JP2010053157A - Manufacturing method of flexible polyurethane foam - Google Patents

Manufacturing method of flexible polyurethane foam Download PDF

Info

Publication number
JP2010053157A
JP2010053157A JP2008216040A JP2008216040A JP2010053157A JP 2010053157 A JP2010053157 A JP 2010053157A JP 2008216040 A JP2008216040 A JP 2008216040A JP 2008216040 A JP2008216040 A JP 2008216040A JP 2010053157 A JP2010053157 A JP 2010053157A
Authority
JP
Japan
Prior art keywords
polyol
polyurethane foam
flexible polyurethane
foam
castor oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008216040A
Other languages
Japanese (ja)
Inventor
Keita Ishibashi
圭太 石橋
Naoya Yoshii
直哉 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Polyurethane Industry Co Ltd
Original Assignee
Nippon Polyurethane Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyurethane Industry Co Ltd filed Critical Nippon Polyurethane Industry Co Ltd
Priority to JP2008216040A priority Critical patent/JP2010053157A/en
Priority to PCT/JP2009/004107 priority patent/WO2010023885A1/en
Publication of JP2010053157A publication Critical patent/JP2010053157A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0075Foam properties prepared with an isocyanate index of 60 or lower
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible polyurethane foam that exhibits excellent water resistance and alkali resistance and a very good compression set. <P>SOLUTION: The polyurethane foam is obtained by causing a polyol component (A) to react with diphenylmethane diisocyanate-based polyisocyanate (B) in the presence of a catalyst (C), a foam stabilizer (D), a blowing agent (E) and a crosslinking agent (F), where the polyol contains 10-50 mass%, based on the polyol component (A), of a castor oil-based polyol (a1), a vegetable-derived raw material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軟質ポリウレタンフォームの製造方法に関するものである。更に詳しくは、植物由来のポリオールであるヒマシ油を使用することにより、耐水性、耐アルカリ性に優れ、かつ、圧縮残留歪みが極めて良好な軟質ポリウレタンフォームの製造方法に関するものである。   The present invention relates to a method for producing a flexible polyurethane foam. More specifically, the present invention relates to a method for producing a flexible polyurethane foam which is excellent in water resistance and alkali resistance by using castor oil, which is a plant-derived polyol, and has very good compression residual strain.

従来から、軟質ポリウレタンフォームは柔軟性と優れた衝撃吸収性をもっていることから、ソファー等のクッション材や緩衝材として広く使用されている。しかし、多くのポリウレタンフォームはトルエンジイソシアネート系ポリイソシアネートを使用した軽量なものであって、経年耐久に対してフォーム物性が十分とは言い難い。また、トルエンジイソシアネート系ポリイソシアネートは揮発性が高いため、生産場所でのイソシアネートの作業者の健康への影響が懸念されている。さらに従来のポリウレタンフォームは、耐水性あるいはアルカリ洗剤に対する耐アルカリ性能が不十分であるため、洗濯することで膨潤あるいは、劣化を生じ強度が低下するといった問題がある。耐水性に優れた軟質ポリウレタンフォームの製造方法として、具体的に例えばポリオール成分にポリオキシアルキレンポリオールを含み、該ポリオキシアルキレンポリオールを100重量%とした場合に、オキシエチレン単位の含有量が18重量%以下とする方法が提案されている(特許文献1参照)が、耐久性についての記述はなされていない。
特開平09−071627号公報 特開2006−104404号公報
Conventionally, flexible polyurethane foams have been widely used as cushioning materials and cushioning materials for sofas and the like because they have flexibility and excellent shock absorption. However, many polyurethane foams are lightweight using toluene diisocyanate-based polyisocyanate, and it is difficult to say that the foam physical properties are sufficient for aging durability. In addition, since toluene diisocyanate-based polyisocyanate has high volatility, there is a concern that the isocyanate at the production site may affect the health of workers. Furthermore, since conventional polyurethane foams have insufficient water resistance or alkali resistance performance against alkaline detergents, there is a problem that the strength is lowered due to swelling or deterioration when washed. As a method for producing a flexible polyurethane foam excellent in water resistance, for example, when the polyol component contains polyoxyalkylene polyol and the polyoxyalkylene polyol is 100% by weight, the content of oxyethylene units is 18% by weight. % Or less has been proposed (see Patent Document 1), but there is no description of durability.
JP 09-071627 A JP 2006-104404 A

本発明の目的は、耐水性かつ耐アルカリ性に優れ、しかも、圧縮残留歪みが極めて良好な軟質ポリウレタンフォームを提供することである。また、作業環境改善のためにトルエンジイソシアネート系ポリイソシアネートを使用せず、かつ、昨今の環境保全の観点から環境負荷の少ない植物由来の原料を多く使用することである。   An object of the present invention is to provide a flexible polyurethane foam which is excellent in water resistance and alkali resistance and which has a very good compressive residual strain. Further, in order to improve the working environment, toluene diisocyanate-based polyisocyanate is not used, and from the viewpoint of recent environmental conservation, many plant-derived raw materials having a low environmental load are used.

本発明者らは、上記の課題を解決することを目的として、耐水性、耐アルカリ性、及び圧縮残留歪みなどの物性に優れたフォームを提供するため、軟質ポリウレタンフォームの主要原料である有機ジイソシアネートやポリオールについて、また、発泡剤や整泡剤やその他の助剤について、あるいは重合条件や重合触媒について、さらには適正な密度と硬度範囲を持つ軟質ポリウレタンフォームを得ることなどについて、全体的な思考を巡らし種々の検討を行い、実験的な試行と多面的な考察を重ねた。   In order to solve the above problems, the present inventors provide a foam having excellent physical properties such as water resistance, alkali resistance, and compression residual strain. Think about polyols, foaming agents, foam stabilizers and other auxiliaries, polymerization conditions and polymerization catalysts, and how to obtain flexible polyurethane foam with the proper density and hardness range. Various investigations were conducted, and experimental trials and multifaceted considerations were repeated.

