WO2017154759A1 - Light therapy device for scleroderma - Google Patents

Light therapy device for scleroderma Download PDF

Info

Publication number
WO2017154759A1
WO2017154759A1 PCT/JP2017/008427 JP2017008427W WO2017154759A1 WO 2017154759 A1 WO2017154759 A1 WO 2017154759A1 JP 2017008427 W JP2017008427 W JP 2017008427W WO 2017154759 A1 WO2017154759 A1 WO 2017154759A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
light source
scleroderma
source unit
light
Prior art date
Application number
PCT/JP2017/008427
Other languages
French (fr)
Japanese (ja)
Inventor
明理 森田
秀之 益田
木村 誠
Original Assignee
公立大学法人名古屋市立大学
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人名古屋市立大学, ウシオ電機株式会社 filed Critical 公立大学法人名古屋市立大学
Publication of WO2017154759A1 publication Critical patent/WO2017154759A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the present invention relates to a phototherapy device for scleroderma used for treating scleroderma which is a kind of skin disease, and more particularly to a phototherapy device for scleroderma for treating scleroderma by ultraviolet irradiation. .
  • a method of irradiating an affected part with ultraviolet rays has been widely used as a method for treating skin diseases.
  • a phototherapy device for skin diseases for treating skin diseases with ultraviolet rays a device that is equipped with a discharge lamp as an ultraviolet light source and emits ultraviolet rays (UVA1) in the wavelength range of 340 to 400 nm has been put into practical use ( Specifically, for example, “SELLAMED 2000 System Dr. Sellmeier”).
  • a certain type of phototherapy device for skin diseases in practical use is configured to irradiate the affected area with light from a metal halide lamp via a plurality of (specifically, for example, three) wavelength selection filters. Therefore, there is a problem that the utilization efficiency of light (ultraviolet rays) from the ultraviolet light source is low.
  • LED elements as ultraviolet light sources (see, for example, Patent Document 1 and Patent Document 2).
  • a plurality of LED elements are arranged on a circular substrate or on the concave surface of a housing having a concave surface.
  • the arrangement of the plurality of LED elements or the orientation of the circular substrate or the housing can be changed so that the plurality of LED elements face the affected part.
  • ultraviolet rays can be locally irradiated.
  • the phototherapy device for skin disease according to Patent Document 1 is not only a problem in the phototherapy device for skin disease using a discharge lamp as an ultraviolet light source, specifically, not only the affected area (part to be irradiated with ultraviolet light) but also the affected area. Therefore, it is possible to solve the problem that it is impossible to locally irradiate the affected area with the light from the ultraviolet light source.
  • Patent Document 2 discloses that LED elements having a peak wavelength in the wavelength range of 350 to 390 nm include intractable eczema, allergic eczema, cutaneous T-cell lymphoma, atopic dermatitis, alopecia areata, keloid, scar, There is a description that it is effective in the treatment of skin atrophy linear and scleroderma. However, in patent document 2, only the healing effect regarding atopic dermatitis is confirmed, and the healing effect regarding other skin diseases is not clarified at all.
  • scleroderma is a kind of collagen disease accompanied by sclerosis of the skin, and is recognized as an intractable disease for which a complete treatment method has not been established.
  • UVA1 ultraviolet rays
  • the effective wavelength for scleroderma is unknown, so the wavelength in the range of 340 to 400 nm. I had to use broad UV rays.
  • the treatment of scleroderma requires an extremely large amount of UV irradiation (accumulated dose) for the affected area compared to other skin diseases.
  • the required ultraviolet irradiation amount (cumulative irradiation amount) is 30 to 60 J / cm 2 , for example, an ultraviolet irradiation amount of 60 J / cm 2 is set to a practical treatment time (ultraviolet irradiation time), for example, In order to obtain in 10 minutes, the required irradiance is 100 mW / cm 2 . For this reason, in a phototherapy device for scleroderma, it is necessary to emit ultraviolet rays in a wide wavelength range with high radiation intensity, and thus the size and power consumption of the treatment device cannot be avoided.
  • the present invention has been made as a result of the inventors of the present invention conducting extensive research on phototherapy devices for scleroderma based on the above circumstances and finding an effective wavelength for scleroderma.
  • the purpose is to be able to locally irradiate the affected area with a large dose required for the treatment of scleroderma, without requiring high power consumption and long irradiation time, and thus efficient
  • An object of the present invention is to provide a phototherapy device for scleroderma capable of obtaining an excellent therapeutic effect.
  • the phototherapy device for scleroderma of the present invention includes a light source unit including an LED element having a peak wavelength in a wavelength range of 360 to 385 nm, and a control unit that drives and controls the LED element constituting the light source unit. It is characterized by that.
  • the LED element is preferably an LED element having a peak wavelength in a wavelength range of 365 ⁇ 4 nm.
  • the light source unit includes a plurality of LED elements in the vertical direction along the periphery of the LED arrangement region in the LED arrangement region formed of a rectangular plane. (Where m is an integer from 2 to 10) are arranged in parallel, and there are a plurality of LED modules in which n pieces (where n is an integer from 2 to 10) are arranged in parallel in the vertical and horizontal directions in parallel. And In the plurality of LED modules, when the distance between adjacent LED elements is P, the distance between the LED element located on the outermost peripheral side and the peripheral edge of the LED arrangement region is P / 2. And It is preferable that the plurality of LED modules are arranged side by side in at least one direction of the vertical direction and the horizontal direction with the LED arrangement region closely in contact.
  • the light source unit includes an LED element having a peak wavelength in the wavelength range of 360 to 385 nm, and therefore, the emitted light from the light source unit is transmitted to the affected part. On the other hand, it can be irradiated locally. Light having a peak wavelength in the wavelength range of 360 to 385 nm can provide an excellent therapeutic effect for scleroderma. Therefore, according to the phototherapy device for scleroderma of the present invention, a large dose (integrated dose) required for the treatment of scleroderma can be applied to the affected area without requiring high power consumption and long irradiation time. On the other hand, irradiation can be performed locally, and thus an excellent therapeutic effect can be obtained efficiently. As a result, the phototherapy device for scleroderma of the present invention can be reduced in size and power consumption.
  • FIG. 6 is an explanatory perspective view illustrating an example of an arrangement state of light shielding plates in the light irradiation mechanism of FIG. 5. 6 is a graph showing the relationship between the light irradiation wavelength and the amount of collagenase obtained in Experimental Example 1.
  • FIG. 1 is an explanatory diagram showing an example of the configuration of the phototherapy device for scleroderma of the present invention
  • FIG. 2 is an explanatory diagram showing the configuration of the light source unit in the phototherapy device for scleroderma of FIG.
  • FIG. 3 is an explanatory diagram showing a configuration of a main part of the light source unit in the light source unit of FIG.
  • the scleroderma phototherapy device 10 includes a light source unit 20 including an LED element 24, and a control unit 30 that drives and controls the LED element 24 that constitutes the light source unit 20.
  • the light source unit 20 and the control unit 30 include It is supported by the support 11.
  • the support 11 includes a gantry 12 that is supported on the floor via wheels 18, and the light source unit 20 is swung with respect to the column 13 above the column 13 that extends upward at the center of the frame 12.
  • An operating arm 14 that is freely supported is provided.
  • the light source unit 20 is attached to the distal end portion of the operating arm 14, while the control unit 30 is attached to the central portion of the support column 13 by a fixing member (not shown).
  • the light source unit 20 is provided with a manual lever 19 for manually swinging the light source unit 20.
  • the LED element 24 has a peak wavelength in the wavelength range of 360 to 385 nm (hereinafter also referred to as “specific wavelength range”), and preferably in the wavelength range of 365 ⁇ 4 nm, that is, 361 to 369 nm. It has a peak wavelength in the range.
  • the LED element 24 has a peak wavelength in the specific wavelength range, the light emitted from the light source unit 20 becomes light having a peak wavelength in the specific wavelength range, and as will be apparent from the experimental examples described below, An excellent therapeutic effect for scleroderma can be obtained.
  • the light source unit 20 preferably includes a plurality (36 in the example of this figure) of LED elements 24. It is preferable that all of the plurality of LED elements 24 constituting the light source unit 20 have a peak wavelength in a specific wavelength range. In the example of this figure, the plurality of LED elements 24 are of the same type having a peak wavelength in a specific wavelength range.
  • the light source unit 20 includes a light source unit 21 inside a rectangular cylindrical frame 25.
  • the light source unit 21 includes a plurality of LED elements 24 arranged on a rectangular flat plate-like substrate 23 so as to be arranged vertically and horizontally along the outer peripheral edge of the substrate 23.
  • the light source unit 21 is supported by a support member (not shown) in a rectangular parallelepiped light source housing 27 having an opening 27A on one side, and is disposed so as to face the opening 27A.
  • the light source unit 21 is electrically connected with a cable 21 ⁇ / b> A for supplying power to the plurality of LED elements 24 of the light source unit 21.
  • the light source unit 20 (light source unit 21) and the control unit 30 are electrically connected by the cable 21A.
  • the light from the light source unit 21 (specifically, the light from the plurality of LED elements 24) is condensed between the light source unit 21 and the opening 27A.
  • a lens 26 for mixing is disposed, and an aperture 29 set to a predetermined size is provided between the lens 26 and the opening 27A in the vicinity of the opening 27A.
  • the light source housing 27 is provided with a window member 28 so as to close the opening 27A.
  • the opening 27A, the aperture 29, and the window member 28 constitute a light emitting part of the light source part 20.
  • the light source unit 20 is configured to mix the light from the plurality of LED elements 24 while condensing the light from the lens 26 and radiate it from the light emitting unit.
  • the irradiation area (hereinafter also referred to as “maximum irradiation area”) on the irradiation surface (UV irradiation target area) when the plurality of LED elements 24 constituting the light source unit 20 are turned on all at once is a square shape.
  • the standard of the size of the maximum irradiation region is that the vertical dimension and the horizontal dimension are 100 mm.
  • the plurality of LED elements 24 are arranged vertically and horizontally on the substrate 23 at a predetermined interval, specifically, at a predetermined pitch (center-to-center distance). It is preferable to arrange in a grid pattern.
  • a plurality (36) of LED elements 24 are arranged along the outer peripheral edge of the substrate 23 in a lattice shape (6 rows by 6 columns) at equal intervals of a pitch of 20 cm.
  • the light source unit 21 includes a plurality (four in the example of this figure) of rectangular LED modules 22, and the plurality of LED modules 22 (specifically, The LED arrangement area (to be described later) is closely arranged vertically and horizontally.
  • the LED arrangement area (to be described later) is closely arranged vertically and horizontally.
  • two LED modules 22 are juxtaposed in the vertical direction, and two LED modules 22 are juxtaposed in the horizontal direction.
  • the plurality of LED modules 22 have the same configuration.
  • Each of the plurality of LED modules 22 has a plurality of LED elements 24 in the vertical direction along the peripheral edge of the LED arrangement region in the LED arrangement region formed by the surface (plane) of the module board 23A having a rectangular flat plate shape.
  • m pieces (where m is an integer of 2 to 10) are arranged in parallel, and n pieces (where n is an integer of 2 to 10) are arranged in parallel and spaced apart from each other at equal intervals. It is a thing.
  • each of the plurality of LED modules 22 the entire surface of the module substrate 23 ⁇ / b> A is an LED arrangement region, and thus the periphery of the LED arrangement region is configured by the outer periphery of the module substrate 23 ⁇ / b> A.
  • substrate 23 is comprised by several module board
  • the number of LED elements 24 arranged in the vertical direction hereinafter also referred to as “vertical parallel number”) m and the number of LED elements 24 arranged in the horizontal direction (hereinafter referred to as “horizontal”). It is also referred to as “the number in parallel.”) N is 2 to 10 in terms of the treatment efficiency and the degree of freedom in the design of the treatment device.
  • the phototherapy device 10 for scleroderma requires a cooling structure provided with cooling means such as a cooling fan and a heat sink, thereby increasing the size of the treatment device and increasing the manufacturing cost.
  • each of the plurality of LED modules 22 includes nine LED elements 24 in the vertical direction along the outer peripheral edge of the module substrate 23A on the surface of the square flat module substrate 23A. These are arranged in parallel, and three are arranged in parallel in the horizontal direction and spaced apart from each other at equal intervals. That is, in the LED module 22, the vertical parallel number m is 3, and the horizontal parallel number n is 3.
