WO2017154790A1 - Linear actuator - Google Patents

Linear actuator Download PDF

Info

Publication number
WO2017154790A1
WO2017154790A1 PCT/JP2017/008565 JP2017008565W WO2017154790A1 WO 2017154790 A1 WO2017154790 A1 WO 2017154790A1 JP 2017008565 W JP2017008565 W JP 2017008565W WO 2017154790 A1 WO2017154790 A1 WO 2017154790A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
detection means
load
load detection
linear motion
Prior art date
Application number
PCT/JP2017/008565
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 達也
村松 誠
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017154790A1 publication Critical patent/WO2017154790A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes

Definitions

  • the present invention relates to a linear actuator applied to, for example, an electric brake device for an automobile.
  • Patent Document 1 An electric brake device that controls a motor according to a target pressing force of a brake determined from a brake operation amount and an actual pressing force value acquired by a pressing force sensor has been proposed (Patent Document 1).
  • Patent Document 1 the friction pad is pressed against the brake disk by one actuator. For this reason, when the required brake load is large, the radial dimension of the actuator (linear motion mechanism) becomes large, which causes a problem in layout. In addition, even if the required pressing force can be generated by a linear motion mechanism with a small radial dimension, the pressure does not act evenly on the entire friction pad, thereby inducing a fade phenomenon or promoting the progress of wear of the friction pad. There are things to do. Patent Document 1 does not disclose a control method when one friction pad is pressed by two actuators.
  • An object of the present invention is to provide a linear motion actuator for an electric brake device that can eliminate layout problems and suppress a fade phenomenon or the like when the electric brake device is mounted on a vehicle or the like. .
  • the linear actuator 31 includes: One motor 30; Two linear motion mechanisms 33a and 33b, each including one piston 26a (26b), and two linear motion mechanisms 33a and 33b for converting the rotational motion of the motor 30 into the linear motion of the piston 26a (26b).
  • 33b A control device 100 for controlling the motor 30; Two load detection means Sa and Sb, each of which detects the axial load of the corresponding linear motion mechanism 33a (33b) of the two linear motion mechanisms 33a and 33b.
  • Sb The control device 100 controls the motor 30 using the total value of the loads detected by the two load detection means Sa and Sb.
  • the rotational motion of one motor 30 is converted into linear motion of the two pistons 26a and 26b of the two linear motion mechanisms 33a and 33b.
  • the two load detection means Sa and Sb detect the axial loads of the two linear motion mechanisms 33a and 33b, respectively.
  • the control device 100 controls the motor 30 using the total value of the loads detected by the load detection means Sa and Sb. In this way, more accurate load control can be performed by controlling the motor 30 based on the total value of the loads detected by the two load detecting means Sa and Sb.
  • the control device 100 performs, for example, feedback control that causes the load value detected by the two load detecting means Sa and Sb to follow the given command value. More accurate load control can be performed.
  • the feedforward control may be performed when the detected values such as the vehicle speed and the motor current satisfy the predetermined conditions.
  • the predetermined condition is an arbitrary condition determined by design or the like, and is determined, for example, by obtaining an appropriate condition by one or both of a test and a simulation.
  • this linear motion actuator 31 When this linear motion actuator 31 is applied to an electric brake device, more accurate load control can be performed, so that a fade phenomenon or the like can be suppressed. Since the direct acting actuator 31 is of a single motor type or a two piston type, for example, it is possible to reduce the size in the radial direction as compared with a structure in which two pistons are respectively driven by two motors. Therefore, it is possible to solve the layout problem when the linear actuator 31 is mounted on the vehicle.
  • the control device 100 includes: An abnormality determination means 108 for determining whether or not each of the two load detection means Sa and Sb is abnormal according to a predetermined condition; When it is determined by the abnormality determination means 108 that the two load detection means Sa and Sb are not abnormal, the motor 30 is used by using the sum of the loads detected by the two load detection means Sa and Sb, respectively.
  • the rotation angle of the first or second rotation shaft 32a (32b) of the first or second linear motion mechanism 33a (33b) is detected.
  • the input shaft angle ⁇ A ( ⁇ B ) of the first or second piston 26a (26b) detected by the first or second rotation angle sensor Se (Sf) may be used for load estimation.
  • the predetermined condition in the abnormality determination unit 108 and the predetermined condition in the abnormality control unit 111 are conditions arbitrarily determined by design or the like, for example, by one or both of a test and a simulation. Determined for the appropriate conditions.
  • the abnormality determination means 108 determines the abnormality of each load detection means Sa and Sb.
  • the normal control unit 110 controls the motor 30 using the total value of the loads detected by the two load detection means Sa and Sb.
  • the abnormality control unit 111 detects the load detected by the other normal load detection means Sb (Sa), the motor current, and From the motor rotation angle, the load generated in each of the two linear motion mechanisms 33a and 33b is estimated.
  • the abnormal time control unit 111 controls the motor 30 by using the estimated value of the total load.
  • the abnormal time control unit 111 controls the entire actuator using the normal load detecting means Sb (Sa), the motor current and the motor rotation angle. In this way, even if an abnormality occurs in one of the load detection means Sa (Sb), the load generated in each of the two linear motion mechanisms 33a and 33b is obtained using the value of the normal load detection means Sb (Sa). Can be estimated, and redundancy is improved.
  • a command value may be input to the control device, and the abnormal time control unit may perform feedback control that causes the sum of the estimated loads to follow the command value. In this case, more accurate load control can be performed.
  • An electric brake device includes the linear actuator 31.
  • the electric brake device can be mounted on a vehicle having a large required brake load.
  • the layout problem can be solved and the fade phenomenon and the like can be suppressed.
  • each electric brake device includes a caliper 6, an electric linear actuator 31, a brake rotor 1, an inboard side friction pad 7, and an outboard side friction pad 8.
  • the linear actuator 31 includes a control device 100.
  • the vehicle is provided with a caliper 6 so as to surround the outer peripheral portion of the brake rotor 1 for each wheel.
  • the linear motion actuator 31 drives the inboard friction pad 7 to contact and separate from the brake rotor 1.
  • the caliper 6 has a claw portion 22, a piston housing portion 23, and an outer shell portion 24.
  • the outer portion 24 connects the claw portion 22 and the piston housing portion 23 on the outer diameter side of the brake rotor 1.
  • the inboard side friction pad 7 and the outboard side friction pad 8 are arranged between the claw portion 22 and the piston housing portion 23 so as to face each other in the axial direction.
  • the outer side in the vehicle width direction of the vehicle is referred to as the outboard side
  • the central side in the vehicle width direction of the vehicle is referred to as the inboard side.
  • a claw portion 22 is provided at the end portion of the caliper 6 on the outboard side.
  • the claw portion 22 faces the side surface on the outboard side of the brake rotor 1 in the axial direction.
  • the outboard side friction pad 8 is supported by the claw portion 22.
  • the piston housing portion 23 is provided with first and second piston housing holes 25a and 25b. These piston accommodation holes 25a and 25b are provided at predetermined intervals in the circumferential direction of the brake rotor 1, as shown in FIG. As shown in FIG. 4, the first and second pistons 26a and 26b are accommodated in the first and second piston accommodation holes 25a and 25b, respectively.
  • the first and second pistons 26a and 26b are arranged in parallel so as to press the friction pad 7 on the inboard side at two locations separated in the circumferential direction of the brake rotor 1 (FIG. 2). As shown in FIG. 1, the inboard friction pad 7 faces the inboard side surface of the brake rotor 1 in the axial direction.
  • a mount 10 is supported on a knuckle 2 in a vehicle.
  • pin support pieces 11 and 11 are provided at both ends in the longitudinal direction of the mount 10.
  • Slide pins 5 and 5 extending in parallel with each other in the axial direction are provided at the respective ends of the pin support pieces 11 and 11.
  • the caliper 6 is supported by these slide pins 5 and 5 so as to be slidable in the axial direction.
  • the linear actuator 31 is driven by driving the motor 30, so that the inboard side friction pad 7 comes into contact with the brake rotor 1 as shown in FIG. Is pressed in the axial direction.
  • the caliper 6 slides to the inboard side by the reaction force of the pressing force.
  • the outboard friction pad 8 supported by the claw portion 22 of the caliper 6 contacts the brake rotor 1.
  • the outboard side friction pad 8 and the inboard side friction pad 7 strongly hold the brake rotor 1 from both sides in the axial direction, so that a braking force is applied to the brake rotor 1.
  • the linear actuator 31 includes one motor 30, a distribution gear mechanism 34, two (first and second) linear motion mechanisms 33 a and 33 b, and two (first and first). 2) load detecting means Sa and Sb, and a control device 100 (FIG. 1) for controlling the motor 30.
  • a portion of the linear motion actuator 31 excluding the control device 100 (FIG. 1) is attached to the caliper 6.
  • the control device 100 (FIG. 1) is installed in, for example, a vehicle body, but may be mounted on the caliper 6 as long as sufficient durability and environmental performance can be guaranteed.
  • the rotational motion of the motor 30 is transmitted to the two linear motion mechanisms 33a and 33b via the distribution gear mechanism 34, and is converted into linear motion by the linear motion mechanisms 33a and 33b, respectively.
  • the friction pads 7 and 8 (FIG. 1) abut against and separate from the brake rotor 1 (FIG. 1).
  • a gear case 41 that accommodates the distribution gear mechanism 34 is fixed to the inboard side end of the caliper 6.
  • the motor 30 is fixed to the side plate 42 of the gear case 41.
  • the motor 30 is disposed such that a motor shaft 37 of the motor 30 is parallel to first and second rotating shafts 32a and 32b described later. Further, as shown in FIG. 3, the motor 30 is a region radially outward of the brake rotor 1 (FIG. 2) from the position of a straight line L connecting the center of the first rotating shaft 32a and the center of the second rotating shaft 32b. Placed in.
  • the distribution gear mechanism 34 has an input gear 35, a first reduction gear train 36a, and a second reduction gear train 36b.
  • the input gear 35 is concentrically connected to the motor shaft 37 and rotates integrally with the motor shaft 37.
  • the first reduction gear train 36a decelerates the rotation of the input gear 35 and transmits it to the first rotation shaft 32a.
  • the second reduction gear train 36b decelerates the rotation of the input gear 35 and transmits it to the second rotation shaft 32b.
  • the first reduction gear train 36a includes a first distribution gear 38a that meshes with the input gear 35, a first output gear 40a that is concentrically fixed to the first rotation shaft 32a, a first distribution gear 38a, and a first distribution gear 38a. And an intermediate gear 39a that transmits rotation between the output gears 40a.
  • the input gear 35, the first distribution gear 38a, the intermediate gear 39a, and the first output gear 40a have different numbers of teeth.
  • the first reduction gear train 36a sequentially transmits the rotation input from the motor 30 to the input gear 35 to the input gear 35, the first distribution gear 38a, the intermediate gear 39a, and the first output gear 40a. The speed is reduced, and the reduced speed rotation is output from the first output gear 40a to the first rotation shaft 32a.
  • the second reduction gear train 36b includes a second distribution gear 38b that meshes with the input gear 35, a second output gear 40b that is concentrically fixed to the second rotation shaft 32b, a second distribution gear 38b, and a second distribution gear 38b. And an intermediate gear 39b for transmitting rotation between the two output gears 40b.
  • the input gear 35, the second distribution gear 38b, the intermediate gear 39b, and the second output gear 40b have different numbers of teeth.
  • the second reduction gear train 36b sequentially transmits the rotation input from the motor 30 to the input gear 35 to the input gear 35, the second distribution gear 38b, the intermediate gear 39b, and the second output gear 40b. The speed is reduced, and the reduced speed rotation is output from the second output gear 40b to the second rotation shaft 32b.
  • the first linear motion mechanism 33a will be described. Since the second linear motion mechanism 33b has the same configuration as that of the first linear motion mechanism 33a, the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the first linear motion mechanism 33a includes a first piston 26a, a plurality of planetary rollers 50, a carrier 51, and a first rotating shaft 32a.
  • the first piston 26a is formed in a cylindrical shape and is provided concentrically with the first rotating shaft 32a.
  • the plurality of planetary rollers 50 are provided at intervals in the circumferential direction between the inner periphery of the first piston 26a and the outer periphery of the first rotating shaft 32a.
  • the carrier 51 holds each planetary roller 50 so that it can rotate and revolve.
  • Each planetary roller 50 is in rolling contact with the outer periphery of the first rotating shaft 32a.
  • each planetary roller 50 revolves around the first rotation shaft 32a along the inner periphery of the first piston 26a while rotating around the roller shaft 52.
  • the first piston 26a is supported by the first piston accommodation hole 25a of the caliper 6 and can slide in parallel with the axial direction.
  • On the inner periphery of the first piston 26a there is provided a spiral ridge 53 extending obliquely at a predetermined lead angle with respect to the circumferential direction.
  • On the outer circumference of each planetary roller 50 a plurality of circumferential grooves 54 that mesh with the spiral ridges 53 are formed at intervals in the axial direction. The interval between the circumferential grooves 54 adjacent to each other in the axial direction on the outer periphery of each planetary roller 50 is the same as the pitch of the spiral ridges 53.
  • the circumferential groove 54 having a lead angle of 0 degrees is provided on the outer periphery of the planetary roller 50, but instead of the circumferential groove 54, a spiral groove having a lead angle different from that of the spiral protrusion 53 may be provided. .
  • a shaft support member 65 is provided on the inboard side of the first piston accommodation hole 25a of the caliper 6.
  • the shaft support member 65 includes a boss portion and a flange portion extending radially outward from the boss portion.
  • a plurality of rolling bearings 66 are fitted into the boss portions, and the first rotary shaft 32 a is fitted to the inner ring inner diameter surface of each rolling bearing 66.
  • the first rotary shaft 32 a is rotatably supported by the shaft support member 65 via a plurality of rolling bearings 66.
  • the carrier 51 has a pair of disks 55 and 56, a connecting portion 57, and a plurality of roller shafts 52.
  • the pair of disks 55 and 56 oppose each other with a predetermined interval in the axial direction with the planetary roller 50 or the like interposed in the axial direction.
  • the connecting portion 57 connects the pair of disks 55 and 56.
  • the disc 56 on the inboard side is rotatably supported by the first rotary shaft 32a by a slide bearing 58 fitted between the first rotary shaft 32a.
  • a shaft insertion hole is formed in the center of the disc 55 on the outboard side, and a slide bearing 58 is fitted in this shaft insertion hole.
  • the disc 55 on the outboard side is rotatably supported by the first rotary shaft 32a by a slide bearing 58.
  • the plurality of roller shafts 52 are supported on the pair of disks 55 and 56 at regular intervals in the circumferential direction, and support the planetary rollers 50 so as to be rotatable.
  • a plurality of shaft insertion holes 59 are formed in the disks 55 and 56, respectively.
  • Each shaft insertion hole 59 is a long hole extending in the radial direction. Both end portions of each roller shaft 52 in the axial direction are inserted into the respective shaft insertion holes 59, and the roller shafts 52 are supported so as to be movable in the radial direction within the range of the respective shaft insertion holes 59.
  • An elastic ring 60 that urges the roller shafts 52 inward in the radial direction is stretched between both ends of the plurality of roller shafts 52 in the axial direction.
  • Each planetary roller 50 is pressed against the outer peripheral surface of the first rotating shaft 32a by the urging force of the elastic ring 60. As the first rotating shaft 32a rotates, each planetary roller 50 in contact with the outer peripheral surface of the first rotating shaft 32a rotates due to contact friction.
  • the load detection means will be described. As shown in FIG. 10, the first and second load detecting means Sa and Sb detect the axial loads of the first and second linear motion mechanisms 33a and 33b (FIG. 4), respectively.
  • the first and second load detection means Sa and Sb have the same configuration, and are provided at the same location in each of the linear motion mechanisms 33a and 33b (FIG. 4). Therefore, only the first load detection means Sa will be described, and the description of the second load detection means Sb will be omitted.
  • the first load detection means Sa includes, for example, a magnetic sensor 12 and a magnetic target 13.
  • the magnetic target 13 includes, for example, two permanent magnets 13a and 13a.
  • a reaction force to the inboard side acts on the first linear motion mechanism 33a.
  • the first load detection means Sa is provided on the shaft support member 65.
  • the first load detecting means Sa including the sensor 12 and the magnetic target 13 magnetically detects the reaction force of this braking force as an axial displacement amount.
  • the magnetic sensor 12 for detecting a change in the magnetic field a cheap Hall IC with a variable dynamic range is preferable. Hall IC is commercially available and has excellent availability.
  • a magnetoresistive element or a magnetic impedance element may be applied.
  • FIG. 10 is a block diagram of a control system of this electric brake device.
  • the control device 100 includes an ECU 101 and an inverter device 102.
  • an electric control unit that controls the entire vehicle is applied as the ECU 101 that is a higher-level control unit of the inverter device 102.
  • the brake force command means 101a of the ECU 101 generates and outputs a target brake force command value according to the output of the brake sensor 103a that detects the operation amount of the brake pedal 103. Based on the command value of this braking force, each linear motion mechanism 33a, 33b (FIG. 4) is driven by the inverter device 102.
  • the inverter device 102 includes a power circuit unit 104, a motor control unit 105 that controls the power circuit unit 104, a warning signal output unit 106, and a current detection unit Sc.
  • the motor control unit 105 includes a computer, a program executed on the computer, and an electronic circuit.
  • the motor control unit 105 gives a current command to the power circuit unit 104 in accordance with the command value of the brake force given from the brake force command unit 101a.
  • the motor control unit 105 has a function of outputting information about the motor 30 such as detection values and control values to the ECU 101.
  • the power circuit unit 104 includes an inverter 104b that converts the DC power of the power source Bt into three-phase AC power used to drive the motor 30, and a PWM control unit 104a that controls the inverter 104b.
  • the motor 30 is a three-phase synchronous motor or the like.
  • the motor 30 is provided with a rotation angle detecting means Sd for detecting a rotation angle (motor rotation angle) of a rotor (not shown).
  • the inverter 104b includes a plurality of semiconductor switching elements (not shown), and the PWM control unit 104a performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 105 includes a motor drive control unit 107 as a basic control unit and an abnormality determination unit 108.
  • the motor drive control unit 107 converts the current command based on the voltage value in accordance with the command value of the brake force described above, and gives the motor operation command value including the current command to the PWM control unit 104a of the power circuit unit 104.
  • the motor drive control unit 107 obtains a motor current flowing from the inverter 104b to the motor 30 from the current detection means Sc with respect to the command value of the brake force, and performs current feedback control on the brake command value. Further, the motor drive control unit 107 obtains the motor rotation angle from the rotation angle detection unit Sd, and gives a current command to the PWM control unit 104a so that efficient motor driving according to the motor rotation angle can be performed.
  • the abnormality determination unit 108 determines whether or not each load detection unit Sa, Sb is abnormal.
  • the abnormality determination means 108 has pad wear amount estimation means 109.
  • This pad wear amount estimating means 109 is a correlation between the current input shaft angle of the first piston 26a (FIG. 4) and the axial load (piston load) of the first linear motion mechanism 33a (FIG. 4). Is compared with a predetermined correlation between the input shaft angle and the piston load when the corresponding friction pads 7 and 8 (FIG. 1) are new (when not worn).
  • the pad wear amount estimation means 109 estimates the wear amount of the friction pads 7 and 8 (FIG. 1) at the present time corresponding to the first piston 26a (FIG. 4) based on the comparison result.
  • the input shaft angle theta A first piston 26a (Fig. 4), for example, provided by the first rotational angle sensor Se for detecting the rotational angle of the first rotary shaft 32a (FIG. 4).
  • the piston load is a sensor output given from the first load detecting means Sa.
  • the pad wear amount estimating means 109 is configured so that the current input shaft angle of the second piston 26b (FIG. 4) and the axial load (piston load) of the second linear motion mechanism 33b (FIG. 4) are the same. ) Is compared with a predetermined correlation between the input shaft angle and the piston load when the corresponding friction pads 7 and 8 (FIG. 1) are new (when not worn).
  • the pad wear amount estimation means 109 estimates the wear amount of the friction pads 7 and 8 (FIG. 1) at the present time corresponding to the second piston 26b (FIG. 4) based on the comparison result.
  • a second rotation angle sensor Sf that detects the rotation angle of the second rotation shaft 32b (FIG. 4).
  • the piston load is a sensor output given from the second load detection means Sb.
  • FIG. 12 is a graph showing the relationship between the input shaft angle and the piston load in one piston of this electric brake device. This will be described with reference to FIG. 11 as appropriate.
  • the correlation between the input shaft angle and the piston load is mainly governed by the caliper stiffness, the friction pad compression stiffness, and the linear actuator stiffness.
  • the rigidity of the caliper and the linear motion actuator does not change during continuous use of the brake and is almost constant, and its value is known.
  • the amount of wear of the brake rotor is small relative to the amount of wear of the friction pad, and the amount of compressive deformation of the brake rotor is extremely small compared to the rigidity of the entire brake. Is almost nothing.
  • the pad wear amount estimating means 109 changes the correlation between the current input shaft angle and the piston load with respect to the predetermined correlation between the input shaft angle and the piston load when the friction pads 7 and 8 (FIG. 1) are new.
  • the wear amount of the friction pads 7 and 8 (FIG. 1) can be estimated based on the above. As shown in FIG. 12, when the friction pad is new, non-linearity appears strongly in the correlation between the input shaft angle and the piston load. When the friction pad is fully worn (when the wear limit is reached), the correlation approaches linear.
  • FIG. 13 is a diagram showing the relationship between input shaft torque and piston load in one piston.
  • the input shaft torque is substantially proportional to the command value of the braking force and is also substantially proportional to the motor current. For this reason, for example, the input shaft torque is obtained from the command value given from the brake force command means 101a (FIG. 11) or the motor current given from the current detection means Sc (FIG. 11) according to the determined proportionality coefficient.
  • hysteresis loss occurs mainly due to the influence of frictional forces such as the first and second linear motion mechanisms 33a and 33b (FIG. 4).
  • the positive efficiency characteristic when the braking force is increased and the inverse efficiency characteristic when the braking force is decreased differ in the inclination (proportional relationship) of the piston load with respect to the input shaft torque.
  • the piston load gradually increases with respect to the input shaft torque than when the pressure is reduced.
  • the piston load decreases more rapidly than when the input shaft torque is increased. Therefore, as indicated by the broken line arrows in FIG. 13, the piston load does not change even if the input shaft torque changes between the solid lines on the pressure increasing side and the pressure reducing side.
  • FIG. 14 is a diagram showing the relationship between the motor rotation angle of the motor 30 (FIG. 4) and each piston load in this electric brake device.
  • the first piston 26a and the second piston 26b are used in the direct acting actuator 31 in which one motor 30 and the first and second direct acting mechanisms 33a and 33b are directly connected. The timing at which the load is generated may be different.
  • F A Axial load on the first piston (sensor output of the first load detecting means)
  • F B Axial load on the second piston (sensor output of the second load detecting means)
  • T A Input shaft torque at the first piston
  • T B Input shaft torque at the second piston
  • ⁇ A Input shaft angle at the first piston
  • ⁇ B Input shaft angle at the second piston
  • f A ( ⁇ A), f B ( ⁇ B), g A (T A) and g B (T B), respectively, represent a function that depends on ⁇ A, ⁇ B, T A and T B .
  • the abnormality determining means 108 wears the friction pads 7, 8 (FIG. 7) corresponding to the first and second pistons 26a, 26b (FIG. 4). If an abnormality occurs in the first and second load detection means Sa and Sb, the relationship between the motor rotation angle and each piston load is used to determine the first and second load detection means Sa and Sb. Abnormalities can be detected.
  • the abnormality determination means 108 When the abnormality determination means 108 is out of a predetermined setting range, at least one of the sensor outputs F A and F B of the first and second load detection means Sa and Sb with respect to a certain motor rotation angle ⁇ M , One load detection means Sa (Sb) outside the set range or both load detection means Sa and Sb outside the set range are determined to be abnormal.
  • the motor drive control unit 107 includes a normal control unit 110 and an abnormal time control unit 111.
  • the abnormality determining unit 108 determines that the first and second load detecting units Sa and Sb are not abnormal
  • the normal control unit 110 is detected by the first and second load detecting units Sa and Sb, respectively.
  • the motor 30 is controlled using the total load value.
  • the normal control unit 110 performs, for example, feedback control in which a brake force estimated value estimated from the sum of the loads follows a brake force command value given from the brake force command unit 101a.
  • the normal control unit 110 may perform feedforward control when, for example, the detection values such as the vehicle speed and the motor current satisfy a predetermined condition.
  • the predetermined condition is an arbitrary condition determined by design or the like, and is determined, for example, by obtaining an appropriate condition by one or both of a test and a simulation.
  • the abnormal-time control unit 111 detects the relationship between the expressions (1) and (2) and the normal other load. From the load detected by the means Sb (Sa), the motor current detected by the current detection means Sc, and the motor rotation angle detected by the rotation angle detection means Sd, the first and second pistons 26a, 26b (FIG. 4). ) In the axial direction.
  • the abnormality control unit 111 controls the motor 30 based on the estimated value.
  • the abnormal time control unit 111 performs, for example, feedback control in which a brake force estimated value calculated from each estimated axial load is followed with respect to a brake force command value given from the brake force command unit 101a.
  • the abnormality control unit 111 may perform feedforward control when the abnormality determination unit 108 determines that the first and second load detection units Sa and Sb are both abnormal.
  • the warning signal output means 106 outputs a warning signal to the ECU 101 when it is determined from the abnormality determination means 108 that one or both of the load detection means Sa and Sb are abnormal.
  • the ECU 101 causes the warning display etc. output unit 112 to output a warning display or the like. This can alert the driver.
  • a console panel or the like in the vehicle is provided with an output means 112 such as a warning display or a warning display such as an audio output device.
  • FIG. 15 is a flowchart showing step by step each process of the control device. This will be described with reference to FIG. This process is started under the condition that the main power supply of the vehicle equipped with the electric brake device is turned on, and the motor control unit 105 acquires the command value of the brake force from the brake force command unit 101a (step S1). Next, the motor control unit 105 acquires the axial loads in the first and second pistons 26a and 26b (FIG. 4) from the first and second load detection means Sa and Sb, respectively (step S2). Further, the motor current is acquired from the current detection means Sc, and the motor rotation angle is detected from the rotation angle detection means Sd (step S3).
  • the abnormality determination means 108 determines whether or not each load detection means Sa, Sb is abnormal (step S4).
  • the normal control unit 110 is detected by the first and second load detection means Sa and Sb, respectively.
  • An operation for adding the loads is performed (step S5), and then the process proceeds to step S6.
  • the abnormal direction control unit 111 performs axial directions in the first and second pistons 26a and 26b (FIG. 4).
  • the loads are estimated and added together (step S7). Thereafter, the process proceeds to step S6.
  • step S6 the load control by the normal control unit 110 or the abnormal time control unit 111 is executed. Thereafter, this process is terminated.
  • the normal control unit 110 controls the motor 30 using the total value of the loads detected by the first and second load detecting means Sa and Sb, respectively. In this way, more accurate load control can be performed by controlling the motor 30 based on the total value of the loads detected by the two load detecting means Sa and Sb.
  • this linear actuator 31 By applying this linear actuator 31 to the electric brake device, more accurate load control can be performed, so that a fade phenomenon or the like can be suppressed.
  • the direct acting actuator 31 is of a single motor type or a two piston type, for example, it is possible to reduce the size in the radial direction as compared with a structure in which two pistons are driven by two motors. Therefore, it is possible to solve the layout problem when the linear actuator 31 is mounted on the vehicle.
  • the abnormality control unit 111 detects the load detected by the other normal load detection means Sb (Sa), the motor current, and From the motor rotation angle, the load generated in each of the two linear motion mechanisms 33a and 33b is estimated.
  • the abnormal time control unit 111 controls the motor 30 based on the estimated value. That is, the abnormal time control unit 111 controls the entire actuator using the normal load detecting means Sb (Sa).
  • the linear actuator may have a configuration in which a differential device is provided in which two pistons are driven by one motor and torque is distributed to the power transmission path.
  • FIG. 16 shows the relationship between the motor rotation angle and the load generated on each piston in the linear motion actuator provided with this differential device. In this case, since the motor torque is evenly distributed to the two (first and second) pistons, the load generated in each piston always coincides, and the above-described formula (1) and the following formula (3) ) Is established.
  • the abnormality determination means 108 detects the sensor of each load detection means Sa, Sb with respect to the motor torque. By determining whether the output is within the predetermined range, it is possible to identify the load detection means Sa (Sb) in which an abnormality has occurred when the output is not within the range. In this case, the abnormal-time control unit 111 can control the entire linear motion actuator using the normal load detection means Sb (Sa).
  • first and second load detection means Sa and Sb it is also possible to apply an optical type sensor other than the magnetic type, an eddy current type sensor, or a capacitance type sensor.
  • the ECU 101 may estimate the vehicle body speed of this vehicle using each wheel speed sensor Sh and acceleration sensor Sg provided for each wheel. Further, the ECU 101 is provided with an anti-lock control function unit (not shown), and the anti-lock control function unit has an excessive number of wheels during braking from the estimated vehicle body speed and the wheel speed detected by the wheel speed sensor Sh.
  • the braking force for preventing the locking may be determined by wheel speed feedback control or brake pressure reduction control accompanying determination of the locking tendency, and may intervene in the control as necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Braking Systems And Boosters (AREA)
  • Braking Arrangements (AREA)
  • Regulating Braking Force (AREA)

