WO2017154899A1 - 細胞培養装置および細胞培養方法 - Google Patents

細胞培養装置および細胞培養方法 Download PDF

Info

Publication number
WO2017154899A1
WO2017154899A1 PCT/JP2017/008995 JP2017008995W WO2017154899A1 WO 2017154899 A1 WO2017154899 A1 WO 2017154899A1 JP 2017008995 W JP2017008995 W JP 2017008995W WO 2017154899 A1 WO2017154899 A1 WO 2017154899A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage chamber
liquid
cell culture
liquid storage
culture
Prior art date
Application number
PCT/JP2017/008995
Other languages
English (en)
French (fr)
Inventor
慎治 杉浦
琢 佐藤
敏幸 金森
和美 進
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to EP17763239.5A priority Critical patent/EP3428266A4/en
Priority to CN201780015382.7A priority patent/CN108699501B/zh
Priority to US16/082,339 priority patent/US10961494B2/en
Priority to JP2018504508A priority patent/JP6823793B2/ja
Publication of WO2017154899A1 publication Critical patent/WO2017154899A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps

Definitions

  • the present invention relates to an apparatus for culturing cells and a method for culturing cells using the apparatus.
  • This application claims priority based on Japanese Patent Application No. 2016-45023 for which it applied to Japan on March 8, 2016, and uses the content here.
  • Non-Patent Documents 1 and 2 drug development costs in recent years have increased exponentially, and the success rate of clinical trials has been decreasing year by year.
  • development costs are increasing in the development of chemical products such as cosmetics. Such causes include the inability to directly extrapolate animal experiment results to clinical trials due to species differences between animals and humans.
  • chemical products such as cosmetics, it is sometimes difficult to use experimental animals, especially in Europe. Under such circumstances, there is an increasing expectation for in-vitro cell assays of drug candidate compounds and chemical products using human-derived cultured cells.
  • Non-Patent Documents 3 and 4 the concept of organ-on-a-chip, which treats a microfluidic device that reproduces a physiological three-dimensional culture environment in vitro as if it were a single organ, has spread, and research that is conscious of its application to drug development is worldwide.
  • Non-Patent Documents 5 and 6 the concept of Body-on-a-chip, which aims to reproduce individual responses by connecting multiple organ models reconstructed in in vitro with microchannels etc., has attracted rapid attention (for example, Non-patent document 7).
  • a cell assay is improved by reconstructing an organ model composed of cultured cells derived from humans in vitro and reproducing physiological functions.
  • many of the organs constituting the living body have a diaphragm type structure.
  • nutrients are absorbed across the mesentery in the small intestine, and metabolites and waste products are excreted through the renal tubular epithelial cell membrane in the kidney.
  • oxygen and nutrients are supplied to surrounding tissues through blood vessel walls in blood vessels that travel throughout the body, and waste products are excreted.
  • a membrane-type culture vessel such as a Boyden chamber or Transwell has been used.
  • Non-Patent Documents 12 and 13 a “pressure-driven perfusion culture microchamber array” that can easily handle a large number of drug solutions in the past research, and then a user-friendly platform. Has been developed to carry out user evaluation for practical use (Non-patent Document 14 and Patent Document 1).
  • the conventional cell culture apparatus has many problems such as the complicated structure of the piping and the like, and the apparatus becomes large and the operation is complicated.
  • An object of the present invention is to provide a cell culture device and a cell culture method that have a simple device structure and are easy to operate.
  • a storage tank having one or a plurality of cell culture units is provided, and the cell culture unit includes an airtight first liquid storage chamber in which liquid is stored, and a second liquid storage chamber in which the liquid is stored.
  • a culture solution storage chamber having a culture solution storage space in which a culture solution of cells is stored, a permeable diaphragm with one surface to which the cells can adhere facing the culture solution storage space, and the first liquid storage chamber
  • a liquid outlet channel that guides the liquid from the space on the other surface side of the diaphragm to the second liquid storage chamber, and the storage tank is connected to the first liquid storage chamber.
  • a cell culture device having a vent for supplying and discharging gas.
  • the cell culture device (2) The cell culture device according to (1), wherein at least two of the first liquid storage chambers of the plurality of cell culture units are in communication with each other so that gas can flow. (3) It further has a liquid return flow path which guides the liquid from the second liquid storage chamber to the first liquid storage chamber, and the second liquid storage chamber has a cell holding part for holding seeded cells. The cell culture device according to (1). (4) At least two of the first liquid storage chambers of the plurality of cell culture units are in communication with each other so that gas can flow, and among the second liquid storage chambers of the plurality of cell culture units. The cell culture device according to (3), wherein at least two of them are in communication with each other so that gas can flow.
  • the cell culture unit includes a second culture solution storage chamber in which the culture solution is stored, a culture solution outlet channel that guides the culture solution from the culture solution storage chamber to the second culture solution storage chamber, A culture medium introduction channel for guiding the culture medium from the second culture medium storage chamber to the culture medium storage chamber, and the storage tank is configured to supply and discharge gas to the culture medium storage chamber.
  • the cell culture device according to any one of (1) to (4), which has pores.
  • the first liquid storage chamber, the second liquid storage chamber, and the second culture liquid storage chamber each include a cell holding unit that holds seeded cells (5) or (6).
  • the cell culture device described. (8) The cell culture according to any one of (1) to (7), further comprising a backflow prevention mechanism that controls the flow of the liquid from the liquid outlet channel to the second liquid storage chamber. apparatus. (9) The backflow prevention mechanism is a check valve that allows the flow of the liquid in the direction from the liquid outlet channel to the second liquid storage chamber and prevents the flow in the opposite direction (8). ) Cell culture device. (10) A liquid introduction channel for guiding the liquid from the first liquid storage chamber to the space on the other surface side of the diaphragm, and a flow of the liquid from the first liquid storage chamber to the liquid introduction channel are controlled. The cell culture device according to any one of (1) to (7), further comprising a backflow prevention mechanism.
  • the backflow prevention mechanism allows the flow of the liquid from the first liquid storage chamber to the liquid introduction channel, and allows the gas flow from the first liquid storage chamber to the liquid introduction channel.
  • the storage tank includes a container-shaped tank body in which the first liquid storage chamber, the second liquid storage chamber, and the culture liquid storage chamber are formed, the first liquid storage chamber, and the second liquid storage.
  • the cell culture device according to any one of (1) to (12), further comprising: a chamber and a lid that closes the opening of the culture medium storage chamber in an openable and airtight manner.
  • a lid pressing portion that presses and holds the lid toward the tank body is further provided, and the lid pressing portion includes a pressing member that presses the lid toward the tank body (13 ) Cell culture device.
  • the tank body includes a bottom plate having the liquid outlet channel and a wall provided on one surface of the bottom plate, the first liquid storage chamber, the second liquid storage chamber, and The cell culture device according to (13) or (14), wherein the culture medium storage chamber is a space defined by the bottom plate and the wall.
  • the cell culture device according to any one of (1) to (16), further comprising pressurizing means capable of pressurizing the first liquid storage chamber.
  • a storage tank having one or a plurality of cell culture units is provided, and the cell culture unit includes an airtight first liquid storage chamber in which liquid is stored, and a second liquid storage chamber in which the liquid is stored.
  • a culture solution storage chamber having a culture solution storage space in which a culture solution of cells is stored, a permeable diaphragm with one surface to which the cells can adhere facing the culture solution storage space, and the first liquid storage chamber
  • a liquid outlet channel that guides the liquid from the space on the other surface side of the diaphragm to the second liquid storage chamber, and the storage tank is connected to the first liquid storage chamber.
  • the structure of the flow path for liquid feeding can be simplified. Therefore, the device structure can be simplified to reduce the size of the device and facilitate the operation. According to a cell culture apparatus having a plurality of cell culture units, a plurality of tests can be performed in parallel with an easy operation. Therefore, a large number of subjects (drugs etc.) can be evaluated efficiently.
  • FIG. 10 is a front sectional view of the cell culture device of FIG. 9 in an exploded state.
  • FIG. 10 is a front sectional view of the cell culture device of FIG. 9. It is a sectional side view of the decomposition
  • FIG. It is a sectional side view of the cell culture apparatus of FIG. It is explanatory drawing of a Laplace valve. In detail, it is the elements on larger scale of the liquid storage chamber provided with the Laplace valve. It is explanatory drawing of a Laplace valve. Specifically, it is a schematic view when the culture medium flows into the communication channel from the downstream port via the Laplace valve. It is explanatory drawing of a Laplace valve. Specifically, a schematic view when the Laplace valve is functioning when air flows into the downstream port is shown. It is sectional drawing which shows typically the cell culture apparatus of 6th Embodiment.
  • FIG. 1 is a cross-sectional view schematically showing the cell culture device 10.
  • FIG. 2A is a perspective view schematically showing the cell culture device 10.
  • FIG. 2B is an enlarged view showing a part of the cell culture device 10.
  • the cell culture device 10 includes a storage tank 11 and a pressurizing pump 14.
  • the storage tank 11 includes one cell culture unit 9.
  • the storage tank 11 includes a container-shaped tank body 12 and a lid portion 13.
  • the cell culture unit 9 includes a first liquid storage chamber 1, a second liquid storage chamber 2, a culture solution storage chamber 3, a diaphragm 4, a liquid introduction channel 5, and a liquid outlet channel 6.
  • the 1st liquid storage chamber 1 and the 2nd liquid storage chamber 2 are the space formed by the recessed part formed in the upper surface of the tank main body 12 of the storage tank 11, and can store the liquid culture medium M1 (liquid).
  • the 2nd liquid storage chamber 2 has the main chamber 2c and the cell holding
  • the cell 20B is held in the cell holding recess 2d.
  • the internal space of the second liquid storage chamber 2 is a culture solution storage space 2a.
  • the culture medium storage chamber 3 is a space formed by a recess formed in the upper surface of the tank body 12 of the storage tank 11, and has a main chamber 3c and a recess 3d formed in the bottom surface 3e of the main chamber 3c.
  • the internal space of the main chamber 3c is a culture solution storage space 3a.
  • a space defined by the inner surface of the recess 3d and the outer surface 4b of the diaphragm 4 is an outer surface side space 3b. In FIG. 1, the outer surface side space 3b is located below the culture solution storage space 3a.
  • the culture solution storage chamber 3 can store the culture solution C1 in the culture solution storage space 3a.
  • the diaphragm 4 can transmit a material having a predetermined size or less in the thickness direction. Mass transfer through the diaphragm 4 occurs, for example, by diffusion. Mass transfer may be promoted by the action of the cells 20 attached to the diaphragm 4.
  • the diaphragm 4 may be a porous film, for example. The average pore diameter of the diaphragm 4 is, for example, 0.1 ⁇ m to 10 ⁇ m.
  • the material of the diaphragm 4 may be any one of polycarbonate, polyester, and silicone resin.
  • the diaphragm 4 may be a semipermeable membrane, for example. The cell 20 cannot penetrate the diaphragm 4.
  • the inner surface 4a of the diaphragm 4 is coated with a cell adhesive material.
  • the cell adhesive material is preferably one or more of collagen, gelatin, fibronectin, laminin, vitronectin, matrigel, and polylysine.
  • the diaphragm 4 is installed in the culture solution storage chamber 3 so as to separate the culture solution storage space 3a and the outer surface side space 3b.
  • the diaphragm 4 is located higher than the bottom surface of the recess 3d, and can be installed along the bottom surface 3e of the main chamber 3c so as to block the upper opening of the recess 3d.
  • the inner surface 4a (one surface) of the diaphragm 4 faces the culture solution storage space 3a
  • the outer surface 4b (the other surface) faces the outer surface side space 3b.
  • the liquid introduction channel 5 has one end connected to the bottom of the first liquid storage chamber 1 and the other end connected to the bottom 3 d 1 of the recess 3 d of the culture solution storage chamber 3.
  • the liquid introduction channel 5 can guide the liquid medium M1 from the first liquid storage chamber 1 to the outer surface side space 3b of the culture solution storage chamber 3.
  • liquid outlet channel 6 One end of the liquid outlet channel 6 is connected to the bottom 3 d 1 of the recess 3 d of the culture medium storage chamber 3, and the other end is connected to the bottom of the main chamber 2 c of the second liquid storage chamber 2.
  • the liquid outlet channel 6 can guide the liquid medium M1 from the outer surface side space 3b of the culture solution storage chamber 3 to the second liquid storage chamber 2.
  • the lid 13 closes the opening of the tank body 12 in an openable and airtight manner. Specifically, the lid 13 can airtightly close the upper openings 1g, 2g, and 3g of the first liquid storage chamber 1, the second liquid storage chamber 2, and the culture solution storage chamber 3, respectively.
  • the lid portion 13 hermetically closes the upper openings 1g, 2g, 3g, for example, the tank 13 is provided via a packing 15 provided so as to surround each of the upper openings 1b, 2b, 3g.
  • a structure that contacts the upper surface of the main body 12 can be exemplified. In FIG. 1, the lid portion 13 is shown separated from the tank body 12.
  • the lid portion 13 has vent holes 1h, 2h, 3h at positions corresponding to the first liquid storage chamber 1, the second liquid storage chamber 2, and the culture solution storage chamber 3, respectively.
  • the vent holes 1h, 2h, 3h can supply gas (for example, air) to the storage chambers 1, 2, 3, and discharge gas (for example, air) from the storage chambers 1, 2, 3, respectively.
  • an air filter 16 is provided in each of the vent holes 1h, 2h, and 3h.
  • the air filter 16 can prevent foreign matters from entering the first liquid storage chamber 1, the second liquid storage chamber 2, and the culture solution storage chamber 3.
  • the pressurizing pump 14 is, for example, a compressor.
  • Cell culture method Next, an example of a method for culturing cells using the cell culture apparatus 10 will be described.
  • the cell cultured in this embodiment is not specifically limited,
  • the cell derived from the animal including a human, the cell derived from a plant, the cell derived from microorganisms etc. can be used according to the objective.