  • a distance between LED elements 24 adjacent to each other specifically, a distance between centers (hereinafter also referred to as “inter-element pitch”).
  • P the distance between the LED element 24 positioned on the outermost peripheral side and the peripheral edge of the LED arrangement region, specifically, the center of the LED element 24 positioned on the outermost peripheral side and the peripheral edge of the LED arrangement region The distance between them (hereinafter also referred to as “edge-element pitch”) is P / 2.
  • the “LED element located on the outermost peripheral side” means the peripheral edge of the LED arrangement area in the LED element group composed of a plurality of LED elements 24 arranged in tandem in the LED arrangement area (the surface of the module substrate 22A).
  • the LED element 24 which comprises the row
  • the vertical dimension Lm of the module board 23A is equal to the product of the number m of vertical parallels and the element pitch P, while the horizontal dimension Ln of the module board 23A is horizontal parallel. It is the same value as the product of the number n and the element pitch P.
  • the element pitch (P) is 20 mm, and therefore the edge-element pitch (P / 2) is 10 mm.
  • the vertical dimension Lm and the horizontal dimension Ln of the module substrate 23A are both 60 mm, and the surface (LED arrangement region) of the module substrate 23A is square.
  • the plurality of LED modules 22 (LED arrangement regions) are closely arranged in the vertical and horizontal directions on the substrate 23 constituted by the plurality of module substrates 23A.
  • the plurality of LED elements 24 can be arranged in a lattice form in the vertical and horizontal directions at equal intervals P between the elements. That is, as shown in FIG. 3, P is a distance between the LED elements 24 positioned on the outermost peripheral side of the LED modules 22 adjacent to each other.
  • an LED element having a peak in a specific wavelength range made of an InGaN-based semiconductor an LED element having a peak in a specific wavelength range made of an AlGaN-based semiconductor, or the like is used.
  • surface mount type LED elements made of an InGaN-based semiconductor having a peak wavelength at a wavelength of 365 nm are used.
  • a convex lens, a Fresnel lens, or the like can be used as the lens 26.
  • the Fresnel lens is used as the lens 26
  • the light source unit 20 can be downsized as compared with the case where a convex lens is used as the lens 26. Therefore, the phototherapy device 10 for scleroderma can be downsized. Can do.
  • a convex lens is used as the lens 26.
  • the window member 28 a material having high mechanical strength as well as light transmittance with respect to light from the light source unit 21 (specifically, light from the plurality of LED elements 24) is used.
  • a specific example of the material of the window member 28 is, for example, quartz glass.
  • the aperture 29 has a size equal to or smaller than the opening 27A. Since the aperture 29 is provided in the light source unit 20, the boundary between the irradiation region and the non-irradiation region can be clarified on the irradiation surface (ultraviolet irradiation target region). It is possible to prevent light irradiation (low-power exposure) on other parts.
  • the control unit 30 drives and controls the LED elements 24 constituting the light source unit 20.
  • the control unit 30 drives and controls the LED elements 24 constituting the light source unit 20, specifically, a plurality of LED elements 24, so that the light source unit 20 has the desired light according to the size of the affected part and the state of the affected part. Can be emitted. More specifically, for example, when the affected part (ultraviolet irradiation target site) is smaller than the maximum irradiation region, a part of the plurality of LED elements 24 constituting the light source unit 20 is selectively selected according to the shape of the affected part. Can be lit.
  • the irradiance is appropriately determined depending on the state of the affected part, the treatment time (irradiation time), and the like. Specifically, it is preferably 100 mW / cm 2 or more.
  • the ultraviolet irradiation amount (integrated irradiation amount) required for the treatment of scleroderma is 30 to 60 J / cm 2 .
  • the time (irradiation time) required to obtain an ultraviolet irradiation amount (integrated irradiation amount) of 60 J / cm 2 is 10 For minutes.
  • the control unit 30 is provided with a control unit such as an LED driving power supply unit and a PLC in a rectangular parallelepiped control unit casing 37, and graphic operation is performed on the side of the control unit casing 27.
  • a panel 39 is provided.
  • the light source unit 20 is disposed so that the window member 28 faces the ultraviolet irradiation target site.
  • the phototherapy device 10 for scleroderma is used in a state where the ultraviolet irradiation target site and the light source unit 20 (window member 28) are in contact with each other, from the viewpoint of stably securing irradiance.
  • the LED element 24 to which electric power was supplied from the control part 30 is turned on, and the emitted light from the light source part 20 is irradiated (surface irradiation) to the affected part.
  • the scleroderma phototherapeutic device 10 is such that the emitted light from the light source unit 20 is light having a peak wavelength in a specific wavelength range.
  • collagenase (MMP1) which is an enzyme that degrades and fragments collagen that causes scleroderma skin hardening, can be expressed with a significant difference. Therefore, an excellent therapeutic effect for scleroderma can be obtained.
  • the light source unit 20 includes the light source unit 21 including a plurality of LED elements 24 having a peak wavelength in a specific wavelength range, light (ultraviolet rays) from the light source unit 21 is applied to the affected part. Irradiation can be performed without going through a wavelength selection filter or the like.
  • the LED element 24 emits light in one direction, local light irradiation can be performed. Therefore, the light from the light source unit 21 can be used effectively.
  • the control part 30 which drives and controls the several LED element 24 which comprises the light source part 20 is provided, all of the several LED elements 24 which comprise the light source part 20, or among several LED elements 24 By selectively lighting a part of the light, it is possible to irradiate the desired light according to the size of the affected area. Therefore, according to the phototherapy device 10 for scleroderma, a large irradiation amount (integrated irradiation amount) required for the treatment of scleroderma can be applied to the affected part without requiring high power consumption and long irradiation time. Irradiation can be performed locally, and thus an excellent therapeutic effect can be obtained efficiently. As a result, the scleroderma phototherapy device 10 can be reduced in size and power consumption.
  • an LED element having a peak wavelength in the wavelength range of 365 ⁇ 4 nm is used as the LED element 24 constituting the light source unit 20, so that it will be clear from an experimental example described later. In addition, an even better therapeutic effect can be obtained.
  • the light treatment device 10 for scleroderma is provided with a plurality of LED modules 22 in the light source unit 20 (light source unit 21), an easy method of adjusting the number and arrangement of the LED modules 22 is used. Depending on the size of the maximum irradiation region required for the phototherapy device 10 for scleroderma, it is possible to reduce the size and increase the size.
  • the phototherapeutic device for scleroderma of the present invention only needs to have a light source unit and a control unit, and the configuration of the light source unit and the configuration of the control unit are the same as those shown in FIGS. It is not limited and various components other than the light source unit and the control unit can be used.
  • the phototherapy device for scleroderma may be a small one having a configuration in which a light source unit and a control unit are electrically connected by a long power supply line.
  • the light source unit has an LED module 1 having the configuration shown in FIG.
  • the control unit is a unit in which an LED driving power supply unit and a control unit are disposed inside a rectangular parallelepiped control unit casing.
  • the standard of the size of the maximum irradiation region on the irradiation surface is 50 mm in vertical and horizontal dimensions.
  • a handle is provided on the outer surface of the light source unit casing, and a graphic operation panel is provided on the outer surface of the control unit casing.
  • This small-sized scleroderma phototherapy device is a handy type in which a handle is held with one hand and a light source unit is moved and placed at an intended position during treatment. Further, the scleroderma phototherapy device includes a light source unit in which 60 LED modules having the configuration shown in FIG. 4 are disposed in a rectangular parallelepiped light source unit housing having an opening on one side, and a rectangular parallelepiped shape. A control unit in which the LED driving power supply unit and the control unit are disposed, and the light source unit is provided by a light source unit driving mechanism provided on the outer surface of the control unit casing. The large thing of the structure formed by being supported may be sufficient.
  • the standard of the size of the maximum irradiation area on the irradiation surface is a vertical dimension of 500 mm and a horizontal dimension of 300 mm.
  • a graphic operation panel is provided on the outer surface of the control unit casing.
  • the light source unit is not limited to a configuration in which a plurality of LED modules are arranged vertically and horizontally as shown in FIG. 3, and a plurality of LED modules are arranged only in the longitudinal direction. Or may be arranged side by side only in the lateral direction.
  • the LED arrangement region is not limited to that formed by the surface of the rectangular flat plate-like substrate, and may be formed by the plane of the LED element support member having a plane.
  • each LED irradiator According to the output of each LED irradiator, light irradiation was performed under the irradiation time conditions shown in Table 1 below.
  • the irradiation distance in each well (specifically, the separation distance between the LED irradiator and the bottom surface of the well) was set to 20 mm.
  • the distance between the LED irradiator and the 96-well plate was 6 mm. As shown in FIGS.
  • each LED irradiator 45 in the light irradiation by each LED irradiator 45, one direction including one well 41 in which cells are cultured on a 96 well plate 40 (up and down direction in FIG. 6).
  • a light shielding plate 44 is disposed so as to cover a plurality of wells other than one well group arranged in parallel.
  • six types of LED irradiators Ushio Electric Co.
  • a wavelength 365 nm LED irradiator having a peak wavelength, a wavelength 375 nm LED irradiator having a peak wavelength at 375 nm, a wavelength 385 nm LED irradiator having a peak wavelength at 385 nm, and a wavelength 395 nm LED irradiator having a peak wavelength at 395 nm were used.
  • the wavelength 355 nm LED irradiator and the wavelength 360 nm LED irradiator are provided with bullet-type LED elements made of an AlGaN-based semiconductor.
  • the wavelength 365 nm LED irradiator, the wavelength 385 nm LED irradiator, and the wavelength 395 nm LED irradiator include surface-mounted LED elements made of an InGaN-based semiconductor.
  • the 375 nm wavelength LED irradiator includes a bullet-type LED element made of an InGaN-based semiconductor.
  • a control condition one well was not irradiated with light. In FIG.
  • 48 is a power source that supplies power to the LED irradiator 45
  • 49 is a power supply line that electrically connects the LED irradiator 45 and the power source 48.
  • the optical path of the light from the LED irradiator 45 is indicated by a broken line.
  • RNA ribonucleic acid
  • RNA purification kit “RNeasy Mini kit” (QIAGEN)
  • cDNA complementary deoxyribonucleic acid
  • CDNA was synthesized (reverse transcription) from the extracted RNA using a kit for “reverse transcription” “High Capacity cDNA Reverse Transcription kit” (manufactured by QIAGEN).
  • the resulting multiple (specifically, seven types) cDNA samples are amplified and analyzed using a real-time PCR system “CFX Connect” (manufactured by BIO-RAD), and scleroderma skin.
  • the amount of collagenase (MMP1) which is an enzyme that decomposes and fragments collagen that causes hardening, was confirmed. The results are shown in FIG. In FIG. 7, the amount of collagenase is a value obtained based on the amount of housekeeping gene (GAPDH).
  • the amount of collagenase related to the cells cultured in the plurality of wells subjected to the light irradiation is indicated by “control”, respectively, and the collagen related to the cells cultured in the control wells not subjected to the light irradiation. It is shown as a relative value based on the amount of the enzyme. Further, “**” indicates that the P value is 0.01 or less in the t test.
  • Collagenase expression shows a peak under the wavelength condition of 365 nm, and the amount of collagenase under the wavelength condition of 365 nm is 7.7 times that in the control condition, that is, when no light irradiation is performed. Therefore, it was confirmed that the light having a peak wavelength in the wavelength range of 360 to 385 nm is an effective wavelength for scleroderma, that is, light that provides an excellent therapeutic effect for scleroderma. Further, it was confirmed that light having a peak wavelength in the wavelength range of 365 ⁇ 4 nm is light that can obtain a further excellent therapeutic effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The purpose of the present invention is to provide a light therapy device for scleroderma that can locally irradiate an affected area with a large irradiation dose necessary for scleroderma treatment without requiring high power consumption and long irradiation times and, therefore, provide a therapeutic effect with excellent efficiency. This light therapy device for scleroderma (10) is characterized by comprising a light source unit (20) that comprises an LED element having a peak wavelength in the 360 nm to 385 nm wavelength range, and a control unit (30) that controls driving the LED element constituting the light source unit.

