals. Thus, pulverization (cancellation of aggregation) of the fine particles NP in the dispersion DIL and promotion of the dispersion state can be performed at regular time intervals.
 本変形例では、分散液DILに対して互いに異なる周波数の振動を与える複数(3個以上であってもよい)の振動部(超音波振動子)を設けることで、分散液DIL中の微粒子NPの凝集を抑制して分散状態を促進する機能と、分散液DILの液面から微粒子NPを含むミストを発生する機能との両方を同時に達成することができる。互いに異なる周波数とは、2つの振動の周波数の比を10倍以上(1MHz以上と100KHz以下)にする場合と、ビート発生のために2つの振動の周波数の差をいずれかの振動の周波数の1/10以下(100KHz以下/1MHz以上)にする場合とのいずれか一方を含むものである。そして、本変形例の場合、2つの振動部32a、34aは、超音波振動子を別々の筐体(金属ケース)に収納したものとしたが、互いに異なる周波数の駆動信号Ds1、Ds2の各々が印加される超音波振動子を1つの筐体(金属ケース)内に収納した構成であってもよい。 In the present modification, a plurality of (or three or more) vibrating portions (ultrasonic vibrators) that give vibrations of different frequencies to the dispersion DIL are provided, so that the fine particles NP in the dispersion DIL are provided. It is possible to simultaneously achieve both the function of promoting the dispersion state by suppressing the aggregation of the liquid and the function of generating the mist containing the fine particles NP from the liquid surface of the dispersion liquid DIL. The frequency different from each other means that the ratio of the frequencies of two vibrations is 10 times or more (1 MHz or more and 100 KHz or less), and that the difference between the frequencies of the two vibrations is 1 / 10 or less (100 KHz or less / 1 MHz or more). In the case of this modification, the two vibrating parts 32a and 34a are configured such that the ultrasonic vibrators are housed in separate housings (metal cases). However, each of the drive signals Ds1 and Ds2 having different frequencies is used. A configuration may be adopted in which the ultrasonic transducer to be applied is housed in one housing (metal case).
 例えば、分散媒(液体)の種類、分散質(微粒子)の種類によっては、ミスト発生のために分散液に与える振動周波数(SF2)が1MHz程度、微粒子の分散のために分散液に与えられる振動周波数(SF1)が100KHz程度になる場合は、図13の駆動制御回路部による第2モードでの駆動のために、2つの振動部32a、34aのうちの一方は、例えば、1MHzに固有共振周波数を有する圧電セラミック素子とし、他方は0.9MHzまたは1.1MHzに固有共振周波数を有する圧電セラミック素子とすればよい。或いは、固有共振周波数の差が0.1MHzとなるように、それぞれ1.05MHzと0.95MHzに固有共振周波数を有する2つの圧電セラミック素子としてもよい。 For example, depending on the type of dispersion medium (liquid) and the type of dispersoid (fine particles), the vibration frequency (SF2) given to the dispersion liquid for generating mist is about 1 MHz, and the vibration given to the dispersion liquid for fine particle dispersion. When the frequency (SF1) is about 100 KHz, one of the two vibrating parts 32a and 34a is, for example, 1 MHz in terms of the natural resonance frequency for driving in the second mode by the drive control circuit part of FIG. The other is a piezoelectric ceramic element having a natural resonance frequency of 0.9 MHz or 1.1 MHz. Or it is good also as two piezoelectric ceramic elements which have a natural resonant frequency in 1.05 MHz and 0.95 MHz, respectively so that the difference of a natural resonant frequency may be set to 0.1 MHz.
[第4の実施の形態]
 図14は、第4の実施形態によるミスト発生装置の構成を示し、全体的な構成は先の図12で示したミスト発生装置と同様であるが、分散液DIL中の微粒子NPを強制的に分散させる(凝集を防止する)為の振動部32aと、分散液DILの表面からミストMTを発生させる為の振動部34aとの配置を、図12の配置に対して逆にする。すなわち、容器30a(第2容器)の内側には、溜められる液体LW(水:H2O)に底面部が浸るように設置された内部容器33B(第1容器)が設けられ、内部容器33B内には微粒子NPを含有した分散液DILが所定の深さDOLで溜められ、分散液DIL中の微粒子NPの分散用のプローブ状(棒状)の振動部32aが、内部容器33Bの上方の開口部33Boを介して分散液DIL中に浸される。容器30aに溜められた液体LW中には、ミスト発生用の振動部34aが設けられる。図14において、重力方向をZ方向とし、それと垂直な平面をXY面とすると、分散液DILの表面SQはXY面と平行になる。内部容器33Bは、例えば、ポリプロピレン製であり、底面はXY面と平行な平面状に形成され、側壁面には分散液DILの液面SQよりも高い位置(+Z方向)に排気口EPが形成されている。発生したミストMTを効率的に成膜部に導く為に、成膜部側を負圧にする(吸気する)ことで、内部容器33Bの開口部33Boの隙間から流入した大気がミストMTを伴って排気口EPから流出するフローが形成される。容器30aの底部の液体LW中に設けられる振動部34aは、純水を媒体とした分散液DILからミストMTを効率的に発生させる為に、振動周波数が2.4MHz又は1.6MHzの超音波振動子を用いる。振動部34aの振動方向(超音波の発生方向)は+Z方向に設定され、超音波は液体LWを介して内部容器33Bの平面状の底面にほぼ垂直に投射される。さらに、分散用のプローブ状の振動部32aのXY面内での位置と、ミスト発生用の振動部34aのXY面内での位置とは、間隔SPLだけ離れているものとする。なお、本実施の形態では、分散用の振動部32aの振動周波数が20KHz程度に設定される。
[Fourth Embodiment]
FIG. 14 shows the configuration of the mist generating apparatus according to the fourth embodiment. The overall configuration is the same as that of the mist generating apparatus shown in FIG. 12, but the fine particles NP in the dispersion DIL are forcibly forced. The arrangement of the vibration part 32a for dispersing (preventing aggregation) and the vibration part 34a for generating mist MT from the surface of the dispersion DIL are reversed with respect to the arrangement of FIG. That is, an inner container 33B (first container) is provided inside the container 30a (second container) so that the bottom surface portion is immersed in the liquid LW (water: H2O) stored in the container 30a. The dispersion liquid DIL containing the fine particles NP is stored at a predetermined depth DOL, and the probe-like (rod-like) vibration part 32a for dispersing the fine particles NP in the dispersion liquid DIL has an opening 33Bo above the inner container 33B. In the dispersion DIL. In the liquid LW stored in the container 30a, a vibrating portion 34a for generating mist is provided. In FIG. 14, when the gravity direction is the Z direction and the plane perpendicular thereto is the XY plane, the surface SQ of the dispersion DIL is parallel to the XY plane. The inner container 33B is made of, for example, polypropylene, and the bottom surface is formed in a planar shape parallel to the XY plane, and the exhaust port EP is formed on the side wall surface at a position (+ Z direction) higher than the liquid surface SQ of the dispersion DIL. Has been. In order to efficiently introduce the generated mist MT to the film forming unit, the air flowing in from the gap of the opening 33Bo of the inner container 33B is accompanied by the mist MT by making the film forming unit side have a negative pressure (intake air). Thus, a flow flowing out from the exhaust port EP is formed. The vibration part 34a provided in the liquid LW at the bottom of the container 30a is an ultrasonic wave having a vibration frequency of 2.4 MHz or 1.6 MHz in order to efficiently generate mist MT from the dispersion DIL using pure water as a medium. A vibrator is used. The vibration direction (the generation direction of the ultrasonic waves) of the vibration unit 34a is set to the + Z direction, and the ultrasonic waves are projected substantially perpendicularly onto the planar bottom surface of the inner container 33B via the liquid LW. Furthermore, it is assumed that the position in the XY plane of the probe-like vibrating portion 32a for dispersion and the position in the XY plane of the vibrating portion 34a for generating mist are separated by an interval SPL. In the present embodiment, the vibration frequency of the vibration unit 32a for dispersion is set to about 20 KHz.
 以上のような構成のミスト発生装置において、分散液DILからミストMTを効率的に発生させる条件を実験により確かめてみた。実験では、堺化学工業社製の二酸化ジルコニウム(ZrO2、5wt.%)を水(純水)に分散させ、ZrO2のナノ粒子(粒子径は3~5nm)を含有する分散液(ミスト生成用の溶液)DILを用意し、分散用のプローブ状の振動部32aとして、家田貿易株式会社より販売されている20KHzの超音波ホモジナイザー(SONICS社製のVCシリーズ、又はVCXシリーズ)を用い、ミスト発生用の振動部34aとしては、株式会社星光技研より販売されている投込型超音波霧化ユニットIM1-24/LW(振動子径20mmφ、駆動周波数1.6MHz)を用いた。超音波ホモジナイザーの振動部32aは、直径が数mm~十数mm程度のチタン合金製の丸棒(プローブロッド)の上端部にP.Z.T素子による振動源を取付けた構造となっており、振動源の振動(20KHz)がプローブロッドを介して分散液DILに印加される。また、図14に示した内部容器33Bの排気口EPからは、循環アスピレータを使って、内部容器33B内のミストMTを含む気体(空気)が一定流量で吸気されるように調整した。 In the mist generator configured as described above, the conditions for efficiently generating the mist MT from the dispersion DIL were confirmed by experiments. In the experiment, zirconium dioxide (ZrO 2 , 5 wt.%) Manufactured by Sakai Chemical Industry Co., Ltd. was dispersed in water (pure water), and a dispersion containing ZrO 2 nanoparticles (particle size: 3 to 5 nm) (mist generation) Solution) DIL was prepared, and a 20 KHz ultrasonic homogenizer (VC series or VCX series manufactured by SONICS) sold by Iida Trading Co., Ltd. was used as a mist for the probe-like vibrating part 32a for dispersion. As the vibration section 34a for generation, a throwing type ultrasonic atomizing unit IM1-24 / LW (vibrator diameter 20 mmφ, driving frequency 1.6 MHz) sold by Hoshi Kogyo Co., Ltd. was used. The vibration part 32a of the ultrasonic homogenizer is formed on the upper end of a titanium alloy round rod (probe rod) having a diameter of several mm to several tens of mm. Z. A vibration source by a T element is attached, and the vibration (20 KHz) of the vibration source is applied to the dispersion DIL through the probe rod. Further, a gas (air) containing the mist MT in the inner container 33B was adjusted from the exhaust port EP of the inner container 33B shown in FIG.