Abstract

Provided is a linear actuator capable of eliminating problems in terms of layout and inhibiting fade phenomena and the like when the linear actuator is mounted on a vehicle or the like. An abnormality determination means (108) determines if there is an abnormality in each load detection means (Sa, Sb). When the two load detection means (Sa, Sb) are both normal, a normality control unit (110) controls a motor (30) using the summed value of loads detected by the two load detection means (Sa, Sb). If it is determined that one of the load detection means Sa (Sb) is abnormal, an abnormality control unit (111) estimates the load being produced in two linear motion mechanisms from the motor rotation angle, the motor current, and the load detected by the normal load detection means Sb(Sa). The abnormality control unit (111) controls the motor (30) using the estimated load values.

Description

直動アクチュエータLinear actuator 関連出願Related applications
 本出願は、2016年3月9日出願の特願2016-045735の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2016-045735 filed on Mar. 9, 2016, which is incorporated herein by reference in its entirety.
 この発明は、例えば自動車用の電動ブレーキ装置等に適用される直動アクチュエータに関する。 The present invention relates to a linear actuator applied to, for example, an electric brake device for an automobile.
 ブレーキ操作量から決定したブレーキの目標押圧力と、押圧力センサにて取得した実押圧力の値に応じてモータを制御する電動ブレーキ装置が提案されている(特許文献1)。 An electric brake device that controls a motor according to a target pressing force of a brake determined from a brake operation amount and an actual pressing force value acquired by a pressing force sensor has been proposed (Patent Document 1).
特開2000-213575号公報JP 2000-213575 A
 特許文献1では、一つのアクチュエータにて摩擦パッドをブレーキディスクに対して押圧している。このため、要求されるブレーキ荷重が大きい場合には、アクチュエータ(直動機構)の径方向寸法が大きくなり、レイアウト上問題となる。また、径方向寸法が小さい直動機構にて必要な押圧力が発生できたとしても、摩擦パッド全体に均等に圧力が作用しないことで、フェード現象を誘発するかまたは摩擦パッドの摩耗進行を助長することがある。特許文献1には、二つのアクチュエータにて一つの摩擦パッドを押圧する場合の制御方法については、開示されていない。 In Patent Document 1, the friction pad is pressed against the brake disk by one actuator. For this reason, when the required brake load is large, the radial dimension of the actuator (linear motion mechanism) becomes large, which causes a problem in layout. In addition, even if the required pressing force can be generated by a linear motion mechanism with a small radial dimension, the pressure does not act evenly on the entire friction pad, thereby inducing a fade phenomenon or promoting the progress of wear of the friction pad. There are things to do. Patent Document 1 does not disclose a control method when one friction pad is pressed by two actuators.
 この発明の目的は、車両等に電動ブレーキ装置を搭載する場合に、レイアウト上の問題を解消でき、且つ、フェード現象等を抑制することができる電動ブレーキ装置の直動アクチュエータを提供することである。 An object of the present invention is to provide a linear motion actuator for an electric brake device that can eliminate layout problems and suppress a fade phenomenon or the like when the electric brake device is mounted on a vehicle or the like. .
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, description will be made with reference to the reference numerals of the embodiments.
 この発明の第1の構成に係る直動アクチュエータ31は、
 一つのモータ30と、
 二つの直動機構33a,33bであって、それぞれ、一つのピストン26a(26b)を含み、前記モータ30の回転運動をそのピストン26a(26b)の直線運動に変換する二つの直動機構33a,33bと、
 前記モータ30を制御する制御装置100と、
 二つの荷重検出手段Sa,Sbであって、それぞれ、前記二つの直動機構33a,33bのうちの対応する直動機構の33a(33b)の軸方向の荷重を検出する二つの荷重検出手段Sa,Sbとを備え、
 前記制御装置100は、前記二つの荷重検出手段Sa,Sbでそれぞれ検出される荷重の合算値を用いて前記モータ30を制御する。
The linear actuator 31 according to the first configuration of the present invention includes:
One motor 30;
Two linear motion mechanisms 33a and 33b, each including one piston 26a (26b), and two linear motion mechanisms 33a and 33b for converting the rotational motion of the motor 30 into the linear motion of the piston 26a (26b). 33b,
A control device 100 for controlling the motor 30;
Two load detection means Sa and Sb, each of which detects the axial load of the corresponding linear motion mechanism 33a (33b) of the two linear motion mechanisms 33a and 33b. , Sb,
The control device 100 controls the motor 30 using the total value of the loads detected by the two load detection means Sa and Sb.
 この構成によると、一つのモータ30の回転運動は、二つの直動機構33a,33bの二つのピストン26a,26bの直線運動に変換される。二つの荷重検出手段Sa,Sbは、二つの直動機構33a,33bの軸方向の荷重をそれぞれ検出する。制御装置100は、これら荷重検出手段Sa,Sbでそれぞれ検出される荷重の合算値を用いてモータ30を制御する。このように二つの荷重検出手段Sa,Sbで検出される荷重の合算値に基づいてモータ30を制御することで、より正確な荷重制御を行うことが可能となる。 According to this configuration, the rotational motion of one motor 30 is converted into linear motion of the two pistons 26a and 26b of the two linear motion mechanisms 33a and 33b. The two load detection means Sa and Sb detect the axial loads of the two linear motion mechanisms 33a and 33b, respectively. The control device 100 controls the motor 30 using the total value of the loads detected by the load detection means Sa and Sb. In this way, more accurate load control can be performed by controlling the motor 30 based on the total value of the loads detected by the two load detecting means Sa and Sb.
 一モータ、二ピストンタイプの直動アクチュエータの場合において、一方のピストン荷重のみを検出する構成とすると、二つのピストンで荷重が発生するタイミングが異なる場合があるため、正確な荷重制御を行うことができない。これに対して、この構成によると、制御装置100は、例えば、与えられる指令値に対し、二つの荷重検出手段Sa,Sbで検出される荷重の合算値を追従させるフィードバック制御を行うことで、より正確な荷重制御を行うことが可能となる。なお、車速、モータ電流等の検出値が定められた条件を充足するときフィードフォワード制御を行うようにしてもよい。前記定められた条件は、設計等によって任意に定める条件であって、例えば、試験およびシミュレーションのいずれか一方または両方により適切な条件を求めて定められる。 In the case of a one-motor, two-piston type linear motion actuator, if only one piston load is detected, the timing at which the load is generated by the two pistons may differ, so accurate load control can be performed. Can not. On the other hand, according to this configuration, the control device 100 performs, for example, feedback control that causes the load value detected by the two load detecting means Sa and Sb to follow the given command value. More accurate load control can be performed. The feedforward control may be performed when the detected values such as the vehicle speed and the motor current satisfy the predetermined conditions. The predetermined condition is an arbitrary condition determined by design or the like, and is determined, for example, by obtaining an appropriate condition by one or both of a test and a simulation.
 この直動アクチュエータ31を電動ブレーキ装置に適用した場合、より正確な荷重制御を行えるため、フェード現象等を抑制することができる。この直動アクチュエータ31は、一モータ、二ピストンタイプのため、例えば、二つのモータで二つのピストンをそれぞれ駆動する構造よりも、径方向の小形化を図ることができる。よって直動アクチュエータ31を車両に搭載する場合のレイアウト上の問題を解消することが可能となる。 When this linear motion actuator 31 is applied to an electric brake device, more accurate load control can be performed, so that a fade phenomenon or the like can be suppressed. Since the direct acting actuator 31 is of a single motor type or a two piston type, for example, it is possible to reduce the size in the radial direction as compared with a structure in which two pistons are respectively driven by two motors. Therefore, it is possible to solve the layout problem when the linear actuator 31 is mounted on the vehicle.
 前記モータ30の電流を検出する電流検出手段Scと、
 前記モータ30の回転角を検出する回転角検出手段Sdとをさらに備え、
 前記制御装置100は、
  前記二つの荷重検出手段Sa,Sbのそれぞれが異常であるか否かを定められた条件に従って判定する異常判定手段108と、
  この異常判定手段108により前記二つの荷重検出手段Sa,Sbが共に異常ではないと判定されると、前記二つの荷重検出手段Sa,Sbでそれぞれ検出される荷重の合算値を用いて前記モータ30を制御する通常制御部110と、
  前記異常判定手段108によりいずれか一方の荷重検出手段Sa(Sb)が異常であると判定されると、異常と判定されていない他方の荷重検出手段Sb(Sa)で検出される荷重、前記電流検出手段Scで検出されるモータ電流、および前記回転角検出手段Sdで検出されるモータ回転角に基づいて、定められた条件に従って前記二つの直動機構33a,33bでそれぞれ発生している軸方向の荷重を推定し、この推定された荷重の合算値を用いて前記モータ30を制御する異常時制御部111と、を有するものとしてもよい。
Current detection means Sc for detecting the current of the motor 30;
Rotation angle detecting means Sd for detecting the rotation angle of the motor 30;
The control device 100 includes:
An abnormality determination means 108 for determining whether or not each of the two load detection means Sa and Sb is abnormal according to a predetermined condition;
When it is determined by the abnormality determination means 108 that the two load detection means Sa and Sb are not abnormal, the motor 30 is used by using the sum of the loads detected by the two load detection means Sa and Sb, respectively. A normal control unit 110 for controlling
When the abnormality determination unit 108 determines that one of the load detection units Sa (Sb) is abnormal, the load detected by the other load detection unit Sb (Sa) that is not determined to be abnormal, the current Axial directions respectively generated in the two linear motion mechanisms 33a and 33b according to a predetermined condition based on the motor current detected by the detection means Sc and the motor rotation angle detected by the rotation angle detection means Sd. And an abnormal-time control unit 111 that controls the motor 30 using a total value of the estimated loads.
 前記回転角検出手段Sdで検出されるモータ回転角に代えて、第1または第2の直動機構33a(33b)の第1または第2の回転軸32a(32b)の回転角度を検出する第1または第2の回転角センサSe(Sf)によって検出される、第1または第2のピストン26a(26b)の入力軸角度θ(θ)が荷重の推定に用いられてもよい。 Instead of the motor rotation angle detected by the rotation angle detection means Sd, the rotation angle of the first or second rotation shaft 32a (32b) of the first or second linear motion mechanism 33a (33b) is detected. The input shaft angle θ AB ) of the first or second piston 26a (26b) detected by the first or second rotation angle sensor Se (Sf) may be used for load estimation.
 前記異常判定手段108における前記定められた条件、前記異常時制御部111における前記定められた条件は、それぞれ設計等によって任意に定める条件であって、例えば、試験およびシミュレーションのいずれか一方または両方により適切な条件を求めて定められる。 The predetermined condition in the abnormality determination unit 108 and the predetermined condition in the abnormality control unit 111 are conditions arbitrarily determined by design or the like, for example, by one or both of a test and a simulation. Determined for the appropriate conditions.
 これらの構成によると、異常判定手段108は各荷重検出手段Sa,Sbの異常を判定する。二つの荷重検出手段Sa,Sbが共に正常なとき、通常制御部110は、二つの荷重検出手段Sa,Sbでそれぞれ検出される荷重の合算値を用いてモータ30を制御する。いずれか一方の荷重検出手段Sa(Sb)が異常であると判定されたとき、異常時制御部111は、正常である他方の荷重検出手段Sb(Sa)で検出される荷重、モータ電流、およびモータ回転角から、二つの直動機構33a,33bでそれぞれ発生している荷重を推定する。異常時制御部111は、この推定された荷重の合算値を用いてモータ30を制御する。つまり異常時制御部111は、正常な荷重検出手段Sb(Sa)と、モータ電流およびモータ回転角とを用いてアクチュエータ全体の制御を行う。このように一方の荷重検出手段Sa(Sb)に異常が発生しても、正常な荷重検出手段Sb(Sa)の値を用いて二つの直動機構33a,33bでそれぞれ発生している荷重を推定することが可能であり、冗長性が向上する。 According to these configurations, the abnormality determination means 108 determines the abnormality of each load detection means Sa and Sb. When the two load detection means Sa and Sb are both normal, the normal control unit 110 controls the motor 30 using the total value of the loads detected by the two load detection means Sa and Sb. When it is determined that any one of the load detection means Sa (Sb) is abnormal, the abnormality control unit 111 detects the load detected by the other normal load detection means Sb (Sa), the motor current, and From the motor rotation angle, the load generated in each of the two linear motion mechanisms 33a and 33b is estimated. The abnormal time control unit 111 controls the motor 30 by using the estimated value of the total load. That is, the abnormal time control unit 111 controls the entire actuator using the normal load detecting means Sb (Sa), the motor current and the motor rotation angle. In this way, even if an abnormality occurs in one of the load detection means Sa (Sb), the load generated in each of the two linear motion mechanisms 33a and 33b is obtained using the value of the normal load detection means Sb (Sa). Can be estimated, and redundancy is improved.
 前記制御装置には指令値が入力され、前記異常時制御部は、前記指令値に対し、前記推定された荷重の合算値を追従させるフィードバック制御を行ってもよい。この場合、より正確な荷重制御を行うことが可能となる。 A command value may be input to the control device, and the abnormal time control unit may perform feedback control that causes the sum of the estimated loads to follow the command value. In this case, more accurate load control can be performed.
 この発明の一構成に係る電動ブレーキ装置は、前記直動アクチュエータ31を備える。この場合、要求されるブレーキ荷重が大きい車両にこの電動ブレーキ装置を搭載することができる。またレイアウト上の問題を解消でき、且つ、フェード現象等を抑制することができる。 An electric brake device according to one configuration of the present invention includes the linear actuator 31. In this case, the electric brake device can be mounted on a vehicle having a large required brake load. In addition, the layout problem can be solved and the fade phenomenon and the like can be suppressed.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
