WO2017154034A1 - 電気化学装置 - Google Patents

電気化学装置 Download PDF

Info

Publication number
WO2017154034A1
WO2017154034A1 PCT/JP2016/001222 JP2016001222W WO2017154034A1 WO 2017154034 A1 WO2017154034 A1 WO 2017154034A1 JP 2016001222 W JP2016001222 W JP 2016001222W WO 2017154034 A1 WO2017154034 A1 WO 2017154034A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
electrochemical
separator
pin
pin insertion
Prior art date
Application number
PCT/JP2016/001222
Other languages
English (en)
French (fr)
Inventor
隆利 浅田
吉野 正人
理子 犬塚
健太郎 松永
雅弘 浅山
亀田 常治
敏幸 井貝
啓輔 中澤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2016/001222 priority Critical patent/WO2017154034A1/ja
Publication of WO2017154034A1 publication Critical patent/WO2017154034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to an electrochemical device.
  • the electrochemical device has an electrochemical cell.
  • an electrochemical cell includes, for example, a membrane-electrode assembly (MEA (Membrane-) in which an electrolyte membrane made of a solid oxide is sandwiched between a hydrogen electrode (first electrode) and an oxygen electrode (second electrode).
  • MEA membrane-electrode assembly
  • the electrochemical cell is at least one of a solid oxide fuel cell (SOFC (Solid Oxide Fuel Cell)) and a solid oxide electrolysis cell (SOEC (Solid Oxide Electrolysis Cell)). Function.
  • SOFC Solid Oxide Fuel Cell
  • SOEC Solid Oxide Electrolysis Cell
  • the above electrochemical cell functions as an SOFC
  • hydrogen supplied as a reducing fuel gas to the hydrogen electrode and oxidizing to the oxygen electrode under high temperature (eg, 600 to 900 ° C.) operating conditions.
  • Oxygen supplied as the gas reacts through the electrolyte membrane.
  • a fuel cell reaction represented by the following reaction formula occurs in each of the hydrogen electrode and the oxygen electrode.
  • the reducing fuel gas may be a hydrocarbon
  • the oxidizing gas may be oxygen-containing air.
  • the electrochemical cell when functioning as an SOEC, the electrochemical cell undergoes a reaction opposite to that when functioning as an SOFC, and high-temperature (eg, 700 ° C. or higher) water vapor decomposes into hydrogen and oxygen. . That is, an electrolysis reaction represented by the following reaction formula occurs in each of the hydrogen electrode and the oxygen electrode.
  • Hydrogen electrode H 2 O + 2e ⁇ ⁇ H 2 + O 2 ⁇ ⁇
  • Oxygen electrode O 2 ⁇ ⁇ (1/2) O 2 + 2e ⁇
  • FIG. 8A and 8B will be used to explain an example of an electrochemical device according to related technology.
  • FIG. 8A is a top view of the electrochemical device and corresponds to the Z1-Z1 portion in FIG. 8B.
  • FIG. 8B is a side sectional view of the electrochemical device, and corresponds to a Y1-Y1 portion in FIG. 8A.
  • the electrochemical device 1 has a plurality of structures 2 in which the electrochemical cell 10, the first current collector 21, the second current collector 22, and the separator 30 are combined.
  • the structure 2 is laminated with a sealing material 40 interposed therebetween.
  • the electrochemical cells 10 are connected in series via separators 30 in order to increase output.
  • the plurality of structures 2 are sandwiched between a pair of end plates (not shown), and are clamped between the pair of end plates using a fastening member such as a bolt, for example.
  • FIG 8B illustrates a portion of the electrochemical device 1 where the two structures 2 of the first structure 2A and the second structure 2B are stacked.
  • the upper second structure 2B of the two structures 2 is between the electrochemical cell 10 in which the first current collector 21 and the second current collector 22 are formed, and the separator 30. It is shown in a state in which is released.
  • the electrochemical cell 10 is a flat plate type and is not shown in the figure, but is provided so that an electrolyte membrane formed of a solid oxide is sandwiched between a hydrogen electrode and an oxygen electrode.
  • the electrolyte membrane is a rectangular plate-like body
  • the hydrogen electrode is formed on the lower surface of the electrolyte membrane
  • the oxygen electrode is formed on the upper surface of the electrolyte membrane.
  • the electrolyte membrane is formed of an ion conductive electrolyte ceramic material (for example, yttria-stabilized zirconia (YSZ)) that allows oxide ions (O 2 ⁇ ) to pass therethrough.
  • YSZ yttria-stabilized zirconia
  • the oxygen electrode is made of a conductive ceramic material (for example, a perovskite oxide such as LaSrMnO 3 ).
  • the hydrogen electrode is composed of, for example, a cermet formed using nickel particles and ceramic particles such as YSZ.
  • the region R10 sandwiched between the hydrogen electrode and the oxygen electrode in the electrolyte membrane has, for example, a planar shape and a rectangular shape when the electrochemical cell 10 functions as SOFC or SOEC.
  • Oxide ions (O 2 ⁇ ) move inside the region R10. That is, the region R10 is a region where the fuel cell reaction or the electrolysis reaction is performed.
  • the first current collector 21 is a plate-like body and is installed on the lower surface of the electrochemical cell 10, and is located below the hydrogen electrode formed on the lower surface of the electrochemical cell 10 and the first current collector 21.
  • the separator 30 is electrically connected.
  • the first current collector 21 is made of a noble metal material such as gold, silver, or platinum, nickel, or the like.
  • the second current collector 22 is a plate-like body like the first current collector 21, and is installed on the upper surface of the electrochemical cell 10, and an oxygen electrode formed on the upper surface of the electrochemical cell 10,
  • the separator 30 located above the current collector 22 is electrically connected.
  • the second current collector 22 is formed of a noble metal material such as gold, silver, or platinum.
  • the separator 30 is a plate-like body, and the electrochemical cell 10 in which the first current collector 21 and the second current collector 22 are formed is installed.
  • the separator 30 is made of a conductive material such as metal, for example.
  • the separator 30 has an accommodation space K30 formed on the upper surface.
  • the accommodation space K30 has a first accommodation part K31 and a second accommodation part K32.
  • the first accommodating portion K ⁇ b> 31 is formed in the central portion of the upper surface of the separator 30.
  • the 1st accommodating part K31 is a recessed part with a square planar shape, Comprising:
  • the electrochemical cell 10 is accommodated in an inside.
  • the first accommodating portion K31 is more than the electrochemical cell 10 so that a gap is interposed between the side surface of the electrochemical cell 10 and the side surface of the first accommodating portion K31 when the electrochemical cell 10 is accommodated.
  • the size is large.
  • the second storage portion K32 is a concave portion having a square planar shape, like the first storage portion K31.
