WO2013154151A1 - Illumination device and liquid crystal display device - Google Patents

Illumination device and liquid crystal display device Download PDF

Info

Publication number
WO2013154151A1
WO2013154151A1 PCT/JP2013/060909 JP2013060909W WO2013154151A1 WO 2013154151 A1 WO2013154151 A1 WO 2013154151A1 JP 2013060909 W JP2013060909 W JP 2013060909W WO 2013154151 A1 WO2013154151 A1 WO 2013154151A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
organic substrate
substrate
luminance
liquid crystal
Prior art date
Application number
PCT/JP2013/060909
Other languages
French (fr)
Japanese (ja)
Inventor
直也 遠山
栗原 誠
Original Assignee
株式会社リキッド・デザイン・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リキッド・デザイン・システムズ filed Critical 株式会社リキッド・デザイン・システムズ
Priority to JP2013546521A priority Critical patent/JP5481626B1/en
Priority to KR1020137034585A priority patent/KR101986694B1/en
Priority to CN201380001934.0A priority patent/CN103688373B/en
Priority to US14/130,174 priority patent/US9159271B2/en
Publication of WO2013154151A1 publication Critical patent/WO2013154151A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10416Metallic blocks or heatsinks completely inserted in a PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Definitions

  • the present invention relates to a lighting device and a liquid crystal display device.
  • a liquid crystal display device in which a plurality of LED substrates on which LEDs are mounted are arranged side by side on the back side of a liquid crystal panel, can prevent deterioration of maintainability and generation of useless space, A liquid crystal display device that prevents leakage of unnecessary radiation from an LED substrate is disclosed (see Patent Document 1).
  • a sheet-like heat transfer member is held between the backlight chassis and the chassis tray. Thereby, the heat generated in the LED substrate is dissipated through the backlight chassis and the chassis tray.
  • a sheet-like heat transfer member is provided between the backlight chassis and the chassis tray, which increases the cost.
  • the present invention has been proposed in view of such circumstances, and an object of the present invention is to provide an illumination device and a liquid crystal display device in which LEDs can be exchanged with a simple operation without cost and labor.
  • the lighting device is provided in a corresponding manner for each LED, a metal base substrate formed in a planar shape, an organic substrate, a plurality of LEDs arranged on the organic substrate, and the LED Metal member that is electrically connected to the LED from one electrode of the LED via a switch element and is exposed from the opposite surface through the width direction of the organic substrate from the LED mounting surface of the organic substrate.
  • an LED control signal terminal provided on the edge side of the organic substrate, and a voltage supply terminal provided on the edge side of the organic substrate, and is detachable from the metal base substrate in the row direction.
  • a liquid crystal display device includes a liquid crystal panel in which a plurality of pixels are arranged, and the illumination device that irradiates light to the liquid crystal panel.
  • the LEDs can be exchanged with a simple operation without cost and labor.
  • FIG. 1 is a front view of a backlight device according to an embodiment of the present invention.
  • FIG. 2 is a front view of the aluminum base substrate that appears when the LED modules and the control circuit are removed from the backlight device.
  • FIG. 3 is a perspective view of the LED module on the LED mounting surface side (surface side).
  • FIG. 4 is a perspective view of the opposite side (back side) of the LED mounting surface of the LED module.
  • FIG. 5 is a diagram illustrating a state in which a multilayer substrate is provided on the back side of the LED module.
  • FIG. 6 is a cross-sectional view of the LED module.
  • FIG. 7 is a diagram illustrating a state in which an insulating cover is provided on the back side of the LED module.
  • FIG. 1 is a front view of a backlight device according to an embodiment of the present invention.
  • FIG. 2 is a front view of the aluminum base substrate that appears when the LED modules and the control circuit are removed from the backlight device.
  • FIG. 3 is
  • FIG. 8 is a cross-sectional view of the LED module.
  • FIG. 9 is a cross-sectional view of the LED module and the aluminum base substrate in a state where the circular convex connection portion is fitted in the circular concave portion.
  • FIG. 10A is a diagram illustrating a full-modulation backlight device.
  • FIG. 10B is a diagram illustrating a region-based modulation backlight device.
  • FIG. 10C is a diagram illustrating the backlight device of the present embodiment.
  • FIG. 11 is a block diagram illustrating a functional configuration of a liquid crystal display device using a backlight device.
  • FIG. 12 is a simplified view of an LED module in which LEDs are arranged.
  • FIG. 13 is a simplified view of a backlight device in which LED modules are arranged.
  • FIG. 12 is a simplified view of an LED module in which LEDs are arranged.
  • FIG. 13 is a simplified view of a backlight device in which LED modules are arranged.
  • FIG. 12 is
  • FIG. 14 is a diagram illustrating 64 pixels irradiated with light to one LED.
  • FIG. 15 is a diagram illustrating a detailed circuit configuration of the LED module.
  • FIG. 16 is a diagram for explaining the operation of the maximum luminance detection unit.
  • FIG. 17 is a circuit diagram of the LED module of the second embodiment.
  • FIG. 18 is a perspective view of the sensor module.
  • FIG. 19 is a cross-sectional view of the sensor module.
  • FIG. 20 is a circuit diagram of the sensor module.
  • FIG. 21 is a perspective view of the wireless LAN module.
  • FIG. 22 is a cross-sectional view of the wireless LAN module.
  • FIG. 23 is a circuit diagram of the wireless LAN module.
  • FIG. 1 is a front view of a backlight device 1 according to the first embodiment of the present invention.
  • the backlight device 1 controls driving of a plurality of LED modules 10 in which a plurality of LEDs (Light Emitting Diodes) 22 are mounted and arranged in a row direction and a column direction (matrix shape) and LEDs in the row direction.
  • a control circuit 11 and a control circuit 12 that controls driving of LEDs in the column direction are provided.
  • LED modules 10 are mechanically and electrically connected to an aluminum base substrate 13 described later.
  • the LED module 10 is configured to be detachable from the aluminum base substrate 13.
  • the number of LED modules 10 is not particularly limited.
  • FIG. 2 is a front view of the aluminum base substrate 13 that appears when the LED modules 10 and the control circuits 11 and 12 are removed from the backlight device 1 shown in FIG.
  • the aluminum base substrate 13 is formed with circular recesses 13a arranged in the row direction and the column direction. Each circular recess 13a is formed in such a size that a circular convex connection portion 24 (described in detail later) provided in the LED module 10 can be fitted.
  • the aluminum base substrate 13 is formed in a flat plate shape.
  • the alignment of the aluminum base substrate 13 and each LED module 10 may be performed by simply fitting the circular convex connection portion 24 of the LED module 10 into the circular concave portion 13a of the aluminum base substrate 13.
  • FIG. 3 is a perspective view of the LED module 10 on the LED mounting surface side (front surface side).
  • the LED module 10 includes an organic substrate 21 formed in a flat plate shape, and one or more (9 in this embodiment) LEDs 22 provided on the organic substrate 21.
  • the vertical and horizontal sizes of the LED module 10 are both assumed to be, for example, 2 inches, but can be appropriately changed according to the size of the backlight device 1.
  • nine LEDs 22 are arranged at equal intervals in the row direction and the column direction. In the present embodiment, a case where nine LEDs 22 are provided on the organic substrate 21 will be described. However, the number of LEDs 22 may be 8 or less, or 10 or more, and is not particularly limited. Further, the number of LEDs 22 on the organic substrate 21 is determined according to the luminance of the LEDs 22 alone, the luminance required by the backlight device 1, and the light amount area. The LEDs 22 can be driven independently, and the brightness, light emission time, and light emission timing can be adjusted.
  • FIG. 4 is a perspective view of the LED module 10 on the opposite side (back side) of the LED mounting surface.
  • the LED module 10 includes, on the back surface side, an electrode aluminum piece 23 connected to one electrode side of the LED 22 shown in FIG. 3, a cylindrical portion 24 provided on the back surface of the organic substrate 21, and each side of the organic substrate 21. And an interface internal terminal 25 provided at the end of the terminal.
  • the electrode aluminum piece 23 is electrically connected to the negative electrode of the LED 22 via a field effect transistor (FET) and a micro bump 22a (see FIG. 6 described later). Further, the electrode aluminum piece 23 releases the heat from the LED 22 to the outside, and becomes a ground potential when connected to the aluminum base substrate 13 which is a ground potential.
  • FET field effect transistor
  • micro bump 22a see FIG. 6 described later.
  • the electrode aluminum piece 23 releases the heat from the LED 22 to the outside, and becomes a ground potential when connected to the aluminum base substrate 13 which is a ground potential.
  • Four cylindrical portions 24 are provided on the back surface of the organic substrate 21. The diameter of the cylindrical portion 24 is formed smaller than the diameter of the circular recess 13a of the aluminum base substrate 13 shown in FIG.
  • the interface internal terminal 25 has an interface function for electrically connecting to the adjacent LED module 10, and has, for example, the role of control line connection, power supply line connection, and spare terminal.
  • FIG. 5 is a view showing a state in which the multilayer substrate 26 is provided on the back side of the LED module 10 shown in FIG.
  • FIG. 6 is a cross-sectional view of the LED module 10 shown in FIG.
  • the organic substrate 21 has a wiring 28.
  • a multilayer substrate 26 having wirings 28 is provided on the back surface of the organic substrate 21.
  • LED22 is connected to the wiring 28 or the electrode aluminum piece 23 through the micro bump 22a.
  • FIG. 7 is a view showing a state in which an insulating cover 27 is provided on the back side of the LED module 10 shown in FIG.
  • FIG. 8 is a cross-sectional view of the LED module 10 shown in FIG.
  • the LED module 10 includes an insulating cover 27 whose back side is covered except for the electrode aluminum piece 23, and a plurality of interface external terminals 29. Each interface external terminal 29 is connected to each interface internal terminal 25.
  • the interface external terminal 29 is connected to the interface contact 25 through the wiring 28 or through the insulating cover 27 as shown in FIG.
  • the adjacent interface external terminals 29 are electrically connected to each other, and the control line, the power source is connected between the LED modules 10 adjacent in the row direction and the column direction.
  • the line is connected.
  • a circular convex connection portion 24a is formed as shown in FIGS.
  • the circular convex connection part 24a is formed in a size that can be fitted into the circular concave part 13a of the aluminum base substrate 13 shown in FIG.
  • the circular convex connecting portion 24a is fitted into the circular concave portion 13a, so that the LED module 10 and the aluminum base substrate 13 can be aligned.
  • FIG. 9 is a cross-sectional view of the LED module 10 and the aluminum base substrate 13 in a state where the circular convex connecting portion 24a is fitted in the circular concave portion 13a.
  • the electrode aluminum piece 23 is connected to the aluminum base substrate 13.
  • the heat generated in the LED 22 is conducted to the aluminum base substrate 13 through the electrode aluminum piece 23 through the micro bumps 22a.
  • One electrode of the LED 22 is grounded via a field effect transistor (FET) (not shown).
  • FET field effect transistor
  • the backlight device 1 includes the plurality of LED modules 10 that can be attached to and detached from the aluminum base substrate 13. Thereby, even when any LED 22 is damaged, only the LED module 10 including the damaged LED 22 needs to be replaced. Therefore, maintenance of the backlight device 1 is facilitated, and the yield is improved. Moreover, the backlight apparatus 1 can suppress manufacturing cost by arranging the LED modules 10 that can be mass-produced at low cost.
  • FIG. 10A is a diagram illustrating a whole surface modulation type backlight device
  • FIG. 10B is a region-based modulation type backlight device
  • FIG. 10C is a diagram illustrating a backlight device according to the present embodiment.
  • the full-modulation type backlight device arranges LEDs, which are light sources, at the end, and modulates brightness over the entire screen.
  • the full-modulation type backlight device is easily thinned because an LED is installed at an end portion, and is used for a small liquid crystal display device such as a mobile phone or an in-vehicle display.
  • the area-specific modulation type backlight device arranges LEDs over the entire screen (two-dimensional) and modulates the brightness of the LEDs for each area of the screen.
  • the modulation type backlight device by area can finely modulate the brightness of the LED for each area of the screen, so it has a higher contrast improvement effect than the full modulation type, and is used for large liquid crystal display devices such as TVs. Is done.
  • the backlight device 1 of the present embodiment is a region modulation type and is configured such that the LED module 10 on which a plurality of LEDs are mounted is detachable. For this reason, the backlight device 1 of the present embodiment has a higher contrast improvement effect than the conventional full modulation type, and can further improve the yield compared to the conventional area modulation type. Furthermore, the backlight device 1 has a thickness of 5 mm or less due to the two-dimensional arrangement of the LED modules 10 described in FIGS. 3 to 9, and is thinner than the conventional one.
  • the LED module 10 can release the heat generated by the LED 22 to the aluminum base substrate 13 through the electrode aluminum piece 23, the durability of the LED 22 can be improved.
  • FIG. 11 is a block diagram showing a functional configuration of a liquid crystal display device 50 using the backlight device 1.
  • the liquid crystal display device 50 includes a moving image decoding unit 51 that decodes input moving image data, a maximum luminance detecting unit 52 that detects the maximum luminance for each predetermined pixel, and a frame buffer 53 that temporarily stores the image data.
  • the liquid crystal panel driving unit 54 that drives the liquid crystal panel 55 based on the image data stored in the frame buffer 53, the liquid crystal panel 55 that displays an image, the backlight driving unit 60 that drives the backlight device 1, and the liquid crystal panel And a backlight device 1 that irradiates light to 55.
  • the liquid crystal panel 55 and the backlight device 1 are synchronized.
  • FIG. 12 is a diagram simply showing the LED module 10 (FIG. 3) in which the LEDs 22 are arranged.
  • the LEDs 22 are displayed as circles.
  • the LED 22 in the row direction is connected by a row line ROW
  • the LED 22 in the column direction is connected by a column line COL.
  • FIG. 13 is a diagram schematically showing the backlight device 1 in which the LED modules 10 are arranged.
  • the column line COL is expressed as COL0, COL1, COL2,...
  • the row line ROW is in order from the top to the bottom. Indicated as ROW1, ROW2,.
  • the luminance of the LED 22 can be changed by changing the voltage of the capacitor C described later. Note that the voltage of the capacitor C on the same row line ROW is changed (updated) at once.
  • FIG. 14 is a diagram showing 64 pixels irradiated with light to one LED 22.
  • FIG. 15 is a diagram illustrating a detailed circuit configuration of the LED module 10.
  • the LED module 10 has three LEDs 22 arranged in the row direction and the column direction, three column lines COL1 to COL3 wired in the vertical direction, and a horizontal wiring.
  • FETs field effect transistors
  • Column lines COL1 to COL3 are analog signal lines through which signals corresponding to the luminance of the LED 22 are transmitted, and are connected to the control circuit 12 shown in FIG.
  • the row lines ROW1 to ROW3 are digital signal lines through which signals specifying columns to be scanned are transmitted, and are connected to the control circuit 11 shown in FIG.
  • the LED 22 emits light with controlled luminance.
  • the power supply voltage VCC is applied to the anode of the LED 22 via the resistor R.
  • the cathode of the LED 22 is connected to the drain of a field effect transistor (FET) 26.
  • the source of the FET 26 is grounded.
  • the gate of the FET 26 is grounded via a capacitor C and is connected to the source of the FET 27.
  • the gate of the FET 27 is connected to the row line ROW1, and the drain of the FET 27 is connected to the column line COL1.
  • LED22 drive control In the LED module 10 configured as described above, the LED 22 is driven as follows. Here, the LED 22 (the upper left LED 22 in FIG. 15) driven by the column line COL1 and the row line ROW1 will be described.