第1の実施形態に係る電動ブレーキ装置の正面図である。 図1の電動ブレーキ装置の紙面左側からの側面図である。 図1のIII-III線断面図である。 図3のIV-IV線断面図である。 図4のV-V線端面図である。 図4のVI-VI線端面図である。 図4のVII-VII線断面図である。 図7のVIII-VIII線断面図である。 図1の電動ブレーキ装置の荷重検出手段の一例を概略示す図である。 図1の電動ブレーキ装置の制御系のブロック図である。 図1の電動ブレーキ装置の制御装置の詳細構成を示すブロック図である。 図1の電動ブレーキ装置の一つのピストンにおける入力軸角度とピストン荷重の関係を示すグラフである。 図12のピストンにおける入力軸トルクとピストン荷重の関係を示すグラフである。 図1の電動ブレーキ装置のモータ回転角と各ピストン荷重の関係を示す図である。 図11の制御装置の各過程を段階的に示すフローチャートである。 第2の実施形態に係る電動ブレーキ装置のモータ回転角と各ピストン荷重の関係を示す図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
It is a front view of the electric brake device concerning a 1st embodiment. It is a side view from the paper left side of the electric brake device of FIG. It is the III-III sectional view taken on the line of FIG. FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is the VV line end view of FIG. It is the VI-VI line end view of FIG. It is the VII-VII sectional view taken on the line of FIG. It is the VIII-VIII sectional view taken on the line of FIG. It is a figure which shows schematically an example of the load detection means of the electric brake device of FIG. It is a block diagram of the control system of the electric brake device of FIG. It is a block diagram which shows the detailed structure of the control apparatus of the electric brake device of FIG. It is a graph which shows the relationship between the input shaft angle and piston load in one piston of the electric brake device of FIG. It is a graph which shows the relationship between the input shaft torque and piston load in the piston of FIG. It is a figure which shows the relationship between the motor rotation angle of each electric brake device of FIG. 1, and each piston load. It is a flowchart which shows each process of the control apparatus of FIG. 11 in steps. It is a figure which shows the relationship between the motor rotation angle and each piston load of the electric brake device which concerns on 2nd Embodiment.
 この発明の第1の実施形態に係る直動アクチュエータおよびこの直動アクチュエータを備えた電動ブレーキ装置を図1ないし図15と共に説明する。この電動ブレーキ装置は車両に搭載されるものである。この車両の各車輪に対して、電動ブレーキ装置がそれぞれ設けられている。図1に示すように、各電動ブレーキ装置は、キャリパ6と、電動式の直動アクチュエータ31と、ブレーキロータ1と、インボード側摩擦パッド7およびアウトボード側摩擦パッド8とを有する。直動アクチュエータ31は制御装置100を含む。車両には、車輪毎のブレーキロータ1の外周側部分を囲むようにキャリパ6がそれぞれ設けられる。直動アクチュエータ31は、インボード側摩擦パッド7をブレーキロータ1に対して当接離隔する駆動を行う。 A linear actuator according to a first embodiment of the present invention and an electric brake device including the linear actuator will be described with reference to FIGS. This electric brake device is mounted on a vehicle. An electric brake device is provided for each wheel of the vehicle. As shown in FIG. 1, each electric brake device includes a caliper 6, an electric linear actuator 31, a brake rotor 1, an inboard side friction pad 7, and an outboard side friction pad 8. The linear actuator 31 includes a control device 100. The vehicle is provided with a caliper 6 so as to surround the outer peripheral portion of the brake rotor 1 for each wheel. The linear motion actuator 31 drives the inboard friction pad 7 to contact and separate from the brake rotor 1.
 図2に示すように、キャリパ6は、爪部22,ピストン収容部23,および外郭部24を有する。外郭部24は、爪部22およびピストン収容部23をブレーキロータ1の外径側で連結する。図7に示すように、爪部22およびピストン収容部23の間において、インボード側摩擦パッド7とアウトボード側摩擦パッド8が、軸方向に互いに向き合うように配置される。 As shown in FIG. 2, the caliper 6 has a claw portion 22, a piston housing portion 23, and an outer shell portion 24. The outer portion 24 connects the claw portion 22 and the piston housing portion 23 on the outer diameter side of the brake rotor 1. As shown in FIG. 7, the inboard side friction pad 7 and the outboard side friction pad 8 are arranged between the claw portion 22 and the piston housing portion 23 so as to face each other in the axial direction.
 この明細書において、この電動ブレーキ装置を車両に搭載した状態で、車両の車幅方向外側をアウトボード側といい、車両の車幅方向中央側をインボード側という。 In this specification, in a state where this electric brake device is mounted on a vehicle, the outer side in the vehicle width direction of the vehicle is referred to as the outboard side, and the central side in the vehicle width direction of the vehicle is referred to as the inboard side.
 図1に示すように、キャリパ6のアウトボード側の端部に、爪部22が設けられる。爪部22は、ブレーキロータ1のアウトボード側の側面と軸方向で対向する。この爪部22にアウトボード側摩擦パッド8が支持されている。 As shown in FIG. 1, a claw portion 22 is provided at the end portion of the caliper 6 on the outboard side. The claw portion 22 faces the side surface on the outboard side of the brake rotor 1 in the axial direction. The outboard side friction pad 8 is supported by the claw portion 22.
 図4に示すように、ピストン収容部23には、第1および第2のピストン収容孔25a,25bが設けられている。これらピストン収容孔25a,25bは、図2に示すように、ブレーキロータ1の周方向に所定間隔を空けて設けられる。図4に示すように、第1および第2のピストン収容孔25a,25bに、第1および第2のピストン26a,26bがそれぞれ収容される。 As shown in FIG. 4, the piston housing portion 23 is provided with first and second piston housing holes 25a and 25b. These piston accommodation holes 25a and 25b are provided at predetermined intervals in the circumferential direction of the brake rotor 1, as shown in FIG. As shown in FIG. 4, the first and second pistons 26a and 26b are accommodated in the first and second piston accommodation holes 25a and 25b, respectively.
 第1および第2のピストン26a,26bは、インボード側の摩擦パッド7をブレーキロータ1(図2)の周方向に離れた二箇所で押圧するように平行に配置される。図1に示すように、インボード側摩擦パッド7は、ブレーキロータ1のインボード側の側面と軸方向で対向する。 The first and second pistons 26a and 26b are arranged in parallel so as to press the friction pad 7 on the inboard side at two locations separated in the circumferential direction of the brake rotor 1 (FIG. 2). As shown in FIG. 1, the inboard friction pad 7 faces the inboard side surface of the brake rotor 1 in the axial direction.
 図1に示すように、車両におけるナックル2に、マウント10が支持される。図2,図3に示すように、マウント10の長手方向両端部には、ピン支持片11,11が設けられる。これらピン支持片11,11のそれぞれ端部に、軸方向に互いに平行に延びるスライドピン5,5が設けられる。これらスライドピン5,5に、キャリパ6が軸方向にスライド自在に支持されている。 As shown in FIG. 1, a mount 10 is supported on a knuckle 2 in a vehicle. As shown in FIGS. 2 and 3, pin support pieces 11 and 11 are provided at both ends in the longitudinal direction of the mount 10. Slide pins 5 and 5 extending in parallel with each other in the axial direction are provided at the respective ends of the pin support pieces 11 and 11. The caliper 6 is supported by these slide pins 5 and 5 so as to be slidable in the axial direction.
 図6に示すように、制動時、モータ30の駆動により直動アクチュエータ31を駆動させることで、図7に示すように、インボード側摩擦パッド7がブレーキロータ1に当接して、ブレーキロータ1を軸方向に押圧する。その押圧力の反力によりキャリパ6がインボード側にスライドする。これにより、キャリパ6の爪部22に支持されたアウトボード側摩擦パッド8がブレーキロータ1に当接する。これらアウトボード側摩擦パッド8およびインボード側摩擦パッド7が、ブレーキロータ1を軸方向両側から強く挟むことで、ブレーキロータ1に制動力が負荷される。 As shown in FIG. 6, during braking, the linear actuator 31 is driven by driving the motor 30, so that the inboard side friction pad 7 comes into contact with the brake rotor 1 as shown in FIG. Is pressed in the axial direction. The caliper 6 slides to the inboard side by the reaction force of the pressing force. As a result, the outboard friction pad 8 supported by the claw portion 22 of the caliper 6 contacts the brake rotor 1. The outboard side friction pad 8 and the inboard side friction pad 7 strongly hold the brake rotor 1 from both sides in the axial direction, so that a braking force is applied to the brake rotor 1.
 図4に示すように、直動アクチュエータ31は、一つのモータ30と、分配歯車機構34と、二つの(第1および第2の)直動機構33a,33bと、二つの(第1および第2の)荷重検出手段Sa,Sbと、モータ30を制御する制御装置100(図1)とを有する。直動アクチュエータ31における、制御装置100(図1)を除く部分は、キャリパ6に取り付けられている。制御装置100(図1)は、例えば車体に設置されるが、十分な耐久性、耐環境性能が保証出来ればキャリパ6に搭載してもよい。モータ30の回転運動は、分配歯車機構34を介して二つの直動機構33a,33bにそれぞれ伝達され、これら直動機構33a,33bによりそれぞれ直線運動に変換される。これにより摩擦パッド7,8(図1)がブレーキロータ1(図1)に対して当接離隔する。 As shown in FIG. 4, the linear actuator 31 includes one motor 30, a distribution gear mechanism 34, two (first and second) linear motion mechanisms 33 a and 33 b, and two (first and first). 2) load detecting means Sa and Sb, and a control device 100 (FIG. 1) for controlling the motor 30. A portion of the linear motion actuator 31 excluding the control device 100 (FIG. 1) is attached to the caliper 6. The control device 100 (FIG. 1) is installed in, for example, a vehicle body, but may be mounted on the caliper 6 as long as sufficient durability and environmental performance can be guaranteed. The rotational motion of the motor 30 is transmitted to the two linear motion mechanisms 33a and 33b via the distribution gear mechanism 34, and is converted into linear motion by the linear motion mechanisms 33a and 33b, respectively. As a result, the friction pads 7 and 8 (FIG. 1) abut against and separate from the brake rotor 1 (FIG. 1).
 キャリパ6のインボード側端に、分配歯車機構34を収容するギヤケース41が固定されている。このギヤケース41の側板42に、モータ30が固定されている。モータ30は、このモータ30のモータ軸37が、後述する第1および第2の回転軸32a,32bと平行となるように配置される。またモータ30は、図3に示すように、第1の回転軸32aの中心と第2の回転軸32bの中心を結ぶ直線Lの位置よりもブレーキロータ1(図2)の半径方向外側の領域に配置される。 A gear case 41 that accommodates the distribution gear mechanism 34 is fixed to the inboard side end of the caliper 6. The motor 30 is fixed to the side plate 42 of the gear case 41. The motor 30 is disposed such that a motor shaft 37 of the motor 30 is parallel to first and second rotating shafts 32a and 32b described later. Further, as shown in FIG. 3, the motor 30 is a region radially outward of the brake rotor 1 (FIG. 2) from the position of a straight line L connecting the center of the first rotating shaft 32a and the center of the second rotating shaft 32b. Placed in.
 図4に示すように、分配歯車機構34は、入力歯車35と、第1の減速歯車列36aと、第2の減速歯車列36bとを有する。入力歯車35は、モータ軸37に同心に連結され同モータ軸37と一体に回転する。第1の減速歯車列36aは、入力歯車35の回転を減速して第1の回転軸32aに伝達する。第2の減速歯車列36bは、入力歯車35の回転を減速して第2の回転軸32bに伝達する。 As shown in FIG. 4, the distribution gear mechanism 34 has an input gear 35, a first reduction gear train 36a, and a second reduction gear train 36b. The input gear 35 is concentrically connected to the motor shaft 37 and rotates integrally with the motor shaft 37. The first reduction gear train 36a decelerates the rotation of the input gear 35 and transmits it to the first rotation shaft 32a. The second reduction gear train 36b decelerates the rotation of the input gear 35 and transmits it to the second rotation shaft 32b.
 第1の減速歯車列36aは、入力歯車35に噛み合う第1の分配歯車38aと、第1の回転軸32aに同心に固定された第1の出力歯車40aと、第1の分配歯車38aと第1の出力歯車40aの間で回転を伝達する中間歯車39aとを有する。入力歯車35、第1の分配歯車38a、中間歯車39aおよび第1の出力歯車40aは、互いに歯数が異なる。第1の減速歯車列36aは、モータ30から入力歯車35に入力された回転を、順次、入力歯車35、第1の分配歯車38a、中間歯車39a、第1の出力歯車40aに伝達することで減速し、減速された回転を第1の出力歯車40aから第1の回転軸32aに出力する。 The first reduction gear train 36a includes a first distribution gear 38a that meshes with the input gear 35, a first output gear 40a that is concentrically fixed to the first rotation shaft 32a, a first distribution gear 38a, and a first distribution gear 38a. And an intermediate gear 39a that transmits rotation between the output gears 40a. The input gear 35, the first distribution gear 38a, the intermediate gear 39a, and the first output gear 40a have different numbers of teeth. The first reduction gear train 36a sequentially transmits the rotation input from the motor 30 to the input gear 35 to the input gear 35, the first distribution gear 38a, the intermediate gear 39a, and the first output gear 40a. The speed is reduced, and the reduced speed rotation is output from the first output gear 40a to the first rotation shaft 32a.
 第2の減速歯車列36bは、入力歯車35に噛み合う第2の分配歯車38bと、第2の回転軸32bに同心に固定された第2の出力歯車40bと、第2の分配歯車38bと第2の出力歯車40bの間で回転を伝達する中間歯車39bとを有する。入力歯車35、第2の分配歯車38b、中間歯車39bおよび第2の出力歯車40bは、互いに歯数が異なる。第2の減速歯車列36bは、モータ30から入力歯車35に入力された回転を、順次、入力歯車35、第2の分配歯車38b、中間歯車39b、第2の出力歯車40bに伝達することで減速し、減速された回転を第2の出力歯車40bから第2の回転軸32bに出力する。 The second reduction gear train 36b includes a second distribution gear 38b that meshes with the input gear 35, a second output gear 40b that is concentrically fixed to the second rotation shaft 32b, a second distribution gear 38b, and a second distribution gear 38b. And an intermediate gear 39b for transmitting rotation between the two output gears 40b. The input gear 35, the second distribution gear 38b, the intermediate gear 39b, and the second output gear 40b have different numbers of teeth. The second reduction gear train 36b sequentially transmits the rotation input from the motor 30 to the input gear 35 to the input gear 35, the second distribution gear 38b, the intermediate gear 39b, and the second output gear 40b. The speed is reduced, and the reduced speed rotation is output from the second output gear 40b to the second rotation shaft 32b.
