WO2017154878A1 - Soft polyurethane foam molding composition - Google Patents

Soft polyurethane foam molding composition Download PDF

Info

Publication number
WO2017154878A1
WO2017154878A1 PCT/JP2017/008925 JP2017008925W WO2017154878A1 WO 2017154878 A1 WO2017154878 A1 WO 2017154878A1 JP 2017008925 W JP2017008925 W JP 2017008925W WO 2017154878 A1 WO2017154878 A1 WO 2017154878A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
polyurethane foam
mass
flexible polyurethane
foam
Prior art date
Application number
PCT/JP2017/008925
Other languages
French (fr)
Japanese (ja)
Inventor
石橋圭太
吉井直哉
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2017154878A1 publication Critical patent/WO2017154878A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a flexible polyurethane foam molding composition and a flexible polyurethane foam comprising the composition.
  • the flexible polyurethane foam of the present invention is suitable for applications requiring heat resistance, such as in a vehicular engine room, an anti-vibration / sound insulation material for a generator, and a hot carpet.
  • soft polyurethane foam is used as these vibration-proof and sound-proof materials, since the heat-resistant temperature of the soft polyurethane foam is as low as 150 ° C. or lower, it cannot be disposed on a surface exposed to high temperatures such as in the vicinity of an engine.
  • Patent Documents 1 to 7 As a method for improving the heat resistance of a vibration-proof and heat-insulating material using a flexible polyurethane foam, there is known a method of laminating and integrating a heat-resistant nonwoven fabric or a resin film (Patent Documents 1 to 7). There is no known method for improving heat resistance alone.
  • the present invention has been made in view of the above-mentioned background art, and its problem is a flexible polyurethane having excellent heat resistance, which is used in a vehicle engine room, an anti-vibration / sound insulation material for a generator, a hot carpet, and the like. Is to provide a form.
  • the present invention includes the following embodiments.
  • a composition for molding a flexible polyurethane foam comprising a polyol (A), a hindered phenol compound (B), and a polyisocyanate (C), wherein the polyol (A) is castor oil and castor oil modified.
  • the polyol (A) contains 10 to 50% by mass of at least one polyol (A-1) selected from the group consisting of polyols, and the hindered phenolic compound (B) is 0% relative to the polyol (A).
  • polyisocyanate (C) contains diphenylmethane diisocyanate in the range of 50 to 80% by weight, and 2,2′-diphenylmethane diisocyanate and 2,4′- Diphenylmethane diisocyanate is diphenylmethane diisocyanate Flexible polyurethane foam molding composition characterized by containing 10 to 50% by weight relative to the amount.
  • the polyol (A) is at least one polyol (A-1) selected from the group consisting of castor oil and castor oil-modified polyol, and a polymer polyol (A-2) other than the polyol (A-1);
  • the polyol (A-1) has a number average molecular weight of 400 to 2000
  • the polymer polyol (A-2) is a polyether polyol having a number average molecular weight of 1000 to 10,000 and a nominal functional group number of 2 or more.
  • the flexible polyurethane foam molding composition as described in (1) or (2) above.
  • the apparent foam density of the flexible polyurethane foam obtained in the above (4) is 70 to 300 kg / m 3
  • the 25% compression hardness of the skin-attached foam test piece is 150 to 950 N / 314 cm 2
  • a method for producing a flexible polyurethane foam, wherein the foam elongation retention before and after a heat test at 150 ° C. for 150 hours is 75% or more.
  • the present invention it is possible to obtain excellent heat resistance in a flexible polyurethane foam, and it is very useful mainly as an anti-vibration / sound insulation material for an engine room for a vehicle or a generator.
  • the present invention relates to a composition for molding a flexible polyurethane foam produced using a specific polyol component and a hindered phenol-based compound constituting the flexible polyurethane foam as shown below.
  • the flexible polyurethane foam molding composition of the present invention comprises a polyol (A) containing at least one polyol (A-1) selected from the group consisting of castor oil and castor oil-modified polyol, and a hindered phenol compound (B). And a polyisocyanate (C), a flexible polyurethane foam molding composition.
  • Examples of at least one polyol (A-1) selected from the group consisting of castor oil and castor oil-modified polyol include refined castor oil, semi-refined castor oil, unrefined castor oil, and hydrogenated castor oil to which hydrogen has been added.
  • Castor oil derivatives may be mentioned, but CPR is preferably 8 or less.
  • CPR is an index indicating the amount of alkali metal remaining in the polyol, and affects the urethane reaction by the basicity derived from the alkali metal. If the CPR exceeds 8, the resulting flexible polyurethane foam has a stronger foam and may cause molding shrinkage.
  • castor oil-based polyol (A-1) examples include URIC H-24 and URIC H-30 manufactured by Ito Oil Co., but are not limited thereto.
  • the castor oil-based polyol (A-1) is used in an amount of 10 to 50% by mass in the polyol (A). If it is less than 10% by mass, the heat resistance cannot be sufficiently exhibited, and if it exceeds 50% by mass, the moldability deteriorates.
  • the number average molecular weight of the castor oil-based polyol (A-1) is preferably 400 to 2000. If it is less than 400, the soundproof performance of the flexible polyurethane foam may be lowered, and if it exceeds 2000, the compression residual strain of the flexible polyurethane foam may be lowered.
  • the polymer polyol (A-2) can be used as the polyol component.
  • the polymer polyol (A-2) is preferably selected from the group consisting of polyether polyols and polyester polyols in the present invention. Further, those having a number average molecular weight of 1,000 to 10,000 and a nominal functional group number of 2 or more are more desirable. If the number average molecular weight is less than the lower limit, the flexibility of the resulting foam tends to be insufficient, and if it exceeds the upper limit, the hardness of the flexible polyurethane foam tends to decrease. Further, when the nominal functional group number is less than 2, there arises a problem that the compressive residual strain is deteriorated. In addition, a nominal functional group number shows the average functional group number (number of active hydrogen atoms per molecule
  • polyether polyol polypropylene ethylene polyol, polytetramethylene ether glycol (PTG) or the like is used.
  • polyester polyol polycondensation type polyester polyol adipic acid ethylene glycol polyester polyol, lactone type polyester polyol polycaprolactone polyol. Etc. are used.
  • hindered phenol compound (B) used in the present invention examples include octyl 3- (4-hydroxy-3,5-diisopropylphenyl) propionate, pentaerythritol tetrakis [3- (3,5-di-tert- Butyl-4-hydroxyphenyl) propionate], 2,2′-thiodiethylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3- (3,5-di-tert -Butyl-4-hydroxyphenyl) stearyl propionate, N, N′-hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanamide], 2,4,6-tris (3 ′, 5′-tert-butyl-4′-hydroxybenzyl) mesitylene and the like.
  • These hindered phenol compounds preferably have a function as an antioxidant.
  • the addition amount of the hindered phenol compound is 0.1 to 5% by mass with respect to the polyol (A), preferably more than 1% by mass and 5% by mass or less.
  • the upper limit is exceeded, the molding stability of the foam is lowered, and when it is less than the lower limit, the heat resistance effect cannot be sufficiently obtained.
  • the polyisocyanate (C) used in the production of the flexible polyurethane foam in the present invention is 4,4′-diphenylmethane diisocyanate (hereinafter 4,4′-MDI), 2,4′-diphenylmethane diisocyanate (hereinafter 2,4′-MDI). ), 2,2′-diphenylmethane diisocyanate (hereinafter 2,2′-MDI), and the like, and polyphenylene polymethylene polyisocyanate (hereinafter P-MDI) such as diphenylmethane diisocyanate (hereinafter P-MDI) are used as isocyanate sources.
  • 4,4′-MDI 4,4′-diphenylmethane diisocyanate
  • 2,4′-MDI 2,4′-diphenylmethane diisocyanate
  • 2,2′-MDI 2,2′-diphenylmethane diisocyanate
  • P-MDI polyphenylene polymethylene polyis
  • various modified products such as MDI, a mixture of MDI and P-MDI, a urethane-modified product, a urea-modified product, an allophanate-modified product, and a burette-modified product can also be used.
  • the MDI content according to the present invention is in the range of 50 to 80% by mass.
  • the MDI content exceeds 80% by mass, the storage stability of the polyisocyanate composition obtained at low temperatures and the durability of the resulting flexible foam are lowered.
  • the amount is less than 50% by mass, the elongation of the flexible polyurethane foam decreases with an increase in the crosslinking density, and sufficient foam strength cannot be obtained.
  • the sum of the content ratio of 2,2'-MDI and the content ratio of 2,4'-MDI (hereinafter referred to as isomer content ratio) with respect to the total amount of MDI is 10 to 50 mass%.
  • the storage stability at low temperatures of the resulting polyisocyanate composition is impaired, Regular heating in the piping and foam molding machine is required.
  • the molding stability of the flexible polyurethane foam is impaired, and foam collapse or the like occurs during foaming.
  • it exceeds 50% by mass the reactivity is lowered and the molding cycle is extended, and the foam has a high foaming rate and shrinks after molding.
  • urethanization catalysts known in the art can be used.
  • amine catalysts having active hydrogen such as N, N-dimethylethanolamine and N, N-diethylethanolamine
  • the addition amount of the catalyst is preferably 0.01 to 10% by mass with respect to the polyol (A). If it is less than the lower limit, curing tends to be insufficient, and if it exceeds the upper limit, moldability may deteriorate.
  • a normal surfactant is used, and an organosilicon surfactant can be suitably used.
  • an organosilicon surfactant can be suitably used.
  • the amount of the foam stabilizer is preferably 0.1 to 3% by mass with respect to the polyol (A) including the polyol (A-1).
  • water is mainly used. Water generates carbon dioxide gas by reaction with an isocyanate group, and can foam. Moreover, you may use arbitrary foaming agents in addition to water. For example, a small amount of a low-boiling organic compound such as cyclopentane or isopentane may be used in combination, or air, nitrogen gas or liquefied carbon dioxide may be mixed and dissolved in the stock solution using a gas loading device and foamed. The amount of foaming agent added depends on the set density of the resulting product.
  • a low-boiling organic compound such as cyclopentane or isopentane
  • air nitrogen gas or liquefied carbon dioxide
  • crosslinking agents such as low molecular amino alcohols
  • fillers such as calcium carbonate and barium sulfate, flame retardants, plasticizers, colorants, antifungal agents, etc.
  • flame retardants such as calcium carbonate and barium sulfate
  • plasticizers such as calcium carbonate and barium sulfate
  • colorants such as colorants, antifungal agents, etc.
  • auxiliaries can be used as necessary.
  • the flexible polyurethane foam of the present invention is produced by reacting and foaming a mixed liquid of a polyol (A), a hindered phenol compound (B), a polyisocyanate (C), a catalyst, a foam stabilizer, and a foaming agent.
  • the molar ratio (NCO / active hydrogen) in the mixed foaming of all isocyanate groups in the polyisocyanate composition of the present invention and all active hydrogen groups in the active hydrogen group-containing compound containing water is 0.7 to 1.4.
  • the NCO INDEX is less than 70, the durability is lowered and the foaming property is excessively increased. If the NCO INDEX is higher than 120, the unreacted isocyanate remains for a long time, and the molding cycle is prolonged. Cell collapse may occur.
  • a foaming stock solution of the polyol (A), hindered phenol compound (B), polyisocyanate component (C), catalyst, foam stabilizer, and foaming agent is used in the mold.
  • the mold temperature at the time of pouring the foaming stock solution into the mold is usually 30 to 80 ° C., preferably 45 to 65 ° C.
  • the mold temperature at the time of pouring the foaming stock solution into the mold is less than 30 ° C., it leads to the extension of the production cycle due to a decrease in the reaction rate.
  • the temperature is higher than 80 ° C., the reaction between the polyol and the isocyanate Foam may collapse in the middle of foaming due to excessive acceleration of the reaction between water and isocyanate.
  • the curing time when foaming and curing the above foaming stock solution is preferably 10 minutes or less, more preferably 7 minutes or less in consideration of the production cycle of a general flexible mold foam.
  • the above-described components can be mixed using a high-pressure foaming machine, a low-pressure foaming machine, or the like, as in the case of a normal soft mold foam.
  • the isocyanate component and the polyol component immediately before foaming.
  • Other components can be mixed in advance with an isocyanate component or a polyol component as long as they do not affect the storage stability of the raw materials and the change over time of the reactivity. These mixtures may be used immediately after mixing or may be used in appropriate amounts after storage.
  • a foaming apparatus capable of simultaneously introducing more than two components into the mixing part, polyols, foaming agents, isocyanates, catalysts, foam stabilizers, additives and the like can be individually introduced into the mixing part.
  • the mixing method may be either dynamic mixing in which mixing is performed in the machine head mixing chamber of the foaming machine or static mixing in which mixing is performed in the liquid feeding pipe, or both may be used in combination.
  • Mixing of a gaseous component such as a physical foaming agent and a liquid component is often performed by static mixing, and mixing of components that can be stably stored as a liquid is often performed by dynamic mixing.
  • the foaming apparatus used in the present invention is preferably a high-pressure foaming apparatus that does not require solvent cleaning of the mixing part.
  • the mixed liquid obtained by such mixing is discharged into a mold (mold), foamed and cured, and then demolded.
  • a release agent to the mold in advance.
  • a release agent usually used in the field of molding processing may be used.
  • the product after demolding can be used as it is, but it is preferable to stabilize the appearance and dimensions of the subsequent product by destroying the cell membrane of the foam under compression or reduced pressure by a conventionally known method.
  • Elongation retention before and after heat test (%) Elongation before heat test (%) / Elongation after heat test (%) ⁇ 100 [Preparation of polyol premix] (Polyol premix preparation example) After the reactor equipped with a stirrer, a cooling pipe, a nitrogen introducing pipe, and a thermometer was purged with nitrogen, 90 g of polyol 1, 10 g of polyol 2 (castor oil-based polyol), and 0 of additive 1 (hindered phenol-based compound) .6 g, catalyst 1 0.71 g, catalyst 2 0.1 g, foam stabilizer 1 0.5 g, and water 2 g were charged and stirred at 23 ° C. for 0.5 hours to obtain a polyol premix (P- 1) was obtained. Other polyol premixes (P-2 to P-15) were prepared in the same manner as P-1. The results are shown in Tables 1 and 2.
  • Examples 1 to 9, Comparative Examples 1 to 11 Among the raw materials shown in Tables 3 to 6, the liquid temperature of the mixture of all raw materials other than the polyisocyanate compound (polyol premix) is adjusted to 24 ° C to 26 ° C, and the polyisocyanate component is adjusted to the liquid temperature of 24 ° C to 26 ° C. did. A predetermined amount of polyisocyanate component is added to the polyol premix, mixed for 7 seconds with a mixer (7000 rpm), poured into a mold to foam a flexible polyurethane foam, and then taken out of the mold, the resulting soft The physical properties of the polyurethane foam were measured.
  • NCO Index is the ratio of NCO groups to the number of active hydrogen atoms present in the formulation.
  • Mold temperature 60 ⁇ 65 °C Mold shape: 400mm ⁇ 400mm ⁇ 10mm Mold material: Aluminum cure Conditions: 60-65 ° C x 5 minutes
  • Polyol 2 unrefined castor oil having an average functional group number of 2.7 and a hydroxyl value of 160 (mgKOH / g), URIC H-24 manufactured by Ito Oil Co., Ltd.
  • Additive 1 Irganox 1135 (Irganox 1135: benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl) -4-hydroxy, C7-C9 side chain alkyl ester, manufactured by BASF Japan), hindered phenol Compound / additive 2: Sumilizer TP-D (SUMILIZER TP-D, manufactured by Sumitomo Chemical Co., Ltd.), sulfur compound / additive 3: Irgafos 168 (Irgafos 168: Tris (2,4-di-t-butylphenyl) phos Fight, manufactured by BASF Japan), phosphorus compound / catalyst 1: 33% dipropylene glycol solution of triethylenediamine, TEDA-L33 manufactured by Tosoh Corporation Catalyst 2: 70% dipropylene glycol solution of bis (2-dimethylaminoethyl) ether, TOYOCAT ET manufactured by Tosoh Corporation
  • Table 5 shows the measurement of physical properties of a flexible polyurethane foam produced by adding a sulfur compound (additive 2) and a phosphorus compound (additive 3) in addition to a hindered phenol compound (additive 1) as an additive. It is a result. As shown in Comparative Examples 5 to 6, when each additive other than the hindered phenol compound was used, sufficient heat resistance was not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a soft polyurethane foam of superior heat resistance that can be used as a vibration/sound absorber or a hot carpet for a power generator or the interior of a vehicle engine compartment. The problem is solved by a soft polyurethane foam molding composition characterized by containing, within the polyol content, 10–50 mass% of at least one polyol selected from the group consisting of castor oil and castor-oil-modified polyol, containing 0.1–5 mass% of a hindered phenol compound with respect to the polyol content, and including MDI in the range of 50–80 mass %, the 2,2'-MDI and 2,4'-MDI included in the MDI being 10–50 mass% with respect to the total mass of the MDI.

