WO2017077941A1 - Brake device - Google Patents

Brake device Download PDF

Info

Publication number
WO2017077941A1
WO2017077941A1 PCT/JP2016/081910 JP2016081910W WO2017077941A1 WO 2017077941 A1 WO2017077941 A1 WO 2017077941A1 JP 2016081910 W JP2016081910 W JP 2016081910W WO 2017077941 A1 WO2017077941 A1 WO 2017077941A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
brake
actuators
load
brake device
Prior art date
Application number
PCT/JP2016/081910
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 達也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015215406A external-priority patent/JP6632867B2/en
Priority claimed from JP2016002442A external-priority patent/JP6651360B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017077941A1 publication Critical patent/WO2017077941A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D66/02Apparatus for indicating wear

Definitions

  • the present invention relates to a two-piston type brake device, and more particularly to a brake device capable of suppressing uneven wear of the friction pad and delaying the replacement time of the friction pad.
  • Patent Document 1 An electric brake actuator using a motor and a linear motion mechanism has been proposed (Patent Document 1).
  • this electric brake actuator one linear motion mechanism is operated by one motor.
  • a two-piston type caliper is commercially available as a conventional hydraulic brake in order to apply a load uniformly to the friction pad.
  • the loads acting on the two pistons 80 and 80 are the same.
  • the friction pad 82 (pad portion on the upstream side in the disk rotation direction) into which the brake disk 81 enters is located downstream in the disk rotation direction. This causes uneven wear that is more worn than the friction pad. As the uneven wear of the friction pad 82 progresses, drag torque increases or early replacement of the friction pad 82 becomes necessary.
  • An object of the present invention is to provide a brake device capable of reducing drag torque and delaying the replacement time of a friction pad in a two-piston type brake device.
  • the brake device includes a brake rotor 3 and A friction pad 4 including a plurality of pad portions 4a and 4b, the friction pad 4 contacting the brake rotor 3 to generate a braking force;
  • Two actuators 2-1 and 2-2 that respectively correspond to different pad portions and drive the friction pad 4 to contact and separate from the brake rotor 3 by the pistons 18 and 18;
  • a control device 5 for controlling the two actuators 2-1, 2-2,
  • Pad portion wear amount estimating means 45 for estimating the wear amount of the pad portions 4a, 4a and 4b, 4b corresponding to the pistons 18 of the two actuators 2-1, 2-2,
  • the two actuators 2-1 and 2-2 are individually set according to the wear amount of the pad portions 4a, 4a and 4b, 4b estimated by the pad portion wear amount estimating means 45 in accordance with a given brake command.
  • a control device having an individual control unit 44 to be controlled.
  • “individually controlled” here means that the loads of the two actuators 2-1 and 2-2 can be controlled to different values, and the load of one actuator 2 is determined. Including the case where the load of one actuator 2 is inevitably determined. Of course, “individually controlled” includes controlling the loads of the two actuators 2-1 and 2-2 to the same value.
  • the “amount of wear of the pad portion” is a total value of the amount of wear of the pad portion. That is, since the brake rotor is sandwiched between the friction pads from both sides, the sum of the wear amounts of the pad portions on both sides corresponds to the wear amount of the pad portions.
  • the pad wear amount estimation means 45 estimates the combined wear amount of the pad portions 4a, 4a and 4b, 4b corresponding to the two pistons 18 and 18 in the friction pad 4, respectively.
  • the estimated amount of wear may be, for example, at the time of starting to turn on the ignition of the vehicle, or may be at any time or periodically during vehicle operation.
  • the individual control unit 44 individually controls the two actuators 2 and 2 according to the estimated total wear amount of the pad portions 4a and 4a and the estimated total wear amount of the pad portions 4b and 4b. For example, when there is a difference between the estimated total wear amount of the pad portions 4a and 4a and the estimated total wear amount of the pad portions 4b and 4b, the individual control unit 44 loads the actuator 2 with less progress of wear. Is controlled to be larger than the load of the other actuator 2. In this way, by controlling the two actuators 2 and 2 individually according to the total wear amount of the pad portions 4a and 4a and the total wear amount of the pad portions 4b and 4b, the progress of uneven wear of the friction pad 4 can be promoted. Can be prevented. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
  • the two actuators 2 and 2 may have fluid pressure type drive units 58 and 58 for driving the pistons 50 and 50, respectively, using fluid as a medium. In this case, it is possible to prevent the partial wear of the friction pad 4 from progressing by individually driving the pistons 50, 50 by the fluid pressure type drive units 58, 58.
  • the two actuators 2 and 2 may each include an electric motor 11 and a linear motion mechanism 12 that converts the rotational motion of the electric motor 11 into the linear motion of each piston 18. In this way, in the 2-piston type electric actuator 2, it is possible to prevent the friction pad 4 from progressing unevenly.
  • the pad portion wear amount estimating means 45 has a pad portion remaining amount detecting portion 48 for detecting the remaining amount of the pad portions 4a, 4a and 4b, 4b corresponding to the pistons 18, 18, respectively.
  • the individual control unit 44 determines the second control unit according to the difference in the remaining amount of the pad portions 4a, 4a and 4b, 4b corresponding to the pistons 18 and 18 detected by the pad portion remaining amount detecting unit 48, respectively.
  • a load correction unit 44a that corrects a load generated in the two actuators 2-1 and 2-2 may be provided.
  • the remaining amount of the pad portion is the total value of the remaining amount of the pad portion, that is, the total remaining amount. That is, since the brake rotor is sandwiched between the friction pads from both sides, the sum of the remaining amounts of the pad portions on both sides corresponds to the remaining amount of the pad portions.
  • each pad portion remaining amount detecting unit 48 determines, for example, the remaining amount of the pad portions 4a and 4a and the remaining amount of the pad portions 4b and 4b corresponding to each piston 18 at the time of starting the vehicle or driving the vehicle. Detect each.
  • the load correction unit 44a for example, the remaining amount of the pad portions 4a and 4a and the pad Among the remaining amounts of the portions 4b and 4b, the load generated in one actuator 2 corresponding to the pad portion with a large remaining amount is corrected to be larger than the load generated in the other actuator 2.
  • the individual control units 44, 44 have the same amount of protrusion of the pistons 18, 18 of the two actuators 2-1, 2-2, and the two actuators 2-1, 2-2 respectively.
  • the two actuators 2-1 and 2-2 may be controlled so that the total load to be generated matches the required load on the brake device. In this case, it is possible to provide a difference in the load generated by each of the actuators 2-1 and 2-2 while making the projecting amounts of the two pistons 18 and 18 the same. Progress can be prevented.
  • FIG. 1 is a front view of a brake device according to a first embodiment of the present invention. It is a side view from the paper left side of the brake device of FIG. It is a side view from the paper surface right side of the brake device of FIG. It is a top view which shows a part of brake device of FIG. It is the VV line end view of FIG.
  • FIG. 1 It is the VI-VI sectional view taken on the line of FIG. It is a block diagram of the control system of the brake device of FIG. It is a block diagram which shows the detailed structure of the control apparatus of the brake device of FIG. It is a figure which shows the example of the correlation of the motor rotation angle according to the grade of pad wear, and a braking force estimated value in the brake device of FIG. It is a figure which shows the correlation of a motor rotation angle used for detection of the pad wear amount of the brake device of FIG. 1, and a braking force estimated value.
  • FIG. 1 it is a figure which shows the correlation of a motor rotation angle and a brake force estimated value used in order to estimate pad part abrasion loss based on the change rate of a motor rotation angle at the time of the change of a brake force estimated value. is there.
  • the brake device of FIG. 1 the correlation between the second-order differential between the motor rotation angle and the brake force estimation value, which is used to estimate the pad wear amount based on the nonlinearity of the correlation between the brake force estimation value and the motor rotation angle.
  • FIG. It is a flowchart which shows the process which controls each actuator of the brake device of FIG. It is a flowchart which shows the process which controls each actuator of the brake device which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a front view of the brake device
  • FIGS. 2 and 3 are left and right side views of the brake device of FIG.
  • this brake device is an electric brake device.
  • the brake device includes a caliper 1, first and second actuators 2-1 and 2-2 (FIG. 3), a brake rotor 3, and friction pads 4A and 4B (FIG. 4).
  • a control device 5 (FIG. 1).
  • the actuator 2 when simply referred to, it may correspond to both the first actuator 2-1 and the second actuator 2-2.
  • two actuators (first and second actuators) 2-1 and 2-2 are arranged in parallel in a single caliper 1 at a predetermined interval. As shown in FIG. 4, these actuators 2 and 2 drive the friction pad (an inboard side friction pad to be described later) 4B (FIG. 5) to contact and separate from the brake rotor 3 (FIG. 4).
  • the predetermined interval is appropriately determined according to the dimensions of the friction pad 4 and the first and second actuators 2-1, 2-2.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. Therefore, hereinafter, the first actuator 2-1 will be described, but this description also applies to the second actuator 2-2.
  • the caliper 1 is provided for each brake device in the vehicle so as to surround the outer peripheral side portion of the brake rotor 3.
  • a claw portion 6 is provided at an end portion of the caliper 1 on the outboard side.
  • An outboard side friction pad 4A located on the outboard side is supported by the claw portion 6.
  • the outboard side friction pad 4 ⁇ / b> A faces the side surface of the brake rotor 3 on the outboard side in the axial direction.
  • the vehicle width direction outer side of the vehicle is referred to as an outboard side
  • the vehicle width direction center side of the vehicle is referred to as an inboard side.
  • the inboard side friction pad 4 ⁇ / b> B located on the inboard side is supported at the outboard side end of the actuator 2.
  • the inboard friction pad 4B faces the inboard side surface of the brake rotor 3 in the axial direction.
  • the actuator 2 drives the inboard side friction pad 4 ⁇ / b> B to abut against and separate from the brake rotor 3.
  • the friction pad 4 when it can correspond to both the outboard side friction pad 4A and the inboard side friction pad 4B, it is simply referred to as the friction pad 4.
  • the mount 7 is supported by a knuckle (not shown) in the vehicle. As shown in FIG. 3, pin support pieces 8 and 8 are provided at both ends in the longitudinal direction of the mount 7. Slide pins 9 and 9 extending in parallel with each other in the axial direction are provided at the ends of the pin support pieces 8 and 8, respectively. The caliper 1 is supported by these slide pins 9 and 9 so as to be slidable in the axial direction.
  • the inboard friction pad 4 ⁇ / b> B comes into contact with the brake rotor 3 by driving an actuator 2 described later, and presses the brake rotor 3 in the axial direction.
  • the caliper 1 slides to the inboard side by the reaction force of the pressing force.
  • the outboard friction pad 4 ⁇ / b> A supported by the claw portion 6 of the caliper 1 contacts the brake rotor 3.
  • the outboard side / inboard side friction pads 4 ⁇ / b> A and 4 ⁇ / b> B strongly hold the brake rotor 3 from both sides in the axial direction, so that a braking force is applied to the brake rotor 3.
  • the first and second actuators 2-1 and 2-2 include housings 10 and 10, electric motors 11 and 11, and first and second linear motion mechanisms 12-1, respectively. , 12-2 (FIG. 6) and speed reduction mechanisms 13, 13.
  • Two cylindrical housings 10 are fixed to the caliper 1.
  • the electric motors 11 are supported by the housings 10 and 10 respectively.
  • a linear motion mechanism 12 is incorporated in the housing 10, and the linear motion mechanism 12 applies a braking force to the brake rotor 3 according to the output of the electric motor 11 (FIG. 3).
  • the simple term of the linear motion mechanism 12 may correspond to both the first linear motion mechanism 12-1 and the second linear motion mechanism 12-2.
  • the linear motion mechanism 12 is a mechanism that converts the rotational motion output from the speed reduction mechanism 13 into a linear motion and causes the friction pad 4 to abut against and separate from the brake rotor 3.
  • the linear motion mechanism 12 includes a rotary shaft 14 that is rotationally driven by the electric motor 11 (FIG. 3), a conversion mechanism portion 15 that converts the rotational motion of the rotary shaft 14 into linear motion, and restraint portions 16 and 17.
  • the conversion mechanism portion 15 includes a linear motion portion 18 that is a piston, a support member 19, a backup plate 20 that is an annular thrust plate, a thrust bearing 21, a rolling bearing 22, a carrier 23, a first and a second. Slide bearings 24 and 25 and a plurality of planetary rollers 26.
  • a cylindrical linear motion portion 18 is supported on the inner peripheral surface of the housing 10 so as to be prevented from rotating and movable in the axial direction.
  • a spiral protrusion is provided that protrudes a predetermined distance radially inward and is formed in a spiral shape.
  • a plurality of planetary rollers 26 are engaged with the spiral protrusions.
  • the support member 19 is provided on one end side in the axial direction of the linear motion portion 18 in the housing 10.
  • the support member 19 has a boss portion and a flange portion extending radially outward from the boss portion.
  • a plurality of rolling bearings 22 are fitted in the boss portion, and the rotary shaft 14 is fitted to the inner ring inner diameter surface of the rolling bearings 22.
  • the rotary shaft 14 is rotatably supported by the support member 19 via a plurality of rolling bearings 22.
  • a carrier 23 that can rotate around the rotation shaft 14 is provided on the inner periphery of the linear motion portion 18.
  • the carrier 23 has a pair of disks that are arranged to face each other in the axial direction.
  • the disk close to the support member 19 is referred to as an inner disk
  • the other disk is referred to as an outer disk.
  • a plurality of pillar members are provided on a side surface of the outer side disk facing the inner side disk so as to protrude in an axial direction (inboard side) from an outer peripheral edge portion on the side surface.
  • the outer side disc and the inner side disc are integrally provided by the plurality of column members.
  • the inner disk is rotatably supported on the rotary shaft 14 by a first slide bearing 24 fitted between the inner disc and the rotary shaft 14.
  • a shaft insertion hole is formed in the center of the outer side disk, and a second plain bearing 25 is fitted in this shaft insertion hole.
  • the outer disk is rotatably supported on the rotary shaft 14 by the second slide bearing 25.
  • the restraining portions 16 and 17 for restraining the axial positions of the rotating shaft 14 and the carrier 23 with respect to the support member 19 are provided at both ends in the axial direction of the rotating shaft 14.
  • the carrier 23 is provided with a plurality of roller shafts 27 at intervals in the circumferential direction. Both end portions in the axial direction of each roller shaft 27 are supported across the inner side disk and the outer side disk. Both discs have a plurality of shaft insertion holes. Each shaft insertion hole is composed of a long hole extending a predetermined distance in the radial direction. Both axial ends of each roller shaft 27 are inserted into the respective shaft insertion holes, and these roller shafts 27 are supported so as to be movable in the radial direction within the range of the respective shaft insertion holes. An elastic ring 28 that urges the roller shafts 27 inward in the radial direction is stretched between both axial ends of the plurality of roller shafts 27.
  • the planetary roller 26 is rotatably supported on each roller shaft 27.
  • Each planetary roller 26 is interposed between the outer peripheral surface of the rotating shaft 14 and the inner peripheral surface of the linear motion portion 18.
  • Each planetary roller 26 is pressed against the outer peripheral surface of the rotating shaft 14 by the urging force of the elastic ring 28. As the rotating shaft 14 rotates, each planetary roller 26 that contacts the outer peripheral surface of the rotating shaft 14 rotates due to contact friction.
  • the speed reduction mechanism 13 is a mechanism for decelerating and transmitting the rotation of the electric motor 11 (FIG. 3) to an output gear 29 fixed to the rotary shaft 14. As shown in FIG. 3, the speed reduction mechanism 13 includes a plurality of gear trains. In this embodiment, the speed reduction mechanism 13 can reduce the rotation of the input gear 30 attached to the rotor shaft (not shown) of the electric motor 11 by the intermediate gear 31 and transmit it to the output gear 29.
  • FIG. 7 is a block diagram of the control system of this brake device.
  • the brake device control device 5 controls the two actuators 2 and 2 (first and second actuators 2-1 and 2-2), respectively.
  • the control device 5 includes a brake force command means 32 a provided in the ECU 32 and two inverter devices 33 and 33 respectively corresponding to the two actuators 2 and 2.
  • an electric control unit that controls the entire vehicle is applied as the ECU 32 that is a higher-level control unit of each inverter device 33.
  • the brake force command means 32a of the ECU 32 generates and outputs a target brake force command value for each wheel according to the output of the brake sensor 34a that detects the amount of operation of the brake pedal, which is the brake operation means 34.
  • each inverter device 33 includes a braking force estimation means 35, a power circuit unit 36 provided for each electric motor 11, a motor control unit 37 that controls the power circuit unit 36, Warning signal output means 38 and current detection means 39 are provided.
  • the brake force estimation means 35 is a means for obtaining an estimated value of the brake force that presses the friction pad 4 (FIG. 4) against the brake rotor 3 (FIG. 4).
  • the brake force estimating means 35 obtains an estimated value of the corresponding brake force by calculation from the output of the brake sensor 34a and the motor current detected by the current detecting means 39.
  • the relationship between the output of the brake sensor 34a, the motor current, and the estimated value of the braking force is appropriately determined by, for example, the result of one or both of the test and simulation, and is recorded in the recording means 40 so as to be rewritable. .
  • the brake force estimating means 35 may further include a load sensor (not shown) for detecting the axial load of the linear motion mechanism 12 (FIG. 6).
  • the control device 5 advances the linear motion portion 18 (FIG. 6) from the position away from the brake rotor 3 (FIG. 6) to the outboard side, and uses the minimum detection value that can be detected by this load sensor. Get a certain braking force.
  • the brake force which is a detection value detected by the load sensor, gradually increases in accordance with the operation amount that further depresses the brake operation means 34.
  • the braking force can be detected with high accuracy.
  • a torque estimating means 41 for estimating the motor torque from the motor current detected by the current detecting means 39 may be provided, and the braking force may be estimated using the torque estimated by the torque estimating means 41.
  • the motor control unit 37 includes a computer, a program executed by the computer, and an electronic circuit.
  • the motor control unit 37 corrects the command value of the brake force given from the brake force command means 32a as will be described later, and converts the corrected command value into a current command represented by a voltage value. Then, this current command is given to the power circuit unit 36.
  • the motor control unit 37 has a function of outputting information such as detection values and control values relating to the electric motor 11 to the ECU 32.
  • the brake force estimating means 35 is also composed of a computer, a program executed by the computer, and an electronic circuit.
  • the power circuit unit 36 includes an inverter 36b that converts the DC power of the power source 42 into three-phase AC power used to drive the electric motor 11, and a PWM control unit 36a that controls the inverter 36b.
  • the electric motor 11 is composed of a three-phase synchronous motor or the like.
  • the electric motor 11 is provided with motor rotation angle detection means 43 for detecting the rotation angle of the rotor.
  • the inverter 36b is composed of a plurality of semiconductor switching elements (not shown), and the PWM controller 36a performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 37 has a motor drive control unit 44 as an individual control unit.
  • the motor drive control unit 44 converts a corrected command value, which will be described later, into a current command represented by a voltage value, and gives a motor operation command value including the current command to the PWM control unit 36a.
  • the motor drive control unit 44 obtains a motor current flowing from the inverter 36b to the electric motor 11 from the current detection means 39, and performs current feedback control on the corrected command value.
  • the motor drive control unit 44 also obtains a motor rotation angle from the motor rotation angle detection means 43 and gives a current command to the PWM control unit 36a so that efficient motor driving according to the motor rotation angle can be performed.
  • Each motor drive control unit 44 has a load correction unit 44a.
  • the load correction unit 44a of the inverter device 33 corresponding to the first actuator 2-1 (FIG. 7) has an inboard friction pad 4A (see FIG. 5) obtained by the corresponding pad portion wear amount estimation means 45 (details will be described later). 4)
  • each load correction unit 44a corresponds to the command value given from the brake force command means 32a when the corresponding pad unit 4a, 4a or 4b, 4b (FIG. 4) is not worn, and the corresponding pad unit 4a, 4a and 4b.
  • the two load correction units 44a and 44a are configured so that the total load generated by the first and second actuators 2-1 and 2-2 (FIG. 7) is a required load (command) to the brake device.
  • the first and second actuators 2-1 and 2-2 (FIG. 7) are controlled so as to coincide with each other.
  • the total remaining amount of the pad portions 4a and 4a obtained by the pad wear amount estimating means 45 of the inverter device 33 corresponding to the first actuator 2-1 corresponds to the second actuator 2-2 via the ECU 32. It may be transmitted to the inverter device 33.
  • the total remaining amount of the pad portions 4b and 4b obtained by the pad wear amount estimating means 45 of the inverter device 33 corresponding to the second actuator 2-2 corresponds to the first actuator 2-1 via the ECU 32. May be transmitted to the inverter device 33.
  • the ECU 32 is notified of the total remaining amount of the pad portions 4b and 4b obtained by the pad wear amount estimating means 45, and the ECU 32 uses the physical amount used by the load correction unit 44a of each inverter (for example, the total) from the total remaining amount. (Residual amount deviation or the like) may be calculated and the value may be transmitted to each inverter 33.
  • Each motor control unit 37 is provided with pad portion wear amount estimation means 45, recording means 40, and the like.
  • the pad portion wear amount estimating means 45 of the inverter device 33 corresponding to the first actuator 2-1 (FIG. 7) is the first linear motion mechanism 12- in the friction pad 4. 1 (FIG. 6), the combined wear amount of the pad portions 4a and 4a is estimated.
  • the pad portion wear amount estimation means 45 of the inverter device 33 corresponding to the second actuator 2-2 (FIG. 7) also has a pad portion 4b corresponding to the second linear motion mechanism 12-2 (FIG. 6). The total wear amount of 4b is estimated. That is, the pad portions 4a and 4a corresponding to the first linear motion mechanism 12-1 (FIG.
  • each pad wear amount estimation means 45 calculates the friction between the motor rotation angle detected by the motor rotation angle detection means 43 and the estimated brake force value obtained by the brake force estimation means 35.
  • the pad portions 4a, 4a or 4b, 4b (FIG. 4) of the pad 4 are compared with the determined correlation between the motor rotation angle and the estimated brake force when the pad 4 is not worn, and the pad portion 4a, The total wear amount of 4a or 4b, 4b (FIG. 4) is estimated.
  • the amount of wear is determined by subtracting the current remaining amount from the thickness of each pad portion 4a, 4a and 4b, 4b when not worn.
  • the warning signal output means 38 outputs a warning signal to the ECU 32 when the total wear amount of the pad portions 4a, 4a or 4b, 4b (FIG. 4) estimated by the corresponding pad portion wear amount estimation means 45 is equal to or greater than a threshold value. .
  • the threshold value is recorded in the recording means 40 so as to be rewritable.
  • An output means 46 such as a warning display such as a display, a warning light, or an audio output device is provided on a console panel or the like in the vehicle.
  • the ECU 32 causes the warning display or the like output means 46 to output a warning display or the like.
  • the driver of the vehicle can recognize that the wear limit of the friction pad 4 is close by the output warning display or the like.
  • FIG. 9 is a diagram showing an example of the correlation between the motor rotation angle and the estimated brake force value according to the degree of pad wear in the brake device.
  • the correlation between the motor rotation angle and the estimated braking force mainly depends on the rigidity of the caliper 1 shown in FIG. 6, the compression rigidity of the friction pad 4, and the rigidity of the actuator 2.
  • the rigidity of the caliper 1 and the actuator 2 does not change even when the braking force is continuously generated, and remains almost a known constant magnitude.
  • the amount of wear of the brake rotor 3 is small compared to the amount of wear of the friction pad 4, and the amount of compressive deformation of the brake rotor 3 is extremely small relative to the rigidity of the entire brake. There is almost no impact on the overall stiffness.
  • the compression rigidity of the friction pad 4 is very low compared to the brake rotor 3 and the like, and the influence on the rigidity of the entire brake is great. Therefore, the rigidity of the entire brake increases as wear of the friction pad 4 progresses and the rigidity of the friction pad 4 increases.
  • the pad portion wear amount estimation means 45 in FIG. 8 is based on the difference between the predetermined correlation between the motor rotation angle and the brake force estimated value when not worn and the correlation between the current motor rotation angle and the brake force estimated value.
  • the total wear amount of each pad portion 4a, 4a or 4b, 4b (FIG. 4) of the friction pad 4 can be estimated.
  • the friction pad 4 (FIG. 4) exhibits a strong nonlinearity with respect to the correlation between the motor rotation angle and the estimated brake force when the friction pad 4 (FIG. 6) is not worn.
  • the motor rotation angle and the brake estimated value are not proportional but have a correlation of curves protruding toward the horizontal axis.
  • the correlation becomes more linear than in the non-wear state.