  • a voltage (analog signal) corresponding to the luminance of the LED 22 is applied to the column line COL1.
  • the row line ROW1 becomes H level (logic 1).
  • the FET 27 is turned on, charges are accumulated from the row line ROW1 to the capacitor C, and a predetermined voltage is applied to the capacitor C.
  • the FET 27 When the row line ROW1 becomes L level (logic 0), the FET 27 is turned off and the capacitor C is disconnected from the column line COL1. For this reason, even if the voltage of the row line ROW1 subsequently fluctuates, the voltage of the capacitor C is held for a certain period. Since the FET 26 causes a current corresponding to the voltage of the capacitor C to flow from the gate to the drain, the luminance of the LED 22 is controlled according to the voltage of the capacitor C.
  • the voltage values of the column lines COL0, COL1, COL2,... are sequentially set to V0, V1, V2,..., And then the voltage value of the row line ROW0 is changed from the L level to the H level and from the H level.
  • the voltage values of the capacitors C corresponding to the row line ROW0 are collectively set to V0, V1, V2,.
  • the luminance of each LED 22 corresponding to the row line ROW0 is changed at once.
  • the voltage may be updated in the order of the row lines ROW1, ROW2, ROW3,..., Or the voltage may be updated in the order of the row lines ROW1, ROW3, ROW2, ROW4.
  • the column line COL1 controls the luminance of the LED 22 and the row line ROW1 selects the LED 22 (row) that should emit light, but the row line ROW1 controls the luminance of the LED 22 and the column line COL1 emits light. You may make it the structure which selects LED22 (row) which should be selected.
  • the liquid crystal display device 50 configured as described above operates as follows.
  • the moving picture decoding unit 51 shown in FIG. 11 decodes input moving picture image data.
  • the maximum luminance detection unit 52 detects the maximum luminance from 64 pixels of the image data decoded by the moving image decoding unit 51.
  • FIG. 16 is a diagram for explaining the operation of the maximum luminance detection unit 52.
  • the maximum luminance detection unit 52 has a storage area for storing integer arrays (luminance levels) for the number of LEDs 22 on the internal RAM.
  • the maximum brightness detection unit 52 detects the maximum brightness for every 64 pixels, and stores the maximum brightness in the storage area. That is, when the luminances Y1, Y2,... That are pixel rows are input, the maximum luminance detection unit 52 compares the input luminance and the luminance stored in the storage area, and stores the input luminance. If it is greater than the input brightness, the input brightness is stored (updated).
  • the maximum brightness detection unit 52 detects the maximum brightness Y from the brightness Y1, Y2,..., Y64 for each of the 64 pixels, and stores the maximum brightness Y in the storage area 1. Similarly, the maximum brightness detection unit 52 detects the maximum brightness Y from the brightness Y65, Y66,..., Y128 for the next 64 pixels, and stores the maximum brightness Y in the storage area 2. Then, the maximum luminance detection unit 52 outputs the luminance Y1, Y2,... Of each pixel as it is to the frame buffer 53, and backlights for the respective luminances stored in the storage areas 1, 2,. Output to the drive unit 60.
  • the backlight driving unit 60 includes a row driving unit 61 that drives the row line ROW of the backlight device 1, a column driving unit 62 that drives the column line COL of the backlight device 1, and linear correction.
  • a linear correction table 63 a D / A converter 64 for converting a digital signal into an analog signal, and a plurality of sample hold (S / H) circuits 65.
  • the row driving unit 61 drives the control circuit 12 (column line COL) of the backlight device 1 based on the maximum luminance and the driving timing detected by the maximum luminance detecting unit 52.
  • the column driving unit 62 refers to the linear correction table 63, converts the maximum luminance output from the maximum luminance detecting unit 52 into a voltage of a digital signal, and outputs it to the D / A converting unit 64.
  • the linear correction table 63 stores table data in which the relationship between luminance and voltage is defined in advance. Based on this table data, the column driving unit 62 reads a voltage corresponding to the maximum luminance and outputs the read voltage.
  • the D / A conversion unit 64 converts the digital signal (voltage value) output from the column driving unit 62 into an analog signal (voltage value), and outputs the converted voltage to each S / H circuit 65. At this time, the D / A converter 64 continuously outputs a voltage for driving each column line COL of the backlight device 1 in time series.
  • the number of S / H circuits 65 corresponding to the number of column lines COL of the backlight device 1 is provided.
  • each S / H circuit 65 drives the corresponding column line COL
  • each S / H circuit 65 holds (holds) the voltage output from the D / A converter 64 at a unique timing, and the held voltage is stored in the corresponding column. Output to the line COL (control circuit 11).
  • the D / A conversion unit is expensive, and if a dedicated D / A conversion unit is provided for each column line COL of the backlight device 1, the cost is increased. Therefore, the D / A converter 64 outputs the voltage of each column line COL in time series, and the S / H circuit 65 corresponding to each column line COL outputs the voltage from the D / A converter 64 at an appropriate timing. Hold and output. As a result, the column line COL can be driven without providing a dedicated D / A converter 64 for each column line COL.
  • the backlight device 1 detects the maximum luminance from a plurality of pixels corresponding to one LED 22 and drives the LED 22 so as to achieve this maximum luminance. Thereby, the backlight device 1 can irradiate the liquid crystal panel 55 with the optimum brightness according to the luminance.
  • the conventional backlight device has a low average brightness on the entire screen when there are multiple high-luminance spots in the overall dark screen, for example, when stars shine in the dark night sky. There was a problem that the whole thing became dark and the brightness of the stars was insufficient.
  • the backlight device 1 controls the brightness of the LEDs 22 so as to obtain the maximum brightness of a plurality of corresponding pixels. It becomes possible to display a beautiful starry sky.
  • the backlight device 1 includes S / H circuits 65 corresponding to the respective column lines COL, and each S / H circuit 65 samples and holds the voltage of each column line COL, so that each column line COL has a corresponding value. There is no need to provide a dedicated D / A converter 64, and the LED 22 can be driven with an inexpensive circuit configuration.
  • the maximum brightness detection unit 52 detects the maximum brightness from the 64 pixels. For example, 64 pixels having a brightness level equal to or higher than a predetermined value (for example, 95% or more of the upper limit value). If there is, it is possible to detect not only the maximum luminance but also any luminance that is a predetermined value or more.
  • This predetermined value is not limited to 95% or more, and can be appropriately changed depending on the environment (brightness) of the liquid crystal display device 50.
  • the above-described backlight device 1 employs an analog system that controls the brightness of the LED 22 in accordance with the level of the analog signal.
  • a digital signal system controls the brightness of the LED 22 in accordance with the duty ratio of the digital signal.
  • PWM Pulse Width Modulation
  • the backlight apparatus 1 should just energize LED22 only for the required time, and can suppress power consumption.
  • the present invention is not limited to the backlight device of the above embodiment, and can be applied as a general lighting device as shown in the second embodiment.
  • the illumination device according to the second embodiment is configured in substantially the same manner as the backlight device 1 shown in FIG. 1, but is installed indoors or outdoors unlike the first embodiment.
  • differences from the first embodiment will be mainly described.
  • the lighting device according to the second embodiment is configured as follows so that even when one LED module 10 is damaged, the power supply voltage is continuously supplied to the LED module 10 adjacent to the damaged LED module 10.
  • the LED module 10 is included.
  • FIG. 17 is a circuit diagram of the LED module 10 of the second embodiment.
  • the LED module 10 of the second embodiment is configured in substantially the same way as in FIG. 15, and further includes a row direction voltage supply line V1 and a column direction voltage supply line V2.
  • the row direction voltage supply line V ⁇ b> 1 and the column direction voltage supply line V ⁇ b> 2 are connected inside the LED module 10.
  • the horizontal power supply line V1 and the column power supply line V2 are provided in a multilayer substrate 26 of FIGS. 19 and 22 described later.
  • the row direction voltage supply line V1 is connected from one end side (interface internal terminal 25) in the row direction of the LED module 10 to the other end side (interface internal terminal 25) in the row direction.
  • the column direction voltage supply line V2 is connected from one end side (interface internal terminal 25) in the column direction of the LED module 10 to the other end side (interface internal terminal 25) in the column direction.
  • each resistor R in the LED module 10 is connected to the column direction voltage supply line V2. For this reason, the voltage VCC is applied to each resistor R in the LED module 10. Note that one end of each resistor R may be connected to the row direction voltage supply line V1 instead of the column direction voltage supply line V2.
  • the LED module 10 applies the power supply voltage VCC to each resistor R in the LED module 10. Further, the LED module 10 supplies the power supply voltage VCC to each of the other three adjacent LED modules 10.
  • the illumination device of the present embodiment has a function of not only illuminating the object but also photographing the object and wirelessly communicating photographing information.
  • the illuminating device of the present embodiment has a sensor module 70 in order to realize a function of photographing an object.
  • FIG. 18 is a perspective view of the sensor module 70.
  • FIG. 19 is a cross-sectional view of the sensor module 70.
  • the sensor module 70 has the same size as the LED module 10 and can be attached to and detached from the aluminum base substrate 13 in the same manner as the LED module 10. For this reason, in this embodiment, the one or more LED modules 10 provided in the illumination device according to the first embodiment are replaced with the sensor module 70.
  • the sensor module 70 is configured in substantially the same manner as in FIG. 9, but has a CMOS sensor 71 and a hood 72 as shown in FIG. 19 instead of the LED 22 shown in FIG. 9.
  • the CMOS sensor 71 is connected to the electrode aluminum piece 23 via the macro bump 22a. For this reason, the heat generated by the CMOS sensor 71 is released to the outside through the micro bumps 22a, the electrode aluminum pieces 23, and the aluminum base substrate 13.
  • the hood 72 is disposed on the organic substrate 21 so as to surround the end portion of the CMOS sensor 71. Thereby, the light from the LED module 10 around the sensor module 70 does not enter the CMOS sensor 71.
  • FIG. 20 is a circuit diagram of the sensor module 70.
  • the sensor module 70 includes a CMOS sensor 71, a row direction voltage supply line V3, and a column direction voltage supply line V4.
  • the row direction voltage supply line V3 and the column direction voltage supply line V4 are connected inside the sensor module 70.
  • the row direction voltage supply line V3 is connected from one end side (interface internal terminal 25) in the row direction of the sensor module 70 to the other end side (interface internal terminal 25) in the row direction.
  • the column direction voltage supply line V4 is connected from one end side (interface internal terminal 25) in the column direction of the sensor module 70 to the other end side (interface internal terminal 25) in the column direction.
  • the CMOS sensor 71 is connected to the column direction power supply line V4.
  • the CMOS sensor 71 may be connected to the row direction voltage supply line V3 instead of the column direction voltage supply line V4.
  • the CMOS sensor 71 generates an image signal corresponding to the light from the object, and outputs the image signal via the interface internal terminal 25.
  • the sensor module 70 applies the power supply voltage VCC to the CMOS sensor 71 in the sensor module 70. Further, the sensor module 70 supplies the power supply voltage VCC to each of the other three adjacent LED modules 10.
  • the lighting device of the present embodiment includes a wireless LAN module 80 in order to realize a function of performing wireless communication.
  • FIG. 21 is a perspective view of the wireless LAN module 80.
  • FIG. 22 is a cross-sectional view of the wireless LAN module 80.
  • the wireless LAN module 80 has the same size as the LED module 10 and can be attached to and detached from the aluminum base substrate 13 in the same manner as the LED module 10. For this reason, in this embodiment, the one or more LED modules 10 provided in the lighting device according to the first embodiment are replaced with the wireless LAN module 80.
  • the wireless LAN module 80 is configured in substantially the same manner as in FIG. 9, but has a wireless LAN chip 81 as shown in FIG. 22 instead of the LED 22 shown in FIG.
  • the wireless LAN chip 81 is connected to the electrode aluminum piece 23 through the macro bump 22a. Therefore, the heat generated in the wireless LAN chip 81 is released to the outside through the micro bumps 22a, the electrode aluminum pieces 23, and the aluminum base substrate 13.
  • FIG. 23 is a circuit diagram of the wireless LAN module 80.
  • the wireless LAN module 80 includes a wireless LAN chip 81, a row direction voltage supply line V5, and a column direction voltage supply line V6.
  • the row direction voltage supply line V5 and the column direction voltage supply line V6 are connected inside the wireless LAN module 80.
  • the row direction voltage supply line V5 is connected from one end side (interface internal terminal 25) in the row direction of the wireless LAN module 80 to the other end side (interface internal terminal 25) in the row direction.
  • the column direction voltage supply line V6 is connected from one end side (interface internal terminal 25) in the column direction of the wireless LAN module 80 to the other end side (interface internal terminal 25) in the column direction.
  • the wireless LAN chip 81 is connected to the column direction power supply line V6.
  • the wireless LAN chip 81 may be connected to the row direction voltage supply line V5 instead of the column direction voltage supply line V6.
  • the sensor module 70 applies the power supply voltage VCC to the CMOS sensor 71 in the sensor module 70. Further, the sensor module 70 supplies the power supply voltage VCC to each of the other three adjacent LED modules 10.
  • the plurality of LED modules 10 having the row direction voltage supply line V1 and the column direction voltage supply line V2 connected to each other are arranged in the row direction and the column direction. Yes.
  • each LED module 10 supplies the power supply voltage VCC to the other three adjacent LED modules 10.
  • the LED module 10 to which the power supply voltage VCC is supplied from the damaged LED module 10 is supplied with the power supply voltage VCC from another adjacent LED module 10. . That is, even when any LED module 10 is damaged, it is possible to avoid the supply of the power supply voltage VCC to other adjacent LED modules 10.
  • the illumination device includes the sensor module 70 and the wireless LAN module 80, and thus functions as a monitoring camera that is not conspicuous from the outside.
  • the lighting device may include a human sensor, a magnetic sensor, a temperature sensor, a vibration sensor, a smoke sensor, an electromagnetic wave sensor, an earthquake sensor, and the like instead of the sensor module 70.
  • the wireless LAN module 80 may wirelessly transmit the signal detected by any of the sensors described above to another device.
  • the wireless LAN module 80 may have a function of receiving a signal wirelessly transmitted from a predetermined wireless LAN module and wirelessly transmitting the signal to another wireless LAN module.
  • the said illuminating device also has a role as a small radio base station.
  • the wireless LAN module 80 only needs to have a wireless communication function, and may be, for example, a Wi-Fi (registered trademark), a millimeter wave communication device, or a PHS radio wave relay chip.
  • the thickness is, for example, 5 mm or less, and is thinner than the conventional one.
  • the said illuminating device can be used in the state embedded, for example in the indoor ceiling, the indoor outdoor wall, etc.
  • an LED module may be used instead of the outer wall tile.
  • the building itself functions as a lighting device, and a building such as an adjacent building can be illuminated.
  • the present invention can also be applied to an illumination device used in a projection device.
  • the LED 22 is connected to the wiring 28 or the electrode aluminum piece 23 via the micro bump 22a, but may be connected by wire bonding.