  • the 2nd accommodating part K32 is formed in the center part of the bottom face of the 1st accommodating part K31, and accommodates the 1st electrical power collector 21 installed in the electrochemical cell 10 inside.
  • the 2nd accommodating part K32 is the 1st current collector so that when the 1st current collector 21 is accommodated, a gap exists between the side of the 1st current collector 21 and the side of the 2nd accommodating part K32.
  • the size is larger than 21.
  • the separator 30 has a first gas flow path F31 and a second gas flow path F32.
  • the first gas flow path F ⁇ b> 31 is formed to extend linearly on the upper surface side of the separator 30.
  • the first gas flow path F31 is formed in a concave shape on the bottom surface of the second housing portion K32.
  • the second gas flow path F32 is formed to extend linearly on the lower surface side of the separator 30.
  • the extending direction of the second gas flow path F32 is along the direction (lateral direction in FIG. 8A) orthogonal to the extending direction of the first gas flow path F31 (vertical direction in FIG. 8A).
  • the sealing material 40 is provided between the plurality of structures 2 and seals between the plurality of structures 2.
  • the sealing material 40 is between the region located in the periphery on the upper surface of the separator 30 constituting the first structure 2A and the region located in the periphery on the lower surface of the separator 30 constituting the second structure 2B.
  • the sealing material 40 includes, for example, an insulating material such as a glass material, and electrically isolates the separator 30 of the first structure 2A and the separator 30 of the second structure 2B.
  • electrochemical device 1 The operation of the electrochemical device 1 will be described separately for the case where the electrochemical cell 10 is used as an SOFC and the case where the electrochemical cell 10 is used as an SOEC.
  • the electrochemical cell 10 When the electrochemical cell 10 is used as an SOFC, for example, hydrogen is supplied as a fuel gas to the hydrogen electrode of the electrochemical cell 10 and, for example, oxygen is used as an oxidizing gas to the oxygen electrode of the electrochemical cell 10. Supply.
  • the fuel gas such as hydrogen is supplied to the hydrogen electrode via the first gas flow path F31.
  • oxygen-oxidizing gas is supplied to the oxygen electrode via the second gas flow path F32.
  • oxygen (O 2 ) receives electrons and generates oxide ions (O 2 ⁇ ).
  • the oxide ions (O 2 ⁇ ) move from the oxygen electrode side to the hydrogen electrode side in the electrolyte membrane.
  • the oxide ion (O 2 ⁇ ) reacts with hydrogen (H 2 ) to generate water, and the oxide ion (O 2 ⁇ ) electrons are released. Electrons emitted from the oxide ions (O 2 ⁇ ) move from the hydrogen electrode to the oxygen electrode via an external load. In this way, power generation is performed in the electrochemical cell 10.
  • the electrochemical cell 10 when used as an SOEC, for example, water vapor is supplied as a source gas to the hydrogen electrode of the electrochemical cell 10 via the first gas flow path F31.
  • water vapor (H 2 O) receives electrons from the external power source at the hydrogen electrode, and hydrogen (H 2 ) gas and oxide ions (O 2 ⁇ ) are generated.
  • the generated hydrogen (H 2 ) gas is discharged to the outside through the first gas flow path F31, and the generated oxide ions (O 2 ⁇ ) are discharged from the hydrogen electrode side to the oxygen electrode side in the electrolyte membrane.
  • oxygen gas (O 2) is generated in the oxygen electrode.
  • the generated oxygen (O 2 ) gas is discharged to the outside through the second gas flow path F32. In this way, electrolysis of water vapor is performed in the electrochemical cell.
  • the above-mentioned electrochemical device needs to ensure sealing performance. For this reason, when assembling the electrochemical device, it is necessary to align the positions of the members with high accuracy.
  • the thermal expansion coefficient of the electrochemical cell and the thermal expansion coefficient of the separator are different from each other, if the position is not adjusted with high accuracy, the electrochemical cell is changed from a normal temperature state to a high temperature state by use, etc. There is a possibility that the electrochemical cell and the separator come into contact with each other due to a difference in expansion, and the electrochemical cell is cracked. For this reason, it is required that the alignment between the electrochemical cell and the separator be performed with higher accuracy.
  • the problem to be solved by the present invention is to provide an electrochemical device that can be easily aligned and can improve production efficiency.
  • the electrochemical device of the embodiment has an electrochemical cell and a separator.
  • the electrochemical cell is a flat plate type, and is provided such that an electrolyte membrane is sandwiched between a hydrogen electrode and an oxygen electrode.
  • the separator is provided with an electrochemical cell.
  • one of the electrochemical cell and the separator has a pin, the other has a pin insertion portion, and the pin is inserted into the pin insertion portion.
  • FIG. 1A corresponds to the Z1-Z1 portion in FIG. 1B
  • FIG. 1B corresponds to the Y1-Y1 portion in FIG. 1A
  • 1A and 1B show a case where the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30 and the electrochemical device 1 is in a normal temperature state (such as during assembly).
  • the electrochemical device 1 of the present embodiment is different from the related art described above in part of the electrochemical cell 10 and part of the separator 30. Except for this point and related points, this is the same as the case of the related technology described above, and therefore, in the present embodiment, the description of matters overlapping with the related technology is appropriately omitted.
  • the electrochemical cell 10 has the pin insertion part 101 unlike the related art.
  • the pin insertion portion 101 is formed in a peripheral region located around the region R10 sandwiched between the hydrogen electrode and the oxygen electrode in the electrolyte membrane constituting the electrochemical cell 10. That is, the pin insertion portion 101 is formed in a region other than the region R10 where the fuel cell reaction or the electrolysis reaction is performed in the electrochemical cell 10.
  • the electrochemical cell 10 has a quadrangular planar shape, and a pin insertion portion 101 is formed in the vicinity of each of two corners facing each other through the center among the four corners of the quadrilateral.
  • the pin insertion part 101 is a through-hole penetrating between the upper surface and the lower surface, and the cross section orthogonal to the penetration direction is circular. That is, the pin insertion part 101 is configured by a cylindrical space.
  • the separator 30 has pins 301.
  • the pin 301 is formed so as to protrude in a convex shape from the placement surface on which the electrochemical cell 10 is placed in the separator 30.
  • the height of the pin 301 protruding in a convex shape is the same as the thickness of the electrochemical cell 10.
  • the pin 301 is formed in the 1st accommodating part K31 which accommodates the electrochemical cell 10 among the accommodating spaces K30.
  • the separator 30 has a quadrangular planar shape, and pins 301 are formed in the vicinity of two corners facing each other through the center among the four corners of the quadrangle. Yes.
  • the pin 301 is a cylindrical rod-like body, and the outer diameter of the pin 301 is smaller than the inner diameter of the pin insertion portion 101.
  • the electrochemical device 1 is assembled by inserting each of the two pins 301 into each of the two pin insertion portions 101.