 第1の直動機構33aについて説明する。
 第2の直動機構33bは第1の直動機構33aと同様の構成であるため、対応する部分に同一の符号を付して説明を省略する。
The first linear motion mechanism 33a will be described.
Since the second linear motion mechanism 33b has the same configuration as that of the first linear motion mechanism 33a, the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
 図7、図8に示すように、第1の直動機構33aは、第1のピストン26a、複数の遊星ローラ50、キャリア51、および第1の回転軸32aを有する。第1のピストン26aは、円筒状に形成され、第1の回転軸32aと同心に設けられる。複数の遊星ローラ50は、第1のピストン26aの内周と第1の回転軸32aの外周との間に周方向に間隔をおいて設けられる。キャリア51は、各遊星ローラ50を自転可能かつ公転可能に保持する。 As shown in FIGS. 7 and 8, the first linear motion mechanism 33a includes a first piston 26a, a plurality of planetary rollers 50, a carrier 51, and a first rotating shaft 32a. The first piston 26a is formed in a cylindrical shape and is provided concentrically with the first rotating shaft 32a. The plurality of planetary rollers 50 are provided at intervals in the circumferential direction between the inner periphery of the first piston 26a and the outer periphery of the first rotating shaft 32a. The carrier 51 holds each planetary roller 50 so that it can rotate and revolve.
 各遊星ローラ50は、第1の回転軸32aの外周に転がり接触する。第1の回転軸32aが回転すると、各遊星ローラ50は、ローラ軸52を中心に自転しつつ、第1の回転軸32aのまわりを第1のピストン26aの内周に沿って公転する。 Each planetary roller 50 is in rolling contact with the outer periphery of the first rotating shaft 32a. When the first rotation shaft 32a rotates, each planetary roller 50 revolves around the first rotation shaft 32a along the inner periphery of the first piston 26a while rotating around the roller shaft 52.
 第1のピストン26aは、キャリパ6の第1のピストン収容孔25aに支持され、且つ、前記軸方向と平行にスライド可能である。第1のピストン26aの内周には、円周方向に対して所定のリード角で斜めに延びる螺旋凸条53が設けられている。各遊星ローラ50の外周には、螺旋凸条53に噛み合う複数の円周溝54が軸方向に間隔をおいて形成されている。各遊星ローラ50の外周の軸方向に隣り合う円周溝54の間隔は、螺旋凸条53のピッチと同一の大きさとされている。ここでは、遊星ローラ50の外周にリード角が0度の円周溝54を設けているが、円周溝54の代わりに、螺旋凸条53と異なるリード角をもつ螺旋溝を設けてもよい。 The first piston 26a is supported by the first piston accommodation hole 25a of the caliper 6 and can slide in parallel with the axial direction. On the inner periphery of the first piston 26a, there is provided a spiral ridge 53 extending obliquely at a predetermined lead angle with respect to the circumferential direction. On the outer circumference of each planetary roller 50, a plurality of circumferential grooves 54 that mesh with the spiral ridges 53 are formed at intervals in the axial direction. The interval between the circumferential grooves 54 adjacent to each other in the axial direction on the outer periphery of each planetary roller 50 is the same as the pitch of the spiral ridges 53. Here, the circumferential groove 54 having a lead angle of 0 degrees is provided on the outer periphery of the planetary roller 50, but instead of the circumferential groove 54, a spiral groove having a lead angle different from that of the spiral protrusion 53 may be provided. .
 図7に示すように、キャリパ6の第1のピストン収容孔25aにおけるインボード側に、軸支持部材65が設けられている。この軸支持部材65は、ボス部と、このボス部から径方向外方に延びるフランジ部とを有する。前記ボス部内に複数の転がり軸受66が嵌合され、各転がり軸受66の内輪内径面に第1の回転軸32aが嵌合されている。第1の回転軸32aは、軸支持部材65に複数の転がり軸受66を介して回転自在に支持される。 As shown in FIG. 7, a shaft support member 65 is provided on the inboard side of the first piston accommodation hole 25a of the caliper 6. The shaft support member 65 includes a boss portion and a flange portion extending radially outward from the boss portion. A plurality of rolling bearings 66 are fitted into the boss portions, and the first rotary shaft 32 a is fitted to the inner ring inner diameter surface of each rolling bearing 66. The first rotary shaft 32 a is rotatably supported by the shaft support member 65 via a plurality of rolling bearings 66.
 キャリア51は、一対のディスク55,56と、連結部57と、複数のローラ軸52とを有する。一対のディスク55,56は、遊星ローラ50等を軸方向に介在させた状態で、軸方向に所定間隔をあけて互いに対向する。連結部57は、一対のディスク55,56を連結する。インボード側のディスク56は、第1の回転軸32aとの間に嵌合されたすべり軸受58により、第1の回転軸32aに回転自在に支持される。アウトボード側のディスク55には、中心部に軸挿入孔が形成され、この軸挿入孔にすべり軸受58が嵌合されている。アウトボード側のディスク55は、すべり軸受58により、第1の回転軸32aに回転自在に支持される。 The carrier 51 has a pair of disks 55 and 56, a connecting portion 57, and a plurality of roller shafts 52. The pair of disks 55 and 56 oppose each other with a predetermined interval in the axial direction with the planetary roller 50 or the like interposed in the axial direction. The connecting portion 57 connects the pair of disks 55 and 56. The disc 56 on the inboard side is rotatably supported by the first rotary shaft 32a by a slide bearing 58 fitted between the first rotary shaft 32a. A shaft insertion hole is formed in the center of the disc 55 on the outboard side, and a slide bearing 58 is fitted in this shaft insertion hole. The disc 55 on the outboard side is rotatably supported by the first rotary shaft 32a by a slide bearing 58.
 複数のローラ軸52は、一対のディスク55,56にわたって円周方向一定間隔おきに支持され、各遊星ローラ50を自転可能に支持する。ディスク55,56には、それぞれ軸挿入孔59が複数形成されている。各軸挿入孔59は、径方向に延びる長孔から成る。各軸挿入孔59に各ローラ軸52の軸方向両端部が挿入されて、これらローラ軸52が各軸挿入孔59の範囲で径方向に移動自在に支持される。 The plurality of roller shafts 52 are supported on the pair of disks 55 and 56 at regular intervals in the circumferential direction, and support the planetary rollers 50 so as to be rotatable. A plurality of shaft insertion holes 59 are formed in the disks 55 and 56, respectively. Each shaft insertion hole 59 is a long hole extending in the radial direction. Both end portions of each roller shaft 52 in the axial direction are inserted into the respective shaft insertion holes 59, and the roller shafts 52 are supported so as to be movable in the radial direction within the range of the respective shaft insertion holes 59.
 複数のローラ軸52における軸方向両端部には、これらローラ軸52を径方向内方に付勢する弾性リング60が掛け渡されている。弾性リング60の付勢力により、各遊星ローラ50が第1の回転軸32aの外周面に押し付けられる。第1の回転軸32aが回転することで、この第1の回転軸32aの外周面に接する各遊星ローラ50が接触摩擦により回転する。 An elastic ring 60 that urges the roller shafts 52 inward in the radial direction is stretched between both ends of the plurality of roller shafts 52 in the axial direction. Each planetary roller 50 is pressed against the outer peripheral surface of the first rotating shaft 32a by the urging force of the elastic ring 60. As the first rotating shaft 32a rotates, each planetary roller 50 in contact with the outer peripheral surface of the first rotating shaft 32a rotates due to contact friction.
 荷重検出手段について説明する。
 図10に示すように、第1および第2の荷重検出手段Sa,Sbは、それぞれ第1および第2の直動機構33a,33b(図4)の軸方向の荷重をそれぞれ検出する。第1および第2の荷重検出手段Sa,Sbは同一構成であり、各直動機構33a,33b(図4)の同一箇所に設けられる。よって、第1の荷重検出手段Saについてのみ説明し、第2の荷重検出手段Sbについては説明を省略する。
The load detection means will be described.
As shown in FIG. 10, the first and second load detecting means Sa and Sb detect the axial loads of the first and second linear motion mechanisms 33a and 33b (FIG. 4), respectively. The first and second load detection means Sa and Sb have the same configuration, and are provided at the same location in each of the linear motion mechanisms 33a and 33b (FIG. 4). Therefore, only the first load detection means Sa will be described, and the description of the second load detection means Sb will be omitted.
 図9に示すように、第1の荷重検出手段Saは、例えば、磁気式のセンサ12および磁気ターゲット13を含む。磁気ターゲット13は、例えば、二個の永久磁石13a,13aを有する。図7に示すように、摩擦パッド8がブレーキロータ1を軸方向に押圧するとき、第1の直動機構33aにインボード側への反力が作用する。なお、第1の荷重検出手段Saは、軸支持部材65に設けられている。 As shown in FIG. 9, the first load detection means Sa includes, for example, a magnetic sensor 12 and a magnetic target 13. The magnetic target 13 includes, for example, two permanent magnets 13a and 13a. As shown in FIG. 7, when the friction pad 8 presses the brake rotor 1 in the axial direction, a reaction force to the inboard side acts on the first linear motion mechanism 33a. The first load detection means Sa is provided on the shaft support member 65.
 図9に示すように、センサ12および磁気ターゲット13を含む第1の荷重検出手段Saは、このブレーキ力の反力を軸方向の変位量として磁気的に検出する。磁界の変化を検出する磁気式のセンサ12として、ダイナミックレンジが可変で且つ安価なホールICが好適である。ホールICは市販されており、入手性に優れる。磁気式のセンサ12として、ホールIC以外に、例えば、磁気抵抗素子、または磁気インピーダンス素子等を適用してもよい。 As shown in FIG. 9, the first load detecting means Sa including the sensor 12 and the magnetic target 13 magnetically detects the reaction force of this braking force as an axial displacement amount. As the magnetic sensor 12 for detecting a change in the magnetic field, a cheap Hall IC with a variable dynamic range is preferable. Hall IC is commercially available and has excellent availability. As the magnetic sensor 12, in addition to the Hall IC, for example, a magnetoresistive element or a magnetic impedance element may be applied.
 制御装置について説明する。
 図10は、この電動ブレーキ装置の制御系のブロック図である。制御装置100は、ECU101と、インバータ装置102とを有する。インバータ装置102の上位制御手段であるECU101として、例えば、車両全般を制御する電気制御ユニットが適用される。ECU101のブレーキ力指令手段101aは、ブレーキペダル103の操作量を検出するブレーキセンサ103aの出力に応じて、目標とするブレーキ力の指令値を生成し出力する。このブレーキ力の指令値に基づき、各直動機構33a,33b(図4)をインバータ装置102にて駆動する。
The control device will be described.
FIG. 10 is a block diagram of a control system of this electric brake device. The control device 100 includes an ECU 101 and an inverter device 102. For example, an electric control unit that controls the entire vehicle is applied as the ECU 101 that is a higher-level control unit of the inverter device 102. The brake force command means 101a of the ECU 101 generates and outputs a target brake force command value according to the output of the brake sensor 103a that detects the operation amount of the brake pedal 103. Based on the command value of this braking force, each linear motion mechanism 33a, 33b (FIG. 4) is driven by the inverter device 102.
 図11に示すように、インバータ装置102は、パワー回路部104と、このパワー回路部104を制御するモータコントロール部105と、警告信号出力手段106と、電流検出手段Scとを有する。 As shown in FIG. 11, the inverter device 102 includes a power circuit unit 104, a motor control unit 105 that controls the power circuit unit 104, a warning signal output unit 106, and a current detection unit Sc.
 モータコントロール部105は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。モータコントロール部105は、ブレーキ力指令手段101aから与えられるブレーキ力の指令値に応じた電流指令をパワー回路部104に与える。モータコントロール部105は、モータ30に関する検出値および制御値等の各情報をECU101に出力する機能を有する。 The motor control unit 105 includes a computer, a program executed on the computer, and an electronic circuit. The motor control unit 105 gives a current command to the power circuit unit 104 in accordance with the command value of the brake force given from the brake force command unit 101a. The motor control unit 105 has a function of outputting information about the motor 30 such as detection values and control values to the ECU 101.
 パワー回路部104は、電源Btの直流電力をモータ30の駆動に用いる3相の交流電力に変換するインバータ104bと、このインバータ104bを制御するPWM制御部104aとを有する。モータ30は3相の同期モータ等からなる。このモータ30には、図示外のロータの回転角(モータ回転角)を検出する回転角検出手段Sdが設けられている。インバータ104bは、複数の半導体スイッチング素子(図示せず)で構成され、PWM制御部104aは、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。 The power circuit unit 104 includes an inverter 104b that converts the DC power of the power source Bt into three-phase AC power used to drive the motor 30, and a PWM control unit 104a that controls the inverter 104b. The motor 30 is a three-phase synchronous motor or the like. The motor 30 is provided with a rotation angle detecting means Sd for detecting a rotation angle (motor rotation angle) of a rotor (not shown). The inverter 104b includes a plurality of semiconductor switching elements (not shown), and the PWM control unit 104a performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
 モータコントロール部105は、基本となる制御部としてのモータ駆動制御部107と、異常判定手段108とを有する。モータ駆動制御部107は、原則として、前述のブレーキ力の指令値に従い、電圧値による電流指令に変換して、パワー回路部104のPWM制御部104aに電流指令からなるモータ動作指令値を与える。モータ駆動制御部107は、ブレーキ力の指令値に対し、インバータ104bからモータ30に流すモータ電流を電流検出手段Scから得て、前記ブレーキ指令値に対し、電流フィードバック制御を行う。またモータ駆動制御部107は、モータ回転角を回転角検出手段Sdから得て、モータ回転角に応じた効率的なモータ駆動が行えるように、PWM制御部104aに電流指令を与える。 The motor control unit 105 includes a motor drive control unit 107 as a basic control unit and an abnormality determination unit 108. In principle, the motor drive control unit 107 converts the current command based on the voltage value in accordance with the command value of the brake force described above, and gives the motor operation command value including the current command to the PWM control unit 104a of the power circuit unit 104. The motor drive control unit 107 obtains a motor current flowing from the inverter 104b to the motor 30 from the current detection means Sc with respect to the command value of the brake force, and performs current feedback control on the brake command value. Further, the motor drive control unit 107 obtains the motor rotation angle from the rotation angle detection unit Sd, and gives a current command to the PWM control unit 104a so that efficient motor driving according to the motor rotation angle can be performed.