  • the motor rotation angle and the brake estimated value exhibit a correlation of curves protruding to the horizontal axis side, but compared with the non-wearing state. Close to a straight line. As shown by the one-dot chain line in FIG. 9, in the state where the wear limit of the pad portion wear amount is large, the correlation becomes more linear than in the state where the pad wear amount is “medium”.
  • the motor rotation angle and the brake estimated value exhibit a correlation of curves protruding toward the horizontal axis, but are very close to a straight line. .
  • FIG. 10 is a diagram showing the correlation between the motor rotation angle of this brake device and the estimated brake force value, which is used for explaining an example of detecting the pad wear amount.
  • the motor rotation angle ⁇ necessary for exerting a constant braking force F becomes the motor rotation angle ⁇ ′ in a state after the friction pad 4 (FIG. 6) is worn.
  • the brake force F is estimated by the brake force estimating means 35 in FIG.
  • the motor rotation angle ⁇ ( ⁇ ′) is detected by the motor rotation angle detection means 43.
  • the pad wear amount estimation means 45 is a map or the like that defines the relationship between the change amount of the motor rotation angle and the pad wear amount (that is, a map showing the relationship of the graph of FIG. 9 or FIG. From the map showing the correlation for each amount, the total wear amount of the pad portions 4a, 4a or 4b, 4b (FIG. 4) of the friction pad 4 can be accurately estimated.
  • FIG. 11 shows the correlation between the motor rotation angle and the brake force estimated value, which is used to estimate the pad wear amount based on the rate of change of the motor rotation angle when the brake force estimated value changes.
  • FIG. 11 shows the correlation between the motor rotation angle and the brake force estimated value, which is used to estimate the pad wear amount based on the rate of change of the motor rotation angle when the brake force estimated value changes.
  • the correlation between the motor rotation angle and the brake force estimated value approaches linear.
  • the motor rotation angle when the brake force estimation value changes from, for example, F1 to F2 under a condition where either one of the brake force estimation value and the motor rotation angle continues to increase or decrease more than a predetermined value.
  • ⁇ ( ⁇ ′) whether the correlation between the motor rotation angle and the brake force estimation value is non-linear or close to linear, that is, the gradient of the brake force estimation value with respect to the motor rotation angle is reduced. Can be detected. Thereby, the progress of pad wear can be determined.
  • the correlation between the change rates of the motor rotation angle ⁇ and the brake force estimated value F may be used. That is, a value of dF / d ⁇ at a predetermined motor rotation angle ⁇ or a value of d ⁇ / dF at a predetermined brake force estimation value F may be used.
  • FIG. 12 is a diagram illustrating an example in which the amount of wear on the pad portion is estimated based on the strength of the nonlinearity of the correlation between the brake force estimated value and the motor rotation angle in this brake device.
  • the pad portion wear amount estimating means 45 of FIG. 8 in this brake device includes a linearity determining portion 47 and a pad portion remaining amount detecting portion 48.
  • the linearity determination unit 47 determines the strength of the linearity of the correlation between the brake force estimated value and the motor rotation angle.
  • the pad remaining amount detection unit 48 determines each pad unit 4a of the friction pad 4 from the estimated brake force value or the motor rotation angle at which the linearity of the correlation determined by the linearity determination unit 47 is equal to or greater than a threshold value. , 4a or 4b, 4b (FIG. 4).
  • the linearity determination unit 47 shown in FIG. 8 obtains the change in the other change rate with respect to either the brake force estimated value or the motor rotation angle by, for example, differentiating the one with the other twice, and the correlation.
  • the strength of linearity may be detected.
  • a condition more than a predetermined brake force estimate value or a predetermined motor rotation angle may be separately provided.
  • the determined brake force estimated value and the determined motor rotation angle are the minimum value of the estimated brake force value that stabilizes the detection accuracy, or the motor rotation angle that stabilizes the detection accuracy. It is determined based on the minimum angle.
  • FIG. 13 is a flowchart showing a process for controlling the first and second actuators 2-1 and 2-2 (FIG. 7) of the brake device.
  • FIGS. 8 and 13 for example, when the ignition of the vehicle is turned on, this process is started, and motor control units 37 and 37 receive a brake force command value for each actuator from brake force command means 32a. Tf is acquired (step a1).
  • the pad wear amount estimation means 45 and 45 determine the combined wear amount of the pad portions 4a and 4a and the combined wear amount of the pad portions 4b and 4b (FIG. 4), respectively.
  • the load correction units 44a and 44a calculate a difference (pad portion remaining amount deviation) ⁇ Pt between the combined remaining amount of the pad portions 4a and 4a (FIG. 4) and the combined remaining amount of the pad portions 4b and 4b (FIG. 4) (step). a2).
  • each load correction unit 44a has a pad portion corresponding to the command value (Tf / 2) for each actuator given from the brake force command means 32a when the corresponding pad portion 4a (or 4b) (FIG. 4) is not worn.
  • a correction is made by adding a value obtained by multiplying the pad portion total remaining amount deviation ⁇ Pt, which is the difference between the total remaining amount of 4a, 4a (FIG. 4) and the combined remaining amount of the pad portions 4b, 4b (FIG. 4), by a coefficient k * (see FIG. 4). Step a3).
  • the load correction unit 44a for example, is one actuator 2 (for example, the first actuator 2-1) (for example, the first actuator 2-1) having a large total remaining amount of the pad portions 4a, 4a or 4b, 4b (FIG. 4) (FIG. ) Is made larger than the load (corrected command value) generated by the other actuator 2 (for example, the second actuator 2-2) (FIG. 7). Correction is performed with a coefficient k * that is different for each actuator. However, the sum of the command values of the two actuators 2 and 2 (FIG. 7) does not change before and after the correction. Thereafter, the inverter devices 33 and 33 individually control the load of the corresponding actuators 2 (FIG. 7) according to the corresponding corrected command values (step a4). Thereafter, this process is terminated.
  • the inverter devices 33 and 33 individually control the load of the corresponding actuators 2 (FIG. 7) according to the corresponding corrected command values (step a4). Thereafter, this process is terminated.
  • each motor drive control unit 44 includes two actuators according to the estimated total wear amount of the pad portions 4a and 4a and the estimated total wear amount of the pad portions 4b and 4b. 2 and 2 are controlled individually. For example, when there is a difference between the estimated total wear amount of the pad portions 4a and 4a and the estimated total wear amount of the pad portions 4b and 4b, each motor drive control unit 44 has one of the wear progresses less. Control is performed so that the load of the actuator 2 is larger than the load of the other actuator 2. In this way, the uneven wear of the friction pad 4 progresses by individually controlling the two actuators 2 and 2 according to the total wear amount of the pad portions 4a and 4a and the total wear amount of the pad portions 4b and 4b. Can be prevented. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
  • FIG. 14 is a flowchart showing a process for controlling the first and second actuators 2-1 and 2-2 (FIG. 7) of the brake device.
  • motor control units 37 and 37 obtain a command value Tf of the braking force for each actuator (step b1).
  • the pad portion wear amount estimation means 45, 45 respectively calculate the average value of the remaining pad portion for each of a plurality of times for each pad portion (step b2).
  • the plurality of times may be determined in advance, may be a plurality of times at regular intervals from an arbitrary start time, or may be a plurality of times for each operation of the brake operation unit 34.
  • each motor drive control unit 44 determines the target angle of the corresponding electric motor 11 from the average value of the corresponding pad portion remaining amount (step b3). Further, each of the motor drive control units 44 and 44 ensures that the total estimated load of the actuator 2 (FIG. 7) corresponding to the determined target angle matches the required load (command value) for the brake device ( Step b4), the angle of each electric motor 11 of the two actuators 2 (FIG. 7) is controlled (step b5). Thereafter, this process is terminated.
  • the target angle of each electric motor 11 is determined from the average value of the respective remaining pad portions, even when the remaining pad portions change from moment to moment, the pad portions 4a and 4a (see FIG. The total wear amount of 4) and the total wear amount of the pad portions 4b and 4b (FIG. 4) can be estimated finely.
  • the two motor drive control units 44 and 44 shown in FIGS. 4 and 8 have the same amount of protrusion of the two linear motion mechanisms 12 and 12 and the total load generated by the two actuators 2 and 2 is the same as that described above.
  • the two actuators 2 and 2 may be controlled so as to coincide with the required load on the brake device. In this case, it is possible to provide a difference in the load generated by each of the actuators 2 and 2 while making the protruding amounts of the two linear motion mechanisms 12 and 12 the same. Can be prevented.
  • FIG. 15 is a cross-sectional view of a brake device according to a third embodiment of the present invention
  • FIG. 16 is a block diagram of a control system of the brake device.
  • the first actuator 2-1 (2) and the second actuator 2-2 (2) are fluid pressure type drive units 58 and 58 for driving the pistons 50 and 50, respectively, using fluid as a medium. It is good also as what has.
  • the piston 50 corresponds to the linear motion portion 18 (FIG. 6) described in the first embodiment.
  • the drive units 58 and 58 each include a hydraulic cylinder having a wheel cylinder 51 in which a first hydraulic chamber 53 and a second hydraulic chamber 54 are formed, and a corresponding piston 50.
  • Two pistons 50 and 50 are arranged in parallel to each other in one wheel cylinder 51.
  • the pistons 50 and 50 are configured to be movable forward and backward by a first oil passage 59-1 (59) and a second oil passage 59-2 (59) which are independent of each other.
  • a fluid pressure type drive source 49 is provided in a vehicle on which the brake device is mounted.
  • the drive source 49 includes a hydraulic pump 49a and a motor 49b that drives the hydraulic pump 49a.
  • the discharge port of the hydraulic pump 49a is branched into a first oil passage 59-1 and a second oil passage 59-2.
  • Intensified linear valves 52 and 52 are interposed in the middle of the piping of the first and second oil passages 59-1 and 59-2, respectively.
  • the first and second oil passages 59-1 and 59-2 are connected by piping to the first and second hydraulic chambers 53 and 54 of the wheel cylinder 51, respectively.
  • the control device 5A changes the magnitude of the drive signal according to the output of the brake sensor 34a that detects the operation amount of the brake operation means 34.
  • Both the pressure-increasing linear valves 52 and 52 are so-called normally closed valves whose normal state is “closed”, and when the drive signal is given from the control device 5A, the opening degree is increased in accordance with the magnitude of the drive signal.
  • the hydraulic pressure in each of the hydraulic chambers 53 and 54 of the wheel cylinder 51 increases in accordance with the increase amount of the opening degree of the corresponding pressure increasing linear valve 52. Therefore, the friction pad 4 comes into contact with the brake rotor 3 to generate a braking force.
  • the first and second hydraulic pressure sensors 55 and 56 for detecting the hydraulic pressures of the hydraulic chambers 53 and 54, respectively, are provided below the respective pressure-increasing linear valves 52 and 52.
  • the detection values of these hydraulic sensors 55 and 56 are input to the control device 5A.
  • flow meters Sb1 and Sb2 are installed on the first and second oil passages 59-1 and 59-2, respectively, and the flow rate of the fluid is detected by these flow meters Sb1 and Sb2, and these detected values are controlled. Input to the device 5A.
  • stroke sensors Sa1 and Sa2 are provided in the drive units 58 and 58, respectively, and the movement amounts of the pistons 50 and 50 detected by the stroke sensors Sa1 and Sa2 are input to the control device 5A.
  • Each individual control unit 57 of the control device 5A moves the movement amount of the pistons 50, 50 calculated from the detection values of the first and second hydraulic sensors 55, 56 and the detection values of the flow meters Sb1, Sb2 or the stroke sensors Sa1, Sa2. Based on the above, the difference between the total wear amount of the pad portions 4a and 4a and the total wear amount of the pad portions 4b and 4b is calculated, and the hydraulic pressure generated by the first and second actuators 2-1 and 2-2 is calculated. to correct.
  • the wear amount of the pad may be detected using the horizontal axis in FIGS. 9 to 12 referred to in the description of the first embodiment as the piston movement amount.
  • the relationship between the difference between these detected values and the difference in the amount of wear of each pad 4a, 4a is determined by the results of tests, simulations, and the like.
  • the piston movement amount may be calculated using only one of the flow meters Sb1 and Sb2 and the stroke sensors Sa1 and Sa2.
  • the two actuators 2 and 2 are individually controlled in accordance with the difference in the pad wear amount calculated from the detected values of the hydraulic sensors 55 and 56 and the piston movement amount, thereby causing the partial wear of the friction pad 4 to progress. Can be prevented. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
  • the configuration may be such that the pad wear amount estimation means and the warning display output means are omitted.
  • the configuration of the control device can be simplified and the calculation processing load can be reduced.
  • a brake device according to a first application example of the present invention will be described with reference to FIGS. 1 to 7 and FIG. 17 referred to in the first embodiment.
  • the same reference numerals are assigned to portions corresponding to the matters described in the first embodiment, and overlapping descriptions are omitted.
  • the other parts of the configuration are the same as those in the first embodiment unless otherwise specified.
  • the brake force command means 32a of the ECU 32 is a target brake for each wheel according to the output of the sensor 34a that changes according to the amount of operation of the brake pedal that is the brake operation means 34.
  • the force command value is generated and output, but in this application example, a brake force (brake command) described later is generated and output.
  • the motor control unit 37 includes a motor drive control unit 44A different from that of the first embodiment.
  • the motor drive control unit 44A also includes a load correction unit 44Aa that is different from that of the first embodiment.
  • the load correction unit 44Aa corrects a load (command value) generated by the corresponding actuator 2 in accordance with the brake command and the rotation speed and rotation direction of the brake rotor 3 (FIG. 4). This uniformly equalizes the amount of wear of the pad portion 4a (FIG. 4) on the inlet side and the pad portion 4b (FIG. 4) on the outlet side, thereby preventing uneven wear of the friction pad 4 (FIG. 4). Because.
  • the “pad portion on the turn-in side” refers to a pad portion located on the upstream side in the rotation direction of the brake rotor 3, and the “pad portion on the turn-out side” is located on the downstream side in the rotation direction in the brake rotor 3. Refers to the pad part to be used.
  • “the upstream side in the rotational direction” and “the downstream side in the rotational direction” are the upstream side and the downstream side in the rotational direction of the brake rotor when the vehicle moves forward, respectively, and the vehicle moves backward when the vehicle moves backward. The upstream side and the downstream side in the rotational direction of the brake rotor at the time, and the reverse occurs when the vehicle is moving forward and backward.
  • Each wheel of the vehicle is provided with, for example, a wheel speed sensor 41 as detection means.
  • the rotation speed and direction of the brake rotor 3 (FIG. 4) are detected by a wheel speed sensor 41 provided on each wheel.
  • FIG. 18 is a flowchart showing a process for controlling the first and second actuators 2-1 (2), 2-2 (2) (FIG. 7) of the brake device.
  • Step S1 when the ignition of the vehicle is turned on, this process is started, and motor control units 37 and 37 acquire a brake command for each actuator from brake force command means 32a.
  • Step S1 the motor drive control units 44A and 44A acquire the rotation speed and rotation direction of the brake rotor 3 (FIG. 4) from the wheel speed sensor 41 (steps S2 and S3).
  • the load correction units 44Aa and 44Aa use the first and second actuators 2-1 and 2-2 in accordance with the acquired brake command and the rotation speed and rotation direction of the brake rotor 3 (FIG. 4).
  • the load to be generated is corrected (step S4).
  • the load of the second actuator 2-2 corresponding to the pad portion 4b (FIG. 4) on the delivery side is changed to the load of the first actuator 2-1 corresponding to the pad portion 4a (FIG. 4) on the return side.
  • the inverter devices 33 and 33 respectively perform load control on the corresponding actuators 2 in accordance with the corresponding corrected command values (step S5). Thereafter, this process is terminated.
  • FIG. 19 is a diagram illustrating an example of a load command after correction to each actuator.
  • the two motor drive control units 44A and 44A (FIG. 17) are arranged in a region where the total sum of loads generated by the two actuators 2 and 2 (FIG. 17), that is, the total load is not more than a predetermined load. Only the load of the second actuator 2-2 (FIG. 17) corresponding to the pad portion 4b (FIG. 4) on the delivery side is controlled. Thereafter, the two motor drive control units 44A and 44A (FIG. 17) cause the load generated by both actuators 2 and 2 (FIG. 17) until the first actuator 2-1 (FIG. 17) reaches the maximum load. Increase at the same rate.
  • the two motor drive control units 44A and 44A have loads generated by the two actuators 2 and 2 in accordance with the brake command and the rotation speed and rotation direction. Are controlled individually.
  • uneven wear of the friction pad 4 can be prevented beforehand. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
  • the wear amount of the pad portions 4a and 4b on the turn-in side and the turn-out side can be uniformly leveled, and uneven wear of the friction pad 4 can be prevented in advance.
  • the load control can be performed stably and easily.
  • the two motor drive control units 44A and 44A are configured so that the load generated by both actuators 2 and 2 (FIG. 17) until the second actuator 2-2 reaches the maximum load. May be controlled to be distributed at a constant ratio.
  • the two motor drive control units 44A and 44A cause the load generated in the second actuator 2-2 to be applied to the first actuator 2-1.
  • the load may be larger than the load to be generated, and control may be performed so that the load on both actuators 2 and 2 (FIG. 17) becomes maximum at the maximum point of the total load after the certain load.
  • the load correction of each actuator may be corrected not only by changing the ratio linearly but also by a curve (non-linear) as shown in FIGS. It can be appropriately changed according to the amount of wear. Further, after the vehicle is stopped, by making the load commands of both actuators the same, the load is concentrated only on the second actuator, and the life of the entire brake device can be prevented from being reduced.
  • a brake device according to a second application example of the present invention will be described with reference to FIGS. 15 and 22 referred to in the third embodiment.
  • portions corresponding to the matters described in the third embodiment and / or the first application example are denoted by the same reference numerals, and redundant descriptions are omitted.
  • the other parts of the configuration are the same as those of the third embodiment and / or the first application unless otherwise specified.
  • the control device 5A of the brake device of the second application example corresponds to the output (brake command) of the sensor 34a that changes according to the operation amount of the brake operation means 34, the rotation speed and the rotation direction of the brake rotor 3 (FIG. 13). Thus, the magnitude of the drive signal is changed.
  • the control device 5A is given the rotational speed and direction of the brake rotor 3 (FIG. 13) from a wheel speed sensor 41 provided on each wheel.
  • the control device 5A includes individual control units 57A and 57A different from those in the third embodiment.
  • Each individual control unit 57A uniformly equalizes the wear amount of the feed-in side pad portion 4a (FIG. 13) and the wear amount of the feed-out side pad portion 4b (FIG. 13), thereby offsetting the friction pad 4 (FIG. 13).
  • the magnitude of the drive signal to the corresponding pressure-increasing linear valve 52 is changed according to the brake command and the rotational speed and direction of the brake rotor 3 (FIG. 13).
  • each individual control unit 57A of the second application example also detects the detected values of the first and second hydraulic sensors 55, 56 and the flow meters Sb1, Sb2 or the stroke sensor Sa1. Based on the amount of movement of the pistons 50, 50 calculated from the detected value of Sa2, the total wear amount of the pad portions 4a, 4a and the total wear amount of the pad portions 4b, 4b can be calculated.
  • the control device 5A causes the warning display or the like output means 46 to output a warning display or the like.
  • the driver of the vehicle can recognize that the wear limit of the friction pad 4 is close by the output warning display or the like.
  • the pistons 50 and 50 can be individually driven by the fluid pressure type drive units 58 and 58, and uneven wear of the friction pad 4 can be prevented beforehand.
  • the brake device can be configured using the existing fluid pressure actuator 2, the manufacturing cost can be reduced.
  • an encoder may be applied instead of the wheel speed sensor.
  • the rotation direction of the brake rotor may be indirectly determined from a sensor that detects the shift position of the vehicle.
  • the command value given to each actuator can be changed as appropriate so that uneven wear of the friction pad is less likely to occur depending on one or both of the vehicle speed and the magnitude of the brake command.
  • Brake rotor 3 A friction pad 4 that contacts the brake rotor 3 to generate a braking force;
  • Two actuators 2, 2 that respectively include pistons 18, 18 for driving the friction pad 4 to abut against and separate from the brake rotor 3 by the pistons 18, 18;
  • a control device 5 for controlling the two actuators 2 and 2 in accordance with a given brake command, Detection means 41 for detecting the rotation speed and rotation direction of the brake rotor 3 is provided, The control device 5 individually generates loads generated by the two actuators 2 and 2 according to the given brake command and the rotational speed and direction of the brake rotor 3 detected by the detection means 41.
  • Brake device having individual control units 44A, 44A for controlling.
  • the rotation speed of the brake rotor 3 is synonymous with the number of rotations of the brake rotor 3 per unit time.
  • the detection means 41 detects the rotation speed and the rotation direction of the brake rotor 3.
  • Each of the individual control units 44A and 44A individually applies loads generated by the two actuators 2 and 2 according to the applied brake command and the rotation speed and rotation direction of the brake rotor 3 detected by the detection means 41.
  • the two individual units 44A and 44A control the ratio of the load generated by the two actuators 2 and 2 to a predetermined ratio, for example, according to the brake command and the rotational speed and direction of the brake rotor 3.
  • the predetermined ratio is determined by at least one of testing, simulation, and design.
  • the two individual control units 44A and 44A apply the load of the actuator 2 corresponding to the pad portion 4b located on the downstream side in the rotation direction of the brake rotor 3 among the friction pads 4.
  • the brake device which controls by the value larger than the load of the actuator 2 corresponding to the pad part 4a located in the rotation direction upstream in the said brake rotor 3.
  • the pad portion 4a (the pad portion 4a on the turn-in side) located on the upstream side in the rotation direction of the brake rotor 3 among the friction pads 4 has a rotation direction Compared with the pad part 4b located on the downstream side (the pad part 4b on the delivery side), a force that is drawn into the brake rotor 3 acts. As a result, the pad portion 4a on the entry side may be more unevenly worn than the pad portion 4b on the return side.
  • the load of the actuator 2 corresponding to the pad portion 4b on the return side is controlled to a value larger than the load of the actuator 2 corresponding to the pad portion 4a on the return side, so that The amount of wear of the pad portions 4a and 4b on the side can be uniformly leveled, and uneven wear of the friction pad 4 can be prevented beforehand. Therefore, drag torque resulting from the progress of uneven wear of the friction pad 4 can be reduced, and the replacement time of the friction pad 4 can be delayed.
  • the two individual control units 44A and 44A control the load generated by one actuator 2 and the load generated by the other actuator 2 to a predetermined ratio.
  • the determined ratio is a value arbitrarily determined by design or the like, and is determined by obtaining an appropriate value by one or both of testing and simulation, for example.
  • the ratio of the load of one actuator 2 and the load of the other actuator 2 is different from each other with respect to the total load, for example, depending on the brake command and the rotational speed and direction of the brake rotor 3. Controlled. Under different conditions such as a brake command, the load ratio of one actuator 2 and the load ratio of the other actuator 2 are controlled to the same ratio. In this case, load control can be performed stably and easily.
  • the two individual control units 44A and 44A are regions in which a sum of loads generated by the two actuators 2 and 2 is equal to or less than a predetermined load. Then, the brake apparatus which controls only the load of the actuator 2 corresponding to the pad part 4b located in the rotation direction downstream side in the said brake rotor 3 among the said friction pads 4.
  • FIG. The determined load is a value arbitrarily determined by design or the like, and is determined by obtaining an appropriate value by one or both of testing and simulation, for example. In this case, the wear amount of the pad portions 4a and 4b on the entrance side and the exit side can be evenly balanced, and load control can be easily performed.
  • the actuators 2 and 2 are configured so that the electric motors 11 and 11 and the rotational movements of the electric motors 11 and 11 are caused by the pistons 18 and 18.
  • Brake device having linear motion mechanisms 12 and 12 for converting into linear motion.
  • uneven wear of the friction pad 4 can be prevented in advance.
  • the actuators 2 and 2 include fluid pressure type drive units 58 and 58 for driving the pistons 50 and 50, respectively, using fluid as a medium.
  • the pistons 50 and 50 can be individually driven by the fluid pressure type drive parts 58 and 58, and uneven wear of the friction pad 4 can be prevented beforehand.
  • the brake device can be configured using an existing fluid pressure type actuator, the manufacturing cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Braking Arrangements (AREA)