Description

軟質ポリウレタンフォーム成型用組成物Flexible polyurethane foam molding composition
 本発明は、軟質ポリウレタンフォーム成型用組成物並びに同組成物からなる軟質ポリウレタンフォームに関する。特に本発明の軟質ポリウレタンフォームは、車両用エンジンルーム内や発電機の防振・防音材、ホットカーペット等、耐熱性を要求される用途に適するものである。 The present invention relates to a flexible polyurethane foam molding composition and a flexible polyurethane foam comprising the composition. In particular, the flexible polyurethane foam of the present invention is suitable for applications requiring heat resistance, such as in a vehicular engine room, an anti-vibration / sound insulation material for a generator, and a hot carpet.
 従来から自動車のエンジンルーム内では、騒音を抑えるため騒音の発生源であるエンジンの周りに防音材や防振材が使用されている。当該自動車のエンジンルーム内の防音材や防振材としては、車両用緩衝材や車両用カバー等が知られている。車両用緩衝材とは、エンジンルーム内または車室内に備え付けられている部品と部品の間を埋めるものであり、車両用カバーとは、エンジンルーム内または車室内の部品を覆うものである。 Conventionally, in the engine room of an automobile, soundproofing materials and vibration-proofing materials have been used around the engine that is the source of noise in order to suppress noise. As a soundproofing material and a vibrationproofing material in the engine room of the automobile, a vehicle cushioning material and a vehicle cover are known. The vehicular cushioning material fills the space between the components provided in the engine room or the vehicle interior, and the vehicle cover covers the components in the engine room or the vehicle interior.
 これらの防振・防音材として軟質ポリウレタンフォームが使用されているが、軟質ポリウレタンフォームの耐熱温度が150℃以下と低いため、エンジン近接のような高温に晒される面に配設することができない。 Although soft polyurethane foam is used as these vibration-proof and sound-proof materials, since the heat-resistant temperature of the soft polyurethane foam is as low as 150 ° C. or lower, it cannot be disposed on a surface exposed to high temperatures such as in the vicinity of an engine.
 軟質ポリウレタンフォームを使用した防振・防温材の耐熱性を高める方法として、耐熱性の不織布や樹脂膜を積層一体化させる方法が知られているが(特許文献1~7)、軟質ポリウレタンフォーム単独で耐熱性を高める方法は知られていない。 As a method for improving the heat resistance of a vibration-proof and heat-insulating material using a flexible polyurethane foam, there is known a method of laminating and integrating a heat-resistant nonwoven fabric or a resin film (Patent Documents 1 to 7). There is no known method for improving heat resistance alone.
日本国特開2003-20555号公報Japanese Unexamined Patent Publication No. 2003-20555 日本国特開2005-263118号公報Japanese Unexamined Patent Publication No. 2005-263118 日本国特開平10-95059号公報Japanese Patent Laid-Open No. 10-95059 日本国特開2000-248453号公報Japanese Unexamined Patent Publication No. 2000-248453 日本国特開2005-226178号公報Japanese Unexamined Patent Publication No. 2005-226178 日本国特開2002-219989号公報Japanese Patent Laid-Open No. 2002-219989 日本国特開2006-47628号公報Japanese Unexamined Patent Publication No. 2006-47628
 本発明は上記背景技術に鑑みてなされたものであって、その課題は、車両用エンジンルーム内や発電機の防振・防音材、ホットカーペット等に用いられる、優れた耐熱性を有する軟質ポリウレタンフォームを提供することである。 The present invention has been made in view of the above-mentioned background art, and its problem is a flexible polyurethane having excellent heat resistance, which is used in a vehicle engine room, an anti-vibration / sound insulation material for a generator, a hot carpet, and the like. Is to provide a form.
 すなわち、本発明は以下に示す実施形態を含むものである。 That is, the present invention includes the following embodiments.
 (1)ポリオール(A)と、ヒンダードフェノール系化合物(B)と、ポリイソシアネート(C)とを含む軟質ポリウレタンフォーム成型用組成物であって、ポリオール(A)が、ヒマシ油及びヒマシ油変性ポリオールからなる群より選ばれる少なくとも一種のポリオール(A-1)をポリオール(A)中に10~50質量%含有すること、ヒンダードフェノール系化合物(B)が、ポリオール(A)に対して0.1~5質量%含有すること、並びにポリイソシアネート(C)が、ジフェニルメタンジイソシアネートを50~80質量%の範囲で含み、該ジフェニルメタンジイソシアネートに含まれる2,2’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートが該ジフェニルメタンジイソシアネートの総量に対し10~50質量%含有することを特徴とする軟質ポリウレタンフォーム成型用組成物。 (1) A composition for molding a flexible polyurethane foam comprising a polyol (A), a hindered phenol compound (B), and a polyisocyanate (C), wherein the polyol (A) is castor oil and castor oil modified. The polyol (A) contains 10 to 50% by mass of at least one polyol (A-1) selected from the group consisting of polyols, and the hindered phenolic compound (B) is 0% relative to the polyol (A). 1 to 5% by weight, and the polyisocyanate (C) contains diphenylmethane diisocyanate in the range of 50 to 80% by weight, and 2,2′-diphenylmethane diisocyanate and 2,4′- Diphenylmethane diisocyanate is diphenylmethane diisocyanate Flexible polyurethane foam molding composition characterized by containing 10 to 50% by weight relative to the amount.
 (2)ヒンダードフェノール系化合物(B)が、ポリオール(A)に対して1質量%を超え5質量%以下含有することを特徴とする上記(1)に記載の軟質ポリウレタンフォーム成型用組成物。 (2) The flexible polyurethane foam molding composition as described in (1) above, wherein the hindered phenol compound (B) is contained in an amount of more than 1% by mass and 5% by mass or less based on the polyol (A). .
 (3)ポリオール(A)が、ヒマシ油及びヒマシ油変性ポリオールからなる群より選ばれる少なくとも一種のポリオール(A-1)と、ポリオール(A-1)以外の高分子ポリオール(A-2)とを含有し、ポリオール(A-1)の数平均分子量が400~2000であり、高分子ポリオール(A-2)が数平均分子量1000~10000、公称官能基数2以上のポリエーテルポリオールであることを特徴とする上記(1)又は(2)に記載の軟質ポリウレタンフォーム成型用組成物。 (3) the polyol (A) is at least one polyol (A-1) selected from the group consisting of castor oil and castor oil-modified polyol, and a polymer polyol (A-2) other than the polyol (A-1); The polyol (A-1) has a number average molecular weight of 400 to 2000, the polymer polyol (A-2) is a polyether polyol having a number average molecular weight of 1000 to 10,000 and a nominal functional group number of 2 or more. The flexible polyurethane foam molding composition as described in (1) or (2) above.
 (4)上記(1)乃至(3)のいずれかに記載の軟質ポリウレタンフォーム成型用組成物と、触媒、整泡剤、及び発泡剤の混合物を発泡させることを特徴とする軟質ポリウレタンフォームの製造方法。 (4) Production of a flexible polyurethane foam characterized by foaming a mixture of the molding composition for flexible polyurethane foam according to any one of (1) to (3) above, a catalyst, a foam stabilizer, and a foaming agent. Method.
 (5)上記(4)で得られた軟質ポリウレタンフォームの見掛けフォーム密度が70~300kg/m、かつスキン付フォーム試験片の25%圧縮硬さが150~950N/314cmであって、150℃で150時間の耐熱試験前後でのフォームの伸び保持率が75%以上であることを特徴とする軟質ポリウレタンフォームの製造方法。 (5) The apparent foam density of the flexible polyurethane foam obtained in the above (4) is 70 to 300 kg / m 3 , and the 25% compression hardness of the skin-attached foam test piece is 150 to 950 N / 314 cm 2 , A method for producing a flexible polyurethane foam, wherein the foam elongation retention before and after a heat test at 150 ° C. for 150 hours is 75% or more.
 本発明では、軟質ポリウレタンフォームにおいて、優れた耐熱性を得ることが可能となり、主として車両用エンジンルーム内や発電機用の防振・防音材として非常に有用である。 In the present invention, it is possible to obtain excellent heat resistance in a flexible polyurethane foam, and it is very useful mainly as an anti-vibration / sound insulation material for an engine room for a vehicle or a generator.
 すなわち本発明は、以下に示すとおり、軟質ポリウレタンフォームを構成する特定のポリオール成分及びヒンダードフェノール系化合物を用いて製造される軟質ポリウレタンフォーム成型用組成物に関するものである。 That is, the present invention relates to a composition for molding a flexible polyurethane foam produced using a specific polyol component and a hindered phenol-based compound constituting the flexible polyurethane foam as shown below.
 本発明を更に詳細に説明する。 The present invention will be described in more detail.
 本発明の軟質ポリウレタンフォーム成型用組成物は、ヒマシ油及びヒマシ油変性ポリオールからなる群より選ばれる少なくとも一種のポリオール(A-1)を含むポリオール(A)と、ヒンダードフェノール系化合物(B)と、ポリイソシアネート(C)を含む、軟質ポリウレタンフォーム成型用組成物である。 The flexible polyurethane foam molding composition of the present invention comprises a polyol (A) containing at least one polyol (A-1) selected from the group consisting of castor oil and castor oil-modified polyol, and a hindered phenol compound (B). And a polyisocyanate (C), a flexible polyurethane foam molding composition.