それらの過程において、実験的な検討と試行の積み重ねの成果として、上記の課題の解決のためには、ポリオール成分に植物由来のヒマシ油系ポリオールを使用することにより、本発明の課題の解決を可能とし、耐水性、耐アルカリ性、圧縮残留歪みなどの物性に優れた軟質ポリウレタンフォームを提供することに関し、非常に有効であることを見出し、本願の発明を創作するに至った。   In these processes, as a result of repeated examination and trials, in order to solve the above-mentioned problems, the use of plant-derived castor oil-based polyol as the polyol component can solve the problem of the present invention. It has been found that the present invention is very effective for providing a flexible polyurethane foam that is capable of being made and has excellent physical properties such as water resistance, alkali resistance, and compressive residual strain.

本発明において、使用するヒマシ油系ポリオール(a1)の添加量としては、ポリオール成分(A)に対して、10〜50質量%の範囲である場合に特に有効である。   In the present invention, the amount of castor oil-based polyol (a1) to be used is particularly effective when it is in the range of 10 to 50% by mass relative to the polyol component (A).

本発明における基本的で主要な構成要素は、ポリオール成分(A)、ジフェニルメタンジイソシアネート系ポリイソシアネート(B)、触媒(C)、整泡剤(D)、発泡剤(E)、架橋剤(F)、その他の助剤からなる成形用の組成物により軟質ポリウレタンフォームを製造する方法において、ヒマシ油系ポリオール(a1)をポリオール成分(A)に対して10〜50質量%添加することを特徴とする、軟質ポリウレタンフォームの製造方法である。
さらに、本発明においては、ポリオール成分やジフェニルメタンジイソシアネート系ポリイソシアネートあるいは発泡剤などを具体的に特定すると、より優れた改良結果が得られる。
The basic main components in the present invention are polyol component (A), diphenylmethane diisocyanate polyisocyanate (B), catalyst (C), foam stabilizer (D), foaming agent (E), and crosslinking agent (F). In the method for producing a flexible polyurethane foam with a molding composition comprising other auxiliary agents, the castor oil-based polyol (a1) is added in an amount of 10 to 50% by mass based on the polyol component (A). This is a method for producing a flexible polyurethane foam.
Furthermore, in the present invention, when a polyol component, diphenylmethane diisocyanate polyisocyanate, a foaming agent, or the like is specifically specified, a more excellent improvement result can be obtained.

本発明では、軟質ポリウレタンフォームにおいて、耐水性、耐アルカリ性、及び、優れた圧縮残留歪みなどの物性を得ることが可能となる。このため、本発明により得られる軟質ポリウレタンフォームにおいては、主として洗濯可能なクッション材や洗濯機周りの緩衝材として利用でき,非常に有用である。   In the present invention, it becomes possible to obtain physical properties such as water resistance, alkali resistance, and excellent compression residual strain in a flexible polyurethane foam. For this reason, in the flexible polyurethane foam obtained by this invention, it can utilize mainly as a cushioning material which can be wash | cleaned, and a buffer material around a washing machine, and is very useful.

さらに本発明の内容を詳しく説明する。
まず、本発明におけるポリウレタンフォームの製造に用いられるポリオール成分(A)は、ジイソシアネートと重付加してポリウレタンを形成するものであり、ヒマシ油系ポリオール(a1)、ポリエーテルポリオール(a2)及びポリマーポリオール(a3)、とからなる。
Further, the contents of the present invention will be described in detail.
First, the polyol component (A) used in the production of the polyurethane foam in the present invention is a polyaddition with a diisocyanate to form a polyurethane. The castor oil-based polyol (a1), the polyether polyol (a2), and the polymer polyol (A3).

ヒマシ油系ポリオール(a1)としては精製ヒマシ油、半精製ヒマシ油、未精製ヒマシ油のいずれであってもよく、水素を付加させた水添ヒマシ油、ヒマシ油脂肪酸とポリオール(上記低分子ポリオール及び/又はポリエーテルポリオール)との反応により得られる線状または分岐状ポリエステル、例えばヒマシ油脂肪酸のジグリセライド、モノグリセライド、ヒマシ油脂肪酸とトリメチロールアルカンとのモノ、ジ、またはトリエステル、ヒマシ油脂肪酸とポリプロピレングリコールとのモノ、ジ、またはトリエステル等挙げられる。この中でも化学原料の脱石油化及び環境保全という観点から、未変性のヒマシ油を使用することが好ましい。ここに、「ヒマシ油」の主成分は、リシノール酸のトリグリセライドであり、「ヒマシ油」には水素添加ヒマシ油が含まれる。
また、「ヒマシ油脂肪酸」の主成分はリシノール酸であり、「ヒマシ油脂肪酸」には、水素添加ヒマシ油脂肪酸が含まれる。また、「トリメチロールアルカン」としては、例えばトリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、トリメチロールペンタン、トリメチロールヘキサン、トリメチロールヘプタン、トリメチロールオクタン、トリメチロールノナン及びトリメチロールデカンを挙げることができる。ヒマシ油又はヒマシ油系変性ポリオールの数平均分子量は500〜6,000であることが好ましく、更に好ましくは900〜2,000とされる。数平均分子量が900〜2,000のヒマシ油系ポリオール(a1)を使用することにより、クッション材や緩衝材等の用途に適した密度や硬度範囲を有する軟質ポリウレタンフォームを得ることが可能となる。具体的には伊藤製油株式会社製のURIC H−24やURIC H−30などがあるがこれに限定されない。ヒマシ油系ポリオール(a1)はポリオール成分(A)に対して、10〜50質量%使用することが好ましい。この範囲未満では耐水、耐アルカリ性能を十分に発現することができない。また、この範囲を超えると成形性が悪化してしまう。
The castor oil-based polyol (a1) may be any of refined castor oil, semi-refined castor oil, unrefined castor oil, hydrogenated castor oil to which hydrogen is added, castor oil fatty acid and polyol (the above low molecular polyol And / or polyether polyol), for example, diglyceride of castor oil fatty acid, monoglyceride, castor oil fatty acid and trimethylol alkane mono-, di- or triester, castor oil fatty acid and Mono-, di-, or triester with polypropylene glycol. Among these, it is preferable to use unmodified castor oil from the viewpoint of removing petroleum from chemical raw materials and protecting the environment. Here, the main component of “castor oil” is triglyceride of ricinoleic acid, and “castor oil” includes hydrogenated castor oil.
The main component of “castor oil fatty acid” is ricinoleic acid, and “castor oil fatty acid” includes hydrogenated castor oil fatty acid. Examples of the “trimethylol alkane” include trimethylol methane, trimethylol ethane, trimethylol propane, trimethylol butane, trimethylol pentane, trimethylol hexane, trimethylol heptane, trimethylol octane, trimethylol nonane, and trimethylol decane. Can be mentioned. The number average molecular weight of castor oil or castor oil-based modified polyol is preferably 500 to 6,000, more preferably 900 to 2,000. By using a castor oil-based polyol (a1) having a number average molecular weight of 900 to 2,000, it is possible to obtain a flexible polyurethane foam having a density and hardness range suitable for applications such as cushioning materials and cushioning materials. . Specific examples include URIC H-24 and URIC H-30 manufactured by Ito Oil Co., Ltd., but are not limited thereto. The castor oil-based polyol (a1) is preferably used in an amount of 10 to 50% by mass based on the polyol component (A). If it is less than this range, water resistance and alkali resistance performance cannot be fully exhibited. Moreover, if it exceeds this range, the moldability will be deteriorated.