Abstract

An illumination device has a plurality of LED modules and a driving unit. The LED modules have: a metal base substrate formed in a planar shape; an organic substrate; a plurality of LEDs arranged on the organic substrate; a metal member provided so as to correspond to each of the LEDs, conduct heat from the LED, be electrically connected via a switch element from one of the electrodes of the LEDs, go through the organic substrate along the width direction thereof from the LED mounting surface of the organic substrate, and be exposed from the opposite surface of the organic substrate; LED control signal terminals provided to the edge side of the organic substrate; and voltage feed terminals provided to the edge side of the organic substrate. The LED modules are arranged along the row direction and the column direction so as to be capable of attaching to and detaching from the metal base substrate, the LED control signal terminals and the power feed terminals that are adjacent to each other along the row direction and the column direction being connected to each other. The driving unit drives each of the LEDs arranged on the metal base substrate.

Description

照明装置及び液晶表示装置Illumination device and liquid crystal display device
 本発明は、照明装置及び液晶表示装置に関する。 The present invention relates to a lighting device and a liquid crystal display device.
 従来、LEDが実装された複数のLED基板が液晶パネルの背面側に並べて配列された液晶表示装置であって、メンテナンス性の悪化及び無駄なスペースの発生を防止できるとともに、LEDの光の漏れやLED基板からの不要輻射の漏れを防止する液晶表示装置が開示されている(特許文献1参照)。 Conventionally, a liquid crystal display device in which a plurality of LED substrates on which LEDs are mounted are arranged side by side on the back side of a liquid crystal panel, can prevent deterioration of maintainability and generation of useless space, A liquid crystal display device that prevents leakage of unnecessary radiation from an LED substrate is disclosed (see Patent Document 1).
 特許文献1の液晶表示装置のLED基板は、バックライト用の光源である複数のLEDが実装された比較的小さな基板であり、液晶パネルの背面側に並んで配列された状態で、バックライトシャーシによって保持(支持)されている。 The LED substrate of the liquid crystal display device of Patent Document 1 is a relatively small substrate on which a plurality of LEDs, which are light sources for backlights, are mounted, and is arranged side by side on the back side of the liquid crystal panel. It is held (supported) by.
さらに、バックライトシャーシとシャーシトレイとの間には,シート状の伝熱部材が挟持された状態で保持されている。これにより、LED基板で発生した熱がバックライトシャーシ及びシャーシトレイを通じて放熱される。 Further, a sheet-like heat transfer member is held between the backlight chassis and the chassis tray. Thereby, the heat generated in the LED substrate is dissipated through the backlight chassis and the chassis tray.
特開2010-60921号公報JP 2010-60921 A
 しかし、特許文献1の液晶表示装置においては、隣り合うLED基板を電気的に接続するために、隣り合うLED基板のそれぞれの背面側に基板間接続部材を設ける必要がある。このため、LED基板の数に応じて基板間接続部材が必要になり、LEDのメンテナンスが煩雑になる問題がある。 However, in the liquid crystal display device of Patent Document 1, in order to electrically connect adjacent LED substrates, it is necessary to provide an inter-substrate connecting member on each back side of the adjacent LED substrates. For this reason, an inter-substrate connecting member is required according to the number of LED substrates, and there is a problem that maintenance of the LEDs becomes complicated.
 また、バックライトシャーシとシャーシトレイとの間にシート状の伝熱部材が設けられており、コストが高くなってしまう問題がある。 Also, a sheet-like heat transfer member is provided between the backlight chassis and the chassis tray, which increases the cost.
 本発明は、このような実情を鑑みて提案されたものであり、コストや手間をかけることなく、LEDを簡単な作業で交換できる照明装置及び液晶表示装置を提供することを目的とする。 The present invention has been proposed in view of such circumstances, and an object of the present invention is to provide an illumination device and a liquid crystal display device in which LEDs can be exchanged with a simple operation without cost and labor.
 本発明に係る照明装置は、平面状に形成された金属下地基板と、有機基板と、前記有機基板上に配列された複数のLEDと、前記LED毎に対応して設けられ、前記LEDからの熱が伝導され、前記LEDの一方の電極からスイッチ素子を介して電気的に接続され、前記有機基板のLED実装面から前記有機基板の幅方向を貫通して反対側の面から露出した金属部材と、前記有機基板の縁側に設けられたLED制御信号端子と、前記有機基板の縁側に設けられた電圧供給端子と、を有し、前記金属下地基板上に対して着脱可能な状態で行方向及び列方向に配列され、行方向及び列方向に隣接するものとの間で隣接するLED制御信号端子及び隣接する電源供給端子がそれぞれ接続された複数のLEDモジュールと、前記金属下地基板上に配列された各LEDを駆動させるための駆動部と、を備えている。
 本発明に係る液晶表示装置は、複数の画素が配列された液晶パネルと、前記液晶パネルに対して光を照射する前記照明装置と、を備えている。
The lighting device according to the present invention is provided in a corresponding manner for each LED, a metal base substrate formed in a planar shape, an organic substrate, a plurality of LEDs arranged on the organic substrate, and the LED Metal member that is electrically connected to the LED from one electrode of the LED via a switch element and is exposed from the opposite surface through the width direction of the organic substrate from the LED mounting surface of the organic substrate. And an LED control signal terminal provided on the edge side of the organic substrate, and a voltage supply terminal provided on the edge side of the organic substrate, and is detachable from the metal base substrate in the row direction. A plurality of LED modules arranged in the column direction and connected to adjacent LED control signal terminals and adjacent power supply terminals between those adjacent in the row direction and the column direction, and arranged on the metal base substrate And a driving unit for driving the respective LED's.
A liquid crystal display device according to the present invention includes a liquid crystal panel in which a plurality of pixels are arranged, and the illumination device that irradiates light to the liquid crystal panel.
 本発明によれば、コストや手間をかけることなく、LEDを簡単な作業で交換することができる。 According to the present invention, the LEDs can be exchanged with a simple operation without cost and labor.
図1は、本発明の実施形態に係るバックライト装置の正面図であるFIG. 1 is a front view of a backlight device according to an embodiment of the present invention. 図2は、バックライト装置から各LEDモジュール及び制御回路を取り除いたときに現れるアルミ下地基板の正面図である。FIG. 2 is a front view of the aluminum base substrate that appears when the LED modules and the control circuit are removed from the backlight device. 図3は、LEDモジュールのLED実装面側(表面側)の斜視図である。FIG. 3 is a perspective view of the LED module on the LED mounting surface side (surface side). 図4は、LEDモジュールのLED実装面の反対側(裏面側)の斜視図である。FIG. 4 is a perspective view of the opposite side (back side) of the LED mounting surface of the LED module. 図5は、LEDモジュールの裏面側に多層基板が設けられた状態を示す図である。FIG. 5 is a diagram illustrating a state in which a multilayer substrate is provided on the back side of the LED module. 図6は、LEDモジュールの断面図である。FIG. 6 is a cross-sectional view of the LED module. 図7は、LEDモジュールの裏面側に絶縁カバーが設けられた状態を示す図である。FIG. 7 is a diagram illustrating a state in which an insulating cover is provided on the back side of the LED module. 図8は、LEDモジュールの断面図である。FIG. 8 is a cross-sectional view of the LED module. 図9は、円形凸型接続部が円形凹部に嵌め込まれた状態のLEDモジュール及びアルミ下地基板の断面図である。FIG. 9 is a cross-sectional view of the LED module and the aluminum base substrate in a state where the circular convex connection portion is fitted in the circular concave portion. 図10Aは、全面変調型のバックライト装置を示す図である。FIG. 10A is a diagram illustrating a full-modulation backlight device. 図10Bは、領域別変調型のバックライト装置を示す図である。FIG. 10B is a diagram illustrating a region-based modulation backlight device. 図10Cは、本実施形態のバックライト装置を示す図である。FIG. 10C is a diagram illustrating the backlight device of the present embodiment. 図11は、バックライト装置を用いた液晶表示装置の機能的な構成を示すブロック図である。FIG. 11 is a block diagram illustrating a functional configuration of a liquid crystal display device using a backlight device. 図12は、LEDが配列されたLEDモジュールを簡略表示した図である。FIG. 12 is a simplified view of an LED module in which LEDs are arranged. 図13は、LEDモジュールが配列されたバックライト装置を簡略表示した図である。FIG. 13 is a simplified view of a backlight device in which LED modules are arranged. 図14は、1個のLEDに対して光が照射される64個のピクセルを示す図である。FIG. 14 is a diagram illustrating 64 pixels irradiated with light to one LED. 図15は、LEDモジュールの詳細な回路構成を示す図である。FIG. 15 is a diagram illustrating a detailed circuit configuration of the LED module. 図16は、最大輝度検出部の動作を説明する図である。FIG. 16 is a diagram for explaining the operation of the maximum luminance detection unit. 図17は、第2の実施形態のLEDモジュールの回路図である。FIG. 17 is a circuit diagram of the LED module of the second embodiment. 図18は、センサモジュールの斜視図である。FIG. 18 is a perspective view of the sensor module. 図19は、センサモジュールの断面図である。FIG. 19 is a cross-sectional view of the sensor module. 図20は、センサモジュールの回路図である。FIG. 20 is a circuit diagram of the sensor module. 図21は、無線LANモジュールの斜視図である。FIG. 21 is a perspective view of the wireless LAN module. 図22は、無線LANモジュールの断面図である。FIG. 22 is a cross-sectional view of the wireless LAN module. 図23は、無線LANモジュールの回路図である。FIG. 23 is a circuit diagram of the wireless LAN module.
 以下、本発明の実施の形態について詳細に説明する。
 [第1実施形態]
 図1は、本発明の第1実施形態に係るバックライト装置1の正面図である。バックライト装置1は、複数のLED(Light Emitting Diode:発光ダイオード)22が実装され行方向及び列方向(マトリクス状)に配列された複数のLEDモジュール10と、行方向のLEDの駆動を制御する制御回路11と、列方向のLEDの駆動を制御する制御回路12と、を備えている。
Hereinafter, embodiments of the present invention will be described in detail.
[First Embodiment]
FIG. 1 is a front view of a backlight device 1 according to the first embodiment of the present invention. The backlight device 1 controls driving of a plurality of LED modules 10 in which a plurality of LEDs (Light Emitting Diodes) 22 are mounted and arranged in a row direction and a column direction (matrix shape) and LEDs in the row direction. A control circuit 11 and a control circuit 12 that controls driving of LEDs in the column direction are provided.
 バックライト装置1では、図1に示すように、96枚のLEDモジュール10が後述するアルミ下地基板13上に機械的・電気的に接続されている。LEDモジュール10は、アルミ下地基板13に対して着脱可能に構成されている。なお、LEDモジュール10の数は特に限定されるものではない。 In the backlight device 1, as shown in FIG. 1, 96 LED modules 10 are mechanically and electrically connected to an aluminum base substrate 13 described later. The LED module 10 is configured to be detachable from the aluminum base substrate 13. The number of LED modules 10 is not particularly limited.
 図2は、図1に示すバックライト装置1から各LEDモジュール10及び制御回路11、12を取り除いたときに現れるアルミ下地基板13の正面図である。アルミ下地基板13には、行方向及び列方向に配列された円形凹部13aが形成されている。各円形凹部13aは、LEDモジュール10に設けられた円形凸型接続部24(詳しくは後述する)がはめ込み可能な大きさで形成されている。 FIG. 2 is a front view of the aluminum base substrate 13 that appears when the LED modules 10 and the control circuits 11 and 12 are removed from the backlight device 1 shown in FIG. The aluminum base substrate 13 is formed with circular recesses 13a arranged in the row direction and the column direction. Each circular recess 13a is formed in such a size that a circular convex connection portion 24 (described in detail later) provided in the LED module 10 can be fitted.
 アルミ下地基板13は、平板状に形成されている。アルミ下地基板13と各LEDモジュール10との位置合わせは、アルミ下地基板13の円形凹部13aにLEDモジュール10の円形凸型接続部24を嵌め込むだけでよい。 The aluminum base substrate 13 is formed in a flat plate shape. The alignment of the aluminum base substrate 13 and each LED module 10 may be performed by simply fitting the circular convex connection portion 24 of the LED module 10 into the circular concave portion 13a of the aluminum base substrate 13.