 図14の構成において、100ccの分散液DILを内部容器33B内に入れ、距離SPLを数cm程度にした状態で、分散用の振動部32aに20KHzの駆動信号Ds1を印加せずに分散液DILを霧化した場合(強制分散無しでの霧化状態)と、分散用の振動部32aに20KHzの駆動信号Ds1を印加しつつ分散液DILを霧化した場合(強制分散併用での霧化状態)とで、霧化の効率が変わるかを調べた。まず、強制分散無しでの霧化と強制分散併用での霧化との各々を一定時間だけ行った後に、内部容器33B内に残存した残液量を比較したところ、強制分散無しでの霧化での残液量は約97cc(3%の霧化量)となり、強制分散併用での霧化での残液量は約95cc(5%の霧化量)となった。このことから、強制分散を併用して霧化すると、霧化効率が向上することが判った。なお、本実施の形態では、XY面内で見たとき、距離SPLが零の場合、或いは分散用(凝集防止用)の振動部32aと霧化用の振動部34aとが少なくとも一部重なっている場合、ミストMTがほとんど発生しないことがある。これは、液体LWを介して伝搬される振動部34aの1.6MHzの振動波が最も強く照射される内部容器33Bの底面部分と、その上方の分散液DILの液面SQの部分との間に、障害物となり得る分散用の振動部32aが存在する為である。 In the configuration of FIG. 14, in a state where 100 cc of the dispersion liquid DIL is placed in the inner container 33B and the distance SPL is set to about several centimeters, the dispersion liquid DIL is not applied to the vibration unit 32a for dispersion without applying the drive signal Ds1 of 20 KHz. Is atomized (atomized state without forced dispersion), and when the dispersion liquid DIL is atomized while applying a drive signal Ds1 of 20 KHz to the vibration unit 32a for dispersion (atomized state in combination with forced dispersion) ) And investigated whether the efficiency of atomization changes. First, after performing each of the atomization without forced dispersion and the atomization with forced dispersion for a certain period of time, the amount of residual liquid remaining in the inner container 33B was compared, and the atomization without forced dispersion was performed. The residual liquid amount at about 97 cc (3% atomization amount) was about 95 cc (5% atomization amount). From this, it was found that atomization efficiency is improved when atomization is performed in combination with forced dispersion. In the present embodiment, when viewed in the XY plane, the distance SPL is zero, or the vibration part 32a for dispersion (for preventing aggregation) and the vibration part 34a for atomization overlap at least partially. If there is, mist MT may hardly occur. This is between the bottom surface portion of the inner container 33B to which the 1.6 MHz vibration wave of the vibration portion 34a propagated through the liquid LW is most strongly irradiated and the liquid surface SQ portion of the dispersion DIL above it. This is because there is a vibration part 32a for dispersion that can be an obstacle.
 本実施の形態では、ポリプロピレン製の内部容器33Bの底面を介して、霧化用の超音波振動(1.6MHz)を分散液DILに伝える構成とした。その為、内部容器33Bの底面から分散液DILの液面SQまでの距離である深さDOLによっては、ミストMTの発生時に液面SQに現れるべき液柱が効率的に発生せず、その結果、ミストMTが発生しない場合が生じる。そこで、図14の構成において、分散液DILの液面SQの高さ、すなわち分散液DILの深さDOLを変えて、霧化効率の変化を調べた。図15は、プローブ状の振動部32a(超音波ホモジナイザー)によって20KHzで分散液DILを強制分散させつつ、深さDOLを10~50mmの間の何点か、ここでは10mm、20mm、40mm、50mmの4点に変えた場合に得られる霧化効率の特性の一例を示すグラフである。図15のグラフにおいて、縦軸は霧化効率を表す分散液DILの残液量の百分率(%)を表し、横軸は深さDOL(mm)を表す。内部容器33Bに貯留される分散液DILの深さDOLを変える場合、貯留する分散液DILの容量を変えることになる為、図15の縦軸の残液量(%)は、一定時間の霧化動作の後に残る分散液DILの容量の初期容量に対する比率(%)として表す。 In this embodiment, the ultrasonic vibration for atomization (1.6 MHz) is transmitted to the dispersion DIL through the bottom surface of the polypropylene inner container 33B. Therefore, depending on the depth DOL that is the distance from the bottom surface of the inner container 33B to the liquid level SQ of the dispersion DIL, the liquid column that should appear on the liquid level SQ when the mist MT is generated is not efficiently generated. In some cases, mist MT is not generated. Therefore, in the configuration of FIG. 14, the change in the atomization efficiency was examined by changing the height of the liquid surface SQ of the dispersion DIL, that is, the depth DOL of the dispersion DIL. FIG. 15 shows a case where the dispersion DIL is forcibly dispersed at 20 KHz by a probe-like vibration part 32a (ultrasonic homogenizer), and the depth DOL is several points between 10 and 50 mm, here 10 mm, 20 mm, 40 mm, and 50 mm. It is a graph which shows an example of the characteristic of the atomization efficiency obtained when it changes into these 4 points | pieces. In the graph of FIG. 15, the vertical axis represents the percentage (%) of the remaining liquid amount of the dispersion DIL representing the atomization efficiency, and the horizontal axis represents the depth DOL (mm). When the depth DOL of the dispersion DIL stored in the inner container 33B is changed, the volume of the stored dispersion DIL is changed. Therefore, the remaining liquid amount (%) on the vertical axis in FIG. It is expressed as a ratio (%) of the volume of the dispersion DIL remaining after the conversion operation to the initial volume.
 図14の構成のミスト発生装置の場合、図15に示すように、分散液DILの深さDOLが50mmの場合、残液量は100%であり、ミストMTはほとんど発生しない。分散液DILの深さDOLが40mmの場合の残液量は約99%であり、ミストMTは僅かに発生するものの、効率的な発生とは言えない。図14の構成のミスト発生装置の場合、分散液DILの深さDOLが20mm、10mmの各々のとき、残液量は約95%であり、霧化効率が最も高くなることが判った。従って、長時間に渡ってミストMTを発生させ続ける必要がある場合、内部容器33B内の分散液DILの深さDOLが10~20mmの範囲に維持されるように、先の図11で説明したような液面レベルセンサLLSを設けて、その計測情報Svに基づいて、ときどき分散液DILを注入する機構を設けるのが良い。 In the case of the mist generating device having the configuration shown in FIG. 14, when the depth DOL of the dispersion DIL is 50 mm as shown in FIG. 15, the residual liquid amount is 100% and mist MT is hardly generated. When the depth DOL of the dispersion DIL is 40 mm, the residual liquid amount is about 99%, and although mist MT is slightly generated, it cannot be said that it is efficiently generated. In the case of the mist generating apparatus having the configuration of FIG. 14, when the depth DOL of the dispersion DIL is 20 mm and 10 mm, the residual liquid amount is about 95%, and it was found that the atomization efficiency is the highest. Therefore, when it is necessary to continuously generate the mist MT for a long time, the depth DOL of the dispersion DIL in the inner container 33B is maintained in the range of 10 to 20 mm as described in FIG. It is preferable to provide such a liquid level sensor LLS and provide a mechanism for injecting the dispersion DIL from time to time based on the measurement information Sv.
 次に、図14の構成のミスト発生装置において、分散液DILの初期の容量を同一とし、深さDOLが20mmとなるように設定した状態で、プローブ状の振動部32a(超音波ホモジナイザー)と霧化用の振動部34aとの間隔SPLを、5~50mmの間の何点か、ここでは5mm、20mm、35mm、50mmに変えて、一定の時間だけ霧化させた場合の霧化効率の変化を実験にて調べてみた。図16は、プローブ状の振動部32a(直径数mm~十数mmの金属棒)と霧化用の振動部34a(振動子径20mmφ)との間隔SPLに応じた霧化効率の変化特性を示すグラフであり、縦軸の残液量(%)は、先の図15と同様に分散液DILの初期容量に対する残液量の比率(%)を表し、横軸は間隔SPL(mm)を表す。図16中の変化特性A1は、分散用の振動部32a(20KHz)を振動させずに、霧化用の振動部34a(1.6MHz)のみを振動させた強制分散無しでの霧化状態のときの特性であり、変化特性B1は、分散用の振動部32a(20KHz)と霧化用の振動部34a(1.6MHz)とを共に振動させた強制分散併用での霧化状態のときの特性である。 Next, in the mist generating apparatus having the configuration shown in FIG. 14, the initial volume of the dispersion DIL is the same, and the depth DOL is set to 20 mm, and the probe-like vibrating portion 32a (ultrasonic homogenizer) is used. The distance SPL with the atomizing vibration part 34a is changed to some point between 5 and 50 mm, here 5 mm, 20 mm, 35 mm, and 50 mm, and the atomization efficiency when atomizing is performed for a certain time. The change was examined by experiment. FIG. 16 shows the change characteristics of the atomization efficiency according to the interval SPL between the probe-like vibration part 32a (a metal rod having a diameter of several mm to several tens of mm) and the atomization vibration part 34a (vibrator diameter 20 mmφ). The remaining liquid amount (%) on the vertical axis represents the ratio (%) of the remaining liquid amount to the initial volume of the dispersion DIL, as in FIG. 15, and the horizontal axis represents the interval SPL (mm). To express. The change characteristic A1 in FIG. 16 shows an atomization state without forced dispersion in which only the vibration part 34a (1.6 MHz) for atomization is vibrated without vibrating the vibration part 32a (20 KHz) for dispersion. The change characteristic B1 is obtained when the atomizing state in the forced dispersion combination in which the vibration unit 32a (20 KHz) for dispersion and the vibration unit 34a (1.6 MHz) for atomization are vibrated together is used. It is a characteristic.