ポリエーテルポリオール(a2)は、本発明においては、数平均分子量1,000〜10,000で、公称官能基数2以上のものが好ましい。数平均分子量が下限未満では、得られるフォームの柔軟性が不足し、上限を超えると、フォームの硬度が低下しやすい。また、公称官能基数が2未満だと、圧縮残留歪みが悪くなるといった問題が発生する。なお、公称官能基数とはポリオールを得る際に用いられる開始剤の官能基数をいう。   In the present invention, the polyether polyol (a2) preferably has a number average molecular weight of 1,000 to 10,000 and a nominal functional group number of 2 or more. When the number average molecular weight is less than the lower limit, the flexibility of the resulting foam is insufficient, and when it exceeds the upper limit, the hardness of the foam tends to decrease. Further, when the nominal functional group number is less than 2, there arises a problem that the compression residual strain is deteriorated. In addition, a nominal functional group number means the functional group number of the initiator used when obtaining a polyol.

(a2)としては、ポリプロピレンエチレンポリオール(PPG)やポリテトラメチレンエーテルグリコール(PTG)などが使用され、ポリエステルポリオールとしては、重縮合型ポリエステル系ポリオールのアジピン酸エチレングリコールポリエステルポリオール、ラクトン系ポリエステルポリオールのポリカプロラクトンポリオールなどが使用される。   As (a2), polypropylene ethylene polyol (PPG), polytetramethylene ether glycol (PTG) or the like is used. As the polyester polyol, polycondensation type polyester polyol adipic acid ethylene glycol polyester polyol, lactone type polyester polyol Polycaprolactone polyol and the like are used.

ポリマーポリオール(a3)は、ポリエーテルポリオール中でエチレン不飽和モノマーを重合させる方法、別途製造した重合体微粒子をポリエーテルポリオールに混合する方法、エチレン性不飽和基を有するマクロモノマーとエチレン性不飽和モノマーをポリエーテルポリオール中で重合させる方法などで製造される。
エチレン性不飽和モノマーとしては、例えば、スチレン、アクリロニトリルが挙げられる。これらのうち、ポリエーテルポリオール中でエチレン性不飽和モノマーを重合させたものが好ましく、ポリオキシプロピレントリオール中でエチレン性不飽和モノマーを重合させたものが更に好ましい。重合体微粒子の含有量は、全ポリオールに対して50質量%以下、特に30質量%以下が好ましい。重合体微粒子の含有量が50質量%を超えると、ポリマーポリオールの粘度が高くなり、成形時の作業性が悪化する。
The polymer polyol (a3) is a method of polymerizing an ethylenically unsaturated monomer in a polyether polyol, a method of mixing separately produced polymer fine particles into a polyether polyol, a macromonomer having an ethylenically unsaturated group, and an ethylenically unsaturated group. It is produced by a method in which a monomer is polymerized in a polyether polyol.
Examples of the ethylenically unsaturated monomer include styrene and acrylonitrile. Of these, those obtained by polymerizing ethylenically unsaturated monomers in polyether polyol are preferred, and those obtained by polymerizing ethylenically unsaturated monomers in polyoxypropylene triol are more preferred. The content of the polymer fine particles is preferably 50% by mass or less, particularly preferably 30% by mass or less, based on the total polyol. When the content of the polymer fine particles exceeds 50% by mass, the viscosity of the polymer polyol becomes high and workability at the time of molding deteriorates.

ポリオール成分(A)としては、上記(a1)〜(a3)以外に、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール、ラクトン系ポリオール等も併用することも可能である。   As the polyol component (A), in addition to the above (a1) to (a3), a polyester polyol, a polycarbonate polyol, a polybutadiene polyol, a lactone polyol and the like can be used in combination.