  • Step 1 As shown in FIGS. 1, 2A, and 2B, the cells 20A are seeded and adhered to the inner surface 4a of the diaphragm 4, and a liquid medium (culture solution C1) is introduced into the culture solution storage space 3a of the culture solution storage chamber 3. To do. Further, the liquid medium M1 is introduced into the first liquid storage chamber 1. Here, the liquid medium M ⁇ b> 1 can also be introduced into the second liquid storage chamber 2. Moreover, in the second liquid storage chamber 2, cells 20B different from the cells 20A can be seeded. Then, the lid 13 is closed so as to press against the packing 15, and at least the upper opening 1 g of the first liquid storage chamber 1 is closed in an airtight manner.
  • Step 2 The pressurizing pump 14 is operated, and gas (for example, air) is supplied to the first liquid storage chamber 1 through the vent hole 1h to pressurize the first liquid storage chamber 1.
  • gas for example, air
  • the second liquid storage chamber 2 is preferably opened to the atmosphere through the vent hole 2h.
  • the liquid medium M1 in the first liquid storage chamber 1 supply source
  • the liquid medium M1 in the outer surface side space 3b is introduced into the second liquid storage chamber 2 through the liquid outlet channel 6.
  • the flow of the liquid medium M1 in the outer space 3b faces the liquid medium (culture medium C1) introduced into the culture medium storage space 3a of the culture medium storage chamber 3 with the diaphragm 4 interposed therebetween. That is, the liquid medium (culture medium C1) can be given to the liquid medium M1 in the outer surface side space 3b by selecting the diaphragm 4.
  • the cell culture method of the present embodiment can be applied to the following tests, for example.
  • Intestinal cells are used as the cells 20A to be seeded on the diaphragm 4 in the culture medium storage chamber 3.
  • the diaphragm 4 can be coated with collagen in advance to improve the adhesiveness of the cells 20A.
  • the cells 20A intestinal cells
  • the culture solution C1 side is apical membrane (apical)
  • the cell layer is formed in a polar form such that the side and the collagen coating side are the basal side.
  • cancer cells are used as the cells 20B. Cells 20B are seeded and cultured in the cell holding recess 2d.
  • the influence of this substance on the cells 20A and 20B can be evaluated.
  • Substances to be tested include chemical substances used in various chemical products such as drug candidate compounds, food additives, cosmetic raw materials, paints, and agricultural chemicals.
  • the subject is not limited to these.
  • an anticancer agent is added to the culture solution storage space 3 a of the culture solution storage chamber 3 as a subject.
  • anticancer drugs absorbed through the intestine are collected and allowed to act on cancer cells cultured in another culture vessel. Since it was necessary to evaluate the anticancer effect, a two-stage culture operation was required. If the cell culture apparatus 10 is used, the subject can be evaluated by a single operation. Moreover, since it becomes possible to make the anticancer agent absorbed through the intestine (cell 20A) act on the cancer cell (cell 20B) in real time, absorption of a chemically unstable substance and anticancer are achieved. This is particularly useful when evaluating effects.
  • the cell culture apparatus 10 can pressurize the first liquid storage chamber 1 to send the liquid medium M1 to the second liquid storage chamber 2 through the liquid introduction channel 5 and the outer surface side space 3b.
  • the device structure can be simplified to reduce the size of the device and facilitate operations such as device settings. .
  • a structure for feeding liquid using a syringe pump and a cartridge-type peristaltic pump is adopted, respectively, and piping connection for liquid feeding is from this embodiment And the size of the apparatus is increased, and the test operation is more complicated.
  • a cell culture device 10A according to a second embodiment will be described with reference to the drawings.
  • the same components as those described above are denoted by the same reference numerals and description thereof is omitted.
  • the storage tank 11 ⁇ / b> A has a plurality of cell culture units 9.
  • the number of the cell culture units 9 may be an arbitrary number of 2 or more.
  • the first liquid storage chambers 1, 1 of two adjacent cell culture units 9, 9 are communicated with each other by a gas flow path 18.
  • the gas flow path 18 Since one end and the other end of the gas flow path 18 are connected to the upper gas-phase spaces 1f and 1f in the first liquid storage chambers 1 and 1, the gas flow path 18 is configured so that gas can flow. One liquid storage chamber 1, 1 is connected. When the number of the cell culture units 9 is 3 or more, the first liquid storage chambers 1 of at least two cell culture units 9 may be communicated with each other by the gas flow path 18.
  • the cell culture device 10 ⁇ / b> A, all the first liquid storage chambers 1 connected via the gas flow path 18 are pressed by pressurizing some of the first liquid storage chambers 1 among the plurality of first liquid storage chambers 1.
  • the liquid medium M1 can be pressurized collectively and sent to the second liquid storage chamber 2 through the outer surface side space 3b of the culture solution storage chamber 3. Therefore, in the cell culture device 10A, a plurality of tests can be performed in parallel with an easy operation. Further, since the liquid can be fed by a small number of pressure pumps 14 (see FIG. 1), the structure of the apparatus can be simplified. Therefore, the apparatus structure can be simplified to reduce the size of the apparatus, and operations such as setting of the apparatus can be facilitated.
  • Non-Patent Documents 8, 10, 11 and the like a structure in which liquid is fed using a syringe pump and a cartridge type peristaltic pump is employed, and one device is used for evaluating one subject. It uses a pump and one Organ-on-a-chip.
  • the cell culture device 10A shown in FIG. 3 is superior to the devices shown in Non-Patent Documents 8, 10, 11 and the like in that a large number of specimens (drugs and the like) can be evaluated at once by an easy operation.
  • the storage tank 11E of the cell culture device 10E includes a tank body 12E and a lid portion 13E.
  • the storage tank 11E includes a cell culture unit 9E.
  • the cell culture unit 9E includes a first liquid storage chamber 1E, a second liquid storage chamber 2E, a culture solution storage chamber 3E, a diaphragm 4, a liquid outlet channel 6E, and a liquid return channel 7.
  • the tank body 12E includes a main part 12E1 in which a first liquid storage chamber 1E and a second liquid storage chamber 2E are formed, and a culture solution storage tank 3E1.
  • the culture solution storage chamber 3E is an internal space of the culture solution storage tank 3E1.
  • the second liquid storage chamber 2E includes a main chamber 2Ec and a cell holding recess 2Ed (cell holding portion) formed on the bottom surface 2Ee of the main chamber 2Ec.
  • the cell 20E2 is held in the cell holding recess 2Ed.
  • the diaphragm 4 is provided in the bottom part 3Ea of the culture solution storage chamber 3E.
  • the culture solution storage tank 3E1 is accommodated in the first liquid storage chamber 1E.
  • the culture solution storage tank 3E1 is located at a position away from the bottom surface 1Ee of the first liquid storage chamber 1E. Therefore, a space between the bottom surface 1Ee of the first liquid storage chamber 1E and the diaphragm 4 is a space on the outer surface 4b side of the diaphragm 4.
  • the lid portion 13E has vent holes 1h and 2h at positions corresponding to the first liquid storage chamber 1E and the second liquid storage chamber 2E, respectively.
  • the cell culture device 10E can lead the liquid medium M1 from the first liquid storage chamber 1E to the second liquid storage chamber 2E by pressurizing the first liquid storage chamber 1E. That is, by supplying gas (for example, air) to the first liquid storage chamber 1E through the vent hole 1h of the lid portion 13E and pressurizing the inside of the first liquid storage chamber 1E, the liquid medium M1 is supplied to the liquid outlet channel 6E. Through the first liquid storage chamber 1E to the second liquid storage chamber 2E. Similarly, the liquid medium M1 can be sent from the second liquid storage chamber 2E to the first liquid storage chamber 1E by pressurizing the second liquid storage chamber 2E.
  • gas for example, air
  • the liquid medium M1 is supplied to the liquid return flow path 7.
  • the second liquid storage chamber 2 can be sent to the first liquid storage chamber 1E.
  • Step 1 Cells 20E1 are seeded on the inner surface 4a of the diaphragm 4 of the culture solution storage chamber 3.
  • Cells 20E2 are seeded in the cell holding recess 2Ed of the second liquid storage chamber 2E.
  • Step 2 The liquid medium M1 is introduced into the first liquid storage chamber 1E and the second liquid storage chamber 2E, and the culture solution C1 is introduced into the culture solution storage chamber 3E, and then the lid 13E is closed.
  • Process 3 Gas (for example, air) is supplied to the first liquid storage chamber 1E through the vent hole 1h of the lid 13E to pressurize the first liquid storage chamber 1E.
  • the second liquid storage chamber 2E is opened to the atmosphere through the vent hole 2h. Due to the pressure increase in the first liquid storage chamber 1E, the liquid medium M1 in the first liquid storage chamber 1E is introduced into the second liquid storage chamber 2E through the liquid outlet channel 6E.
  • Step 4 Gas (for example, air) is supplied to the second liquid storage chamber 2E through the vent hole 2h of the lid 13E to pressurize the second liquid storage chamber 2E.
  • the first liquid storage chamber 1E is opened to the atmosphere through the vent hole 1h.
  • the liquid culture medium M1 in the second liquid storage chamber 2E is returned to the first liquid storage chamber 1E through the liquid return flow path 7.
  • the liquid medium M1 can be circulated between the first liquid storage chamber 1E and the second liquid storage chamber 2E.
  • intestinal cells are used as the cells 20E1 to be seeded on the diaphragm 4 in the culture medium storage chamber 3E, and cancer cells are used as the cells 20E2 to be cultured in the second liquid storage chamber 2 to be a subject.
  • the substance into the system (for example, the culture medium storage chamber 3E)
  • the substance absorbed through the membrane of the intestinal cell 20E1 can be allowed to act on the cell 20E2 (cancer cell) while continuously accumulating in the liquid medium M1.
  • the action of the subject on the cancer cells can be detected with higher sensitivity compared to the cell culture device 10 having the configuration described above.
  • the device structure can be simplified to reduce the size of the device and to facilitate operations such as setting of the device. .
  • the cell culture device 10E of the third embodiment can be configured to have a plurality of cell culture units 9E, similarly to the cell culture device 10A (see FIG. 3) of the second embodiment.
  • the number of the cell culture units 9E may be an arbitrary number of 2 or more.
  • the first liquid storage chambers 1E, 1E of at least two cell culture units 9E, 9E can be communicated with each other by a gas flow path (not shown) so that gas can flow.
  • the second liquid storage chambers 2E and 2E of at least two cell culture units 9E and 9E are communicated with each other by a gas flow path (not shown) so that gas can flow. Can do.
  • step 3 all the first liquid reservoirs connected via the gas flow paths are pressurized by pressurizing some of the first liquid reservoir chambers 1E among the plurality of first liquid reservoir chambers 1E.
  • the chamber 1E can be collectively pressurized.
  • step 4 all the second liquid storage chambers 2E connected via the gas flow path are collectively collected by pressurizing some of the second liquid storage chambers 2E among the plurality of second liquid storage chambers 2E. Can be pressurized. Therefore, a plurality of tests can be performed in parallel with an easy operation.
  • FIG. 5 is a cross-sectional view schematically showing the cell culture device 10B.
  • FIG. 6 is a perspective view schematically showing the cell culture device 10B.
  • FIG. 7 is a plan view schematically showing the cell culture device 10B.
  • the cell culture device 10B includes a storage tank 11B and a pressurizing pump (not shown).
  • the storage tank 11B includes one cell culture unit 9B.
  • the storage tank 11B includes a tank body 12B and a lid portion 13B.
  • the cell culture unit 9B includes a first liquid storage chamber 1B, a second liquid storage chamber 2B, a first culture liquid storage chamber 3B, a diaphragm 4, a liquid introduction channel 5, a liquid outlet channel 6, 2 It has the culture solution storage chamber 21, the culture solution outlet channel 22, the culture solution introduction channel 23, and the communication channel 24.
  • the first liquid storage chamber 1B has a main chamber 1c and a cell holding recess 1d (cell holding portion) formed on the bottom surface 1e of the main chamber 1c.
  • the culture liquid C2 liquid can be stored in the first liquid storage chamber 1B.
  • the cell 20D is held in the cell holding recess 1d.
  • the 2nd liquid storage chamber 2B has the main chamber 2c and the cell holding
  • the culture liquid C2 can be stored in the first liquid storage chamber 1B.
  • the cell 20C is held in the cell holding recess 2d.
  • the diaphragm 4 is provided inside the recess 3d (a position slightly deeper than the upper opening of the recess 3d).
  • the upper part of the recess 3d and the diaphragm 4 form a cell holding recess 3Bd (cell holding part) in which the cells 20B are held.
  • the first culture solution storage chamber 3B can store the culture solution C1 in the culture solution storage space 3a.
  • the second culture medium storage chamber 21 has a main chamber 21c and a cell holding recess 21d (cell holding portion) formed on the bottom surface 21e of the main chamber 21c.
  • the internal space of the second culture solution storage chamber 21 is a culture solution storage space 21a.
  • the 2nd culture solution storage chamber 21 can store the culture solution C1 in the culture solution storage space 21a.
  • the cell 20A is held in the cell holding recess 21d.
  • the communication channel 24 has one end connected to the bottom of the main chamber 2c of the second liquid storage chamber 2B and the other end connected to the bottom of the main chamber 1c of the first liquid storage chamber 1B.
  • the communication channel 24 can guide the culture medium C2 from the second liquid storage chamber 2B to the first liquid storage chamber 1B.
  • One end of the culture solution outlet channel 22 is connected to the bottom of the main chamber 3c of the first culture solution storage chamber 3B, and the other end is connected to the bottom of the main chamber 21c of the second culture solution storage chamber 21.
  • the culture solution outlet channel 22 can guide the culture solution C1 from the first culture solution storage chamber 3B to the second culture solution storage chamber 21.
  • One end of the culture solution outlet channel 22 is connected to the bottom of the main chamber 21c of the second culture solution storage chamber 21, and the other end is connected to the bottom of the main chamber 3c of the first culture solution storage chamber 3B.
  • the culture solution outlet channel 22 can guide the culture solution C1 from the second culture solution storage chamber 21 to the first culture solution storage chamber 3B.
  • the lid 13B closes the opening of the tank body 12B so that it can be opened and closed and sealed.
  • the lid 13B has upper openings 1g, 2g, 3g, and 21g of the first liquid storage chamber 1B, the second liquid storage chamber 2B, the first culture medium storage chamber 3B, and the second culture medium storage chamber 21, respectively. It can be closed airtight.
  • the lid portion 13B closes the upper openings 1g, 2g, 3g, and 21g in an airtight manner
  • the packing 15 provided so that the lid portion 13B surrounds each of the upper openings 1g, 2g, 3g, and 21g.
  • the structure which contacts the upper surface of the tank main body 12B can be illustrated.
  • the cover part 13B is shown spaced apart from the tank main body 12B.
  • the lid portion 13B has vent holes 1h, 2h, 3h, 21h at positions corresponding to the first liquid storage chamber 1B, the second liquid storage chamber 2B, the first culture solution storage chamber 3B, and the second culture solution storage chamber 21, respectively.
  • an air filter 16 is provided in each of the vent holes 1h, 2h, 3h, and 21h.