 強制分散無しでの霧化状態の場合、変化特性A1に示すように、間隔SPLが20mm~50mmにおける残液量(%)は約97%(霧化効率3%)でほぼ一定になった。間隔SPLが20mm以下になると、振動部34aからの振動波が最も強く照射される内部容器33Bの底面部分と、その上方の分散液DILの液面SQの部分との間に、障害物となり得る分散用の振動部32aが近づいてくるため、液面SQに伝搬される1.6MHzの振動波が弱まり、液面SQに現れる液柱の減少によってミストMTの発生効率が低下するものと考えられる。これに対して、強制分散併用での霧化状態の場合、変化特性B1に示すように、間隔SPLが20mm~35mmの間で、残液量(%)は約95%(霧化効率5%)となり、間隔SPLが50mmでは、変化特性A1とほぼ同じ97%の残液量となった。また、強制分散併用での霧化状態の場合(変化特性B1)でも、間隔SPLが20mm以下になると、ミストMTの発生効率(霧化効率)が低減する。その原因は、先に説明したように、霧化用の振動波(1.6MHz)の伝搬に対して障害物となる分散用の振動部32aが近づき、液面SQに現れる液柱が安定に発生しなくなる為である。 In the case of the atomization state without forced dispersion, as shown in the change characteristic A1, the residual liquid amount (%) when the interval SPL was 20 mm to 50 mm was approximately 97% (atomization efficiency 3%) and became almost constant. When the interval SPL is 20 mm or less, an obstacle may be formed between the bottom surface portion of the inner container 33B to which the vibration wave from the vibration part 34a is most strongly irradiated and the liquid surface SQ portion of the dispersion DIL above the inner container 33B. Since the vibration unit 32a for dispersion approaches, the 1.6 MHz vibration wave propagating to the liquid level SQ is weakened, and the generation efficiency of the mist MT is considered to decrease due to the decrease of the liquid column appearing on the liquid level SQ. . On the other hand, in the case of the atomization state with forced dispersion, as shown in the change characteristic B1, the residual liquid amount (%) is about 95% (the atomization efficiency is 5%) when the interval SPL is between 20 mm and 35 mm. When the distance SPL was 50 mm, the remaining liquid amount was 97%, which was almost the same as the change characteristic A1. Further, even in the case of the atomization state using the forced dispersion (change characteristic B1), when the interval SPL is 20 mm or less, the generation efficiency (atomization efficiency) of the mist MT is reduced. As described above, the cause is that the dispersion vibration part 32a that becomes an obstacle approaches the propagation of the atomizing vibration wave (1.6 MHz), and the liquid column appearing on the liquid surface SQ is stabilized. It is because it does not occur.
 以上のように、霧化用の振動部34aによる1.6MHzの振動波と分散用の振動部32aによる20KHzの振動波とを共に分散液DILに印加し、間隔SPLを適当に設定することにより、図16の変化特性B1に示すように霧化効率を向上(加速)させることができる。従って、霧化用の強い振動波(1.6MHz又は2.4MHz)が分散液DILの液面SQに向かう照射範囲と物理的に干渉しない程度の距離(間隔SPL)で、分散用の振動部32aを霧化用の振動部34aに近づけて配置することにより、霧化効率を大きくすることができる。このような配置条件は、先の図3、図8、図9の各々に示されたミスト発生装置(ミスト発生部)の分散用の振動部32aと霧化用の振動部34aの配置関係でも同様に適用され得る。以上の実験より、先の図15で示した分散液DILの深さDOLが10~20mmの範囲(最適な深さ範囲)でミストMTの霧化効率が最大となることから、分散用の振動部32aと霧化用の振動部34aとの間隔SPLは、厳密には、最適な深さ範囲の下限値(10mm)よりは大きく、最適深さ範囲の上限値(20mm)の2倍よりも小さい距離範囲にすると、最大の霧化効率が得られることになる。但し、大まかで良い場合は、間隔SPLを分散液DILの深さDOLと同程度に設定すれば、良好な霧化効率が得られる。 As described above, by applying both the 1.6 MHz vibration wave from the atomizing vibration part 34 a and the 20 KHz vibration wave from the dispersion vibration part 32 a to the dispersion DIL, and appropriately setting the interval SPL. As shown in the change characteristic B1 in FIG. 16, the atomization efficiency can be improved (accelerated). Therefore, the dispersion vibration part is at a distance (interval SPL) that does not physically interfere with the irradiation range toward the liquid surface SQ of the dispersion liquid DIL with a strong vibration wave (1.6 MHz or 2.4 MHz) for atomization. The atomization efficiency can be increased by arranging 32a close to the vibration part 34a for atomization. Such an arrangement condition is the same as the arrangement relationship between the vibration part 32a for dispersion and the vibration part 34a for atomization of the mist generation device (mist generation part) shown in each of FIG. 3, FIG. 8, and FIG. It can be applied as well. From the above experiment, the atomization efficiency of the mist MT is maximized when the depth DOL of the dispersion DIL shown in FIG. 15 is in the range of 10 to 20 mm (optimum depth range). Strictly speaking, the interval SPL between the portion 32a and the atomizing vibration portion 34a is larger than the lower limit value (10 mm) of the optimum depth range and more than twice the upper limit value (20 mm) of the optimum depth range. When the distance range is small, the maximum atomization efficiency is obtained. However, if rough spacing is acceptable, good atomization efficiency can be obtained by setting the interval SPL to the same level as the depth DOL of the dispersion DIL.
[第4の実施の形態の変形例]
 図17は、先の図14で示した第4の実施の形態のミスト発生装置の変形例を示す図であり、図14中の部材と同じ構成、又は同じ機能の部材には同じ符号を付してある。図17の変形例では、図14の構成に対して2ヶ所の構成を変更する。第1の変更は、XY面内で見たとき、プローブ状の振動部32aを内部容器33Bの中心付近に配置し、外部容器30a内の液体LW中に配置される霧化用の振動部34aを、XY面内で見たとき、振動部32aから+X方向と-X方向とに間隔SPLだけ離した2ヶ所に設けたことであり、第2の変更は、内部容器33B(ポリプロピレン製)のプローブ状の振動部32aを通す開口部33Boの下に、振動部32aを囲んで分散液DILの液面SQの近くまで-Z方向に延設された筒状のパイプ33Bpを設けたことである。これらの変更点のうち、特に第1の変更によれば、液体LWを介して内部容器33Bの底面に照射される霧化用の1.6MHz(又は2.4MHZ)の振動波が、底面の広い範囲に渡って照射される為、霧化量(ミストMTの濃度)を増加できる。また、第2の変更によれば、パイプ33Bpの下側(-Z方向側)の先端開口部が、液面SQの近くに設定されるので、開口部33Boから流入した気体が、液面SQに沿って流れた後に排気口EPに向かうように流れる為、液面SQから発生したミストMTは効率的に捕集されて排気口EPに送られる。なお、霧化用の振動部34aは、XY面内でみたとき、プローブ状の振動部32aの回りに間隔SPLだけ離して輪帯状に複数配置しても良い。
[Modification of Fourth Embodiment]
FIG. 17 is a view showing a modified example of the mist generating apparatus of the fourth embodiment shown in FIG. 14, and members having the same configuration or the same function as members in FIG. It is. In the modification of FIG. 17, two configurations are changed from the configuration of FIG. 14. The first change is that, when viewed in the XY plane, the probe-like vibration part 32a is arranged near the center of the inner container 33B, and the atomization vibration part 34a arranged in the liquid LW in the outer container 30a. When viewed in the XY plane, are provided at two locations separated by an interval SPL in the + X direction and the −X direction from the vibrating portion 32a. The second change is that of the inner container 33B (made of polypropylene). A cylindrical pipe 33Bp extending in the −Z direction is provided below the opening 33Bo through which the probe-like vibrating portion 32a is passed so as to surround the vibrating portion 32a and close to the liquid surface SQ of the dispersion liquid DIL. . Among these changes, particularly according to the first change, the 1.6 MHz (or 2.4 MHZ) vibration wave for atomization irradiated to the bottom surface of the inner container 33B via the liquid LW is generated on the bottom surface. Since irradiation is performed over a wide range, the atomization amount (mist MT concentration) can be increased. Further, according to the second modification, the lower end (−Z direction side) opening of the pipe 33Bp is set near the liquid surface SQ, so that the gas flowing in from the opening 33Bo is changed to the liquid surface SQ. , The mist MT generated from the liquid level SQ is efficiently collected and sent to the exhaust port EP. A plurality of atomizing vibrating portions 34a may be arranged in a ring shape around the probe-like vibrating portion 32a by an interval SPL when viewed in the XY plane.