Description

強皮症用光治療器Phototherapy device for scleroderma
 本発明は、皮膚疾患の一種である強皮症を治療するために用いられる強皮症用光治療器に関し、更に詳しくは、紫外線照射によって強皮症を治療する強皮症用光治療器に関する。 The present invention relates to a phototherapy device for scleroderma used for treating scleroderma which is a kind of skin disease, and more particularly to a phototherapy device for scleroderma for treating scleroderma by ultraviolet irradiation. .
 近年、皮膚疾患の治療方法としては、患部に対して紫外線を照射する手法が広く利用されている。そして、紫外線によって皮膚疾患治療をするための皮膚疾患用光治療器としては、紫外線光源として放電ランプを備え、波長340~400nmの範囲の紫外線(UVA1)を放射するものが実用化されている(具体的には、例えば「SELLAMED 2000 System Dr.Sellmeier」)。この実用化されている皮膚疾患用光治療器の或る種のものは、メタルハライドランプからの光を、複数(具体的には、例えば3枚)の波長選択フィルタを介して患部に照射する構成を有しており、よって紫外線光源からの光(紫外線)の利用効率が低い、という問題がある。 In recent years, a method of irradiating an affected part with ultraviolet rays has been widely used as a method for treating skin diseases. As a phototherapy device for skin diseases for treating skin diseases with ultraviolet rays, a device that is equipped with a discharge lamp as an ultraviolet light source and emits ultraviolet rays (UVA1) in the wavelength range of 340 to 400 nm has been put into practical use ( Specifically, for example, “SELLAMED 2000 System Dr. Sellmeier”). A certain type of phototherapy device for skin diseases in practical use is configured to irradiate the affected area with light from a metal halide lamp via a plurality of (specifically, for example, three) wavelength selection filters. Therefore, there is a problem that the utilization efficiency of light (ultraviolet rays) from the ultraviolet light source is low.
 また、紫外線によって皮膚疾患治療をするための皮膚疾患用光治療器においては、紫外線光源として、LED素子を用いることが提案されている(例えば、特許文献1および特許文献2参照。)。
 具体的に、特許文献1に係る皮膚疾患用光治療器は、複数のLED素子が、円形状基板上、または凹面を有する筐体の当該凹面上に配列されたものである。この皮膚疾患用光治療器においては、複数のLED素子の配列、あるいは円形状基板や筐体の向きを変更することによって、複数のLED素子が患部を臨む状態とすることができ、よって患部に対して局所的に紫外線を照射することができる。すなわち、特許文献1に係る皮膚疾患用光治療器は、紫外線光源として放電ランプを用いた皮膚疾患用光治療器における問題、具体的には、患部(紫外線照射対象部位)だけでなく、その患部の周辺部に対しても紫外線が照射されるために紫外線光源からの光を患部に対して局所的に照射することができないという問題を解決することのできるものである。
 また、特許文献2には、波長350~390nmの範囲にピーク波長を有するLED素子が、難治性湿疹、異汗性湿疹、皮膚T細胞リンパ腫、アトピー性皮膚炎、円形脱毛症、ケロイド、瘢痕、皮膚萎縮線状および強皮症の治療に有効である旨の記載がある。
 しかしながら、特許文献2においては、アトピー性皮膚炎に関する治癒効果が確認されているたけで、他の皮膚疾患に関する治癒効果についてはまったく明らかにされていない。
Moreover, in the phototherapy device for skin diseases for treating skin diseases with ultraviolet rays, it has been proposed to use LED elements as ultraviolet light sources (see, for example, Patent Document 1 and Patent Document 2).
Specifically, in the phototherapy device for skin disease according to Patent Document 1, a plurality of LED elements are arranged on a circular substrate or on the concave surface of a housing having a concave surface. In this phototherapy device for skin diseases, the arrangement of the plurality of LED elements or the orientation of the circular substrate or the housing can be changed so that the plurality of LED elements face the affected part. On the other hand, ultraviolet rays can be locally irradiated. That is, the phototherapy device for skin disease according to Patent Document 1 is not only a problem in the phototherapy device for skin disease using a discharge lamp as an ultraviolet light source, specifically, not only the affected area (part to be irradiated with ultraviolet light) but also the affected area. Therefore, it is possible to solve the problem that it is impossible to locally irradiate the affected area with the light from the ultraviolet light source.
Patent Document 2 discloses that LED elements having a peak wavelength in the wavelength range of 350 to 390 nm include intractable eczema, allergic eczema, cutaneous T-cell lymphoma, atopic dermatitis, alopecia areata, keloid, scar, There is a description that it is effective in the treatment of skin atrophy linear and scleroderma.
However, in patent document 2, only the healing effect regarding atopic dermatitis is confirmed, and the healing effect regarding other skin diseases is not clarified at all.
 一方、強皮症(全身性強皮症)は、皮膚の硬化を伴う膠原病の一種であり、完全な治療方法が確立されていない難治性疾患に認定されている。
 この強皮症を、波長340~400nmの範囲の紫外線(UVA1)を照射する手法によって治療しようとする場合には、強皮症に対する有効波長が不明であることから、波長340~400nmの範囲のブロードな紫外線を利用せざるをえなかった。しかも、強皮症の治療には、他の皮膚疾患に比して、患部に対して極めて大きな紫外線照射量(積算照射量)が必要とされることから、患者の治療負担低減等の観点から治療時間を短くすべく、高い放射照度が必要とされる。具体的には、必要とされる紫外線照射量(積算照射量)は30~60J/cmであり、例えば60J/cmの紫外線照射量を、現実的な治療時間(紫外線照射時間)、例えば10分間で得るためには、必要とされる放射照度は100mW/cmである。そのため、強皮症用光治療器においては、広波長範囲の紫外線を高い放射強度で放射することが必要とされることから、治療器の大型化および高消費電力化が避けられない。このことは、強皮症の治療方法として、紫外線を照射する手法が普及しない一因となっている。
 然るに、強皮症患者は、強皮症用光治療器の実用化を切望している。
On the other hand, scleroderma (systemic scleroderma) is a kind of collagen disease accompanied by sclerosis of the skin, and is recognized as an intractable disease for which a complete treatment method has not been established.
When this scleroderma is to be treated by a method of irradiating ultraviolet rays (UVA1) in the wavelength range of 340 to 400 nm, the effective wavelength for scleroderma is unknown, so the wavelength in the range of 340 to 400 nm. I had to use broad UV rays. Moreover, the treatment of scleroderma requires an extremely large amount of UV irradiation (accumulated dose) for the affected area compared to other skin diseases. High irradiance is required to shorten the treatment time. Specifically, the required ultraviolet irradiation amount (cumulative irradiation amount) is 30 to 60 J / cm 2 , for example, an ultraviolet irradiation amount of 60 J / cm 2 is set to a practical treatment time (ultraviolet irradiation time), for example, In order to obtain in 10 minutes, the required irradiance is 100 mW / cm 2 . For this reason, in a phototherapy device for scleroderma, it is necessary to emit ultraviolet rays in a wide wavelength range with high radiation intensity, and thus the size and power consumption of the treatment device cannot be avoided. This is one of the reasons why the method of irradiating ultraviolet rays is not widely used as a treatment method for scleroderma.
However, scleroderma patients are eager to put the phototherapy device for scleroderma into practical use.
特開平10-190058号公報Japanese Patent Laid-Open No. 10-190058 特開2007-151807号公報JP 2007-151807 A
 而して、本発明は、本発明者らが、以上のような事情に基づいて、強皮症用光治療器について鋭意研究を重ね、強皮症に対する有効波長を見出した結果なされたものであって、その目的は、強皮症の治療に必要とされる大きな照射量を、高い消費電力および長い照射時間を要することなく、患部に対して局所的に照射することができ、よって、効率的に優れた治療効果を得ることのできる強皮症用光治療器を提供することにある。 Thus, the present invention has been made as a result of the inventors of the present invention conducting extensive research on phototherapy devices for scleroderma based on the above circumstances and finding an effective wavelength for scleroderma. The purpose is to be able to locally irradiate the affected area with a large dose required for the treatment of scleroderma, without requiring high power consumption and long irradiation time, and thus efficient An object of the present invention is to provide a phototherapy device for scleroderma capable of obtaining an excellent therapeutic effect.
 本発明の強皮症用光治療器は、波長360~385nmの範囲にピーク波長を有するLED素子を具備する光源部と、当該光源部を構成するLED素子を駆動制御する制御部とを備えたことを特徴とする。 The phototherapy device for scleroderma of the present invention includes a light source unit including an LED element having a peak wavelength in a wavelength range of 360 to 385 nm, and a control unit that drives and controls the LED element constituting the light source unit. It is characterized by that.
 本発明の強皮症用光治療器においては、前記LED素子が、波長365±4nmの範囲にピーク波長を有するLED素子であることが好ましい。 In the phototherapy device for scleroderma of the present invention, the LED element is preferably an LED element having a peak wavelength in a wavelength range of 365 ± 4 nm.
 本発明の強皮症用光治療器においては、前記光源部は、矩形状の平面よりなるLED配置領域に、複数のLED素子が、当該LED配置領域の周縁に沿って、縦方向にm個(但し、mは2~10の整数)が並列し、横方向にn個(但し、nは2~10の整数)が並列して等間隔に縦横に並んで配置されたLEDモジュールを複数備えており、
 前記複数のLEDモジュールにおいては、互いに隣接するLED素子の間の距離をPとするとき、最周縁側に位置するLED素子と前記LED配置領域の周縁との間の距離がP/2とされており、
 前記複数のLEDモジュールが、前記LED配置領域が密接して縦方向および横方向の少なくとも一方向に並んで配置されていることが好ましい。
In the phototherapy device for scleroderma of the present invention, the light source unit includes a plurality of LED elements in the vertical direction along the periphery of the LED arrangement region in the LED arrangement region formed of a rectangular plane. (Where m is an integer from 2 to 10) are arranged in parallel, and there are a plurality of LED modules in which n pieces (where n is an integer from 2 to 10) are arranged in parallel in the vertical and horizontal directions in parallel. And
In the plurality of LED modules, when the distance between adjacent LED elements is P, the distance between the LED element located on the outermost peripheral side and the peripheral edge of the LED arrangement region is P / 2. And
It is preferable that the plurality of LED modules are arranged side by side in at least one direction of the vertical direction and the horizontal direction with the LED arrangement region closely in contact.
 本発明の強皮症用光治療器においては、光源部が、波長360~385nmの範囲にピーク波長を有するLED素子を具備するものであることから、当該光源部からの出射光を、患部に対して局所的に照射することができる。そして、波長360~385nmの範囲にピーク波長を有する光は、強皮症に対する優れた治療効果を得ることができるものである。
 従って、本発明の強皮症用光治療器によれば、強皮症の治療に必要とされる大きな照射量(積算照射量)を、高い消費電力および長い照射時間を要することなく、患部に対して局所的に照射することができ、よって、効率的に優れた治療効果を得ることができる。その結果、本発明の強皮症用光治療器においては、小型化および低消費電力化を図ることができる。
In the phototherapy device for scleroderma of the present invention, the light source unit includes an LED element having a peak wavelength in the wavelength range of 360 to 385 nm, and therefore, the emitted light from the light source unit is transmitted to the affected part. On the other hand, it can be irradiated locally. Light having a peak wavelength in the wavelength range of 360 to 385 nm can provide an excellent therapeutic effect for scleroderma.