 ヒマシ油及びヒマシ油変性ポリオールからなる群より選ばれる少なくとも一種のポリオール(A-1)としては、例えば精製ヒマシ油、半精製ヒマシ油、未精製ヒマシ油、水素を付加させた水素添加ヒマシ油等ヒマシ油の誘導体が挙げられるが、CPRが8以下であることが好ましい。ここで、CPRとはポリオール中に残存するアルカリ金属量を示す指標であり、アルカリ金属に由来する塩基性によってウレタン反応に影響を与える。CPRが8を超える場合には、得られる軟質ポリウレタンフォームの独泡性が強くなり、成型収縮を生じる場合がある。本発明において具体的に使用可能なヒマシ油系ポリオール(A-1)としては、伊藤製油社製のURIC H-24やURIC H-30等があるがこれらに限定されない。ヒマシ油系ポリオール(A-1)はポリオール(A)中に10~50質量%使用する。10質量%未満では耐熱性を十分に発現することができず、また、50質量%を超えると成形性が悪化する。ヒマシ油系ポリオール(A-1)の数平均分子量は400~2000であることが好ましい。400未満の場合、軟質ポリウレタンフォームの防音性能が低下する恐れがあり、2000を超えると軟質ポリウレタンフォームの圧縮残留歪が低下する恐れがある。 Examples of at least one polyol (A-1) selected from the group consisting of castor oil and castor oil-modified polyol include refined castor oil, semi-refined castor oil, unrefined castor oil, and hydrogenated castor oil to which hydrogen has been added. Castor oil derivatives may be mentioned, but CPR is preferably 8 or less. Here, CPR is an index indicating the amount of alkali metal remaining in the polyol, and affects the urethane reaction by the basicity derived from the alkali metal. If the CPR exceeds 8, the resulting flexible polyurethane foam has a stronger foam and may cause molding shrinkage. Examples of castor oil-based polyol (A-1) that can be specifically used in the present invention include URIC H-24 and URIC H-30 manufactured by Ito Oil Co., but are not limited thereto. The castor oil-based polyol (A-1) is used in an amount of 10 to 50% by mass in the polyol (A). If it is less than 10% by mass, the heat resistance cannot be sufficiently exhibited, and if it exceeds 50% by mass, the moldability deteriorates. The number average molecular weight of the castor oil-based polyol (A-1) is preferably 400 to 2000. If it is less than 400, the soundproof performance of the flexible polyurethane foam may be lowered, and if it exceeds 2000, the compression residual strain of the flexible polyurethane foam may be lowered.
 本発明においては、ポリオール成分として、高分子ポリオール(A-2)を使用することができる。 In the present invention, the polymer polyol (A-2) can be used as the polyol component.
 高分子ポリオール(A-2)は、本発明においては、ポリエーテルポリオール及びポリエステルポリオールからなる群より選ばれることが好ましい。さらに、数平均分子量1000~10000で、公称官能基数2以上のものがより望ましい。数平均分子量が下限未満では、得られるフォームの柔軟性が不足しやすく、上限を超えると、軟質ポリウレタンフォームの硬度が低下しやすい。また、公称官能基数が2未満の場合、圧縮残留歪みが悪くなるといった問題が発生する。なお、公称官能基数とは、ポリオールの平均官能基数(分子当たりの活性水素原子の数)を示す。 The polymer polyol (A-2) is preferably selected from the group consisting of polyether polyols and polyester polyols in the present invention. Further, those having a number average molecular weight of 1,000 to 10,000 and a nominal functional group number of 2 or more are more desirable. If the number average molecular weight is less than the lower limit, the flexibility of the resulting foam tends to be insufficient, and if it exceeds the upper limit, the hardness of the flexible polyurethane foam tends to decrease. Further, when the nominal functional group number is less than 2, there arises a problem that the compressive residual strain is deteriorated. In addition, a nominal functional group number shows the average functional group number (number of active hydrogen atoms per molecule | numerator) of a polyol.
 ポリエーテルポリオールとしては、ポリプロピレンエチレンポリオールやポリテトラメチレンエーテルグリコール(PTG)等が使用され、ポリエステルポリオールとしては、重縮合型ポリエステル系ポリオールのアジピン酸エチレングリコールポリエステルポリオール、ラクトン系ポリエステルポリオールのポリカプロラクトンポリオール等が使用される。 As the polyether polyol, polypropylene ethylene polyol, polytetramethylene ether glycol (PTG) or the like is used. As the polyester polyol, polycondensation type polyester polyol adipic acid ethylene glycol polyester polyol, lactone type polyester polyol polycaprolactone polyol. Etc. are used.
 本発明に使用するヒンダードフェノール系化合物(B)としては、例えば3-(4-ヒドロキシ-3,5-ジイソプロピルフェニル)プロピオン酸オクチル、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、2,2’-チオジエチルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド]、2,4,6-トリス(3’,5’-tert-ブチル-4’-ヒドロキシベンジル)メシチレン等が挙げられる。これらのヒンダードフェノール系化合物は、酸化防止剤としての機能を有することが好ましい。なお、酸化防止剤としての機能を有するイオウ系化合物、リン系化合物を用いた場合には耐熱性の効果が十分得られない。 Examples of the hindered phenol compound (B) used in the present invention include octyl 3- (4-hydroxy-3,5-diisopropylphenyl) propionate, pentaerythritol tetrakis [3- (3,5-di-tert- Butyl-4-hydroxyphenyl) propionate], 2,2′-thiodiethylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3- (3,5-di-tert -Butyl-4-hydroxyphenyl) stearyl propionate, N, N′-hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanamide], 2,4,6-tris (3 ′, 5′-tert-butyl-4′-hydroxybenzyl) mesitylene and the like. These hindered phenol compounds preferably have a function as an antioxidant. When a sulfur compound or phosphorus compound having a function as an antioxidant is used, a sufficient heat resistance effect cannot be obtained.
 ヒンダードフェノール系化合物の添加量は、ポリオール(A)に対して0.1~5質量%であり、1質量%を超え5質量%以下であることが好ましい。上限を超えると発泡体の成型安定性が低下し、下限未満では耐熱性の効果が十分に得られない。 The addition amount of the hindered phenol compound is 0.1 to 5% by mass with respect to the polyol (A), preferably more than 1% by mass and 5% by mass or less. When the upper limit is exceeded, the molding stability of the foam is lowered, and when it is less than the lower limit, the heat resistance effect cannot be sufficiently obtained.
 本発明における軟質ポリウレタンフォームの製造に用いられるポリイソシアネート(C)は、4,4’-ジフェニルメタンジイソシアネート(以下4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(以下2,4’-MDI)、2,2’-ジフェニルメタンジイソシアネート(以下2,2’-MDI)、等のジフェニルメタンジイソシアネート(以下MDI)とポリフェニレンポリメチレンポリイソシアネート(以下P-MDI)をイソシアネート源として用いることを特徴とする。本発明においては、上記したMDI、MDIとP-MDIの混合物、ウレタン変性体、ウレア変性体、アロファネート変性体、ビュウレット変性体等の各種変性体も使用し得る。 The polyisocyanate (C) used in the production of the flexible polyurethane foam in the present invention is 4,4′-diphenylmethane diisocyanate (hereinafter 4,4′-MDI), 2,4′-diphenylmethane diisocyanate (hereinafter 2,4′-MDI). ), 2,2′-diphenylmethane diisocyanate (hereinafter 2,2′-MDI), and the like, and polyphenylene polymethylene polyisocyanate (hereinafter P-MDI) such as diphenylmethane diisocyanate (hereinafter P-MDI) are used as isocyanate sources. In the present invention, various modified products such as MDI, a mixture of MDI and P-MDI, a urethane-modified product, a urea-modified product, an allophanate-modified product, and a burette-modified product can also be used.
 本発明にかかるMDI含有率は50~80質量%の範囲である。MDI含有率が80質量%を超えると得られるポリイソシアネート組成物の低温における貯蔵安定性や得られる軟質フォームの耐久性が低化する。他方、50質量%未満では架橋密度の上昇に伴い、軟質ポリウレタンフォームの伸びが低下し、十分なフォーム強度を得ることができない。 The MDI content according to the present invention is in the range of 50 to 80% by mass. When the MDI content exceeds 80% by mass, the storage stability of the polyisocyanate composition obtained at low temperatures and the durability of the resulting flexible foam are lowered. On the other hand, if the amount is less than 50% by mass, the elongation of the flexible polyurethane foam decreases with an increase in the crosslinking density, and sufficient foam strength cannot be obtained.
 さらに、MDI総量に対する2,2’-MDIの含有率と2,4’-MDIの含有率との合計(以下アイソマー含有率)は10~50質量%である。 Furthermore, the sum of the content ratio of 2,2'-MDI and the content ratio of 2,4'-MDI (hereinafter referred to as isomer content ratio) with respect to the total amount of MDI is 10 to 50 mass%.