[第5の実施の形態]
 先の第4の実施の形態(図14)によるミスト発生装置を用いて、サンプル基板上にミスト法によりナノ粒子NPによる成膜を行い、基板上に形成される膜の状態を、強制分散無しでの霧化の場合と、強制分散併用での霧化の場合とで比較する実験を行った。その実験では、図18に示すように、図14のミスト発生装置の排気口EPから流出するミストMTを含む気体(空気)を、ミスト搬送路(配管)36aを介して導入する密閉型の容器(チャンバー)30aで構成される第5の実施の形態による成膜ユニット(成膜部)を用いた。チャンバー30aの下方には、サンプル基板PFが、重力方向と垂直な水平面(XY面)に対して一定の角度θαだけ傾くように配置され、チャンバー30aの上方の天井から導入されるミスト搬送路(配管)36aの先には、-Z方向に向いた噴霧口OP1を有する噴霧ノズルNZ1が設けられている。サンプル基板PFを角度θα傾ける理由は、先の図2で説明したように成膜室22内で基板FSを傾斜させる理由と同じである。
[Fifth Embodiment]
Using the mist generator according to the fourth embodiment (FIG. 14), film formation is performed on the sample substrate by the nanoparticle NP by the mist method, and the state of the film formed on the substrate is not forcibly dispersed. An experiment was conducted to compare the case of atomization in the case of atomization and the case of atomization in combination with forced dispersion. In the experiment, as shown in FIG. 18, a sealed container that introduces a gas (air) containing mist MT flowing out from the exhaust port EP of the mist generator of FIG. 14 through a mist conveyance path (pipe) 36a. A film forming unit (film forming unit) according to the fifth embodiment including a (chamber) 30a was used. Below the chamber 30a, the sample substrate PF is disposed so as to be inclined at a certain angle θα with respect to a horizontal plane (XY plane) perpendicular to the direction of gravity, and a mist transport path (from the ceiling above the chamber 30a) ( A spray nozzle NZ1 having a spray port OP1 oriented in the −Z direction is provided at the end of the (piping) 36a. The reason why the sample substrate PF is inclined by the angle θα is the same as the reason why the substrate FS is inclined in the film forming chamber 22 as described above with reference to FIG.
 さらに、チャンバー30aの側壁(天井側であっても良い)であって、傾けたサンプル基板FPのZ方向の位置が高い側には、噴霧ノズルNZ1よりも高い位置に排気口EX1が形成され、不図示のアスピレータにより排気口EX1から一定流量でチャンバー30a内の気体を吸引する。これにより、図14のミスト発生装置の内部容器33B内で発生したミストMTを含む気体は、ミスト搬送路(配管)36aを通って負圧側となるチャンバー30a内の噴霧口OP1から放出される。噴霧口OP1から放出されるミストMTを含む気体は、排気口EX1の配置とサンプル基板PFの傾斜により、サンプル基板Pの表面に沿った方向に流れ易くすると共に、サンプル基板PF上に液溜まりが発生することを防ぐことができる。その為、サンプル基板PFの表面には効率的にミストMTが付着する。なお、図14のミスト発生装置の内部容器33B内を陽圧にして、ミスト搬送路(配管)36aを通って噴霧口OP1からミストMTを含む気体を加圧状態で噴出させる場合(押し出しの場合)は、噴霧口OP1からの気体(ミストMT)が四方に分散し易くなり、ミストMTの付着効率が低下する場合がある。 Furthermore, an exhaust port EX1 is formed at a position higher than the spray nozzle NZ1 on the side wall (which may be the ceiling side) of the chamber 30a and on the side where the tilted sample substrate FP has a higher position in the Z direction, The gas in the chamber 30a is sucked from the exhaust port EX1 at a constant flow rate by an aspirator (not shown). Thereby, the gas containing the mist MT generated in the inner container 33B of the mist generating device of FIG. 14 is discharged from the spray port OP1 in the chamber 30a on the negative pressure side through the mist conveyance path (pipe) 36a. The gas containing the mist MT discharged from the spray port OP1 is easy to flow in the direction along the surface of the sample substrate P due to the arrangement of the exhaust port EX1 and the inclination of the sample substrate PF, and a liquid pool is formed on the sample substrate PF. It can be prevented from occurring. Therefore, the mist MT efficiently adheres to the surface of the sample substrate PF. In the case where the inside of the inner container 33B of the mist generating device of FIG. 14 is set to a positive pressure and a gas containing the mist MT is ejected in a pressurized state from the spray port OP1 through the mist conveyance path (pipe) 36a (in the case of extrusion) ), The gas (mist MT) from the spray port OP1 is easily dispersed in all directions, and the deposition efficiency of the mist MT may be reduced.
 また、図18の成膜ユニットでは、サンプル基板PFを耐熱性のあるガラス基板とし、サンプル基板PFは温度200℃に加熱されるホットプレート(加熱器)HPT上に傾斜して保持される。これは、噴霧口OP1からのミストMTがサンプル基板PFに付着又は近接したときに、ミストの主成分である水を瞬時に蒸発させて、一定時間中に、サンプル基板PF上に堆積され得るナノ粒子NPによる最大の膜厚を把握する為である。 In the film forming unit shown in FIG. 18, the sample substrate PF is a heat-resistant glass substrate, and the sample substrate PF is tilted and held on a hot plate (heater) HPT heated to a temperature of 200.degree. This is because when the mist MT from the spray port OP1 adheres to or approaches the sample substrate PF, the water that is the main component of the mist is instantly evaporated, and can be deposited on the sample substrate PF within a certain time. This is for grasping the maximum film thickness due to the particles NP.
 ここで、図14のミスト発生装置の内部容器33B内には、ナノ粒子NPとして二酸化ジルコニア(ZrO2)の粒子(5wt.%)を含む分散液DILの200ccが貯留される。ZrO2の1つの粒子の平均的な粒径は3~5nmであるが、純水による分散液DIL中では、凝集により様々な粒径の塊となって分布している。そこで、分散液DIL中でのZrO2の粒径の分布を動的光散乱法により測定し、強制分散無しでの霧化の場合(1.6MHzの印加のみ)と、強制分散併用での霧化の場合(1.6MHz+20KHzの印加)とで比較してみた。図19は、縦軸に動的光散乱法で得られる散乱強度分布を表し、横軸は推定される粒径(nm)を表したグラフであり、特性SCは、スタティックな状態(1.6MHz、20KHzのどちらの振動も与えない無振動状態)での粒度分布を表し、特性SAは、強制分散無しでの霧化の場合(1.6MHzの印加のみ)での粒度分布を表し、特性SBは、強制分散併用での霧化の場合(1.6MHz+20KHzの印加)での粒度分布を表す。この測定結果から明らかなように、強制分散無しでの霧化の場合(1.6MHzの印加のみ)の特性SAはブロードな粒度分布となっており、強制分散併用での霧化の場合(1.6MHz+20KHzの印加)の特性SBは、特性SAに比べてシャープなピークを持つ粒度分布になっている。 Here, 200 cc of the dispersion liquid DIL containing particles (5 wt.%) Of zirconia dioxide (ZrO 2 ) as the nanoparticles NP is stored in the inner container 33B of the mist generating device of FIG. The average particle size of one particle of ZrO 2 is 3 to 5 nm, but in the dispersion DIL with pure water, it is distributed as a lump of various particle sizes due to aggregation. Therefore, the particle size distribution of ZrO 2 in the dispersion DIL is measured by the dynamic light scattering method, and in the case of atomization without forced dispersion (applying 1.6 MHz only), the fog with forced dispersion combined use Comparison was made in the case of conversion (application of 1.6 MHz + 20 KHz). FIG. 19 is a graph in which the vertical axis represents the scattering intensity distribution obtained by the dynamic light scattering method, the horizontal axis represents the estimated particle size (nm), and the characteristic SC is a static state (1.6 MHz). The characteristic SA represents the particle size distribution in the case of atomization without forced dispersion (applying only 1.6 MHz) and the characteristic SB. Represents the particle size distribution in the case of atomization with combined use of forced dispersion (application of 1.6 MHz + 20 KHz). As is clear from this measurement result, the characteristic SA in the case of atomization without forced dispersion (only application of 1.6 MHz) has a broad particle size distribution, and in the case of atomization with combined use of forced dispersion (1 The characteristic SB (applied at .6 MHz + 20 KHz) has a particle size distribution having a sharper peak than the characteristic SA.
 図19のグラフの特性SBでは、20~50nm辺りの粒径に凝集したZrO2の粒子塊が分散液DIL中に多く含まれることを意味し、特性SAでは、20~100nmの範囲の粒径に凝集したZrO2の粒子塊が、同程度の割合で分散液DIL中に含まれることを意味する。すなわち、強制分散併用での霧化の場合は、振動部34aによる1.6MHzの振動と、振動部32aによる20KHzの振動との重畳効果によって、凝集が起こったとしても、比較的に揃った粒径の粒子塊となって分散されることになる。なお、図19のグラフでは省略したが、霧化用の振動部34aを振動させずに、分散用の振動部32aのみを振動させた場合の粒度分布の特性は、特性SBに対して粒径(nm)のバンド幅が僅かに狭くなる程度で、概ね同じであった。 The characteristic SB in the graph of FIG. 19 means that a large amount of ZrO 2 particle aggregates aggregated to a particle size of 20 to 50 nm is contained in the dispersion DIL, and the characteristic SA has a particle size in the range of 20 to 100 nm. This means that ZrO 2 particle aggregates aggregated in the dispersion DIL are contained in the dispersion DIL at a similar rate. That is, in the case of atomization using forced dispersion, even if aggregation occurs due to the superimposing effect of 1.6 MHz vibration by the vibration part 34a and 20 KHz vibration by the vibration part 32a, relatively uniform particles It will be dispersed as a lump of particles with a diameter. Although not shown in the graph of FIG. 19, the characteristics of the particle size distribution when only the dispersing vibration part 32a is vibrated without vibrating the atomizing vibration part 34a are as follows. The band width of (nm) was almost the same with a slight narrowing.