Abstract

Provided is a brake device which is a two-piston type brake device and which reduces drag torque and delays the timing for replacing a friction-pad. The brake device is provided with the following: a brake rotor (3); a friction pad (4) which includes a plurality of pads (4a, 4b); two actuators (2-1, 2-2) which each include a piston (18), in which each piston (18) of the two actuators (2-1, 2-2) corresponds to a different pad from among the plurality of pads (4a, 4b), and which performs driving, using the pistons (18, 18), to cause the friction pad (4) to make contact with and separate from the brake rotor (3); and a control device (5) that controls the two actuators (2-1, 2-2). The control device (5) estimates the wear amount of each of the pads (4a, 4b) which correspond to the pistons (18) of the two actuators (2-1, 2-2), and in accordance with an applied braking command, independently controls each of the two actuators (2-1, 2-2) in accordance with the estimated wear amount of each of the pads (4a, 4b).

Description

ブレーキ装置Brake device 関連出願Related applications
 本出願は、2015年11月2日出願の特願2015-215406および2016年1月8日出願の特願2016-002442の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2015-215406 filed on November 2, 2015 and Japanese Patent Application No. 2016-002442 filed on January 8, 2016, which is incorporated herein by reference in its entirety. Quote as part.
 この発明は、2ピストンタイプのブレーキ装置に関し、より詳細には、摩擦パッドの偏摩耗を抑制し摩擦パッドの交換時期を遅らせ得るブレーキ装置に関する。 The present invention relates to a two-piston type brake device, and more particularly to a brake device capable of suppressing uneven wear of the friction pad and delaying the replacement time of the friction pad.
 モータと直動機構を使用した電動ブレーキ用アクチュエータが提案されている(特許文献1)。この電動ブレーキ用アクチュエータでは、一つのモータで一つの直動機構を作動させている。車両において制動力を発揮するに際し、前輪に大きな荷重を必要とするブレーキの場合、摩擦パッドに均一に荷重を作用させるため、従来の油圧ブレーキでは2ピストンタイプのキャリパが市販されている。 An electric brake actuator using a motor and a linear motion mechanism has been proposed (Patent Document 1). In this electric brake actuator, one linear motion mechanism is operated by one motor. In the case of a brake that requires a large load on the front wheels when exerting a braking force in a vehicle, a two-piston type caliper is commercially available as a conventional hydraulic brake in order to apply a load uniformly to the friction pad.
特許第3166401号公報Japanese Patent No. 3166401
 制動力を発揮する際に車両前輪のように大きな荷重を必要とする場合、一つのピストン(直動機構)で摩擦パッドを押圧すると、この摩擦パッドの面圧が非常に高くなり、フェード現象を発生させるか、または摩擦パッドの摩耗進行を助長してしまう。 When a large load is required as in the front wheels of the vehicle when exerting braking force, if the friction pad is pressed with a single piston (linear motion mechanism), the surface pressure of this friction pad becomes very high, and the fade phenomenon occurs. Or promote the wear of the friction pad.
 一方、図23に示す油圧ブレーキのように、一つの制御系にて二つのピストン80,80を駆動するアクチュエータでは、二つのピストン80,80に作用する荷重は同一となる。図24に示すように、二つのピストン80,80を同一荷重で押圧した場合、ブレーキディスク81の入ってくる側の摩擦パッド82(ディスク回転方向上流側のパッド部分)が、ディスク回転方向下流側の摩擦パッドよりも、より摩耗するような偏摩耗を生じてしまう。この摩擦パッド82の偏摩耗が進行すると、引き摺りトルクが大きくなる、または早期の摩擦パッド82の交換が必要となってくる。 On the other hand, in the actuator that drives the two pistons 80 and 80 with one control system as in the hydraulic brake shown in FIG. 23, the loads acting on the two pistons 80 and 80 are the same. As shown in FIG. 24, when the two pistons 80 and 80 are pressed with the same load, the friction pad 82 (pad portion on the upstream side in the disk rotation direction) into which the brake disk 81 enters is located downstream in the disk rotation direction. This causes uneven wear that is more worn than the friction pad. As the uneven wear of the friction pad 82 progresses, drag torque increases or early replacement of the friction pad 82 becomes necessary.
 この発明の目的は、2ピストンタイプのブレーキ装置において、引き摺りトルクの低減を図ると共に摩擦パッドの交換時期を遅らせることができるブレーキ装置を提供することである。 An object of the present invention is to provide a brake device capable of reducing drag torque and delaying the replacement time of a friction pad in a two-piston type brake device.
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, description will be made with reference to the reference numerals of the embodiments.
 この発明の一構成に係るブレーキ装置は、ブレーキロータ3と、
 複数のパッド部4a,4bを含む摩擦パッド4であって、前記ブレーキロータ3と接触して制動力を発生させる摩擦パッド4と、
 ピストン18,18をそれぞれ含む二つのアクチュエータ2-1,2-2(2,2)であって、これら二つのアクチュエータ2-1,2-2の各ピストン18が前記複数のパッド部4a,4bのうちの異なるパッド部にそれぞれ対応し、これらピストン18,18により前記摩擦パッド4を前記ブレーキロータ3に対して当接離隔させる駆動を行う二つのアクチュエータ2-1,2-2と、
 前記二つのアクチュエータ2-1,2-2を制御する制御装置5であって、
  前記二つのアクチュエータ2-1,2-2の前記各ピストン18にそれぞれ対応する前記パッド部4a,4a及び4b,4bの摩耗量を推定するパッド部摩耗量推定手段45および、
  与えられたブレーキ指令に従い前記パッド部摩耗量推定手段45で推定された前記パッド部4a,4a及び4b,4bの摩耗量に応じて、前記二つのアクチュエータ2-1,2-2をそれぞれ個別に制御する個別制御部44を有する制御装置と、を備える。
The brake device according to one configuration of the present invention includes a brake rotor 3 and
A friction pad 4 including a plurality of pad portions 4a and 4b, the friction pad 4 contacting the brake rotor 3 to generate a braking force;
Two actuators 2-1 and 2-2 (2, 2) including pistons 18 and 18 respectively, and each piston 18 of the two actuators 2-1 and 2-2 is connected to the plurality of pad portions 4a and 4b. Two actuators 2-1 and 2-2 that respectively correspond to different pad portions and drive the friction pad 4 to contact and separate from the brake rotor 3 by the pistons 18 and 18;
A control device 5 for controlling the two actuators 2-1, 2-2,
Pad portion wear amount estimating means 45 for estimating the wear amount of the pad portions 4a, 4a and 4b, 4b corresponding to the pistons 18 of the two actuators 2-1, 2-2,
The two actuators 2-1 and 2-2 are individually set according to the wear amount of the pad portions 4a, 4a and 4b, 4b estimated by the pad portion wear amount estimating means 45 in accordance with a given brake command. And a control device having an individual control unit 44 to be controlled.
 なお、ここで言う「個別に制御する」とは、二つのアクチュエータ2-1,2-2の荷重を異なる値に制御可能であることを言い、一つのアクチュエータ2の荷重が定まることで、他の一つのアクチュエータ2の荷重が必然的に定まる場合を含む。勿論「個別に制御する」とは、二つのアクチュエータ2-1,2-2の荷重を同一の値に制御することも含む。 Note that “individually controlled” here means that the loads of the two actuators 2-1 and 2-2 can be controlled to different values, and the load of one actuator 2 is determined. Including the case where the load of one actuator 2 is inevitably determined. Of course, “individually controlled” includes controlling the loads of the two actuators 2-1 and 2-2 to the same value.
 また、「パッド部の摩耗量」とは、パッド部の摩耗量の合算値のことである。すなわち、ブレーキロータを摩擦パッドで両側から挟むため、両側のパッド部の摩耗量を合算した値が、パッド部の摩耗量に相当する。 In addition, the “amount of wear of the pad portion” is a total value of the amount of wear of the pad portion. That is, since the brake rotor is sandwiched between the friction pads from both sides, the sum of the wear amounts of the pad portions on both sides corresponds to the wear amount of the pad portions.
 この構成によると、パッド部摩耗量推定手段45は、摩擦パッド4における前記二つのピストン18,18にそれぞれ対応するパッド部4a,4a及び4b,4bの合算摩耗量を推定する。この摩耗量の推定時期は、例えば、車両のイグニッション等をオンにする始動時であっても良いし、車両運転時において随時または定期的であっても良い。 According to this configuration, the pad wear amount estimation means 45 estimates the combined wear amount of the pad portions 4a, 4a and 4b, 4b corresponding to the two pistons 18 and 18 in the friction pad 4, respectively. The estimated amount of wear may be, for example, at the time of starting to turn on the ignition of the vehicle, or may be at any time or periodically during vehicle operation.
 個別制御部44は、パッド部4a,4aの推定された合算摩耗量および及びパッド部4b,4bの推定された合算摩耗量に応じて、二つのアクチュエータ2,2をそれぞれ個別に制御する。例えば、パッド部4a,4aの推定された合算摩耗量とパッド部4b,4bの推定された合算摩耗量に差異が生じた場合、個別制御部44は、摩耗進行が少ない一方のアクチュエータ2の荷重を他方のアクチュエータ2の荷重よりも大きくするように制御を行う。このように、パッド部4a,4aの合算摩耗量及びパッド部4b,4bの合算摩耗量に応じて、二つのアクチュエータ2,2を個別に制御することで、摩擦パッド4の偏摩耗の進行を防止することができる。これにより、引き摺りトルクの低減を図ると共に摩擦パッド4の交換時期を遅らせることができる。 The individual control unit 44 individually controls the two actuators 2 and 2 according to the estimated total wear amount of the pad portions 4a and 4a and the estimated total wear amount of the pad portions 4b and 4b. For example, when there is a difference between the estimated total wear amount of the pad portions 4a and 4a and the estimated total wear amount of the pad portions 4b and 4b, the individual control unit 44 loads the actuator 2 with less progress of wear. Is controlled to be larger than the load of the other actuator 2. In this way, by controlling the two actuators 2 and 2 individually according to the total wear amount of the pad portions 4a and 4a and the total wear amount of the pad portions 4b and 4b, the progress of uneven wear of the friction pad 4 can be promoted. Can be prevented. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
 前記二つのアクチュエータ2,2が、それぞれ、流体を媒体として前記各ピストン50,50を駆動させる流体圧式の駆動部58,58を有しても良い。この場合、流体圧式の駆動部58,58により各ピストン50,50を個別に駆動させることで、摩擦パッド4の偏摩耗の進行を防止することができる。 The two actuators 2 and 2 may have fluid pressure type drive units 58 and 58 for driving the pistons 50 and 50, respectively, using fluid as a medium. In this case, it is possible to prevent the partial wear of the friction pad 4 from progressing by individually driving the pistons 50, 50 by the fluid pressure type drive units 58, 58.
 前記二つのアクチュエータ2,2が、それぞれ、電動モータ11と、この電動モータ11の回転運動を前記各ピストン18の直線運動に変換する直動機構12とを有しても良い。このように2ピストンタイプで電動式のアクチュエータ2において、摩擦パッド4の偏摩耗の進行を防止することができる。 The two actuators 2 and 2 may each include an electric motor 11 and a linear motion mechanism 12 that converts the rotational motion of the electric motor 11 into the linear motion of each piston 18. In this way, in the 2-piston type electric actuator 2, it is possible to prevent the friction pad 4 from progressing unevenly.
 前記パッド部摩耗量推定手段45は、前記各ピストン18,18にそれぞれ対応する前記パッド部4a,4a及び4b,4bの残量を検出するパッド部残量検出部48を有し、
 前記個別制御部44は、前記パッド部残量検出部48で検出された、前記各ピストン18,18にそれぞれ対応する前記パッド部4a,4a及び4b,4bの残量の差に応じて前記二つのアクチュエータ2-1,2-2において発生させる荷重を補正する荷重補正部44aを有しても良い。
The pad portion wear amount estimating means 45 has a pad portion remaining amount detecting portion 48 for detecting the remaining amount of the pad portions 4a, 4a and 4b, 4b corresponding to the pistons 18, 18, respectively.
The individual control unit 44 determines the second control unit according to the difference in the remaining amount of the pad portions 4a, 4a and 4b, 4b corresponding to the pistons 18 and 18 detected by the pad portion remaining amount detecting unit 48, respectively. A load correction unit 44a that corrects a load generated in the two actuators 2-1 and 2-2 may be provided.
 「パッド部の残量」とは、パッド部の残量の合算値つまり合算残量のことである。すなわち、ブレーキロータを摩擦パッドで両側から挟むため、両側のパッド部の残量を合算した値が、パッド部の残量に相当する。 “The remaining amount of the pad portion” is the total value of the remaining amount of the pad portion, that is, the total remaining amount. That is, since the brake rotor is sandwiched between the friction pads from both sides, the sum of the remaining amounts of the pad portions on both sides corresponds to the remaining amount of the pad portions.
 この構成によると、各パッド部残量検出部48は、例えば、車両始動時または車両運転時に随時に各ピストン18に対応するパッド部4a,4aの残量及びパッド部4b,4bの残量をそれぞれ検出する。パッド部4a,4aの残量と、パッド部4b,4bの残量との間に定められた差異が生じた場合、荷重補正部44aは、例えば、パッド部4a,4aの残量と、パッド部4b,4bの残量とのうち、大きい残量のパッド部に対応する一方のアクチュエータ2において発生させる荷重を、他方のアクチュエータ2にて発生させる荷重より大きくするように補正する。このようにそれぞれのアクチュエータ2にて発生させる荷重を補正することで、摩擦パッド4の偏摩耗の進行を防止することができる。
 前記定められた差異は、試験やシミュレーション等の結果により定められる。
According to this configuration, each pad portion remaining amount detecting unit 48 determines, for example, the remaining amount of the pad portions 4a and 4a and the remaining amount of the pad portions 4b and 4b corresponding to each piston 18 at the time of starting the vehicle or driving the vehicle. Detect each. When a predetermined difference occurs between the remaining amount of the pad portions 4a and 4a and the remaining amount of the pad portions 4b and 4b, the load correction unit 44a, for example, the remaining amount of the pad portions 4a and 4a and the pad Among the remaining amounts of the portions 4b and 4b, the load generated in one actuator 2 corresponding to the pad portion with a large remaining amount is corrected to be larger than the load generated in the other actuator 2. By correcting the load generated by each actuator 2 in this way, it is possible to prevent the uneven wear of the friction pad 4 from progressing.
The defined difference is determined by the results of tests, simulations, and the like.
 前記個別制御部44,44は、前記二つのアクチュエータ2-1,2-2の前記各ピストン18,18同士の突出量が同一で、且つ、前記二つのアクチュエータ2-1,2-2それぞれにおいて発生させる荷重の合計が前記ブレーキ装置への要求荷重と一致するように、前記二つのアクチュエータ2-1,2-2を制御しても良い。この場合、二つのピストン18,18の突出量を同一にしつつ、それぞれのアクチュエータ2-1,2-2にて発生させる荷重に差を設けることができ、その結果、摩擦パッド4の偏摩耗の進行を防止することができる。 The individual control units 44, 44 have the same amount of protrusion of the pistons 18, 18 of the two actuators 2-1, 2-2, and the two actuators 2-1, 2-2 respectively. The two actuators 2-1 and 2-2 may be controlled so that the total load to be generated matches the required load on the brake device. In this case, it is possible to provide a difference in the load generated by each of the actuators 2-1 and 2-2 while making the projecting amounts of the two pistons 18 and 18 the same. Progress can be prevented.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係るブレーキ装置の正面図である。 図1のブレーキ装置の紙面左側からの側面図である。 図1のブレーキ装置の紙面右側からの側面図である。 図1のブレーキ装置の一部を示す平面図である。 図4のV-V線端面図である。 図3のVI-VI線断面図である。 図1のブレーキ装置の制御系のブロック図である。 図1のブレーキ装置の制御装置の詳細構成を示すブロック図である。 図1のブレーキ装置における、パッド摩耗の程度に応じたモータ回転角とブレーキ力推定値の相関の例を示す図である。 図1のブレーキ装置のパッド摩耗量の検出に用いられる、モータ回転角とブレーキ力推定値の相関を示す図である。 図1のブレーキ装置において、ブレーキ力推定値の変化時のモータ回転角の変化率に基づいてパッド部摩耗量を推定するために用いられる、モータ回転角とブレーキ力推定値の相関を示す図である。 図1のブレーキ装置において、ブレーキ力推定値とモータ回転角の相関の非線形性の強さによりパッド部摩耗量を推定するために用いられる、モータ回転角とブレーキ力推定値の2階微分の相関を示す図である。 図1のブレーキ装置の各アクチュエータを制御する処理を示すフローチャートである。 この発明の第2の実施形態に係るブレーキ装置の各アクチュエータを制御する処理を示すフローチャートである。 この発明の第3の実施形態に係るブレーキ装置の断面図である。 図15のブレーキ装置の制御系のブロック図である。 第1応用例に係るブレーキ装置の制御装置の詳細構成を示すブロック図である。 図17のブレーキ装置の各アクチュエータを制御する処理を示すフローチャートである。 図18の各アクチュエータへの補正後の荷重指令の例を示す図である。 第2応用例に係るブレーキ装置の各アクチュエータへの補正後の荷重指令の例を示す図である。 第3応用例に係るブレーキ装置における各アクチュエータへの補正後の荷重指令の例を示す図である。 第4応用例に係るブレーキ装置の制御系のブロック図である。 従来例の油圧ブレーキの断面図である。 従来例のブレーキ装置の摩擦パッドの偏摩耗状態を示す平面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
1 is a front view of a brake device according to a first embodiment of the present invention. It is a side view from the paper left side of the brake device of FIG. It is a side view from the paper surface right side of the brake device of FIG. It is a top view which shows a part of brake device of FIG. It is the VV line end view of FIG. It is the VI-VI sectional view taken on the line of FIG. It is a block diagram of the control system of the brake device of FIG. It is a block diagram which shows the detailed structure of the control apparatus of the brake device of FIG. It is a figure which shows the example of the correlation of the motor rotation angle according to the grade of pad wear, and a braking force estimated value in the brake device of FIG. It is a figure which shows the correlation of a motor rotation angle used for detection of the pad wear amount of the brake device of FIG. 1, and a braking force estimated value. In the brake device of FIG. 1, it is a figure which shows the correlation of a motor rotation angle and a brake force estimated value used in order to estimate pad part abrasion loss based on the change rate of a motor rotation angle at the time of the change of a brake force estimated value. is there. In the brake device of FIG. 1, the correlation between the second-order differential between the motor rotation angle and the brake force estimation value, which is used to estimate the pad wear amount based on the nonlinearity of the correlation between the brake force estimation value and the motor rotation angle. FIG. It is a flowchart which shows the process which controls each actuator of the brake device of FIG. It is a flowchart which shows the process which controls each actuator of the brake device which concerns on 2nd Embodiment of this invention. It is sectional drawing of the brake device which concerns on 3rd Embodiment of this invention. It is a block diagram of the control system of the brake device of FIG. It is a block diagram which shows the detailed structure of the control apparatus of the brake device which concerns on a 1st application example. It is a flowchart which shows the process which controls each actuator of the brake device of FIG. It is a figure which shows the example of the load command after correction | amendment to each actuator of FIG. It is a figure which shows the example of the load command after correction | amendment to each actuator of the brake device which concerns on a 2nd application example. It is a figure which shows the example of the load command after correction | amendment to each actuator in the brake device which concerns on a 3rd application example. It is a block diagram of the control system of the brake device which concerns on a 4th application example. It is sectional drawing of the hydraulic brake of a prior art example. It is a top view which shows the partial wear state of the friction pad of the brake device of a prior art example.
 この発明の第1の実施形態に係るブレーキ装置を図1ないし図11と共に説明する。このブレーキ装置は車両に搭載される。図1はこのブレーキ装置の正面図であり、図2および3は図1のブレーキ装置の左右それぞれの側面図である。図3に示すように、このブレーキ装置は電動式のブレーキ装置である。図1に示すように、ブレーキ装置は、キャリパ1と、第1および第2のアクチュエータ2-1,2-2(図3)と、ブレーキロータ3と、摩擦パッド4A,4B(図4)と、制御装置5(図1)とを有する。なお、本明細書において、単にアクチュエータ2と称する場合、第1のアクチュエータ2-1と第2のアクチュエータ2-2とのいずれにも該当し得る。 A brake device according to a first embodiment of the present invention will be described with reference to FIGS. This brake device is mounted on a vehicle. FIG. 1 is a front view of the brake device, and FIGS. 2 and 3 are left and right side views of the brake device of FIG. As shown in FIG. 3, this brake device is an electric brake device. As shown in FIG. 1, the brake device includes a caliper 1, first and second actuators 2-1 and 2-2 (FIG. 3), a brake rotor 3, and friction pads 4A and 4B (FIG. 4). And a control device 5 (FIG. 1). In the present specification, when the actuator 2 is simply referred to, it may correspond to both the first actuator 2-1 and the second actuator 2-2.
 図2および図3に示すように、一つのキャリパ1に、二つのアクチュエータ(第1および第2のアクチュエータ)2-1,2-2が定められた間隔を空けて平行に配置される。図4に示すように、これらアクチュエータ2,2は一つの摩擦パッド(後述するインボード側摩擦パッド)4B(図5)をブレーキロータ3(図4)に対して当接離隔させる駆動を行う。前記定められた間隔は、摩擦パッド4および第1および第2のアクチュエータ2-1,2-2の寸法等に応じて適宜に定められる。 As shown in FIGS. 2 and 3, two actuators (first and second actuators) 2-1 and 2-2 are arranged in parallel in a single caliper 1 at a predetermined interval. As shown in FIG. 4, these actuators 2 and 2 drive the friction pad (an inboard side friction pad to be described later) 4B (FIG. 5) to contact and separate from the brake rotor 3 (FIG. 4). The predetermined interval is appropriately determined according to the dimensions of the friction pad 4 and the first and second actuators 2-1, 2-2.