 異常判定手段108は、各荷重検出手段Sa,Sbが異常であるか否かを判定する。異常判定手段108はパッド摩耗量推定手段109を有する。このパッド摩耗量推定手段109は、現時点における、第1のピストン26a(図4)の入力軸角度と、第1の直動機構33a(図4)の軸方向の荷重(ピストン荷重)との相関を、対応する摩擦パッド7,8(図1)が新品時(非摩耗時)における入力軸角度とピストン荷重との定められた相関と比較する。パッド摩耗量推定手段109は、この比較の結果に基づいて、第1のピストン26a(図4)に対応した現時点の摩擦パッド7,8(図1)の摩耗量を推定する。第1のピストン26a(図4)の入力軸角度θは、例えば、第1の回転軸32a(図4)の回転角度を検出する第1の回転角センサSe等によって与えられる。ピストン荷重は、第1の荷重検出手段Saから与えられるセンサ出力である。 The abnormality determination unit 108 determines whether or not each load detection unit Sa, Sb is abnormal. The abnormality determination means 108 has pad wear amount estimation means 109. This pad wear amount estimating means 109 is a correlation between the current input shaft angle of the first piston 26a (FIG. 4) and the axial load (piston load) of the first linear motion mechanism 33a (FIG. 4). Is compared with a predetermined correlation between the input shaft angle and the piston load when the corresponding friction pads 7 and 8 (FIG. 1) are new (when not worn). The pad wear amount estimation means 109 estimates the wear amount of the friction pads 7 and 8 (FIG. 1) at the present time corresponding to the first piston 26a (FIG. 4) based on the comparison result. The input shaft angle theta A first piston 26a (Fig. 4), for example, provided by the first rotational angle sensor Se for detecting the rotational angle of the first rotary shaft 32a (FIG. 4). The piston load is a sensor output given from the first load detecting means Sa.
 パッド摩耗量推定手段109は、前記と同様に、現時点における、第2のピストン26b(図4)の入力軸角度と、第2の直動機構33b(図4)の軸方向の荷重(ピストン荷重)との相関を、対応する摩擦パッド7,8(図1)が新品時(非摩耗時)における入力軸角度とピストン荷重との定められた相関と比較する。パッド摩耗量推定手段109は、この比較の結果に基づいて、第2のピストン26b(図4)に対応した現時点の摩擦パッド7,8(図1)の摩耗量を推定する。第2のピストン26b(図4)の入力軸角度θは、例えば、第2の回転軸32b(図4)の回転角度を検出する第2の回転角センサSf等によって与えられる。前記ピストン荷重は、第2の荷重検出手段Sbから与えられるセンサ出力である。なお、図4に示すような分配歯車機構34を用いた場合、第1の回転軸32aおよび第2の回転軸32bの回転角度はモータ30の角度と一致するため、第1および第2の回転センサSe、Sfの一方を省略できる。 Similarly to the above, the pad wear amount estimating means 109 is configured so that the current input shaft angle of the second piston 26b (FIG. 4) and the axial load (piston load) of the second linear motion mechanism 33b (FIG. 4) are the same. ) Is compared with a predetermined correlation between the input shaft angle and the piston load when the corresponding friction pads 7 and 8 (FIG. 1) are new (when not worn). The pad wear amount estimation means 109 estimates the wear amount of the friction pads 7 and 8 (FIG. 1) at the present time corresponding to the second piston 26b (FIG. 4) based on the comparison result. The input shaft angle θ B of the second piston 26b (FIG. 4) is given by, for example, a second rotation angle sensor Sf that detects the rotation angle of the second rotation shaft 32b (FIG. 4). The piston load is a sensor output given from the second load detection means Sb. When the distribution gear mechanism 34 as shown in FIG. 4 is used, the rotation angles of the first rotation shaft 32a and the second rotation shaft 32b coincide with the angle of the motor 30, and therefore the first and second rotations. One of the sensors Se and Sf can be omitted.
 図12は、この電動ブレーキ装置の一つのピストンにおける入力軸角度とピストン荷重の関係を示すグラフである。図11も適宜参照しつつ説明する。前記入力軸角度とピストン荷重の相関は、主に、キャリパの剛性と、摩擦パッドの圧縮剛性と、直動アクチュエータの剛性とにより支配される。これらのうち、前記キャリパおよび前記直動アクチュエータの剛性は、ブレーキ継続使用中も変化せずほぼ一定で、その値は既知である。また一般には、摩擦パッドの摩耗量に対してブレーキロータの摩耗量は少なく、またブレーキ全体の剛性に対してブレーキロータの圧縮変形量は極めて小さいため、ブレーキロータ摩耗によるブレーキ全体の剛性への影響はほぼ皆無である。 FIG. 12 is a graph showing the relationship between the input shaft angle and the piston load in one piston of this electric brake device. This will be described with reference to FIG. 11 as appropriate. The correlation between the input shaft angle and the piston load is mainly governed by the caliper stiffness, the friction pad compression stiffness, and the linear actuator stiffness. Among these, the rigidity of the caliper and the linear motion actuator does not change during continuous use of the brake and is almost constant, and its value is known. In general, the amount of wear of the brake rotor is small relative to the amount of wear of the friction pad, and the amount of compressive deformation of the brake rotor is extremely small compared to the rigidity of the entire brake. Is almost nothing.
 一方で、摩擦パッドの圧縮剛性はブレーキロータ等と比べて非常に低く、ブレーキ全体の剛性への影響が大きいため、摩擦パッドの摩耗が進行し摩擦パッドの剛性が高くなるに従って、ブレーキ全体の剛性が高くなる。したがって、パッド摩耗量推定手段109は、摩擦パッド7,8(図1)が新品時の入力軸角度とピストン荷重との定められた相関に対する、現時点の入力軸角度とピストン荷重との相関の変化に基づいて、摩擦パッド7,8(図1)の摩耗量を推定可能である。図12に示すように、摩擦パッドの新品時では、入力軸角度とピストン荷重との相関につき非線形性が強く表れる。摩擦パッドのフル摩耗時(摩耗限界に達した状態)では、前記相関は線形に近づく。 On the other hand, the compression stiffness of the friction pad is very low compared to the brake rotor, etc., and the impact on the overall brake stiffness is large. Therefore, as the friction pad wear progresses and the friction pad stiffness increases, the overall stiffness of the brake Becomes higher. Therefore, the pad wear amount estimating means 109 changes the correlation between the current input shaft angle and the piston load with respect to the predetermined correlation between the input shaft angle and the piston load when the friction pads 7 and 8 (FIG. 1) are new. The wear amount of the friction pads 7 and 8 (FIG. 1) can be estimated based on the above. As shown in FIG. 12, when the friction pad is new, non-linearity appears strongly in the correlation between the input shaft angle and the piston load. When the friction pad is fully worn (when the wear limit is reached), the correlation approaches linear.
 図13は、一つのピストンにおける入力軸トルクとピストン荷重の関係を示す図である。前記入力軸トルクは、ブレーキ力の指令値に概ね比例するとともに、モータ電流にも概ね比例する。このため、例えば、ブレーキ力指令手段101a(図11)から与えられる指令値または電流検出手段Sc(図11)から与えられるモータ電流から、入力軸トルクが定められた比例係数に従って求められる。 FIG. 13 is a diagram showing the relationship between input shaft torque and piston load in one piston. The input shaft torque is substantially proportional to the command value of the braking force and is also substantially proportional to the motor current. For this reason, for example, the input shaft torque is obtained from the command value given from the brake force command means 101a (FIG. 11) or the motor current given from the current detection means Sc (FIG. 11) according to the determined proportionality coefficient.
 この電動ブレーキ装置では、主に、第1および第2の直動機構33a,33b(図4)等の摩擦力の影響によりヒステリシス損失が発生する。具体的には、ブレーキ力を増加させる際の正効率特性と、ブレーキ力を減少させる際の逆効率特性とは、入力軸トルクに対するピストン荷重の傾き(比例関係)が異なる。ブレーキペダルを踏む込んだ増圧時には、入力軸トルクに対して減圧時よりも緩やかにピストン荷重が増加していく。ブレーキペダルをリリースした減圧時には、入力軸トルクに対して増圧時よりも急峻にピストン荷重が減少していく。したがって、同図13の破線矢印で示すように、増圧側、減圧側の実線間で入力軸トルクが変化してもピストン荷重は変化しない。 In this electric brake device, hysteresis loss occurs mainly due to the influence of frictional forces such as the first and second linear motion mechanisms 33a and 33b (FIG. 4). Specifically, the positive efficiency characteristic when the braking force is increased and the inverse efficiency characteristic when the braking force is decreased differ in the inclination (proportional relationship) of the piston load with respect to the input shaft torque. When the pressure is increased by depressing the brake pedal, the piston load gradually increases with respect to the input shaft torque than when the pressure is reduced. When the brake pedal is released and the pressure is reduced, the piston load decreases more rapidly than when the input shaft torque is increased. Therefore, as indicated by the broken line arrows in FIG. 13, the piston load does not change even if the input shaft torque changes between the solid lines on the pressure increasing side and the pressure reducing side.
 図14は、この電動ブレーキ装置におけるモータ30(図4)のモータ回転角と各ピストン荷重の関係を示す図である。図4および図14に示すように、一つのモータ30と第1および第2の直動機構33a,33bが直結駆動される直動アクチュエータ31では、第1のピストン26aと第2のピストン26bで荷重が発生するタイミングが異なる場合がある。 FIG. 14 is a diagram showing the relationship between the motor rotation angle of the motor 30 (FIG. 4) and each piston load in this electric brake device. As shown in FIGS. 4 and 14, in the direct acting actuator 31 in which one motor 30 and the first and second direct acting mechanisms 33a and 33b are directly connected, the first piston 26a and the second piston 26b are used. The timing at which the load is generated may be different.
 同直動アクチュエータ31では、以下の式(1)、(2)の関係が成立している。ここで、上述のとおり第1のピストン26aと第2のピストン26bで荷重が発生するタイミングが異なる場合があるため、以下の式(1)および(2)は、それぞれ、第1のピストン26aと第2のピストン26bはそれぞれ別々の関数で表される。 In the linear actuator 31, the following expressions (1) and (2) are satisfied. Here, as described above, the timing at which the load is generated may be different between the first piston 26a and the second piston 26b. Therefore, the following equations (1) and (2) Each second piston 26b is represented by a separate function.
 式(1):第1および第2のピストン26a,26bを一つのモータ30にて直結駆動する直動アクチュエータ31における、それぞれのピストン(直動機構)入力軸角度、入力軸トルクと発生荷重の関係を示した式。
 F=f(θ)=g(T
 F=f(θ)=g(T
Formula (1): In the linear actuator 31 that directly drives the first and second pistons 26a and 26b by a single motor 30, the piston (linear motion mechanism) input shaft angle, input shaft torque, and generated load An expression that shows the relationship.
F A = f AA ) = g A (T A )
F B = f BB ) = g B (T B )
 ここで、
 F:第1のピストンにおける軸方向荷重(第1の荷重検出手段のセンサ出力)
 F:第2のピストンにおける軸方向荷重(第2の荷重検出手段のセンサ出力)
 T:第1のピストンにおける入力軸トルク
 T:第2のピストンにおける入力軸トルク
 θ:第1のピストンにおける入力軸角度
 θ:第2のピストンにおける入力軸角度
here,
F A : Axial load on the first piston (sensor output of the first load detecting means)
F B : Axial load on the second piston (sensor output of the second load detecting means)
T A : Input shaft torque at the first piston T B : Input shaft torque at the second piston θ A : Input shaft angle at the first piston θ B : Input shaft angle at the second piston
 なお、f(θ),f(θ),g(T)およびg(T)は、それぞれ、θ,θ,TおよびTに依存した関数を表す。 Incidentally, f A (θ A), f B (θ B), g A (T A) and g B (T B), respectively, represent a function that depends on θ A, θ B, T A and T B .
 式2:第1および第2のピストン26a,26bの入力軸とモータ30の角度およびトルクの関係を示した式。
 θ=θ=θ
 T=T+T
ここで、
 θ:モータ回転角
 T:モータトルク
Expression 2: Expression showing the relationship between the input shaft of the first and second pistons 26a, 26b and the angle and torque of the motor 30.
θ M = θ A = θ B
T M = T A + T B
here,
θ M : Motor rotation angle T M : Motor torque
 図11および図14に示すように、異常判定手段108は、前述のように、第1および第2のピストン26a,26b(図4)に対応した摩擦パッド7,8(図7)の摩耗量を推定しておけば、第1および第2の荷重検出手段Sa,Sbに異常が発生した場合、モータ回転角と各ピストン荷重の関係から、第1および第2の荷重検出手段Sa,Sbの異常を検出することが可能である。異常判定手段108は、あるモータ回転角θに対して、第1および第2の荷重検出手段Sa,Sbのセンサ出力F,Fの少なくとも一方が定められた設定範囲から外れたとき、設定範囲から外れた一方の荷重検出手段Sa(Sb)または設定範囲から外れた両方の荷重検出手段Sa,Sbを異常と判定する。 As shown in FIGS. 11 and 14, the abnormality determining means 108, as described above, wears the friction pads 7, 8 (FIG. 7) corresponding to the first and second pistons 26a, 26b (FIG. 4). If an abnormality occurs in the first and second load detection means Sa and Sb, the relationship between the motor rotation angle and each piston load is used to determine the first and second load detection means Sa and Sb. Abnormalities can be detected. When the abnormality determination means 108 is out of a predetermined setting range, at least one of the sensor outputs F A and F B of the first and second load detection means Sa and Sb with respect to a certain motor rotation angle θ M , One load detection means Sa (Sb) outside the set range or both load detection means Sa and Sb outside the set range are determined to be abnormal.