 次に、図14のミスト発生装置で発生するミストMTを含む気体を、図18の成膜ユニット内のサンプル基板PFに一定時間だけ噴霧したときに、サンプル基板PF上に堆積されるZrO2のナノ粒子による膜の厚みを、強制分散無しでの霧化の場合と、強制分散併用での霧化の場合とで比較してみた。その際、図18のホットプレートHPT(サンプル基板PF)の温度は200℃に設定し、排気口EX1から吸気される流量は一定に設定した。図18の構成による成膜ユニットでは、強制分散無しでの霧化状態で一定時間だけミストMTをサンプル基板PFに噴霧して得られるZrO2粒子による膜厚は約2μmであり、同じ時間だけ強制分散併用での霧化状態でミストMTをサンプル基板PFに噴霧して得られるZrO2粒子による膜厚は約3μmであり、成膜効率が1.5倍に高められていることが判った。 Next, when the gas containing the mist MT generated by the mist generating device of FIG. 14 is sprayed on the sample substrate PF in the film forming unit of FIG. 18 for a predetermined time, the ZrO 2 deposited on the sample substrate PF. The film thickness of the nanoparticles was compared between the case of atomization without forced dispersion and the case of atomization with forced dispersion. At that time, the temperature of the hot plate HPT (sample substrate PF) in FIG. 18 was set to 200 ° C., and the flow rate taken from the exhaust port EX1 was set to be constant. In the film forming unit having the configuration shown in FIG. 18, the film thickness of the ZrO 2 particles obtained by spraying the mist MT on the sample substrate PF for a certain period of time in an atomized state without forced dispersion is about 2 μm. It was found that the film thickness of the ZrO 2 particles obtained by spraying the mist MT on the sample substrate PF in the atomized state in combination with dispersion was about 3 μm, and the film formation efficiency was increased 1.5 times.
 さらに、図14のミスト発生装置で生成されたミストMTを、図18の成膜ユニットに導入して、サンプル基板PF(ガラス)上に膜厚60nmのZrO2粒子による膜(サンプル1)と、膜厚2μmのZrO2粒子による膜(サンプル2)とを作成し、サンプル1、2の各々の膜のヘイズ(HAZE)率を測定してみた。ヘイズ率は、膜体を透過する全透過光量中の拡散透過光量の比率(%)で表わされ、この比率が小さくなるほど、膜を構成するZrO2のナノ粒子よる粒子径(又は粒子塊の径)も小さくなって、緻密な膜とみなされる。サンプル1、2の各々の膜のヘイズ(HAZE)率の測定結果を図20に示す。 Further, the mist MT generated by the mist generating device of FIG. 14 is introduced into the film forming unit of FIG. 18, and a film (sample 1) of ZrO 2 particles having a film thickness of 60 nm on the sample substrate PF (glass), A film (sample 2) made of ZrO 2 particles having a thickness of 2 μm was prepared, and the haze ratio of each film of samples 1 and 2 was measured. The haze ratio is represented by the ratio (%) of the diffuse transmitted light amount in the total transmitted light amount that passes through the film body. The smaller this ratio, the smaller the particle diameter (or the particle lump) of the ZrO 2 nanoparticles constituting the film. (Diameter) is also reduced, and is considered a dense film. The measurement result of the haze (HAZE) rate of each film of Samples 1 and 2 is shown in FIG.
 図20Aはサンプル1(膜厚60nm)のヘイズ率の特性A1、B1を示し、図20Bはサンプル2(膜厚2μm)のヘイズ率の特性A2、B2を示し、それぞれ、縦軸はヘイズ(HAZE)率(%)を表し、横軸は波長(nm)を表す。計測した波長範囲は380nm~780nmとした。サンプル1の場合、強制分散無しでの霧化状態で形成されたZrO2粒子の膜(60nm厚)の平均的なヘイズ率は、特性A1から約0.38%であり、強制分散併用での霧化状態で形成されたZrO2粒子の膜(60nm厚)の平均的なヘイズ率は、特性B1から約0.2%に低減している。さらに、サンプル2の場合も、強制分散無しでの霧化状態で形成されたZrO2粒子の膜(2μm厚)の平均的なヘイズ率は、特性A2から約14%であり、強制分散併用での霧化状態で形成されたZrO2粒子の膜(2μm厚)の平均的なヘイズ率は、特性B2から約10%に低減している。このように、分散用の振動部32aを併用した霧化によって、成膜された膜の粗さが低減され、緻密さを向上させる顕著な効果が得られることが確認できた。なお、以上で説明した実験では、分散液DIL中のナノ粒子の凝集を抑制する為の超音波振動波の周波数を20KHzとしたが、その周波数は固定的なものではなく、ナノ粒子単体のサイズ、ナノ粒子の材質によって調整される。また、分散液DILからミストMTを発生させる実験でも、霧化用の超音波振動波の周波数を1.6MHzとしたが、これも固定的なものではなく、1MHZ~3MHz程度の範囲で霧化効率が高くなる周波数に設定される。 20A shows haze ratio characteristics A1 and B1 of sample 1 (film thickness 60 nm), FIG. 20B shows haze ratio characteristics A2 and B2 of sample 2 (film thickness 2 μm), and the vertical axis represents haze (HAZE). ) Rate (%), and the horizontal axis represents wavelength (nm). The measured wavelength range was 380 nm to 780 nm. In the case of sample 1, the average haze ratio of the ZrO 2 particle film (60 nm thickness) formed in the atomized state without forced dispersion is about 0.38% from the characteristic A1, The average haze ratio of the ZrO 2 particle film (thickness: 60 nm) formed in the atomized state is reduced to about 0.2% from the characteristic B1. Further, in the case of Sample 2, the average haze ratio of the ZrO 2 particle film (2 μm thickness) formed in the atomized state without forced dispersion is about 14% from the characteristic A2, The average haze ratio of the ZrO 2 particle film (2 μm thick) formed in the atomized state is reduced to about 10% from the characteristic B2. As described above, it was confirmed that the atomization combined with the vibration unit 32a for dispersion reduces the roughness of the formed film and provides a remarkable effect of improving the density. In the experiment described above, the frequency of the ultrasonic vibration wave for suppressing aggregation of the nanoparticles in the dispersion DIL is set to 20 KHz. However, the frequency is not fixed, and the size of the nanoparticle alone. , Adjusted by the material of the nanoparticles. Further, in the experiment for generating mist MT from the dispersion DIL, the frequency of the ultrasonic vibration wave for atomization was set to 1.6 MHz, but this is not fixed and is atomized in the range of about 1 MHz to 3 MHz. It is set to a frequency at which efficiency increases.
[その他の変形例]
 以上の第1~第5の各実施の形態では、ミスト発生装置(ミスト発生部)において、霧化用の振動部34aと分散用の振動部32aとの両方からの振動波を、界面活性剤となる化学組成成分の含有量が実質的に零とみなせる溶液による分散液DIL(DIL1)に印加することにより、例え凝集したとしても、ミストMTに含まれるようにナノ粒子NPの塊の粒径を小さく揃えられることができる。その為、基板FSに形成される膜質を良好にできる。このような効果は、分散用の振動部32aからの振動波を分散液(界面活性剤となる化学組成成分を実質的に含まない溶液)に印加した状態で、霧化用の振動部34aを用いずに発熱体(ヒーター)によって分散液DIL(DIL1)を加熱させてミストMTを発生させる場合でも同様に得られる。この場合、分散液DILから発生するミストMTや、ミスト搬送流路36aを通るミストMTを含む気体の温度は100℃前後になることがあるので、図2に示した成膜室22内の温度、或いは図18に示したチャンバー30a内の温度も、それに近い温度に設定される。このように、微粒子を分散させた分散液DIL(溶液)から、微粒子を含むミスト(直径が数十μm以下の液滴)を発生させる方法は、分散液DILに振動波(周波数が1MHz以上)を印加する加振方式、分散液DILの液面から蒸気(湯気)を発生させる加熱方式のいずれであっても良い。
[Other variations]
In each of the first to fifth embodiments described above, in the mist generator (mist generator), the vibration waves from both the atomizing vibration part 34a and the dispersion vibration part 32a are used as the surfactant. The particle size of the mass of the nanoparticle NP so as to be included in the mist MT even if it is agglomerated by applying to the dispersion DIL (DIL1) with a solution in which the content of the chemical composition component becomes substantially zero. Can be made small. Therefore, the film quality formed on the substrate FS can be improved. Such an effect is obtained by applying the vibration wave from the vibration part 32a for dispersion to the dispersion liquid (solution that does not substantially contain a chemical composition component serving as a surfactant), and the vibration part 34a for atomization. Even when the mist MT is generated by heating the dispersion DIL (DIL1) with a heating element (heater) without using it, the same is obtained. In this case, since the temperature of the gas containing the mist MT generated from the dispersion DIL and the mist MT passing through the mist transport flow path 36a may be around 100 ° C., the temperature in the film forming chamber 22 shown in FIG. Alternatively, the temperature in the chamber 30a shown in FIG. 18 is also set to a temperature close thereto. As described above, a method of generating a mist (droplet having a diameter of several tens of μm or less) containing fine particles from a dispersion DIL (solution) in which fine particles are dispersed is a vibration wave (frequency is 1 MHz or more) in the dispersion DIL. Any one of a vibration method for applying a mist and a heating method for generating steam (steam) from the liquid surface of the dispersion DIL may be used.