 図6は、図3のVI-VI線断面図である。そのため、以下、第1のアクチュエータ2-1について説明するが、この説明は第2のアクチュエータ2-2にも当てはまる。図6に示すように、車両には、ブレーキロータ3の外周側部分を囲むようにキャリパ1がブレーキ装置ごとに設けられる。キャリパ1のアウトボード側の端部に、爪部6が設けられる。この爪部6にアウトボード側に位置するアウトボード側摩擦パッド4Aが支持されている。このアウトボード側摩擦パッド4Aは、ブレーキロータ3のアウトボード側の側面と軸方向に対向する。なおこの明細書において、このブレーキ装置を車両に搭載した状態で、車両の車幅方向外側をアウトボード側といい、車両の車幅方向中央側をインボード側という。 FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. Therefore, hereinafter, the first actuator 2-1 will be described, but this description also applies to the second actuator 2-2. As shown in FIG. 6, the caliper 1 is provided for each brake device in the vehicle so as to surround the outer peripheral side portion of the brake rotor 3. A claw portion 6 is provided at an end portion of the caliper 1 on the outboard side. An outboard side friction pad 4A located on the outboard side is supported by the claw portion 6. The outboard side friction pad 4 </ b> A faces the side surface of the brake rotor 3 on the outboard side in the axial direction. In this specification, in the state where this brake device is mounted on a vehicle, the vehicle width direction outer side of the vehicle is referred to as an outboard side, and the vehicle width direction center side of the vehicle is referred to as an inboard side.
 キャリパ1のうち、アクチュエータ2のアウトボード側端に、インボード側に位置するインボード側摩擦パッド4Bが支持されている。このインボード側摩擦パッド4Bは、ブレーキロータ3のインボード側の側面と軸方向に対向する。アクチュエータ2は、インボード側摩擦パッド4Bをブレーキロータ3に対して当接離隔させる駆動を行う。なお、本明細書において、アウトボード側摩擦パッド4Aとインボード側摩擦パッド4Bとのいずれにも該当し得る場合には、単に摩擦パッド4と称する。 In the caliper 1, the inboard side friction pad 4 </ b> B located on the inboard side is supported at the outboard side end of the actuator 2. The inboard friction pad 4B faces the inboard side surface of the brake rotor 3 in the axial direction. The actuator 2 drives the inboard side friction pad 4 </ b> B to abut against and separate from the brake rotor 3. In the present specification, when it can correspond to both the outboard side friction pad 4A and the inboard side friction pad 4B, it is simply referred to as the friction pad 4.
 車両における図示外のナックルに、マウント7が支持される。図3に示すように、マウント7の長手方向両端部には、ピン支持片8,8が設けられる。これらピン支持片8,8のそれぞれ端部に、軸方向に互いに平行に延びるスライドピン9,9が設けられる。これらスライドピン9,9に、キャリパ1が軸方向にスライド自在に支持されている。 The mount 7 is supported by a knuckle (not shown) in the vehicle. As shown in FIG. 3, pin support pieces 8 and 8 are provided at both ends in the longitudinal direction of the mount 7. Slide pins 9 and 9 extending in parallel with each other in the axial direction are provided at the ends of the pin support pieces 8 and 8, respectively. The caliper 1 is supported by these slide pins 9 and 9 so as to be slidable in the axial direction.
 図6に示すように、制動時、後述するアクチュエータ2の駆動によりインボード側摩擦パッド4Bがブレーキロータ3に当接して、ブレーキロータ3を軸方向に押圧する。その押圧力の反力によりキャリパ1がインボード側にスライドする。これにより、キャリパ1の爪部6に支持されたアウトボード側摩擦パッド4Aがブレーキロータ3に当接する。これらアウトボード側・インボード側摩擦パッド4A,4Bが、ブレーキロータ3を軸方向両側から強く挟持することで、ブレーキロータ3に制動力が負荷される。 As shown in FIG. 6, during braking, the inboard friction pad 4 </ b> B comes into contact with the brake rotor 3 by driving an actuator 2 described later, and presses the brake rotor 3 in the axial direction. The caliper 1 slides to the inboard side by the reaction force of the pressing force. As a result, the outboard friction pad 4 </ b> A supported by the claw portion 6 of the caliper 1 contacts the brake rotor 3. The outboard side / inboard side friction pads 4 </ b> A and 4 </ b> B strongly hold the brake rotor 3 from both sides in the axial direction, so that a braking force is applied to the brake rotor 3.
 図3に示すように、第1および第2のアクチュエータ2-1,2-2は、それぞれ、ハウジング10,10と、電動モータ11,11と、第1および第2の直動機構12-1,12-2(図6)と、減速機構13,13とを有する。キャリパ1には、二つの筒状のハウジング10,10が固定されている。これらハウジング10,10それぞれに各電動モータ11が支持される。図6に示すように、ハウジング10内には直動機構12が組み込まれ、この直動機構12は電動モータ11(図3)の出力に応じてブレーキロータ3に対して制動力を負荷する。なお、本明細書において、単に直動機構12と称する場合、第1の直動機構12-1と第2の直動機構12-2とのいずれにも該当し得る。 As shown in FIG. 3, the first and second actuators 2-1 and 2-2 include housings 10 and 10, electric motors 11 and 11, and first and second linear motion mechanisms 12-1, respectively. , 12-2 (FIG. 6) and speed reduction mechanisms 13, 13. Two cylindrical housings 10 are fixed to the caliper 1. The electric motors 11 are supported by the housings 10 and 10 respectively. As shown in FIG. 6, a linear motion mechanism 12 is incorporated in the housing 10, and the linear motion mechanism 12 applies a braking force to the brake rotor 3 according to the output of the electric motor 11 (FIG. 3). In the present specification, the simple term of the linear motion mechanism 12 may correspond to both the first linear motion mechanism 12-1 and the second linear motion mechanism 12-2.
 直動機構12は、減速機構13で出力される回転運動を直線運動に変換して、ブレーキロータ3に対して摩擦パッド4を当接離隔させる機構である。この直動機構12は、電動モータ11(図3)により回転駆動される回転軸14と、この回転軸14の回転運動を直線運動に変換する変換機構部15と、拘束部16,17とを有する。変換機構部15は、ピストンである直動部18と、支持部材19と、環状のスラスト板であるバックアッププレート20と、スラスト軸受21と、転がり軸受22と、キャリア23と、第1および第2のすべり軸受24,25と、複数の遊星ローラ26とを有する。 The linear motion mechanism 12 is a mechanism that converts the rotational motion output from the speed reduction mechanism 13 into a linear motion and causes the friction pad 4 to abut against and separate from the brake rotor 3. The linear motion mechanism 12 includes a rotary shaft 14 that is rotationally driven by the electric motor 11 (FIG. 3), a conversion mechanism portion 15 that converts the rotational motion of the rotary shaft 14 into linear motion, and restraint portions 16 and 17. Have. The conversion mechanism portion 15 includes a linear motion portion 18 that is a piston, a support member 19, a backup plate 20 that is an annular thrust plate, a thrust bearing 21, a rolling bearing 22, a carrier 23, a first and a second. Slide bearings 24 and 25 and a plurality of planetary rollers 26.
 ハウジング10の内周面に、円筒状の直動部18が、回り止めされ且つ軸方向に移動自在に支持されている。直動部18の内周面には、径方向内方に所定距離突出し螺旋状に形成された螺旋突起が設けられている。この螺旋突起に複数の遊星ローラ26が噛合している。 A cylindrical linear motion portion 18 is supported on the inner peripheral surface of the housing 10 so as to be prevented from rotating and movable in the axial direction. On the inner peripheral surface of the linear motion portion 18, a spiral protrusion is provided that protrudes a predetermined distance radially inward and is formed in a spiral shape. A plurality of planetary rollers 26 are engaged with the spiral protrusions.
 ハウジング10内における直動部18の軸方向一端側に、前記支持部材19が設けられている。この支持部材19は、ボス部と、このボス部から径方向外方に延びるフランジ部とを有する。前記ボス部内に複数の転がり軸受22が嵌合され、これら転がり軸受22の内輪内径面に回転軸14が嵌合されている。回転軸14は、支持部材19に複数の転がり軸受22を介して回転自在に支持される。 The support member 19 is provided on one end side in the axial direction of the linear motion portion 18 in the housing 10. The support member 19 has a boss portion and a flange portion extending radially outward from the boss portion. A plurality of rolling bearings 22 are fitted in the boss portion, and the rotary shaft 14 is fitted to the inner ring inner diameter surface of the rolling bearings 22. The rotary shaft 14 is rotatably supported by the support member 19 via a plurality of rolling bearings 22.
 直動部18の内周には、回転軸14を中心に回転可能なキャリア23が設けられている。キャリア23は、軸方向に互いに対向して配置される一対のディスクを有する。これらディスクのうち、支持部材19に近いディスクをインナ側ディスクと称し、他方のディスクをアウタ側ディスクと称する。アウタ側ディスクのうち、インナ側ディスクに臨む側面には、この側面における外周縁部から軸方向(インボード側)に突出するように複数の柱部材が設けられる。これら複数の柱部材によりアウタ側ディスクおよびインナ側ディスクが一体に設けられる。 A carrier 23 that can rotate around the rotation shaft 14 is provided on the inner periphery of the linear motion portion 18. The carrier 23 has a pair of disks that are arranged to face each other in the axial direction. Of these disks, the disk close to the support member 19 is referred to as an inner disk, and the other disk is referred to as an outer disk. A plurality of pillar members are provided on a side surface of the outer side disk facing the inner side disk so as to protrude in an axial direction (inboard side) from an outer peripheral edge portion on the side surface. The outer side disc and the inner side disc are integrally provided by the plurality of column members.
 インナ側ディスクは、回転軸14との間に嵌合された第1のすべり軸受24により、回転軸14に回転自在に支持されている。アウタ側ディスクには、中心部に軸挿入孔が形成され、この軸挿入孔に第2のすべり軸受25が嵌合されている。アウタ側ディスクは、第2のすべり軸受25により回転軸14に回転自在に支持される。回転軸14の軸方向両端部には、支持部材19に対して回転軸14およびキャリア23の軸方向位置を拘束する前記拘束部16,17が設けられる。 The inner disk is rotatably supported on the rotary shaft 14 by a first slide bearing 24 fitted between the inner disc and the rotary shaft 14. A shaft insertion hole is formed in the center of the outer side disk, and a second plain bearing 25 is fitted in this shaft insertion hole. The outer disk is rotatably supported on the rotary shaft 14 by the second slide bearing 25. The restraining portions 16 and 17 for restraining the axial positions of the rotating shaft 14 and the carrier 23 with respect to the support member 19 are provided at both ends in the axial direction of the rotating shaft 14.
 キャリア23には、複数のローラ軸27が周方向に間隔を空けて設けられている。各ローラ軸27の軸方向両端部が、インナ側ディスク,アウタ側ディスクにわたって支持されている。両ディスクには、それぞれ軸挿入孔が複数形成されている。各軸挿入孔は、径方向に所定距離延びる長孔から成る。各軸挿入孔に各ローラ軸27の軸方向両端部が挿入されて、これらローラ軸27が各軸挿入孔の範囲で径方向に移動自在に支持される。複数のローラ軸27における軸方向両端部には、これらローラ軸27を径方向内方に付勢する弾性リング28が掛け渡されている。 The carrier 23 is provided with a plurality of roller shafts 27 at intervals in the circumferential direction. Both end portions in the axial direction of each roller shaft 27 are supported across the inner side disk and the outer side disk. Both discs have a plurality of shaft insertion holes. Each shaft insertion hole is composed of a long hole extending a predetermined distance in the radial direction. Both axial ends of each roller shaft 27 are inserted into the respective shaft insertion holes, and these roller shafts 27 are supported so as to be movable in the radial direction within the range of the respective shaft insertion holes. An elastic ring 28 that urges the roller shafts 27 inward in the radial direction is stretched between both axial ends of the plurality of roller shafts 27.
 各ローラ軸27に、遊星ローラ26が回転自在に支持される。各遊星ローラ26の外周面には、直動部18の螺旋突起に噛合する円周溝または螺旋溝が形成されている。各遊星ローラ26は、回転軸14の外周面と、直動部18の内周面との間に介在される。前記弾性リング28の付勢力により、各遊星ローラ26が回転軸14の外周面に押し付けられる。回転軸14が回転することで、この回転軸14の外周面に接触する各遊星ローラ26が接触摩擦により回転する。 The planetary roller 26 is rotatably supported on each roller shaft 27. On the outer peripheral surface of each planetary roller 26, a circumferential groove or a spiral groove that meshes with the spiral protrusion of the linear motion portion 18 is formed. Each planetary roller 26 is interposed between the outer peripheral surface of the rotating shaft 14 and the inner peripheral surface of the linear motion portion 18. Each planetary roller 26 is pressed against the outer peripheral surface of the rotating shaft 14 by the urging force of the elastic ring 28. As the rotating shaft 14 rotates, each planetary roller 26 that contacts the outer peripheral surface of the rotating shaft 14 rotates due to contact friction.
 減速機構13は、電動モータ11(図3)の回転を、回転軸14に固定された出力ギヤ29に減速して伝える機構である。図3に示すように、減速機構13は複数のギヤ列を含む。この実施形態では、減速機構13は、電動モータ11の図示外のロータ軸に取り付けられた入力ギヤ30の回転を中間ギヤ31により減速して、出力ギヤ29に伝達可能としている。 The speed reduction mechanism 13 is a mechanism for decelerating and transmitting the rotation of the electric motor 11 (FIG. 3) to an output gear 29 fixed to the rotary shaft 14. As shown in FIG. 3, the speed reduction mechanism 13 includes a plurality of gear trains. In this embodiment, the speed reduction mechanism 13 can reduce the rotation of the input gear 30 attached to the rotor shaft (not shown) of the electric motor 11 by the intermediate gear 31 and transmit it to the output gear 29.
 図7は、このブレーキ装置の制御系のブロック図である。このブレーキ装置の制御装置5は、二つのアクチュエータ2,2(第1および第2のアクチュエータ2-1,2-2)をそれぞれ制御する。この制御装置5は、ECU32に設けられるブレーキ力指令手段32aと、二つのアクチュエータ2,2にそれぞれ対応する二つのインバータ装置33,33とを有する。各インバータ装置33の上位制御手段であるECU32として、例えば、車両全般を制御する電気制御ユニットが適用される。ECU32のブレーキ力指令手段32aは、ブレーキ操作手段34であるブレーキペダルの操作量を検出するブレーキセンサ34aの出力に応じて、各車輪の目標とするブレーキ力の指令値を生成し出力する。 FIG. 7 is a block diagram of the control system of this brake device. The brake device control device 5 controls the two actuators 2 and 2 (first and second actuators 2-1 and 2-2), respectively. The control device 5 includes a brake force command means 32 a provided in the ECU 32 and two inverter devices 33 and 33 respectively corresponding to the two actuators 2 and 2. For example, an electric control unit that controls the entire vehicle is applied as the ECU 32 that is a higher-level control unit of each inverter device 33. The brake force command means 32a of the ECU 32 generates and outputs a target brake force command value for each wheel according to the output of the brake sensor 34a that detects the amount of operation of the brake pedal, which is the brake operation means 34.
 図8に示すように、各インバータ装置33は、ブレーキ力推定手段35と、各電動モータ11に対して設けられたパワー回路部36と、このパワー回路部36を制御するモータコントロール部37と、警告信号出力手段38と、電流検出手段39とを有する。 As shown in FIG. 8, each inverter device 33 includes a braking force estimation means 35, a power circuit unit 36 provided for each electric motor 11, a motor control unit 37 that controls the power circuit unit 36, Warning signal output means 38 and current detection means 39 are provided.
 ブレーキ力推定手段35は、摩擦パッド4(図4)をブレーキロータ3(図4)に押し付けるブレーキ力の推定値を求める手段である。このブレーキ力推定手段35は、前記ブレーキセンサ34aの出力と、電流検出手段39で検出されるモータ電流とから、相応のブレーキ力の推定値を演算により求める。前記ブレーキセンサ34aの出力、モータ電流、およびブレーキ力の推定値の関係は、例えば、試験およびシミュレーションのいずれか一方または両方の結果により適切に定められ、記録手段40に書換え可能に記録されている。 The brake force estimation means 35 is a means for obtaining an estimated value of the brake force that presses the friction pad 4 (FIG. 4) against the brake rotor 3 (FIG. 4). The brake force estimating means 35 obtains an estimated value of the corresponding brake force by calculation from the output of the brake sensor 34a and the motor current detected by the current detecting means 39. The relationship between the output of the brake sensor 34a, the motor current, and the estimated value of the braking force is appropriately determined by, for example, the result of one or both of the test and simulation, and is recorded in the recording means 40 so as to be rewritable. .
 ブレーキ力推定手段35は、さらに、直動機構12(図6)の軸方向荷重を検出する荷重センサ(図示せず)を含むものとしても良い。この場合、制御装置5は、直動部18(図6)を、ブレーキロータ3(図6)から離反した位置からアウトボード側に前進させて、この荷重センサで検出可能な最小の検出値であるブレーキ力を取得する。 The brake force estimating means 35 may further include a load sensor (not shown) for detecting the axial load of the linear motion mechanism 12 (FIG. 6). In this case, the control device 5 advances the linear motion portion 18 (FIG. 6) from the position away from the brake rotor 3 (FIG. 6) to the outboard side, and uses the minimum detection value that can be detected by this load sensor. Get a certain braking force.
 ブレーキ操作手段34をさらに踏込む操作量に従って、前記荷重センサで検出される検出値であるブレーキ力は次第に大きくなる。この荷重センサの検出値を用いることで、ブレーキ力を精度良く検出し得る。さらに、電流検出手段39で検出されるモータ電流からモータトルクを推定するトルク推定手段41を設け、このトルク推定手段41で推定されるトルクを用いてブレーキ力を推定しても良い。 The brake force, which is a detection value detected by the load sensor, gradually increases in accordance with the operation amount that further depresses the brake operation means 34. By using the detection value of the load sensor, the braking force can be detected with high accuracy. Further, a torque estimating means 41 for estimating the motor torque from the motor current detected by the current detecting means 39 may be provided, and the braking force may be estimated using the torque estimated by the torque estimating means 41.
 モータコントロール部37は、コンピュータとこのコンピュータが実行するプログラム、および電子回路により構成される。本実施形態において、モータコントロール部37は、ブレーキ力指令手段32aから与えられるブレーキ力の指令値を、後述するように補正して、その補正後指令値を電圧値で表される電流指令に変換して、この電流指令をパワー回路部36に与える。モータコントロール部37は、電動モータ11に関する各検出値や制御値等の各情報をECU32に出力する機能を有する。なお、ブレーキ力推定手段35も、ンピュータとこのコンピュータが実行するプログラム、および電子回路により構成される。 The motor control unit 37 includes a computer, a program executed by the computer, and an electronic circuit. In the present embodiment, the motor control unit 37 corrects the command value of the brake force given from the brake force command means 32a as will be described later, and converts the corrected command value into a current command represented by a voltage value. Then, this current command is given to the power circuit unit 36. The motor control unit 37 has a function of outputting information such as detection values and control values relating to the electric motor 11 to the ECU 32. The brake force estimating means 35 is also composed of a computer, a program executed by the computer, and an electronic circuit.
 パワー回路部36は、電源42の直流電力を電動モータ11の駆動に用いる3相の交流電力に変換するインバータ36bと、このインバータ36bを制御するPWM制御部36aとを有する。電動モータ11は3相の同期モータ等からなる。この電動モータ11には、そのロータの回転角を検出するモータ回転角検出手段43が設けられている。インバータ36bは、複数の半導体スイッチング素子(図示せず)で構成され、PWM制御部36aは、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。 The power circuit unit 36 includes an inverter 36b that converts the DC power of the power source 42 into three-phase AC power used to drive the electric motor 11, and a PWM control unit 36a that controls the inverter 36b. The electric motor 11 is composed of a three-phase synchronous motor or the like. The electric motor 11 is provided with motor rotation angle detection means 43 for detecting the rotation angle of the rotor. The inverter 36b is composed of a plurality of semiconductor switching elements (not shown), and the PWM controller 36a performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
 モータコントロール部37は、個別制御部としてのモータ駆動制御部44を有する。このモータ駆動制御部44は、後述の補正後指令値を電圧値で表される電流指令に変換して、PWM制御部36aに電流指令からなるモータ動作指令値を与える。モータ駆動制御部44は、インバータ36bから電動モータ11に流すモータ電流を電流検出手段39から得て、前記補正後指令値に対し、電流フィードバック制御を行う。モータ駆動制御部44は、また、モータ回転角をモータ回転角検出手段43から得て、モータ回転角に応じた効率的なモータ駆動が行えるように、PWM制御部36aに電流指令を与える。 The motor control unit 37 has a motor drive control unit 44 as an individual control unit. The motor drive control unit 44 converts a corrected command value, which will be described later, into a current command represented by a voltage value, and gives a motor operation command value including the current command to the PWM control unit 36a. The motor drive control unit 44 obtains a motor current flowing from the inverter 36b to the electric motor 11 from the current detection means 39, and performs current feedback control on the corrected command value. The motor drive control unit 44 also obtains a motor rotation angle from the motor rotation angle detection means 43 and gives a current command to the PWM control unit 36a so that efficient motor driving according to the motor rotation angle can be performed.