  • the liquid flow from the first liquid storage chamber 1B to the liquid introduction flow channel 5 is allowed at one end of the liquid introduction flow channel 5, and the liquid introduction flow from the first liquid storage chamber 1B is allowed.
  • a Laplace valve 31 is provided to prevent gas (for example, air) from flowing into the passage 5.
  • gas for example, air
  • the liquid flow in the direction from the communication flow path 24 toward the first liquid storage chamber 1B is allowed to the other end of the communication flow path 24, and the flow in the opposite direction is prevented.
  • a check valve 32 is provided.
  • the flow of the liquid from the second liquid storage chamber 2B to the communication flow path 24 is allowed at one end of the communication flow path 24, and from the second liquid storage chamber 2B to the communication flow path 24.
  • a Laplace valve 33 is provided to prevent the inflow of the gas.
  • the liquid flow in the direction from the liquid discharge channel 6 to the second liquid storage chamber 2B is allowed to the other end of the liquid discharge channel 6, and the flow in the opposite direction is allowed.
  • a check valve 34 is provided for blocking.
  • one end of the culture solution discharge channel 22 is allowed to flow a liquid from the first culture solution storage chamber 3B to the culture solution discharge channel 22, and the first culture solution storage chamber
  • a Laplace valve 35 is provided to prevent gas from flowing from 3B into the culture solution outlet channel 22.
  • the other end of the culture solution introduction channel 23 is allowed to flow a liquid in the direction from the culture solution introduction channel 23 to the first culture solution storage chamber 3B, and vice versa.
  • a check valve 36 is provided to prevent directional flow.
  • the second culture medium storage chamber 21 allows a liquid flow from the second culture medium storage chamber 21 to the culture medium introduction channel 23 at one end of the culture medium introduction channel 23, and the second culture medium storage chamber 21.
  • a Laplace valve 37 that prevents gas from flowing into the culture solution introduction channel 23 from 21 is provided.
  • the other end of the culture fluid discharge channel 22 is allowed to flow a liquid in the direction from the culture fluid discharge channel 22 to the second culture fluid storage chamber 21, and vice versa.
  • a check valve 38 is provided to prevent directional flow.
  • check valves 32, 34, 36, and 38 examples include check valves having a structure including a valve seat having a valve hole and a valve body. In the check valve, when the liquid flows in the forward direction, the valve hole is opened when the valve element is separated from the valve seat, so that the liquid flows in the forward direction through the valve hole. When the liquid flows in the reverse direction, the valve body abuts on the valve seat and the valve hole is closed, so that the liquid flow in that direction is blocked.
  • the check valves 32, 34, 36, and 38 are examples of a backflow prevention mechanism that controls the flow of liquid.
  • FIG. 13A shows a partially enlarged view of a liquid storage chamber provided with a Laplace valve 117.
  • FIG. 13B is a schematic diagram when the culture medium 131 flows from the downstream port 114 into the communication channel 115 via the Laplace valve 117.
  • FIG. 13C shows a schematic diagram when the Laplace valve 117 is functioning when air flows into the downstream port 114.
  • a pressure difference due to interfacial tension that is, a Laplace pressure
  • the fine channel can be treated as a passive air inflow prevention mechanism.
  • the Laplace valve design is described below.
  • the pressure at which air flows into the Laplace valve (Laplace pressure, limit pressure) ( ⁇ P Lap ) depends on the interfacial tension ( ⁇ ) and the width (w L ) and depth (h L ) of the micro-channel constituting the Laplace valve. It can be calculated by the following formula (1).
  • the widths and depths of the flow paths 5, 6, 22, 23, and 24 are designed to be 200 ⁇ m and 25 ⁇ m, respectively, the Laplace pressure is estimated to be 5.4 kPa, and the pressure is less than this value.
  • the liquid can be made to flow through the flow paths 5, 6, 22, 23, and 24.
  • the Laplace valves 31, 33, 35, and 37 are examples of a backflow prevention mechanism that controls the flow of liquid.
  • the flow rate (Q) and pressure loss ( ⁇ P) of a liquid flowing through a microchannel having a rectangular cross section have the following relationship (see F. M. White, Viscous Fluid Flow, McGraw-Hill Companies, Inc, Boston, 2006).
  • ⁇ P is the pressure difference between the inlet and outlet of the microchannel
  • R is the channel resistance
  • is the viscosity of the fluid
  • l is the length of the microchannel
  • w is the microflow
  • h is the depth of the microchannel.
  • the said Formula (2) and Formula (3) are materialized on the conditions of w> h.
  • the liquid introduction flow path 5, the liquid discharge flow path 6, the culture liquid discharge flow path 22, the culture liquid supply flow path 23, and the communication flow path 24 are flow path cross-sectional areas for adjusting the flow rate. May be provided with resistance flow path portions 5a, 6a, 22a, 23a, and 24a that are 1/10 or less. Consider a case in which the lengths of the resistance flow path parts and the other parts of the flow paths 5, 6, 22, 23, 24 are equal.
  • the channel resistance R of the resistance channel of the formula (3) is It becomes 100 times the flow path resistance R of the part other than the resistance flow path. From the equation (2), the pressure loss of the resistance channel is also 100 times the pressure loss of the portion other than the resistance channel.
  • Step 1 As shown to FIG. 8A, the cell 20B is seed
  • the cells 20A, 20C, and 20D are seeded in the cell holding recess 21d of the second culture medium storage chamber 21, the cell holding recess 2d of the second liquid storage chamber 2B, and the cell holding recess 1d of the first liquid storage chamber 1B, respectively.
  • Step 2 As shown in FIG. 8B, the culture solutions C1 and C2 are introduced into the first culture solution storage chamber 3B and the second liquid storage chamber 2B, respectively, and the lid portion 13 is closed.
  • gas for example, air
  • the second culture medium storage chamber 21 and the first liquid storage chamber 1B are preferably open to the atmosphere. Due to the increase in pressure in the first culture fluid storage chamber 3B, the culture fluid C1 in the culture fluid storage space 3a of the first culture fluid storage chamber 3B passes through the culture fluid outlet channel 22 to the second culture fluid storage chamber 21. be introduced. Due to the pressure increase in the second liquid storage chamber 2B, the culture solution C2 in the second liquid storage chamber 2B is introduced into the first liquid storage chamber 1B through the communication channel 24.
  • gas for example, air
  • Step 4 As shown in FIG. 8D, gas (for example, air) is supplied to the second culture medium storage chamber 21 and the first liquid storage chamber 1B through the vent holes 21h and 1h to pressurize the respective chambers.
  • gas for example, air
  • the first culture medium storage chamber 3B and the second liquid storage chamber 2B are preferably open to the atmosphere. Due to the pressure increase in the second culture medium storage chamber 21, the culture medium C1 in the second culture medium storage chamber 21 passes through the culture medium introduction channel 23 and enters the culture medium storage space 3a of the first culture medium storage chamber 3B. be introduced.
  • the culture liquid C2 in the first liquid storage chamber 1B passes through the liquid introduction flow path 5, the outer surface side space 3b, and the liquid outlet flow path 6 to the second liquid storage chamber 2B. To be introduced.
  • the culture solutions C1 and C2 can be circulated in the cell culture apparatus 10B.
  • the cell culture apparatus 10B can collectively evaluate the four types of cells 20A to 20D. For example, if the cells 20A to 20D are digestive tract cells, intestinal cells, cancer cells, and normal cells, respectively, the digestion, absorption, anticancer effect, and side effects of the anticancer agent can be evaluated at a time.
  • the cells 20A to 20D are used in an environment where shearing force is applied. Can be cultured.
  • FIG. 9 is a perspective view showing the cell culture device 10C.
  • FIG. 10 is an exploded perspective view of the cell culture device 10C.
  • FIG. 11A is a front sectional view of the cell culture device 10C in an exploded state.
  • FIG. 11B is a front sectional view of the cell culture device 10C.
  • FIG. 12A is a side sectional view of the cell culture device 10C in an exploded state.
  • FIG. 12B is a side sectional view of the cell culture device 10C.
  • the storage tank 11C of the cell culture device 10C includes a plurality of cell culture units 9B (see FIGS. 5 and 6).
  • the storage tank 11 ⁇ / b> C includes a tank body 12 ⁇ / b> C, a lid part 13 ⁇ / b> C, a base body part 40, a lid part pressing part 41, and a wall part pressing part 47.
  • the base portion 40 includes a bottom plate 51, thick wall portions 52, 52 formed to protrude upward from the side edges of the bottom plate 51, and end wall portions 53, 53 formed to protrude upward from the edge of the bottom plate 51. It is equipped with.
  • the bottom plate 51, the thick portions 52 and 52, and the end wall portions 53 and 53 define an accommodation space 54 that accommodates the bottom plate 45.
  • An insertion hole 52a into which the end of the pressing bar 43 is inserted and an insertion hole 52b into which the end of the pressing bar 48 is inserted are formed on both end surfaces of the thick portion 52.
  • the base portion 40 supports the tank body 12 ⁇ / b> C placed on the bottom plate 51.
  • the lid portion pressing portion 41 has a pair of pressing bars 43 (pressing members) that press the lid portion 13 toward the tank body 12C.
  • the pressing bar 43 is rotatable in the direction around the central axis along the thick portion 52 with the insertion portion as a fulcrum in a state where both ends are inserted into the insertion hole 52a.
  • the pressing bar 43 can be locked to locking recesses 55 formed on both sides of the upper surface of the lid portion 13C. Accordingly, the lid portion 13C can be held while being pressed against the tank body 12C, and the internal space of the tank body 12C can be sealed.
  • the tank body 12 ⁇ / b> C includes a bottom plate 45 and a block-like wall portion 46 provided on the upper surface 45 a (one surface) of the bottom plate 45.
  • the wall portion 46 has a plurality of through-hole portions 50 formed so as to penetrate in the thickness direction.
  • the first liquid storage chamber 1B, the second liquid storage chamber 2B, the first culture solution storage chamber 3B, and the second culture solution storage chamber 21 are spaces defined by the through-hole portion 50 and the bottom plate 45,
  • Each of the plan view shapes is an oval shape.
  • the wall pressing portion 47 includes a pressing bar 48 (pressing member) that presses the wall 46 toward the bottom plate 45.
  • the pressing bar 48 is made of, for example, metal, and can be rotated around the central axis along the thick portion 52 with the insertion portion as a fulcrum in a state where both ends are inserted into the insertion hole 52b. It has become.
  • the pressing bar 48 can be locked to locking recesses 56 formed on both sides of the wall 46. As a result, the wall 46 can be pressed against the bottom plate 45 and can be brought into close contact with the bottom plate 45 without any gap.
  • the wall pressing portion 47 can be held in a state where the wall portion 46 is pressed against the bottom plate 45 by the pressing bar 48.
  • the cell culture device 10C it is preferable that at least two of the first liquid storage chambers 1 of the plurality of cell culture units 9B are communicated with each other by a gas flow path 18. Moreover, it is preferable that at least two of the second liquid storage chambers 2 of the plurality of cell culture units 9B communicate with each other by a gas flow path (not shown). In addition, it is preferable that at least two of the first culture solution storage chambers 3B of the plurality of cell culture units 9B communicate with each other by a gas flow path (not shown). Moreover, it is preferable that at least two of the second culture medium storage chambers 21 of the plurality of cell culture units 9B are communicated with each other by a gas flow path (not shown).
  • the storage chambers of the plurality of cell culture units 9B can be pressurized together. It can.
  • the plurality of first liquid storage chambers 1 can be pressurized together.
  • the second liquid storage chamber 2, the first culture solution storage chamber 3B, and the second culture solution storage chamber 21 can be collectively pressurized. Therefore, in the cell culture device 10C, tests in the plurality of cell culture units 9B can be performed in parallel with an easy operation.
  • resin plastic
  • glass or the like
  • the material is preferably a transparent material, and specifically, resin and glass are preferable.
  • the resin include silicone resins (for example, polydimethylsiloxane (PDMS)), acrylic resins (for example, polymethyl methacrylate (PMMA)), styrene resins (for example, polystyrene), and polyvinyl pyridine resins (poly (4-vinylpyridine).
  • polystyrene resin e.g, polyethylene resin, polypropylene resin, polymethylpentene resin
  • polyester resin polyethylene terephthalate resin (PET)
  • PET polyethylene terephthalate resin
  • silicone resins for example, polydimethylsiloxane (PDMS)
  • acrylic resins for example, polymethyl methacrylate (PMMA)
  • styrene resins for example, polystyrene
  • the cell culture device 10C includes a plurality of cell culture units 9B, a plurality of tests can be performed in parallel. Further, since the structure of the apparatus can be simplified, the apparatus structure can be simplified to reduce the size of the apparatus, and operations such as setting of the apparatus can be facilitated.
  • the cell culture device 10C is excellent in that a large number of specimens (drugs and the like) can be efficiently evaluated with an easy operation.
  • the storage tank 11D of the cell culture device 10D includes a tank body 12D and a lid portion 13D.
  • the storage tank 11D includes a cell culture unit 9D.
  • the cell culture unit 9D includes a first liquid storage chamber 1D, a second liquid storage chamber 2D, a culture solution storage chamber 3D, a diaphragm 4, and a liquid outlet channel 6D.
  • the tank body 12D includes a main part 12D1 in which a first liquid storage chamber 1D and a second liquid storage chamber 2D are formed, and a culture solution storage tank 3D1.
  • the culture solution storage chamber 3D is an internal space of the culture solution storage tank 3D1.
  • the diaphragm 4 is provided in the bottom part 3Da of the culture solution storage tank 3D1.
  • Cells 20D1 are seeded on the inner surface 4a of the diaphragm 4.
  • the culture solution storage tank 3D1 is accommodated in the first liquid storage chamber 1D.
  • the culture solution storage tank 3D1 is located at a position away from the bottom surface 1De of the first liquid storage chamber 1D.
  • a space between the bottom surface 1De of the first liquid storage chamber 1D and the diaphragm 4 is a space on the outer surface 4b side of the diaphragm 4.
  • the lid portion 13D has air holes 1h and 2h at positions corresponding to the first liquid storage chamber 1D and the second liquid storage chamber 2D, respectively.
  • Gas for example, air
  • the second liquid storage chamber 2D is opened to the atmosphere through the vent hole 2h. Due to the pressure increase in the first liquid storage chamber 1D, the liquid medium M1 in the first liquid storage chamber 1D is introduced into the second liquid storage chamber 2D through the liquid outlet channel 6D.
  • the device structure can be simplified to reduce the size of the device and facilitate operations such as device settings. .
  • the storage tank 11C of the cell culture device 10C shown in FIG. 9 and the like has a tank body 12C and a lid part 13C that are separate from each other, but the invention is not limited to this, and an integrated storage tank may be adopted.
  • This embodiment is useful in the fields of cell engineering, regenerative medicine, bio-related industries, tissue engineering, and the like. It is particularly useful for drug development and basic research in cell biology.