 図3は、LEDモジュール10のLED実装面側(表面側)の斜視図である。LEDモジュール10は、平板状に形成された有機基板21と、有機基板21上に設けられた1つ以上(本実施形態では9個)のLED22と、を有している。LEDモジュール10の縦及び横のサイズは、共に例えば2インチを想定しているが、バックライト装置1の大きさに応じて適宜変更可能である。 FIG. 3 is a perspective view of the LED module 10 on the LED mounting surface side (front surface side). The LED module 10 includes an organic substrate 21 formed in a flat plate shape, and one or more (9 in this embodiment) LEDs 22 provided on the organic substrate 21. The vertical and horizontal sizes of the LED module 10 are both assumed to be, for example, 2 inches, but can be appropriately changed according to the size of the backlight device 1.
 有機基板21上では、9個のLED22が行方向及び列方向に対して均等間隔になるように配列されている。本実施形態では、有機基板21には9個のLED22が設けられた場合について説明する。但し、LED22の個数は、8個以下でも10個以上でもよく、特に限定されるものではない。また、有機基板21上のLED22の個数は、LED22単体の輝度、バックライト装置1が必要とする輝度、光量面積に応じて決定される。LED22は、それぞれ独立して駆動可能され、それぞれ輝度、発光時間、発光タイミングの調整が可能である。 On the organic substrate 21, nine LEDs 22 are arranged at equal intervals in the row direction and the column direction. In the present embodiment, a case where nine LEDs 22 are provided on the organic substrate 21 will be described. However, the number of LEDs 22 may be 8 or less, or 10 or more, and is not particularly limited. Further, the number of LEDs 22 on the organic substrate 21 is determined according to the luminance of the LEDs 22 alone, the luminance required by the backlight device 1, and the light amount area. The LEDs 22 can be driven independently, and the brightness, light emission time, and light emission timing can be adjusted.
 図4は、LEDモジュール10のLED実装面の反対側(裏面側)の斜視図である。LEDモジュール10は、裏面側において、図3に示すLED22の一方の電極側に接続された電極アルミ片23と、有機基板21の裏面上に設けられた円筒部24と、有機基板21の各辺の端部に設けられたインターフェイス内部端子25と、を有している。 FIG. 4 is a perspective view of the LED module 10 on the opposite side (back side) of the LED mounting surface. The LED module 10 includes, on the back surface side, an electrode aluminum piece 23 connected to one electrode side of the LED 22 shown in FIG. 3, a cylindrical portion 24 provided on the back surface of the organic substrate 21, and each side of the organic substrate 21. And an interface internal terminal 25 provided at the end of the terminal.
 電極アルミ片23は、電界効果トランジスタ(FET)及びマイクロバンプ22a(後述の図6参照)を介して、LED22の負極に電気的に接続されている。また、電極アルミ片23は、LED22からの熱を外部へ放出すると共に、グランド電位であるアルミ下地基板13に接続された場合にはグランド電位になる。
 円筒部24は、有機基板21の裏面にそれぞれ4個設けられている。円筒部24の直径は、図2に示したアルミ下地基板13の円形凹部13aの直径より小さく形成されている。
The electrode aluminum piece 23 is electrically connected to the negative electrode of the LED 22 via a field effect transistor (FET) and a micro bump 22a (see FIG. 6 described later). Further, the electrode aluminum piece 23 releases the heat from the LED 22 to the outside, and becomes a ground potential when connected to the aluminum base substrate 13 which is a ground potential.
Four cylindrical portions 24 are provided on the back surface of the organic substrate 21. The diameter of the cylindrical portion 24 is formed smaller than the diameter of the circular recess 13a of the aluminum base substrate 13 shown in FIG.
 インターフェイス内部端子25は、有機基板21の4辺の端部にそれぞれ例えば5個ずつ設けられている。インターフェイス内部端子25は、隣接するLEDモジュール10と電気的に接続するためのインターフェイス機能を有しており、例えば、制御線接続、電源線接続、予備端子の役割を有している。 For example, five interface internal terminals 25 are provided at each end of the four sides of the organic substrate 21. The interface internal terminal 25 has an interface function for electrically connecting to the adjacent LED module 10, and has, for example, the role of control line connection, power supply line connection, and spare terminal.
 図5は、図4に示したLEDモジュール10の裏面側に多層基板26が設けられた状態を示す図である。図6は、図5に示すLEDモジュール10の断面図である。同図に示すように、有機基板21は、配線28を有する。有機基板21の裏面には、配線28を有する多層基板26が設けられている。LED22は、マイクロバンプ22aを介して、配線28又は電極アルミ片23に接続されている。 FIG. 5 is a view showing a state in which the multilayer substrate 26 is provided on the back side of the LED module 10 shown in FIG. FIG. 6 is a cross-sectional view of the LED module 10 shown in FIG. As shown in the figure, the organic substrate 21 has a wiring 28. A multilayer substrate 26 having wirings 28 is provided on the back surface of the organic substrate 21. LED22 is connected to the wiring 28 or the electrode aluminum piece 23 through the micro bump 22a.
 図7は、図5に示したLEDモジュール10の裏面側に絶縁カバー27が設けられた状態を示す図である。図8は、図7に示すLEDモジュール10の断面図である。LEDモジュール10は、図7及び図8に示すように、電極アルミ片23を除き、裏面側が覆われた絶縁カバー27と、複数のインターフェイス外部端子29と、を備えている。各インターフェイス外部端子29は、各インターフェイス内部端子25にそれぞれ接続されている。 FIG. 7 is a view showing a state in which an insulating cover 27 is provided on the back side of the LED module 10 shown in FIG. FIG. 8 is a cross-sectional view of the LED module 10 shown in FIG. As shown in FIGS. 7 and 8, the LED module 10 includes an insulating cover 27 whose back side is covered except for the electrode aluminum piece 23, and a plurality of interface external terminals 29. Each interface external terminal 29 is connected to each interface internal terminal 25.
 すなわち、インターフェイス外部端子29は、図8に示すように、配線28を介して、絶縁カバー27を貫通して又はまたいで、インターフェイス接点25に接続されている。これにより、各LEDモジュール10がアルミ下地基板13上に配列されると、隣り合うインターフェイス外部端子29同士が電気的に接続され、行方向及び列方向の隣接するLEDモジュール10間で制御線、電源線が接続される。 That is, the interface external terminal 29 is connected to the interface contact 25 through the wiring 28 or through the insulating cover 27 as shown in FIG. Thereby, when each LED module 10 is arranged on the aluminum base substrate 13, the adjacent interface external terminals 29 are electrically connected to each other, and the control line, the power source is connected between the LED modules 10 adjacent in the row direction and the column direction. The line is connected.
 図5に示した円筒部24に絶縁カバー27が覆われると、図7及び図8に示すように、円形凸型接続部24aが形成される。円形凸型接続部24aは、図2に示すアルミ下地基板13の円形凹部13aにはめ込み可能な大きさに形成されている。そして、円形凸型接続部24aが円形凹部13aに嵌め込まれることで、LEDモジュール10とアルミ下地基板13の位置合わせが可能になる。 When the insulating cover 27 is covered with the cylindrical portion 24 shown in FIG. 5, a circular convex connection portion 24a is formed as shown in FIGS. The circular convex connection part 24a is formed in a size that can be fitted into the circular concave part 13a of the aluminum base substrate 13 shown in FIG. The circular convex connecting portion 24a is fitted into the circular concave portion 13a, so that the LED module 10 and the aluminum base substrate 13 can be aligned.
 図9は、円形凸型接続部24aが円形凹部13aに嵌め込まれた状態のLEDモジュール10及びアルミ下地基板13の断面図である。
 円形凸型接続部24aが円形凹部13aに嵌め込まれると、電極アルミ片23がアルミ下地基板13に接続される。これにより、LED22で発生された熱は、マイクロバンプ22aを介して、電極アルミ片23を伝導してアルミ下地基板13へ放出される。また、LED22の一方の電極は、不図示の電界効果トランジスタ(FET)を介して接地される。
FIG. 9 is a cross-sectional view of the LED module 10 and the aluminum base substrate 13 in a state where the circular convex connecting portion 24a is fitted in the circular concave portion 13a.
When the circular convex connecting portion 24a is fitted into the circular concave portion 13a, the electrode aluminum piece 23 is connected to the aluminum base substrate 13. Thereby, the heat generated in the LED 22 is conducted to the aluminum base substrate 13 through the electrode aluminum piece 23 through the micro bumps 22a. One electrode of the LED 22 is grounded via a field effect transistor (FET) (not shown).
 以上のように、バックライト装置1は、アルミ下地基板13に対して脱着可能な複数のLEDモジュール10を備えている。これにより、任意のLED22が破損した場合でも、破損したLED22を含むLEDモジュール10のみを交換すればよいので、バックライト装置1のメンテナンスが容易になり、歩留まりが向上する。また、バックライト装置1は、安価に大量生産が可能なLEDモジュール10を配列することで、製造コストを抑制することができる。 As described above, the backlight device 1 includes the plurality of LED modules 10 that can be attached to and detached from the aluminum base substrate 13. Thereby, even when any LED 22 is damaged, only the LED module 10 including the damaged LED 22 needs to be replaced. Therefore, maintenance of the backlight device 1 is facilitated, and the yield is improved. Moreover, the backlight apparatus 1 can suppress manufacturing cost by arranging the LED modules 10 that can be mass-produced at low cost.
 図10Aは全面変調型のバックライト装置、図10Bは領域別変調型のバックライト装置、図10Cは本実施形態のバックライト装置を示す図である。
 全面変調型のバックライト装置は、端部に光源であるLEDを配列し、明るさを画面全体で変調する。全面変調型のバックライト装置は、LEDを端部に設置するため薄型化しやすく、携帯電話や車載ディスプレイなどの小型の液晶表示装置に使用される。
FIG. 10A is a diagram illustrating a whole surface modulation type backlight device, FIG. 10B is a region-based modulation type backlight device, and FIG. 10C is a diagram illustrating a backlight device according to the present embodiment.
The full-modulation type backlight device arranges LEDs, which are light sources, at the end, and modulates brightness over the entire screen. The full-modulation type backlight device is easily thinned because an LED is installed at an end portion, and is used for a small liquid crystal display device such as a mobile phone or an in-vehicle display.
 領域別変調型のバックライト装置は、LEDを画面全体(2次元状)に配列し、LEDの明るさを画面の領域毎に変調する。領域別変調型のバックライト装置は、画面の領域毎にLEDの明るさを緻密に変調できるため、全面変調型に比べてコントラストの改善効果が高く、TVのような大型の液晶表示装置に使用される。 The area-specific modulation type backlight device arranges LEDs over the entire screen (two-dimensional) and modulates the brightness of the LEDs for each area of the screen. The modulation type backlight device by area can finely modulate the brightness of the LED for each area of the screen, so it has a higher contrast improvement effect than the full modulation type, and is used for large liquid crystal display devices such as TVs. Is done.
 これに対して、本実施形態のバックライト装置1は、領域変調型であり、かつ、複数のLEDが実装されたLEDモジュール10が着脱可能に構成されている。このため、本実施形態のバックライト装置1は、従来の全面変調型に比べてコントラストの改善効果が高く、さらに、従来の領域変調型に比べて歩留まりを向上させることができる。さらに、バックライト装置1は、図3から図9で説明されたLEDモジュール10を2次元状に配列したことにより、厚さが5mm以下になり、従来に比べて薄型化されている。 On the other hand, the backlight device 1 of the present embodiment is a region modulation type and is configured such that the LED module 10 on which a plurality of LEDs are mounted is detachable. For this reason, the backlight device 1 of the present embodiment has a higher contrast improvement effect than the conventional full modulation type, and can further improve the yield compared to the conventional area modulation type. Furthermore, the backlight device 1 has a thickness of 5 mm or less due to the two-dimensional arrangement of the LED modules 10 described in FIGS. 3 to 9, and is thinner than the conventional one.
 また、LEDモジュール10は、LED22で発生された熱を、電極アルミ片23を介してアルミ下地基板13に放出できるので、LED22の耐久性を向上させることができる。  Further, since the LED module 10 can release the heat generated by the LED 22 to the aluminum base substrate 13 through the electrode aluminum piece 23, the durability of the LED 22 can be improved. *
 上記のように構成されたバックライト装置1は次に示す構成の液晶表示装置に適用される。
 図11は、バックライト装置1を用いた液晶表示装置50の機能的な構成を示すブロック図である。
The backlight device 1 configured as described above is applied to a liquid crystal display device having the following configuration.
FIG. 11 is a block diagram showing a functional configuration of a liquid crystal display device 50 using the backlight device 1.