  • each of the two pins 301 is positioned outward in a diagonal direction in which the two pins 301 face each other through the center of the separator 30.
  • the part to be in contact is in contact with the part located on the outer side in the diagonal direction of each of the two pin insertion portions 101.
  • the portion located on the inside in the diagonal direction is not in contact with the portion located on the inside in the diagonal direction among the two pin insertion portions 101, There is a gap between them.
  • FIG. 1C is a side cross-sectional view of the electrochemical device, similar to FIG. 1B, in order to use the electrochemical cell 10 as SOFC or SOEC, from a normal temperature state (first temperature state) to a high temperature state (first temperature state).
  • first temperature state normal temperature state
  • first temperature state high temperature state
  • second temperature state second temperature state in which the temperature is higher than the temperature state
  • the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30. For this reason, when the temperature rise of the electrochemical device 1 occurs, the electrochemical cell 10 expands more than the separator 30.
  • the two pins 301 are relatively moved inward in the diagonal direction inside the two pin insertion portions 101, respectively.
  • the gap is interposed. Therefore, in this embodiment, it is possible to prevent stress from being generated in the electrochemical cell 10 even when the electrochemical device 1 is in a high temperature state.
  • the electrochemical cell 10 has a plurality of pin insertion portions 101, and the separator 30 has a plurality of pins 301.
  • the electrochemical device 1 can be assembled by inserting the plurality of pins 301 into the plurality of pin insertion portions 101. Therefore, in this embodiment, the alignment between the electrochemical cell 10 and the separator 30 can be realized with high accuracy with a small number of processing, and the manufacturing efficiency of the electrochemical device 1 can be easily improved.
  • the pin insertion portion 101 moves relative to the pin 301 when the pin 301 relatively moves inside the pin insertion portion 101 due to thermal expansion accompanying the temperature rise of the electrochemical device 1. Including a space that allows for this reason, as described above, in the present embodiment, it is possible to prevent stress from being generated in the electrochemical cell 10, and it is possible to effectively suppress breakage.
  • each of the pins 301 and the pin insertion portion 101 may be three or more.
  • each of the pin 301 and the pin insertion part 101 may be single.
  • the strength of the pin insertion portion 101 that is a through hole may be increased by covering the inside with a material such as an electrolyte.
  • FIG. 1D is a top view of the electrochemical device 1 as in FIG. 1A.
  • the thermal expansion coefficient of the electrochemical cell 10 is smaller than the thermal expansion coefficient of the separator 30, as shown in FIG. 1D, when the electrochemical device 1 is in a normal temperature state (such as during assembly), for example, two The pin 301 and the pin insertion portion 101 are arranged so that the portion located inside in the diagonal direction among the pins 301 contacts the portion located inside in the diagonal direction among the two pin insertion portions 101. Constitute. At the same time, a gap is interposed between a portion of each of the two pins 301 that is positioned outward in the diagonal direction and a portion of each of the two pin insertion portions 101 that is positioned outward in the diagonal direction. In addition, the pin 301 and the pin insertion portion 101 are configured. Thereby, the outstanding effect can be acquired similarly to said case.
  • thermal expansion coefficient of the electrochemical cell 10 and the thermal expansion coefficient of the separator 30 may be the same.
  • FIG. 2A corresponds to the Z1-Z1 portion in FIG. 2B
  • FIG. 2B corresponds to the Y1-Y1 portion in FIG. 2A
  • 2A and 2B show a case where the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30 and the electrochemical device 1 is in a normal temperature state.
  • the electrochemical device 1 according to the present embodiment is different from the first embodiment in the shape of each pin insertion portion 101b.
  • the two pin insertion portions 101b are through holes that penetrate between the upper surface and the lower surface, as in the case of the first embodiment, but unlike the case of the first embodiment, in the penetration direction.
  • the orthogonal cross section is elliptical.
  • each of the two pin insertion portions 101b is formed such that the major axis of the ellipse is along the direction in which the two pin insertion portions 101b are arranged.
  • the plurality of pin insertion portions 101b are through holes having an elliptical cross section, and the plurality of pins 301 formed in the separator 30 are inserted into the plurality of pin insertion portions 101.
  • the electrochemical device 1 is assembled. Therefore, in this embodiment, the alignment at the time of assembly is easier than in the case of the first embodiment, and the manufacturing efficiency of the electrochemical device 1 can be easily improved. Moreover, in this embodiment, damage to the electrochemical cell 10 can be effectively suppressed.
  • each of the two pin insertion portions 101b may be formed so that an elliptical short axis is along the direction in which the two pin insertion portions 101b are arranged.
  • various modifications can be applied to the second embodiment.
  • FIG. 3A corresponds to the Z1-Z1 portion in FIG. 3B
  • FIG. 3B corresponds to the Y1-Y1 portion in FIG. 3A
  • FIG. 3A and FIG. 3B show a case where the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30 and the electrochemical device 1 is in a normal temperature state.
  • the electrochemical device 1 of the present embodiment is different in the shape of the pin insertion portion 101c and the shape of the pin 301c from the case of the second embodiment described above.
  • the two pin insertion portions 101c are not through holes.
  • the two pin insertion portions 101 c are grooves (dents) formed in a concave shape on the lower surface of the electrochemical cell 10.
  • the pin 301c protrudes in a convex shape from the mounting surface on which the electrochemical cell 10 is mounted in the separator 30, but the height of the pin 301c is not the same as the thickness of the electrochemical cell 10.
  • the pin 301c is formed so that the height of the pin 301c matches the depth of the groove constituting the pin insertion portion 101c.
  • the plurality of pin insertion portions 101c are not through holes but grooves (dents), it is possible to effectively suppress the strength of the electrochemical cell 10 from being reduced.
  • FIG. 4A corresponds to the Z1-Z1 portion in FIG. 4B
  • FIG. 4B corresponds to the Y1-Y1 portion in FIG. 4A
  • 4A and 4B show the case where the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30 and the electrochemical device 1 is in a normal temperature state.
  • the electrochemical device 1 of the present embodiment further includes a guide 50 (stopper), unlike the related art described above (see FIGS. 8A and 8B).
  • the guide 50 is a plate-shaped body having an L-shaped planar shape.
  • the guide 50 is installed together with the electrochemical cell 10 in the first accommodating portion K31 in the accommodating space K30 of the separator 30.
  • the guide 50 is installed in a gap interposed between the side surface of the electrochemical cell 10 and the side surface of the first housing part K31.
  • the number of the guides 50 is one, and the guide 50 is installed in a gap interposed between the right-angled portion of the electrochemical cell 10 and the right-angled portion of the first accommodating portion K31.