 本発明にかかるMDI総量に対する2,2’-MDI及び2,4’-MDIの含有量が10質量%未満では得られるポリイソシアネート組成物の低温での貯蔵安定性が損なわれ、イソシアネート保管場所や配管、発泡成形機内の常時加温が必要となる。また軟質ポリウレタンフォームの成形安定性が損なわれ、発泡途中でのフォーム崩壊等が発生する。他方、50質量%を超えると反応性が低下し成形サイクルが延長する、フォームの独泡率が高くなり成型後に収縮する等の問題が生じる。 When the content of 2,2′-MDI and 2,4′-MDI is less than 10% by mass relative to the total amount of MDI according to the present invention, the storage stability at low temperatures of the resulting polyisocyanate composition is impaired, Regular heating in the piping and foam molding machine is required. In addition, the molding stability of the flexible polyurethane foam is impaired, and foam collapse or the like occurs during foaming. On the other hand, if it exceeds 50% by mass, the reactivity is lowered and the molding cycle is extended, and the foam has a high foaming rate and shrinks after molding.
 また、フォームを得る際、従来公知の触媒、整泡剤、発泡剤を使用することができる。 Moreover, when obtaining a foam, conventionally known catalysts, foam stabilizers, and foaming agents can be used.
 触媒としては、当該分野において公知である各種のウレタン化触媒を使用できる。例えば、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N-メチルモリホリン、N-エチルモリホリン、ジメチルベンジルアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N,N’,N’,N’’-ペンタメチルジエチレントリアミン、ビス-(2-ジメチルアミノエチル)エーテル、トリエチレンジアミン、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、1,2-ジメチルイミダゾール、ジメチルエタノールアミン、N,N-ジメチル-N-ヘキサノールアミン、さらにこれらの有機酸塩、スタナスオクトエート、ナフテン酸亜鉛等の有機金属化合物も挙げられる。また、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン等の活性水素を有すアミン触媒も好ましい。 As the catalyst, various urethanization catalysts known in the art can be used. For example, triethylamine, tripropylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, dimethylbenzylamine, N, N, N ′, N′-tetramethylhexamethylenediamine, N, N, N ′, N ′, N ″ -pentamethyldiethylenetriamine, bis- (2-dimethylaminoethyl) ether, triethylenediamine, 1,8-diaza-bicyclo [5.4.0] undecene-7, 1,2-dimethylimidazole, Examples thereof include dimethylethanolamine, N, N-dimethyl-N-hexanolamine, and organic metal compounds such as these organic acid salts, stannous octoate, and zinc naphthenate. Further, amine catalysts having active hydrogen such as N, N-dimethylethanolamine and N, N-diethylethanolamine are also preferred.
 触媒の添加量は、ポリオール(A)に対して、0.01~10質量%が好ましい。下限値未満ではキュアー不足になりやすく、上限値を超えると成形性が悪化することがある。 The addition amount of the catalyst is preferably 0.01 to 10% by mass with respect to the polyol (A). If it is less than the lower limit, curing tends to be insufficient, and if it exceeds the upper limit, moldability may deteriorate.
 本発明に使用する整泡剤としては、通常の界面活性剤が使用され、有機珪素系の界面活性剤が好適に使用できる。例えば、東レ・ダウコーニング社製のSZ-1327、SZ-1325、SZ-1336、SZ-3601、モメンティブ社製のY-10366、L-5309、エボニック社製B-8724LF2、B-8715LF2、信越化学社製のF-122等が挙げられる。これら整泡剤の量はポリオール(A-1)を含むポリオール(A)に対し0.1~3質量%が好ましい。 As the foam stabilizer used in the present invention, a normal surfactant is used, and an organosilicon surfactant can be suitably used. For example, SZ-1327, SZ-1325, SZ-1336, SZ-3601 manufactured by Toray Dow Corning, Y-10366, L-5309 manufactured by Momentive, B-8724LF2, B-8715LF2, manufactured by Evonik, Shin-Etsu Chemical F-122 manufactured by the company and the like. The amount of the foam stabilizer is preferably 0.1 to 3% by mass with respect to the polyol (A) including the polyol (A-1).
 本発明に使用する発泡剤としては、主として水を用いる。水はイソシアネート基との反応で炭酸ガスを発生し、これにより発泡することができる。また、水と付加的に任意の発泡剤を使用してもよい。例えば、少量のシクロペンタンやイソペンタン等の低沸点有機化合物を併用してもよいし、ガスローディング装置を用いて原液中に空気や窒素ガスや液化二酸化炭素を混入溶解させて発泡することもできる。発泡剤の添加量は得られる製品の設定密度による。通常は、ポリオール(A-1)を含むポリオール(A)に対して0.5~10質量%であるが、防音材や防振材として考えた場合、0.5~2.5重量%であることが好ましい。上限を超えると発泡が安定し難くなる場合があり、下限未満では発泡が有効になされない場合がある。 As the foaming agent used in the present invention, water is mainly used. Water generates carbon dioxide gas by reaction with an isocyanate group, and can foam. Moreover, you may use arbitrary foaming agents in addition to water. For example, a small amount of a low-boiling organic compound such as cyclopentane or isopentane may be used in combination, or air, nitrogen gas or liquefied carbon dioxide may be mixed and dissolved in the stock solution using a gas loading device and foamed. The amount of foaming agent added depends on the set density of the resulting product. Usually, it is 0.5 to 10% by mass with respect to the polyol (A) including the polyol (A-1), but when considered as a soundproofing material or a vibration isolating material, it is 0.5 to 2.5% by weight. Preferably there is. If the upper limit is exceeded, foaming may become difficult to stabilize, and if it is less than the lower limit, foaming may not be effective.
 そして、本発明における軟質ポリウレタンフォームの製造には、低分子アミノアルコール類等の架橋剤や、炭酸カルシウムや硫酸バリウムのような充填剤、難燃剤、可塑剤、着色剤、抗カビ剤等の公知の各種添加剤、助剤を必要に応じて使用することができる。 In the production of the flexible polyurethane foam in the present invention, known crosslinking agents such as low molecular amino alcohols, fillers such as calcium carbonate and barium sulfate, flame retardants, plasticizers, colorants, antifungal agents, etc. These various additives and auxiliaries can be used as necessary.
 次に、軟質ポリウレタンフォームの製造方法について説明する。本発明の軟質ポリウレタンフォームの製造方法により、見掛け密度70~300kg/m、かつスキン付きフォーム試験片の25%圧縮硬さが150~950N/314cm、150℃、150時間の耐熱試験前後でのフォームの伸び保持率が75%以上である軟質ポリウレタンフォームを得ることができる。本発明の軟質ポリウレタンフォームは、ポリオール(A)、ヒンダードフェノール系化合物(B)、ポリイソシアネート(C)、触媒、整泡剤、及び発泡剤の混合液を反応発泡させて製造される。 Next, the manufacturing method of a flexible polyurethane foam is demonstrated. According to the method for producing a flexible polyurethane foam of the present invention, an apparent density of 70 to 300 kg / m 3 , and a 25% compression hardness of a foam test piece with skin was 150 to 950 N / 314 cm 2 , before and after a heat resistance test at 150 ° C. for 150 hours. A flexible polyurethane foam having an elongation retention of 75% or more can be obtained. The flexible polyurethane foam of the present invention is produced by reacting and foaming a mixed liquid of a polyol (A), a hindered phenol compound (B), a polyisocyanate (C), a catalyst, a foam stabilizer, and a foaming agent.
 本発明のポリイソシアネート組成物中の全イソシアネート基と水を含む活性水素基含有化合物中の全活性水素基との混合発泡時におけるモル比(NCO/活性水素)としては0.7~1.4(イソシアネートインデックス(NCO INDEX)=70~140)であることが好ましく、フォームの耐久性や成形サイクルの良好な範囲として0.7~1.2(NCO INDEX=70~120)がより好ましい。 The molar ratio (NCO / active hydrogen) in the mixed foaming of all isocyanate groups in the polyisocyanate composition of the present invention and all active hydrogen groups in the active hydrogen group-containing compound containing water is 0.7 to 1.4. (Isocyanate index (NCO INDEX) = 70 to 140) is preferable, and 0.7 to 1.2 (NCO INDEX = 70 to 120) is more preferable as a good range of durability and molding cycle of the foam.
 NCO INDEXが70未満では耐久性の低下や独泡性に過度の上昇が生じ、120より高い場合は未反応イソシアネートが長く残存することによる成形サイクルの延長、高分子量化の遅延によるフォーム発泡途中でのセル崩壊等が生じる場合がある。 If the NCO INDEX is less than 70, the durability is lowered and the foaming property is excessively increased. If the NCO INDEX is higher than 120, the unreacted isocyanate remains for a long time, and the molding cycle is prolonged. Cell collapse may occur.