本発明におけるポリウレタンフォームの製造に用いられるポリイソシアネート成分は、ジフェニルメタンジイソシアネート系ポリイソシアネート(B)である。
このジフェニルメタンジイソシアネート系ポリイソシアネート(B)としては、具体的には例えば、4,4´−ジフェニルメタンジイソシアネート、2,4´−ジフェニルメタンジイソシアネート、2,2´−ジフェニルメタンジイソシアネート及びその混合物からなるジフェニルメタンジイソシアネート(ピュアMDI)、ポリメチレンポリフェニレンポリイソシアネート(p−MDI)、これらのウレタン変性体、ウレア変性体、アロファネート変性体、ビュウレット変性体などの各種変性体も使用しうる。なお、特に、上記したピュアMDI、MDIとp−MDIの混合物を用いると、より良質の軟質ポリウレタンフォームを得ることができる。また、ジフェニルメタンジイソシアネート系ポリイソシアネート(B)の平均官能基数は2.1〜2.5の範囲にあることが好ましい。平均官能基数が2.1未満の場合は得られるフォームの成形安定性が不足し、良好な耐久性を有するフォームが得られにくい。2.5を超えると、フォームの伸び率が低下しやすい。
The polyisocyanate component used in the production of the polyurethane foam in the present invention is diphenylmethane diisocyanate-based polyisocyanate (B).
Specific examples of the diphenylmethane diisocyanate polyisocyanate (B) include diphenylmethane diisocyanate (pure) comprising 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 2,2′-diphenylmethane diisocyanate, and mixtures thereof. Various modified products such as MDI), polymethylene polyphenylene polyisocyanate (p-MDI), urethane-modified products, urea-modified products, allophanate-modified products, and burette-modified products can also be used. In particular, when a pure MDI, a mixture of MDI and p-MDI is used, a higher quality flexible polyurethane foam can be obtained. Moreover, it is preferable that the average functional group number of diphenylmethane diisocyanate type polyisocyanate (B) exists in the range of 2.1-2.5. When the average number of functional groups is less than 2.1, the molding stability of the resulting foam is insufficient, and it is difficult to obtain a foam having good durability. If it exceeds 2.5, the elongation rate of the foam tends to decrease.

触媒(C)としては、当該分野において公知である各種のウレタン化触媒を使用できる。
例示をすれば、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N−メチルモリホリン、N−エチルモリホリン、ジメチルベンジルアミン、N,N,N´,N´−テトラメチルヘキサメチレンジアミン、N,N,N´,N´,N´´−ペンタメチルジエチレントリアミン、ビス−(2−ジメチルアミノエチル)エーテル、トリエチレンジアミン、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,2−ジメチルイミダゾール、ジメチルエタノールアミン、N,N−ジメチル−N−ヘキサノールアミン、さらにこれらの有機酸塩、スタナスオクトエート、ナフテン酸亜鉛などの有機金属化合物も挙げられる。また、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミンなどの活性水素を有すアミン触媒も好ましい。
触媒(C)の添加量は、ポリオール成分(A)に対して、0.01〜10重量%が好ましい。この範囲未満ではキュアー不足になりやすく、この範囲を超えると成形性が悪化することがある。
As the catalyst (C), various urethanization catalysts known in the art can be used.
For example, triethylamine, tripropylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, dimethylbenzylamine, N, N, N ′, N′-tetramethylhexamethylenediamine, N, N, N ′, N ′, N ″ -pentamethyldiethylenetriamine, bis- (2-dimethylaminoethyl) ether, triethylenediamine, 1,8-diaza-bicyclo (5,4,0) undecene-7,1,2- Examples of the organic metal compound include dimethylimidazole, dimethylethanolamine, N, N-dimethyl-N-hexanolamine, and organic acid salts thereof, stannous octoate, and zinc naphthenate. Further, amine catalysts having active hydrogen such as N, N-dimethylethanolamine and N, N-diethylethanolamine are also preferable.
The addition amount of the catalyst (C) is preferably 0.01 to 10% by weight with respect to the polyol component (A). If it is less than this range, the curing tends to be insufficient, and if it exceeds this range, the moldability may deteriorate.

整泡剤(D)は通常の界面活性剤が使用され、有機珪素系の界面活性剤が好適に使用できる。例えば、ゴールドシュミット株式会社製のB−4113LFや日本ユニカー株式会社製のL−5309などが挙げられる。これらは単独で或いは2種類以上混合して用いることができる。
整泡剤(D)の添加量は、均一なセルを形成するためには、ポリオール成分(A)に対して、0.01〜10重量%が好ましい。
As the foam stabilizer (D), an ordinary surfactant is used, and an organosilicon surfactant can be suitably used. Examples thereof include B-4113LF manufactured by Goldschmidt Co., Ltd. and L-5309 manufactured by Nihon Unicar Co., Ltd. These can be used alone or in admixture of two or more.
The amount of the foam stabilizer (D) added is preferably 0.01 to 10% by weight with respect to the polyol component (A) in order to form a uniform cell.

発泡剤(E)としては、主として水を用いる。水はイソシアネート基との反応で炭酸ガスを発生し、これにより発泡することになる。また、水と付加的に任意の発泡剤を使用してもよい。例えば、少量のシクロペンタンやイソペンタンなどの低沸点有機化合物を併用してもよいし、ガスローディング装置を用いて原液中に空気や窒素ガスや液化二酸化炭素を混入溶解させて発泡することもできる。
発泡剤の添加量は得られる製品の設定密度による。通常は、ポリオール成分(A)に対して0.5〜15重量%であるが、クッション材や緩衝材用途として考えた場合、0.8〜1.5重量%であることが好ましい。上限を超えると発泡が安定し難くなる場合があり、下限未満では発泡が有効になされない場合がある。
As the foaming agent (E), water is mainly used. Water generates carbon dioxide gas by reaction with the isocyanate group, which causes foaming. Moreover, you may use arbitrary foaming agents in addition to water. For example, a small amount of a low-boiling organic compound such as cyclopentane or isopentane may be used in combination, or air, nitrogen gas, or liquefied carbon dioxide may be mixed and dissolved in the stock solution using a gas loading device and foamed.
The amount of foaming agent added depends on the set density of the resulting product. Usually, it is 0.5 to 15% by weight with respect to the polyol component (A), but it is preferably 0.8 to 1.5% by weight when considered as a cushioning material or cushioning material. If the upper limit is exceeded, foaming may become difficult to stabilize, and if it is less than the lower limit, foaming may not be effective.

架橋剤(F)としては、好適には前述のポリエステルポリオールの合成に用いられる低分子アルコール類、低分子アミン類、低分子アミノアルコール類などの、分子量500未満の低分子活性水素化合物を挙げることができる。
これらはいずれも単独で或いは2種類以上を混合することができる。これらのうち、イソシアネート基との反応が緩やかな点から、低分子アミノアルコール類、更にジエタノールアミンが好ましい。
Preferred examples of the crosslinking agent (F) include low-molecular active hydrogen compounds having a molecular weight of less than 500, such as low-molecular alcohols, low-molecular amines, and low-molecular amino alcohols used in the synthesis of the polyester polyol described above. Can do.
These can be used alone or in combination of two or more. Of these, low molecular amino alcohols and further diethanolamine are preferred from the viewpoint of slow reaction with isocyanate groups.