 図11に示すように、モータ駆動制御部107は、通常制御部110と、異常時制御部111とを有する。通常制御部110は、異常判定手段108により第1および第2の荷重検出手段Sa,Sbが共に異常ではないと判定されると、第1および第2の荷重検出手段Sa,Sbでそれぞれ検出される荷重の合算値を用いてモータ30を制御する。通常制御部110は、例えば、ブレーキ力指令手段101aから与えられるブレーキ力の指令値に対し、前記荷重の合算値から推定されるブレーキ力推定値を追従させるフィードバック制御を行う。なお、通常制御部110は、例えば、車速、モータ電流等の検出値が定められた条件を充足するときフィードフォワード制御を行うようにしてもよい。前記定められた条件は、設計等によって任意に定める条件であって、例えば、試験およびシミュレーションのいずれか一方または両方により適切な条件を求めて定められる。 As shown in FIG. 11, the motor drive control unit 107 includes a normal control unit 110 and an abnormal time control unit 111. When the abnormality determining unit 108 determines that the first and second load detecting units Sa and Sb are not abnormal, the normal control unit 110 is detected by the first and second load detecting units Sa and Sb, respectively. The motor 30 is controlled using the total load value. The normal control unit 110 performs, for example, feedback control in which a brake force estimated value estimated from the sum of the loads follows a brake force command value given from the brake force command unit 101a. Note that the normal control unit 110 may perform feedforward control when, for example, the detection values such as the vehicle speed and the motor current satisfy a predetermined condition. The predetermined condition is an arbitrary condition determined by design or the like, and is determined, for example, by obtaining an appropriate condition by one or both of a test and a simulation.
 異常時制御部111は、異常判定手段108によりいずれか一方の荷重検出手段Sa(Sb)が異常であると判定されたとき、式(1),(2)の関係、正常な他方の荷重検出手段Sb(Sa)で検出される荷重、電流検出手段Scで検出されるモータ電流、および回転角検出手段Sdで検出されるモータ回転角から、第1および第2のピストン26a,26b(図4)における軸方向荷重をそれぞれ推定する。 When the abnormality determination unit 108 determines that one of the load detection units Sa (Sb) is abnormal, the abnormal-time control unit 111 detects the relationship between the expressions (1) and (2) and the normal other load. From the load detected by the means Sb (Sa), the motor current detected by the current detection means Sc, and the motor rotation angle detected by the rotation angle detection means Sd, the first and second pistons 26a, 26b (FIG. 4). ) In the axial direction.
 異常時制御部111はこの推定値を基にモータ30を制御する。異常時制御部111は、例えば、ブレーキ力指令手段101aから与えられるブレーキ力の指令値に対し、推定された各軸方向荷重から算出されるブレーキ力推定値を追従させるフィードバック制御を行う。異常時制御部111は、異常判定手段108により第1および第2の荷重検出手段Sa,Sbが共に異常であると判定されたとき、フィードフォワード制御を行うようにしてもよい。 The abnormality control unit 111 controls the motor 30 based on the estimated value. The abnormal time control unit 111 performs, for example, feedback control in which a brake force estimated value calculated from each estimated axial load is followed with respect to a brake force command value given from the brake force command unit 101a. The abnormality control unit 111 may perform feedforward control when the abnormality determination unit 108 determines that the first and second load detection units Sa and Sb are both abnormal.
 警告信号出力手段106は、異常判定手段108からいずれか一方または両方の荷重検出手段Sa,Sbが異常であると判定されたとき、ECU101に警告信号を出力する。ECU101は、警告信号出力手段106から警告信号が入力されると、警告表示等出力手段112に警告表示等を出力させる。これにより運転者の注意を喚起し得る。車両におけるコンソールパネル等に、例えば、ディスプレイ、警告灯、または音声出力装置等の警告表示等出力手段112が設けられる。 The warning signal output means 106 outputs a warning signal to the ECU 101 when it is determined from the abnormality determination means 108 that one or both of the load detection means Sa and Sb are abnormal. When the warning signal is input from the warning signal output unit 106, the ECU 101 causes the warning display etc. output unit 112 to output a warning display or the like. This can alert the driver. For example, a console panel or the like in the vehicle is provided with an output means 112 such as a warning display or a warning display such as an audio output device.
 図15は、この制御装置の各過程を段階的に示すフローチャートである。図11も参照しつつ説明する。この電動ブレーキ装置を搭載する車両の主電源を投入する条件で本処理を開始し、モータコントロール部105はブレーキ力指令手段101aからブレーキ力の指令値を取得する(ステップS1)。次に、モータコントロール部105は、第1および第2の荷重検出手段Sa,Sbから第1および第2のピストン26a,26b(図4)における軸方向荷重をそれぞれ取得する(ステップS2)。また、電流検出手段Scからモータ電流を取得し、回転角検出手段Sdからモータ回転角を検出する(ステップS3)。 FIG. 15 is a flowchart showing step by step each process of the control device. This will be described with reference to FIG. This process is started under the condition that the main power supply of the vehicle equipped with the electric brake device is turned on, and the motor control unit 105 acquires the command value of the brake force from the brake force command unit 101a (step S1). Next, the motor control unit 105 acquires the axial loads in the first and second pistons 26a and 26b (FIG. 4) from the first and second load detection means Sa and Sb, respectively (step S2). Further, the motor current is acquired from the current detection means Sc, and the motor rotation angle is detected from the rotation angle detection means Sd (step S3).
 次に、異常判定手段108は、各荷重検出手段Sa,Sbの異常の有無を判定する(ステップS4)。第1および第2の荷重検出手段Sa,Sbが共に異常なしとの判定で(ステップS4のyes)、通常制御部110は、第1および第2の荷重検出手段Sa,Sbでそれぞれ検出される荷重を合算する演算を行い(ステップS5)、その後ステップS6に進む。いずれか一方の荷重検出手段Sa(Sb)が異常であると判定されたとき(ステップS4のno)、異常時制御部111により第1および第2のピストン26a,26b(図4)における軸方向荷重をそれぞれ推定してこれらを合算する(ステップS7)。その後ステップS6に進む。ステップS6において、通常制御部110または異常時制御部111による荷重制御が実行される。その後本処理を終了する。 Next, the abnormality determination means 108 determines whether or not each load detection means Sa, Sb is abnormal (step S4). When it is determined that the first and second load detection means Sa and Sb are both abnormal (yes in step S4), the normal control unit 110 is detected by the first and second load detection means Sa and Sb, respectively. An operation for adding the loads is performed (step S5), and then the process proceeds to step S6. When it is determined that any one of the load detection means Sa (Sb) is abnormal (no in step S4), the abnormal direction control unit 111 performs axial directions in the first and second pistons 26a and 26b (FIG. 4). The loads are estimated and added together (step S7). Thereafter, the process proceeds to step S6. In step S6, the load control by the normal control unit 110 or the abnormal time control unit 111 is executed. Thereafter, this process is terminated.
 以上説明した直動アクチュエータ31によれば、通常制御部110が、第1および第2の荷重検出手段Sa,Sbでそれぞれ検出される荷重の合算値を用いてモータ30を制御する。このように二つの荷重検出手段Sa,Sbで検出される荷重の合算値に基づいてモータ30を制御することで、より正確な荷重制御を行うことが可能となる。この直動アクチュエータ31を電動ブレーキ装置に適用することで、より正確な荷重制御を行えるため、フェード現象等を抑制することができる。この直動アクチュエータ31は、一モータ、二ピストンタイプのため、例えば、二つのモータで二つのピストンをそれぞれ駆動する構造よりも、径方向の小形化を図ることができる。よって直動アクチュエータ31を車両に搭載する場合のレイアウト上の問題を解消することが可能となる。 According to the linear motion actuator 31 described above, the normal control unit 110 controls the motor 30 using the total value of the loads detected by the first and second load detecting means Sa and Sb, respectively. In this way, more accurate load control can be performed by controlling the motor 30 based on the total value of the loads detected by the two load detecting means Sa and Sb. By applying this linear actuator 31 to the electric brake device, more accurate load control can be performed, so that a fade phenomenon or the like can be suppressed. Since the direct acting actuator 31 is of a single motor type or a two piston type, for example, it is possible to reduce the size in the radial direction as compared with a structure in which two pistons are driven by two motors. Therefore, it is possible to solve the layout problem when the linear actuator 31 is mounted on the vehicle.
 いずれか一方の荷重検出手段Sa(Sb)が異常であると判定されたとき、異常時制御部111が、正常である他方の荷重検出手段Sb(Sa)で検出される荷重、モータ電流、およびモータ回転角から、二つの直動機構33a,33bでそれぞれ発生している荷重を推定する。異常時制御部111は、この推定値を基にモータ30を制御する。つまり異常時制御部111は、正常な荷重検出手段Sb(Sa)を用いてアクチュエータ全体の制御を行う。このように一方の荷重検出手段Sa(Sb)に異常が発生しても、正常な荷重検出手段Sb(Sa)の出力値を基に二つの直動機構33a,33bでそれぞれ発生している荷重を推定することが可能であり、冗長性が向上する。 When it is determined that any one of the load detection means Sa (Sb) is abnormal, the abnormality control unit 111 detects the load detected by the other normal load detection means Sb (Sa), the motor current, and From the motor rotation angle, the load generated in each of the two linear motion mechanisms 33a and 33b is estimated. The abnormal time control unit 111 controls the motor 30 based on the estimated value. That is, the abnormal time control unit 111 controls the entire actuator using the normal load detecting means Sb (Sa). Thus, even if an abnormality occurs in one of the load detection means Sa (Sb), the load generated in each of the two linear motion mechanisms 33a and 33b based on the output value of the normal load detection means Sb (Sa). Can be estimated and the redundancy is improved.
 第2の実施形態について説明する。
 直動アクチュエータは、二つのピストンを一つのモータにて駆動し、その動力伝達経路にトルクを分配する差動装置を設けた構成であってもよい。この差動装置を設けた直動アクチュエータにおけるモータ回転角と各ピストンに発生する荷重の関係は、図16に示される。この場合は、モータトルクは二つ(第1,第2)のピストンに均等に分配されるため、各ピストンに発生する荷重は常に一致すると共に、前述の式(1)および以下の式(3)が成立している。
A second embodiment will be described.
The linear actuator may have a configuration in which a differential device is provided in which two pistons are driven by one motor and torque is distributed to the power transmission path. FIG. 16 shows the relationship between the motor rotation angle and the load generated on each piston in the linear motion actuator provided with this differential device. In this case, since the motor torque is evenly distributed to the two (first and second) pistons, the load generated in each piston always coincides, and the above-described formula (1) and the following formula (3) ) Is established.
 式(3):二つのピストンを一つのモータにて駆動し、その動力伝達経路にトルクを分配する差動装置を設けた直動アクチュエータにおける、各ピストンの入力軸とモータの角度およびトルクの関係を示した式。
 θ=θ+θ
 T/2=T=T
Expression (3): Relationship between the input shaft of each piston, the angle of the motor, and the torque in a linear actuator provided with a differential device that drives two pistons with one motor and distributes torque to the power transmission path An expression showing
θ M = θ A + θ B
T M / 2 = T A = T B
 図11および図16に示すように、いずれか一方の荷重検出手段Sa(Sb)に異常が発生した場合には、異常判定手段108が、モータトルクに対して各荷重検出手段Sa ,Sbのセンサ出力が定められた範囲内であるかを判定することで、範囲内にない場合に異常が発生した荷重検出手段Sa(Sb)を特定することができる。この場合、異常時制御部111は、正常な荷重検出手段Sb(Sa)を用いて直動アクチュエータ全体の制御を行うことが可能となる。 As shown in FIGS. 11 and 16, when an abnormality occurs in any one of the load detection means Sa (Sb), the abnormality determination means 108 detects the sensor of each load detection means Sa, Sb with respect to the motor torque. By determining whether the output is within the predetermined range, it is possible to identify the load detection means Sa (Sb) in which an abnormality has occurred when the output is not within the range. In this case, the abnormal-time control unit 111 can control the entire linear motion actuator using the normal load detection means Sb (Sa).
 第1および第2の荷重検出手段Sa,Sbとして、磁気式以外の光学式、渦電流式、または静電容量式のセンサを適用することも可能である。 As the first and second load detection means Sa and Sb, it is also possible to apply an optical type sensor other than the magnetic type, an eddy current type sensor, or a capacitance type sensor.
 図10に示すように、ECU101は、車輪毎に設けられる各車輪速センサShおよび加速度センサSgを用いて、この車両における車体速度を推定してもよい。またECU101にアンチロック制御機能部(図示せず)を設け、同アンチロック制御機能部は、前記推定される車体速度、および車輪速センサShで検出される車輪速から、制動時に車輪が過剰にロックすることを防止するためのブレーキ力を車輪速フィードバック制御あるいはロック傾向の判断に伴うブレーキ減圧制御等によって決定し、必要に応じて制御に介入してもよい。 As shown in FIG. 10, the ECU 101 may estimate the vehicle body speed of this vehicle using each wheel speed sensor Sh and acceleration sensor Sg provided for each wheel. Further, the ECU 101 is provided with an anti-lock control function unit (not shown), and the anti-lock control function unit has an excessive number of wheels during braking from the estimated vehicle body speed and the wheel speed detected by the wheel speed sensor Sh. The braking force for preventing the locking may be determined by wheel speed feedback control or brake pressure reduction control accompanying determination of the locking tendency, and may intervene in the control as necessary.
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention based on embodiment was demonstrated, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
26a…第1のピストン
26b…第2のピストン
30…モータ
31…直動アクチュエータ
33a…第1の直動機構
33b…第2の直動機構
100…制御装置
108…異常判定手段
110…通常制御部
111…異常時制御部
Sa…第1の荷重検出手段
Sb…第2の荷重検出手段
Sd…回転角検出手段
26a ... 1st piston 26b ... 2nd piston 30 ... Motor 31 ... Linear motion actuator 33a ... 1st linear motion mechanism 33b ... 2nd linear motion mechanism 100 ... Control device 108 ... Abnormality determination means 110 ... Normal control part 111: Abnormal control unit Sa ... First load detection means Sb ... Second load detection means Sd ... Rotation angle detection means