 液晶表示装置50は、入力される動画の画像データを復号する動画復号部51と、所定ピクセル毎に最大輝度を検出する最大輝度検出部52と、画像データを一時的に記憶するフレームバッファ53と、フレームバッファ53に記憶された画像データに基づき液晶パネル55を駆動する液晶パネル駆動部54と、画像を表示する液晶パネル55と、バックライト装置1を駆動するバックライト駆動部60と、液晶パネル55に光を照射するバックライト装置1と、を備えている。なお、図11では明示していないが、液晶パネル55及びバックライト装置1は同期している。 The liquid crystal display device 50 includes a moving image decoding unit 51 that decodes input moving image data, a maximum luminance detecting unit 52 that detects the maximum luminance for each predetermined pixel, and a frame buffer 53 that temporarily stores the image data. The liquid crystal panel driving unit 54 that drives the liquid crystal panel 55 based on the image data stored in the frame buffer 53, the liquid crystal panel 55 that displays an image, the backlight driving unit 60 that drives the backlight device 1, and the liquid crystal panel And a backlight device 1 that irradiates light to 55. Although not explicitly shown in FIG. 11, the liquid crystal panel 55 and the backlight device 1 are synchronized.
 図12は、LED22が配列されたLEDモジュール10(図3)を簡略表示した図である。ここでは、LED22が丸印で表示される。行方向のLED22はロウ線ROWで接続され、列方向のLED22はカラム線COLで接続されている。 FIG. 12 is a diagram simply showing the LED module 10 (FIG. 3) in which the LEDs 22 are arranged. Here, the LEDs 22 are displayed as circles. The LED 22 in the row direction is connected by a row line ROW, and the LED 22 in the column direction is connected by a column line COL.
 図13は、LEDモジュール10が配列されたバックライト装置1を簡略表示した図である。以下、バックライト装置1においては、同図に示すように、カラム線COLは左から右へ順に、COL0、COL1、COL2・・・と表記し、ロウ線ROWは上から下へ順に、ROW0、ROW1、ROW2・・・と表記する。なお、LED22の輝度は、後述するキャパシタCの電圧を変えることで変更可能である。なお、同一のロウ線ROW上にあるキャパシタCの電圧は、一括して変更(更新)される。 FIG. 13 is a diagram schematically showing the backlight device 1 in which the LED modules 10 are arranged. Hereinafter, in the backlight device 1, as shown in the figure, the column line COL is expressed as COL0, COL1, COL2,... In order from the left to the right, and the row line ROW is in order from the top to the bottom. Indicated as ROW1, ROW2,. The luminance of the LED 22 can be changed by changing the voltage of the capacitor C described later. Note that the voltage of the capacitor C on the same row line ROW is changed (updated) at once.
 図14は、1個のLED22に対して光が照射される64個のピクセルを示す図である。液晶パネル55の各ピクセルは、バックライト装置1の各LED22に比べて、高密度・高解像度である。このため、1個のLED22は、液晶パネル55の複数(例えば64個(=8行8列))のピクセルに対して、光を照射する。なお、1個のLED22から光が照射されるピクセルの数は、64個に限定されるものではなく、その他の数でもよい。 FIG. 14 is a diagram showing 64 pixels irradiated with light to one LED 22. Each pixel of the liquid crystal panel 55 has higher density and higher resolution than each LED 22 of the backlight device 1. Therefore, one LED 22 irradiates a plurality of (for example, 64 (= 8 rows and 8 columns)) pixels of the liquid crystal panel 55 with light. Note that the number of pixels irradiated with light from one LED 22 is not limited to 64, and may be any other number.
(LEDモジュール10の回路構成)
 図15は、LEDモジュール10の詳細な回路構成を示す図である。
 LEDモジュール10は、図15に示すように、行方向及び列方向にそれぞれ3個ずつ配列されたLED22と、縦方向に配線された3本のカラム線COL1~COL3と、横方向に配線された3本のロウ線ROW1~ROW3と、スイッチ素子である電界効果トランジスタ(FET)26、27と、LED22の輝度に応じた電荷が蓄積されるキャパシタCと、を備えている。
(Circuit configuration of LED module 10)
FIG. 15 is a diagram illustrating a detailed circuit configuration of the LED module 10.
As shown in FIG. 15, the LED module 10 has three LEDs 22 arranged in the row direction and the column direction, three column lines COL1 to COL3 wired in the vertical direction, and a horizontal wiring. Three row lines ROW1 to ROW3, field effect transistors (FETs) 26 and 27, which are switching elements, and a capacitor C in which charges corresponding to the luminance of the LED 22 are stored.
 カラム線COL1~COL3は、LED22の輝度に応じた信号が伝送されるアナログ信号線であり、図1に示す制御回路12に接続されている。ロウ線ROW1~ROW3は、走査対象となる列を特定する信号が伝送されるディジタル信号線であり、図1に示す制御回路11に接続されている。そして、カラム線COL1~COL3及びロウ線ROW1~ROW3が駆動されると、LED22は、制御された輝度で発光する。 Column lines COL1 to COL3 are analog signal lines through which signals corresponding to the luminance of the LED 22 are transmitted, and are connected to the control circuit 12 shown in FIG. The row lines ROW1 to ROW3 are digital signal lines through which signals specifying columns to be scanned are transmitted, and are connected to the control circuit 11 shown in FIG. When the column lines COL1 to COL3 and the row lines ROW1 to ROW3 are driven, the LED 22 emits light with controlled luminance.
(LED22の配線構成)
 つぎに、ロウ線ROW1及びカラム線COL1によって駆動されるLED22の配線構成について説明する。なお、詳細な説明は省略するが、他のLED22も同様に配線されている。
(Wiring configuration of LED 22)
Next, the wiring configuration of the LED 22 driven by the row line ROW1 and the column line COL1 will be described. In addition, although detailed description is abbreviate | omitted, other LED22 is wired similarly.
 LED22のアノードには抵抗Rを介して電源電圧VCCが印加される。LED22のカソードは、電界効果トランジスタ(FET)26のドレインに接続されている。FET26のソースは接地されている。FET26のゲートは、コンデンサCを介して接地されていると共に、FET27のソースに接続されている。FET27のゲートはロウ線ROW1に接続され、FET27のドレインはカラム線COL1に接続されている。 The power supply voltage VCC is applied to the anode of the LED 22 via the resistor R. The cathode of the LED 22 is connected to the drain of a field effect transistor (FET) 26. The source of the FET 26 is grounded. The gate of the FET 26 is grounded via a capacitor C and is connected to the source of the FET 27. The gate of the FET 27 is connected to the row line ROW1, and the drain of the FET 27 is connected to the column line COL1.
(LED22の駆動制御)
 以上のように構成されたLEDモジュール10では、LED22は次のように駆動される。ここでは、カラム線COL1及びロウ線ROW1により駆動されるLED22(図15の左上のLED22)について説明する。
(LED22 drive control)
In the LED module 10 configured as described above, the LED 22 is driven as follows. Here, the LED 22 (the upper left LED 22 in FIG. 15) driven by the column line COL1 and the row line ROW1 will be described.
 最初に、カラム線COL1に、LED22の輝度に応じた電圧(アナログ信号)が印加される。
 次に、ロウ線ROW1がHレベル(論理1)になる。これにより、FET27がオンになり、ロウ線ROW1からキャパシタCに電荷が蓄積され、キャパシタCには所定電圧が印加される。
First, a voltage (analog signal) corresponding to the luminance of the LED 22 is applied to the column line COL1.
Next, the row line ROW1 becomes H level (logic 1). As a result, the FET 27 is turned on, charges are accumulated from the row line ROW1 to the capacitor C, and a predetermined voltage is applied to the capacitor C.
 そして、ロウ線ROW1がLレベル(論理0)になると、FET27がオフになり、キャパシタCはカラム線COL1から遮断される。このため、その後、ロウ線ROW1の電圧が変動しても、キャパシタCの電圧は一定期間保持される。FET26は、キャパシタCの電圧に応じた電流をゲートからドレインに流すので、キャパシタCの電圧に応じてLED22の輝度が制御される。 When the row line ROW1 becomes L level (logic 0), the FET 27 is turned off and the capacitor C is disconnected from the column line COL1. For this reason, even if the voltage of the row line ROW1 subsequently fluctuates, the voltage of the capacitor C is held for a certain period. Since the FET 26 causes a current corresponding to the voltage of the capacitor C to flow from the gate to the drain, the luminance of the LED 22 is controlled according to the voltage of the capacitor C.
 したがって、例えば、カラム線COL0、COL1、COL2・・・の電圧値が順次V0、V1、V2・・・に設定され、次に、ロウ線ROW0の電圧値がLレベルからHレベル、HレベルからLレベルに設定されると、ロウ線ROW0に対応する各キャパシタCの電圧値が一括してV0、V1、V2・・・に設定される。この結果、ロウ線ROW0に対応する各LED22の輝度が一括して変更される。 Therefore, for example, the voltage values of the column lines COL0, COL1, COL2,... Are sequentially set to V0, V1, V2,..., And then the voltage value of the row line ROW0 is changed from the L level to the H level and from the H level. When set to the L level, the voltage values of the capacitors C corresponding to the row line ROW0 are collectively set to V0, V1, V2,. As a result, the luminance of each LED 22 corresponding to the row line ROW0 is changed at once.
 その後、ロウ線ROW1、ROW2、ROW3、・・・の順に電圧が更新されてもよいし、ロウ線ROW1、ROW3、ROW2、ROW4・・・の順(インターレース)に電圧が更新されてもよい。 Then, the voltage may be updated in the order of the row lines ROW1, ROW2, ROW3,..., Or the voltage may be updated in the order of the row lines ROW1, ROW3, ROW2, ROW4.
 なお、図15では、カラム線COL1がLED22の輝度を制御し、ロウ線ROW1が発光すべきLED22(の行)を選択したが、ロウ線ROW1がLED22の輝度を制御し、カラム線COL1が発光すべきLED22(の行)を選択する構成にしてもよい。 In FIG. 15, the column line COL1 controls the luminance of the LED 22 and the row line ROW1 selects the LED 22 (row) that should emit light, but the row line ROW1 controls the luminance of the LED 22 and the column line COL1 emits light. You may make it the structure which selects LED22 (row) which should be selected.
(液晶表示装置50の動作)
 以上のように構成された液晶表示装置50は次のように動作する。
 図11に示す動画復号部51は、入力される動画の画像データを復号する。最大輝度検出部52は、動画復号部51によって復号された画像データの64個のピクセルから最大輝度を検出する。
(Operation of the liquid crystal display device 50)
The liquid crystal display device 50 configured as described above operates as follows.
The moving picture decoding unit 51 shown in FIG. 11 decodes input moving picture image data. The maximum luminance detection unit 52 detects the maximum luminance from 64 pixels of the image data decoded by the moving image decoding unit 51.
 図16は、最大輝度検出部52の動作を説明する図である。
 最大輝度検出部52は、内部RAM上にLED22の個数分の整数配列(輝度レベル)を格納する格納領域を有する。最大輝度検出部52は、64個のピクセル毎に最大輝度を検出し、最大輝度を格納領域に格納する。つまり、最大輝度検出部52は、ピクセル列となる輝度Y1,Y2,・・・が入力されると、入力された輝度と格納領域に格納された輝度とを比較し、入力された輝度が格納された輝度より大きい場合に、入力された輝度を格納(更新)する。
FIG. 16 is a diagram for explaining the operation of the maximum luminance detection unit 52.
The maximum luminance detection unit 52 has a storage area for storing integer arrays (luminance levels) for the number of LEDs 22 on the internal RAM. The maximum brightness detection unit 52 detects the maximum brightness for every 64 pixels, and stores the maximum brightness in the storage area. That is, when the luminances Y1, Y2,... That are pixel rows are input, the maximum luminance detection unit 52 compares the input luminance and the luminance stored in the storage area, and stores the input luminance. If it is greater than the input brightness, the input brightness is stored (updated).
 具体的には、最大輝度検出部52は、64個の各ピクセルについて、輝度Y1,Y2,・・・,Y64の中から最大輝度Yを検出し、最大輝度Yを格納領域1に格納する。同様に、最大輝度検出部52は、次の64個の各ピクセルについて、輝度Y65,Y66,・・・,Y128の中から最大輝度Yを検出し、最大輝度Yを格納領域2に格納する。そして、最大輝度検出部52は、各ピクセルの輝度Y1,Y2,・・・についてはそのままフレームバッファ53へ出力すると共に、格納領域1,2,・・・に格納された各輝度についてはバックライト駆動部60へ出力する。 Specifically, the maximum brightness detection unit 52 detects the maximum brightness Y from the brightness Y1, Y2,..., Y64 for each of the 64 pixels, and stores the maximum brightness Y in the storage area 1. Similarly, the maximum brightness detection unit 52 detects the maximum brightness Y from the brightness Y65, Y66,..., Y128 for the next 64 pixels, and stores the maximum brightness Y in the storage area 2. Then, the maximum luminance detection unit 52 outputs the luminance Y1, Y2,... Of each pixel as it is to the frame buffer 53, and backlights for the respective luminances stored in the storage areas 1, 2,. Output to the drive unit 60.
 この結果、1フレームが終了すると、格納領域1,2.・・・には各LED22の最大輝度が格納され、この輝度がバックライト駆動部60へ出力される。そして、フレーム走査開始時は、格納領域の輝度が0に初期化される。 As a result, when one frame is completed, storage areas 1, 2. The maximum brightness of each LED 22 is stored in... And this brightness is output to the backlight drive unit 60. At the start of frame scanning, the brightness of the storage area is initialized to zero.
 バックライト駆動部60は、図11に示すように、バックライト装置1のロウ線ROWを駆動するロウ駆動部61と、バックライト装置1のカラム線COLを駆動するカラム駆動部62と、リニア補正するためのリニア補正テーブル63と、ディジタル信号をアナログ信号に変換するD/A変換部64と、複数のサンプルホールド(S/H)回路65と、を備えている。 As shown in FIG. 11, the backlight driving unit 60 includes a row driving unit 61 that drives the row line ROW of the backlight device 1, a column driving unit 62 that drives the column line COL of the backlight device 1, and linear correction. A linear correction table 63, a D / A converter 64 for converting a digital signal into an analog signal, and a plurality of sample hold (S / H) circuits 65.