 また各モータ駆動制御部44は荷重補正部44aを有する。第1のアクチュエータ2-1(図7)に対応するインバータ装置33の荷重補正部44aは、対応するパッド部摩耗量推定手段45(詳細は後述する)で求められるインボード側摩擦パッド4A(図4)のパッド部4aとアウトボード側摩擦パッド4B(図4)のパッド部4aの合算残量と、第2のアクチュエータ2-2(図7)に対応するインバータ装置33のパッド部摩耗量推定手段45で求められるインボード側摩擦パッド4A(図4)のパッド部4bとアウトボード側摩擦パッド4B(図4)のパッド部4bの合算残量との差に応じて、第1のアクチュエータ2-1(図7)にて発生させる荷重(指令値)を補正する。第2のアクチュエータ2-2(図4)に対応するインバータ装置33の荷重補正部44aも、同様に、第2のアクチュエータ2-2(図7)にて発生させる荷重(指令値)を補正する。例えば、各荷重補正部44aは、対応するパッド部4a,4aまたは4b,4b(図4)の非摩耗時にブレーキ力指令手段32aから与えられる指令値に対し、対応するパッド部4a,4a及び4b,4bの合算残量偏差(つまり、パッド部4a,4aの合算残量とパッド部4b,4bの合算残量との差)に係数を乗じた値を加えて補正する。但し、第1および第2のアクチュエータ2-1,2-2(図7)の指令値の合計は補正の前後で変化しない。換言すれば、二つの荷重補正部44a,44aは、第1および第2つのアクチュエータ2-1,2-2(図7)にて発生させる荷重の合計が、このブレーキ装置への要求荷重(指令値)と一致するように、前記第1および第2のアクチュエータ2-1,2-2(図7)をそれぞれ制御する。 Each motor drive control unit 44 has a load correction unit 44a. The load correction unit 44a of the inverter device 33 corresponding to the first actuator 2-1 (FIG. 7) has an inboard friction pad 4A (see FIG. 5) obtained by the corresponding pad portion wear amount estimation means 45 (details will be described later). 4) The remaining amount of the pad portion 4a of the pad portion 4a and the pad portion 4a of the outboard friction pad 4B (FIG. 4), and the estimation of the pad portion wear amount of the inverter device 33 corresponding to the second actuator 2-2 (FIG. 7) Depending on the difference between the combined remaining amount of the pad portion 4b of the inboard friction pad 4A (FIG. 4) and the pad portion 4b of the outboard friction pad 4B (FIG. 4) obtained by the means 45, the first actuator 2 -1 (Fig. 7) to correct the load (command value) generated. Similarly, the load correction unit 44a of the inverter device 33 corresponding to the second actuator 2-2 (FIG. 4) also corrects the load (command value) generated by the second actuator 2-2 (FIG. 7). . For example, each load correction unit 44a corresponds to the command value given from the brake force command means 32a when the corresponding pad unit 4a, 4a or 4b, 4b (FIG. 4) is not worn, and the corresponding pad unit 4a, 4a and 4b. , 4b (that is, the difference between the total remaining amount of the pad portions 4a and 4a and the total remaining amount of the pad portions 4b and 4b) and a value multiplied by a coefficient are corrected. However, the sum of the command values of the first and second actuators 2-1 and 2-2 (FIG. 7) does not change before and after the correction. In other words, the two load correction units 44a and 44a are configured so that the total load generated by the first and second actuators 2-1 and 2-2 (FIG. 7) is a required load (command) to the brake device. The first and second actuators 2-1 and 2-2 (FIG. 7) are controlled so as to coincide with each other.
 なお、第1のアクチュエータ2-1に対応するインバータ装置33のパッド摩耗量推定手段45で求められるパッド部4a,4aの合算残量は、ECU32を介して第2のアクチュエータ2-2に対応するインバータ装置33に伝達されても良い。同様に、第2のアクチュエータ2-2に対応するインバータ装置33のパッド摩耗量推定手段45で求められるパッド部4b,4bの合算残量は、ECU32を介して第1のアクチュエータ2-1に対応するインバータ装置33に伝達されても良い。代わりに、第1のアクチュエータ2-1に対応するインバータ装置33のパッド摩耗量推定手段45で求められるパッド部4a,4aの合算残量と、第2のアクチュエータ2-2に対応するインバータ装置33のパッド摩耗量推定手段45で求められるパッド部4b,4bの合算残量とが、ECU32に通知され、ECU32では、これら合算残量から各インバータの荷重補正部44aにて使用する物理量(例えば合算残量偏差等)を算出し、その値を各インバータ33に伝達しても良い。 Note that the total remaining amount of the pad portions 4a and 4a obtained by the pad wear amount estimating means 45 of the inverter device 33 corresponding to the first actuator 2-1 corresponds to the second actuator 2-2 via the ECU 32. It may be transmitted to the inverter device 33. Similarly, the total remaining amount of the pad portions 4b and 4b obtained by the pad wear amount estimating means 45 of the inverter device 33 corresponding to the second actuator 2-2 corresponds to the first actuator 2-1 via the ECU 32. May be transmitted to the inverter device 33. Instead, the total remaining amount of the pad portions 4a and 4a obtained by the pad wear amount estimating means 45 of the inverter device 33 corresponding to the first actuator 2-1 and the inverter device 33 corresponding to the second actuator 2-2. The ECU 32 is notified of the total remaining amount of the pad portions 4b and 4b obtained by the pad wear amount estimating means 45, and the ECU 32 uses the physical amount used by the load correction unit 44a of each inverter (for example, the total) from the total remaining amount. (Residual amount deviation or the like) may be calculated and the value may be transmitted to each inverter 33.
 各モータコントロール部37には、パッド部摩耗量推定手段45および記録手段40等が設けられる。第1のアクチュエータ2-1(図7)に対応するインバータ装置33のパッド部摩耗量推定手段45は、図4および図5に示すように、摩擦パッド4における、第1の直動機構12-1(図6)に対応するパッド部4a,4aの合算摩耗量を推定する。第2のアクチュエータ2-2(図7)に対応するインバータ装置33のパッド部摩耗量推定手段45も、同様に、第2の直動機構12-2(図6)に対応するパッド部4b,4bの合算摩耗量を推定する。すなわち、摩擦パッド4における、第1のアクチュエータ2-1における第1の直動機構12-1(図6)に対応するパッド部4a,4aは、その直動機構12-1(図6)に対応する、摩擦パッド4の略半分の部分(ブレーキロータ3回転方向上流側の部分)である。摩擦パッド4における、第2のアクチュエータ2-2における第2の直動機構12-2(図6)に対応するパッド部4b,4bは、前記第2の直動機構12(図6)に対応する、摩擦パッド4の略半分の部分(ブレーキロータ回転方向下流側の部分)である。 Each motor control unit 37 is provided with pad portion wear amount estimation means 45, recording means 40, and the like. As shown in FIGS. 4 and 5, the pad portion wear amount estimating means 45 of the inverter device 33 corresponding to the first actuator 2-1 (FIG. 7) is the first linear motion mechanism 12- in the friction pad 4. 1 (FIG. 6), the combined wear amount of the pad portions 4a and 4a is estimated. Similarly, the pad portion wear amount estimation means 45 of the inverter device 33 corresponding to the second actuator 2-2 (FIG. 7) also has a pad portion 4b corresponding to the second linear motion mechanism 12-2 (FIG. 6). The total wear amount of 4b is estimated. That is, the pad portions 4a and 4a corresponding to the first linear motion mechanism 12-1 (FIG. 6) in the first actuator 2-1 in the friction pad 4 are connected to the linear motion mechanism 12-1 (FIG. 6). The corresponding half of the friction pad 4 (the upstream portion of the brake rotor 3 in the rotational direction). Pad portions 4b and 4b corresponding to the second linear motion mechanism 12-2 (FIG. 6) in the second actuator 2-2 in the friction pad 4 correspond to the second linear motion mechanism 12 (FIG. 6). This is a substantially half portion of the friction pad 4 (portion on the downstream side in the brake rotor rotation direction).
 図8に示すように、各パッド部摩耗量推定手段45は、モータ回転角検出手段43で検出されるモータ回転角と、ブレーキ力推定手段35で求められるブレーキ力推定値との相関を、摩擦パッド4のパッド部4a,4aまたは4b,4b(図4)が非摩耗時のモータ回転角とブレーキ力推定値との定められた相関と比較して、現時点の摩擦パッド4のパッド部4a,4aまたは4b,4b(図4)の合算摩耗量を推定する。各パッド部4a,4a及び4b,4bの非摩耗時の厚みから現時点の残量を減じることで、摩耗量が求められる。 As shown in FIG. 8, each pad wear amount estimation means 45 calculates the friction between the motor rotation angle detected by the motor rotation angle detection means 43 and the estimated brake force value obtained by the brake force estimation means 35. The pad portions 4a, 4a or 4b, 4b (FIG. 4) of the pad 4 are compared with the determined correlation between the motor rotation angle and the estimated brake force when the pad 4 is not worn, and the pad portion 4a, The total wear amount of 4a or 4b, 4b (FIG. 4) is estimated. The amount of wear is determined by subtracting the current remaining amount from the thickness of each pad portion 4a, 4a and 4b, 4b when not worn.
 警告信号出力手段38は、対応するパッド部摩耗量推定手段45で推定されるパッド部4a,4aまたは4b,4b(図4)の合算摩耗量が閾値以上のとき、ECU32に警告信号を出力する。前記閾値は記録手段40に書換え可能に記録される。車両におけるコンソールパネル等に、例えば、ディスプレイ、警告灯、または音声出力装置等の警告表示等出力手段46が設けられる。ECU32は、警告信号出力手段38から警告信号が入力されると、警告表示等出力手段46に警告表示等を出力させる。車両の運転者は、出力される警告表示等により、摩擦パッド4の摩耗限界が近いことを認識し得る。 The warning signal output means 38 outputs a warning signal to the ECU 32 when the total wear amount of the pad portions 4a, 4a or 4b, 4b (FIG. 4) estimated by the corresponding pad portion wear amount estimation means 45 is equal to or greater than a threshold value. . The threshold value is recorded in the recording means 40 so as to be rewritable. An output means 46 such as a warning display such as a display, a warning light, or an audio output device is provided on a console panel or the like in the vehicle. When the warning signal is input from the warning signal output means 38, the ECU 32 causes the warning display or the like output means 46 to output a warning display or the like. The driver of the vehicle can recognize that the wear limit of the friction pad 4 is close by the output warning display or the like.
 図9は、ブレーキ装置における、パッド摩耗の程度に応じたモータ回転角とブレーキ力推定値の相関の一例を示す図である。モータ回転角とブレーキ力推定値の相関は、主に、図6に示すキャリパ1の剛性と、摩擦パッド4の圧縮剛性と、アクチュエータ2の剛性とに依存する。これらのうち、キャリパ1およびアクチュエータ2の剛性は、ブレーキ力が継続して発生していても変化せずほぼ既知の一定の大きさのままである。また一般には、摩擦パッド4の摩耗量に比較してブレーキロータ3の摩耗量は少なく、またブレーキ全体の剛性に対してブレーキロータ3の圧縮変形量は極めて小さいため、ブレーキロータ3の摩耗によるブレーキ全体の剛性への影響はほぼ皆無である。 FIG. 9 is a diagram showing an example of the correlation between the motor rotation angle and the estimated brake force value according to the degree of pad wear in the brake device. The correlation between the motor rotation angle and the estimated braking force mainly depends on the rigidity of the caliper 1 shown in FIG. 6, the compression rigidity of the friction pad 4, and the rigidity of the actuator 2. Among these, the rigidity of the caliper 1 and the actuator 2 does not change even when the braking force is continuously generated, and remains almost a known constant magnitude. In general, the amount of wear of the brake rotor 3 is small compared to the amount of wear of the friction pad 4, and the amount of compressive deformation of the brake rotor 3 is extremely small relative to the rigidity of the entire brake. There is almost no impact on the overall stiffness.
 一方で、摩擦パッド4の圧縮剛性はブレーキロータ3等と比べて非常に低く、ブレーキ全体の剛性への影響が大きい。そのため、摩擦パッド4の摩耗が進行し摩擦パッド4の剛性が高くなるに従って、ブレーキ全体の剛性が高くなる。 On the other hand, the compression rigidity of the friction pad 4 is very low compared to the brake rotor 3 and the like, and the influence on the rigidity of the entire brake is great. Therefore, the rigidity of the entire brake increases as wear of the friction pad 4 progresses and the rigidity of the friction pad 4 increases.
 図8のパッド部摩耗量推定手段45は、非摩耗時のモータ回転角とブレーキ力推定値との定められた相関と、現時点のモータ回転角とブレーキ力推定値との相関との相違に基づいて、摩擦パッド4の各パッド部4a,4aまたは4b,4b(図4)の合算摩耗量を推定可能である。 The pad portion wear amount estimation means 45 in FIG. 8 is based on the difference between the predetermined correlation between the motor rotation angle and the brake force estimated value when not worn and the correlation between the current motor rotation angle and the brake force estimated value. Thus, the total wear amount of each pad portion 4a, 4a or 4b, 4b (FIG. 4) of the friction pad 4 can be estimated.
 この摩擦パッド4(図4)は、図9の実線で示すように、この摩擦パッド4(図6)の非摩耗時では、モータ回転角とブレーキ力推定値の相関につき非線形性が強く表れる。具体的には、モータ回転角を横軸、ブレーキ推定値を縦軸の座標で表すと、これらモータ回転角とブレーキ推定値は、比例ではなく横軸側に突出した曲線の相関を呈する。図9の点線で示すように、パッド部摩耗量が「中」の状態、つまり摩耗が進むが摩耗限界に達するよりも前の状態では、前記相関は非摩耗時よりも線形に近づく。具体的には、モータ回転角を横軸、ブレーキ推定値を縦軸の座標で表すと、これらモータ回転角とブレーキ推定値は横軸側に突出した曲線の相関を呈するが、非摩耗時に比べて直線に近い。図9の一点鎖線で示すように、パッド部摩耗量が多い摩耗限界に達した状態では、前記相関はパッド部摩耗量が「中」の状態よりもさらに線形に近づく。具体的には、モータ回転角を横軸、ブレーキ推定値を縦軸の座標で表すと、これらモータ回転角とブレーキ推定値は横軸側に突出した曲線の相関を呈するが、直線に極めて近い。 As shown by the solid line in FIG. 9, the friction pad 4 (FIG. 4) exhibits a strong nonlinearity with respect to the correlation between the motor rotation angle and the estimated brake force when the friction pad 4 (FIG. 6) is not worn. Specifically, when the motor rotation angle is represented by the horizontal axis and the brake estimated value is represented by the coordinate of the vertical axis, the motor rotation angle and the brake estimated value are not proportional but have a correlation of curves protruding toward the horizontal axis. As shown by the dotted line in FIG. 9, in the state where the amount of wear of the pad portion is “medium”, that is, the state where wear proceeds but before the wear limit is reached, the correlation becomes more linear than in the non-wear state. Specifically, when the motor rotation angle is represented by the horizontal axis and the brake estimated value is represented by the coordinate of the vertical axis, the motor rotation angle and the brake estimated value exhibit a correlation of curves protruding to the horizontal axis side, but compared with the non-wearing state. Close to a straight line. As shown by the one-dot chain line in FIG. 9, in the state where the wear limit of the pad portion wear amount is large, the correlation becomes more linear than in the state where the pad wear amount is “medium”. Specifically, when the motor rotation angle is represented by the horizontal axis and the brake estimated value is represented by the coordinate of the vertical axis, the motor rotation angle and the brake estimated value exhibit a correlation of curves protruding toward the horizontal axis, but are very close to a straight line. .
 図10は、パッド部摩耗量を検出する例を説明するために用いられる、このブレーキ装置のモータ回転角とブレーキ力推定値との相関を示す図である。一定のブレーキ力Fを発揮するのに必要なモータ回転角θは、摩擦パッド4(図6)の摩耗後の状態ではモータ回転角θ’になる。前記ブレーキ力Fは図8のブレーキ力推定手段35で推定される。モータ回転角θ(θ’)はモータ回転角検出手段43で検出される。パッド部摩耗量推定手段45は、モータ回転角の変化量とパッド部摩耗量との関係を定めたマップ等(つまり、図9または図10のグラフの関係を示すマップであって、様々な摩耗量それぞれについての相関を示すマップ)から、摩擦パッド4のパッド部4a,4aまたは4b,4b(図4)の合算摩耗量を精度良く推定し得る。 FIG. 10 is a diagram showing the correlation between the motor rotation angle of this brake device and the estimated brake force value, which is used for explaining an example of detecting the pad wear amount. The motor rotation angle θ necessary for exerting a constant braking force F becomes the motor rotation angle θ ′ in a state after the friction pad 4 (FIG. 6) is worn. The brake force F is estimated by the brake force estimating means 35 in FIG. The motor rotation angle θ (θ ′) is detected by the motor rotation angle detection means 43. The pad wear amount estimation means 45 is a map or the like that defines the relationship between the change amount of the motor rotation angle and the pad wear amount (that is, a map showing the relationship of the graph of FIG. 9 or FIG. From the map showing the correlation for each amount, the total wear amount of the pad portions 4a, 4a or 4b, 4b (FIG. 4) of the friction pad 4 can be accurately estimated.
 図11は、このブレーキ装置において、ブレーキ力推定値の変化時のモータ回転角の変化率に基づいてパッド部摩耗量を推定するために用いられる、モータ回転角とブレーキ力推定値との相関を示す図である。前述のように、パッド摩耗の進行に従って、モータ回転角とブレーキ力推定値の相関は線形に近づいていく。そうすると、ブレーキ力推定値とモータ回転角のいずれか一方の値が、定められた値以上増え続けるまたは減り続ける条件において、ブレーキ力推定値が例えばF1からF2に変化したときの、モータ回転角の変化Δθ(Δθ’)を検出することにより、モータ回転角とブレーキ力推定値の相関が非線形を維持しているか線形に近づいているか、すなわちモータ回転角に対するブレーキ力推定値の勾配が小さくなっていることを検出できる。これにより、パッド摩耗の進行具合を判定し得る。 FIG. 11 shows the correlation between the motor rotation angle and the brake force estimated value, which is used to estimate the pad wear amount based on the rate of change of the motor rotation angle when the brake force estimated value changes. FIG. As described above, as the pad wear progresses, the correlation between the motor rotation angle and the brake force estimated value approaches linear. Then, the motor rotation angle when the brake force estimation value changes from, for example, F1 to F2 under a condition where either one of the brake force estimation value and the motor rotation angle continues to increase or decrease more than a predetermined value. By detecting the change Δθ (Δθ ′), whether the correlation between the motor rotation angle and the brake force estimation value is non-linear or close to linear, that is, the gradient of the brake force estimation value with respect to the motor rotation angle is reduced. Can be detected. Thereby, the progress of pad wear can be determined.
 なお、パッド部摩耗量を推定する場合に、モータ回転角θとブレーキ力推定値Fそれぞれの変化率の相関を用いても良い。すなわち定められたモータ回転角θにおけるdF/dθの値、または定められたブレーキ力推定値Fにおけるdθ/dFの値を用いても良い。 In addition, when estimating the amount of wear of the pad portion, the correlation between the change rates of the motor rotation angle θ and the brake force estimated value F may be used. That is, a value of dF / dθ at a predetermined motor rotation angle θ or a value of dθ / dF at a predetermined brake force estimation value F may be used.
 図12は、このブレーキ装置において、ブレーキ力推定値とモータ回転角の相関の非線形性の強さによりパッド部摩耗量を推定する例を示す図である。このブレーキ装置における図8のパッド部摩耗量推定手段45は、線形性判定部47と、パッド部残量検出部48とを有する。線形性判定部47は、ブレーキ力推定値とモータ回転角の相関の線形性の強さを判定する。パッド部残量検出部48は、線形性判定部47により判定される前記相関の線形性の強さが閾値以上となったブレーキ力推定値またはモータ回転角から、摩擦パッド4の各パッド部4a,4aまたは4b,4b(図4)の合算摩耗量を求める。 FIG. 12 is a diagram illustrating an example in which the amount of wear on the pad portion is estimated based on the strength of the nonlinearity of the correlation between the brake force estimated value and the motor rotation angle in this brake device. The pad portion wear amount estimating means 45 of FIG. 8 in this brake device includes a linearity determining portion 47 and a pad portion remaining amount detecting portion 48. The linearity determination unit 47 determines the strength of the linearity of the correlation between the brake force estimated value and the motor rotation angle. The pad remaining amount detection unit 48 determines each pad unit 4a of the friction pad 4 from the estimated brake force value or the motor rotation angle at which the linearity of the correlation determined by the linearity determination unit 47 is equal to or greater than a threshold value. , 4a or 4b, 4b (FIG. 4).
 図8に示す線形性判定部47は、ブレーキ力推定値とモータ回転角のいずれか一方に対する他方の変化率の変化を、例えば、前記一方を前記他方で2回微分することにより求めて相関の線形性の強さを検出しても良い。このときブレーキ力推定値が極めて低い領域は、検出精度が安定しない可能性があるため、定められたブレーキ力推定値以上または定められたモータ回転角以上の条件を別途設けても良い。前記定められたブレーキ力推定値、前記定められたモータ回転角は、それぞれ試験やシミュレーション等の結果から、検出精度が安定するブレーキ力推定値の最小値、または検出精度が安定するモータ回転角の最小角を基準として定められる。 The linearity determination unit 47 shown in FIG. 8 obtains the change in the other change rate with respect to either the brake force estimated value or the motor rotation angle by, for example, differentiating the one with the other twice, and the correlation. The strength of linearity may be detected. At this time, in the region where the estimated brake force value is extremely low, the detection accuracy may not be stable. Therefore, a condition more than a predetermined brake force estimate value or a predetermined motor rotation angle may be separately provided. The determined brake force estimated value and the determined motor rotation angle are the minimum value of the estimated brake force value that stabilizes the detection accuracy, or the motor rotation angle that stabilizes the detection accuracy. It is determined based on the minimum angle.
 図13は、このブレーキ装置の第1および第2のアクチュエータ2-1,2-2(図7)を制御する処理を示すフローチャートである。図8および図13を参照して、例えば、車両のイグニッション等がオンにされると本処理を開始し、モータコントロール部37,37は、ブレーキ力指令手段32aからアクチュエータ毎のブレーキ力の指令値Tfを取得する(ステップa1)。次に、パッド部摩耗量推定手段45,45が、それぞれ、パッド部4a,4aの合算摩耗量及びパッド部4b,4b(図4)の合算摩耗量を求め、モータ駆動制御部44,44の荷重補正部44a,44aは、パッド部4a,4a(図4)の合算残量とパッド部4b,4b(図4)の合算残量の差(パッド部残量偏差)ΔPtを計算する(ステップa2)。 FIG. 13 is a flowchart showing a process for controlling the first and second actuators 2-1 and 2-2 (FIG. 7) of the brake device. Referring to FIGS. 8 and 13, for example, when the ignition of the vehicle is turned on, this process is started, and motor control units 37 and 37 receive a brake force command value for each actuator from brake force command means 32a. Tf is acquired (step a1). Next, the pad wear amount estimation means 45 and 45 determine the combined wear amount of the pad portions 4a and 4a and the combined wear amount of the pad portions 4b and 4b (FIG. 4), respectively. The load correction units 44a and 44a calculate a difference (pad portion remaining amount deviation) ΔPt between the combined remaining amount of the pad portions 4a and 4a (FIG. 4) and the combined remaining amount of the pad portions 4b and 4b (FIG. 4) (step). a2).