そして、本発明における軟質ポリウレタンフォームの製造には、酸化防止剤や紫外線吸収剤のような老化防止剤、炭酸カルシウムや硫酸バリウムのような充填剤、難燃剤、可塑剤、着色剤、抗カビ剤等の公知の各種添加剤、助剤を必要に応じて使用することができる。   In the production of the flexible polyurethane foam in the present invention, an anti-aging agent such as an antioxidant and an ultraviolet absorber, a filler such as calcium carbonate and barium sulfate, a flame retardant, a plasticizer, a colorant, and an antifungal agent. Various known additives and auxiliaries such as can be used as necessary.

次に本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例の限定されるものではない。なお、特に断りのない限り、文中の「%」は質量基準であるものとする。   Next, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to these Examples, unless the summary is exceeded. Unless otherwise specified, “%” in the text is based on mass.

実施例1〜8、比較例1〜6
表1、2、3に示す原料のうち、ポリイソシアネート化合物以外の全原料の混合物(ポリオールシステム)の液温を25℃±1℃に調整し、ポリイソシアネート化合物を液温25±1℃に調整した。ポリオールシステムにポリイソシアネート化合物を所定量加えて、ミキサー(毎分7000回転)で7秒間混合し金型内に注入しポリウレタンフォームを発泡させた後、金型より取り出しクラッシング工程(ウレタンフォームを発泡させたあと成型物内部のガスを、セルを破ることで逃がすこと)を経て、得られた軟質ポリウレタンフォームの物性を測定した。なお、表1、2、3におけるイソシアネートインデックス(NCO Index)は、配合物中に存在するNCO反応性基に対するNCO基の当量比(NCO/NCO反応性基)である。
[発泡条件]
金型温度:55〜60℃
金型形状:100×300×300mm
金型材質:アルミニウム
キュアー条件:55〜60℃×6分
クラッシング条件:五段式クラッシングローラー
Examples 1-8, Comparative Examples 1-6
Among the raw materials shown in Tables 1, 2, and 3, the liquid temperature of the mixture of all raw materials other than the polyisocyanate compound (polyol system) is adjusted to 25 ° C. ± 1 ° C., and the polyisocyanate compound is adjusted to the liquid temperature 25 ± 1 ° C. did. Add a predetermined amount of polyisocyanate compound to the polyol system, mix for 7 seconds with a mixer (7000 rpm), inject into the mold, foam the polyurethane foam, take out from the mold, crushing process (foam urethane foam And letting the gas inside the molded product escape by breaking the cell), and the physical properties of the obtained flexible polyurethane foam were measured. In Tables 1, 2, and 3, the isocyanate index (NCO Index) is an equivalent ratio of NCO groups to NCO reactive groups (NCO / NCO reactive groups) present in the formulation.
[Foaming conditions]
Mold temperature: 55-60 ° C
Mold shape: 100 × 300 × 300mm
Mold material: Aluminum cure Condition: 55-60 ° C x 6 minutes Crushing condition: Five-stage crushing roller

[使用原料]
(ポリオール成分)
ポリオール1:PO/EOを付加させて得たEO末端含有量=14%、平均官能基数=3.0、水酸基価=24(mgKOH/g)のポリオキシエチレンポリオキシプロピレンポリオール、旭硝子ウレタン株式会社製EL−851B
ポリオール2:グリセリンにPO/EOを付加重合反応させ、更にアクリロニトリルモノマーを重合させて得た平均官能基数=3.0、水酸基価=28(mgKOH/g)のポリマーポリオール、旭硝子ウレタン株式会社製EL−910
ポリオール3:平均官能基数=2.7、水酸基価=160(mgKOH/g)の未精製ヒマシ油、伊藤製油株式会社製URIC・H−24
ポリオール4:市販の2種類のポリオキシエチレンポリオキシプロピレンポリオールをブレンドし、ポリオール成分(A)中のEO含量が14.1%になるように調整した日本ポリウレタン工業株式会社製NE−697
ポリオール5:市販の2種類のポリオキシエチレンポリオキシプロピレンポリオールをブレンドし、ポリオール成分(A)中のEO含量が12.6%になるように調整した日本ポリウレタン工業株式会社製NE−698
ポリオール6:市販の2種類のポリオキシエチレンポリオキシプロピレンポリオールをブレンドし、ポリオール成分(A)中のEO含量が11.9%になるように調整した日本ポリウレタン工業株式会社製NE−699
ポリオール7:市販の2種類のポリオキシエチレンポリオキシプロピレンポリオールをブレンドし、ポリオール成分(A)中のEO含量が11.2%になるように調整した日本ポリウレタン工業株式会社製NE−700
ポリオール8:市販の2種類のポリオキシエチレンポリオキシプロピレンポリオールをブレンドし、ポリオール成分(A)中のEO含量が6.7%になるように調整した日本ポリウレタン工業株式会社製NE−701
ポリオール9:市販の2種類のポリオキシエチレンポリオキシプロピレンポリオールをブレンドし、ポリオール成分(A)中のEO含量が5.3%になるように調整した日本ポリウレタン工業株式会社製NE−702
[Raw materials]
(Polyol component)
Polyol 1: Polyoxyethylene polyoxypropylene polyol having an EO terminal content of 14%, an average number of functional groups = 3.0, and a hydroxyl value = 24 (mgKOH / g) obtained by adding PO / EO, Asahi Glass Urethane Co., Ltd. EL-851B made
Polyol 2: Polymer polyol having an average number of functional groups of 3.0 and a hydroxyl value of 28 (mgKOH / g) obtained by addition polymerization reaction of PO / EO with glycerin and further polymerization of acrylonitrile monomer, EL manufactured by Asahi Glass Urethane Co., Ltd. -910
Polyol 3: Unrefined castor oil having an average functional group number of 2.7 and a hydroxyl value of 160 (mgKOH / g), URIC · H-24 manufactured by Ito Oil Co., Ltd.
Polyol 4: NE-697 manufactured by Nippon Polyurethane Industry Co., Ltd. prepared by blending two types of commercially available polyoxyethylene polyoxypropylene polyols and adjusting the polyol component (A) to have an EO content of 14.1%.
Polyol 5: NE-698 manufactured by Nippon Polyurethane Industry Co., Ltd., which was prepared by blending two commercially available polyoxyethylene polyoxypropylene polyols and adjusting the EO content in the polyol component (A) to 12.6%.
Polyol 6: NE-699 manufactured by Nippon Polyurethane Industry Co., Ltd. prepared by blending two types of commercially available polyoxyethylene polyoxypropylene polyols and adjusting the EO content in the polyol component (A) to 11.9%.
Polyol 7: NE-700 manufactured by Nippon Polyurethane Industry Co., Ltd. prepared by blending two commercially available polyoxyethylene polyoxypropylene polyols and adjusting the EO content in the polyol component (A) to 11.2%.
Polyol 8: NE-701 manufactured by Nippon Polyurethane Industry Co., Ltd. prepared by blending two commercially available polyoxyethylene polyoxypropylene polyols and adjusting the polyol component (A) to have an EO content of 6.7%.
Polyol 9: NE-702 manufactured by Nippon Polyurethane Industry Co., Ltd. prepared by blending two types of commercially available polyoxyethylene polyoxypropylene polyols and adjusting the polyol component (A) to have an EO content of 5.3%.