 軟質ポリウレタンフォームの製造方法としては、前記ポリオール(A)、ヒンダードフェノール系化合物(B)、ポリイソシアネート成分(C)、触媒、整泡剤、及び発泡剤の混合液の発泡原液を金型内に注入し、その後発泡硬化させることを特徴とする軟質ポリウレタンモールドフォーム(以下、軟質モールドフォーム)の製造方法が使用できる。 As a method for producing a flexible polyurethane foam, a foaming stock solution of the polyol (A), hindered phenol compound (B), polyisocyanate component (C), catalyst, foam stabilizer, and foaming agent is used in the mold. Can be used, and a method for producing a flexible polyurethane mold foam (hereinafter referred to as “soft mold foam”) can be used.
 上記発泡原液を金型内に注入する際の金型温度としては、通常30~80℃、好ましくは45~65℃である。上記発泡原液を金型内に注入する際の金型温度が30℃未満であると、反応速度低下による生産サイクルの延長につながり、一方、80℃より高いと、ポリオールとイソシアネートの反応に対し、水とイソシアネートとの反応が過度に促進されることにより、発泡途中においてフォームが崩壊する場合がある。 The mold temperature at the time of pouring the foaming stock solution into the mold is usually 30 to 80 ° C., preferably 45 to 65 ° C. When the mold temperature at the time of pouring the foaming stock solution into the mold is less than 30 ° C., it leads to the extension of the production cycle due to a decrease in the reaction rate. On the other hand, when the temperature is higher than 80 ° C., the reaction between the polyol and the isocyanate Foam may collapse in the middle of foaming due to excessive acceleration of the reaction between water and isocyanate.
 上記発泡原液を発泡硬化させる際の硬化時間としては、一般的な軟質モールドフォームの生産サイクルを考慮すると10分以下が好ましく、7分以下がより好ましい。 The curing time when foaming and curing the above foaming stock solution is preferably 10 minutes or less, more preferably 7 minutes or less in consideration of the production cycle of a general flexible mold foam.
 軟質モールドフォームを製造する際には、通常の軟質モールドフォームの場合と同様、高圧発泡機や低圧発泡機等を用いて、上記各成分を混合することができる。 When producing a flexible mold foam, the above-described components can be mixed using a high-pressure foaming machine, a low-pressure foaming machine, or the like, as in the case of a normal soft mold foam.
 イソシアネート成分とポリオール成分とは発泡直前で混合することが好ましい。その他の成分は、原料の貯蔵安定性や反応性の経時変化に影響を与えない範囲でイソシアネート成分またはポリオール成分と予め混合することができる。それら混合物は混合後直ちに使用しても、貯留した後、必要量を適宜使用してもよい。混合部に2成分を超える成分を同時に導入可能な発泡装置の場合、ポリオール、発泡剤、イソシアネート、触媒、整泡剤、添加剤等を個別に混合部に導入することもできる。 It is preferable to mix the isocyanate component and the polyol component immediately before foaming. Other components can be mixed in advance with an isocyanate component or a polyol component as long as they do not affect the storage stability of the raw materials and the change over time of the reactivity. These mixtures may be used immediately after mixing or may be used in appropriate amounts after storage. In the case of a foaming apparatus capable of simultaneously introducing more than two components into the mixing part, polyols, foaming agents, isocyanates, catalysts, foam stabilizers, additives and the like can be individually introduced into the mixing part.
 また、混合方法は発泡機のマシンヘッド混合室内で混合を行うダイナミックミキシング、送液配管内で混合を行うスタティックミキシングの何れでも良く、また両者を併用してもよい。物理発泡剤等のガス状成分と液状成分との混合はスタティックミキシングで、液体として安定に貯留可能な成分同士の混合はダイナミックミキシングで実施される場合が多い。本発明に使用される発泡装置は、混合部の溶剤洗浄が必要のない高圧発泡装置であることが好ましい。 Also, the mixing method may be either dynamic mixing in which mixing is performed in the machine head mixing chamber of the foaming machine or static mixing in which mixing is performed in the liquid feeding pipe, or both may be used in combination. Mixing of a gaseous component such as a physical foaming agent and a liquid component is often performed by static mixing, and mixing of components that can be stably stored as a liquid is often performed by dynamic mixing. The foaming apparatus used in the present invention is preferably a high-pressure foaming apparatus that does not require solvent cleaning of the mixing part.
 このような混合により得られた混合液を金型(モールド)内に吐出し、発泡硬化させ、その後脱型が行われる。上記脱型を円滑に行うため、金型に予め離型剤を塗布しておくことも好適である。使用する離型剤としては、成形加工分野で通常用いられる離型剤を用いればよい。 The mixed liquid obtained by such mixing is discharged into a mold (mold), foamed and cured, and then demolded. In order to perform the demolding smoothly, it is also preferable to apply a release agent to the mold in advance. As the release agent to be used, a release agent usually used in the field of molding processing may be used.
 脱型後の製品はそのままでも使用できるが、従来公知の方法で圧縮下又は、減圧下でフォームのセル膜を破壊し、以降の製品外観、寸法を安定化させることが好ましい。 The product after demolding can be used as it is, but it is preferable to stabilize the appearance and dimensions of the subsequent product by destroying the cell membrane of the foam under compression or reduced pressure by a conventionally known method.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、特に断りのない限り、文中の「部」、「%」は質量基準である。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples. Unless otherwise specified, “part” and “%” in the text are based on mass.
 [成形性評価]
 表中、成形性「○」の評価は以下に示すように現象が生じることなく軟質ポリウレタンフォームが成形できることを意味する。
 崩壊:ウレタンフォームが最高の高さに達した後に大きく沈んでいく状態
 収縮:生成したウレタンフォームが発泡直後またはキュアー後に収縮する現象。
[Formability evaluation]
In the table, the evaluation of the moldability “◯” means that a flexible polyurethane foam can be molded without the phenomenon as shown below.
Collapse: A state in which the urethane foam sinks greatly after reaching the maximum height. Shrinkage: A phenomenon in which the generated urethane foam shrinks immediately after foaming or after curing.
 [見掛け密度]
 JIS K6400記載の方法により求めた。
[Apparent density]
It was determined by the method described in JIS K6400.
 [スキン付き試験片フォームの25%圧縮硬さ(25%ILD)]
 JIS K6400記載のB法により求めた。
[25% compression hardness of test piece foam with skin (25% ILD)]
It calculated | required by B method of JISK6400 description.
 [フォームの伸び]
 JIS K6400記載の方法で測定した。
[Form stretch]
It was measured by the method described in JIS K6400.
 [耐熱性評価]
 モールド成型した軟質ポリウレタンフォームをJIS K6400記載のダンベル状に打ち抜き、150℃のオーブンの中で150時間耐熱試験を行い、耐熱試験前後でのフォームの伸び保持率を算出する方法で行った。具体的には以下の計算式に基づき保持率を算出した。
[Heat resistance evaluation]
The molded flexible polyurethane foam was punched into a dumbbell shape described in JIS K6400, subjected to a heat resistance test for 150 hours in an oven at 150 ° C., and the elongation retention rate of the foam before and after the heat resistance test was calculated. Specifically, the retention rate was calculated based on the following calculation formula.
  耐熱試験前後伸び保持率(%)
    =耐熱試験前伸び(%)/耐熱試験後伸び(%)×100
 [ポリオールプレミックスの調製]
 (ポリオールプレミックス調製例)
 攪拌機、冷却管、窒素導入管、温度計を備えた反応器を窒素置換した後、ポリオール1を90g、ポリオール2(ヒマシ油系ポリオール)を10g、添加剤1(ヒンダードフェノール系化合物)を0.6g、触媒1を0.71g、触媒2を0.1g、整泡剤1を0.5g、水を2g仕込み、23℃にて0.5時間撹拌させることにより、ポリオールプレミックス(P-1)を得た。その他のポリオールプレミックス(P-2~P-15)もP-1と同様に調製した。結果を表1、表2に示す。
Elongation retention before and after heat test (%)
= Elongation before heat test (%) / Elongation after heat test (%) × 100
[Preparation of polyol premix]
(Polyol premix preparation example)
After the reactor equipped with a stirrer, a cooling pipe, a nitrogen introducing pipe, and a thermometer was purged with nitrogen, 90 g of polyol 1, 10 g of polyol 2 (castor oil-based polyol), and 0 of additive 1 (hindered phenol-based compound) .6 g, catalyst 1 0.71 g, catalyst 2 0.1 g, foam stabilizer 1 0.5 g, and water 2 g were charged and stirred at 23 ° C. for 0.5 hours to obtain a polyol premix (P- 1) was obtained. Other polyol premixes (P-2 to P-15) were prepared in the same manner as P-1. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例1~9、比較例1~11]
 表3~6に示す原料のうち、ポリイソシアネート化合物以外の全原料の混合物(ポリオールプレミックス)の液温を24℃~26℃に調整し、ポリイソシアネート成分を液温24℃~26℃に調整した。ポリオールプレミックスにポリイソシアネート成分を所定量加えて、ミキサー(毎分7000回転)で7秒間混合し金型内に注入し軟質ポリウレタンフォームを発泡させた後、金型より取り出して、得られた軟質ポリウレタンフォームの物性を測定した。なお、表3~6におけるNCO Indexは、配合物中に存在する活性水素原子数に対するNCO基の比率である。
[Examples 1 to 9, Comparative Examples 1 to 11]