 ロウ駆動部61は、最大輝度検出部52で検出された最大輝度及び駆動タイミングに基づいて、バックライト装置1の制御回路12(カラム線COL)を駆動する。 The row driving unit 61 drives the control circuit 12 (column line COL) of the backlight device 1 based on the maximum luminance and the driving timing detected by the maximum luminance detecting unit 52.
 カラム駆動部62は、リニア補正テーブル63を参照して、最大輝度検出部52から出力された最大輝度をディジタル信号の電圧に変換してD/A変換部64へ出力する。ここで、輝度と電圧の関係は線形的(リニア)ではないため、輝度と電圧の関係を予め定義しておく必要がある。そこで、リニア補正テーブル63は、輝度と電圧の関係を予め定義したテーブルデータを記憶している。カラム駆動部62は、このテーブルデータに基づき、最大輝度に対応する電圧を読み出し、読み出した電圧を出力する。 The column driving unit 62 refers to the linear correction table 63, converts the maximum luminance output from the maximum luminance detecting unit 52 into a voltage of a digital signal, and outputs it to the D / A converting unit 64. Here, since the relationship between luminance and voltage is not linear, it is necessary to define the relationship between luminance and voltage in advance. Therefore, the linear correction table 63 stores table data in which the relationship between luminance and voltage is defined in advance. Based on this table data, the column driving unit 62 reads a voltage corresponding to the maximum luminance and outputs the read voltage.
 D/A変換部64は、カラム駆動部62から出力されたディジタル信号(電圧値)をアナログ信号(電圧値)に変換し、変換済みの電圧を各S/H回路65へ出力する。このとき、D/A変換部64は、バックライト装置1の各カラム線COLを駆動する電圧を時系列で連続的に出力する。 The D / A conversion unit 64 converts the digital signal (voltage value) output from the column driving unit 62 into an analog signal (voltage value), and outputs the converted voltage to each S / H circuit 65. At this time, the D / A converter 64 continuously outputs a voltage for driving each column line COL of the backlight device 1 in time series.
 S/H回路65は、バックライト装置1のカラム線COLの数に対応する数だけ設けられている。各S/H回路65は、対応するカラム線COLを駆動するときに、D/A変換部64から出力された電圧をそれぞれ独自のタイミングで保持(ホールド)して、保持した電圧を対応するカラム線COL(制御回路11)へ出力する。 The number of S / H circuits 65 corresponding to the number of column lines COL of the backlight device 1 is provided. When each S / H circuit 65 drives the corresponding column line COL, each S / H circuit 65 holds (holds) the voltage output from the D / A converter 64 at a unique timing, and the held voltage is stored in the corresponding column. Output to the line COL (control circuit 11).
 ここで、D/A変換部は高価であり、バックライト装置1の各カラム線COLに対して専用のD/A変換部を設けるとコストがかかってしまう。そこで、D/A変換部64が時系列的に各カラム線COLの電圧を出力し、各カラム線COLに対応するS/H回路65が適切なタイミングでD/A変換部64からの電圧を保持して出力する。これにより、各カラム線COLにそれぞれ専用のD/A変換部64を設けることなく、カラム線COLを駆動することが可能になる。 Here, the D / A conversion unit is expensive, and if a dedicated D / A conversion unit is provided for each column line COL of the backlight device 1, the cost is increased. Therefore, the D / A converter 64 outputs the voltage of each column line COL in time series, and the S / H circuit 65 corresponding to each column line COL outputs the voltage from the D / A converter 64 at an appropriate timing. Hold and output. As a result, the column line COL can be driven without providing a dedicated D / A converter 64 for each column line COL.
 以上のように、バックライト装置1は、1つのLED22に対応する複数のピクセルの中から最大輝度を検出し、この最大輝度になるようにLED22を駆動する。これにより、バックライト装置1は、液晶パネル55に対して、その輝度に応じた最適な明るさを照射することができる。 As described above, the backlight device 1 detects the maximum luminance from a plurality of pixels corresponding to one LED 22 and drives the LED 22 so as to achieve this maximum luminance. Thereby, the backlight device 1 can irradiate the liquid crystal panel 55 with the optimum brightness according to the luminance.
 従来のバックライト装置は、全体的に暗い画面の中に輝度の高い箇所が複数あるような場合、例えば暗い夜空に星が光っている場合では、画面全体的の輝度平均が低くなるので、画面全体が暗くなり、星の明るさが不十分になる問題があった。
 これに対して、本実施形態のバックライト装置1は、対応する複数のピクセルの最大輝度になるようにLED22の明るさを制御することにより、画面全体を暗くしつつ、星の箇所のみの輝度を高くすることができ、きれいな星空を表示することが可能になる。
The conventional backlight device has a low average brightness on the entire screen when there are multiple high-luminance spots in the overall dark screen, for example, when stars shine in the dark night sky. There was a problem that the whole thing became dark and the brightness of the stars was insufficient.
On the other hand, the backlight device 1 according to the present embodiment controls the brightness of the LEDs 22 so as to obtain the maximum brightness of a plurality of corresponding pixels. It becomes possible to display a beautiful starry sky.
 また、バックライト装置1は、各カラム線COLにそれぞれ対応するS/H回路65を備え、各S/H回路65が各カラム線COLの電圧をサンプルホールドすることで、各カラム線COLにそれぞれ専用のD/A変換部64を設ける必要がなくなり、安価な回路構成でLED22を駆動することができる。 In addition, the backlight device 1 includes S / H circuits 65 corresponding to the respective column lines COL, and each S / H circuit 65 samples and holds the voltage of each column line COL, so that each column line COL has a corresponding value. There is no need to provide a dedicated D / A converter 64, and the LED 22 can be driven with an inexpensive circuit configuration.
なお、最大輝度検出部52は、64個のピクセルの中から最大輝度を検出したが、例えば、64個のピクセルの中に輝度レベルが所定値以上(例えば上限値の95%以上)のものがあれば、最大輝度に限らず、所定値以上の任意の輝度を検出してもよい。この所定値は、95%以上に限らず、液晶表示装置50の環境(明るさ)によって適宜変更可能である。 The maximum brightness detection unit 52 detects the maximum brightness from the 64 pixels. For example, 64 pixels having a brightness level equal to or higher than a predetermined value (for example, 95% or more of the upper limit value). If there is, it is possible to detect not only the maximum luminance but also any luminance that is a predetermined value or more. This predetermined value is not limited to 95% or more, and can be appropriately changed depending on the environment (brightness) of the liquid crystal display device 50.
 上述したバックライト装置1は、アナログ信号のレベルに応じてLED22の輝度を制御するアナログ方式を採用しているが、その他、ディジタル信号方式、例えばディジタル信号のデューティー比に応じてLED22の輝度を制御するPWM(Pulse Width Modulation)制御を採用してもよい。これにより、バックライト装置1は、LED22に必要な時間だけ通電すればよく、電力消費を抑制することができる。 The above-described backlight device 1 employs an analog system that controls the brightness of the LED 22 in accordance with the level of the analog signal. In addition, a digital signal system, for example, controls the brightness of the LED 22 in accordance with the duty ratio of the digital signal. PWM (Pulse Width Modulation) control may be employed. Thereby, the backlight apparatus 1 should just energize LED22 only for the required time, and can suppress power consumption.
 本発明は、上記実施形態のバックライト装置に限定されるものではなく、第2の実施形態で示すように、一般的な照明装置としても適用可能である。 The present invention is not limited to the backlight device of the above embodiment, and can be applied as a general lighting device as shown in the second embodiment.
 [第2実施形態]
 つぎに、本発明の第2実施形態について説明する。なお、第1の実施形態と同じ部位については同じ符号を付し、重複する説明は省略する。
 第2の実施形態に係る照明装置は、図1に示すバックライト装置1とほぼ同様に構成されているが、第1の実施形態と異なり、屋内又は屋外に設置されるものである。以下、本実施形態では、主に、第1の実施形態と異なる点について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected about the site | part same as 1st Embodiment, and the overlapping description is abbreviate | omitted.
The illumination device according to the second embodiment is configured in substantially the same manner as the backlight device 1 shown in FIG. 1, but is installed indoors or outdoors unlike the first embodiment. Hereinafter, in the present embodiment, differences from the first embodiment will be mainly described.
 第2の実施形態に係る照明装置は、1つのLEDモジュール10が破損しても、破損したLEDモジュール10に隣接するLEDモジュール10に電源電圧が継続して供給されるように、次のようなLEDモジュール10を有している。 The lighting device according to the second embodiment is configured as follows so that even when one LED module 10 is damaged, the power supply voltage is continuously supplied to the LED module 10 adjacent to the damaged LED module 10. The LED module 10 is included.
 図17は、第2の実施形態のLEDモジュール10の回路図である。第2の実施形態のLEDモジュール10は、図15とほぼ同様に構成されており、更に、行方向電圧供給線V1と、列方向電圧供給線V2と、を有している。行方向電圧供給線V1と列方向電圧供給線V2は、LEDモジュール10内部で接続されている。具体的には、水平方向電源供給線V1及び列方向電源供給線V2は、後述する図19及び図22の多層基板26内に設けられている。 FIG. 17 is a circuit diagram of the LED module 10 of the second embodiment. The LED module 10 of the second embodiment is configured in substantially the same way as in FIG. 15, and further includes a row direction voltage supply line V1 and a column direction voltage supply line V2. The row direction voltage supply line V <b> 1 and the column direction voltage supply line V <b> 2 are connected inside the LED module 10. Specifically, the horizontal power supply line V1 and the column power supply line V2 are provided in a multilayer substrate 26 of FIGS. 19 and 22 described later.
 行方向電圧供給線V1は、LEDモジュール10の行方向の一端側(インターフェイス内部端子25)から行方向の他端側(インターフェイス内部端子25)まで接続されている。列方向電圧供給線V2は、LEDモジュール10の列方向の一端側(インターフェイス内部端子25)から列方向の他端側(インターフェイス内部端子25)まで接続されている。 The row direction voltage supply line V1 is connected from one end side (interface internal terminal 25) in the row direction of the LED module 10 to the other end side (interface internal terminal 25) in the row direction. The column direction voltage supply line V2 is connected from one end side (interface internal terminal 25) in the column direction of the LED module 10 to the other end side (interface internal terminal 25) in the column direction.
 LEDモジュール10内の各抵抗Rの一端側(LED22に接続されていない側)は、列方向電圧供給線V2に接続されている。このため、LEDモジュール10内の各抵抗Rには電圧VCCが印加される。なお、各抵抗Rの一端側は、列方向電圧供給線V2ではなく、行方向電圧供給線V1に接続されてもよい。 One end side (the side not connected to the LED 22) of each resistor R in the LED module 10 is connected to the column direction voltage supply line V2. For this reason, the voltage VCC is applied to each resistor R in the LED module 10. Note that one end of each resistor R may be connected to the row direction voltage supply line V1 instead of the column direction voltage supply line V2.
 したがって、LEDモジュール10は、隣接するLEDモジュール10から電源電圧VCCが供給されると、LEDモジュール10内の各抵抗Rに電源電圧VCCを印加する。さらに、LEDモジュール10は、隣接する他の3つのLEDモジュール10に対してそれぞれ電源電圧VCCを供給する。 Therefore, when the power supply voltage VCC is supplied from the adjacent LED module 10, the LED module 10 applies the power supply voltage VCC to each resistor R in the LED module 10. Further, the LED module 10 supplies the power supply voltage VCC to each of the other three adjacent LED modules 10.
 また、本実施形態の照明装置は、対象物を照明するだけでなく、対象物を撮影する機能、及び撮影情報を無線通信する機能を有している。本実施形態の照明装置は、対象物を撮影する機能を実現するために、センサモジュール70を有している。
 図18は、センサモジュール70の斜視図である。図19は、センサモジュール70の断面図である。センサモジュール70は、LEDモジュール10と同じ大きさであり、LEDモジュール10と同様に、アルミ下地基板13に対して着脱可能である。このため、本実施形態では、第1の実施形態に係る照明装置に設けられた1個以上のLEDモジュール10がセンサモジュール70に置き換えられている。
In addition, the illumination device of the present embodiment has a function of not only illuminating the object but also photographing the object and wirelessly communicating photographing information. The illuminating device of the present embodiment has a sensor module 70 in order to realize a function of photographing an object.
FIG. 18 is a perspective view of the sensor module 70. FIG. 19 is a cross-sectional view of the sensor module 70. The sensor module 70 has the same size as the LED module 10 and can be attached to and detached from the aluminum base substrate 13 in the same manner as the LED module 10. For this reason, in this embodiment, the one or more LED modules 10 provided in the illumination device according to the first embodiment are replaced with the sensor module 70.