(ポリイソシアネート成分)
ポリイソシアネート1:公称平均官能基数=2.27、NCO含有量=28.8%、粘度=100mPa・sのMDI系ポリイソシアネート(商品名「CEF−300」、日本ポリウレタン工業社製)
ポリイソシアネート2:トルエンジイソシアネート系ポリイソシアネート
(Polyisocyanate component)
Polyisocyanate 1: Nominal average functional group number = 2.27, NCO content = 28.8%, viscosity = 100 mPa · s MDI polyisocyanate (trade name “CEF-300”, manufactured by Nippon Polyurethane Industry Co., Ltd.)
Polyisocyanate 2: Toluene diisocyanate-based polyisocyanate

(触媒)
触媒1:トリエチレンジアミンの33%ジプロピレングリコール溶液、東ソー株式会社製TEDA−L33
触媒2:ビス(2−ジメチルアミノエチル)エーテルの70%ジプロピレングリコール溶液、東ソー株式会社製TOYOCAT ET
(catalyst)
Catalyst 1: 33% dipropylene glycol solution of triethylenediamine, TEDA-L33 manufactured by Tosoh Corporation
Catalyst 2: 70% dipropylene glycol solution of bis (2-dimethylaminoethyl) ether, TOYOCAT ET manufactured by Tosoh Corporation

(整泡剤)
整泡剤:シリコーン系整泡剤、ゴールドシュミッド株式会社製B−4113LF
(Foam stabilizer)
Foam stabilizer: Silicone foam stabilizer, B-4113LF manufactured by Goldschmid Co., Ltd.

[ポリウレタンフォームの物性の測定方法]
JIS K6401の方法に基づいて行った。
25%ILDとは、フォームサンプルを25%圧縮した時に得られる力で、硬さを表す指標となる。
耐アルカリ性の評価は、25℃の条件で5日間、pH=13のアルカリ性水溶液にフォームを浸漬し、浸漬後のフォームの膨潤率(%)と、引張強度、伸び率、及び、引裂強度の保持率(%)を測定することで行った。

膨潤率(%)
={(浸漬後の試片の長さ−浸漬前の試片の長さ)/浸漬前の試片の長さ}×100

耐水性の評価は、25℃の条件で5日間、水道水にフォームを浸漬し、浸漬後のフォームの膨潤率(%)と、引張強度、伸び率、及び、引裂強度の保持率(%)を測定することで行った。
[Method for measuring physical properties of polyurethane foam]
This was performed based on the method of JIS K6401.
25% ILD is a force obtained when a foam sample is compressed by 25% and is an index representing hardness.
The evaluation of alkali resistance was carried out by immersing the foam in an alkaline aqueous solution of pH = 13 for 5 days at 25 ° C., and maintaining the swelling ratio (%) of the foam, tensile strength, elongation and tear strength after immersion. The measurement was performed by measuring the rate (%).

Swelling rate (%)
= {(Length of specimen after immersion-length of specimen before immersion) / length of specimen before immersion} × 100

The water resistance was evaluated by immersing the foam in tap water for 5 days at 25 ° C., and the swelling ratio (%) of the foam after immersion, and the retention ratio (%) of the tensile strength, elongation ratio, and tear strength. It was done by measuring.

Figure 2010053157
Figure 2010053157

表1の比較例1〜2に示すように、ポリイソシアネート成分中にトルエンジイソシアネート系ポリイソシアネートを10%含有するとキュアー性が低下し、成形性が悪化してしまう。また、トルエンジイソシアネート系ポリイソシアネートの含有量が10%未満であった場合でも、トルエンジイソシアネート系ポリイソシアネートの高い揮発性により、生産場所での作業者の健康へ影響が出る可能性が高い。   As shown in Comparative Examples 1 and 2 in Table 1, when 10% of toluene diisocyanate polyisocyanate is contained in the polyisocyanate component, the curing property is lowered and the moldability is deteriorated. Even when the content of the toluene diisocyanate polyisocyanate is less than 10%, the high volatility of the toluene diisocyanate polyisocyanate is likely to affect the health of workers at the production site.

Figure 2010053157
Figure 2010053157

表2の比較例3に示したように、ヒマシ油系ポリオールを未使用の場合には、フォームの安定性が悪化し充填性が悪くなってしまう。また、耐水試験や耐アルカリ性試験において、膨潤率が大きくなり、機械物性の保持率が低下してしまう。一方、比較例4に示したように、ヒマシ油系ポリオールの使用量が50質量%を超えた場合、フォームの独泡性が強くなり、脱型後のクラッシング行程で割れが生じてしまう。   As shown in Comparative Example 3 in Table 2, when the castor oil-based polyol is not used, the stability of the foam is deteriorated and the filling property is deteriorated. In addition, in the water resistance test and alkali resistance test, the swelling rate increases, and the retention rate of mechanical properties decreases. On the other hand, as shown in Comparative Example 4, when the amount of castor oil-based polyol used exceeds 50% by mass, the foam is so strong that cracking occurs in the crushing process after demolding.