  • the width between the side surface located on the first housing portion K 31 side and the side surface located on the electrochemical cell 10 side is such that the electrochemical cell 10 is placed at the design position of the separator 30. It corresponds to the width of the gap interposed between the side surface and the side surface of the separator 30. That is, when the electrochemical cell 10 is accurately aligned with the separator 30 and installed in the guide 50, the side surface of the guide 50 located on the first housing portion K31 side contacts the side surface of the first housing portion K31. In the guide 50, the side surface located on the electrochemical cell 10 side is configured to contact the side surface of the electrochemical cell 10.
  • the electrochemical cell 10 can be easily attached to the separator 30 at an accurate position using the guide 50.
  • the guide 50 is formed to have a lower strength than the electrochemical cell 10 and the separator 30.
  • the guide 50 is formed using a porous body (such as vermiculite). For this reason, when the electrochemical device 1 becomes hot due to use or the like, and the electrochemical cell 10 and the separator 30 approach each other due to a difference in expansion, the guide 50 is damaged before the electrochemical cell 10 and the separator 30. To do. Therefore, in this embodiment, it is possible to prevent stress from being generated in the electrochemical cell 10, and damage to the electrochemical cell 10 can be effectively suppressed.
  • FIG. 5A corresponds to the Z1-Z1 portion in FIG. 5B
  • FIG. 5B corresponds to the Y1-Y1 portion in FIG. 5A
  • 5A and 5B show a case where the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30 and the electrochemical device 1 is in a normal temperature state.
  • the electrochemical device 1 of the present embodiment is different from the case of the electrochemical cell 10 and the shape of the guide 50b in the fourth embodiment (see FIGS. 4A and 4B). Is different.
  • the planar shape of the electrochemical cell 10 is a shape in which one right-angled portion of a square is cut, and is a pentagon including three right-angled portions and two non-right-angled portions.
  • the guide 50b is installed in the gap interposed between the two non-right-angle parts of the electrochemical cell 10 and the right-angle part of the 1st accommodating part K31.
  • the guide 50b When the electrochemical cell 10 is accurately aligned with the separator 30 and installed, the guide 50b has a side surface located on the first housing portion K31 side in the guide 50b that contacts the side surface of the first housing portion K31. In 50b, the side surface located on the electrochemical cell 10 side is configured to contact the side surface of the electrochemical cell 10. For this reason, in this embodiment, as in the case of the fourth embodiment, the electrochemical cell 10 can be easily attached to the separator 30 at an accurate position using the guide 50b.
  • FIG. 6A corresponds to the Z1-Z1 portion in FIG. 6B
  • FIG. 6B corresponds to the Y1-Y1 portion in FIG. 6A
  • FIG. 6A and FIG. 6B show a case where the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30 and the electrochemical device 1 is in a normal temperature state.
  • the electrochemical device 1 As shown in FIGS. 6A and 6B, the electrochemical device 1 according to the present embodiment has a part of the electrochemical cell 10 and a part of the separator 30 in the case of the first embodiment described above (see FIGS. 1A and 1B). ) Is different.
  • the electrochemical cell 10 does not have the pin insertion portion 101 (see FIG. 1A and the like) but has the pin 102.
  • the separator 30 does not have the pin 301 (see FIG. 1A and the like) but has the pin insertion portion 302.
  • the pin 102 is formed so as to protrude in a convex shape from the lower surface in contact with the separator 30 in the electrochemical cell 10.
  • the pin 102 is formed in a peripheral region located around the region R10 sandwiched between the hydrogen electrode and the oxygen electrode in the electrolyte membrane constituting the electrochemical cell 10.
  • the pin 102 is formed at one right angle portion of the electrochemical cell 10.
  • the pin 102 has a fan-shaped cross section perpendicular to the height direction, and the fan-shaped center angle is a right angle (90 °).
  • the pin 102 is formed so that the right-angled portion of the fan shape coincides with the right-angled portion of the electrochemical cell 10.
  • the pin insertion portion 302 is formed in a concave shape on the mounting surface on which the electrochemical cell 10 is mounted in the separator 30.
  • the depth of the pin insertion portion 302 is the same as the height of the pin 102.
  • the pin insertion part 302 is formed in one right-angle part of the 1st accommodating part K31 in which the electrochemical cell 10 is accommodated.
  • the pin insertion portion 302 has a fan-shaped cross section perpendicular to the depth direction, and the central angle of the fan-shaped shape is a right angle (90 °).
  • the pin insertion portion 302 is formed so that the fan-shaped right-angle portion coincides with the right-angle portion of the first housing portion K31.
  • the fan-shaped shape of the pin insertion portion 302 has a larger radius than the fan-shaped shape of the pin 102.
  • the electrochemical device 1 is assembled by inserting the pin 102 into the pin insertion portion 302.
  • the pin 102 is inserted into the pin insertion portion 302 so that the arc portion of the pin 102 and the arc portion of the pin insertion portion 302 are in contact with each other.
  • the right angle portion of the pin 102 and the right angle portion of the pin insertion portion 302 are not in contact with each other, and a gap is interposed therebetween.
  • the electrochemical cell 10 expands more than the separator 30 because the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30.
  • the right angle portion of the pin 102 and the right angle portion of the pin insertion portion 302 approach each other.
  • a gap is interposed between the right angle portion of the pin 102 and the right angle portion of the pin insertion portion 302. Therefore, in this embodiment, it is possible to prevent stress from being generated in the electrochemical cell 10 even when the electrochemical device 1 is in a high temperature state.
  • the electrochemical cell 10 has the pins 102 and the separator 30 has the pin insertion portions 302. For this reason, the electrochemical device 1 can be assembled by inserting the pin 102 into the pin insertion portion 302. Therefore, in this embodiment, the alignment between the electrochemical cell 10 and the separator 30 can be realized with high accuracy with a small number of processing, and the manufacturing efficiency of the electrochemical device 1 can be easily improved.
  • the relative relationship of the pin 102 is increased. In the moving direction, a gap is interposed between the pin 102 and the pin insertion portion 302. For this reason, as described above, in the present embodiment, it is possible to prevent stress from being generated in the electrochemical cell 10, and it is possible to effectively suppress breakage.
  • the pin 102 is formed on the lower surface of the electrochemical cell 10, the front and back of the electrochemical cell 10 can be accurately grasped.
  • FIGS. 7A and 7B An electrochemical apparatus according to the seventh embodiment will be described with reference to FIGS. 7A and 7B.
  • FIG. 7A corresponds to the Z1-Z1 portion in FIG. 7B
  • FIG. 7B corresponds to the Y1-Y1 portion in FIG. 7A.
  • FIGS. 7A and 7B show a case where the thermal expansion coefficient of the electrochemical cell 10 is larger than the thermal expansion coefficient of the separator 30 and the electrochemical device 1 is in a normal temperature state.