 次に、各荷重補正部44aは、対応するパッド部4a(または4b)(図4)の非摩耗時にブレーキ力指令手段32aから与えられるアクチュエータ毎の指令値(Tf/2)に対し、パッド部4a,4a(図4)の合算残量とパッド部4b,4b(図4)の合算残量の差であるパッド部合算残量偏差ΔPtに係数k*を乗じた値を加えて補正する(ステップa3)。このステップa3において、荷重補正部44aは、例えば、パッド部4a,4aまたは4b,4b(図4)の合算残量が多い一方のアクチュエータ2(例えば、第1のアクチュエータ2-1)(図7)にて発生させる荷重(補正後の指令値)を、他方のアクチュエータ2(例えば、第2のアクチュエータ2-2)(図7)にて発生させる荷重(補正後の指令値)よりも大きくするようなアクチュエータ毎に異なる係数k*により補正する。但し、二つのアクチュエータ2,2(図7)の指令値の合計は補正の前後で変化しない。その後、インバータ装置33,33は、それぞれ、対応の補正された指令値に従って、個別に対応するアクチュエータ2(図7)を荷重制御する(ステップa4)。その後本処理を終了する。 Next, each load correction unit 44a has a pad portion corresponding to the command value (Tf / 2) for each actuator given from the brake force command means 32a when the corresponding pad portion 4a (or 4b) (FIG. 4) is not worn. A correction is made by adding a value obtained by multiplying the pad portion total remaining amount deviation ΔPt, which is the difference between the total remaining amount of 4a, 4a (FIG. 4) and the combined remaining amount of the pad portions 4b, 4b (FIG. 4), by a coefficient k * (see FIG. 4). Step a3). In this step a3, the load correction unit 44a, for example, is one actuator 2 (for example, the first actuator 2-1) (for example, the first actuator 2-1) having a large total remaining amount of the pad portions 4a, 4a or 4b, 4b (FIG. 4) (FIG. ) Is made larger than the load (corrected command value) generated by the other actuator 2 (for example, the second actuator 2-2) (FIG. 7). Correction is performed with a coefficient k * that is different for each actuator. However, the sum of the command values of the two actuators 2 and 2 (FIG. 7) does not change before and after the correction. Thereafter, the inverter devices 33 and 33 individually control the load of the corresponding actuators 2 (FIG. 7) according to the corresponding corrected command values (step a4). Thereafter, this process is terminated.
 以上説明したブレーキ装置によれば、各モータ駆動制御部44は、パッド部4a,4aの推定された合算摩耗量とパッド部4b,4bの推定された合算摩耗量とに応じて、二つのアクチュエータ2,2をそれぞれ個別に制御する。例えば、パッド部4a,4aの推定された合算摩耗量と、パッド部4b,4bの推定された合算摩耗量とに差異が生じた場合、各モータ駆動制御部44は、摩耗進行が少ない一方のアクチュエータ2の荷重を他方のアクチュエータ2の荷重よりも大きくするように制御をする。このように、パッド部4a,4aの合算摩耗量及びパッド部4b,4bの合算摩耗量に応じて、二つのアクチュエータ2,2をそれぞれ個別に制御することで、摩擦パッド4の偏摩耗の進行を防止することができる。これにより、引き摺りトルクの低減を図ると共に摩擦パッド4の交換時期を遅らせることができる。 According to the brake device described above, each motor drive control unit 44 includes two actuators according to the estimated total wear amount of the pad portions 4a and 4a and the estimated total wear amount of the pad portions 4b and 4b. 2 and 2 are controlled individually. For example, when there is a difference between the estimated total wear amount of the pad portions 4a and 4a and the estimated total wear amount of the pad portions 4b and 4b, each motor drive control unit 44 has one of the wear progresses less. Control is performed so that the load of the actuator 2 is larger than the load of the other actuator 2. In this way, the uneven wear of the friction pad 4 progresses by individually controlling the two actuators 2 and 2 according to the total wear amount of the pad portions 4a and 4a and the total wear amount of the pad portions 4b and 4b. Can be prevented. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
 本発明の第2の実施形態について説明する。
 以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
A second embodiment of the present invention will be described.
In the following description, the same reference numerals are assigned to the portions corresponding to the matters described in the preceding forms in each embodiment, and overlapping descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
 図14は、このブレーキ装置の第1および第2のアクチュエータ2-1,2-2(図7)を制御する処理を示すフローチャートである。図14および図8を参照して、アクチュエータ2(図7)を制御する処理を開始後、モータコントロール部37,37はアクチュエータ毎のブレーキ力の指令値Tfを取得する(ステップb1)。次に、パッド部摩耗量推定手段45,45が、それぞれ、複数の時間毎のパッド部残量の平均値をパッド部毎に計算する(ステップb2)。前記複数の時間は、予め定められ、任意の開始時刻から一定時間毎の複数の時間であっても良いし、ブレーキ操作手段34の操作毎の複数の時間であっても良い。 FIG. 14 is a flowchart showing a process for controlling the first and second actuators 2-1 and 2-2 (FIG. 7) of the brake device. Referring to FIGS. 14 and 8, after starting the process of controlling actuator 2 (FIG. 7), motor control units 37 and 37 obtain a command value Tf of the braking force for each actuator (step b1). Next, the pad portion wear amount estimation means 45, 45 respectively calculate the average value of the remaining pad portion for each of a plurality of times for each pad portion (step b2). The plurality of times may be determined in advance, may be a plurality of times at regular intervals from an arbitrary start time, or may be a plurality of times for each operation of the brake operation unit 34.
 次に、各モータ駆動制御部44は、対応するパッド部残量の平均値から対応する電動モータ11の目標角度を決定する(ステップb3)。またモータ駆動制御部44,44は、それぞれ、決定した目標角度に対応するアクチュエータ2(図7)の推定荷重の合計値が、このブレーキ装置への要求荷重(指令値)と一致するように(ステップb4)、二つのアクチュエータ2(図7)の各電動モータ11をそれぞれ角度制御する(ステップb5)。その後本処理を終了する。 Next, each motor drive control unit 44 determines the target angle of the corresponding electric motor 11 from the average value of the corresponding pad portion remaining amount (step b3). Further, each of the motor drive control units 44 and 44 ensures that the total estimated load of the actuator 2 (FIG. 7) corresponding to the determined target angle matches the required load (command value) for the brake device ( Step b4), the angle of each electric motor 11 of the two actuators 2 (FIG. 7) is controlled (step b5). Thereafter, this process is terminated.
 この構成によると、それぞれのパッド部残量の平均値から各電動モータ11の目標角度を決定しているため、パッド部残量が時々刻々と変化する場合においても、パッド部4a,4a(図4)の合算摩耗量と、パッド部4b,4b(図4)の合算摩耗量とを木目細かく推定することができる。 According to this configuration, since the target angle of each electric motor 11 is determined from the average value of the respective remaining pad portions, even when the remaining pad portions change from moment to moment, the pad portions 4a and 4a (see FIG. The total wear amount of 4) and the total wear amount of the pad portions 4b and 4b (FIG. 4) can be estimated finely.
 図4および図8に示す二つのモータ駆動制御部44,44は、二つの直動機構12,12の突出量が同一で、且つ、二つのアクチュエータ2,2にて発生させる荷重の合計が前記ブレーキ装置への要求荷重と一致するように、二つのアクチュエータ2,2をそれぞれ制御しても良い。この場合、二つの直動機構12,12の突出量を同一にしつつ、それぞれのアクチュエータ2,2にて発生させる荷重に差を設けることができ、その結果、摩擦パッド4の偏摩耗の進行を防止することができる。 The two motor drive control units 44 and 44 shown in FIGS. 4 and 8 have the same amount of protrusion of the two linear motion mechanisms 12 and 12 and the total load generated by the two actuators 2 and 2 is the same as that described above. The two actuators 2 and 2 may be controlled so as to coincide with the required load on the brake device. In this case, it is possible to provide a difference in the load generated by each of the actuators 2 and 2 while making the protruding amounts of the two linear motion mechanisms 12 and 12 the same. Can be prevented.
 図15は、本発明の第3の実施形態に係るブレーキ装置の断面図であり、図16は同ブレーキ装置の制御系のブロック図である。図15に示すように、第1のアクチュエータ2-1(2)および第2のアクチュエータ2-2(2)は、流体を媒体としてピストン50,50をそれぞれ駆動させる流体圧式の駆動部58,58を有するものとしても良い。なお、ピストン50は、第1実施形態について説明した直動部18(図6)に相当する。駆動部58,58は、それぞれ、第1の油圧室53および第2の油圧室54が形成されるホイールシリンダ51と、対応するピストン50とを有する油圧シリンダから成る。一つのホイールシリンダ51に二つのピストン50,50が互いに平行に配置される。これらピストン50,50がそれぞれ独立した第1の油路59-1(59)と第2の油路59-2(59)により進退自在に構成される。 FIG. 15 is a cross-sectional view of a brake device according to a third embodiment of the present invention, and FIG. 16 is a block diagram of a control system of the brake device. As shown in FIG. 15, the first actuator 2-1 (2) and the second actuator 2-2 (2) are fluid pressure type drive units 58 and 58 for driving the pistons 50 and 50, respectively, using fluid as a medium. It is good also as what has. The piston 50 corresponds to the linear motion portion 18 (FIG. 6) described in the first embodiment. The drive units 58 and 58 each include a hydraulic cylinder having a wheel cylinder 51 in which a first hydraulic chamber 53 and a second hydraulic chamber 54 are formed, and a corresponding piston 50. Two pistons 50 and 50 are arranged in parallel to each other in one wheel cylinder 51. The pistons 50 and 50 are configured to be movable forward and backward by a first oil passage 59-1 (59) and a second oil passage 59-2 (59) which are independent of each other.
 図16に示すように、このブレーキ装置が搭載される車両に、流体圧式の駆動源49が設けられる。駆動源49は、油圧ポンプ49aと、この油圧ポンプ49aを駆動させるモータ49bとを有する。油圧ポンプ49aの吐出口は、第1の油路59-1と第2の油路59-2に分岐される。第1および第2の油路59-1,59-2の配管途中に、増圧リニア弁52,52がそれぞれ介在されている。第1および第2の油路59-1,59-2は、それぞれホイールシリンダ51の第1および第2の油圧室53,54に配管接続されている。 As shown in FIG. 16, a fluid pressure type drive source 49 is provided in a vehicle on which the brake device is mounted. The drive source 49 includes a hydraulic pump 49a and a motor 49b that drives the hydraulic pump 49a. The discharge port of the hydraulic pump 49a is branched into a first oil passage 59-1 and a second oil passage 59-2. Intensified linear valves 52 and 52 are interposed in the middle of the piping of the first and second oil passages 59-1 and 59-2, respectively. The first and second oil passages 59-1 and 59-2 are connected by piping to the first and second hydraulic chambers 53 and 54 of the wheel cylinder 51, respectively.
 ブレーキ操作手段34の操作量を検出するブレーキセンサ34aの出力に応じて、制御装置5Aは、駆動信号の大きさを変化させる。増圧リニア弁52,52は、いずれも、常態が「閉」のいわゆるノーマルクローズドバルブであり、制御装置5Aから駆動信号を与えられると、駆動信号の大きさに応じて開度を増加させる。これにより、ホイールシリンダ51の各油圧室53,54の油圧は、対応する増圧リニア弁52の開度の増加量に応じて増加する。したがって、摩擦パッド4がブレーキロータ3と接触して制動力を発生させる。 The control device 5A changes the magnitude of the drive signal according to the output of the brake sensor 34a that detects the operation amount of the brake operation means 34. Both the pressure-increasing linear valves 52 and 52 are so-called normally closed valves whose normal state is “closed”, and when the drive signal is given from the control device 5A, the opening degree is increased in accordance with the magnitude of the drive signal. As a result, the hydraulic pressure in each of the hydraulic chambers 53 and 54 of the wheel cylinder 51 increases in accordance with the increase amount of the opening degree of the corresponding pressure increasing linear valve 52. Therefore, the friction pad 4 comes into contact with the brake rotor 3 to generate a braking force.
 各増圧リニア弁52,52の下段には、各油圧室53,54の油圧をそれぞれ検出する第1および第2の油圧センサ55,56がそれぞれ設けられている。これら油圧センサ55,56の検出値は制御装置5Aに入力される。また、第1および第2の油路59-1,59-2の経路上に流量計Sb1,Sb2をそれぞれ設置し、これら流量計Sb1,Sb2により流体の流量が検出され、これら検出値は制御装置5Aに入力される。更に、各駆動部58,58にストロークセンサSa1,Sa2がそれぞれ設けられ、これらストロークセンサSa1,Sa2がそれぞれ検出したピストン50,50の移動量が制御装置5Aに入力される。制御装置5Aの各個別制御部57は、第1および第2の油圧センサ55,56の検出値及び流量計Sb1,Sb2或いはストロークセンサSa1,Sa2の検出値から算出したピストン50,50の移動量に基づいて、パッド部4a,4aの合算摩耗量とパッド部4b,4bの合算摩耗量との差を算出し、第1および第2のアクチュエータ2-1,2-2にて発生させる油圧を補正する。パッドの摩耗量は、第1の実施形態の説明で参照した図9~12の横軸をピストン移動量として検出すればよい。これら検出値の差と各パッド部4a,4aの摩耗量の差との関係は試験やシミュレーション等の結果により定められる。尚、流量計Sb1,Sb2及びストロークセンサSa1,Sa2のいずれか一方のみを用いて、ピストン移動量を算出しても良い。このように油圧センサ55,56の検出値及びピストン移動量から算出したパッド摩耗量の差に応じて、二つのアクチュエータ2,2をそれぞれ個別に制御することで、摩擦パッド4の偏摩耗の進行を防止することができる。これにより、引き摺りトルクの低減を図ると共に摩擦パッド4の交換時期を遅らせることができる。 The first and second hydraulic pressure sensors 55 and 56 for detecting the hydraulic pressures of the hydraulic chambers 53 and 54, respectively, are provided below the respective pressure-increasing linear valves 52 and 52. The detection values of these hydraulic sensors 55 and 56 are input to the control device 5A. Further, flow meters Sb1 and Sb2 are installed on the first and second oil passages 59-1 and 59-2, respectively, and the flow rate of the fluid is detected by these flow meters Sb1 and Sb2, and these detected values are controlled. Input to the device 5A. Furthermore, stroke sensors Sa1 and Sa2 are provided in the drive units 58 and 58, respectively, and the movement amounts of the pistons 50 and 50 detected by the stroke sensors Sa1 and Sa2 are input to the control device 5A. Each individual control unit 57 of the control device 5A moves the movement amount of the pistons 50, 50 calculated from the detection values of the first and second hydraulic sensors 55, 56 and the detection values of the flow meters Sb1, Sb2 or the stroke sensors Sa1, Sa2. Based on the above, the difference between the total wear amount of the pad portions 4a and 4a and the total wear amount of the pad portions 4b and 4b is calculated, and the hydraulic pressure generated by the first and second actuators 2-1 and 2-2 is calculated. to correct. The wear amount of the pad may be detected using the horizontal axis in FIGS. 9 to 12 referred to in the description of the first embodiment as the piston movement amount. The relationship between the difference between these detected values and the difference in the amount of wear of each pad 4a, 4a is determined by the results of tests, simulations, and the like. Note that the piston movement amount may be calculated using only one of the flow meters Sb1 and Sb2 and the stroke sensors Sa1 and Sa2. In this way, the two actuators 2 and 2 are individually controlled in accordance with the difference in the pad wear amount calculated from the detected values of the hydraulic sensors 55 and 56 and the piston movement amount, thereby causing the partial wear of the friction pad 4 to progress. Can be prevented. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
 各実施形態において、パッド部摩耗量推定手段および警告表示等出力手段を除いた構成にしても良い。この場合、制御装置の構成を簡略化でき演算処理負荷の低減を図ることができる。 In each embodiment, the configuration may be such that the pad wear amount estimation means and the warning display output means are omitted. In this case, the configuration of the control device can be simplified and the calculation processing load can be reduced.
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention based on embodiment was demonstrated, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 この発明の第1応用例に係るブレーキ装置を、第1の実施形態で参照した図1~7と、図17とを参照して説明する。以下の説明においては、第1の実施形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り第1の実施形態と同様とする。 A brake device according to a first application example of the present invention will be described with reference to FIGS. 1 to 7 and FIG. 17 referred to in the first embodiment. In the following description, the same reference numerals are assigned to portions corresponding to the matters described in the first embodiment, and overlapping descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those in the first embodiment unless otherwise specified.
 第1の実施形態のブレーキ装置では、ECU32のブレーキ力指令手段32aは、ブレーキ操作手段34であるブレーキペダルの操作量に応じて変化するセンサ34aの出力に応じて、各車輪の目標とするブレーキ力の指令値を生成して出力するものとしたが、本応用例では、後述するブレーキ力(ブレーキ指令)を生成して出力する。 In the brake device of the first embodiment, the brake force command means 32a of the ECU 32 is a target brake for each wheel according to the output of the sensor 34a that changes according to the amount of operation of the brake pedal that is the brake operation means 34. The force command value is generated and output, but in this application example, a brake force (brake command) described later is generated and output.
 本第1応用例では、モータコントロール部37は、第1の実施形態とは異なるモータ駆動制御部44Aを有する。このモータ駆動制御部44Aは、また、第1の実施形態とは異なる荷重補正部44Aaを有する。この荷重補正部44Aaは、前記ブレーキ指令、並びにブレーキロータ3(図4)の回転速度および回転方向に応じて、対応するアクチュエータ2にて発生させる荷重(指令値)を補正する。これは、回入側のパッド部4a(図4)と回出側のパッド部4b(図4)の摩耗量を均一に均し、摩擦パッド4(図4)の偏摩耗を未然に防止するためである。なお、「回入側のパッド部」とは、ブレーキロータ3における回転方向上流側に位置するパッド部を指し、「回出側のパッド部」とは、ブレーキロータ3における回転方向下流側に位置するパッド部を指す。また、「回転方向上流側」および「回転方向下流側」とは、それぞれ、車両の前進時においては前進時のブレーキロータの回転方向における上流側および下流側であり、車両の後退時においては後退時のブレーキロータの回転方向における上流側および下流側であって、前進時と後退時とでは逆となる。 In the first application example, the motor control unit 37 includes a motor drive control unit 44A different from that of the first embodiment. The motor drive control unit 44A also includes a load correction unit 44Aa that is different from that of the first embodiment. The load correction unit 44Aa corrects a load (command value) generated by the corresponding actuator 2 in accordance with the brake command and the rotation speed and rotation direction of the brake rotor 3 (FIG. 4). This uniformly equalizes the amount of wear of the pad portion 4a (FIG. 4) on the inlet side and the pad portion 4b (FIG. 4) on the outlet side, thereby preventing uneven wear of the friction pad 4 (FIG. 4). Because. In addition, the “pad portion on the turn-in side” refers to a pad portion located on the upstream side in the rotation direction of the brake rotor 3, and the “pad portion on the turn-out side” is located on the downstream side in the rotation direction in the brake rotor 3. Refers to the pad part to be used. In addition, “the upstream side in the rotational direction” and “the downstream side in the rotational direction” are the upstream side and the downstream side in the rotational direction of the brake rotor when the vehicle moves forward, respectively, and the vehicle moves backward when the vehicle moves backward. The upstream side and the downstream side in the rotational direction of the brake rotor at the time, and the reverse occurs when the vehicle is moving forward and backward.
 車両の各車輪には、検出手段として、例えば、車輪速センサ41が設けられている。ブレーキロータ3(図4)の回転速度および回転方向は、各車輪に設けられた車輪速センサ41により検出される。 Each wheel of the vehicle is provided with, for example, a wheel speed sensor 41 as detection means. The rotation speed and direction of the brake rotor 3 (FIG. 4) are detected by a wheel speed sensor 41 provided on each wheel.
 図18は、このブレーキ装置の第1および第2のアクチュエータ2-1(2),2-2(2)(図7)を制御する処理を示すフローチャートである。図17および図18を参照して、例えば、車両のイグニッション等がオンにされると本処理を開始し、モータコントロール部37,37は、ブレーキ力指令手段32aからアクチュエータ毎のブレーキ指令を取得する(ステップS1)。次に、モータ駆動制御部44A,44Aは、車輪速センサ41からブレーキロータ3(図4)の回転速度および回転方向を取得する(ステップS2,S3)。 FIG. 18 is a flowchart showing a process for controlling the first and second actuators 2-1 (2), 2-2 (2) (FIG. 7) of the brake device. Referring to FIGS. 17 and 18, for example, when the ignition of the vehicle is turned on, this process is started, and motor control units 37 and 37 acquire a brake command for each actuator from brake force command means 32a. (Step S1). Next, the motor drive control units 44A and 44A acquire the rotation speed and rotation direction of the brake rotor 3 (FIG. 4) from the wheel speed sensor 41 (steps S2 and S3).