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

この細胞培養装置は、1または複数の細胞培養ユニットを有する貯留槽を備える。前記細胞培養ユニットは、液体が貯留される気密構造の第1液体貯留室と、前記液体が貯留される第2液体貯留室と、細胞の培養液が貯留される培養液貯留空間を有する培養液貯留室と、前記細胞が接着可能な一方の面が前記培養液貯留空間に臨む透過性の隔膜と、前記第1液体貯留室を供給源とする前記液体を、前記隔膜の他方の面側の空間から前記第2液体貯留室に導く液体導出流路と、を有する。前記貯留槽は、前記第1液体貯留室に対して気体を供給および排出する通気孔を有する。

Description

細胞培養装置および細胞培養方法
 本発明は、細胞を培養する装置およびこの装置を用いて細胞を培養する方法に関する。
 本願は、2016年3月8日に日本に出願された特願2016-45023号に基づき優先権を主張し、その内容をここに援用する。
 非特許文献1,2に見られるように、近年の医薬品開発コストは指数関数的に増加しており、臨床試験の成功率も年々低下している。また、化粧品等の化成品開発においても同様に、開発コストの増加が起きている。かかる原因として、動物とヒトの種差のため、動物実験結果を臨床試験に直接的に外挿できないことが挙げられる。また、化粧品等の化成品開発では、欧州を中心に実験動物の使用が困難となってきていることもある。このような状況の中で、ヒト由来の培養細胞を用いた医薬品候補化合物や化成品のin vitro細胞アッセイに対する期待が高まっている。
 一方、従来の細胞アッセイで利用されてきた単層培養は、細胞を取り巻く環境が生体内と大きく異なり、培養細胞では体内で発現している機能の多くが失われている点がしばしば問題となる。近年の微細加工技術や三次元培養技術の進歩により、この問題が克服され、細胞アッセイのスループットと信頼性が同時に向上されると期待されている(例えば、非特許文献3,4)。特に、生理学的な三次元培養環境をin vitroで再現したマイクロ流体デバイスを1つの臓器のように取り扱うOrgan-on-a-chipという概念が広がり、医薬品開発への応用を意識した研究が世界的に広く展開されつつある(例えば、非特許文献5,6)。さらに、in vitroで再構成した複数の臓器モデルをマイクロ流路等で接続し、個体応答の再現を目指すBody-on-a-chipという概念も提唱され、急速な注目を集めている(例えば、非特許文献7)。
 以上の様に、ヒト由来の培養細胞によって構成される臓器モデルを生体外で再構成し、生理学的な機能を再現することで、細胞アッセイの信頼性が向上すると期待されている。
 ここで、生体を構成する臓器の多くは隔膜型の構造をしている。例えば、小腸では腸間膜を隔てて栄養分が吸収され、腎臓では腎尿細管上皮細胞膜を介して代謝産物や老廃物を排泄している。また全身を巡る血管においても血管壁を介して周囲の組織に酸素や栄養素が供給され、老廃物が排泄されている。このような隔膜型の臓器機能を生体外で再構成するために、ボイデンチャンバーやトランズウェルといった隔膜型の培養容器が利用されてきた。しかしながら、これらの培養容器では、隔膜の一方の面側および他方の面側に液を流すことができないため、生理的な機能が発現しない、膜下部における細胞の状態の悪化、複数臓器を連結したBody-on-a-chipに適用できないといった問題がある。
 この問題を解決すべく、マイクロ流路の中に隔膜を配置した、Organ-on-a-chipが報告されている。例えば、腸(非特許文献8,9)、腎臓(非特許文献10)、および脳内血管(非特許文献11)に関する生体外モデルが報告されている。このような隔膜を内蔵したOrgan-on-a-chipを、動物実験の代替として創薬に利用していくためには、多種類の化合物を同時に評価できるシステムが必要である。一方で、上述の先行研究では送液のためにシリンジポンプやペリスタポンプを用いているために培養システムの並列化が困難である。
 本発明者等は、既に、これまでの研究で多数の薬剤溶液を簡便に取り扱える「圧力駆動型の灌流培養マイクロチャンバーアレイ」を開発し(非特許文献12,13)、その後、使い勝手の良いプラットフォームを備えた循環培養システムを開発して実用化のためのユーザー評価を実施するに至っている(非特許文献14および特許文献1)。
特開2015-073468号公報
Scannell, J. W. et al. Nat. Rev. Drug Discov., 11, 191 (2012) Pammolli, F. et al. Nat. Rev. Drug Discov., 10, 428 (2011) van Midwoud, P. M. et al. Integr. Biol., 3, 509 (2012) Ghaemmaghami, A. M. et al. Drug Discov. Today, 17, 173 (2012) Bhatia, S. N. et al. Nat. Biotechnol., 32, 760 (2014) Baker, M. Nature, 471, 661 (2011) Sung, J. H. et al. Lab Chip, 13, 1201 (2013) H. J. Kim, D. Huh, G. Hamilton and D. E. Ingber,, Lab Chip,12, 2165-2174 (2012). M. B. Esch, J. H. Sung, J. Yang, C. H. Yu, J. J. Yu, J. C. March and M. L. Shuler, Biomed. Microdevices, 14, 895-906 (2012). K.-J. Jang, A. P. Mehr, G. A. Hamilton, L. A. McPartlin, S. Chung, K.-Y. Suh and D. E. Ingber, Integr. Biol., 5, 1119-1129 (2013). R. Booth and H. Kim, Lab Chip, 12, 1784-1792 (2012). S.Sugiura, et al., Anal.Chem., 82, 8278 (2010) S.Sugiura, et al., Biotechnol.Bioeng., 100, 1156 (2008) K.Hattori, et al., J.Biosci.Bioeng., 118, 327 (2014)
 従来の細胞培養装置においては、配管等の構造が複雑であるため、装置が大型化し、また、操作が煩雑であるなどの多くの問題があった。
 本発明は、簡略な装置構造であって、操作の容易な細胞培養装置および細胞培養方法を提供することを目的とする。
(1)1または複数の細胞培養ユニットを有する貯留槽を備え、前記細胞培養ユニットは、液体が貯留される気密構造の第1液体貯留室と、前記液体が貯留される第2液体貯留室と、細胞の培養液が貯留される培養液貯留空間を有する培養液貯留室と、前記細胞が接着可能な一方の面が前記培養液貯留空間に臨む透過性の隔膜と、前記第1液体貯留室を供給源とする前記液体を、前記隔膜の他方の面側の空間から前記第2液体貯留室に導く液体導出流路と、を有し、前記貯留槽は、前記第1液体貯留室に対して気体を供給および排出する通気孔を有する、細胞培養装置。
(2)複数の前記細胞培養ユニットの前記第1液体貯留室のうち少なくとも2つは、気体が流通可能となるように互いに連通されている(1)に記載の細胞培養装置。
(3)前記液体を前記第2液体貯留室から第1液体貯留室に導く液体返送流路をさらに有し、前記第2液体貯留室は、播種された細胞が保持される細胞保持部を有する(1)に記載の細胞培養装置。
(4)複数の前記細胞培養ユニットの前記第1液体貯留室のうち少なくとも2つは気体が流通可能となるように互いに連通され、かつ複数の前記細胞培養ユニットの前記第2液体貯留室のうち少なくとも2つは気体が流通可能となるように互いに連通されている(3)に記載の細胞培養装置。
(5)前記細胞培養ユニットは、前記培養液が貯留される第2培養液貯留室と、前記培養液を前記培養液貯留室から前記第2培養液貯留室に導く培養液導出流路と、前記培養液を前記第2培養液貯留室から前記培養液貯留室に導く培養液導入流路と、をさらに備え、前記貯留槽は、前記培養液貯留室に対して気体を供給および排出する通気孔を有する(1)~(4)のうちいずれか1つに記載の細胞培養装置。
(6)前記複数の細胞培養ユニットの培養液貯留室のうち少なくとも2つは、気体が流通可能となるように互いに連通されている(5)に記載の細胞培養装置。
(7)前記第1液体貯留室と、前記第2液体貯留室と、前記第2培養液貯留室とは、播種された細胞が保持される細胞保持部を有する(5)または(6)に記載の細胞培養装置。
(8)前記液体導出流路から前記第2液体貯留室への前記液体の流れを制御する逆流防止機構をさらに備えている(1)~(7)のうちいずれか1つに記載の細胞培養装置。
(9)前記逆流防止機構は、前記液体導出流路から前記第2液体貯留室へ向かう方向の前記液体の流れを許容し、かつその逆の方向の流れを阻止する逆止弁である(8)に記載の細胞培養装置。
(10)前記液体を前記第1液体貯留室から前記隔膜の他方の面側の空間に導く液体導入流路と、前記第1液体貯留室から前記液体導入流路への前記液体の流れを制御する逆流防止機構と、をさらに備えている(1)~(7)のうちいずれか1つに記載の細胞培養装置。
(11)前記逆流防止機構は、前記第1液体貯留室から前記液体導入流路への前記液体の流れを許容し、かつ前記第1液体貯留室から前記液体導入流路への気体の流れを阻止するラプラス弁である(10)に記載の細胞培養装置。
(12)前記液体導出流路は、流路断面積が他の部位に比べて1/10以下である抵抗流路部位を有する(1)~(11)のうちいずれか1つに記載の細胞培養装置。
(13)前記貯留槽は、前記第1液体貯留室、前記第2液体貯留室および前記培養液貯留室が形成された容器状の槽本体と、前記第1液体貯留室、前記第2液体貯留室および前記培養液貯留室の開口を開閉自在かつ気密に閉止する蓋部とを有する(1)~(12)のうちいずれか1つに記載の細胞培養装置。
(14)前記蓋部を前記槽本体に向けて押さえつけて保持する蓋部押圧部をさらに備え、前記蓋部押圧部は、前記槽本体に向けて前記蓋部を押圧する押圧部材を有する(13)に記載の細胞培養装置。
(15)前記槽本体は、前記液体導出流路を有する底部プレートと、前記底部プレートの一方の面に設けられた壁部とを備え、前記第1液体貯留室、前記第2液体貯留室および前記培養液貯留室は、前記底部プレートと前記壁部とによって区画された空間である(13)または(14)に記載の細胞培養装置。
(16)前記壁部を前記底部プレートに向けて押さえつけて保持する壁部押圧部をさらに備え、前記壁部押圧部は、前記底部プレートに向けて前記壁部を押圧する押圧部材を有する(15)に記載の細胞培養装置。
(17)前記第1液体貯留室内を加圧可能な加圧手段をさらに備えている(1)~(16)のうちいずれか1つに記載の細胞培養装置。
(18)1または複数の細胞培養ユニットを有する貯留槽を備え、前記細胞培養ユニットは、液体が貯留される気密構造の第1液体貯留室と、前記液体が貯留される第2液体貯留室と、細胞の培養液が貯留される培養液貯留空間を有する培養液貯留室と、前記細胞が接着可能な一方の面が前記培養液貯留空間に臨む透過性の隔膜と、前記第1液体貯留室を供給源とする前記液体を、前記隔膜の他方の面側の空間から前記第2液体貯留室に導く液体導出流路と、を有し、前記貯留槽は、前記第1液体貯留室に対して気体を供給および排出する通気孔を有する細胞培養装置を使用し、前記第1液体貯留室に前記通気孔を通して気体を供給して前記第1液体貯留室内を加圧し、前記第1液体貯留室内の圧力上昇によって、前記液体導出流路によって、前記液体を、前記隔膜の他方の面側の空間から前記第2液体貯留室に導く細胞培養方法。
 本発明の一態様によれば、液体を、隔膜の他方の面側の空間から第2液体貯留室に導くことができるため、送液のための流路の構造を簡略にすることができる。そのため、装置構造を簡略化して装置を小型化するとともに、操作を容易にすることができる。
 複数の細胞培養ユニットを有する細胞培養装置によれば、容易な操作で、複数の試験を並列的に行うことができる。そのため、多数の被検体(薬剤等)を効率よく評価できる。
第1実施形態の細胞培養装置を模式的に示す断面図である。 図1の細胞培養装置を模式的に示す斜視図である。 図1の細胞培養装置の一部を示す拡大図である。 第2実施形態の細胞培養装置を模式的に示す斜視図である。 第3実施形態の細胞培養装置を模式的に示す断面図である。 第4実施形態の細胞培養装置を模式的に示す断面図である。 図5の細胞培養装置を模式的に示す斜視図である。 図5の細胞培養装置を模式的に示す平面図である。 図5の細胞培養装置を用いた細胞培養方法の一例を説明するための図である。 図5の細胞培養装置を用いた細胞培養方法の一例を説明するための図である。 図5の細胞培養装置を用いた細胞培養方法の一例を説明するための図である。 図5の細胞培養装置を用いた細胞培養方法の一例を説明するための図である。 第5実施形態の細胞培養装置を示す斜視図である。 図9の細胞培養装置を示す分解斜視図である。 図9の細胞培養装置の分解状態の正断面図である。 図9の細胞培養装置の正断面図である。 図9の細胞培養装置の分解状態の側断面図である。 図9の細胞培養装置の側断面図である。 ラプラス弁の説明図である。詳しくは、ラプラス弁が設けられた液体貯留室の部分拡大図である。 ラプラス弁の説明図である。詳しくは、ラプラス弁を介して下流口から連絡流路に培地が流入する場合の模式図である。 ラプラス弁の説明図である。詳しくは、下流口に空気が流入した際に、ラプラス弁が機能している際の模式図を示す。 第6実施形態の細胞培養装置を模式的に示す断面図である。