Therefore, according to the phototherapy device for scleroderma of the present invention, a large dose (integrated dose) required for the treatment of scleroderma can be applied to the affected area without requiring high power consumption and long irradiation time. On the other hand, irradiation can be performed locally, and thus an excellent therapeutic effect can be obtained efficiently. As a result, the phototherapy device for scleroderma of the present invention can be reduced in size and power consumption.
本発明の強皮症用光治療器の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the phototherapy device for scleroderma of this invention. 図1の強皮症用光治療器における光源部の構成を示す説明図である。It is explanatory drawing which shows the structure of the light source part in the phototherapy device for scleroderma of FIG. 図2の光源部における光源ユニットの要部の構成を示す説明図である。It is explanatory drawing which shows the structure of the principal part of the light source unit in the light source part of FIG. 図3の光源部におけるLEDモジュールの構成を示す説明図である。It is explanatory drawing which shows the structure of the LED module in the light source part of FIG. 実験例1において用いた光照射機構の構成を説明する説明図である。It is explanatory drawing explaining the structure of the light irradiation mechanism used in Experimental example 1. FIG. 図5の光照射機構における遮光板の配置状態の一例を示す説明用透視図である。FIG. 6 is an explanatory perspective view illustrating an example of an arrangement state of light shielding plates in the light irradiation mechanism of FIG. 5. 実験例1において得られた、光照射波長とコラーゲナーゼの量との関係を示すグラフである。6 is a graph showing the relationship between the light irradiation wavelength and the amount of collagenase obtained in Experimental Example 1.
 以下、本発明の実施の形態について説明する。
 図1は、本発明の強皮症用光治療器の構成の一例を示す説明図であり、図2は、図1の強皮症用光治療器における光源部の構成を示す説明図である。また、図3は、図2の光源部における光源ユニットの要部の構成を示す説明図である。
 この強皮症用光治療器10は、LED素子24を具備する光源部20と、光源部20を構成するLED素子24を駆動制御する制御部30とを備え、光源部20および制御部30が支持体11によって支持されたものである。支持体11は、床面上において車輪18を介して支持される架台12を備え、この架台12の中央部において上方に伸びる支柱13の上部に、当該支柱13に対して光源部20を揺動自在に支持する作動アーム14が設けられたものである。支持体11において、光源部20は、作動アーム14の先端部に取り付けられており、一方、制御部30は、固定部材(図示省略)によって支柱13の中央部に取り付けられている。
 図の例において、光源部20には、当該光源部20を手動によって揺動させるための手動レバー19が設けられている。
Embodiments of the present invention will be described below.
FIG. 1 is an explanatory diagram showing an example of the configuration of the phototherapy device for scleroderma of the present invention, and FIG. 2 is an explanatory diagram showing the configuration of the light source unit in the phototherapy device for scleroderma of FIG. . FIG. 3 is an explanatory diagram showing a configuration of a main part of the light source unit in the light source unit of FIG.
The scleroderma phototherapy device 10 includes a light source unit 20 including an LED element 24, and a control unit 30 that drives and controls the LED element 24 that constitutes the light source unit 20. The light source unit 20 and the control unit 30 include It is supported by the support 11. The support 11 includes a gantry 12 that is supported on the floor via wheels 18, and the light source unit 20 is swung with respect to the column 13 above the column 13 that extends upward at the center of the frame 12. An operating arm 14 that is freely supported is provided. In the support 11, the light source unit 20 is attached to the distal end portion of the operating arm 14, while the control unit 30 is attached to the central portion of the support column 13 by a fixing member (not shown).
In the illustrated example, the light source unit 20 is provided with a manual lever 19 for manually swinging the light source unit 20.
 光源部20において、LED素子24は、波長360~385nmの範囲(以下、「特定波長範囲」ともいう。)にピーク波長を有するものであり、好ましくは波長365±4nmの範囲、すなわち361~369nmの範囲にピーク波長を有するものである。
 LED素子24が特定波長範囲にピーク波長を有するものであることにより、光源部20からの出射光が特定波長範囲にピーク波長を有する光となることから、後述の実験例から明らかなように、強皮症に対する優れた治療効果を得ることができる。
In the light source unit 20, the LED element 24 has a peak wavelength in the wavelength range of 360 to 385 nm (hereinafter also referred to as “specific wavelength range”), and preferably in the wavelength range of 365 ± 4 nm, that is, 361 to 369 nm. It has a peak wavelength in the range.
As the LED element 24 has a peak wavelength in the specific wavelength range, the light emitted from the light source unit 20 becomes light having a peak wavelength in the specific wavelength range, and as will be apparent from the experimental examples described below, An excellent therapeutic effect for scleroderma can be obtained.
 また、光源部20は、図3に示されているように、複数(この図の例においては、36個)のLED素子24を有するものであることが好ましい。
 光源部20を構成する複数のLED素子24は、そのすべてが特定波長範囲にピーク波長を有するものであることが好ましい。
 この図の例において、複数のLED素子24は、特定波長範囲にピーク波長を有する同一種類のものである。
Further, as shown in FIG. 3, the light source unit 20 preferably includes a plurality (36 in the example of this figure) of LED elements 24.
It is preferable that all of the plurality of LED elements 24 constituting the light source unit 20 have a peak wavelength in a specific wavelength range.
In the example of this figure, the plurality of LED elements 24 are of the same type having a peak wavelength in a specific wavelength range.
 具体的に、光源部20は、矩形筒状の枠体25の内部において、光源ユニット21を備えている。光源ユニット21は、複数のLED素子24が、矩形平板状の基板23上に、当該基板23の外周縁に沿って縦横に並ぶよう配置されてなるものである。
 そして、光源ユニット21は、一方に開口27Aを有する直方体状の光源部用筐体27の内部において、支持部材(図示省略)によって支持されて、当該開口27Aに対向するように配置されている。この光源ユニット21には、当該光源ユニット21の複数のLED素子24に電力を供給するためのケーブル21Aが電気的に接続されている。このケーブル21Aにより、光源部20(光源ユニット21)と制御部30とが電気的に接続されている。また、光源部用筐体27の内部においては、光源ユニット21と開口27Aとの間に、光源ユニット21からの光(具体的には、複数のLED素子24からの光)を集光して混合するためのレンズ26が配置されており、またレンズ26と開口27Aとの間における、開口27Aに近接した位置には、所定の大きさに設定されたアパーチャー29が設けられている。また、光源部用筐体27には、開口27Aを閉塞するように窓部材28が設けられている。そして、開口27A、アパーチャー29および窓部材28によって光源部20の光出射部が構成されている。
 このようにして、光源部20は、複数のLED素子24からの光を、レンズ26により集光しつつ混合し、光出射部から放射する構成のものとされている。
 この図の例において、光源部20を構成する複数のLED素子24が一斉点灯した場合の照射面(紫外線照射対象部位)における照射領域(以下、「最大照射領域」ともいう。)は正方形状であって、当該最大照射領域の大きさの目安は縦寸法および横寸法が100mmである。
Specifically, the light source unit 20 includes a light source unit 21 inside a rectangular cylindrical frame 25. The light source unit 21 includes a plurality of LED elements 24 arranged on a rectangular flat plate-like substrate 23 so as to be arranged vertically and horizontally along the outer peripheral edge of the substrate 23.
The light source unit 21 is supported by a support member (not shown) in a rectangular parallelepiped light source housing 27 having an opening 27A on one side, and is disposed so as to face the opening 27A. The light source unit 21 is electrically connected with a cable 21 </ b> A for supplying power to the plurality of LED elements 24 of the light source unit 21. The light source unit 20 (light source unit 21) and the control unit 30 are electrically connected by the cable 21A. In the light source unit casing 27, the light from the light source unit 21 (specifically, the light from the plurality of LED elements 24) is condensed between the light source unit 21 and the opening 27A. A lens 26 for mixing is disposed, and an aperture 29 set to a predetermined size is provided between the lens 26 and the opening 27A in the vicinity of the opening 27A. In addition, the light source housing 27 is provided with a window member 28 so as to close the opening 27A. The opening 27A, the aperture 29, and the window member 28 constitute a light emitting part of the light source part 20.
In this way, the light source unit 20 is configured to mix the light from the plurality of LED elements 24 while condensing the light from the lens 26 and radiate it from the light emitting unit.
In the example of this figure, the irradiation area (hereinafter also referred to as “maximum irradiation area”) on the irradiation surface (UV irradiation target area) when the plurality of LED elements 24 constituting the light source unit 20 are turned on all at once is a square shape. Thus, the standard of the size of the maximum irradiation region is that the vertical dimension and the horizontal dimension are 100 mm.
 光源ユニット21において、複数のLED素子24は、図3に示されているように、基板23上に、所定の間隔、具体的には所定の大きさのピッチ(中心間距離)で縦横に並んで格子状に配置されていることが好ましい。
 この図の例において、複数(36個)のLED素子24は、基板23の外周縁に沿って、ピッチ20cmの等間隔で格子状(縦6行横6列)に配列されている。
In the light source unit 21, as shown in FIG. 3, the plurality of LED elements 24 are arranged vertically and horizontally on the substrate 23 at a predetermined interval, specifically, at a predetermined pitch (center-to-center distance). It is preferable to arrange in a grid pattern.
In the example of this figure, a plurality (36) of LED elements 24 are arranged along the outer peripheral edge of the substrate 23 in a lattice shape (6 rows by 6 columns) at equal intervals of a pitch of 20 cm.
 そして、光源ユニット21は、図3に示されているように、複数(この図の例においては、4個)の矩形状のLEDモジュール22を備えており、これら複数のLEDモジュール22(具体的には、後述するLED配置領域)は密接して縦横に並んで配置されている。
 この図の例において、光源ユニット21においては、縦方向に2個のLEDモジュール22が並列され、横方向に2個のLEDモジュール22が並列されている。
As shown in FIG. 3, the light source unit 21 includes a plurality (four in the example of this figure) of rectangular LED modules 22, and the plurality of LED modules 22 (specifically, The LED arrangement area (to be described later) is closely arranged vertically and horizontally.
In the example of this figure, in the light source unit 21, two LED modules 22 are juxtaposed in the vertical direction, and two LED modules 22 are juxtaposed in the horizontal direction.
 複数のLEDモジュール22は、同一の構成を有するものである。
 そして、複数のLEDモジュール22は、各々、複数のLED素子24が、矩形平板状のモジュール基板23Aの表面(平面)よりなるLED配置領域に、当該LED配置領域の周縁に沿って、縦方向にm個(但し、mは2~10の整数)が並列し、横方向にn個(但し、nは2~10の整数)が並列して等間隔に互いに離間して縦横に並んで配置されたものである。複数のLEDモジュール22の各々において、モジュール基板23Aは、表面全面がLED配置領域とされており、よってLED配置領域の周縁は、モジュール基板23Aの外周縁によって構成されている。そして、複数のモジュール基板23Aによって基板23が構成されている。