  • the electrochemical device 1 of the present embodiment is provided integrally with the electrochemical cell 10 as shown in FIGS. 7A and 7B. ing.
  • the guide 50 c has a plate-like planar shape and is provided so as to surround the entire side surface of the electrochemical cell 10.
  • the guide 50c is formed in a gap interposed between the side surface of the electrochemical cell 10 and the side surface of the first housing portion K31. To position.
  • the width between the side surface located on the first housing portion K 31 side and the side surface located on the electrochemical cell 10 side is such that the electrochemical cell 10 is placed at the design position of the separator 30. It corresponds to the width of the gap interposed between the side surface and the side surface of the separator 30.
  • the electrochemical cell 10 can be easily attached to the separator 30 at an accurate position using the guide 50c.
  • the guide 50c is formed to have a lower strength than the electrochemical cell 10 and the separator 30.
  • the guide 50 c is formed so as to be thinner than the electrochemical cell 10.
  • the guide 50 c is formed by processing an electrolyte material, like the electrolyte membrane of the electrochemical cell 10. For this reason, when the electrochemical device 1 becomes a high temperature due to use or the like, and the electrochemical cell 10 and the separator 30 approach each other due to a difference in expansion, the guide 50c breaks before the electrochemical cell 10 and the separator 30. To do. Therefore, in this embodiment, it is possible to prevent stress from being generated in the electrochemical cell 10, and damage to the electrochemical cell 10 can be effectively suppressed.
  • the strength of the guide 50c is reduced by making the guide 50c thinner than the electrochemical cell 10 is described, but the present invention is not limited thereto.
  • the strength of the guide 50c may be reduced by a method such as providing a plurality of holes in the guide 50c or narrowing the root of the guide 50c.
  • the production efficiency can be improved for the electrochemical device.
  • Electrochemical apparatus 2 ... Structure, 2A ... 1st structure, 2B ... 2nd structure, 10 ... Electrochemical cell, 21 ... 1st current collector, 22 ... 2nd current collector, 30 ... Separator, 40 ... Sealing material, 50 ... Guide, 50b ... Guide, 50c ... Guide, 101 ... Pin insertion part, 101b ... Pin insertion part, 101c ... Pin insertion part, 102 ... Pin, 301 ... Pin, 301c ... Pin, 302 ... Pin insertion Part, F31 ... first gas flow path, F32 ... second gas flow path, K30 ... housing space, K31 ... first housing section, K32 ... second housing section, R10 ... area.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

位置合わせが容易であって、製造効率を向上できる電気化学装置を提供する。実施形態の電気化学装置は、電気化学セルとセパレータとを有する。電気化学セルは、平板型であって、電解質膜を水素極と酸素極とが挟むように設けられている。セパレータは、電気化学セルが設置される。ここでは、電気化学セルとセパレータとのうち、一方がピンを有し、他方がピン挿入部を有し、ピンがピン挿入部に挿入される。

Description

電気化学装置
 本発明の実施形態は、電気化学装置に関する。
 電気化学装置は、電気化学セルを有している。電気化学装置において、電気化学セルは、たとえば、固体酸化物で形成された電解質膜を水素極(第1電極)と酸素極(第2電極)とが挟んだ膜-電極アッセンブリ(MEA(Membrane-Electrode Assembly)である。上記の電気化学セルは、固体酸化物型燃料電池(SOFC(Solid Oxide Fuel Cell))と、固体酸化物型電解セル(SOEC(Solid Oxide Electrolysis Cell))との少なくとも一方として機能する。
 上記の電気化学セルがSOFCとして機能する際には、高温(たとえば、600~900℃)な運転条件の下で、水素極に還元性の燃料ガスとして供給された水素と、酸素極に酸化性のガスとして供給された酸素とが、電解質膜を介して反応する。ここでは、水素極と酸素極とのそれぞれにおいて、たとえば、下記反応式で示される燃料電池反応が生じる。なお、還元性の燃料ガスは、炭化水素でもよく、酸化性のガスは、酸素を含む空気でもよい。
 ・水素極: H+O2-→HO+2e
 ・酸素極: (1/2)O+2e→O2-