Claims (28)

  1.  微粒子を含むミストを発生するミスト発生装置であって、
     前記微粒子を含むミスト生成用の溶液を保持する第1容器と、
     第1の周波数の振動を前記第1容器内の前記溶液に与えることで、前記微粒子の前記溶液中での凝集を抑える第1振動部と、
     前記第1の周波数よりも高く、前記溶液の表面から前記微粒子を含むミストを発生させるための第2の周波数の振動を前記第1容器内の前記溶液に与える第2振動部と、
     を備える、ミスト発生装置。
    A mist generating device that generates mist containing fine particles,
    A first container for holding a solution for generating mist containing the fine particles;
    A first vibration unit that suppresses aggregation of the fine particles in the solution by applying vibration of a first frequency to the solution in the first container;
    A second vibration unit that applies a vibration of a second frequency higher than the first frequency to generate mist containing the fine particles from the surface of the solution to the solution in the first container;
    A mist generator.
  2.  請求項1に記載のミスト発生装置であって、
     前記溶液は、凝集を抑えるための界面活性剤を含まない液体である、ミスト発生装置。
    The mist generator according to claim 1,
    The said solution is a mist generator which is a liquid which does not contain surfactant for suppressing aggregation.
  3.  請求項1または2に記載のミスト発生装置であって、
     前記第1容器内に発生したミストが液化した第2の溶液を保持する第2容器と、
     前記第2容器内の前記第2の溶液に前記第1の周波数を与える第3振動部と、
     をさらに備え、
     前記第1容器内に発生したミストは、キャリアガスによって前記第2容器に搬送される、ミスト発生装置。
    The mist generator according to claim 1 or 2,
    A second container for holding a second solution in which mist generated in the first container is liquefied;
    A third vibrating section for applying the first frequency to the second solution in the second container;
    Further comprising
    The mist generating device, wherein the mist generated in the first container is transported to the second container by a carrier gas.
  4.  請求項1または2に記載のミスト発生装置であって、
     前記第1容器内に発生したミストが液化した第2の溶液を保持する第3容器と、
     前記第3容器内の前記第2の溶液に前記第2の周波数を与える第4振動部と、
     をさらに備え、
     前記第1容器内に発生したミストを、第1のキャリアガスによって前記第3容器に搬送する、ミスト発生装置。
    The mist generator according to claim 1 or 2,
    A third container for holding a second solution in which mist generated in the first container is liquefied;
    A fourth vibrating section for applying the second frequency to the second solution in the third container;
    Further comprising
    A mist generating apparatus that conveys mist generated in the first container to the third container by a first carrier gas.
  5.  請求項4に記載のミスト発生装置であって、
     前記第3容器の内部空間を、前記第1容器から搬送されてきたミストが存在する第1空間と、前記第4振動部による振動によって前記第2の溶液の表面から発生するミストが存在する第2空間とに区切るセパレータを有し、
     前記第2空間内に発生したミストを、第2のキャリアガスによってミスト処理部に搬送する、ミスト発生装置。
    The mist generating device according to claim 4,
    In the internal space of the third container, there is a first space where the mist conveyed from the first container is present, and a mist generated from the surface of the second solution due to vibration by the fourth vibrating part. It has a separator that separates it into two spaces,
    A mist generating apparatus that transports mist generated in the second space to a mist processing section by a second carrier gas.
  6.  請求項1~5のいずれか1項に記載のミスト発生装置であって、
     前記溶液は、凝集した前記微粒子を粉砕するための粉砕用粒子を含み、
     前記粉砕用粒子の粒径は、発生するミストの径よりも大きいものを含むように設定される、ミスト発生装置。
    The mist generating device according to any one of claims 1 to 5,
    The solution includes pulverizing particles for pulverizing the aggregated fine particles,
    A mist generating apparatus, wherein the pulverizing particles have a particle size larger than that of the generated mist.
  7.  請求項1~6のいずれか1項に記載のミスト発生装置であって、
     前記第1の周波数は、1MHzより低い周波数であり、
     前記第2の周波数は、1MHz以上の周波数である、ミスト発生装置。
    The mist generating device according to any one of claims 1 to 6,
    The first frequency is a frequency lower than 1 MHz;
    The mist generator, wherein the second frequency is a frequency of 1 MHz or more.
  8.  請求項1~7のいずれか1項に記載のミスト発生装置であって、
     前記微粒子は、金属ナノ粒子、有機ナノ粒子、および、無機ナノ粒子のうち、少なくとも1つを含む、ミスト発生装置。
    The mist generating device according to any one of claims 1 to 7,
    The mist generating apparatus, wherein the fine particles include at least one of metal nanoparticles, organic nanoparticles, and inorganic nanoparticles.
  9.  微粒子を含むミストを用いて基板上に薄膜を形成する成膜装置であって、
     前記微粒子を含む分散液を保持する容器と、
     第1の周波数の振動を前記容器内の前記分散液に与えることで、前記微粒子が前記分散液中で凝集するサイズを前記ミストのサイズ以下に抑えた分散状態にする第1振動部と、
     前記第1の周波数よりも高い第2の周波数の振動を前記分散液に与えることで、前記分散液の表面から前記微粒子を含むミストを発生させる第2振動部と、
     を備える、成膜装置。
    A film forming apparatus for forming a thin film on a substrate using a mist containing fine particles,
    A container for holding a dispersion containing the fine particles;
    A first vibration unit that applies a vibration having a first frequency to the dispersion in the container to make the dispersion state in which the size of the fine particles aggregated in the dispersion is suppressed to be equal to or less than the size of the mist;
    A second vibration unit that generates mist containing the fine particles from the surface of the dispersion by applying vibration of the second frequency higher than the first frequency to the dispersion;
    A film forming apparatus comprising:
  10.  請求項9に記載の成膜装置であって、
     前記分散液は、凝集を抑えるための界面活性剤の含有量が実質的に零の液体である、成膜装置。
    The film forming apparatus according to claim 9,
    The film forming apparatus, wherein the dispersion is a liquid having substantially zero surfactant content for suppressing aggregation.
  11.  請求項10に記載の成膜装置であって、
     前記分散液は純水であり、前記微粒子は金属ナノ粒子、有機ナノ粒子、および、無機ナノ粒子のうちの少なくとも1つを含む、成膜装置。
    It is the film-forming apparatus of Claim 10, Comprising:
    The film forming apparatus, wherein the dispersion is pure water, and the fine particles include at least one of metal nanoparticles, organic nanoparticles, and inorganic nanoparticles.
  12.  請求項11に記載の成膜装置であって、
     前記分散液の表面から発生する前記ミストを前記基板の表面まで運ぶための不活性なキャリアガスの流れを生成する気体供給部を、さらに備える、成膜装置。
    The film forming apparatus according to claim 11,
    A film forming apparatus, further comprising: a gas supply unit that generates a flow of an inert carrier gas for transporting the mist generated from the surface of the dispersion to the surface of the substrate.
  13.  請求項12に記載の成膜装置であって、
     前記不活性なキャリアガスは、窒素ガス、ヘリウムガス、アルゴンガスのうちの少なくとも1つを含む、成膜装置。
    The film forming apparatus according to claim 12,
    The film forming apparatus, wherein the inert carrier gas includes at least one of nitrogen gas, helium gas, and argon gas.
  14.  微粒子を含む分散液からミストを発生するミスト発生方法であって、
     第1の周波数の振動を前記分散液に与えることで、前記微粒子の前記分散液中での凝集を抑えることと、
     前記第1の周波数よりも高く、前記分散液の表面から前記微粒子を含むミストを発生させるための第2の周波数の振動を前記分散液に与えることと、
     を含む、ミスト発生方法。
    A mist generating method for generating mist from a dispersion containing fine particles,
    Suppressing the aggregation of the fine particles in the dispersion by applying vibration of the first frequency to the dispersion;
    Applying to the dispersion a vibration at a second frequency higher than the first frequency to generate mist containing the fine particles from the surface of the dispersion;
    A mist generating method.
  15.  微粒子を含む分散液から発生するミストを用いて基板上に薄膜を形成する成膜方法であって、
     第1の周波数の振動を前記分散液に与えることで、前記微粒子の前記分散液中での凝集を抑えることと、
     前記第1の周波数よりも高い第2の周波数の振動を前記分散液に与えることで、前記分散液の表面から前記微粒子を含むミストを発生させることと、
     を含む、成膜方法。
    A film forming method for forming a thin film on a substrate using mist generated from a dispersion containing fine particles,
    Suppressing the aggregation of the fine particles in the dispersion by applying vibration of the first frequency to the dispersion;
    Generating a mist containing the fine particles from the surface of the dispersion by applying vibration of the second frequency higher than the first frequency to the dispersion;
    A film forming method comprising:
  16.  基板に所定の処理を施すことで電子デバイスを製造するデバイス製造方法であって、
     第1の周波数の振動を微粒子を含む分散液に与えて前記微粒子の前記分散液中での凝集を抑えることと、
     前記第1の周波数よりも高い第2の周波数の振動を前記分散液に与えて、前記分散液の表面から前記微粒子を含むミストを発生させることと、
     前記基板を前記ミストに曝して、前記基板の表面に前記微粒子による薄膜を形成することと、
     前記基板の表面に形成された前記薄膜をパターニングして、前記電子デバイスのための所定のパターンを形成することと、
     を含む、デバイス製造方法。
    A device manufacturing method for manufacturing an electronic device by performing predetermined processing on a substrate,
    Applying vibrations of a first frequency to a dispersion containing fine particles to suppress aggregation of the fine particles in the dispersion;
    Applying a vibration of a second frequency higher than the first frequency to the dispersion to generate mist containing the fine particles from the surface of the dispersion;
    Exposing the substrate to the mist to form a thin film of the fine particles on the surface of the substrate;
    Patterning the thin film formed on the surface of the substrate to form a predetermined pattern for the electronic device;
    A device manufacturing method.
  17.  基板に所定の処理を施すことで電子デバイスを製造するデバイス製造方法であって、
     第1の周波数の振動を微粒子を含む分散液に与えて前記微粒子の前記分散液中での凝集を抑えることと、
     前記第1の周波数よりも高い第2の周波数の振動を前記分散液に与えて、前記分散液の表面から前記微粒子を含むミストを発生させることと、
     前記基板を前記ミストに曝し、前記基板の表面のうち前記電子デバイスを構成する回路の少なくとも一部のパターンに対応した部分に、前記微粒子による薄膜を選択的に形成することと、
     を含む、デバイス製造方法。
    A device manufacturing method for manufacturing an electronic device by performing predetermined processing on a substrate,
    Applying vibrations of a first frequency to a dispersion containing fine particles to suppress aggregation of the fine particles in the dispersion;