 センサモジュール70は、図9とほぼ同様に構成されているが、図9に示すLED22の代わりに、図19に示すように、CMOSセンサ71及びフード72を有している。
 CMOSセンサ71は、マクロバンプ22aを介して、電極アルミ片23に接続されている。このため、CMOSセンサ71で発生される熱は、マイクロバンプ22a、電極アルミ片23及びアルミ下地基板13を経由して外部へ放出される。
 フード72は、CMOSセンサ71の端部を囲むように有機基板21上に配置されている。これにより、センサモジュール70の周囲にあるLEDモジュール10からの光が、CMOSセンサ71に入り込まなくなる。
The sensor module 70 is configured in substantially the same manner as in FIG. 9, but has a CMOS sensor 71 and a hood 72 as shown in FIG. 19 instead of the LED 22 shown in FIG. 9.
The CMOS sensor 71 is connected to the electrode aluminum piece 23 via the macro bump 22a. For this reason, the heat generated by the CMOS sensor 71 is released to the outside through the micro bumps 22a, the electrode aluminum pieces 23, and the aluminum base substrate 13.
The hood 72 is disposed on the organic substrate 21 so as to surround the end portion of the CMOS sensor 71. Thereby, the light from the LED module 10 around the sensor module 70 does not enter the CMOS sensor 71.
 図20は、センサモジュール70の回路図である。センサモジュール70は、CMOSセンサ71と、行方向電圧供給線V3と、列方向電圧供給線V4と、を有している。行方向電圧供給線V3と列方向電圧供給線V4は、センサモジュール70内部で接続されている。 FIG. 20 is a circuit diagram of the sensor module 70. The sensor module 70 includes a CMOS sensor 71, a row direction voltage supply line V3, and a column direction voltage supply line V4. The row direction voltage supply line V3 and the column direction voltage supply line V4 are connected inside the sensor module 70.
 行方向電圧供給線V3は、センサモジュール70の行方向の一端側(インターフェイス内部端子25)から行方向の他端側(インターフェイス内部端子25)まで接続されている。列方向電圧供給線V4は、センサモジュール70の列方向の一端側(インターフェイス内部端子25)から列方向の他端側(インターフェイス内部端子25)まで接続されている。
 CMOSセンサ71は、列方向電源供給線V4に接続されている。なお、CMOSセンサ71は、列方向電圧供給線V4ではなく、行方向電圧供給線V3に接続されてもよい。そして、CMOSセンサ71は、対象物からの光に応じた画像信号を生成し、この画像信号を、インターフェイス内部端子25を介して出力する。
The row direction voltage supply line V3 is connected from one end side (interface internal terminal 25) in the row direction of the sensor module 70 to the other end side (interface internal terminal 25) in the row direction. The column direction voltage supply line V4 is connected from one end side (interface internal terminal 25) in the column direction of the sensor module 70 to the other end side (interface internal terminal 25) in the column direction.
The CMOS sensor 71 is connected to the column direction power supply line V4. The CMOS sensor 71 may be connected to the row direction voltage supply line V3 instead of the column direction voltage supply line V4. The CMOS sensor 71 generates an image signal corresponding to the light from the object, and outputs the image signal via the interface internal terminal 25.
 したがって、センサモジュール70は、隣接するLEDモジュール10から電源電圧VCCが供給されると、センサモジュール70内のCMOSセンサ71に電源電圧VCCを印加する。さらに、センサモジュール70は、隣接する他の3つのLEDモジュール10に対してそれぞれ電源電圧VCCを供給する。 Therefore, when the power supply voltage VCC is supplied from the adjacent LED module 10, the sensor module 70 applies the power supply voltage VCC to the CMOS sensor 71 in the sensor module 70. Further, the sensor module 70 supplies the power supply voltage VCC to each of the other three adjacent LED modules 10.
 さらに、本実施形態の照明装置は、無線通信する機能を実現するために、無線LANモジュール80を有している。
 図21は、無線LANモジュール80の斜視図である。図22は、無線LANモジュール80の断面図である。無線LANモジュール80は、LEDモジュール10と同じ大きさであり、LEDモジュール10と同様に、アルミ下地基板13に対して着脱可能である。このため、本実施形態では、第1の実施形態に係る照明装置に設けられた1個以上のLEDモジュール10が無線LANモジュール80に置き換えられている。
Further, the lighting device of the present embodiment includes a wireless LAN module 80 in order to realize a function of performing wireless communication.
FIG. 21 is a perspective view of the wireless LAN module 80. FIG. 22 is a cross-sectional view of the wireless LAN module 80. The wireless LAN module 80 has the same size as the LED module 10 and can be attached to and detached from the aluminum base substrate 13 in the same manner as the LED module 10. For this reason, in this embodiment, the one or more LED modules 10 provided in the lighting device according to the first embodiment are replaced with the wireless LAN module 80.
 無線LANモジュール80は、図9とほぼ同様に構成されているが、図9に示すLED22の代わりに、図22に示すように、無線LANチップ81を有している。
 無線LANチップ81は、マクロバンプ22aを介して、電極アルミ片23に接続されている。このため、無線LANチップ81で発生される熱は、マイクロバンプ22a、電極アルミ片23及びアルミ下地基板13を経由して外部へ放出される。
The wireless LAN module 80 is configured in substantially the same manner as in FIG. 9, but has a wireless LAN chip 81 as shown in FIG. 22 instead of the LED 22 shown in FIG.
The wireless LAN chip 81 is connected to the electrode aluminum piece 23 through the macro bump 22a. Therefore, the heat generated in the wireless LAN chip 81 is released to the outside through the micro bumps 22a, the electrode aluminum pieces 23, and the aluminum base substrate 13.
 図23は、無線LANモジュール80の回路図である。無線LANモジュール80は、無線LANチップ81と、行方向電圧供給線V5と、列方向電圧供給線V6と、を有している。行方向電圧供給線V5と列方向電圧供給線V6は、無線LANモジュール80内部で接続されている。 FIG. 23 is a circuit diagram of the wireless LAN module 80. The wireless LAN module 80 includes a wireless LAN chip 81, a row direction voltage supply line V5, and a column direction voltage supply line V6. The row direction voltage supply line V5 and the column direction voltage supply line V6 are connected inside the wireless LAN module 80.
 行方向電圧供給線V5は、無線LANモジュール80の行方向の一端側(インターフェイス内部端子25)から行方向の他端側(インターフェイス内部端子25)まで接続されている。列方向電圧供給線V6は、無線LANモジュール80の列方向の一端側(インターフェイス内部端子25)から列方向の他端側(インターフェイス内部端子25)まで接続されている。
 無線LANチップ81は、列方向電源供給線V6に接続されている。なお、無線LANチップ81は、列方向電圧供給線V6ではなく、行方向電圧供給線V5に接続されてもよい。無線LANチップ81は、CMOSセンサ71からの画像信号が入力されると、受信機に対して無線通信する。
The row direction voltage supply line V5 is connected from one end side (interface internal terminal 25) in the row direction of the wireless LAN module 80 to the other end side (interface internal terminal 25) in the row direction. The column direction voltage supply line V6 is connected from one end side (interface internal terminal 25) in the column direction of the wireless LAN module 80 to the other end side (interface internal terminal 25) in the column direction.
The wireless LAN chip 81 is connected to the column direction power supply line V6. The wireless LAN chip 81 may be connected to the row direction voltage supply line V5 instead of the column direction voltage supply line V6. When the image signal from the CMOS sensor 71 is input, the wireless LAN chip 81 performs wireless communication with the receiver.
 したがって、センサモジュール70は、隣接するLEDモジュール10から電源電圧VCCが供給されると、センサモジュール70内のCMOSセンサ71に電源電圧VCCを印加する。さらに、センサモジュール70は、隣接する他の3つのLEDモジュール10に対してそれぞれ電源電圧VCCを供給する。 Therefore, when the power supply voltage VCC is supplied from the adjacent LED module 10, the sensor module 70 applies the power supply voltage VCC to the CMOS sensor 71 in the sensor module 70. Further, the sensor module 70 supplies the power supply voltage VCC to each of the other three adjacent LED modules 10.
 以上のように、第2の実施形態の照明装置では、互いに接続された行方向電圧供給線V1及び列方向電圧供給線V2を有する複数のLEDモジュール10が、行方向及び列方向に配置されている。各LEDモジュール10は、隣接するLEDモジュール10から電源電圧VCCが供給されると、隣接する他の3つのLEDモジュール10に電源電圧VCCを供給する。 As described above, in the lighting device of the second embodiment, the plurality of LED modules 10 having the row direction voltage supply line V1 and the column direction voltage supply line V2 connected to each other are arranged in the row direction and the column direction. Yes. When the power supply voltage VCC is supplied from the adjacent LED module 10, each LED module 10 supplies the power supply voltage VCC to the other three adjacent LED modules 10.
 よって、任意のLEDモジュール10が破損した場合であっても、破損したLEDモジュール10から電源電圧VCCが供給されていたLEDモジュール10は、隣接する他のLEDモジュール10から電源電圧VCCが供給される。つまり、任意のLEDモジュール10が破損しても、隣接する他のLEDモジュール10に電源電圧VCCが供給されなくなることを回避できる。 Therefore, even when an arbitrary LED module 10 is damaged, the LED module 10 to which the power supply voltage VCC is supplied from the damaged LED module 10 is supplied with the power supply voltage VCC from another adjacent LED module 10. . That is, even when any LED module 10 is damaged, it is possible to avoid the supply of the power supply voltage VCC to other adjacent LED modules 10.
 また、第2の実施形態の照明装置は、LEDモジュール10の他に、センサモジュール70及び無線LANモジュール80を備えることにより、単なる照明装置ではなく、外部から目立たない監視カメラとしても機能する。
 上記照明装置は、センサモジュール70の代わりに、人感センサ、磁気センサ、温度センサ、振動センサ、煙センサ、電磁波センサ、地震センサなどを備えてもよい。このとき、無線LANモジュール80は、上述したいずれかのセンサで検出された信号を他の機器へ無線伝送すればよい。
In addition to the LED module 10, the illumination device according to the second embodiment includes the sensor module 70 and the wireless LAN module 80, and thus functions as a monitoring camera that is not conspicuous from the outside.
The lighting device may include a human sensor, a magnetic sensor, a temperature sensor, a vibration sensor, a smoke sensor, an electromagnetic wave sensor, an earthquake sensor, and the like instead of the sensor module 70. At this time, the wireless LAN module 80 may wirelessly transmit the signal detected by any of the sensors described above to another device.
 なお、無線LANモジュール80は、所定の無線LANモジュールから無線伝送された信号を受信して、他の無線LANモジュールへ無線伝送する機能を備えてもよい。これにより、上記照明装置は、小型無線基地局としての役割も有する。また、無線LANモジュール80は、無線通信機能を有していればよく、例えば、Wi-Fi(登録商標)、ミリ波通信機、PHS電波中継チップでもよい。 Note that the wireless LAN module 80 may have a function of receiving a signal wirelessly transmitted from a predetermined wireless LAN module and wirelessly transmitting the signal to another wireless LAN module. Thereby, the said illuminating device also has a role as a small radio base station. The wireless LAN module 80 only needs to have a wireless communication function, and may be, for example, a Wi-Fi (registered trademark), a millimeter wave communication device, or a PHS radio wave relay chip.
 さらに、第2の実施形態の照明装置は、上述したように構成されているため、厚さが例えば5mm以下であり、従来に比べて薄型化される。このため、上記照明装置は、例えば、屋内の天井、屋内外の壁などに埋め込まれた状態で使用可能である。さらに、上記照明装置が建物の外壁に埋め込まれた場合は、外壁タイルの代わりにLEDモジュールが使用されてもよい。この場合、建物自体が照明装置として機能し、隣接するビルなどの建物を照明することができる。また、本発明は、投影装置で使用される照明装置にも適用可能である。 Furthermore, since the illumination device of the second embodiment is configured as described above, the thickness is, for example, 5 mm or less, and is thinner than the conventional one. For this reason, the said illuminating device can be used in the state embedded, for example in the indoor ceiling, the indoor outdoor wall, etc. Furthermore, when the lighting device is embedded in the outer wall of a building, an LED module may be used instead of the outer wall tile. In this case, the building itself functions as a lighting device, and a building such as an adjacent building can be illuminated. The present invention can also be applied to an illumination device used in a projection device.
 上述した実施形態では、LED22は、配線28又は電極アルミ片23に対して、マイクロバンプ22aを介して接続されているが、ワイヤーボンディングにより接続されてもよい。 In the embodiment described above, the LED 22 is connected to the wiring 28 or the electrode aluminum piece 23 via the micro bump 22a, but may be connected by wire bonding.
1 バックライト装置
10 LEDモジュール
13 アルミ下地基板
22 LED
23 電極アルミ片
50 液晶表示装置
52 最大輝度検出部
55 液晶パネル
60 バックライト駆動部
70 センサモジュール
80 無線LANモジュール