 これに対して、SOECとして機能する際には、電気化学セルは、SOFCとして機能するときの反応と逆の反応が起こり、高温(たとえば、700℃以上)の水蒸気が水素と酸素とに分解する。つまり、水素極と酸素極とのそれぞれにおいて、下記反応式で示される電気分解反応が生じる。
 ・水素極: HO+2e→H+O2-
 ・酸素極: O2-→(1/2)O+2e
 図8Aと図8Bとを用いて、関連技術に係る電気化学装置の一例に関して説明する。ここでは、図8Aは、電気化学装置の上面図であって、図8B中のZ1-Z1部分に相当する。図8Bは、電気化学装置の側断面図であって、図8A中のY1-Y1部分に相当する。
 図8Aと図8Bとに示すように、電気化学装置1は、電気化学セル10と第1集電材21と第2集電材22とセパレータ30とを組み合わせた構造体2を複数有し、その複数の構造体2がシール材40を介して積層されている。複数の構造体2の間は、出力の増加等のために、電気化学セル10がセパレータ30を介して直列に接続されている。複数の構造体2は、一対のエンドプレート(図示省略)に挟まれており、たとえば、ボルトなどの締結部材を用いて一対のエンドプレートの間が締め付けられている。
 なお、図8Bでは、電気化学装置1のうち、第1構造体2Aと第2構造体2Bとの2つの構造体2が積層された部分を例示している。そして、説明の都合により、2つの構造体2のうち上方の第2構造体2Bについては、第1集電材21および第2集電材22が形成された電気化学セル10と、セパレータ30との間を離した状態で図示している。
 以下より、電気化学装置1を構成する各部について順次説明する。
 電気化学セル10は、平板型であって、図示を省略しているが、固体酸化物で形成された電解質膜を水素極と酸素極とが挟むように設けられている。ここでは、電気化学セル10は、電解質膜が四角形状の板状体であり、電解質膜の下面に水素極が形成されていると共に、電解質膜の上面に酸素極が形成されている。電気化学セル10において、電解質膜は、酸化物イオン(O2-)が透過するイオン伝導性の電解質セラミックス材料(たとえば、イットリア安定化ジルコニア(YSZ))で形成されている。酸素極は、導電性セラミックス材料(たとえば、LaSrMnOなどのペロブスカイト酸化物)で形成されている。水素極は、たとえば、ニッケル粒子とYSZなどのセラミック粒子とを用いて形成されたサーメットで構成されている。電解質膜において水素極と酸素極とに挟まれた領域R10は、図8Aに示すように、たとえば、平面形状が四角形状であって、電気化学セル10がSOFCまたはSOECとして機能する際には、その領域R10の内部において酸化物イオン(O2-)が移動する。つまり、領域R10は、燃料電池反応または電気分解反応が行われる領域である。
 第1集電材21は、板状体であって、電気化学セル10の下面に設置されており、電気化学セル10の下面に形成された水素極と、第1集電材21の下方に位置するセパレータ30との間を電気的に接続している。第1集電材21は、金、銀、白金などの貴金属材料やニッケル等で形成されている。
 第2集電材22は、第1集電材21と同様に板状体であって、電気化学セル10の上面に設置されており、電気化学セル10の上面に形成された酸素極と、第2集電材22の上方に位置するセパレータ30との間を電気的に接続している。第2集電材22は、第1集電材21と同様に、たとえば、金、銀、白金などの貴金属材料で形成されている。
 セパレータ30は、板状体であって、第1集電材21および第2集電材22が形成された電気化学セル10が設置される。セパレータ30は、たとえば、金属などの導電材料で形成されている。
 ここでは、セパレータ30は、上面に収容空間K30が形成されている。収容空間K30は、第1収容部K31と第2収容部K32とを有する。
 セパレータ30において、第1収容部K31は、セパレータ30の上面のうち中央部分に形成されている。第1収容部K31は、平面形状が四角形状の凹部であって、電気化学セル10を内部に収容する。ここでは、第1収容部K31は、電気化学セル10を収容したときに電気化学セル10の側面と第1収容部K31の側面との間にギャップが介在するように、電気化学セル10よりもサイズが大きい。
 セパレータ30において、第2収容部K32は、第1収容部K31と同様に、平面形状が四角形状の凹部である。第2収容部K32は、第1収容部K31の底面の中央部分に形成されており、電気化学セル10に設置された第1集電材21を内部に収容する。ここでは、第2収容部K32は、第1集電材21を収容したときに第1集電材21の側面と第2収容部K32の側面との間にギャップが介在するように、第1集電材21よりもサイズが大きい。
 上記の他に、セパレータ30は、第1ガス流路F31と第2ガス流路F32とが形成されている。
 セパレータ30において、第1ガス流路F31は、セパレータ30の上面側において直線状に延在するように形成されている。ここでは、第1ガス流路F31は、第2収容部K32の底面において凹状に形成されている。第1ガス流路F31は、複数であって、複数の第1ガス流路F31が、セパレータ30の上面において第1ガス流路F31の延在方向(図8Aでは縦方向)に対して直交する方向(図8Aでは横方向)に、間を隔てて形成されている。
 これに対して、第2ガス流路F32は、セパレータ30の下面側において直線状に延在するように形成されている。ここでは、第1ガス流路F31の延在方向(図8Aでは縦方向)に対して直交する方向(図8Aでは横方向)に第2ガス流路F32の延在方向が沿っている。第2ガス流路F32は、複数であって、複数の第2ガス流路F32が、第1ガス流路F31の延在方向(図8Aでは縦方向)において間を隔てて形成されている。
 シール材40は、複数の構造体2の間に設けられており、複数の構造体2の間を密封している。ここでは、シール材40は、第1構造体2Aを構成するセパレータ30の上面において周辺に位置する領域と、第2構造体2Bを構成するセパレータ30の下面において周辺に位置する領域との間に介在している。シール材40は、たとえば、ガラス材料などの絶縁材料を含み、第1構造体2Aのセパレータ30と第2構造体2Bのセパレータ30との間を電気的な絶縁状態にしている。
 上記の電気化学装置1の動作について、電気化学セル10をSOFCとして使用する場合と、電気化学セル10をSOECとして使用する場合とに分けて説明する。
 電気化学セル10をSOFCとして使用する場合には、電気化学セル10の水素極に、たとえば、水素を燃料ガスとして供給すると共に、電気化学セル10の酸素極に、たとえば、酸素を酸化性ガスとして供給する。ここでは、水素などの燃料ガスは、第1ガス流路F31を介して、水素極に供給される。これに対して、酸素を酸化性ガスは、第2ガス流路F32を介して、酸素極に供給される。これにより、酸素極においては、酸素(O)が電子を受け取って酸化物イオン(O2-)が生成される。そして、その酸化物イオン(O2-)が電解質膜において酸素極側から水素極側へ移動する。そして、水素極においては、酸化物イオン(O2-)が水素(H)と反応して水が生成され、酸化物イオン(O2-)の電子が放出される。酸化物イオン(O2-)から放出された電子は、水素極から外部負荷を介して酸素極へ移動する。このようにして、電気化学セル10において発電が行われる。
 これに対して、電気化学セル10をSOECとして使用する場合には、たとえば、水蒸気を原料ガスとして電気化学セル10の水素極に第1ガス流路F31を介して供給する。これにより、水素極において、水蒸気(HO)が外部電源から電子を受け取り、水素(H)ガスと酸化物イオン(O2-)とが生成される。そして、生成された水素(H)ガスが第1ガス流路F31を介して外部へ排出されると共に、生成された酸化物イオン(O2-)が電解質膜において水素極側から酸素極側へ移動する。そして、酸素極において、酸化物イオン(O2-)から電子が外部電源へ移動し、酸素(O)ガスが生成される。生成された酸素(O)ガスは、第2ガス流路F32を介して、外部へ排出される。このようにして、電気化学セルにおいて水蒸気の電解が行われる。
特開2005-079024号公報 特開2013-043145号公報