Among the raw materials shown in Tables 3 to 6, the liquid temperature of the mixture of all raw materials other than the polyisocyanate compound (polyol premix) is adjusted to 24 ° C to 26 ° C, and the polyisocyanate component is adjusted to the liquid temperature of 24 ° C to 26 ° C. did. A predetermined amount of polyisocyanate component is added to the polyol premix, mixed for 7 seconds with a mixer (7000 rpm), poured into a mold to foam a flexible polyurethane foam, and then taken out of the mold, the resulting soft The physical properties of the polyurethane foam were measured. In Tables 3 to 6, NCO Index is the ratio of NCO groups to the number of active hydrogen atoms present in the formulation.
 [発泡条件]
金型温度:60~65℃
金型形状:400mm×400mm×10mm
金型材質:アルミニウム
キュアー条件:60~65℃×5分
[Foaming conditions]
Mold temperature: 60 ~ 65 ℃
Mold shape: 400mm × 400mm × 10mm
Mold material: Aluminum cure Conditions: 60-65 ° C x 5 minutes
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [使用原料]
・ポリオール1:平均官能基数=3.0、水酸基価=33(mgKOH/g)のポリオキシエチレンポリオキシプロピレンポリオール、旭硝子ウレタン社製EL-823
・ポリオール2:平均官能基数=2.7、水酸基価=160(mgKOH/g)の未精製ヒマシ油、伊藤製油社製URIC H-24
・添加剤1:イルガノックス1135(Irganox1135:ベンゼンプロパン酸、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ、C7-C9側鎖アルキルエステル、BASFジャパン社製)、ヒンダードフェノール系化合物
・添加剤2:スミライザーTP-D(SUMILIZER TP-D、住友化学社製)、イオウ系化合物
・添加剤3:イルガフォス168(Irgafos168:トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、BASFジャパン社製)、リン系化合物
・触媒1:トリエチレンジアミンの33%ジプロピレングリコール溶液、東ソー社製TEDA-L33
・触媒2:ビス(2-ジメチルアミノエチル)エーテルの70%ジプロピレングリコール溶液、東ソー社製TOYOCAT ET
・整泡剤:シリコーン系整泡剤、モメンティブ社製L-5309
・イソシアネート1:MDI含有率70質量%、アイソマー含有率18質量%のポリフェニレンポリメチレンポリイソシアネート(CEF-300、東ソー社製)
・イソシアネート2:トルエンジイソシアネート系ポリイソシアネート(コロネートT-80、東ソー社製)
・イソシアネート3:MDI含有率48質量%、アイソマー含有率18質量%のポリフェニレンポリメチレンポリイソシアネート(CEF-531、東ソー社製)
・イソシアネート4:MDI含有率95質量%、アイソマー含有率18質量%のポリフェニレンポリメチレンポリイソシアネート(CEF-532、東ソー社製)
・イソシアネート5:MDI含有率70質量%、アイソマー含有率5質量%のポリフェニレンポリメチレンポリイソシアネート(CEF-533、東ソー社製)
・イソシアネート6:MDI含有率70質量%、アイソマー含有率60質量%のポリフェニレンポリメチレンポリイソシアネート(CEF-534、東ソー社製)。
[Raw materials]
Polyol 1: Polyoxyethylene polyoxypropylene polyol having an average number of functional groups = 3.0 and hydroxyl value = 33 (mgKOH / g), EL-823 manufactured by Asahi Glass Urethane Co., Ltd.
Polyol 2: unrefined castor oil having an average functional group number of 2.7 and a hydroxyl value of 160 (mgKOH / g), URIC H-24 manufactured by Ito Oil Co., Ltd.
Additive 1: Irganox 1135 (Irganox 1135: benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl) -4-hydroxy, C7-C9 side chain alkyl ester, manufactured by BASF Japan), hindered phenol Compound / additive 2: Sumilizer TP-D (SUMILIZER TP-D, manufactured by Sumitomo Chemical Co., Ltd.), sulfur compound / additive 3: Irgafos 168 (Irgafos 168: Tris (2,4-di-t-butylphenyl) phos Fight, manufactured by BASF Japan), phosphorus compound / catalyst 1: 33% dipropylene glycol solution of triethylenediamine, TEDA-L33 manufactured by Tosoh Corporation
Catalyst 2: 70% dipropylene glycol solution of bis (2-dimethylaminoethyl) ether, TOYOCAT ET manufactured by Tosoh Corporation
・ Foam stabilizer: Silicone foam stabilizer, L-5309 manufactured by Momentive
・ Isocyanate 1: Polyphenylene polymethylene polyisocyanate having an MDI content of 70% by mass and an isomer content of 18% by mass (CEF-300, manufactured by Tosoh Corporation)
・ Isocyanate 2: Toluene diisocyanate polyisocyanate (Coronate T-80, manufactured by Tosoh Corporation)
・ Isocyanate 3: Polyphenylene polymethylene polyisocyanate having an MDI content of 48 mass% and an isomer content of 18 mass% (CEF-531, manufactured by Tosoh Corporation)
・ Isocyanate 4: Polyphenylene polymethylene polyisocyanate having an MDI content of 95% by mass and an isomer content of 18% by mass (CEF-532, manufactured by Tosoh Corporation)
Isocyanate 5: polyphenylene polymethylene polyisocyanate having an MDI content of 70% by mass and an isomer content of 5% by mass (CEF-533, manufactured by Tosoh Corporation)
Isocyanate 6: Polyphenylene polymethylene polyisocyanate (CEF-534, manufactured by Tosoh Corporation) having an MDI content of 70% by mass and an isomer content of 60% by mass.
 表3の比較例1に示すように、高分子ポリオール(ポリオール1)とヒマシ油系ポリオール(ポリオール2)の比率が95:5の場合には、耐熱試験後の伸びが低く十分な耐熱性が得られなかった。また比較例2に示すように、高分子ポリオール(ポリオール1)とヒマシ油系ポリオール(ポリオール2)の比率が45:55の場合には軟質ポリウレタンフォームは収縮した。 As shown in Comparative Example 1 of Table 3, when the ratio of the polymer polyol (polyol 1) and castor oil-based polyol (polyol 2) is 95: 5, the elongation after the heat test is low and sufficient heat resistance is obtained. It was not obtained. Further, as shown in Comparative Example 2, the flexible polyurethane foam contracted when the ratio of the polymer polyol (polyol 1) to the castor oil-based polyol (polyol 2) was 45:55.
 表4の比較例3に示したように、高分子ポリオール(ポリオール1)とヒマシ油系ポリオール(ポリオール2)の比率が60:40で使用した場合でもヒンダードフェノール系化合物を未使用の場合には、十分な耐熱性が得られなかった。また、比較例4に示したようにヒンダードフェノール系化合物の使用量が5質量%を超えた場合、軟質ポリウレタンフォームの安定性が低下し崩壊した。 As shown in Comparative Example 3 of Table 4, even when the ratio of the polymer polyol (polyol 1) and castor oil-based polyol (polyol 2) was 60:40, the hindered phenol compound was not used. However, sufficient heat resistance was not obtained. Moreover, when the usage-amount of the hindered phenol type compound exceeded 5 mass% as shown in the comparative example 4, stability of the flexible polyurethane foam fell and it collapsed.
 表5は添加剤としてヒンダードフェノール系化合物(添加剤1)の他に、イオウ系化合物(添加剤2)、リン系化合物(添加剤3)を添加して軟質ポリウレタンフォームを製造したものの物性測定結果である。比較例5~6に示したように、ヒンダードフェノール系化合物以外の各添加剤を使用した場合には、十分な耐熱性が得られなかった。 Table 5 shows the measurement of physical properties of a flexible polyurethane foam produced by adding a sulfur compound (additive 2) and a phosphorus compound (additive 3) in addition to a hindered phenol compound (additive 1) as an additive. It is a result. As shown in Comparative Examples 5 to 6, when each additive other than the hindered phenol compound was used, sufficient heat resistance was not obtained.
 表6の比較例7に示したようにイソシアネート成分としてトルエンジイソシアネート系ポリイソシアネート(イソシアネート2)を用いた場合、十分な耐熱性を得ることができなかった。比較例7~11に示したように、ポリフェニレンポリメチレンポリイソシアネートのMDI含有率、並びにアイソマー含有率が規定の範囲を外れる場合、良好な成形性の軟質ポリウレタンフォームは得られなかった。 As shown in Comparative Example 7 in Table 6, when toluene diisocyanate polyisocyanate (isocyanate 2) was used as the isocyanate component, sufficient heat resistance could not be obtained. As shown in Comparative Examples 7 to 11, when the MDI content and the isomer content of the polyphenylene polymethylene polyisocyanate were out of the specified range, a flexible polyurethane foam having good moldability could not be obtained.
 以上の実施例及び比較例を対比することにより、本発明においては、耐熱性が良好な軟質ポリウレタンフォームが得られることは明確であり、本発明の構成の有意性と顕著な卓越性を理解できる。 By comparing the above examples and comparative examples, it is clear that a flexible polyurethane foam having good heat resistance can be obtained in the present invention, and the significance and remarkable excellence of the configuration of the present invention can be understood. .
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることはいわゆる当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2016年03月11日に出願された日本特許出願2016-048530号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2016-048530 filed on Mar. 11, 2016 are incorporated herein as the disclosure of the specification of the present invention. It is.