 ここに、複数のLEDモジュール22の各々において、LED素子24の縦方向の並列個数(以下、「縦並列個数」ともいう。)m、およびLED素子24の横方向の並列個数(以下、「横並列個数」ともいう。)nは、治療効率および治療器の設計の自由度の観点から、2~10個とされる。
 具体的に説明すると、モジュール基板23A上においてLED素子24の配置間隔を狭め、搭載個数を増やすことによれば、照射面における放射照度、および放射照度均一性の向上が見込め、よって効率的に治療効果を得ることができる。然るに、LED素子24の配置間隔を狭めて搭載個数を増やすことに伴って、LEDモジュール22における発熱量が増える。そのため、強皮症用光治療器10には、冷却ファン、ヒートシンクなどの冷却手段を備えた冷却構造が必要となり、よって治療器サイズが大きくなり、また製造コスト等が高くなる。従って、これらを鑑み、縦並列個数mおよび横並列個数nを上記の範囲とすることによれば、大掛かりな冷却構造を要することなく、照射面における放射照度、および放射照度均一性の向上を図ることができる。
 この図の例において、複数のLEDモジュール22は、各々、9個のLED素子24が、正方形平板状のモジュール基板23Aの表面上に、当該モジュール基板23Aの外周縁に沿って、縦方向に3個が並列し、横方向に3個が並列して等間隔に互いに離間して縦横に並んで配置されたものである。すなわち、LEDモジュール22においては、縦並列個mが3であり、横並列個数nが3である。
The plurality of LED modules 22 have the same configuration.
Each of the plurality of LED modules 22 has a plurality of LED elements 24 in the vertical direction along the peripheral edge of the LED arrangement region in the LED arrangement region formed by the surface (plane) of the module board 23A having a rectangular flat plate shape. m pieces (where m is an integer of 2 to 10) are arranged in parallel, and n pieces (where n is an integer of 2 to 10) are arranged in parallel and spaced apart from each other at equal intervals. It is a thing. In each of the plurality of LED modules 22, the entire surface of the module substrate 23 </ b> A is an LED arrangement region, and thus the periphery of the LED arrangement region is configured by the outer periphery of the module substrate 23 </ b> A. And the board | substrate 23 is comprised by several module board | substrate 23A.
Here, in each of the plurality of LED modules 22, the number of LED elements 24 arranged in the vertical direction (hereinafter also referred to as “vertical parallel number”) m and the number of LED elements 24 arranged in the horizontal direction (hereinafter referred to as “horizontal”). It is also referred to as “the number in parallel.”) N is 2 to 10 in terms of the treatment efficiency and the degree of freedom in the design of the treatment device.
More specifically, by reducing the arrangement interval of the LED elements 24 on the module substrate 23A and increasing the number of mounted LED elements 24, it is possible to improve the irradiance and irradiance uniformity on the irradiation surface, and thus efficiently treat An effect can be obtained. However, the amount of heat generated in the LED module 22 increases as the arrangement interval of the LED elements 24 is reduced to increase the number of mounted elements. Therefore, the phototherapy device 10 for scleroderma requires a cooling structure provided with cooling means such as a cooling fan and a heat sink, thereby increasing the size of the treatment device and increasing the manufacturing cost. Therefore, in view of these, by setting the vertical parallel number m and the horizontal parallel number n within the above ranges, the irradiance and the irradiance uniformity on the irradiated surface are improved without requiring a large cooling structure. be able to.
In the example of this figure, each of the plurality of LED modules 22 includes nine LED elements 24 in the vertical direction along the outer peripheral edge of the module substrate 23A on the surface of the square flat module substrate 23A. These are arranged in parallel, and three are arranged in parallel in the horizontal direction and spaced apart from each other at equal intervals. That is, in the LED module 22, the vertical parallel number m is 3, and the horizontal parallel number n is 3.
 そして、複数のLEDモジュール22の各々においては、図4に示すように、互いに隣接するLED素子24の間の距離、具体的には中心間距離(以下、「素子間ピッチ」ともいう。)をPとするとき、最周縁側に位置するLED素子24とLED配置領域の周縁との間の距離、具体的には、最周縁側に位置するLED素子24の中心とLED配置領域の周縁との間の距離(以下、「縁辺-素子ピッチ」ともいう。)がP/2とされる。ここに、「最周縁側に位置するLED素子」とは、LED配置領域(モジュール基板22Aの表面)に縦列配置された複数のLED素子24よりなるLED素子群における、当該LED配置領域の周縁を構成する4つの縁辺に近接する列(縦列または横列)を構成するLED素子24を示す。
 このような構成のLEDモジュール22において、モジュール基板23Aの縦寸法Lmは、縦並列個数mと素子間ピッチPとの積と同値であり、一方、当該モジュール基板23Aの横寸法Lnは、横並列個数nと素子間ピッチPとの積と同値である。
 この図の例において、素子間ピッチ(P)は20mmであり、よって縁辺-素子ピッチ(P/2)は10mmである。そして、モジュール基板23Aの縦寸法Lmおよび横寸法Lnは、いずれも60mmであり、当該モジュール基板23Aの表面(LED配置領域)は正方形状である。また、基板23は、縦寸法が120mm(=Lm×2)であって横寸法が120(=Ln×2)である。
In each of the plurality of LED modules 22, as shown in FIG. 4, a distance between LED elements 24 adjacent to each other, specifically, a distance between centers (hereinafter also referred to as “inter-element pitch”). When P, the distance between the LED element 24 positioned on the outermost peripheral side and the peripheral edge of the LED arrangement region, specifically, the center of the LED element 24 positioned on the outermost peripheral side and the peripheral edge of the LED arrangement region The distance between them (hereinafter also referred to as “edge-element pitch”) is P / 2. Here, the “LED element located on the outermost peripheral side” means the peripheral edge of the LED arrangement area in the LED element group composed of a plurality of LED elements 24 arranged in tandem in the LED arrangement area (the surface of the module substrate 22A). The LED element 24 which comprises the row | line | column (column or row) adjacent to the four edges which comprise is shown.
In the LED module 22 having such a configuration, the vertical dimension Lm of the module board 23A is equal to the product of the number m of vertical parallels and the element pitch P, while the horizontal dimension Ln of the module board 23A is horizontal parallel. It is the same value as the product of the number n and the element pitch P.
In the example of this figure, the element pitch (P) is 20 mm, and therefore the edge-element pitch (P / 2) is 10 mm. The vertical dimension Lm and the horizontal dimension Ln of the module substrate 23A are both 60 mm, and the surface (LED arrangement region) of the module substrate 23A is square. The substrate 23 has a vertical dimension of 120 mm (= Lm × 2) and a horizontal dimension of 120 (= Ln × 2).
 縁辺-素子ピッチがP/2であることにより、複数のLEDモジュール22(LED配置領域)を密接して縦横に並んで配置することにより、複数のモジュール基板23Aによって構成される基板23上において、複数のLED素子24を、素子間ピッチPの等間隔で縦横に並んで格子状に配列した状態とすることができる。すなわち、図3に示すように、互いに隣接するLEDモジュール22の最周縁側に位置するLED素子24同士の間の距離がPとされる。その結果、複数のLEDモジュール22を、その個数および配列を調整して組み合わせて用いることにより、所期の最大照射領域を有する光源部20を容易に設計することができる。 When the edge-element pitch is P / 2, the plurality of LED modules 22 (LED arrangement regions) are closely arranged in the vertical and horizontal directions on the substrate 23 constituted by the plurality of module substrates 23A. The plurality of LED elements 24 can be arranged in a lattice form in the vertical and horizontal directions at equal intervals P between the elements. That is, as shown in FIG. 3, P is a distance between the LED elements 24 positioned on the outermost peripheral side of the LED modules 22 adjacent to each other. As a result, it is possible to easily design the light source unit 20 having the desired maximum irradiation area by using a plurality of LED modules 22 in combination with the number and arrangement thereof being adjusted.
 LED素子24としては、InGaN系半導体よりなる特定波長範囲にピークを有するLED素子、およびAlGaN系半導体よりなる特定波長範囲にピークを有するLED素子などが用いられる。
 この図の例において、複数のLED素子24としては、波長365nmにピーク波長を有するInGaN系半導体よりなる表面実装型LED素子が用いられている。
As the LED element 24, an LED element having a peak in a specific wavelength range made of an InGaN-based semiconductor, an LED element having a peak in a specific wavelength range made of an AlGaN-based semiconductor, or the like is used.
In the example of this figure, as the plurality of LED elements 24, surface mount type LED elements made of an InGaN-based semiconductor having a peak wavelength at a wavelength of 365 nm are used.
 レンズ26としては、凸レンズおよびフレネルレンズなどを用いることができる。
 レンズ26としてフレネルレンズを用いた場合には、レンズ26として凸レンズを用いた場合に比して光源部20を小型化することができることから、強皮症用光治療器10の小型化を図ることができる。
 図の例において、レンズ26としては、凸レンズが用いられている。
As the lens 26, a convex lens, a Fresnel lens, or the like can be used.
When the Fresnel lens is used as the lens 26, the light source unit 20 can be downsized as compared with the case where a convex lens is used as the lens 26. Therefore, the phototherapy device 10 for scleroderma can be downsized. Can do.
In the illustrated example, a convex lens is used as the lens 26.
 窓部材28としては、光源ユニット21からの光(具体的には、複数のLED素子24からの光)に対する光透過性を有すると共に、高い機械的強度を有するものが用いられる。
 窓部材28の材質の具体例としては、例えば石英ガラスなどが挙げられる。
As the window member 28, a material having high mechanical strength as well as light transmittance with respect to light from the light source unit 21 (specifically, light from the plurality of LED elements 24) is used.
A specific example of the material of the window member 28 is, for example, quartz glass.
 アパーチャー29は、開口27Aと同等または開口27A以下の大きさを有するものとされている。
 光源部20にアパーチャー29が設けられていることにより、照射面(紫外線照射対象部位)において照射領域と非照射領域との境界を明確にすることができ、よって意図しない部分、すなわち紫外線照射対象部位以外の部分に対する光照射(低出力露光)を防止することができる。
The aperture 29 has a size equal to or smaller than the opening 27A.
Since the aperture 29 is provided in the light source unit 20, the boundary between the irradiation region and the non-irradiation region can be clarified on the irradiation surface (ultraviolet irradiation target region). It is possible to prevent light irradiation (low-power exposure) on other parts.
 制御部30は、光源部20を構成するLED素子24を駆動制御するものである。
 制御部30によって光源部20を構成するLED素子24、具体的には複数のLED素子24を駆動制御することにより、光源部20において、患部の大きさおよび患部の状態に応じた所期の光を出射させることができる。
 具体的に説明すると、例えば、患部(紫外線照射対象部位)が、最大照射領域より小さい場合には、患部の形状に応じて、光源部20を構成する複数のLED素子24の一部を選択的に点灯することができる。
The control unit 30 drives and controls the LED elements 24 constituting the light source unit 20.
The control unit 30 drives and controls the LED elements 24 constituting the light source unit 20, specifically, a plurality of LED elements 24, so that the light source unit 20 has the desired light according to the size of the affected part and the state of the affected part. Can be emitted.