(第1実施形態)
[細胞培養装置]
 第1実施形態の細胞培養装置10について、図面を参照して説明する。
 図1は、細胞培養装置10を模式的に示す断面図である。図2Aは、細胞培養装置10を模式的に示す斜視図である。図2Bは細胞培養装置10の一部を示す拡大図である。
 図1、図2Aおよび図2Bに示すように、細胞培養装置10は、貯留槽11と、加圧ポンプ14とを備えている。貯留槽11は、1つの細胞培養ユニット9を備えている。貯留槽11は、容器状の槽本体12と、蓋部13と、を備えている。
 細胞培養ユニット9は、第1液体貯留室1と、第2液体貯留室2と、培養液貯留室3と、隔膜4と、液体導入流路5と、液体導出流路6とを有する。第1液体貯留室1および第2液体貯留室2は、貯留槽11の槽本体12の上面に形成された凹部によって形成された空間であり、液体培地M1(液体)を貯留可能である。
 第2液体貯留室2は、主室2cと、主室2cの底面2eに形成された細胞保持凹部2d(細胞保持部)とを有する。細胞保持凹部2dには細胞20Bが保持される。第2液体貯留室2の内部空間は培養液貯留空間2aである。
 培養液貯留室3は、貯留槽11の槽本体12の上面に形成された凹部によって形成された空間であり、主室3cと、主室3cの底面3eに形成された凹部3dとを有する。主室3cの内部空間は培養液貯留空間3aである。凹部3dの内面と隔膜4の外面4bとで区画される空間は外面側空間3bである。図1において、外面側空間3bは培養液貯留空間3aの下方に位置している。培養液貯留室3は、培養液貯留空間3aに培養液C1を貯留可能である。
 隔膜4は、所定の大きさ以下の物質が厚さ方向に透過可能である。隔膜4を透過する物質移動は、例えば拡散により起きる。物質移動は、隔膜4に付着した細胞20の作用により促進されることもある。隔膜4は例えば多孔質膜であってよい。隔膜4の平均細孔径は例えば0.1μm~10μmである。隔膜4の材質は、ポリカーボネート、ポリエステル、シリコーン樹脂のいずれか1つであってよい。隔膜4は、例えば半透膜であってもよい。なお、細胞20は隔膜4を透過できない。隔膜4は、内面4aが細胞接着性材料でコーティングされていることが好ましい。細胞接着性材料は、コラーゲン、ゼラチン、フィブロネクチン、ラミニン、ビトロネクチン、マトリゲル、およびポリリジンのうち1または2以上が好ましい。
 隔膜4は、培養液貯留室3内において、培養液貯留空間3aと外面側空間3bとを隔てるように設置されている。隔膜4は、隔膜4は、凹部3dの底面より高い位置にあり、主室3cの底面3eに沿って、凹部3dの上部開口を塞ぐように設置することができる。隔膜4の内面4a(一方の面)は培養液貯留空間3aに臨み、外面4b(他方の面)は外面側空間3bに臨んでいる。
 液体導入流路5は、一端が第1液体貯留室1の底部に接続され、他端が培養液貯留室3の凹部3dの底部3d1に接続されている。液体導入流路5は、液体培地M1を第1液体貯留室1から培養液貯留室3の外面側空間3bに導くことができる。
 液体導出流路6は、一端が培養液貯留室3の凹部3dの底部3d1に接続され、他端が第2液体貯留室2の主室2cの底部に接続されている。液体導出流路6は、液体培地M1を培養液貯留室3の外面側空間3bから第2液体貯留室2に導くことができる。
 蓋部13は、槽本体12の開口を開閉自在かつ気密に閉止する。詳しくは、蓋部13は、第1液体貯留室1、第2液体貯留室2、および培養液貯留室3の上部開口1g,2g,3gをそれぞれ気密に閉止可能である。蓋部13が上部開口1g,2g,3gを気密に閉止する構造としては、例えば、蓋部13が、上部開口1b,2b,3gのそれぞれを包囲するように与えられたパッキン15を介して槽本体12の上面に当接する構造を例示できる。なお、図1では、蓋部13は、槽本体12から離間して示されている。
 蓋部13は、第1液体貯留室1、第2液体貯留室2および培養液貯留室3に相当する位置に、それぞれ通気孔1h,2h,3hを有する。通気孔1h,2h,3hは、それぞれ貯留室1,2,3に対して気体(例えば空気)を供給、および、貯留室1,2,3から気体(例えば空気)を排出することができる。通気孔1h,2h,3hにはそれぞれエアフィルタ16が設けられることが好ましい。エアフィルタ16によって、第1液体貯留室1、第2液体貯留室2および培養液貯留室3に異物が混入するのを防ぐことができる。
 加圧ポンプ14は、例えばコンプレッサである。
[細胞培養方法]
 次に、細胞培養装置10を用いて細胞を培養する方法の一例について説明する。
 なお、本実施形態において培養する細胞は、特に限定されず、例えばヒトを含む動物由来の細胞、植物由来の細胞、微生物由来の細胞等を目的に応じて使用できる。
(1)工程1
 図1、図2Aおよび図2Bに示すように、細胞20Aを隔膜4の内面4aに播種して接着させるとともに、培養液貯留室3の培養液貯留空間3aに液体培地(培養液C1)を導入する。また、液体培地M1を第1液体貯留室1に導入する。ここで、液体培地M1は第2液体貯留室2にも導入し得る。また、第2液体貯留室2には、細胞20Aとは異なる細胞20Bを播種することができる。その上で、蓋部13をパッキン15に押し当てるようにして閉じ、少なくとも第1液体貯留室1の上部開口1gを気密に閉止する。
(2)工程2
 加圧ポンプ14を稼働させ、通気孔1hを通して第1液体貯留室1に気体(例えば空気)を供給して第1液体貯留室1内を加圧する。この際、第2液体貯留室2は通気孔2hを通して大気に開放しておくことが好ましい。第1液体貯留室1内の圧力上昇によって、第1液体貯留室1(供給源)内の液体培地M1は、液体導入流路5を通って外面側空間3bに導入される。外面側空間3b内の液体培地M1は、液体導出流路6を通って第2液体貯留室2に導入される。
 ここで、外面側空間3bにおける液体培地M1の流れは、培養液貯留室3の培養液貯留空間3aに導入された液体培地(培養液C1)と隔膜4を挟んで対向する。つまり、隔膜4の選択によって、液体培地(培養液C1)を外面側空間3bの液体培地M1に与えることができる。
 本実施形態の細胞培養方法は、具体的には、例えば次のような試験への適用が考えられる。
 培養液貯留室3内の隔膜4に播種する細胞20Aとして腸の細胞を用いる。隔膜4は、予めコラーゲンでコーティングしておくことで細胞20Aの接着性を向上させることができる。コラーゲンでコーティングした隔膜4で細胞20Aを数日間(例えば3日間)培養することで、細胞20A(腸の細胞)が隔膜4表面で膜状に増殖し、培養液C1側が頂側膜(apical) 側、コラーゲンコーティング側が基底膜(basal)側といったように、極性を有した形で細胞層が形成される。
 第2液体貯留室2では、細胞20Bとしてがん細胞を使用する。細胞保持凹部2dに細胞20Bを播種し、培養する。
 被検体となる物質を系内(例えば培養液貯留室3の培養液貯留空間3a)に添加することによって、この物質の、細胞20A,20Bに対する影響を評価することができる。被検体となる物質としては医薬品候補化合物、食品添加物、化粧品原料、塗料、農薬といった、各種化成品に利用される化学物質が挙げられる。なお、被検体はこれらに限定されない。
 ここでは、被検体として、抗がん剤を培養液貯留室3の培養液貯留空間3aに添加する。
 隔膜4上の腸の細胞20Aからなる層を通過した被検体の一部は、隔膜4を透過して、外面側空間3b内の液体培地M1に混入する。第1液体貯留室1を加圧することによって、前記物質を含む液体培地M1は、液体導出流路6を通して第2液体貯留室2に流入し、第2液体貯留室2内の細胞20B(がん細胞)と接する。
 この試験では、抗がん剤の腸を介した吸収と、抗がん効果とを一度に評価することが可能となる。
 培養ディッシュやマイクロプレートといった従来の培養容器を用いた試験では、腸を介して吸収された抗がん剤を回収し、別の培養容器を用いて培養したがん細胞に対して作用させることで抗がん効果を評価することが必要なため、二段階の培養操作が必要であった。
 細胞培養装置10を用いれば、一度の操作で被検体の評価が可能となる。また、腸(細胞20A)を介して吸収された抗がん剤をリアルタイムでがん細胞(細胞20B)に作用させることが可能となるため、化学的に不安定な物質の吸収と抗がん効果を評価する際に特に有用である。
 細胞培養装置10は、第1液体貯留室1を加圧することによって、液体培地M1を、液体導入流路5を通して外面側空間3bを経て第2液体貯留室2に送ることができる。細胞培養装置10では、送液のための流路の構造を簡略にすることができるため、装置構造を簡略化して装置を小型化するとともに、装置の設定等の操作を容易にすることができる。
例えば、非特許文献8,10,11等に示す装置では、それぞれ、シリンジポンプ、カートリッジ式のペリスタポンプを用いて送液する構造が採用されており、送液のための配管接続が本実施形態よりも複雑となるとともに、装置が大型化し、試験の操作もより複雑である。
(第2実施形態)
[細胞培養装置]
 第2実施形態の細胞培養装置10Aについて、図面を参照して説明する。以下、既出の構成と同じ構成については、同じ符号を付して説明を省略する。
 図3に示すように、細胞培養装置10Aにおいて、貯留槽11Aは、複数の細胞培養ユニット9を有する。細胞培養ユニット9の数は、2以上の任意の数であってよい。
 複数の細胞培養ユニット9のうち、隣り合う2つの細胞培養ユニット9,9の第1液体貯留室1,1は、気体流路18によって互いに連通されている。気体流路18の一端および他端は、第1液体貯留室1,1内の上部気相空間1f,1fに接続されているため、気体流路18は、気体が流通可能となるように第1液体貯留室1,1を接続している。細胞培養ユニット9の数が3以上である場合には、少なくとも2つの細胞培養ユニット9の第1液体貯留室1が気体流路18によって互いに連通されていればよい。
 細胞培養装置10Aでは、複数の第1液体貯留室1のうち一部の第1液体貯留室1を加圧することによって、気体流路18を介して接続されたすべての第1液体貯留室1を一括的に加圧し、液体培地M1を培養液貯留室3の外面側空間3bを経て第2液体貯留室2に送ることができる。そのため、細胞培養装置10Aでは、容易な操作で、複数の試験を並列的に行うことができる。
 また、少ない数の加圧ポンプ14(図1参照)によって送液が可能となるため、装置の構造を簡略にすることができる。そのため、装置構造を簡略化して装置を小型化するとともに、装置の設定等の操作を容易にすることができる。
 上述の非特許文献8,10,11等に示す装置では、それぞれ、シリンジポンプ、カートリッジ式のペリスタポンプを用いて送液する構造が採用されており、1つの被検体を評価するために1台のポンプと1つのOrgan-on-a-chipを使用している。
 この構造で複数の被検体を評価しようとすると、対象となる被検体の数だけポンプやペリスタポンプのカートリッジを増設する必要があるため、送液のための配管接続が増えてしまう。
 図3に示す細胞培養装置10Aは、容易な操作で、多数の被検体(薬剤等)を一度に評価できる点で、非特許文献8,10,11等に示す装置より優れている。
(第3実施形態)
[細胞培養装置]
 第3実施形態の細胞培養装置10Eについて、図面を参照して説明する。
 図4に示すように、細胞培養装置10Eの貯留槽11Eは、槽本体12Eと、蓋部13Eと、を備えている。貯留槽11Eは、細胞培養ユニット9Eを備えている。細胞培養ユニット9Eは、第1液体貯留室1Eと、第2液体貯留室2Eと、培養液貯留室3Eと、隔膜4と、液体導出流路6Eと、液体返送流路7とを有する。
 槽本体12Eは、第1液体貯留室1Eおよび第2液体貯留室2Eが形成された主部12E1と、培養液貯留槽3E1と、を備えている。培養液貯留室3Eは培養液貯留槽3E1の内部空間である。
 第2液体貯留室2Eは、主室2Ecと、主室2Ecの底面2Eeに形成された細胞保持凹部2Ed(細胞保持部)とを有する。細胞保持凹部2Edには細胞20E2が保持される。
 隔膜4は、培養液貯留室3Eの底部3Eaに設けられている。
 培養液貯留槽3E1は、第1液体貯留室1Eに収容されている。培養液貯留槽3E1は、第1液体貯留室1Eの底面1Eeから上方に離れた位置にある。そのため、第1液体貯留室1Eの底面1Eeと隔膜4との間は、隔膜4の外面4b側の空間となっている。
 蓋部13Eは、第1液体貯留室1E、第2液体貯留室2Eに相当する位置に、それぞれ通気孔1h、2hを有する。