    Applying a vibration of a second frequency higher than the first frequency to the dispersion to generate mist containing the fine particles from the surface of the dispersion;
    Exposing the substrate to the mist, and selectively forming a thin film of the fine particles on a portion of the surface of the substrate corresponding to a pattern of at least a part of a circuit constituting the electronic device;
    A device manufacturing method.
  18.  請求項16または17に記載のデバイス製造方法であって、
     前記分散液は前記微粒子の凝集を抑える界面活性剤の含有量が略零の液体であり、
     前記第1の周波数は1MHz以下、好ましくは200KHz以下に設定され、
     前記第2の周波数は前記分散液の液面にキャピラリ波を発生させる1MHz以上に設定される、デバイス製造方法。
    The device manufacturing method according to claim 16 or 17,
    The dispersion is a liquid having a substantially zero content of a surfactant that suppresses aggregation of the fine particles,
    The first frequency is set to 1 MHz or less, preferably 200 KHz or less,
    The device manufacturing method, wherein the second frequency is set to 1 MHz or higher that generates a capillary wave on a liquid surface of the dispersion.
  19.  微粒子を含むミストを発生するミスト発生装置であって、
     前記微粒子を含む分散液を保持する第1容器と、
     第1の周波数の振動を前記第1容器内の前記分散液に与える第1振動部と、
     前記第1の周波数と異なる第2の周波数の振動を前記第1容器内の前記分散液に与える第2振動部と、
     を備え、
     前記第1振動部と前記第2振動部の少なくとも一方の振動によって、前記分散液の液面から前記ミストを発生させる、ミスト発生装置。
    A mist generating device that generates mist containing fine particles,
    A first container holding a dispersion containing the fine particles;
    A first vibration unit that applies vibrations of a first frequency to the dispersion in the first container;
    A second vibration unit that applies vibrations of a second frequency different from the first frequency to the dispersion in the first container;
    With
    A mist generating device that generates the mist from the liquid surface of the dispersion liquid by vibration of at least one of the first vibrating section and the second vibrating section.
  20.  請求項19に記載のミスト発生装置であって、
     前記第1振動部と前記第2振動部を駆動する駆動制御回路部を含み、
     前記第1の周波数をSF1、前記第2の周波数をSF2としたとき、
     前記駆動制御回路部は、前記周波数SF1と前記周波数SF2の比が10倍以上になるように各周波数を設定する第1モードと、前記周波数SF1と前記周波数SF2の差が前記周波数SF1または前記周波数SF2の1/10以下となるように各周波数を設定する第2モードとのいずれか一方で、前記第1振動部と前記第2振動部を駆動する、ミスト発生装置。
    The mist generating device according to claim 19,
    A drive control circuit unit for driving the first vibrating unit and the second vibrating unit;
    When the first frequency is SF1 and the second frequency is SF2,
    The drive control circuit unit includes a first mode in which each frequency is set so that a ratio between the frequency SF1 and the frequency SF2 is 10 times or more, and a difference between the frequency SF1 and the frequency SF2 is the frequency SF1 or the frequency A mist generating device that drives the first vibration unit and the second vibration unit in one of the second modes in which each frequency is set to be 1/10 or less of SF2.
  21.  請求項20に記載のミスト発生装置であって、
     前記第1モードの際に、前記周波数SF1は、前記微粒子が前記分散液中で凝集するサイズを前記ミストのサイズ以下に抑えた分散状態にする100KHz以下の周波数に設定され、前記周波数SF2は、前記分散液の液面から前記微粒子を含む前記ミストを発生する1MHz以上の周波数に設定される、ミスト発生装置。
    The mist generating device according to claim 20,
    In the first mode, the frequency SF1 is set to a frequency of 100 KHz or less that makes a dispersion state in which the size of the fine particles aggregated in the dispersion liquid is suppressed to be equal to or less than the size of the mist, and the frequency SF2 is The mist generator set to the frequency of 1 MHz or more which generate | occur | produces the said mist containing the said microparticles | fine-particles from the liquid level of the said dispersion liquid.
  22.  請求項20に記載のミスト発生装置であって、
     前記第2モードの際に、前記周波数SF1と前記周波数SF2は、前記分散液の液面から前記微粒子を含む前記ミストを発生する1MHz以上の異なる周波数に設定されるとともに、前記周波数SF1と前記周波数SF2とが、前記微粒子を前記分散液中で分散状態にする100KHz以下の周波数差を有するように設定される、ミスト発生装置。
    The mist generating device according to claim 20,
    In the second mode, the frequency SF1 and the frequency SF2 are set to different frequencies of 1 MHz or more that generate the mist containing the fine particles from the liquid surface of the dispersion liquid, and the frequency SF1 and the frequency SF2 are set. A mist generating device in which SF2 is set to have a frequency difference of 100 KHz or less that makes the fine particles dispersed in the dispersion.
  23.  微粒子を含むミストを発生するミスト発生装置であって、
     前記微粒子を含む溶液を保持する第1容器と、
     第1の周波数の振動を前記第1容器内の前記溶液に与えることで、前記微粒子の前記溶液中での凝集を抑える第1振動部と、
     前記溶液の液面から前記微粒子を含むミストを発生させるために、前記第1の周波数よりも高い第2の周波数の振動を前記第1容器の外部から与える第2振動部と、を備え、
     前記溶液の液面と平行な面内において、前記第1振動部と前記第2振動部とを所定間隔で離して配置する、ミスト発生装置。
    A mist generating device that generates mist containing fine particles,
    A first container for holding a solution containing the fine particles;
    A first vibration unit that suppresses aggregation of the fine particles in the solution by applying vibration of a first frequency to the solution in the first container;
    A second vibrating section for applying vibration at a second frequency higher than the first frequency from the outside of the first container to generate mist containing the fine particles from the liquid surface of the solution;
    The mist generator which arrange | positions the said 1st vibration part and the said 2nd vibration part spaced apart by predetermined spacing in the surface parallel to the liquid level of the said solution.
  24.  請求項23に記載のミスト発生装置であって、
     前記第1容器の少なくとも底部を浸けるように液体を溜めると共に、前記第2振動部を前記液体中に設置する第2容器を備え、
     前記第2振動部による前記第2の周波数の振動を、前記第2容器内の前記液体と前記第1容器とを介して前記溶液に伝搬させる、ミスト発生装置。
    The mist generating device according to claim 23,
    The liquid is stored so as to immerse at least the bottom of the first container, and the second container is provided with the second vibrating part installed in the liquid,
    The mist generating apparatus which propagates the vibration of the said 2nd frequency by the said 2nd vibration part to the said solution via the said liquid and said 1st container in a said 2nd container.
  25.  請求項24に記載のミスト発生装置であって、
     前記第2振動部による振動によって前記溶液の液面から前記ミストが効率的に発生する前記第1容器内の前記溶液の深さと同程度に前記所定間隔を設定する、ミスト発生装置。
    The mist generating device according to claim 24,
    The mist generating apparatus that sets the predetermined interval to be approximately the same as the depth of the solution in the first container where the mist is efficiently generated from the liquid surface of the solution by vibration by the second vibrating section.
  26.  微粒子を含むミストを発生させるミスト発生方法であって、
     界面活性剤となる化学成分を含まない液体に前記微粒子を所定の濃度で混ぜた溶液を第1容器に貯留し、前記溶液に第1の振動波を与える、又は前記溶液を加熱することによって、前記溶液の液面から前記微粒子を含むミストを発生させる段階と、
     前記微粒子が前記溶液中で前記ミストのサイズ以上に凝集することを抑えるような第2の振動波を前記溶液に与える段階と、
     を含む、ミスト発生方法。
    A mist generating method for generating mist containing fine particles,
    By storing a solution in which the fine particles are mixed at a predetermined concentration in a liquid not containing a chemical component to be a surfactant in a first container, and applying a first vibration wave to the solution, or heating the solution, Generating a mist containing the fine particles from the liquid surface of the solution;
    Providing the solution with a second vibration wave that prevents the fine particles from aggregating in the solution to a size larger than the size of the mist;
    A mist generating method.
  27.  請求項26に記載のミスト発生方法であって、
     前記ミストを発生させる段階と、前記第2の振動波を前記溶液に与える段階とを並行して実施する、ミスト発生方法。
    The mist generating method according to claim 26,
    A method for generating mist, wherein the step of generating the mist and the step of applying the second vibration wave to the solution are performed in parallel.
  28.  請求項27に記載のミスト発生方法であって、
     前記第1の振動波によって前記ミストを発生する際は、第2容器内に溜められた液体に前記第1容器の少なくとも底部を浸すように設置した状態で、前記第2容器内の前記液体と前記第1容器とを介して前記第1の振動波を前記第1容器内の前記溶液に伝える、ミスト発生方法。
    The mist generating method according to claim 27,
    When the mist is generated by the first vibration wave, the liquid in the second container is placed in a state where at least the bottom of the first container is immersed in the liquid stored in the second container. A mist generation method for transmitting the first vibration wave to the solution in the first container via the first container.
PCT/JP2017/009104 2016-03-11 2017-03-07 Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method WO2017154937A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780016625.9A CN108778527B (en) 2016-03-11 2017-03-07 Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method
JP2018504532A JP6984587B2 (en) 2016-03-11 2017-03-07 Mist generator, mist film forming device and mist generation method
KR1020217042290A KR20210158882A (en) 2016-03-11 2017-03-07 Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method
KR1020187025355A KR102344403B1 (en) 2016-03-11 2017-03-07 Mist generating apparatus, film forming apparatus, mist generating method, film forming method, and device manufacturing method
HK18115009.7A HK1255940A1 (en) 2016-03-11 2018-11-23 Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method
JP2021191027A JP2022046463A (en) 2016-03-11 2021-11-25 Mist generator, mist deposition device and mist generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016047730 2016-03-11
JP2016-047730 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017154937A1 true WO2017154937A1 (en) 2017-09-14