 次に、荷重補正部44Aa,44Aaは、取得したブレーキ指令、およびブレーキロータ3(図4)の回転速度および回転方向に応じて、第1および第2のアクチュエータ2-1,2-2にて発生させる荷重を補正する(ステップS4)。例えば、回出側のパッド部4b(図4)に対応する第2のアクチュエータ2-2の荷重を、回入側のパッド部4a(図4)に対応する第1のアクチュエータ2-1の荷重よりも大きい値に補正する。但し、二つのアクチュエータ2,2の指令値の合計は補正の前後で変化しない。その後、インバータ装置33,33は、それぞれ、対応の補正された指令値に従って、個別に対応するアクチュエータ2を荷重制御する(ステップS5)。その後本処理を終了する。 Next, the load correction units 44Aa and 44Aa use the first and second actuators 2-1 and 2-2 in accordance with the acquired brake command and the rotation speed and rotation direction of the brake rotor 3 (FIG. 4). The load to be generated is corrected (step S4). For example, the load of the second actuator 2-2 corresponding to the pad portion 4b (FIG. 4) on the delivery side is changed to the load of the first actuator 2-1 corresponding to the pad portion 4a (FIG. 4) on the return side. To a value larger than However, the sum of the command values of the two actuators 2 and 2 does not change before and after the correction. Thereafter, the inverter devices 33 and 33 respectively perform load control on the corresponding actuators 2 in accordance with the corresponding corrected command values (step S5). Thereafter, this process is terminated.
 図19は、各アクチュエータへの補正後の荷重指令の例を示す図である。以後図17も適宜参照しつつ説明する。
 図19の例では、二つのモータ駆動制御部44A,44A(図17)は、二つのアクチュエータ2,2(図17)によって発生させる荷重の総和つまりトータル荷重が、定められた荷重以下の領域では、回出側のパッド部4b(図4)に対応する第2のアクチュエータ2-2(図17)の荷重のみを制御する。その後、二つのモータ駆動制御部44A,44A(図17)は、第1のアクチュエータ2-1(図17)が最大荷重に至るまで、両方のアクチュエータ2,2(図17)に発生させる荷重を同一の割合で増加させる。
FIG. 19 is a diagram illustrating an example of a load command after correction to each actuator. Hereinafter, description will be made with reference to FIG. 17 as appropriate.
In the example of FIG. 19, the two motor drive control units 44A and 44A (FIG. 17) are arranged in a region where the total sum of loads generated by the two actuators 2 and 2 (FIG. 17), that is, the total load is not more than a predetermined load. Only the load of the second actuator 2-2 (FIG. 17) corresponding to the pad portion 4b (FIG. 4) on the delivery side is controlled. Thereafter, the two motor drive control units 44A and 44A (FIG. 17) cause the load generated by both actuators 2 and 2 (FIG. 17) until the first actuator 2-1 (FIG. 17) reaches the maximum load. Increase at the same rate.
 作用効果について説明する。
 以上説明した第1応用例のブレーキ装置によれば、二つのモータ駆動制御部44A,44Aは、前記ブレーキ指令、並びに前記回転速度および回転方向に応じて、二つのアクチュエータ2,2によって発生させる荷重をそれぞれ個別に制御する。このように二つのアクチュエータ2,2をそれぞれ個別に制御することで、摩擦パッド4の偏摩耗を未然に防止することができる。これにより、引き摺りトルクの低減を図ると共に摩擦パッド4の交換時期を遅らせることができる。
The effect will be described.
According to the brake device of the first application example described above, the two motor drive control units 44A and 44A have loads generated by the two actuators 2 and 2 in accordance with the brake command and the rotation speed and rotation direction. Are controlled individually. Thus, by controlling the two actuators 2 and 2 individually, uneven wear of the friction pad 4 can be prevented beforehand. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
 回出側のパッド部4bに対応する第2のアクチュエータ2-2の荷重を、回入側のパッド部4aに対応する第1のアクチュエータ2-1の荷重よりも大きい値にて制御することで、回入側と回出側のパッド部4a,4bの摩耗量を均一に均し、摩擦パッド4の偏摩耗を未然に防止することができる。 By controlling the load of the second actuator 2-2 corresponding to the pad portion 4b on the return side with a value larger than the load of the first actuator 2-1 corresponding to the pad portion 4a on the return side. Further, the wear amount of the pad portions 4a and 4b on the turn-in side and the turn-out side can be uniformly leveled, and uneven wear of the friction pad 4 can be prevented in advance.
 前述のように、一方のアクチュエータ2によって発生させる荷重と他方のアクチュエータ2によって発生させる荷重を定められた割合に制御する場合、荷重制御を安定且つ簡単に行うことができる。 As described above, when the load generated by one actuator 2 and the load generated by the other actuator 2 are controlled to a predetermined ratio, the load control can be performed stably and easily.
 第2の応用例について説明する。
 図20に示すように、二つのモータ駆動制御部44A,44A(図17)は、第2のアクチュエータ2-2が最大荷重に至るまで、両方のアクチュエータ2,2(図17)に発生させる荷重を一定の比率で分配するように制御しても良い。
A second application example will be described.
As shown in FIG. 20, the two motor drive control units 44A and 44A (FIG. 17) are configured so that the load generated by both actuators 2 and 2 (FIG. 17) until the second actuator 2-2 reaches the maximum load. May be controlled to be distributed at a constant ratio.
 図21に示すように、二つのモータ駆動制御部44A,44A(図17)は、一定荷重まで一定の比率で、第2のアクチュエータ2-2に発生させる荷重が第1のアクチュエータ2-1に発生させる荷重よりも大きくなるようにし、前記一定荷重以降、トータル荷重の最大点で両アクチュエータ2,2(図17)の荷重が最大となるように制御しても良い。 As shown in FIG. 21, the two motor drive control units 44A and 44A (FIG. 17) cause the load generated in the second actuator 2-2 to be applied to the first actuator 2-1. The load may be larger than the load to be generated, and control may be performed so that the load on both actuators 2 and 2 (FIG. 17) becomes maximum at the maximum point of the total load after the certain load.
 尚、各アクチュエータの荷重補正は、図19ないし21に示したように直線的に割合を変更するだけでなく曲線(非線形)にて補正しても良く、回転速度や回転方向、摩擦パッドの偏摩耗量に応じて適宜変更できる。また、車両停止後は、両方のアクチュエータの荷重指令を同じにすることで、第2のアクチュエータのみに負荷が集中しブレーキ装置全体の寿命低下を避けることが出来る。 In addition, the load correction of each actuator may be corrected not only by changing the ratio linearly but also by a curve (non-linear) as shown in FIGS. It can be appropriately changed according to the amount of wear. Further, after the vehicle is stopped, by making the load commands of both actuators the same, the load is concentrated only on the second actuator, and the life of the entire brake device can be prevented from being reduced.
 この発明の第2応用例に係るブレーキ装置を、第3の実施形態で参照した図15と、図22とを参照して説明する。以下の説明においては、第3の実施形態および/または第1応用例で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り第3の実施形態および/または第1応用例と同様とする。 A brake device according to a second application example of the present invention will be described with reference to FIGS. 15 and 22 referred to in the third embodiment. In the following description, portions corresponding to the matters described in the third embodiment and / or the first application example are denoted by the same reference numerals, and redundant descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those of the third embodiment and / or the first application unless otherwise specified.
 本第2応用例のブレーキ装置の制御装置5Aは、ブレーキ操作手段34の操作量に応じて変化するセンサ34aの出力(ブレーキ指令)、ブレーキロータ3(図13)の回転速度および回転方向に応じて、駆動信号の大きさを変化させる。 The control device 5A of the brake device of the second application example corresponds to the output (brake command) of the sensor 34a that changes according to the operation amount of the brake operation means 34, the rotation speed and the rotation direction of the brake rotor 3 (FIG. 13). Thus, the magnitude of the drive signal is changed.
 制御装置5Aには、各車輪に設けられた車輪速センサ41からブレーキロータ3(図13)の回転速度および回転方向が与えられる。制御装置5Aは、第3の実施形態とは異なる個別制御部57A,57Aを有する。各個別制御部57Aは、回入側パッド部4a(図13)の摩耗量と回出側のパッド部4b(図13)の摩耗量を均一に均し、摩擦パッド4(図13)の偏摩耗を未然に防止するため、前記ブレーキ指令、およびブレーキロータ3(図13)の回転速度および回転方向に応じて、対応する増圧リニア弁52への駆動信号の大きさを変化させる。 The control device 5A is given the rotational speed and direction of the brake rotor 3 (FIG. 13) from a wheel speed sensor 41 provided on each wheel. The control device 5A includes individual control units 57A and 57A different from those in the third embodiment. Each individual control unit 57A uniformly equalizes the wear amount of the feed-in side pad portion 4a (FIG. 13) and the wear amount of the feed-out side pad portion 4b (FIG. 13), thereby offsetting the friction pad 4 (FIG. 13). In order to prevent wear, the magnitude of the drive signal to the corresponding pressure-increasing linear valve 52 is changed according to the brake command and the rotational speed and direction of the brake rotor 3 (FIG. 13).
 第2応用例の各個別制御部57Aも、第3の実施形態の個別制御部57と同様に、第1および第2の油圧センサ55,56の検出値及び流量計Sb1,Sb2或いはストロークセンサSa1,Sa2の検出値から算出したピストン50,50の移動量に基づいて、パッド部4a,4aの合算摩耗量とパッド部4b,4bの合算摩耗量とを算出し得る。 Similarly to the individual control unit 57 of the third embodiment, each individual control unit 57A of the second application example also detects the detected values of the first and second hydraulic sensors 55, 56 and the flow meters Sb1, Sb2 or the stroke sensor Sa1. Based on the amount of movement of the pistons 50, 50 calculated from the detected value of Sa2, the total wear amount of the pad portions 4a, 4a and the total wear amount of the pad portions 4b, 4b can be calculated.
 なお、前記合算摩耗量が閾値以上のとき、制御装置5Aは、警告表示等出力手段46に警告表示等を出力させる。車両の運転者は、出力される警告表示等により、摩擦パッド4の摩耗限界が近いことを認識し得る。 When the total wear amount is equal to or greater than the threshold value, the control device 5A causes the warning display or the like output means 46 to output a warning display or the like. The driver of the vehicle can recognize that the wear limit of the friction pad 4 is close by the output warning display or the like.
 以上説明したように、流体圧式の駆動部58,58により各ピストン50,50をそれぞれ個別に駆動させることができ、摩擦パッド4の偏摩耗を未然に防止することができる。また既存の流体圧式のアクチュエータ2を利用してブレーキ装置を構成することができるため、製造コストの低減を図ることができる。 As described above, the pistons 50 and 50 can be individually driven by the fluid pressure type drive units 58 and 58, and uneven wear of the friction pad 4 can be prevented beforehand. In addition, since the brake device can be configured using the existing fluid pressure actuator 2, the manufacturing cost can be reduced.
 検出手段として、車輪速センサに代えてエンコーダを適用しても良い。
 ブレーキロータの回転方向は、車両のシフトポジションを検出するセンサ等から間接的に判断しても良い。
 各アクチュエータに与える指令値は、車両速度およびブレーキ指令の大きさのいずれか一方または両方によって、摩擦パッドの偏摩耗が発生し難くなるように適宜変更することができる。
As the detection means, an encoder may be applied instead of the wheel speed sensor.
The rotation direction of the brake rotor may be indirectly determined from a sensor that detects the shift position of the vehicle.
The command value given to each actuator can be changed as appropriate so that uneven wear of the friction pad is less likely to occur depending on one or both of the vehicle speed and the magnitude of the brake command.
 以上説明したこの発明の応用例の態様として、次のものがある。 Examples of the application examples of the present invention described above include the following.
〔態様1〕
 ブレーキロータ3と、
 このブレーキロータ3と接触して制動力を発生させる摩擦パッド4と、
 ピストン18,18をそれぞれ含み、これらピストン18,18により一つの前記摩擦パッド4を共働して前記ブレーキロータ3に対して当接離隔させる駆動を行う二つのアクチュエータ2,2と、
 与えられたブレーキ指令に従い前記二つのアクチュエータ2,2を制御する制御装置5と、を備えたブレーキ装置であって、
 前記ブレーキロータ3の回転速度および回転方向を検出する検出手段41が設けられ、
 前記制御装置5は、与えられた前記ブレーキ指令、並びに前記検出手段41で検出される前記ブレーキロータ3の回転速度および回転方向に応じて、前記二つのアクチュエータ2,2によって発生させる荷重をそれぞれ個別に制御する個別制御部44A,44Aを有するブレーキ装置。
 前記ブレーキロータ3の回転速度は、ブレーキロータ3の単位時間当たりの回転数と同義である。
[Aspect 1]
Brake rotor 3,
A friction pad 4 that contacts the brake rotor 3 to generate a braking force;
Two actuators 2, 2 that respectively include pistons 18, 18 for driving the friction pad 4 to abut against and separate from the brake rotor 3 by the pistons 18, 18;
A control device 5 for controlling the two actuators 2 and 2 in accordance with a given brake command,
Detection means 41 for detecting the rotation speed and rotation direction of the brake rotor 3 is provided,
The control device 5 individually generates loads generated by the two actuators 2 and 2 according to the given brake command and the rotational speed and direction of the brake rotor 3 detected by the detection means 41. Brake device having individual control units 44A, 44A for controlling.
The rotation speed of the brake rotor 3 is synonymous with the number of rotations of the brake rotor 3 per unit time.
 この構成によると、検出手段41は、ブレーキロータ3の回転速度および回転方向を検出する。各個別制御部44A,44Aは、与えられたブレーキ指令、並びに検出手段41で検出されるブレーキロータ3の回転速度および回転方向に応じて、二つのアクチュエータ2,2によって発生させる荷重をそれぞれ個別に制御する。二つの個別部44A,44Aは、ブレーキ指令、並びにブレーキロータ3の回転速度および回転方向に応じて、例えば、二つのアクチュエータ2,2によって発生させる荷重の割合を定められた割合に制御する。前記定められた割合は、試験、シミュレーション、設計の少なくともいずれか一つにより定められる。このように二つのアクチュエータ2,2をそれぞれ個別に制御することで、摩擦パッド4の偏摩耗を未然に防止することができる。これにより、引き摺りトルクの低減を図ると共に摩擦パッド4の交換時期を遅らせることができる。 According to this configuration, the detection means 41 detects the rotation speed and the rotation direction of the brake rotor 3. Each of the individual control units 44A and 44A individually applies loads generated by the two actuators 2 and 2 according to the applied brake command and the rotation speed and rotation direction of the brake rotor 3 detected by the detection means 41. Control. The two individual units 44A and 44A control the ratio of the load generated by the two actuators 2 and 2 to a predetermined ratio, for example, according to the brake command and the rotational speed and direction of the brake rotor 3. The predetermined ratio is determined by at least one of testing, simulation, and design. Thus, by controlling the two actuators 2 and 2 individually, uneven wear of the friction pad 4 can be prevented beforehand. Thereby, drag torque can be reduced and the replacement time of the friction pad 4 can be delayed.
〔態様2〕
 態様1に記載のブレーキ装置において、前記二つの個別制御部44A,44Aは、前記摩擦パッド4のうち、前記ブレーキロータ3における回転方向下流側に位置するパッド部4bに対応するアクチュエータ2の荷重を、前記ブレーキロータ3における回転方向上流側に位置するパッド部4aに対応するアクチュエータ2の荷重よりも大きい値にて制御するブレーキ装置。
 摩擦パッド4とブレーキロータ3とが接触すると互いの摩擦によって、摩擦パッド4のうち、ブレーキロータ3における回転方向上流側に位置するパッド部4a(回入側のパッド部4a)には、回転方向下流側に位置するパッド部4b(回出側のパッド部4b)と比較して、ブレーキロータ3に引き込まれるような力が作用する。これにより回入側のパッド部4aが、回出側のパッド部4bよりも、より摩耗するような偏摩耗を生じる場合がある。
[Aspect 2]
In the brake device according to the first aspect, the two individual control units 44A and 44A apply the load of the actuator 2 corresponding to the pad portion 4b located on the downstream side in the rotation direction of the brake rotor 3 among the friction pads 4. The brake device which controls by the value larger than the load of the actuator 2 corresponding to the pad part 4a located in the rotation direction upstream in the said brake rotor 3. FIG.
When the friction pad 4 and the brake rotor 3 come into contact with each other, due to mutual friction, the pad portion 4a (the pad portion 4a on the turn-in side) located on the upstream side in the rotation direction of the brake rotor 3 among the friction pads 4 has a rotation direction Compared with the pad part 4b located on the downstream side (the pad part 4b on the delivery side), a force that is drawn into the brake rotor 3 acts. As a result, the pad portion 4a on the entry side may be more unevenly worn than the pad portion 4b on the return side.
 この場合、回出側のパッド部4bに対応するアクチュエータ2の荷重を、回入側のパッド部4aに対応するアクチュエータ2の荷重よりも大きい値にて制御することで、回入側と回出側のパッド部4a,4bの摩耗量を均一に均し、摩擦パッド4の偏摩耗を未然に防止することができる。よって、摩擦パッド4の偏摩耗の進行に起因する引き摺りトルクを低減することができると共に、摩擦パッド4の交換時期を遅らせることができる。 In this case, the load of the actuator 2 corresponding to the pad portion 4b on the return side is controlled to a value larger than the load of the actuator 2 corresponding to the pad portion 4a on the return side, so that The amount of wear of the pad portions 4a and 4b on the side can be uniformly leveled, and uneven wear of the friction pad 4 can be prevented beforehand. Therefore, drag torque resulting from the progress of uneven wear of the friction pad 4 can be reduced, and the replacement time of the friction pad 4 can be delayed.
〔態様3〕
 態様1または態様2に記載のブレーキ装置において、前記二つの個別制御部44A,44Aは、一方のアクチュエータ2によって発生させる荷重と他方のアクチュエータ2によって発生させる荷重を定められた割合に制御するブレーキ装置。
 前記定められた割合は、設計等によって任意に定める値であって、例えば、試験およびシミュレーションのいずれか一方または両方により適切な値を求めて定められる。
 この構成によると、ブレーキ指令、並びにブレーキロータ3の回転速度および回転方向に応じて、例えば、荷重の総和に対して、一方のアクチュエータ2の荷重と他方のアクチュエータ2の荷重の割合が互いに異なる割合に制御される。ブレーキ指令等が異なる条件では、一方のアクチュエータ2の荷重と他方のアクチュエータ2の荷重の割合が同じ割合に制御される。
 この場合、荷重制御を安定且つ簡単に行うことができる。
[Aspect 3]
In the brake device according to Aspect 1 or Aspect 2, the two individual control units 44A and 44A control the load generated by one actuator 2 and the load generated by the other actuator 2 to a predetermined ratio. .
The determined ratio is a value arbitrarily determined by design or the like, and is determined by obtaining an appropriate value by one or both of testing and simulation, for example.
According to this configuration, the ratio of the load of one actuator 2 and the load of the other actuator 2 is different from each other with respect to the total load, for example, depending on the brake command and the rotational speed and direction of the brake rotor 3. Controlled. Under different conditions such as a brake command, the load ratio of one actuator 2 and the load ratio of the other actuator 2 are controlled to the same ratio.
In this case, load control can be performed stably and easily.
〔態様4〕
 態様1ないし態様3のいずれか1つの態様に記載のブレーキ装置において、前記二つの個別制御部44A,44Aは、前記二つのアクチュエータ2,2によって発生させる荷重の総和が定められた荷重以下の領域では、前記摩擦パッド4のうち、前記ブレーキロータ3における回転方向下流側に位置するパッド部4bに対応するアクチュエータ2の荷重のみを制御するブレーキ装置。
 前記定められた荷重は、設計等によって任意に定める値であって、例えば、試験およびシミュレーションのいずれか一方または両方により適切な値を求めて定められる。
 この場合、回入側と回出側のパッド部4a,4bの摩耗量を均一に均すことができるうえ、荷重制御を簡単に行うことができる。
[Aspect 4]
In the brake device according to any one of the aspects 1 to 3, the two individual control units 44A and 44A are regions in which a sum of loads generated by the two actuators 2 and 2 is equal to or less than a predetermined load. Then, the brake apparatus which controls only the load of the actuator 2 corresponding to the pad part 4b located in the rotation direction downstream side in the said brake rotor 3 among the said friction pads 4. FIG.
The determined load is a value arbitrarily determined by design or the like, and is determined by obtaining an appropriate value by one or both of testing and simulation, for example.
In this case, the wear amount of the pad portions 4a and 4b on the entrance side and the exit side can be evenly balanced, and load control can be easily performed.
〔態様5〕
 態様1ないし態様4のいずれか1つの態様に記載のブレーキ装置において、前記各アクチュエータ2,2は、電動モータ11,11と、この電動モータ11,11の回転運動を前記各ピストン18,18の直線運動に変換する直動機構12,12とを有するブレーキ装置。
このように2ピストンタイプで電動式のアクチュエータ2において、摩擦パッド4の偏摩耗を未然に防止することができる。
[Aspect 5]
In the brake device according to any one of the aspects 1 to 4, the actuators 2 and 2 are configured so that the electric motors 11 and 11 and the rotational movements of the electric motors 11 and 11 are caused by the pistons 18 and 18. Brake device having linear motion mechanisms 12 and 12 for converting into linear motion.
Thus, in the 2-piston type electric actuator 2, uneven wear of the friction pad 4 can be prevented in advance.
〔態様6〕
 態様1ないし態様4のいずれか1つの態様に記載のブレーキ装置において、前記各アクチュエータ2,2は、流体を媒体として前記各ピストン50,50をそれぞれ駆動させる流体圧式の駆動部58,58を有するブレーキ装置。
 この場合、流体圧式の駆動部58,58により各ピストン50,50をそれぞれ個別に駆動させることができ、摩擦パッド4の偏摩耗を未然に防止することができる。また既存の流体圧式のアクチュエータを利用してブレーキ装置を構成することができるため、製造コストの低減を図ることができる。
[Aspect 6]
In the brake device according to any one of the aspects 1 to 4, the actuators 2 and 2 include fluid pressure type drive units 58 and 58 for driving the pistons 50 and 50, respectively, using fluid as a medium. Brake device.
In this case, the pistons 50 and 50 can be individually driven by the fluid pressure type drive parts 58 and 58, and uneven wear of the friction pad 4 can be prevented beforehand. In addition, since the brake device can be configured using an existing fluid pressure type actuator, the manufacturing cost can be reduced.
2(2-1,2-2)   アクチュエータ
3            ブレーキロータ
4            摩擦パッド
4a,4b        パッド部
5,5A         制御装置
44,57        個別制御部
45           パッド部摩耗量推定手段
2 (2-1, 2-2) Actuator 3 Brake rotor 4 Friction pads 4a and 4b Pad portions 5 and 5A Control devices 44 and 57 Individual control portion 45 Pad portion wear amount estimation means