Claims (5)

  1. ポリオール(A)と、ヒンダードフェノール系化合物(B)と、ポリイソシアネート(C)とを含む軟質ポリウレタンフォーム成型用組成物であって、ポリオール(A)が、ヒマシ油及びヒマシ油変性ポリオールからなる群より選ばれる少なくとも一種のポリオール(A-1)をポリオール(A)中に10~50質量%含有すること、ヒンダードフェノール系化合物(B)が、ポリオール(A)に対して0.1~5質量%含有すること、並びにポリイソシアネート(C)が、ジフェニルメタンジイソシアネートを50~80質量%の範囲で含み、該ジフェニルメタンジイソシアネートに含まれる2,2’-ジフェニルメタンジイソシアネートと2,4’-ジフェニルメタンジイソシアネートが該ジフェニルメタンジイソシアネートの総量に対し10~50質量%含有することを特徴とする軟質ポリウレタンフォーム成型用組成物。 A composition for molding a flexible polyurethane foam comprising a polyol (A), a hindered phenol compound (B), and a polyisocyanate (C), wherein the polyol (A) comprises castor oil and castor oil-modified polyol. The polyol (A) contains 10 to 50% by mass of at least one polyol (A-1) selected from the group, and the hindered phenolic compound (B) is 0.1 to 5 mass%, and polyisocyanate (C) contains diphenylmethane diisocyanate in the range of 50 to 80 mass%, and 2,2′-diphenylmethane diisocyanate and 2,4′-diphenylmethane diisocyanate contained in the diphenylmethane diisocyanate Against the total amount of the diphenylmethane diisocyanate Flexible polyurethane foam molding composition characterized by containing 10 to 50 wt%.
  2. ヒンダードフェノール系化合物(B)が、ポリオール(A)に対して1質量%を超え5質量%以下含有することを特徴とする請求項1に記載の軟質ポリウレタンフォーム成型用組成物。 The composition for molding a flexible polyurethane foam according to claim 1, wherein the hindered phenol compound (B) is contained in an amount of more than 1% by mass and 5% by mass or less based on the polyol (A).
  3. ポリオール(A)が、ヒマシ油及びヒマシ油変性ポリオールからなる群より選ばれる少なくとも一種のポリオール(A-1)と、ポリオール(A-1)以外の高分子ポリオール(A-2)とを含有し、ポリオール(A-1)の数平均分子量が400~2000であり、高分子ポリオール(A-2)が数平均分子量1000~10000、公称官能基数2以上のポリエーテルポリオールであることを特徴とする請求項1又は2に記載の軟質ポリウレタンフォーム成型用組成物。 The polyol (A) contains at least one polyol (A-1) selected from the group consisting of castor oil and castor oil-modified polyol, and a polymer polyol (A-2) other than the polyol (A-1). The polyol (A-1) has a number average molecular weight of 400 to 2000, and the polymer polyol (A-2) is a polyether polyol having a number average molecular weight of 1000 to 10,000 and a nominal functional group number of 2 or more. The composition for molding a flexible polyurethane foam according to claim 1 or 2.
  4. 請求項1乃至3のいずれかに記載の軟質ポリウレタンフォーム成型用組成物と、触媒、整泡剤、及び発泡剤の混合物を発泡させることを特徴とする軟質ポリウレタンフォームの製造方法。 A method for producing a flexible polyurethane foam, comprising foaming the composition for molding a flexible polyurethane foam according to any one of claims 1 to 3, a catalyst, a foam stabilizer, and a foaming agent.
  5. 請求項4で得られた軟質ポリウレタンフォームの見掛けフォーム密度が70~300kg/m、かつスキン付フォーム試験片の25%圧縮硬さが150~950N/314cmであって、150℃で150時間の耐熱試験前後でのフォームの伸び保持率が75%以上であることを特徴とする軟質ポリウレタンフォームの製造方法。 The apparent polyurethane density of the flexible polyurethane foam obtained in claim 4 is 70 to 300 kg / m 3 , and the 25% compression hardness of the skin-coated foam test piece is 150 to 950 N / 314 cm 2 , and 150 hours at 150 ° C. A method for producing a flexible polyurethane foam, wherein the foam elongation retention before and after the heat resistance test is 75% or more.
PCT/JP2017/008925 2016-03-11 2017-03-07 Soft polyurethane foam molding composition WO2017154878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-048530 2016-03-11
JP2016048530A JP6903870B2 (en) 2016-03-11 2016-03-11 Composition for molding flexible polyurethane foam