 上記の電気化学装置は、シール性能の確保等が必要である。このため、上記の電気化学装置を組み立てるときには、各部材の位置を高精度に合わせる必要がある。
 特に、電気化学セルの熱膨張係数とセパレータの熱膨張係数とが互いに異なる場合には、位置を高精度に合わせていないと、電気化学セルが使用等によって常温状態から高温状態になることにより、電気化学セルとセパレータとが膨張差で接触し、電気化学セルに亀裂が発生する可能性がある。このため、電気化学セルとセパレータとの間に関しては、位置合わせを更に高精度に行うことが要求される。
 しかしながら、上記の電気化学装置においては、位置合わせを高精度に行うことが困難であって、製造効率を向上させることが容易でない。
 本発明が解決しようとする課題は、位置合わせが容易であって、製造効率を向上できる電気化学装置を提供することである。
 実施形態の電気化学装置は、電気化学セルとセパレータとを有する。電気化学セルは、平板型であって、電解質膜を水素極と酸素極とが挟むように設けられている。セパレータは、電気化学セルが設置される。ここでは、電気化学セルとセパレータとのうち、一方がピンを有し、他方がピン挿入部を有し、ピンがピン挿入部に挿入される。
第1実施形態に係る電気化学装置の要部を模式的に示す図である。 第1実施形態に係る電気化学装置の要部を模式的に示す図である。 第1実施形態に係る電気化学装置について、常温状態から高温状態になったときの様子を示す図である。 第1実施形態の変形例に係る電気化学装置の要部を模式的に示す図である。 第2実施形態に係る電気化学装置の要部を模式的に示す図である。 第2実施形態に係る電気化学装置の要部を模式的に示す図である。 第3実施形態に係る電気化学装置の要部を模式的に示す図である。 第3実施形態に係る電気化学装置の要部を模式的に示す図である。 第4実施形態に係る電気化学装置の要部を模式的に示す図である。 第4実施形態に係る電気化学装置の要部を模式的に示す図である。 第5実施形態に係る電気化学装置の要部を模式的に示す図である。 第5実施形態に係る電気化学装置の要部を模式的に示す図である。 第6実施形態に係る電気化学装置の要部を模式的に示す図である。 第6実施形態に係る電気化学装置の要部を模式的に示す図である。 第7実施形態に係る電気化学装置の要部を模式的に示す図である。 第7実施形態に係る電気化学装置の要部を模式的に示す図である。 関連技術に係る電気化学装置の要部を模式的に示す図である。 関連技術に係る電気化学装置の要部を模式的に示す図である。
<第1実施形態>
 第1実施形態に係る電気化学装置について、図1Aと図1Bとを用いて説明する。ここでは、図1Aが図1B中のZ1-Z1部分に相当し、図1Bが図1A中のY1-Y1部分に相当する。図1Aおよび図1Bでは、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きい場合であって、電気化学装置1が常温状態(組立て時など)である場合について示している。
 本実施形態の電気化学装置1は、図1Aおよび図1Bに示すように、電気化学セル10の一部およびセパレータ30の一部が、上記した関連技術の場合と異なる。この点、および、関連する点以外については、上記した関連技術の場合と同様であるので、本実施形態において上記の関連技術と重複する事項については、適宜、説明を省略する。
 本実施形態では、電気化学セル10は、関連技術の場合と異なり、ピン挿入部101を有する。ピン挿入部101は、電気化学セル10を構成する電解質膜において水素極と酸素極とに挟まれた領域R10の周辺に位置する周辺領域に形成されている。つまり、電気化学セル10において燃料電池反応または電気分解反応が行われる領域R10以外の領域にピン挿入部101が形成されている。ここでは、電気化学セル10は、平面形状が四角形であって、その四角形の4つの角のうち、中心を介して互いに向かい合う2つの角のそれぞれの近傍に、ピン挿入部101が形成されている。また、ピン挿入部101は、上面と下面との間を貫通する貫通穴であって、貫通方向に直交する断面が円形状である。つまり、ピン挿入部101は、円柱形状の空間で構成されている。
 セパレータ30は、関連技術の場合と異なり、ピン301を有する。ピン301は、セパレータ30において電気化学セル10が載置される載置面から凸状に突き出るように形成されている。ピン301において凸状に突き出た高さは、電気化学セル10の厚みと同じである。ここでは、ピン301は、収容空間K30のうち電気化学セル10を収容する第1収容部K31に形成されている。セパレータ30は、電気化学セル10と同様に、平面形状が四角形であって、その四角形の4つの角のうち、中心を介して互いに向かい合う2つの角のそれぞれの近傍に、ピン301が形成されている。また、ピン301は、円柱形状の棒状体であって、ピン301の外径がピン挿入部101の内径よりも小さい。
 そして、本実施形態では、2つのピン301のそれぞれが2つのピン挿入部101のそれぞれに挿入されることで、電気化学装置1が組み立てられている。ここでは、電気化学装置1が常温状態(組立時など)である場合には、2つのピン301のそれぞれは、2つのピン301がセパレータ30の中心を介して互いに向かい合う対角方向で外側に位置する部分が、2つのピン挿入部101のそれぞれのうち対角方向で外側に位置する部分に接触している。これに対して、2つのピン301のそれぞれは、対角方向で内側に位置する部分が、2つのピン挿入部101のそれぞれのうち対角方向で内側に位置する部分に接触しておらず、両者の間にはギャップが介在している。
 第1実施形態に係る電気化学装置について、常温状態から高温状態になったときの様子に関して、図1Cを用いて説明する。図1Cは、図1Bと同様に、電気化学装置の側断面図であって、電気化学セル10をSOFCまたはSOECとして使用するために、常温状態(第1の温度状態)から高温状態(第1の温度状態よりも温度が高い第2の温度状態)になったときの様子を示している。
 上述したように、本実施形態では、電気化学セル10の熱膨張係数は、セパレータ30の熱膨張係数よりも大きい。このため、電気化学装置1の温度上昇が生じた場合には、電気化学セル10は、セパレータ30よりも膨張する。
 その結果、図1Cに示すように、相対的には、2つのピン301のそれぞれは、2つのピン挿入部101のそれぞれの内部において、対角方向で内側に移動した状態になる。しかし、上述したように、2つのピン301のそれぞれのうち対角方向で内側に位置する部分と、2つのピン挿入部101のそれぞれのうち対角方向で内側に位置する部分との間には、ギャップが介在している。したがって、本実施形態では、電気化学装置1が高温状態になったときであっても、電気化学セル10に応力が発生することを防止可能である。
 以上のように、本実施形態では、電気化学セル10が複数のピン挿入部101を有し、セパレータ30が複数のピン301を有する。このため、複数のピン301を複数のピン挿入部101に挿入することで、電気化学装置1を組み立てることができる。したがって、本実施形態では、少ない加工数で、電気化学セル10とセパレータ30との間の位置合わせを高精度に実現可能であり、電気化学装置1の製造効率を容易に向上させることができる。
 また、本実施形態では、ピン挿入部101は、電気化学装置1の温度上昇に伴う熱膨張によってピン301がピン挿入部101の内部において相対的に移動するときに、ピン301の相対的な移動を許容する空間を含む。このため、上述したように、本実施形態では、電気化学セル10に応力が発生することを防止可能であって、破損を効果的に抑制可能である。
 なお、本実施形態は、種々の変形例を適用可能である。たとえば、上記の実施形態では、ピン301およびピン挿入部101が2つである場合について説明したが、これに限らない。ピン301およびピン挿入部101のそれぞれが3つ以上であってもよい。その他、ピン301およびピン挿入部101のそれぞれが単数であってもよい。
 また、貫通穴であるピン挿入部101について、内部を電解質などの素材で覆うことによって、強度を高めてもよい。