More specifically, for example, when the affected part (ultraviolet irradiation target site) is smaller than the maximum irradiation region, a part of the plurality of LED elements 24 constituting the light source unit 20 is selectively selected according to the shape of the affected part. Can be lit.
 また、光源部20からの出射光において、放射照度は、患部の状態および治療時間(照射時間)などによって適宜に定められるが、具体的には、100mW/cm以上であることが好ましい。
 ここに、強皮症の治療に必要とされる紫外線照射量(積算照射量)は、30~60J/cm2とされる。そして、例えば、光源部20からの出射光における放射照度が100mW/cmである場合において、60J/cmの紫外線照射量(積算照射量)を得るために要する時間(照射時間)は、10分間である。
In addition, in the light emitted from the light source unit 20, the irradiance is appropriately determined depending on the state of the affected part, the treatment time (irradiation time), and the like. Specifically, it is preferably 100 mW / cm 2 or more.
Here, the ultraviolet irradiation amount (integrated irradiation amount) required for the treatment of scleroderma is 30 to 60 J / cm 2 . For example, when the irradiance in the light emitted from the light source unit 20 is 100 mW / cm 2 , the time (irradiation time) required to obtain an ultraviolet irradiation amount (integrated irradiation amount) of 60 J / cm 2 is 10 For minutes.
 制御部30は、直方体状の制御部用筐体37の内部に、LED駆動用電源ユニット、およびPLCなどの制御ユニットが配設されており、また制御部用筐体27の側面に、グラフィック操作パネル39が配設されてなるものである。 The control unit 30 is provided with a control unit such as an LED driving power supply unit and a PLC in a rectangular parallelepiped control unit casing 37, and graphic operation is performed on the side of the control unit casing 27. A panel 39 is provided.
 このような強皮症用光治療器10は、光源部20を、窓部材28が紫外線照射対象部位と対向するように配置する。ここに、強皮症用光治療器10は、放射照度の安定的な確保の観点から、紫外線照射対象部位と光源部20(窓部材28)とが接触した状態で使用されることが好ましい。そして、光源部20においては、制御部30から電力が供給されたLED素子24が点灯され、患部に対して、当該光源部20からの出射光が照射(面照射)される。 In such a scleroderma phototherapy device 10, the light source unit 20 is disposed so that the window member 28 faces the ultraviolet irradiation target site. Here, it is preferable that the phototherapy device 10 for scleroderma is used in a state where the ultraviolet irradiation target site and the light source unit 20 (window member 28) are in contact with each other, from the viewpoint of stably securing irradiance. And in the light source part 20, the LED element 24 to which electric power was supplied from the control part 30 is turned on, and the emitted light from the light source part 20 is irradiated (surface irradiation) to the affected part.
 而して、強皮症用光治療器10は、光源部20からの出射光が特定波長範囲にピーク波長を有する光であることから、後述する実験例から明らかなように、その出射光を患部に照射することにより、強皮症の皮膚硬化の原因となっているコラーゲンを分解、断片化する酵素であるコラーゲナーゼ(MMP1)を、有意差をもって発現させることができる。そのため、強皮症に対する優れた治療効果が得られる。
 また、光源部20が、特定波長範囲にピーク波長を有する複数のLED素子24を備えた光源ユニット21を具備したものであることから、患部に対して、光源ユニット21からの光(紫外線)を、波長選択フィルタなどを介することなく、照射することができる。また、LED素子24が一方向に発光するものであることから、局所的な光照射をすることができる。そのため、光源ユニット21からの光を有効に利用することができる。
 しかも、光源部20を構成する複数のLED素子24を駆動制御する制御部30が設けられていることから、光源部20を構成する複数のLED素子24の全部、または複数のLED素子24のうちの一部を選択的に点灯させることにより、患部の大きさに応じた所期の光を照射することができる。
 従って、強皮症用光治療器10によれば、強皮症の治療に必要とされる大きな照射量(積算照射量)を、高い消費電力および長い照射時間を要することなく、患部に対して局所的に照射することができ、よって、効率的に優れた治療効果を得ることができる。その結果、強皮症用光治療器10においては、小型化および低消費電力化を図ることができる。
Thus, the scleroderma phototherapeutic device 10 is such that the emitted light from the light source unit 20 is light having a peak wavelength in a specific wavelength range. By irradiating the affected area, collagenase (MMP1), which is an enzyme that degrades and fragments collagen that causes scleroderma skin hardening, can be expressed with a significant difference. Therefore, an excellent therapeutic effect for scleroderma can be obtained.
Further, since the light source unit 20 includes the light source unit 21 including a plurality of LED elements 24 having a peak wavelength in a specific wavelength range, light (ultraviolet rays) from the light source unit 21 is applied to the affected part. Irradiation can be performed without going through a wavelength selection filter or the like. Moreover, since the LED element 24 emits light in one direction, local light irradiation can be performed. Therefore, the light from the light source unit 21 can be used effectively.
And since the control part 30 which drives and controls the several LED element 24 which comprises the light source part 20 is provided, all of the several LED elements 24 which comprise the light source part 20, or among several LED elements 24 By selectively lighting a part of the light, it is possible to irradiate the desired light according to the size of the affected area.
Therefore, according to the phototherapy device 10 for scleroderma, a large irradiation amount (integrated irradiation amount) required for the treatment of scleroderma can be applied to the affected part without requiring high power consumption and long irradiation time. Irradiation can be performed locally, and thus an excellent therapeutic effect can be obtained efficiently. As a result, the scleroderma phototherapy device 10 can be reduced in size and power consumption.
 また、強皮症用光治療器10においては、光源部20を構成するLED素子24として、波長365±4nmの範囲にピーク波長を有するLED素子を用いることにより、後述する実験例から明らかなように、より一層優れた治療効果を得ることができる。 Further, in the phototherapy device 10 for scleroderma, an LED element having a peak wavelength in the wavelength range of 365 ± 4 nm is used as the LED element 24 constituting the light source unit 20, so that it will be clear from an experimental example described later. In addition, an even better therapeutic effect can be obtained.
 また、強皮症用光治療器10は、光源部20(光源ユニット21)が複数のLEDモジュール22を備えたものであることから、LEDモジュール22の個数および配列を調整するという容易な手法により、当該強皮症用光治療器10に必要とされる最大照射領域の大きさに応じて、小型化および大型化を図ることができる。 In addition, since the light treatment device 10 for scleroderma is provided with a plurality of LED modules 22 in the light source unit 20 (light source unit 21), an easy method of adjusting the number and arrangement of the LED modules 22 is used. Depending on the size of the maximum irradiation region required for the phototherapy device 10 for scleroderma, it is possible to reduce the size and increase the size.
 本発明においては、上記の実施の形態に限定されず、種々の変更を加えることが可能である。
 例えば、本発明の強皮症用光治療器は、光源部と制御部とを備えたものであればよく、光源部の構成および制御部の構成は、図1~図4に示した構成に限定されず、また、光源部および制御部以外の構成部としては種々のものを用いることができる。
 具体的には、例えば、強皮症用光治療器は、光源部と制御部とが、長尺な給電線によって電気的に接続されてなる構成の小型のものであってもよい。この小型の強皮症用光治療器において、光源部は、一方に窓部材によって閉塞された開口を有する略直方体状の光源部用筐体の内部に、図4に示した構成のLEDモジュール1個が配設されたものであり、また制御部は、直方体状の制御部用筐体の内部に、LED駆動用電源ユニットおよび制御ユニットが配設されたものである。この小型の強皮症用光治療器においては、照射面(紫外線照射対象部位)における最大照射領域の大きさの目安は縦寸法および横寸法が50mmである。また、光源部用筐体の外面には、取っ手が設けられており、制御部用筐体の外面にはグラフィック操作パネルが設けられている。この小型の強皮症用光治療器は、治療に際して、片手で取っ手を握り、光源部を移動して所期の位置に配置するハンディタイプのものである。
 また、強皮症用光治療器は、一方に開口を有する直方体状の光源部用筐体の内部に、図4に示した構成のLEDモジュール60個が配設された光源部と、直方体状の制御部用筐体の内部に、LED駆動用電源ユニットおよび制御ユニットが配設された制御部とを備え、当該光源部が、制御部用筐体の外面に設けられた光源部駆動機構によって支持されてなる構成の大型のものであってもよい。ここに、60個のLEDモジュールは、縦方向に6個が並列し、横方向に10個が並列した状態で密接して縦横に並んで配置されている。この大型の強皮症用光治療器においては、照射面(紫外線照射対象部位)における最大照射領域の大きさの目安は縦寸法が500mmであって横寸法が300mmである。また、制御部用筐体の外面にはグラフィック操作パネルが設けられている。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, the phototherapeutic device for scleroderma of the present invention only needs to have a light source unit and a control unit, and the configuration of the light source unit and the configuration of the control unit are the same as those shown in FIGS. It is not limited and various components other than the light source unit and the control unit can be used.
Specifically, for example, the phototherapy device for scleroderma may be a small one having a configuration in which a light source unit and a control unit are electrically connected by a long power supply line. In this small scleroderma phototherapeutic device, the light source unit has an LED module 1 having the configuration shown in FIG. 4 in a substantially rectangular parallelepiped light source unit housing having an opening closed on one side by a window member. The control unit is a unit in which an LED driving power supply unit and a control unit are disposed inside a rectangular parallelepiped control unit casing. In this small scleroderma phototherapy device, the standard of the size of the maximum irradiation region on the irradiation surface (the ultraviolet irradiation target site) is 50 mm in vertical and horizontal dimensions. In addition, a handle is provided on the outer surface of the light source unit casing, and a graphic operation panel is provided on the outer surface of the control unit casing. This small-sized scleroderma phototherapy device is a handy type in which a handle is held with one hand and a light source unit is moved and placed at an intended position during treatment.
Further, the scleroderma phototherapy device includes a light source unit in which 60 LED modules having the configuration shown in FIG. 4 are disposed in a rectangular parallelepiped light source unit housing having an opening on one side, and a rectangular parallelepiped shape. A control unit in which the LED driving power supply unit and the control unit are disposed, and the light source unit is provided by a light source unit driving mechanism provided on the outer surface of the control unit casing. The large thing of the structure formed by being supported may be sufficient. Here, sixty LED modules are arranged closely in a row in the vertical direction, with six in the vertical direction and 10 in the horizontal direction. In this large scleroderma phototherapeutic device, the standard of the size of the maximum irradiation area on the irradiation surface (the ultraviolet irradiation target site) is a vertical dimension of 500 mm and a horizontal dimension of 300 mm. In addition, a graphic operation panel is provided on the outer surface of the control unit casing.