Claims (4)

  1.  一つのモータと、
     二つの直動機構であって、それぞれ、一つのピストンを含み、前記モータの回転運動をそのピストンの直線運動に変換する二つの直動機構と、
     前記モータを制御する制御装置と、
     二つの荷重検出手段であって、それぞれ、前記二つの直動機構のうちの対応する直動機構の軸方向の荷重を検出する二つの荷重検出手段とを備え、
     前記制御装置は、前記二つの荷重検出手段でそれぞれ検出される荷重の合算値を用いて前記モータを制御する直動アクチュエータ。
    One motor,
    Two linear motion mechanisms, each including one piston, and converting the rotational motion of the motor into linear motion of the piston;
    A control device for controlling the motor;
    Two load detection means, each comprising two load detection means for detecting the axial load of the corresponding linear motion mechanism of the two linear motion mechanisms,
    The control device is a linear motion actuator that controls the motor using a total value of loads detected by the two load detection means.
  2.  請求項1に記載の直動アクチュエータにおいて、さらに、
     前記モータの電流を検出する電流検出手段と、
     前記モータの回転角を検出する回転角検出手段とを備え、
     前記制御装置は、
      前記二つの荷重検出手段のそれぞれが異常であるか否かを定められた条件に従って判定する異常判定手段と、
      この異常判定手段により前記二つの荷重検出手段が共に異常ではないと判定されると、前記二つの荷重検出手段でそれぞれ検出される荷重の合算値を用いて前記モータを制御する通常制御部と、
      前記異常判定手段によりいずれか一方の荷重検出手段が異常であると判定されると、異常と判定されていない他方の荷重検出手段で検出される荷重、前記電流検出手段で検出されるモータ電流、および前記回転角検出手段で検出されるモータ回転角に基づいて、定められた条件に従って前記二つの直動機構でそれぞれ発生している軸方向の荷重を推定し、この推定された荷重の合算値を用いて前記モータを制御する異常時制御部と、
     を有する直動アクチュエータ。
    The linear actuator according to claim 1, further comprising:
    Current detecting means for detecting the current of the motor;
    Rotation angle detection means for detecting the rotation angle of the motor,
    The controller is
    An abnormality determination means for determining whether each of the two load detection means is abnormal according to a predetermined condition;
    When it is determined by the abnormality determination means that the two load detection means are not abnormal, a normal control unit that controls the motor using a total value of loads detected by the two load detection means,
    When one of the load detection means is determined to be abnormal by the abnormality determination means, the load detected by the other load detection means not determined to be abnormal, the motor current detected by the current detection means, Based on the motor rotation angle detected by the rotation angle detection means, the axial load generated in each of the two linear motion mechanisms is estimated according to a predetermined condition, and the total value of the estimated loads is estimated. An abnormal-time control unit for controlling the motor using
    A linear actuator.
  3.  請求項2に記載の直動アクチュエータにおいて、前記制御装置には指令値が入力され、前記異常時制御部は、前記指令値に対し、前記推定された荷重の合算値を追従させるフィードバック制御を行う直動アクチュエータ。 3. The linear motion actuator according to claim 2, wherein a command value is input to the control device, and the abnormal time control unit performs feedback control for causing the commanded value to follow the total value of the estimated loads. Linear actuator.
  4.  請求項1ないし請求項3のいずれか1項に記載の直動アクチュエータを備えた電動ブレーキ装置。 An electric brake device comprising the linear motion actuator according to any one of claims 1 to 3.
PCT/JP2017/008565 2016-03-09 2017-03-03 Linear actuator WO2017154790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-045735 2016-03-09
JP2016045735A JP6621689B2 (en) 2016-03-09 2016-03-09 Linear actuator