Family

ID=59790547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009104 WO2017154937A1 (en) 2016-03-11 2017-03-07 Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method

Country Status (6)

Country Link
JP (2) JP6984587B2 (en)
KR (2) KR20210158882A (en)
CN (1) CN108778527B (en)
HK (1) HK1255940A1 (en)
TW (3) TWI764479B (en)
WO (1) WO2017154937A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069424A (en) * 2017-10-11 2019-05-09 凸版印刷株式会社 Printer and printing method and printed matter
JP2019119931A (en) * 2017-12-29 2019-07-22 株式会社Flosfia Processing method
WO2019163189A1 (en) * 2018-02-21 2019-08-29 国立大学法人 熊本大学 Fine particle dispersion method, and deposition method and deposition device using same
WO2020060032A1 (en) * 2018-09-21 2020-03-26 동국대학교 산학협력단 Method for thin film deposition of layered structure materials using atomized spray and apparatus therefor
KR20200034926A (en) * 2018-09-21 2020-04-01 동국대학교 산학협력단 Atomization type thin film deposition method of layered structure material and apparatus thereof
JP2020196930A (en) * 2019-06-03 2020-12-10 トヨタ自動車株式会社 Mist generator, film deposition apparatus, and film deposition method using the film deposition apparatus
WO2021014960A1 (en) * 2019-07-23 2021-01-28 東洋製罐株式会社 Stirring device for aerosol container, discharging device and discharging method for movable body, and temperature adjustment device, temperature maintaining device, temperature adjustment method, and temperature maintaining method for aerosol container
KR20210038662A (en) * 2018-08-01 2021-04-07 가부시키가이샤 니콘 Mist generating device, mist film forming method, and mist film forming device
WO2023234118A1 (en) * 2022-06-03 2023-12-07 東洋紡株式会社 Photoelectric conversion element and method for producing same
US11958678B2 (en) 2019-07-23 2024-04-16 Toyo Seikan Co., Ltd. Stirring device for aerosol container, discharge apparatus and discharge method for moving vehicle, temperature adjusting device, temperature holding device, temperature adjusting method and temperature holding method for aerosol container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452556B2 (en) * 2020-01-21 2024-03-19 株式会社ニコン Mist film forming equipment and mist film forming method
CN111495632B (en) * 2020-04-24 2021-10-08 西安西热水务环保有限公司 Method for predicting and regulating droplet particle size of double-fluid atomizer
CN116981324A (en) * 2022-04-18 2023-10-31 Tcl科技集团股份有限公司 Film forming method of light-emitting diode film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292116A (en) * 1976-01-30 1977-08-03 Hitachi Ltd Super-sonic particles generator
JP2007154156A (en) * 2005-11-09 2007-06-21 Hitachi Chem Co Ltd Metallic oxide microparticle, abrasive, and method for grinding substrate and method for producing semiconductor device using the abrasive,
JP2007229894A (en) * 2006-03-03 2007-09-13 Enomoto Bea Co Ltd Mist supply device and mist supply method
JP2008030026A (en) * 2006-07-05 2008-02-14 Choonpa Jozosho Kk Ultrasonic solution separation apparatus
JP2011235202A (en) * 2010-05-01 2011-11-24 Optnics Precision Co Ltd Atomizing device
JP2012057949A (en) * 2010-09-04 2012-03-22 Honda Electronic Co Ltd Ultrasonic concentration method and ultrasonic concentration analyzing system
JP2013139000A (en) * 2012-01-05 2013-07-18 Takuma Co Ltd Ultrasonic atomizing device and ultrasonic atomization method of the same
WO2015159983A1 (en) * 2014-04-18 2015-10-22 株式会社ニコン Film forming apparatus, substrate processing apparatus and device manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417873A (en) * 1987-07-13 1989-01-20 Matsumoto Seiyaku Kogyo Kk Formation of thin film of metal compound decomposition product
JP4289908B2 (en) 2003-03-07 2009-07-01 サムコ株式会社 Atomizer for forming ceramic thin film and thin film manufacturing method using the same
CN2812303Y (en) * 2005-03-09 2006-08-30 南开大学 Equipment for nano-oxide nesa preparation by means of ultrasonic rapid deposition
JP4775743B2 (en) * 2007-08-06 2011-09-21 豊 土屋 Air negative ion generator using water
MY154259A (en) * 2007-10-22 2015-05-29 Hitachi Chemical Co Ltd Method for forming a copper wiring pattern, and copper oxide particle dispersed slurry used therein
JP6019102B2 (en) * 2012-03-09 2016-11-02 株式会社セラフト Nanoparticle dispersion, nanoparticle-supporting powder, and production method thereof
JP2014069171A (en) * 2012-10-02 2014-04-21 Challenge:Kk Film forming device and atomizer
JP6945120B2 (en) * 2014-08-29 2021-10-06 株式会社Flosfia Metal film forming method
KR101632829B1 (en) 2015-02-17 2016-06-22 동명대학교산학협력단 Nano particles lamination system using nano-micro mist

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292116A (en) * 1976-01-30 1977-08-03 Hitachi Ltd Super-sonic particles generator
JP2007154156A (en) * 2005-11-09 2007-06-21 Hitachi Chem Co Ltd Metallic oxide microparticle, abrasive, and method for grinding substrate and method for producing semiconductor device using the abrasive,
JP2007229894A (en) * 2006-03-03 2007-09-13 Enomoto Bea Co Ltd Mist supply device and mist supply method
JP2008030026A (en) * 2006-07-05 2008-02-14 Choonpa Jozosho Kk Ultrasonic solution separation apparatus
JP2011235202A (en) * 2010-05-01 2011-11-24 Optnics Precision Co Ltd Atomizing device
JP2012057949A (en) * 2010-09-04 2012-03-22 Honda Electronic Co Ltd Ultrasonic concentration method and ultrasonic concentration analyzing system
JP2013139000A (en) * 2012-01-05 2013-07-18 Takuma Co Ltd Ultrasonic atomizing device and ultrasonic atomization method of the same
WO2015159983A1 (en) * 2014-04-18 2015-10-22 株式会社ニコン Film forming apparatus, substrate processing apparatus and device manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069424A (en) * 2017-10-11 2019-05-09 凸版印刷株式会社 Printer and printing method and printed matter
JP2019119931A (en) * 2017-12-29 2019-07-22 株式会社Flosfia Processing method
WO2019163189A1 (en) * 2018-02-21 2019-08-29 国立大学法人 熊本大学 Fine particle dispersion method, and deposition method and deposition device using same
US11628468B2 (en) 2018-08-01 2023-04-18 Nikon Corporation Mist generator, mist film formation method and mist film formation apparatus
KR102527442B1 (en) * 2018-08-01 2023-04-28 가부시키가이샤 니콘 Mist generating device, mist film forming method, and mist film forming device
CN112752616B (en) * 2018-08-01 2023-07-14 株式会社尼康 Mist generating device, mist film forming method, and mist film forming device
CN112752616A (en) * 2018-08-01 2021-05-04 株式会社尼康 Mist generating device, mist film forming method, and mist film forming device
KR20210038662A (en) * 2018-08-01 2021-04-07 가부시키가이샤 니콘 Mist generating device, mist film forming method, and mist film forming device
KR102336187B1 (en) * 2018-09-21 2021-12-09 동국대학교 산학협력단 Atomization type thin film deposition method of layered structure material and apparatus thereof
WO2020060032A1 (en) * 2018-09-21 2020-03-26 동국대학교 산학협력단 Method for thin film deposition of layered structure materials using atomized spray and apparatus therefor
KR20200034926A (en) * 2018-09-21 2020-04-01 동국대학교 산학협력단 Atomization type thin film deposition method of layered structure material and apparatus thereof
US11534791B2 (en) 2019-06-03 2022-12-27 Denso Corporation Mist generator, film formation apparatus, and method of forming film using the film formation apparatus
JP7228160B2 (en) 2019-06-03 2023-02-24 株式会社デンソー Mist generating device, film forming device, and film forming method using film forming device
JP2020196930A (en) * 2019-06-03 2020-12-10 トヨタ自動車株式会社 Mist generator, film deposition apparatus, and film deposition method using the film deposition apparatus
WO2021014960A1 (en) * 2019-07-23 2021-01-28 東洋製罐株式会社 Stirring device for aerosol container, discharging device and discharging method for movable body, and temperature adjustment device, temperature maintaining device, temperature adjustment method, and temperature maintaining method for aerosol container
US11958678B2 (en) 2019-07-23 2024-04-16 Toyo Seikan Co., Ltd. Stirring device for aerosol container, discharge apparatus and discharge method for moving vehicle, temperature adjusting device, temperature holding device, temperature adjusting method and temperature holding method for aerosol container
WO2023234118A1 (en) * 2022-06-03 2023-12-07 東洋紡株式会社 Photoelectric conversion element and method for producing same

Also Published As

Publication number Publication date
KR20210158882A (en) 2021-12-31
JP6984587B2 (en) 2021-12-22
KR102344403B1 (en) 2021-12-29
JPWO2017154937A1 (en) 2019-01-10
TW202233306A (en) 2022-09-01
CN108778527B (en) 2022-01-21
TW202114783A (en) 2021-04-16
TWI764479B (en) 2022-05-11
HK1255940A1 (en) 2019-09-06
CN108778527A (en) 2018-11-09
TW201801799A (en) 2018-01-16
KR20180122342A (en) 2018-11-12
JP2022046463A (en) 2022-03-23

Similar Documents

Publication Publication Date Title
WO2017154937A1 (en) Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method
JP2020114943A (en) Thin film manufacturing device and thin film manufacturing method
KR102057813B1 (en) Mist film-forming device
JP7260006B2 (en) Mist deposition apparatus and mist deposition method
JP6717191B2 (en) Film forming apparatus, substrate processing apparatus, and device manufacturing method
JP2007176150A (en) Liquid droplet discharging device
JP2010082517A (en) Cleaning system of film
US11369990B2 (en) Film forming method
US11318495B2 (en) Film forming method
JP6384252B2 (en) Pattern exposure equipment
JP6885863B2 (en) Pattern formation method, film formation method and sheet-like material
JP2016075887A (en) Wet treatment device, and wet treatment method
JP6519693B2 (en) Pattern exposure method
JPH09318246A (en) Dryer of cleaning article and method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504532

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187025355

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763277

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763277

Country of ref document: EP

Kind code of ref document: A1