 
DESCRIPTION OF SYMBOLS 1 Backlight apparatus 10 LED module 13 Aluminum base substrate 22 LED
23 Electrode Aluminum Piece 50 Liquid Crystal Display Device 52 Maximum Brightness Detection Unit 55 Liquid Crystal Panel 60 Backlight Drive Unit 70 Sensor Module 80 Wireless LAN Module

Claims (7)

  1.  平面状に形成された金属下地基板と、
     有機基板と、前記有機基板上に配列された複数のLEDと、前記LED毎に対応して設けられ、前記LEDからの熱が伝導され、前記LEDの一方の電極からスイッチ素子を介して電気的に接続され、前記有機基板のLED実装面から前記有機基板の幅方向を貫通して反対側の面から露出した金属部材と、前記有機基板の縁側に設けられたLED制御信号端子と、前記有機基板の縁側に設けられた電圧供給端子と、を有し、前記金属下地基板上に対して着脱可能な状態で行方向及び列方向に配列され、行方向及び列方向に隣接するものとの間で隣接するLED制御信号端子及び隣接する電源供給端子がそれぞれ接続された複数のLEDモジュールと、
     前記金属下地基板上に配列された各LEDを駆動させるための駆動部と、
     を備えた照明装置。
    A metal base substrate formed in a planar shape;
    An organic substrate, a plurality of LEDs arranged on the organic substrate, and provided corresponding to each LED, heat from the LED is conducted, and electrically from one electrode of the LED through a switch element A metal member that passes through the width direction of the organic substrate from the LED mounting surface of the organic substrate and is exposed from the opposite surface, an LED control signal terminal provided on the edge side of the organic substrate, and the organic A voltage supply terminal provided on an edge side of the substrate, arranged in a row direction and a column direction in a detachable manner on the metal base substrate, and between adjacent ones in the row direction and the column direction A plurality of LED modules to which adjacent LED control signal terminals and adjacent power supply terminals are respectively connected;
    A driving unit for driving the LEDs arranged on the metal base substrate;
    A lighting device comprising:
  2.  LEDに対応する複数の画素の信号の中から最大輝度又は所定値以上の輝度を検出する輝度検出部を更に備え、
     前記駆動部は、前記輝度検出部で検出された輝度になるように前記LEDを駆動する
     請求項1に記載の照明装置。
    A luminance detecting unit for detecting a maximum luminance or a luminance of a predetermined value or more from a plurality of pixel signals corresponding to the LED;
    The lighting device according to claim 1, wherein the driving unit drives the LED so that the luminance detected by the luminance detection unit is obtained.
  3.  行方向又は列方向のLEDを駆動するための各制御線の電圧をディジタル信号からアナログ信号に変換する変換部と、
     制御線毎に設けられ、前記変換部から出力された電圧をそれぞれ独立した所定のタイミングで保持して対応する制御線に出力する複数のサンプルホールド回路と、
     を更に備えた請求項1に記載の照明装置。
    A converter for converting the voltage of each control line for driving the LED in the row direction or the column direction from a digital signal to an analog signal;
    A plurality of sample and hold circuits that are provided for each control line, hold the voltages output from the conversion unit at independent predetermined timings, and output to the corresponding control lines;
    The illumination device according to claim 1, further comprising:
  4.  前記LEDモジュールは、行方向において対向する2つの電圧供給端子間を接続する第1の電圧供給線と、列方向において対向する2つの電圧供給端子間を接続すると共に前記第1の電圧供給線と接続された第2の電圧供給線と、を更に備えた
     請求項1に記載の照明装置。
    The LED module includes a first voltage supply line connecting between two voltage supply terminals opposed in the row direction, and a connection between two voltage supply terminals opposed in the column direction and the first voltage supply line. The lighting device according to claim 1, further comprising a connected second voltage supply line.
  5.  無線伝送された信号を中継する無線伝送モジュールを更に備えた
     請求項1に記載の照明装置。
    The lighting device according to claim 1, further comprising a wireless transmission module that relays a wirelessly transmitted signal.
  6.  被写体を撮像する撮像センサを有するセンサモジュールと、前記撮像センサから出力された信号を無線で伝送する無線伝送部を有する無線伝送モジュールと、を更に備えた
     請求項1に記載の照明装置。
    The illuminating device according to claim 1, further comprising: a sensor module including an image sensor that images a subject; and a wireless transmission module including a wireless transmission unit that wirelessly transmits a signal output from the image sensor.
  7.  複数の画素が配列された液晶パネルと、
     前記液晶パネルに対して光を照射する請求項1に記載の照明装置と、
     を備えた液晶表示装置。

     
    A liquid crystal panel in which a plurality of pixels are arranged;
    The illumination device according to claim 1, which irradiates light to the liquid crystal panel;
    A liquid crystal display device.

PCT/JP2013/060909 2012-04-11 2013-04-11 Illumination device and liquid crystal display device WO2013154151A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013546521A JP5481626B1 (en) 2012-04-11 2013-04-11 Illumination device and liquid crystal display device
KR1020137034585A KR101986694B1 (en) 2012-04-11 2013-04-11 Illumination device and liquid crystal display device
CN201380001934.0A CN103688373B (en) 2012-04-11 2013-04-11 Lighting device and liquid crystal indicator
US14/130,174 US9159271B2 (en) 2012-04-11 2013-04-11 Illumination device and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-090077 2012-04-11
JP2012090077 2012-04-11

Publications (1)

Publication Number Publication Date
WO2013154151A1 true WO2013154151A1 (en) 2013-10-17

Family

ID=49327709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060909 WO2013154151A1 (en) 2012-04-11 2013-04-11 Illumination device and liquid crystal display device

Country Status (5)

Country Link
US (1) US9159271B2 (en)
JP (1) JP5481626B1 (en)
KR (1) KR101986694B1 (en)
CN (1) CN103688373B (en)
WO (1) WO2013154151A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207839A (en) * 2015-04-22 2016-12-08 日機装株式会社 Light radiation device
WO2017154759A1 (en) * 2016-03-07 2017-09-14 公立大学法人名古屋市立大学 Light therapy device for scleroderma
WO2022044837A1 (en) * 2020-08-28 2022-03-03 コニカミノルタ株式会社 Liquid crystal display device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919057B1 (en) * 2012-05-28 2014-12-30 Tracbeam, Llc Stay-in-place insulated concrete forming system
JP2015223044A (en) * 2014-05-23 2015-12-10 株式会社オートネットワーク技術研究所 Circuit structure and electric connection box
USD820915S1 (en) 2015-09-22 2018-06-19 Ags Llc Gaming machine
USD813954S1 (en) 2015-09-24 2018-03-27 Ags Llc Game tower
USD818048S1 (en) 2015-10-05 2018-05-15 Ags Llc Gaming machine
CN105392275B (en) * 2015-11-30 2019-03-08 珠海方正科技多层电路板有限公司 Wiring board, its production method and radio-frequency devices
CN108475712B (en) * 2015-12-01 2021-11-09 夏普株式会社 Image forming element
US9997010B2 (en) 2015-12-18 2018-06-12 Ags Llc Electronic gaming device with external lighting functionality
US10002488B2 (en) 2015-12-17 2018-06-19 Ags Llc Electronic gaming device with call tower functionality
CN105405412B (en) * 2015-12-23 2017-11-03 深圳Tcl新技术有限公司 Backlight drive control method and system
USD843473S1 (en) 2017-04-07 2019-03-19 Ags Llc Gaming machine
CN107240582A (en) * 2017-07-21 2017-10-10 深圳市华天迈克光电子科技有限公司 A kind of display screen lamp bead module and its manufacture method
USD865873S1 (en) 2017-08-23 2019-11-05 Ags Llc Gaming machine
USD852890S1 (en) 2017-11-30 2019-07-02 Ags Llc Gaming machine
USD888837S1 (en) 2018-02-02 2020-06-30 Ags Llc Support structure for gaming machine display
KR102650344B1 (en) * 2018-05-03 2024-03-25 엘지전자 주식회사 Display device
USD939632S1 (en) 2018-07-17 2021-12-28 Ags Llc Gaming machine
CN109192145A (en) * 2018-09-21 2019-01-11 合肥惠科金扬科技有限公司 A kind of subregion light adjusting circuit and display device
USD969926S1 (en) 2019-04-24 2022-11-15 Ags Llc Gaming machine
USD978810S1 (en) 2019-07-31 2023-02-21 Ags Llc LED matrix display
US11380157B2 (en) 2019-08-02 2022-07-05 Ags Llc Servicing and mounting features for gaming machine display screens and toppers
USD969927S1 (en) 2019-08-02 2022-11-15 Ags Llc Gaming machine
US11735569B2 (en) 2020-06-03 2023-08-22 Seoul Viosys Co., Ltd. Light emitting device module and display apparatus having the same
CN214672654U (en) * 2020-06-03 2021-11-09 首尔伟傲世有限公司 Light emitting element module and display device including the same
KR20210157093A (en) * 2020-06-19 2021-12-28 삼성전자주식회사 Backlight unit having micro emitting device and liquid crystal display
CN111812888A (en) * 2020-07-10 2020-10-23 深圳市华星光电半导体显示技术有限公司 Mini LED backlight module, preparation method thereof and display panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335019A (en) * 2001-03-05 2002-11-22 Nichia Chem Ind Ltd Light emitting device
JP2007214214A (en) * 2006-02-07 2007-08-23 Yunikku:Kk Light emitting device
JP2008041639A (en) * 2006-08-09 2008-02-21 Samsung Electronics Co Ltd Backlight unit and display device equipped with it
WO2009110456A1 (en) * 2008-03-07 2009-09-11 シャープ株式会社 Lighting device, and display device having the same
JP2009237540A (en) * 2008-03-07 2009-10-15 Mitsumi Electric Co Ltd Liquid crystal backlight device
JP2010054726A (en) * 2008-08-27 2010-03-11 Panasonic Corp Backlight device and image display apparatus using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499776B2 (en) * 2007-10-31 2010-07-07 富士通株式会社 Storage control apparatus, method, and program
JP5046397B2 (en) 2008-09-04 2012-10-10 シャープ株式会社 Liquid crystal display
WO2012002010A1 (en) * 2010-06-28 2012-01-05 パナソニック液晶ディスプレイ株式会社 Liquid crystal display device and television receiver
KR20120012150A (en) * 2010-07-30 2012-02-09 엘지디스플레이 주식회사 Liquid crystal display device
KR101960373B1 (en) * 2012-03-29 2019-03-20 엘지디스플레이 주식회사 Back light assembly and liquid crystal display device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335019A (en) * 2001-03-05 2002-11-22 Nichia Chem Ind Ltd Light emitting device
JP2007214214A (en) * 2006-02-07 2007-08-23 Yunikku:Kk Light emitting device
JP2008041639A (en) * 2006-08-09 2008-02-21 Samsung Electronics Co Ltd Backlight unit and display device equipped with it
WO2009110456A1 (en) * 2008-03-07 2009-09-11 シャープ株式会社 Lighting device, and display device having the same
JP2009237540A (en) * 2008-03-07 2009-10-15 Mitsumi Electric Co Ltd Liquid crystal backlight device
JP2010054726A (en) * 2008-08-27 2010-03-11 Panasonic Corp Backlight device and image display apparatus using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207839A (en) * 2015-04-22 2016-12-08 日機装株式会社 Light radiation device
WO2017154759A1 (en) * 2016-03-07 2017-09-14 公立大学法人名古屋市立大学 Light therapy device for scleroderma
WO2022044837A1 (en) * 2020-08-28 2022-03-03 コニカミノルタ株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
JPWO2013154151A1 (en) 2015-12-17
KR101986694B1 (en) 2019-06-07
US20140132891A1 (en) 2014-05-15
CN103688373A (en) 2014-03-26
KR20150009418A (en) 2015-01-26
CN103688373B (en) 2016-03-02
JP5481626B1 (en) 2014-04-23
US9159271B2 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
JP5481626B1 (en) Illumination device and liquid crystal display device
KR101156271B1 (en) Lighting equipment and display device using the same
US10356858B2 (en) MicroLED display panel
CN101488516B (en) Organic light emitting display
TW201835887A (en) Electronic terminal and display screen capable of improving the full display effect of the electronic terminal
US20090096724A1 (en) Display apparatus, quantity-of-light adjusting method for display apparatus and electronic equipment
JP2006260927A (en) Illumination device, manufacturing method of the same, and display device
TW201033965A (en) Display device and electronic product
KR101789139B1 (en) Flexible Transparent LED Display of LED electro-optic panel and manufacturing method therefor
TW201033969A (en) Display device and electronic product
TW200512705A (en) Display apparatus and display control method
US11837157B2 (en) Display module and display apparatus having the same
CN100495485C (en) Organic light-emitting diode display device
Nguyen Challenges in the design of a RGB LED display for indoor applications
US20190139464A1 (en) Dual light source system and method of generating dual images using the same
US9123299B2 (en) Liquid crystal display device including LED unit using current mirror circuit
CN112420778A (en) Display device
US20230005416A1 (en) Display module and display apparatus having the same
EP4174837A1 (en) Display module, display apparatus and method for manufacturing same
KR102276372B1 (en) Apparatus for ultra-thin flexible transparent display and manufacturing method thereof
US20230387144A1 (en) Display module, display apparatus and method for manufacturing same
US20220223576A1 (en) Display apparatus
KR20220101949A (en) Display apparatus
KR20220115297A (en) Display apparatus and control method thereof
KR20220076107A (en) Display module and display apparatus having the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013546521

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137034585

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775920

Country of ref document: EP

Kind code of ref document: A1