 また、光源部は、図3に示すように複数のLEDモジュールが縦横に並んで配置された構成のものに限定されず、複数のLEDモジュールが、縦方向のみに並んで配置されたものであってもよく、または横方向のみに並んで配置されたものであってもよい。
 また、LEDモジュールにおいて、LED配置領域は、矩形平板状の基板の表面によって構成されたものに限定されず、平面を有するLED素子支持部材の当該平面によって構成されていてもよい。
In addition, the light source unit is not limited to a configuration in which a plurality of LED modules are arranged vertically and horizontally as shown in FIG. 3, and a plurality of LED modules are arranged only in the longitudinal direction. Or may be arranged side by side only in the lateral direction.
Further, in the LED module, the LED arrangement region is not limited to that formed by the surface of the rectangular flat plate-like substrate, and may be formed by the plane of the LED element support member having a plane.
 以下、本発明の実験例について説明する。 Hereinafter, experimental examples of the present invention will be described.
〔実験例1〕
 先ず、96ウェルプレート(Greiner bio-one, Monroe, NC)の複数のウェルに対して、正常ヒト繊維芽細胞1×10cellsを撒種し、恒湿培養器を用いて、温度37℃、培養器内雰囲気における二酸化炭素濃度5%の条件で4日間かけて培養した。その後、各ウェルにおいて、培地を生理食塩水(PBS(-))に交換した。そして、1つのウェル以外の複数のウェルに対して、各々、異なるピーク波長を有する光を放射する6種類のLED照射器を用い、照射量(積算照射量)が15J/cmとなるよう、各LED照射器の出力に応じ、下記の表1に示す照射時間条件により光照射を行った。この光照射においては、正常ヒト繊維芽細胞がプレート(ウェル)の底面に接着する接着細胞であること、および用いた96ウェルプレートにおけるウェルの深さが約11mmであることなどを考慮して、各ウェルにおける照射距離(具体的には、LED照射器とウェルの底面との離間距離)を20mmとした。なお、LED照射器と96ウェルプレートとの離間距離は6mmとした。また、図5および図6に示すように、各LED照射器45による光照射においては、96ウェルプレート40上に、細胞が培養された一のウェル41を含む一方向(図6における上下方向)に並列した一のウェル群以外の複数のウェルを覆うように遮光板44を配置した。
 ここに、6種類のLED照射器としては、ウシオ電機株式会社製または株式会社イマック製の、波長355nmにピーク波長を有する波長355nmLED照射器、波長360nmにピーク波長を有する波長360nmLED照射器、波長365nmにピーク波長を有する波長365nmLED照射器、波長375nmにピーク波長を有する波長375nmLED照射器、波長385nmにピーク波長を有する波長385nmLED照射器、および波長395nmにピーク波長を有する波長395nmLED照射器を用いた。ここに、波長355nmLED照射器および波長360nmLED照射器は、AlGaN系半導体よりなる砲弾型LED素子を備えたものである。また、波長365nmLED照射器、波長385nmLED照射器および波長395nmLED照射器は、InGaN系半導体よりなる表面実装型LED素子を備えたものである。また、波長375nmLED照射器は、InGaN系半導体よりなる砲弾型LED素子を備えたものである。また、対照条件として、1つのウェルには光照射を行わなかった。
 図5において、48は、LED照射器45に電力を供給する電源であり、49は、LED照射器45と電源48とを電気的に接続する給電線である。また、LED照射器45からの光の光路が破線で示されている。
[Experimental Example 1]
First, normal human fibroblasts 1 × 10 3 cells are seeded in a plurality of wells of a 96-well plate (Greiner bio-one, Monroe, NC), and the temperature is 37 ° C. using a constant humidity incubator. Culturing was performed for 4 days under the condition of 5% carbon dioxide concentration in the incubator atmosphere. Thereafter, in each well, the medium was replaced with physiological saline (PBS (−)). And for each of a plurality of wells other than one well, six types of LED irradiators that emit light having different peak wavelengths are used, and the irradiation amount (integrated irradiation amount) is 15 J / cm 2 . According to the output of each LED irradiator, light irradiation was performed under the irradiation time conditions shown in Table 1 below. In this light irradiation, considering that normal human fibroblasts are adherent cells that adhere to the bottom surface of the plate (well) and that the depth of the well in the 96-well plate used is about 11 mm, The irradiation distance in each well (specifically, the separation distance between the LED irradiator and the bottom surface of the well) was set to 20 mm. The distance between the LED irradiator and the 96-well plate was 6 mm. As shown in FIGS. 5 and 6, in the light irradiation by each LED irradiator 45, one direction including one well 41 in which cells are cultured on a 96 well plate 40 (up and down direction in FIG. 6). A light shielding plate 44 is disposed so as to cover a plurality of wells other than one well group arranged in parallel.
Here, as six types of LED irradiators, Ushio Electric Co. or Immac Co., Ltd., a wavelength 355 nm LED irradiator having a peak wavelength at 355 nm, a wavelength 360 nm LED irradiator having a peak wavelength at 360 nm, a wavelength of 365 nm A wavelength 365 nm LED irradiator having a peak wavelength, a wavelength 375 nm LED irradiator having a peak wavelength at 375 nm, a wavelength 385 nm LED irradiator having a peak wavelength at 385 nm, and a wavelength 395 nm LED irradiator having a peak wavelength at 395 nm were used. Here, the wavelength 355 nm LED irradiator and the wavelength 360 nm LED irradiator are provided with bullet-type LED elements made of an AlGaN-based semiconductor. In addition, the wavelength 365 nm LED irradiator, the wavelength 385 nm LED irradiator, and the wavelength 395 nm LED irradiator include surface-mounted LED elements made of an InGaN-based semiconductor. The 375 nm wavelength LED irradiator includes a bullet-type LED element made of an InGaN-based semiconductor. In addition, as a control condition, one well was not irradiated with light.
In FIG. 5, 48 is a power source that supplies power to the LED irradiator 45, and 49 is a power supply line that electrically connects the LED irradiator 45 and the power source 48. Moreover, the optical path of the light from the LED irradiator 45 is indicated by a broken line.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次いで、光照射を行った複数のウェルおよび光照射を行わなかったウェル(対照ウェル)において、各々、生理食塩水を吸引除去して培養液100μL/wellを添加し、恒湿培養器を用いて、温度37℃、培養器内雰囲気における二酸化炭素濃度5%の条件で2日間かけて培養した。
 その後、RNA精製用キット「RNeasy Mini kit」(QIAGEN社製)を用い、複数のウェルの各々において培養された細胞からRNA(リボ核酸)を抽出し、RNAからcDNA(相補的デオキリシボ核酸)を合成(逆転写)するためのキット「High Capacity cDNA Reverse Transcription kit」(QIAGEN社製)により、抽出したRNAからcDNAを合成(逆転写)した。そして、得られた複数(具体的には、7種類)のcDNAサンプルを、リアルタイムPCRシステム「CFX Connect」(BIO-RAD社製)を用いて増幅させて解析することにより、強皮症の皮膚硬化の原因となっているコラーゲンを分解、断片化する酵素であるコラーゲナーゼ(MMP1)の量を確認した。結果を図7に示す。
 図7において、コラーゲナーゼの量は、ハウスキーピング遺伝子(GAPDH)の量に基づいて得られた値である。そして、光照射を行った複数のウェルにおいて培養された細胞に係るコラーゲナーゼの量は、各々、「control」によって示されている、光照射を行わなかった対照ウェルにおいて培養された細胞に係るコラーゲナーゼの量を基準とする相対値として示されている。また、「**」は、t検定においてP値が0.01以下であることを示している。
Next, in each of the plurality of wells subjected to light irradiation and the wells not subjected to light irradiation (control wells), physiological saline was sucked and removed, and 100 μL / well of a culture solution was added thereto, and a constant humidity incubator was used. The cells were cultured for 2 days under the conditions of a temperature of 37 ° C. and a carbon dioxide concentration of 5% in the incubator atmosphere.
Then, RNA (ribonucleic acid) is extracted from cells cultured in each of a plurality of wells using RNA purification kit “RNeasy Mini kit” (QIAGEN), and cDNA (complementary deoxyribonucleic acid) is synthesized from RNA. CDNA was synthesized (reverse transcription) from the extracted RNA using a kit for “reverse transcription” “High Capacity cDNA Reverse Transcription kit” (manufactured by QIAGEN). The resulting multiple (specifically, seven types) cDNA samples are amplified and analyzed using a real-time PCR system “CFX Connect” (manufactured by BIO-RAD), and scleroderma skin. The amount of collagenase (MMP1), which is an enzyme that decomposes and fragments collagen that causes hardening, was confirmed. The results are shown in FIG.
In FIG. 7, the amount of collagenase is a value obtained based on the amount of housekeeping gene (GAPDH). Then, the amount of collagenase related to the cells cultured in the plurality of wells subjected to the light irradiation is indicated by “control”, respectively, and the collagen related to the cells cultured in the control wells not subjected to the light irradiation. It is shown as a relative value based on the amount of the enzyme. Further, “**” indicates that the P value is 0.01 or less in the t test.
 この実験例1の結果から、波長355nm、波長360nm、波長365nm、波長375nm、波長385nmおよび395nmのいずれの波長条件によって光照射を行った場合においても、強皮症の皮膚硬化の原因となっているコラーゲンを分解、断片化する酵素であるコラーゲナーゼ(MMP1)の発現の亢進がみられることが明らかである。そして、特に、波長360nm、波長365nm、波長375nm、および波長385nmの波長条件によって光照射を行った場合において、有意差をもってコラーゲナーゼが発現することが明らかである。また、コラーゲナーゼの発現は、波長365nmの波長条件においてピークを示し、この波長365nmの波長条件におけるコラーゲナーゼの量は、対照条件、すなわち光照射を行わなかった場合の7.7倍である。
 従って、波長360~385nmの範囲にピーク波長を有する光は、強皮症に対する有効波長、すなわち強皮症に対する優れた治療効果が得られる光であることが確認された。また、波長365±4nmの範囲にピーク波長を有する光は、より一層優れた治療効果を得ることのできる光であることが確認された。
From the results of Experimental Example 1, even when light irradiation was performed under any of the wavelength conditions of wavelength 355 nm, wavelength 360 nm, wavelength 365 nm, wavelength 375 nm, wavelength 385 nm, and 395 nm, it caused scleroderma skin hardening. It is clear that the expression of collagenase (MMP1), an enzyme that degrades and fragments collagen, is increased. In particular, it is clear that collagenase is expressed with a significant difference when light irradiation is performed under the wavelength conditions of wavelength 360 nm, wavelength 365 nm, wavelength 375 nm, and wavelength 385 nm. Collagenase expression shows a peak under the wavelength condition of 365 nm, and the amount of collagenase under the wavelength condition of 365 nm is 7.7 times that in the control condition, that is, when no light irradiation is performed.
Therefore, it was confirmed that the light having a peak wavelength in the wavelength range of 360 to 385 nm is an effective wavelength for scleroderma, that is, light that provides an excellent therapeutic effect for scleroderma. Further, it was confirmed that light having a peak wavelength in the wavelength range of 365 ± 4 nm is light that can obtain a further excellent therapeutic effect.
10  強皮症用光治療器
11  支持体
12  架台
13  支柱
14  作動アーム
18  車輪
19  手動レバー
20  光源部
21  光源ユニット
21A  ケーブル
22  LEDモジュール
23  基板
23A  モジュール基板
24  LED素子
25  枠体
26  レンズ
27  光源部用筐体
27A  開口
28  窓部材
29  アパーチャー
30  制御部
37  制御部用筐体
39  グラフィック操作パネル
40  96ウェルプレート
41  ウェル
44  遮光板
45  LED照射器
48  電源
49  給電線