Claims (5)

  1.  ブレーキロータと、
     複数のパッド部を含む摩擦パッドであって、前記ブレーキロータと接触して制動力を発生させる摩擦パッドと、
     ピストンをそれぞれ含む二つのアクチュエータであって、これら二つのアクチュエータの各ピストンが前記複数のパッド部のうちの異なるパッド部にそれぞれ対応し、これらピストンにより前記摩擦パッドを前記ブレーキロータに対して当接離隔させる駆動を行う二つのアクチュエータと、
     前記二つのアクチュエータを制御する制御装置であって、
      前記二つのアクチュエータの前記各ピストンにそれぞれ対応する前記パッド部の摩耗量を推定するパッド部摩耗量推定手段、および
      与えられたブレーキ指令に従い前記パッド部摩耗量推定手段で推定された前記パッド部の摩耗量に応じて、前記二つのアクチュエータをそれぞれ個別に制御する個別制御部を有する制御装置と、を備えたブレーキ装置。
    A brake rotor,
    A friction pad including a plurality of pad portions, wherein the friction pad is brought into contact with the brake rotor to generate a braking force;
    Two actuators each including a piston, wherein each piston of the two actuators corresponds to a different pad portion of the plurality of pad portions, and the piston makes contact with the friction pad against the brake rotor Two actuators that drive apart,
    A control device for controlling the two actuators,
    Pad portion wear amount estimating means for estimating the wear amount of the pad portion corresponding to each piston of the two actuators, and the pad portion wear amount estimating means estimated by the pad portion wear amount estimating means according to a given brake command And a control device having an individual control unit for individually controlling the two actuators according to the amount of wear.
  2.  請求項1に記載のブレーキ装置において、前記二つのアクチュエータが、それぞれ、流体を媒体として前記各ピストンを駆動させる流体圧式の駆動部を有するブレーキ装置。 2. The brake device according to claim 1, wherein each of the two actuators has a fluid pressure type drive unit that drives each piston using a fluid as a medium.
  3.  請求項1に記載のブレーキ装置において、前記二つのアクチュエータが、それぞれ、電動モータと、この電動モータの回転運動を前記各ピストンの直線運動に変換する直動機構とを有するブレーキ装置。 2. The brake device according to claim 1, wherein each of the two actuators includes an electric motor and a linear motion mechanism that converts a rotational motion of the electric motor into a linear motion of each piston.
  4.  請求項1ないし請求項3のいずれか1項に記載のブレーキ装置において、前記パッド部摩耗量推定手段は、前記各ピストンにそれぞれ対応する前記パッド部の残量を検出するパッド部残量検出部を有し、
     前記個別制御部は、前記パッド部残量検出部で検出された、前記各ピストンにそれぞれ対応する前記パッド部の残量の差に応じて前記二つのアクチュエータにおいて発生させる荷重を補正する荷重補正部を有するブレーキ装置。
    4. The brake device according to claim 1, wherein the pad portion wear amount estimation means detects a remaining amount of the pad portion corresponding to each of the pistons. 5. Have
    The individual control unit is a load correction unit that corrects a load generated in the two actuators according to a difference in the remaining amount of the pad unit corresponding to each piston detected by the pad unit remaining amount detection unit. Brake device having.
  5.  請求項1ないし請求項3のいずれか1項に記載のブレーキ装置において、前記個別制御部は、前記二つのアクチュエータの前記各ピストン同士の突出量が同一で、且つ、前記二つのアクチュエータそれぞれにおいて発生させる荷重の合計が前記ブレーキ装置への要求荷重と一致するように、前記二つのアクチュエータを制御するブレーキ装置。 4. The brake device according to claim 1, wherein the individual control unit has the same protrusion amount of the pistons of the two actuators and is generated in each of the two actuators. 5. A brake device that controls the two actuators so that a total load to be applied coincides with a required load on the brake device.
PCT/JP2016/081910 2015-11-02 2016-10-27 Brake device WO2017077941A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-215406 2015-11-02
JP2015215406A JP6632867B2 (en) 2015-11-02 2015-11-02 Brake equipment
JP2016002442A JP6651360B2 (en) 2016-01-08 2016-01-08 Brake equipment
JP2016-002442 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017077941A1 true WO2017077941A1 (en) 2017-05-11

Family

ID=58663154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081910 WO2017077941A1 (en) 2015-11-02 2016-10-27 Brake device

Country Status (1)

Country Link
WO (1) WO2017077941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132022A1 (en) * 2017-12-29 2019-07-04 Ntn株式会社 Electric brake device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340069A (en) * 2001-05-11 2002-11-27 Akebono Brake Ind Co Ltd Lifetime display device of brake element for vehicle
JP2005206077A (en) * 2004-01-23 2005-08-04 Akebono Brake Ind Co Ltd Disk brake
JP2012127418A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Disc brake apparatus and control method thereof
JP2012192874A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Disk brake device and control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340069A (en) * 2001-05-11 2002-11-27 Akebono Brake Ind Co Ltd Lifetime display device of brake element for vehicle
JP2005206077A (en) * 2004-01-23 2005-08-04 Akebono Brake Ind Co Ltd Disk brake
JP2012127418A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Disc brake apparatus and control method thereof
JP2012192874A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Disk brake device and control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132022A1 (en) * 2017-12-29 2019-07-04 Ntn株式会社 Electric brake device
JP2019119337A (en) * 2017-12-29 2019-07-22 Ntn株式会社 Electric brake device
JP7089872B2 (en) 2017-12-29 2022-06-23 Ntn株式会社 Electric brake device

Similar Documents

Publication Publication Date Title
EP2907709B1 (en) Electric-powered parking brake device
US10113601B2 (en) Electric brake device
EP1868865B1 (en) System for control of brake actuator based at least in part upon tire/road friction force
US10125834B2 (en) Electric brake device and electric brake device system
US9518625B2 (en) Method for actuating an electrically actuated friction brake
US9994204B2 (en) Vehicular brake system
WO2017086277A1 (en) Brake device
JP6632867B2 (en) Brake equipment
WO2016035690A1 (en) Brake device system
WO2005030549A2 (en) System for control of brake actuator
WO2006100541A1 (en) Tire slip model
JP6812691B2 (en) Vehicle braking control device
WO2017077941A1 (en) Brake device
JP6651360B2 (en) Brake equipment
WO2017069179A1 (en) Braking control device for vehicle
JP4955450B2 (en) Brake control device
EP3006284B1 (en) Electric brake control system
JP5262827B2 (en) Brake control device for vehicle
JP6621689B2 (en) Linear actuator
JP6736295B2 (en) Brake device
JP6906398B2 (en) Electric brake device
JP2020026240A (en) Brake system for vehicle
JP2022026496A (en) Electrically-driven braking device of vehicle
JP2014121964A (en) Electric brake device and brake system with the device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862002

Country of ref document: EP

Kind code of ref document: A1