Publications (1)

Publication Number Publication Date
WO2017154790A1 true WO2017154790A1 (en) 2017-09-14

Family

ID=59790300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008565 WO2017154790A1 (en) 2016-03-09 2017-03-03 Linear actuator

Country Status (2)

Country Link
JP (1) JP6621689B2 (en)
WO (1) WO2017154790A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3132278A1 (en) * 2022-02-02 2023-08-04 Safran Aircraft Engines Electric braking system of a turboprop engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210074947A (en) * 2019-12-12 2021-06-22 주식회사 만도 Electronic parking brake system and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500918A (en) * 1988-04-19 1991-02-28 アライド シグナル インコーポレーテッド Electrically actuated disc brakes with back-off protector
JP2013083550A (en) * 2011-10-11 2013-05-09 Ntn Corp Magnetic load sensor for direct acting actuator and direct acting actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500918A (en) * 1988-04-19 1991-02-28 アライド シグナル インコーポレーテッド Electrically actuated disc brakes with back-off protector
JP2013083550A (en) * 2011-10-11 2013-05-09 Ntn Corp Magnetic load sensor for direct acting actuator and direct acting actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3132278A1 (en) * 2022-02-02 2023-08-04 Safran Aircraft Engines Electric braking system of a turboprop engine

Also Published As

Publication number Publication date
JP6621689B2 (en) 2019-12-18
JP2017159782A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US10125834B2 (en) Electric brake device and electric brake device system
EP2907709B1 (en) Electric-powered parking brake device
EP3199416B1 (en) Electric brake system
US10100891B2 (en) Electric brake device
KR100957329B1 (en) Disk break apparatus for electro mechanical break system
WO2017154790A1 (en) Linear actuator
JP6591264B2 (en) Brake device
JPWO2005124182A1 (en) Electric brake
JP4283077B2 (en) Brake device
JP6950251B2 (en) Vehicle drive system
WO2017038759A1 (en) Vehicular motor drive device and vehicle having the same mounted thereon
JP5257636B2 (en) Electric disc brake
JP2000234641A (en) Motor-driven brake device
JP6736295B2 (en) Brake device
WO2017077941A1 (en) Brake device
JP6242641B2 (en) Electric brake system
WO2016047481A1 (en) Electric brake system
JP2014121964A (en) Electric brake device and brake system with the device
JP5077603B2 (en) Electric disc brake
JP6605647B2 (en) Electric brake device
JP6906398B2 (en) Electric brake device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763130

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763130

Country of ref document: EP

Kind code of ref document: A1