                                                                                
DESCRIPTION OF SYMBOLS 10 Phototherapy device for scleroderma 11 Support body 12 Base 13 Support | pillar 14 Actuating arm 18 Wheel 19 Manual lever 20 Light source unit 21 Light source unit 21A Cable 22 LED module 23 Substrate 23A Module substrate 24 LED element 25 Frame body 26 Lens 27 Light source unit Housing 27A Opening 28 Window member 29 Aperture 30 Control unit 37 Control unit housing 39 Graphic operation panel 40 96 well plate 41 well 44 light shielding plate 45 LED irradiator 48 power supply 49 feeding line

Claims (3)

  1.  波長360~385nmの範囲にピーク波長を有するLED素子を具備する光源部と、当該光源部を構成するLED素子を駆動制御する制御部とを備えたことを特徴とする強皮症用光治療器。 A phototherapeutic device for scleroderma comprising a light source unit having an LED element having a peak wavelength in a wavelength range of 360 to 385 nm and a control unit for driving and controlling the LED element constituting the light source unit .
  2.  前記LED素子が、波長365±4nmの範囲にピーク波長を有するLED素子であることを特徴とする請求項1に記載の強皮症用光治療器。 The phototherapy device for scleroderma according to claim 1, wherein the LED element is an LED element having a peak wavelength in a wavelength range of 365 ± 4 nm.
  3.  前記光源部は、矩形状の平面よりなるLED配置領域に、複数のLED素子が、当該LED配置領域の周縁に沿って、縦方向にm個(但し、mは2~10の整数)が並列し、横方向にn個(但し、nは2~10の整数)が並列して等間隔に縦横に並んで配置されたLEDモジュールを複数備えており、
     前記複数のLEDモジュールにおいては、互いに隣接するLED素子の間の距離をPとするとき、最周縁側に位置するLED素子と前記LED配置領域の周縁との間の距離がP/2とされており、
     前記複数のLEDモジュールが、前記LED配置領域が密接して縦方向および横方向の少なくとも一方向に並んで配置されていることを特徴とする請求項1または請求項2に記載の強皮症用光治療器。
                                                                                    
    In the light source unit, a plurality of LED elements are arranged in the vertical direction along the periphery of the LED arrangement area (where m is an integer of 2 to 10) in the LED arrangement area formed of a rectangular plane. In addition, a plurality of LED modules are arranged in which n pieces (where n is an integer of 2 to 10) are arranged in parallel in the horizontal direction at equal intervals in the horizontal direction,
    In the plurality of LED modules, when the distance between adjacent LED elements is P, the distance between the LED element located on the outermost peripheral side and the peripheral edge of the LED arrangement region is P / 2. And
    3. The scleroderma according to claim 1, wherein the plurality of LED modules are arranged such that the LED arrangement region is closely arranged in at least one of a vertical direction and a horizontal direction. Light therapy device.
PCT/JP2017/008427 2016-03-07 2017-03-03 Light therapy device for scleroderma WO2017154759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-043408 2016-03-07
JP2016043408A JP2017158626A (en) 2016-03-07 2016-03-07 Phototherapy device for scleroderma

Publications (1)

Publication Number Publication Date
WO2017154759A1 true WO2017154759A1 (en) 2017-09-14

Family

ID=59789302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008427 WO2017154759A1 (en) 2016-03-07 2017-03-03 Light therapy device for scleroderma

Country Status (2)

Country Link
JP (1) JP2017158626A (en)
WO (1) WO2017154759A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049143A (en) * 2018-09-28 2020-04-02 公立大学法人名古屋市立大学 Phototherapy apparatus filter
CN110960800A (en) * 2018-09-28 2020-04-07 公立大学法人名古屋市立大学 Phototherapy device and phototherapy method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153478A1 (en) * 2022-02-10 2023-08-17 株式会社坪田ラボ Method for improving physiological conditions by photostimulation and device to be used therein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066657A1 (en) * 2005-12-05 2007-06-14 Meijo University Method of light therapy by semiconductor light emitting device and light therapeutic system by semiconductor light emitting device
US20100121420A1 (en) * 2007-04-30 2010-05-13 Peter Depew Fiset Uva1-led phototherapy device and method
WO2013154151A1 (en) * 2012-04-11 2013-10-17 株式会社リキッド・デザイン・システムズ Illumination device and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066657A1 (en) * 2005-12-05 2007-06-14 Meijo University Method of light therapy by semiconductor light emitting device and light therapeutic system by semiconductor light emitting device
US20100121420A1 (en) * 2007-04-30 2010-05-13 Peter Depew Fiset Uva1-led phototherapy device and method
WO2013154151A1 (en) * 2012-04-11 2013-10-17 株式会社リキッド・デザイン・システムズ Illumination device and liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049143A (en) * 2018-09-28 2020-04-02 公立大学法人名古屋市立大学 Phototherapy apparatus filter
CN110960800A (en) * 2018-09-28 2020-04-07 公立大学法人名古屋市立大学 Phototherapy device and phototherapy method
CN110960800B (en) * 2018-09-28 2023-02-28 公立大学法人名古屋市立大学 Phototherapy device and phototherapy method

Also Published As

Publication number Publication date
JP2017158626A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US10363434B2 (en) LED therapy bed
WO2017154759A1 (en) Light therapy device for scleroderma
CN110960800B (en) Phototherapy device and phototherapy method
US6796994B2 (en) Device for the treatment of mucositis
US20040068305A1 (en) Phototherapy system and device
US7422599B2 (en) Device for treating infants with light
WO2016208244A1 (en) Photodynamic therapy light irradiating device and light irradiating method
CN105493235B (en) Light projection device
JP2024150680A (en) Light irradiation device
US20070021806A1 (en) Controllable light therapy apparatus, assembly including the same, and method of operating associated thereto
KR20180115138A (en) Phototherapy apparatus and phototherapy method using thereof
JP7336757B2 (en) Filter for phototherapy equipment
US7087074B2 (en) Light therapy apparatus
CN219507888U (en) Cell experiment device for photodynamic therapy research
RU218198U1 (en) Device for the treatment of skin diseases
KR101079208B1 (en) Whole body sauna apparatus using light
CN210992644U (en) Portable ultraviolet phototherapy instrument
KR20070002794A (en) Medical treatment apparatus using rays of light
KR20130050096A (en) Device for inducing photodynamic reaction and method for inducing photodynamic reaction using the same
KR101266057B1 (en) Protecting apparatus of laser diode for laser generation device
CN210277993U (en) Treatment workbench for dermatology department
CZ302829B6 (en) Light source of uniform energy density to induce photodynamic phenomena in vitro cells
JP2022118400A (en) Ultraviolet treatment device
RU2003126877A (en) INSTALLATION FOR INTEGRATED PROCESSING OF INCUBATION EGGS WITH RADIATED ENERGY
WO2020226517A3 (en) Phototherapy lamp for neonatal jaundice treatment based on blue led technology

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763099

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763099

Country of ref document: EP

Kind code of ref document: A1