Figure 2010053157
Figure 2010053157

表3は、ヒマシ油系ポリオールを20質量%に固定し、ポリオール成分(A)の混合比率を変更することでEO含量を各々調整して、軟質ポリウレタンフォームを製造したものの物性測定結果である。比較例5に示したように、EO含量が多すぎる場合には、フォームの安定性が悪化し充填性が悪くなってしまう。また、耐水試験や耐アルカリ性試験において、膨潤率が大きくなり、機械物性の保持率が低下してしまう。一方、比較例6に示したように、EO含量が少なすぎる場合には、フォームの独泡性が強くなり、脱型後のクラッシング行程で割れが生じてしまう。   Table 3 shows the physical property measurement results of the flexible polyurethane foams prepared by fixing the castor oil-based polyol to 20% by mass and adjusting the EO content by changing the mixing ratio of the polyol component (A). As shown in Comparative Example 5, when the EO content is too large, the stability of the foam deteriorates and the filling property deteriorates. In addition, in the water resistance test and alkali resistance test, the swelling rate increases, and the retention rate of mechanical properties decreases. On the other hand, as shown in Comparative Example 6, when the EO content is too small, the foam has a high foaming property, and cracking occurs in the crushing process after demolding.

以上の各実施例および各比較例を対比することにより、本発明においては、ジフェニルメタンジイソシアネート系ポリイソシアネート(B)を使用し、ヒマシ油系ポリオール(a1)を10〜50質量%配合し、ポリオール成分(A)のEO含量が6%以上〜13%以下であった場合、作業環境性に優れ、耐水性、耐アルカリ性及び、耐久性(圧縮残留歪み)が良好なポリウレタンフォームが得られることは明確であり、本発明の構成の有意性と顕著な卓越性を理解できる。
By comparing each of the above Examples and Comparative Examples, in the present invention, diphenylmethane diisocyanate-based polyisocyanate (B) is used, castor oil-based polyol (a1) is blended in an amount of 10 to 50% by mass, and a polyol component When the EO content of (A) is 6% to 13%, it is clear that a polyurethane foam having excellent work environment properties, water resistance, alkali resistance, and durability (compression residual strain) can be obtained. Therefore, the significance and remarkable excellence of the configuration of the present invention can be understood.

Claims (5)

ポリオール成分(A)とジフェニルメタンジイソシアネート系ポリイソシアネート(B)とを、触媒(C)、整泡剤(D)、発泡剤(E)及び架橋剤(F)の存在下で反応させて得られる軟質ポリウレタンフォームにおいて、植物由来の原料であるヒマシ油系ポリオール(a1)がポリオール成分(A)に対して10〜50質量%含有することを特徴とする、軟質ポリウレタンフォームの製造方法。   A soft product obtained by reacting a polyol component (A) with diphenylmethane diisocyanate polyisocyanate (B) in the presence of a catalyst (C), a foam stabilizer (D), a foaming agent (E) and a crosslinking agent (F). A method for producing a flexible polyurethane foam, characterized in that the castor oil-based polyol (a1), which is a plant-derived raw material, is contained in an amount of 10 to 50% by mass based on the polyol component (A). 請求項1に記載のポリオール成分(A)が、ヒマシ油系ポリオール(a1)、ポリエーテルポリオール(a2)及びポリマーポリオール(a3)からなることを特徴とする、軟質ポリウレタンフォームの製造方法。   A method for producing a flexible polyurethane foam, wherein the polyol component (A) according to claim 1 comprises a castor oil-based polyol (a1), a polyether polyol (a2), and a polymer polyol (a3). ポリオール成分(A)のオキシエチレン基含有量が6%以上〜13%以下であることを特徴とする、請求項1又は2に記載の軟質ポリウレタンフォームの製造方法。   The method for producing a flexible polyurethane foam according to claim 1 or 2, wherein the polyol component (A) has an oxyethylene group content of 6% to 13%. ジフェニルメタンジイソシアネート系ポリイソシアネート(B)の平均官能基数が2.1〜2.5の範囲にあることを特徴とする、請求項1から3のいずれか1つに記載の軟質ポリウレタンフォームの製造方法。   The method for producing a flexible polyurethane foam according to any one of claims 1 to 3, wherein the average functional group number of the diphenylmethane diisocyanate-based polyisocyanate (B) is in the range of 2.1 to 2.5. フォーム密度が70〜120kg/m、25%ILDが250〜950N/314cmであることを特徴とする、請求項1から4のいずれか1つに記載の軟質ポリウレタンフォームの製造方法。
5. The method for producing a flexible polyurethane foam according to claim 1, wherein the foam density is 70 to 120 kg / m 3 and the 25% ILD is 250 to 950 N / 314 cm 2 .
JP2008216040A 2008-08-26 2008-08-26 Manufacturing method of flexible polyurethane foam Pending JP2010053157A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008216040A JP2010053157A (en) 2008-08-26 2008-08-26 Manufacturing method of flexible polyurethane foam
PCT/JP2009/004107 WO2010023885A1 (en) 2008-08-26 2009-08-26 Method of manufacturing flexible polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216040A JP2010053157A (en) 2008-08-26 2008-08-26 Manufacturing method of flexible polyurethane foam

Publications (1)

Publication Number Publication Date
JP2010053157A true JP2010053157A (en) 2010-03-11

Family

ID=41721068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216040A Pending JP2010053157A (en) 2008-08-26 2008-08-26 Manufacturing method of flexible polyurethane foam

Country Status (2)