 細胞培養装置10Eは、第1液体貯留室1Eを加圧することで液体培地M1を第1液体貯留室1Eから第2液体貯留室2Eに導出することが可能である。つまり、蓋部13Eの通気孔1hを通して、第1液体貯留室1Eに気体(例えば空気)を供給して第1液体貯留室1E内を加圧することによって、液体培地M1を、液体導出流路6Eを通して第1液体貯留室1Eから第2液体貯留室2Eに導出することができる。
 同様に、第2液体貯留室2Eを加圧することで液体培地M1を第2液体貯留室2Eから第1液体貯留室1Eに送ることも可能である。つまり、蓋部13Eの通気孔2hを通して、第2液体貯留室2Eに気体(例えば空気)を供給して第2液体貯留室2E内を加圧することによって、液体培地M1を、液体返送流路7を通して第2液体貯留室2から第1液体貯留室1Eに送ることができる。
[細胞培養方法]
 次に、細胞培養装置10Eを用いて細胞を培養する方法の一例について説明する。
(1)工程1
 培養液貯留室3の隔膜4の内面4aに細胞20E1を播種する。第2液体貯留室2Eの細胞保持凹部2Edに細胞20E2を播種する。
(2)工程2
 第1液体貯留室1Eおよび第2液体貯留室2Eに液体培地M1を導入するとともに、培養液貯留室3Eに培養液C1を導入した後、蓋部13Eを閉じる。
(3)工程3
 蓋部13Eの通気孔1hを通して、第1液体貯留室1Eに気体(例えば空気)を供給して第1液体貯留室1E内を加圧する。第2液体貯留室2Eは通気孔2hを通して大気に開放しておく。第1液体貯留室1E内の圧力上昇によって、第1液体貯留室1E内の液体培地M1は、液体導出流路6Eを通って第2液体貯留室2Eに導入される。
(4)工程4
 蓋部13Eの通気孔2hを通して、第2液体貯留室2Eに気体(例えば空気)を供給して第2液体貯留室2E内を加圧する。第1液体貯留室1Eは通気孔1hを通して大気に開放しておく。第2液体貯留室2E内の圧力上昇によって、第2液体貯留室2E内の液体培地M1は、液体返送流路7を通って第1液体貯留室1Eに返送される。
 工程3,4を繰り返すことによって、液体培地M1を第1液体貯留室1Eと第2液体貯留室2Eの間で循環させることが可能となる。
 細胞培養装置10Eを用い、培養液貯留室3E内の隔膜4に播種する細胞20E1として腸の細胞を用い、第2液体貯留室2で培養する細胞20E2としてがん細胞を用い、被検体となる物質を系内(例えば培養液貯留室3E)に添加することによって、この物質の腸を介した吸収と、がん細胞に対する作用を一度に評価することが可能となる。
 工程3,4を繰り返すことで、腸の細胞20E1の膜を介して吸収された物質を連続的に液体培地M1に蓄積させつつ細胞20E2(がん細胞)に作用させることができるため、図1の構成の細胞培養装置10と比較して高い感度でがん細胞に対する被検体の作用を検出できる。
 細胞培養装置10Eでは、送液のための流路の構造を簡略にすることができるため、装置構造を簡略化して装置を小型化するとともに、装置の設定等の操作を容易にすることができる。
 第3実施形態の細胞培養装置10Eは、第2実施形態の細胞培養装置10A(図3参照)と同様に、複数の細胞培養ユニット9Eを有する構成とすることができる。細胞培養ユニット9Eの数は、2以上の任意の数であってよい。
 複数の細胞培養ユニット9Eのうち、少なくとも2つの細胞培養ユニット9E,9Eの第1液体貯留室1E,1Eは、気体が流通可能となるように気体流路(図示略)によって連通させることができる。
 また、複数の細胞培養ユニット9Eのうち、少なくとも2つの細胞培養ユニット9E,9Eの第2液体貯留室2E,2Eは、気体が流通可能となるように気体流路(図示略)によって連通させることができる。
 この構成によれば、工程3において、複数の第1液体貯留室1Eのうち一部の第1液体貯留室1Eを加圧することによって、気体流路を介して接続されたすべての第1液体貯留室1Eを一括的に加圧できる。また、工程4において、複数の第2液体貯留室2Eのうち一部の第2液体貯留室2Eを加圧することによって、気体流路を介して接続されたすべての第2液体貯留室2Eを一括的に加圧できる。
 したがって、容易な操作で、複数の試験を並列的に行うことができる。
(第4実施形態)
[細胞培養装置]
 第4実施形態の細胞培養装置10Bについて、図面を参照して説明する。
 図5は、細胞培養装置10Bを模式的に示す断面図である。図6は、細胞培養装置10Bを模式的に示す斜視図である。図7は、細胞培養装置10Bを模式的に示す平面図である。
 図5~図7に示すように、細胞培養装置10Bは、貯留槽11Bと、加圧ポンプ(図示略)とを備えている。貯留槽11Bは、1つの細胞培養ユニット9Bを備えている。貯留槽11Bは、槽本体12Bと、蓋部13Bと、を備えている。
 細胞培養ユニット9Bは、第1液体貯留室1Bと、第2液体貯留室2Bと、第1培養液貯留室3Bと、隔膜4と、液体導入流路5と、液体導出流路6と、第2培養液貯留室21と、培養液導出流路22と、培養液導入流路23と、連絡流路24と、を有する。
 第1液体貯留室1Bは、主室1cと、主室1cの底面1eに形成された細胞保持凹部1d(細胞保持部)とを有する。第1液体貯留室1Bには、培養液C2(液体)が貯留可能である。細胞保持凹部1dには細胞20Dが保持される。
 第2液体貯留室2Bは、主室2cと、主室2cの底面2eに形成された細胞保持凹部2d(細胞保持部)とを有する。第1液体貯留室1Bには、培養液C2が貯留可能である。
細胞保持凹部2dには細胞20Cが保持される。
 第1培養液貯留室3Bでは、隔膜4は、凹部3dの内部(凹部3dの上部開口よりやや深い位置)に設けられている。凹部3dの上部と隔膜4とは、細胞20Bが保持される細胞保持凹部3Bd(細胞保持部)を形成している。第1培養液貯留室3Bは、培養液貯留空間3aに培養液C1を貯留可能である。
 第2培養液貯留室21は、主室21cと、主室21cの底面21eに形成された細胞保持凹部21d(細胞保持部)とを有する。第2培養液貯留室21の内部空間は、培養液貯留空間21aである。第2培養液貯留室21は、培養液貯留空間21aに培養液C1を貯留可能である。細胞保持凹部21dには細胞20Aが保持される。
 連絡流路24は、一端が第2液体貯留室2Bの主室2cの底部に接続され、他端が第1液体貯留室1Bの主室1cの底部に接続されている。連絡流路24は、培養液C2を第2液体貯留室2Bから第1液体貯留室1Bに導くことができる。
 培養液導出流路22は、一端が第1培養液貯留室3Bの主室3cの底部に接続され、他端が第2培養液貯留室21の主室21cの底部に接続されている。培養液導出流路22は、培養液C1を第1培養液貯留室3Bから第2培養液貯留室21に導くことができる。
 培養液導出流路22は、一端が第2培養液貯留室21の主室21cの底部に接続され、他端が第1培養液貯留室3Bの主室3cの底部に接続されている。培養液導出流路22は、培養液C1を第2培養液貯留室21から第1培養液貯留室3Bに導くことができる。
 蓋部13Bは、槽本体12Bの開口を開閉自在かつ密閉可能に閉止する。詳しくは、蓋部13Bは、第1液体貯留室1B、第2液体貯留室2B、第1培養液貯留室3B、および第2培養液貯留室21の上部開口1g,2g,3g,21gをそれぞれ気密に閉止可能である。蓋部13Bが上部開口1g,2g,3g,21gを気密に閉止する構造としては、例えば、蓋部13Bが、上部開口1g,2g,3g,21gのそれぞれを包囲するように与えられたパッキン15を介して槽本体12Bの上面に当接する構造を例示できる。なお、図5では、蓋部13Bは、槽本体12Bから離間して示されている。
 蓋部13Bは、第1液体貯留室1B、第2液体貯留室2B,第1培養液貯留室3Bおよび第2培養液貯留室21に相当する位置に、それぞれ通気孔1h,2h,3h,21hを有する。通気孔1h,2h,3h,21hにはそれぞれエアフィルタ16が設けられることが好ましい。
 第1液体貯留室1Bには、液体導入流路5の一端に、第1液体貯留室1Bから液体導入流路5への液体の流れを許容し、かつ第1液体貯留室1Bから液体導入流路5への気体(例えば空気)の流入を阻止するラプラス弁31が設けられている。
 第1液体貯留室1Bには、連絡流路24の他端に、連絡流路24から第1液体貯留室1Bへ向かう方向の液体の流れを許容し、かつその逆の方向の流れを阻止する逆止弁32が設けられている。
 第2液体貯留室2Bには、連絡流路24の一端に、第2液体貯留室2Bから連絡流路24への液体の流れを許容し、かつ第2液体貯留室2Bから連絡流路24への気体の流入を阻止するラプラス弁33が設けられている。
 第2液体貯留室2Bには、液体導出流路6の他端に、液体導出流路6から第2液体貯留室2Bへ向かう方向の液体の流れを許容し、かつその逆の方向の流れを阻止する逆止弁34が設けられている。
 第1培養液貯留室3Bには、培養液導出流路22の一端に、第1培養液貯留室3Bから培養液導出流路22への液体の流れを許容し、かつ第1培養液貯留室3Bから培養液導出流路22への気体の流入を阻止するラプラス弁35が設けられている。
 第1培養液貯留室3Bには、培養液導入流路23の他端に、培養液導入流路23から第1培養液貯留室3Bへ向かう方向の液体の流れを許容し、かつその逆の方向の流れを阻止する逆止弁36が設けられている。
 第2培養液貯留室21には、培養液導入流路23の一端に、第2培養液貯留室21から培養液導入流路23への液体の流れを許容し、かつ第2培養液貯留室21から培養液導入流路23への気体の流入を阻止するラプラス弁37が設けられている。
 第2培養液貯留室21には、培養液導出流路22の他端に、培養液導出流路22から第2培養液貯留室21へ向かう方向の液体の流れを許容し、かつその逆の方向の流れを阻止する逆止弁38が設けられている。
(逆止弁)
 逆止弁32,34,36,38としては、例えば弁孔を有する弁座と、弁体とを備えた構造の逆止弁を例示できる。この逆止弁は、液が順方向に流れる際には、弁体が弁座から離れることにより弁孔が開かれるため、液は弁孔を通過して順方向に流れる。液が逆方向に流れる際には、弁体が弁座に当接して弁孔が閉止されるため、当該方向の液の流れは阻止される。
 逆止弁32,34,36,38は、液体の流れを制御する逆流防止機構の例である。
(ラプラス弁)
 ラプラス弁31,33,35,37の構造と機能を、図13A~図13Cを用いて説明する。図13Aは、ラプラス弁117が設けられた液体貯留室の部分拡大図を示す。図13Bは、ラプラス弁117を介して下流口114から連絡流路115に培地131が流入する場合の模式図を示す。図13Cは、下流口114に空気が流入した際に、ラプラス弁117が機能している際の模式図を示す。図13Cに示すように、微細な流路内において、培地131と空気との間には界面張力による圧力差、すなわちラプラス圧が発生する。流路の表面が液体培地で濡れている場合は、ラプラス圧未満の空気圧条件下において液体が満たされた微細流路に空気は流入しえない。このような条件下で微細流路は受動的な空気流入防止機構として扱うことができる。
 ラプラス弁の設計について、以下に説明する。
 ラプラス弁に空気が流入してしまう圧力(ラプラス圧、限界圧力)(ΔPLap)は界面張力(γ)およびラプラス弁を構成するマイクロ流路の幅(w)および深さ(h)によって以下の式(1)で計算できる。
Figure JPOXMLDOC01-appb-M000001
 細胞培養装置を駆動するための現実的な圧力範囲は市販の圧力制御装置で調整可能な圧力範囲および細胞の耐圧性によって決定されると考えられる。
 仮に細胞の耐圧性を生体内の血圧の上限程度(30kPa=225mmHg)とすると、実施形態の細胞培養装置を駆動するために現実的な圧力範囲は1kPa~30kPa程度となる。培養液の界面張力は60mN/m程度であり、ラプラス弁を構成するマイクロ流路の断面が正方形の場合、つまりw=hの場合、30kPaで空気が流入するマイクロ流路の寸法は上記式(1)よりw=h=8μm程度、1kPaで空気が流入するマイクロ流路の寸法はw=h=240μm程度と推算される。
 ラプラス弁を構成するマイクロ流路の寸法を上記寸法(30kPaのときのw=h=8μm、1kPaのときのw=h=240μm)よりも小さくすることで、想定する圧力で運用した際にラプラス弁に空気が流入してしまうことを防ぐことができる。
 すなわち、ラプラス弁が機能するための限界の圧力であるラプラス圧ΔPLapが、実施形態の細胞培養装置で使用する圧力範囲よりも大きくなるように、ラプラス弁を構成するマイクロ流路を形成すれば、ラプラス弁に空気が流入してしまうことを防ぐことができる。
 なお、wとhの比率が1:1でない場合も同様に式(1)に基づいて流路の寸法を設計することが可能である。
 細胞培養装置10Bでは、例えば、流路5、6、22、23、24の幅および深さをそれぞれ200μmおよび25μmと設計し、ラプラス圧が5.4kPaと推算して、圧力がこの値以下となるように液体を流路5、6、22、23、24に流すことができる。
 ラプラス弁31,33,35,37は、液体の流れを制御する逆流防止機構の例である。
(抵抗流路)