Publications (1)

Publication Number Publication Date
WO2017154878A1 true WO2017154878A1 (en) 2017-09-14

Family

ID=59790411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008925 WO2017154878A1 (en) 2016-03-11 2017-03-07 Soft polyurethane foam molding composition

Country Status (2)

Country Link
JP (1) JP6903870B2 (en)
WO (1) WO2017154878A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760054A (en) * 2019-10-17 2020-02-07 刘鹏 Preparation method of impact-resistant heat-insulation sound-insulation board
US20210197424A1 (en) * 2017-11-08 2021-07-01 Basf Se Vegetable oil as foam stabilizer in pu boots manufacturing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909345B (en) * 2020-08-13 2022-05-20 淄博正大聚氨酯有限公司 Polyurethane high-resilience cotton for mattress and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323126A (en) * 1998-03-18 1999-11-26 Bridgestone Corp Flexible polyurethane foam
JP2005206709A (en) * 2004-01-23 2005-08-04 Inoac Corp Method for producing polyurethane foam
JP2005206710A (en) * 2004-01-23 2005-08-04 Inoac Corp Flexible polyurethane foam
JP2006045443A (en) * 2004-08-09 2006-02-16 Inoac Corp Manufacturing method of soft polyurethane foam
JP2006070241A (en) * 2004-08-04 2006-03-16 Tokai Rubber Ind Ltd Vehicular flame-retardant sound-proof and vibration-proof material and method for producing the same
JP2006265467A (en) * 2005-03-25 2006-10-05 Tokai Rubber Ind Ltd Flame-retardant sound-proof/vibration-proof material for vehicles and method for producing the same
JP2008115325A (en) * 2006-11-07 2008-05-22 Mitsui Chemicals Polyurethanes Inc Polyol composition and polyurethane foam
JP2008208264A (en) * 2007-02-27 2008-09-11 Inoac Corp Soft polyurethane foam
JP2008266451A (en) * 2007-04-20 2008-11-06 Inoac Corp Soft polyurethane foam
JP2010053157A (en) * 2008-08-26 2010-03-11 Nippon Polyurethane Ind Co Ltd Manufacturing method of flexible polyurethane foam
JP2010052440A (en) * 2008-08-26 2010-03-11 Nippon Polyurethane Ind Co Ltd Buffer material for vehicle and cover for vehicle using fire retardant polyurethane foam

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323126A (en) * 1998-03-18 1999-11-26 Bridgestone Corp Flexible polyurethane foam
JP2005206709A (en) * 2004-01-23 2005-08-04 Inoac Corp Method for producing polyurethane foam
JP2005206710A (en) * 2004-01-23 2005-08-04 Inoac Corp Flexible polyurethane foam
JP2006070241A (en) * 2004-08-04 2006-03-16 Tokai Rubber Ind Ltd Vehicular flame-retardant sound-proof and vibration-proof material and method for producing the same
JP2006045443A (en) * 2004-08-09 2006-02-16 Inoac Corp Manufacturing method of soft polyurethane foam
JP2006265467A (en) * 2005-03-25 2006-10-05 Tokai Rubber Ind Ltd Flame-retardant sound-proof/vibration-proof material for vehicles and method for producing the same
JP2008115325A (en) * 2006-11-07 2008-05-22 Mitsui Chemicals Polyurethanes Inc Polyol composition and polyurethane foam
JP2008208264A (en) * 2007-02-27 2008-09-11 Inoac Corp Soft polyurethane foam
JP2008266451A (en) * 2007-04-20 2008-11-06 Inoac Corp Soft polyurethane foam
JP2010053157A (en) * 2008-08-26 2010-03-11 Nippon Polyurethane Ind Co Ltd Manufacturing method of flexible polyurethane foam
JP2010052440A (en) * 2008-08-26 2010-03-11 Nippon Polyurethane Ind Co Ltd Buffer material for vehicle and cover for vehicle using fire retardant polyurethane foam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210197424A1 (en) * 2017-11-08 2021-07-01 Basf Se Vegetable oil as foam stabilizer in pu boots manufacturing
US11872728B2 (en) * 2017-11-08 2024-01-16 Basf Se Vegetable oil as foam stabilizer in PU boots manufacturing
CN110760054A (en) * 2019-10-17 2020-02-07 刘鹏 Preparation method of impact-resistant heat-insulation sound-insulation board

Also Published As

Publication number Publication date
JP2017160391A (en) 2017-09-14
JP6903870B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
EP1519973B1 (en) Tough, fire resistant polyurethane foam and method of manufacture thereof
JP5311278B2 (en) Vehicle cushioning material and vehicle cover using flame retardant polyurethane foam
JP6230716B2 (en) Polyurethane foam and related methods and articles
WO2011136230A1 (en) Method for producing rigid foam synthetic resin
US20090005467A1 (en) Polyol Composition and Low Resilience Polyurethane Foam
WO2008062796A1 (en) Method for producing hard polyurethane foam and hard polyurethane foam
WO2017154878A1 (en) Soft polyurethane foam molding composition
JP2006348099A (en) Polyurethane foaming stock solution and low-density polyurethane heat-insulating material
JP2010195945A (en) Organic polyisocyanate compound for flexible polyurethane foam and process for producing flexible polyurethane foam
JP2018522129A (en) Method for producing flexible polyester urethane foam having enhanced compression hardness
WO2005066235A1 (en) Thermosetting polyamide foam and use thereof, and method for producing thermosetting polyamide
JP2004339269A (en) Production method for rigid polyurethane foam
US11505700B2 (en) Polyol composition for molding flexible polyurethane foam, and flexible polyurethane foam
JP2022079417A (en) Composition for molding soft polyurethane foam
US10927227B2 (en) Flexible foam with halogen-free flame retardant
US20230002541A1 (en) Composition for forming polyurethane foam
JP2004204120A (en) Method for producing water-foamed rigid polyurethane foam and method for producing one-piece molded article by the foam production method
JP2009280658A (en) Composition for molding high density flexible polyurethane foam
JP2018141118A (en) Polyol composition for flexible polyurethane foam
WO2003091308A1 (en) Flame retardant polyurethane composition and method of manufacture thereof
JP2010047635A (en) Flexible polyurethane foam and method for manufacturing the same
JP2018165292A (en) Polyisocyanate composition for soft polyurethane foam
CN114096577B (en) Polyurethane foam composition
JP7470889B2 (en) Composition for polyurethane integral skin foam, polyurethane integral skin foam, and method for producing same
JP2007321119A (en) Polyurethane foam and method for producing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763218

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763218

Country of ref document: EP

Kind code of ref document: A1