Country Link
JP (1) JP2010053157A (en)
WO (1) WO2010023885A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174111A (en) * 2009-01-28 2010-08-12 Mitsui Chemicals Polyurethanes Inc Polyol composition for polyurethane foam and low-resilience polyurethane foam
JP2012046668A (en) * 2010-08-27 2012-03-08 Kurabo Ind Ltd Polyurethane foam for mattresses, and mattress comprised of the polyurethane foam
JP2012229408A (en) * 2011-04-25 2012-11-22 Dow Global Technologies Llc Two-component moisture-curable coating composition
KR101605378B1 (en) 2011-07-25 2016-03-22 로저스 이노악 코포레이션 Polyurethane foam
JP2017160391A (en) * 2016-03-11 2017-09-14 東ソー株式会社 Composition for molding flexible polyurethane foam
WO2018236192A1 (en) * 2017-06-22 2018-12-27 주식회사 삼양사 Composition for forming environmentally friendly polyurethane foam and method for manufacturing polyurethane foam

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471443B (en) * 2009-07-31 2014-04-09 东洋品质第一股份有限公司 Urethane foam for use in automobile seats and method for producing same
JP5627333B2 (en) * 2010-08-12 2014-11-19 住化バイエルウレタン株式会社 Polyurethane composition for integral skin foam
JP7320158B1 (en) 2021-10-18 2023-08-02 株式会社イノアックコーポレーション polyurethane foam
WO2024024845A1 (en) * 2022-07-27 2024-02-01 株式会社イノアックコーポレーション Polyurethane foam
GB2624040A (en) * 2022-11-07 2024-05-08 Vita International Ltd Process for producing flexible polyurethane foam

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842262B2 (en) * 2002-10-29 2006-11-08 三洋化成工業株式会社 Sheet pad material and method for producing flexible polyurethane foam used therefor
JP4487930B2 (en) * 2003-12-24 2010-06-23 日本ポリウレタン工業株式会社 Method for producing flexible polyurethane foam, method for producing conductive flexible polyurethane foam, conductive roll and method for producing the same
JP4008888B2 (en) * 2004-01-30 2007-11-14 三洋化成工業株式会社 Method for producing flexible polyurethane foam
JP2006104404A (en) * 2004-10-08 2006-04-20 Toyota Boshoku Corp Polyurethane pad for vehicle seat
JP4783696B2 (en) * 2006-08-30 2011-09-28 株式会社東洋クオリティワン Urethane foam for automobile seats
JP2009084321A (en) * 2007-09-27 2009-04-23 Toyo Quality One Corp Urethane foam for car seat and method for manufacturing the same
JP5169752B2 (en) * 2007-11-14 2013-03-27 旭硝子株式会社 Method for producing flexible polyurethane foam

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174111A (en) * 2009-01-28 2010-08-12 Mitsui Chemicals Polyurethanes Inc Polyol composition for polyurethane foam and low-resilience polyurethane foam
JP2012046668A (en) * 2010-08-27 2012-03-08 Kurabo Ind Ltd Polyurethane foam for mattresses, and mattress comprised of the polyurethane foam
JP2012229408A (en) * 2011-04-25 2012-11-22 Dow Global Technologies Llc Two-component moisture-curable coating composition
US8722815B2 (en) 2011-04-25 2014-05-13 Dow Global Technologies Llc Two-component moisture curable coating compositions
KR101605378B1 (en) 2011-07-25 2016-03-22 로저스 이노악 코포레이션 Polyurethane foam
US9624336B2 (en) 2011-07-25 2017-04-18 Inoac Corporation Polyurethane foam
JP2017160391A (en) * 2016-03-11 2017-09-14 東ソー株式会社 Composition for molding flexible polyurethane foam
WO2017154878A1 (en) * 2016-03-11 2017-09-14 東ソー株式会社 Soft polyurethane foam molding composition
WO2018236192A1 (en) * 2017-06-22 2018-12-27 주식회사 삼양사 Composition for forming environmentally friendly polyurethane foam and method for manufacturing polyurethane foam
CN110799561A (en) * 2017-06-22 2020-02-14 株式会社三养社 Composition for forming environmentally friendly polyurethane foam and method for producing polyurethane foam
CN110799561B (en) * 2017-06-22 2022-02-11 株式会社三养社 Composition for forming environmentally friendly polyurethane foam and method for producing polyurethane foam
US11649316B2 (en) 2017-06-22 2023-05-16 Samyang Corporation Composition for forming environmentally friendly polyurethane foam and method for manufacturing polyurethane foam

Also Published As

Publication number Publication date
WO2010023885A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP2010053157A (en) Manufacturing method of flexible polyurethane foam
JP2006117936A (en) Flexible foam having low bulk density and compression strength
JP2009524718A (en) Method for producing viscoelastic and soft open-cell polyurethane foam
JP5062179B2 (en) Method for producing rigid polyurethane foam
JP2006104404A (en) Polyurethane pad for vehicle seat
WO2008062792A1 (en) Method for producing hard polyurethane foam
US20200157306A1 (en) Isocyanate-functional polymer components and polyurethane articles formed from recycled polyurethane articles and associated methods for forming same
KR101816386B1 (en) Flame retarded slabstock polyurethane foam composition
JP4943139B2 (en) Polyester polyurethane foam
WO2015050139A1 (en) Polyol system liquid, and method for producing rigid foam synthetic resin
KR101987036B1 (en) Composition for forming eco-friendly polyurethane foam with improved antioxidant property and method for preparing the polyurethane foam
CN104619739B (en) Fire-retardant and/or antistatic, the polyurethane elastomer of non-mercury catalysis
JP4275686B2 (en) Method for producing polyurethane foam
CN102666624B (en) Polyurethane foam with soft surface touch
JP5394777B2 (en) Water-resistant polyurethane foam
JP2012046589A (en) Polyurethane foam
WO2009098966A1 (en) Low-resilience flexible polyurethane foam
JP5275010B2 (en) Method for producing flexible polyurethane foam
JP6218306B2 (en) Polyurethane foam
JP4109228B2 (en) Method for producing flexible polyurethane foam for headrest
JP2017125191A (en) Sealant consisting of high heat resistant and high cut-off performance polyurethane foam
JP4263028B2 (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
US20170247494A1 (en) Flame retardant slabstock polyurethane foam composition
JP2010047635A (en) Flexible polyurethane foam and method for manufacturing the same
KR20210030924A (en) Elastomer polyurethane foam and its manufacturing method