 断面が矩形のマイクロ流路を流れる液体の流量(Q)と圧力損失(ΔP)には以下の関係がある(F. M. White, Viscous Fluid Flow, McGraw-Hill Companies, Inc, Boston, 2006を参照)。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記式(2)および式(3)において、ΔPはマイクロ流路の入口と出口の圧力差、Rは流路抵抗、μは流体の粘度、lはマイクロ流路の長さ、wはマイクロ流路の幅、hはマイクロ流路の深さである。当該式(2)および式(3)はw>hの条件で成立する。
 例えば、細胞培養装置10Bでは、液体導入流路5、液体導出流路6、培養液導出流路22、培養液導入流路23および連絡流路24は、流量を調節するために流路断面積が1/10以下となっている抵抗流路部位5a、6a、22a、23a、24aを備えていてもよい。
 流路5、6、22、23、24において、抵抗流路部位と、それ以外の部分の部位との長さが等しい場合を考える。抵抗流路の断面積が他の部位の断面積の1/10となると、幅w、深さhが1/100.5となり、式(3)の抵抗流路の流路抵抗Rが、抵抗流路以外の部位の流路抵抗Rの100倍となる。
 式(2)より、圧力損失についても抵抗流路の圧力損失が、抵抗流路以外の部位の圧力損失の100倍となる。流路全体を流れる流量を推算する際に、抵抗流路の抵抗と流路全体にかかる圧力のみを考慮して流量を推算した場合の推算誤差が1/100となり、これは許容できる誤差と言える。
 すなわち、流路の一部に流量を調節するために流路断面積が1/10以下となっている抵抗流路部位が設けられた場合には、抵抗流路の圧力損失のみを考慮して流路設計をすることで流路網の設計が容易になるという利点がある。
 次に、細胞培養装置10Bを用いて細胞を培養する方法の一例について説明する。
(1)工程1
 図8Aに示すように、細胞20Bを第1培養液貯留室3B内の隔膜4の内面4aに播種して接着させる。細胞20A,20C,20Dをそれぞれ第2培養液貯留室21の細胞保持凹部21d、第2液体貯留室2Bの細胞保持凹部2d、第1液体貯留室1Bの細胞保持凹部1dに播種する。
(2)工程2
 図8Bに示すように、第1培養液貯留室3Bおよび第2液体貯留室2Bにそれぞれ培養液C1,C2を導入するとともに、蓋部13を閉じる。
(3)工程3
 図8Cに示すように、通気孔3h,2hを通して第1培養液貯留室3Bおよび第2液体貯留室2Bに気体(例えば空気)を供給して各室内を加圧する。この際、第2培養液貯留室21および第1液体貯留室1Bは大気に開放しておくことが好ましい。
 第1培養液貯留室3B内の圧力上昇によって、第1培養液貯留室3Bの培養液貯留空間3a内の培養液C1は、培養液導出流路22を通って第2培養液貯留室21に導入される。
 第2液体貯留室2B内の圧力上昇によって、第2液体貯留室2B内の培養液C2は、連絡流路24を通って第1液体貯留室1Bに導入される。
(4)工程4
 図8Dに示すように、通気孔21h,1hを通して第2培養液貯留室21および第1液体貯留室1Bに気体(例えば空気)を供給して各室内を加圧する。この際、第1培養液貯留室3Bおよび第2液体貯留室2Bは大気に開放しておくことが好ましい。
 第2培養液貯留室21内の圧力上昇によって、第2培養液貯留室21内の培養液C1は、培養液導入流路23を通って第1培養液貯留室3Bの培養液貯留空間3aに導入される。
 第1液体貯留室1B内の圧力上昇によって、第1液体貯留室1B内の培養液C2は、液体導入流路5、外面側空間3b、液体導出流路6を通って第2液体貯留室2Bに導入される。
 工程3,4を繰り返すことによって、培養液C1,C2を細胞培養装置10B内で循環させることができる。
 細胞培養装置10Bでは、4種類の細胞20A~20Dの評価を一括的に行うことができる。
 例えば、細胞20A~20Dを、それぞれ消化管細胞、腸細胞、がん細胞、正常細胞とすれば、抗がん剤の消化、吸収、抗がん効果、および副作用を一度に評価できる。
 細胞培養装置10Bでは、培養液C1,C2を第1培養液貯留室3Bと第2培養液貯留室21との間で循環させることができるため、せん断力が加えられる環境下で細胞20A~20Dの培養を行うことができる。
(第5実施形態)
[細胞培養装置]
 第5実施形態の細胞培養装置10Cについて、図面を参照して説明する。
 図9は、細胞培養装置10Cを示す斜視図である。図10は、細胞培養装置10Cの分解斜視図である。図11Aは細胞培養装置10Cの分解状態の正断面図である。図11Bは細胞培養装置10Cの正断面図である。図12Aは細胞培養装置10Cの分解状態の側断面図である。図12Bは細胞培養装置10Cの側断面図である。
 図9~図12Bに示すように、細胞培養装置10Cの貯留槽11Cは、複数の細胞培養ユニット9B(図5および図6参照)を備えている。
 貯留槽11Cは、槽本体12Cと、蓋部13Cと、基体部40と、蓋部押圧部41と、壁部押圧部47と、を備えている。
 基体部40は、底板51と、底板51の側縁から上方に突出して形成された厚肉部52,52と、底板51の端縁から上方に突出して形成された端壁部53,53と、を備えている。底板51と、厚肉部52,52と、端壁部53,53とは、底部プレート45を収容する収容空間54を画成している。厚肉部52の両端面には、押圧バー43の端部が挿入される挿入穴52a、および押圧バー48の端部が挿入される挿入穴52bが形成されている。基体部40は、底板51上に置かれた槽本体12Cを支持する。
 蓋部押圧部41は、槽本体12Cに向けて蓋部13を押圧する一対の押圧バー43(押圧部材)を有する。押圧バー43は、両端部を挿入穴52aに挿入した状態で、この挿入部分を支点として、厚肉部52に沿う中心軸の軸周り方向に回動可能となっている。押圧バー43は、蓋部13Cの上面の両側部に形成された係止凹部55に係止させることができる。これによって、蓋部13Cを槽本体12Cに対して押さえつけた状態で保持するとともに、槽本体12Cの内部空間を密閉することができる。
 槽本体12Cは、底部プレート45と、底部プレート45の上面45a(一方の面)に設けられたブロック状の壁部46と、を備えている。
 壁部46は、厚さ方向に貫通して形成された複数の貫通孔部50を有する。第1液体貯留室1B、第2液体貯留室2B、第1培養液貯留室3B、および第2培養液貯留室21は、貫通孔部50と、底部プレート45とによって区画される空間であり、平面視形状はそれぞれ長円形である。
 底部プレート45には、液体導入流路5、液体導出流路6、培養液導出流路22、培養液導入流路23が形成されている(図7参照)。
 壁部押圧部47は、底部プレート45に向けて壁部46を押圧する押圧バー48(押圧部材)を有する。押圧バー48は、例えば金属などで構成されており、両端部を挿入穴52bに挿入した状態で、この挿入部分を支点として、厚肉部52に沿う中心軸の軸周り方向に回動可能となっている。押圧バー48は、壁部46の両側部に形成された係止凹部56に係止させることができる。これによって、壁部46を底部プレート45に対して押圧し、底部プレート45に隙間なく密着させることができる。壁部押圧部47は、押圧バー48によって、壁部46を底部プレート45に向けて押さえつけた状態で保持することができる。
 図11Aおよび図11Bに示すように、細胞培養装置10Cでは、複数の細胞培養ユニット9Bの第1液体貯留室1のうち少なくとも2つは気体流路18によって互いに連通されていることが好ましい。また、複数の細胞培養ユニット9Bの第2液体貯留室2のうち少なくとも2つは気体流路(図示略)によって互いに連通されていることが好ましい。また、複数の細胞培養ユニット9Bの第1培養液貯留室3Bのうち少なくとも2つは気体流路(図示略)によって互いに連通されていることが好ましい。また、複数の細胞培養ユニット9Bの第2培養液貯留室21のうち少なくとも2つは気体流路(図示略)によって互いに連通されていることが好ましい。
 細胞培養装置10Cでは、複数の細胞培養ユニット9Bが、蓋部13Cに形成された気体流路18によって互いに連通されているため、複数の細胞培養ユニット9Bの貯留室を一括的に加圧することができる。例えば、複数の第1液体貯留室1を一括的に加圧することができる。同様に、第2液体貯留室2、第1培養液貯留室3B、および第2培養液貯留室21についても一括的な加圧が可能である。そのため、細胞培養装置10Cでは、容易な操作で、複数の細胞培養ユニット9Bにおける試験を並列的に行うことができる。
 槽本体12Cおよび蓋部13Cは、例えば樹脂(プラスチック)、ガラス等が使用できる。細胞を光学的に観察することが容易であることから、前記材料は透明材料であることが好ましく、具体的には樹脂およびガラスが好ましい。
 樹脂としては、シリコーン系樹脂(例えばポリジメチルシロキサン(PDMS))、アクリル系樹脂(例えばポリメタクリル酸メチル(PMMA))、スチレン系樹脂(例えばポリスチレン)、ポリビニルピリジン系樹脂(ポリ(4-ビニルピリジン)、4-ビニルピリジン-スチレン共重合体等)、ポリオレフィン系樹脂(例えばポリエチレン樹脂、ポリプロピレン樹脂、ポリメチルペンテン樹脂)、ポリエステル樹脂(ポリエチレンテレフタレート樹脂(PET))、ポリカーボネート系樹脂、エポキシ系樹脂等がある。
 なかでも、シリコーン系樹脂(例えばポリジメチルシロキサン(PDMS))、アクリル系樹脂(例えばポリメタクリル酸メチル(PMMA))、スチレン系樹脂(例えばポリスチレン)は、高い透明性を有するため好ましい。
 細胞培養装置10Cでは、複数の細胞培養ユニット9Bを有するため、複数の試験を並列的に行うことができる。また、装置の構造を簡略にすることができるため、装置構造を簡略化して装置を小型化するとともに、装置の設定等の操作を容易にすることができる。
 細胞培養装置10Cは、容易な操作で、多数の被検体(薬剤等)を効率よく評価できる点で優れている。
(第6実施形態)
[細胞培養装置]
 第6実施形態の細胞培養装置10Dについて、図面を参照して説明する。
 図14に示すように、細胞培養装置10Dの貯留槽11Dは、槽本体12Dと、蓋部13Dと、を備えている。貯留槽11Dは、細胞培養ユニット9Dを備えている。細胞培養ユニット9Dは、第1液体貯留室1Dと、第2液体貯留室2Dと、培養液貯留室3Dと、隔膜4と、液体導出流路6Dと、を有する。
 槽本体12Dは、第1液体貯留室1Dおよび第2液体貯留室2Dが形成された主部12D1と、培養液貯留槽3D1と、を備えている。培養液貯留室3Dは培養液貯留槽3D1の内部空間である。
 隔膜4は、培養液貯留槽3D1の底部3Daに設けられている。隔膜4の内面4aには細胞20D1が播種される。
 培養液貯留槽3D1は、第1液体貯留室1Dに収容されている。培養液貯留槽3D1は、第1液体貯留室1Dの底面1Deから上方に離れた位置にある。そのため、第1液体貯留室1Dの底面1Deと隔膜4との間は、隔膜4の外面4b側の空間となっている。
 蓋部13Dは、第1液体貯留室1D、第2液体貯留室2Dに相当する位置に、それぞれ通気孔1h、2hを有する。
 蓋部13Dの通気孔1hを通して、第1液体貯留室1Dに気体(例えば空気)を供給して第1液体貯留室1D内を加圧する。第2液体貯留室2Dは通気孔2hを通して大気に開放しておく。第1液体貯留室1D内の圧力上昇によって、第1液体貯留室1D内の液体培地M1は、液体導出流路6Dを通って第2液体貯留室2Dに導入される。
 細胞培養装置10Dでは、送液のための流路の構造を簡略にすることができるため、装置構造を簡略化して装置を小型化するとともに、装置の設定等の操作を容易にすることができる。
 上述の実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
 例えば、図9等に示す細胞培養装置10Cの貯留槽11Cは、互いに別体である槽本体12Cと蓋部13Cとを有するが、これに限らず、一体型の貯留槽を採用してもよい。
 本実施形態は、細胞工学分野、再生医療分野、バイオ関連工業分野、組織工学分野などにおいて有用である。特に、医薬品の開発、細胞生物学の基礎研究に有用である。
 1,1B,1D,1E  第1液体貯留室
 1d,2d,2Ed,21d,3Bd  細胞保持凹部(細胞保持部)
 1h,2h,3h,21h  通気孔
 2,2B,2D,2E  第2液体貯留槽
 3,3B,3D,3E  培養液貯留室
 3a  培養液貯留空間
 4  隔膜
 4a  内面(一方の面)
 5  液体導入流路
 6,6E,6D  液体導出流路
 6a  抵抗流路部位
 7  液体返送流路
 9,9B,9D,9E  細胞培養ユニット
 10,10A,10B,10C,10D,10E  細胞培養装置
 11,11A,11B,11C,11D,11E  貯留槽
 12,12B,12C,12D,12E  槽本体
 13,13B,13C,13D,13E  蓋部
 14  加圧ポンプ(加圧手段)
 21  第2培養液貯留室
 22  培養液導出流路
 23  培養液導入流路
 34,36,38  逆止弁
 35  ラプラス弁
 41  蓋部押圧部
 43  押圧バー(押圧部材)
 45  底部プレート
 46  壁部
 47  壁部押圧部
 48  押圧バー(押圧部材)
 C1,C2  培養液
 M1  液体培地(液体)

Claims (18)

  1.  1または複数の細胞培養ユニットを有する貯留槽を備え、
     前記細胞培養ユニットは、液体が貯留される気密構造の第1液体貯留室と、
     前記液体が貯留される第2液体貯留室と、
     細胞の培養液が貯留される培養液貯留空間を有する培養液貯留室と、
     前記細胞が接着可能な一方の面が前記培養液貯留空間に臨む透過性の隔膜と、
     前記第1液体貯留室を供給源とする前記液体を、前記隔膜の他方の面側の空間から前記第2液体貯留室に導く液体導出流路と、を有し、
     前記貯留槽は、前記第1液体貯留室に対して気体を供給および排出する通気孔を有する、細胞培養装置。
  2.  複数の前記細胞培養ユニットの前記第1液体貯留室のうち少なくとも2つは、気体が流通可能となるように互いに連通されている、請求項1に記載の細胞培養装置。
  3.  前記液体を前記第2液体貯留室から第1液体貯留室に導く液体返送流路をさらに有し、
     前記第2液体貯留室は、播種された細胞が保持される細胞保持部を有する、請求項1に記載の細胞培養装置。
  4.  複数の前記細胞培養ユニットの前記第1液体貯留室のうち少なくとも2つは気体が流通可能となるように互いに連通され、かつ複数の前記細胞培養ユニットの前記第2液体貯留室のうち少なくとも2つは気体が流通可能となるように互いに連通されている、請求項3に記載の細胞培養装置。
  5.  前記細胞培養ユニットは、前記培養液が貯留される第2培養液貯留室と、
     前記培養液を前記培養液貯留室から前記第2培養液貯留室に導く培養液導出流路と、
     前記培養液を前記第2培養液貯留室から前記培養液貯留室に導く培養液導入流路と、をさらに備え、
     前記貯留槽は、前記培養液貯留室に対して気体を供給および排出する通気孔を有する、請求項1~4のうちいずれか1項に記載の細胞培養装置。
  6.  前記複数の細胞培養ユニットの培養液貯留室のうち少なくとも2つは、気体が流通可能となるように互いに連通されている、請求項5に記載の細胞培養装置。
  7.  前記第1液体貯留室と、前記第2液体貯留室と、前記第2培養液貯留室とは、播種された細胞が保持される細胞保持部を有する、請求項5または6に記載の細胞培養装置。
  8.  前記液体導出流路から前記第2液体貯留室への前記液体の流れを制御する逆流防止機構をさらに備えている、請求項1~7のうちいずれか1項に記載の細胞培養装置。
  9.  前記逆流防止機構は、前記液体導出流路から前記第2液体貯留室へ向かう方向の前記液体の流れを許容し、かつその逆の方向の流れを阻止する逆止弁である、請求項8に記載の細胞培養装置。
  10.  前記液体を前記第1液体貯留室から前記隔膜の他方の面側の空間に導く液体導入流路と、
     前記第1液体貯留室から前記液体導入流路への前記液体の流れを制御する逆流防止機構と、をさらに備えている、請求項1~7のうちいずれか1項に記載の細胞培養装置。
  11.  前記逆流防止機構は、前記第1液体貯留室から前記液体導入流路への前記液体の流れを許容し、かつ前記第1液体貯留室から前記液体導入流路への気体の流れを阻止するラプラス弁である、請求項10に記載の細胞培養装置。
  12.  前記液体導出流路は、流路断面積が他の部位に比べて1/10以下である抵抗流路部位を有する、請求項1~11のうちいずれか1項に記載の細胞培養装置。
  13.  前記貯留槽は、前記第1液体貯留室、前記第2液体貯留室および前記培養液貯留室が形成された容器状の槽本体と、前記第1液体貯留室、前記第2液体貯留室および前記培養液貯留室の開口を開閉自在かつ気密に閉止する蓋部とを有する、請求項1~12のうちいずれか1項に記載の細胞培養装置。
  14.  前記蓋部を前記槽本体に向けて押さえつけて保持する蓋部押圧部をさらに備え、
     前記蓋部押圧部は、前記槽本体に向けて前記蓋部を押圧する押圧部材を有する、請求項13に記載の細胞培養装置。
  15.  前記槽本体は、前記液体導出流路を有する底部プレートと、前記底部プレートの一方の面に設けられた壁部とを備え、
     前記第1液体貯留室、前記第2液体貯留室および前記培養液貯留室は、前記底部プレートと前記壁部とによって区画された空間である、請求項13または14に記載の細胞培養装置。
  16.  前記壁部を前記底部プレートに向けて押さえつけて保持する壁部押圧部をさらに備え、
     前記壁部押圧部は、前記底部プレートに向けて前記壁部を押圧する押圧部材を有する、請求項15に記載の細胞培養装置。
  17.  前記第1液体貯留室内を加圧可能な加圧手段をさらに備えている、請求項1~16のうちいずれか1項に記載の細胞培養装置。
  18.  1または複数の細胞培養ユニットを有する貯留槽を備え、前記細胞培養ユニットは、液体が貯留される気密構造の第1液体貯留室と、前記液体が貯留される第2液体貯留室と、細胞の培養液が貯留される培養液貯留空間を有する培養液貯留室と、前記細胞が接着可能な一方の面が前記培養液貯留空間に臨む透過性の隔膜と、前記第1液体貯留室を供給源とする前記液体を、前記隔膜の他方の面側の空間から前記第2液体貯留室に導く液体導出流路と、を有し、前記貯留槽は、前記第1液体貯留室に対して気体を供給および排出する通気孔を有する細胞培養装置を使用し、前記第1液体貯留室に前記通気孔を通して気体を供給して前記第1液体貯留室内を加圧し、前記第1液体貯留室内の圧力上昇によって、前記液体導出流路によって、前記液体を、前記隔膜の他方の面側の空間から前記第2液体貯留室に導く、細胞培養方法。
PCT/JP2017/008995 2016-03-08 2017-03-07 細胞培養装置および細胞培養方法 WO2017154899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17763239.5A EP3428266A4 (en) 2016-03-08 2017-03-07 CELL CULTURE DEVICE AND CELL CULTURE PROCEDURE
CN201780015382.7A CN108699501B (zh) 2016-03-08 2017-03-07 细胞培养装置以及细胞培养方法
US16/082,339 US10961494B2 (en) 2016-03-08 2017-03-07 Cell culture device and cell culture method
JP2018504508A JP6823793B2 (ja) 2016-03-08 2017-03-07 細胞培養装置および細胞培養方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016045023 2016-03-08
JP2016-045023 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017154899A1 true WO2017154899A1 (ja) 2017-09-14

Family

ID=59790532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008995 WO2017154899A1 (ja) 2016-03-08 2017-03-07 細胞培養装置および細胞培養方法

Country Status (5)

Country Link
US (1) US10961494B2 (ja)
EP (1) EP3428266A4 (ja)
JP (1) JP6823793B2 (ja)
CN (1) CN108699501B (ja)
WO (1) WO2017154899A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054288A1 (ja) * 2017-09-13 2019-03-21 国立研究開発法人産業技術総合研究所 細胞培養装置および細胞培養方法
JP2021153520A (ja) * 2020-03-27 2021-10-07 学校法人東海大学 細胞培養装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154899A1 (ja) 2016-03-08 2017-09-14 国立研究開発法人産業技術総合研究所 細胞培養装置および細胞培養方法
EP3428265A4 (en) * 2016-03-08 2019-10-23 National Institute of Advanced Industrial Science and Technology CELL CULTURE DEVICE AND CELL CULTURE PROCEDURE
JP2020110117A (ja) * 2019-01-15 2020-07-27 株式会社島津製作所 細胞処理容器及び細胞処理装置
TWI742648B (zh) * 2019-05-15 2021-10-11 賽宇細胞科技股份有限公司 細胞培養裝置及其使用方法
NL2026633B1 (en) * 2020-10-06 2022-06-03 Micronit Holding B V Microfluidic cell culture device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086264A (ja) * 2006-10-02 2008-04-17 Olympus Corp 細胞培養液供給排出装置
JP2009109249A (ja) * 2007-10-26 2009-05-21 National Institute Of Advanced Industrial & Technology マイクロチップ、マスターチップ
JP2009527225A (ja) * 2006-02-17 2009-07-30 バイオプロセッサーズ コーポレイション 補助的な流体移動制御によるマイクロ反応器
JP2011257238A (ja) * 2010-06-08 2011-12-22 Sekisui Chem Co Ltd 微量液滴秤取構造、マイクロ流体デバイス及び微量液滴秤取方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346167B (zh) * 2005-12-28 2011-04-13 株式会社岛津制作所 压力差气泡移动控制方法以及使用了该方法的气体交换装置、导电率测定装置、总有机碳测定装置、反应装置及细胞培养装置
WO2012020458A1 (ja) * 2010-08-12 2012-02-16 株式会社日立製作所 自動培養装置
CN202369581U (zh) * 2011-11-30 2012-08-08 镇江绿能环保科技有限公司 用于产业化养殖微藻的薄膜光生物反应器和反应器单元
WO2013086329A1 (en) * 2011-12-08 2013-06-13 Research Triangle Institute Human emulated response with microfluidic enhanced systems
JP6230103B2 (ja) 2013-10-08 2017-11-15 国立研究開発法人産業技術総合研究所 細胞培養装置および細胞培養方法
EP3279310B1 (en) * 2015-04-03 2021-05-05 National Institute of Advanced Industrial Science and Technology Cell culture apparatus and cell culture method
WO2017154899A1 (ja) 2016-03-08 2017-09-14 国立研究開発法人産業技術総合研究所 細胞培養装置および細胞培養方法
EP3428265A4 (en) * 2016-03-08 2019-10-23 National Institute of Advanced Industrial Science and Technology CELL CULTURE DEVICE AND CELL CULTURE PROCEDURE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527225A (ja) * 2006-02-17 2009-07-30 バイオプロセッサーズ コーポレイション 補助的な流体移動制御によるマイクロ反応器
JP2008086264A (ja) * 2006-10-02 2008-04-17 Olympus Corp 細胞培養液供給排出装置
JP2009109249A (ja) * 2007-10-26 2009-05-21 National Institute Of Advanced Industrial & Technology マイクロチップ、マスターチップ
JP2011257238A (ja) * 2010-06-08 2011-12-22 Sekisui Chem Co Ltd 微量液滴秤取構造、マイクロ流体デバイス及び微量液滴秤取方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HATTORI K ET AL.: "Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function", J. BIOSCI. BIOENG., vol. 118, 2014, pages 327 - 332, XP055413921 *
IMURA Y ET AL.: "Micro Total Bioassay System for Ingested Substances: Assessment of Intestinal Absorption", HEPATIC METABOLISM, AND BIOACTIVITY , ANAL. CHEM., vol. 82, 2010, pages 9983 - 9988, XP055163485 *
PERESTRELO AR ET AL.: "Microfluidic Organ/Body- on-a-Chip Devices at the Convergence of Biology and Microengineering", SENSORS, vol. 15, 2015, pages 31142 - 31170, XP055413925 *
See also references of EP3428266A4 *
SUGIURA S ET AL.: "Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay", BIOTECHNOL. BIOENG., vol. 100, 2008, pages 1156 - 1165, XP055319428 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054288A1 (ja) * 2017-09-13 2019-03-21 国立研究開発法人産業技術総合研究所 細胞培養装置および細胞培養方法
JPWO2019054288A1 (ja) * 2017-09-13 2020-10-15 国立研究開発法人産業技術総合研究所 細胞培養装置および細胞培養方法
JP7150341B2 (ja) 2017-09-13 2022-10-11 国立研究開発法人産業技術総合研究所 細胞培養装置および細胞培養方法
US11584907B2 (en) 2017-09-13 2023-02-21 National Institute Of Advanced Industrial Science And Technology Cell culture apparatus and cell culture method
JP2021153520A (ja) * 2020-03-27 2021-10-07 学校法人東海大学 細胞培養装置
JP7469795B2 (ja) 2020-03-27 2024-04-17 学校法人東海大学 細胞培養装置

Also Published As

Publication number Publication date
US20190093058A1 (en) 2019-03-28
US10961494B2 (en) 2021-03-30
CN108699501A (zh) 2018-10-23
EP3428266A4 (en) 2019-10-23
EP3428266A1 (en) 2019-01-16
CN108699501B (zh) 2022-04-19
JPWO2017154899A1 (ja) 2019-01-17
JP6823793B2 (ja) 2021-02-03

Similar Documents

Publication Publication Date Title
WO2017154880A1 (ja) 細胞培養装置および細胞培養方法
WO2017154899A1 (ja) 細胞培養装置および細胞培養方法
JP6423082B2 (ja) 細胞培養装置および細胞培養方法
US10908149B2 (en) Devices for fluid management
JP2017526352A (ja) 流体レベリング装置を組み込む流体循環システム
WO2017175236A1 (en) Microfluidic platform for developing in-vitro co-cultures of mammalian tissues.
US11584907B2 (en) Cell culture apparatus and cell culture method
Akhtar et al. Long-term storage of droplets on a chip by Parylene AF4 coating of channels
KR20190079675A (ko) 마이크로 플레이트 랩웨어의 관류 및 환경제어 방법 및 장치
Ameri et al. A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications
US11643632B2 (en) Method for gas enrichment and simultaneously for displacement of a fluid, and system for controlling the cell environment on a corresponding multi-well cell culture plate
Sonntag et al. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures
JP6236522B2 (ja) 細胞培養用デバイス、細胞培養用システム及び細胞培養方法
LU503075B1 (en) Microphysiological system
Xie et al. Origami-Enabled Microfluidics
JP2007162899A (ja) マイクロバルブ
Lockhart et al. A 96-WELL VALVED MICROFLUIDIC DEVICE FOR TESTING OF LIVE INTACT TUMOR CUBOIDS
Wilkinson The physics and engineering of flow in organ-on-a-chip devices
EP4339276A2 (de) Grundkörper eines mehrkammer-biochips, herstellung des mehrkammer-biochips und dessen verwendung für die etablierung von organ- und krankheitsmodellen und substanztestungen
CN115960717A (zh) 细胞和组织培养器官芯片

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504508

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763239

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763239

Country of ref document: EP

Effective date: 20181008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763239

Country of ref document: EP

Kind code of ref document: A1