 また、上記実施形態では、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きい場合について説明したが、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも小さくてもよい。本変形例に係る電気化学装置について、図1Dを用いて説明する。図1Dは、図1Aと同様に、電気化学装置1の上面図である。
 電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも小さい場合には、図1Dに示すように、電気化学装置1が常温状態(組立時など)であるときに、たとえば、2つのピン301のそれぞれのうち対角方向で内側に位置する部分が、2つのピン挿入部101のそれぞれのうち対角方向で内側に位置する部分に接触するように、ピン301およびピン挿入部101を構成する。これと共に、2つのピン301のそれぞれのうち対角方向で外側に位置する部分と、2つのピン挿入部101のそれぞれのうち対角方向で外側に位置する部分との間にギャップが介在するように、ピン301およびピン挿入部101を構成する。これにより、上記の場合と同様に、優れた効果を得ることができる。
 その他、電気化学セル10の熱膨張係数とセパレータ30の熱膨張係数とが互いに同じであってもよい。
<第2実施形態>
 第2実施形態に係る電気化学装置について、図2Aと図2Bとを用いて説明する。ここでは、図2Aが図2B中のZ1-Z1部分に相当し、図2Bが図2A中のY1-Y1部分に相当する。図2Aおよび図2Bでは、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きい場合であって、電気化学装置1が常温状態である場合について示している。
 本実施形態の電気化学装置1は、図2Aおよび図2Bに示すように、各ピン挿入部101bの形状が、上記した第1実施形態の場合と異なる。
 具体的には、2つのピン挿入部101bは、第1実施形態の場合と同様に、上面と下面との間を貫通する貫通穴であるが、第1実施形態の場合と異なり、貫通方向に直交する断面が楕円形状である。ここでは、2つのピン挿入部101bが並ぶ方向に楕円形状の長軸が沿うように、2つのピン挿入部101bのそれぞれが形成されている。
 以上のように、本実施形態では、複数のピン挿入部101bは、断面が楕円形状である貫通孔であって、セパレータ30に形成された複数のピン301を複数のピン挿入部101に挿入することで、電気化学装置1が組み立てられる。したがって、本実施形態では、第1実施形態の場合よりも、更に、組立て時の位置合わせが容易であり、電気化学装置1の製造効率を容易に向上させることができる。また、本実施形態では、電気化学セル10の破損を効果的に抑制可能である。
 なお、上記の実施形態では、2つのピン挿入部101bが並ぶ方向に楕円形状の長軸が沿う場合について説明したが、これに限らない。2つのピン挿入部101bが並ぶ方向に楕円形状の短軸が沿うように、2つのピン挿入部101bのそれぞれを形成してもよい。その他、第1実施形態の場合と同様に、種々の変形例を第2実施形態に対して適用可能である。
<第3実施形態>
 第3実施形態に係る電気化学装置について、図3Aと図3Bとを用いて説明する。ここでは、図3Aが図3B中のZ1-Z1部分に相当し、図3Bが図3A中のY1-Y1部分に相当する。図3Aおよび図3Bでは、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きい場合であって、電気化学装置1が常温状態である場合について示している。
 本実施形態の電気化学装置1は、図3Aおよび図3Bに示すように、ピン挿入部101cの形状およびピン301cの形状が、上記した第2実施形態の場合と異なる。
 具体的には、2つのピン挿入部101cは、第1実施形態の場合と異なり、貫通穴でない。本実施形態では、2つのピン挿入部101cは、電気化学セル10の下面に凹状に形成された溝(くぼみ)である。
 また、ピン301cは、セパレータ30において電気化学セル10が載置される載置面から凸状に突き出ているが、ピン301cの高さが電気化学セル10の厚みと同じでない。本実施形態では、ピン301cの高さが、ピン挿入部101cを構成する溝の深さに一致するように、ピン301cが形成されている。
 以上のように、本実施形態では、複数のピン挿入部101cは、貫通孔でなく、溝(くぼみ)であるので、電気化学セル10の強度が低下することを効果的に抑制可能である。
<第4実施形態>
 第4実施形態に係る電気化学装置について、図4Aと図4Bとを用いて説明する。ここでは、図4Aが図4B中のZ1-Z1部分に相当し、図4Bが図4A中のY1-Y1部分に相当する。図4Aおよび図4Bでは、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きい場合であって、電気化学装置1が常温状態である場合について示している。
 本実施形態の電気化学装置1は、図4Aおよび図4Bに示すように、上記した関連技術の場合(図8A,図8B参照)と異なり、ガイド50(ストッパ)を更に有する。
 具体的には、ガイド50は、平面形状がL字型の板状体である。ガイド50は、セパレータ30の収容空間K30のうち第1収容部K31に電気化学セル10と共に設置される。ガイド50は、電気化学セル10の側面と第1収容部K31の側面との間に介在するギャップに設置される。ここでは、ガイド50は、1つであって、電気化学セル10の直角部と第1収容部K31の直角部との間に介在するギャップに設置されている。
 ガイド50において第1収容部K31側に位置する側面と電気化学セル10側に位置する側面との間の幅は、電気化学セル10をセパレータ30の設計位置に設置したときに電気化学セル10の側面とセパレータ30の側面との間に介在するギャップの幅に一致している。つまり、ガイド50は、電気化学セル10をセパレータ30に正確に位置合わせして設置したときに、ガイド50において第1収容部K31側に位置する側面が第1収容部K31の側面に接触する共に、ガイド50において電気化学セル10側に位置する側面が電気化学セル10の側面に接触するように構成されている。
 したがって、本実施形態では、ガイド50を用いて、電気化学セル10をセパレータ30に正確な位置に容易に取り付けることができる。
 上記の他に、本実施形態では、ガイド50は、電気化学セル10およびセパレータ30よりも強度が低くなるように形成されている。たとえば、多孔質体(バーミキュライトなど)を用いてガイド50が形成されている。このため、電気化学装置1が使用等によって高温になることにより、電気化学セル10とセパレータ30とが膨張差で接近した場合には、ガイド50が電気化学セル10およびセパレータ30よりも先に破損する。したがって、本実施形態では、電気化学セル10に応力が発生することを防止可能であって、電気化学セル10の破損を効果的に抑制可能である。
<第5実施形態>
 第5実施形態に係る電気化学装置について、図5Aと図5Bとを用いて説明する。ここでは、図5Aが図5B中のZ1-Z1部分に相当し、図5Bが図5A中のY1-Y1部分に相当する。図5Aおよび図5Bでは、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きい場合であって、電気化学装置1が常温状態である場合について示している。
 本実施形態の電気化学装置1は、図5Aおよび図5Bに示すように、電気化学セル10の形状、および、ガイド50bの形状が、第4実施形態の場合(図4A,図4B参照)と異なっている。
 具体的には、電気化学セル10の平面形状は、四角形の一つの直角部が切断された形状であって、3つの直角部と2つの非直角部とを含む五角形になっている。そして、ガイド50bは、電気化学セル10の2つの非直角部と第1収容部K31の直角部との間に介在するギャップに設置されている。
 ガイド50bは、電気化学セル10をセパレータ30に正確に位置合わせして設置したときに、ガイド50bにおいて第1収容部K31側に位置する側面が第1収容部K31の側面に接触する共に、ガイド50bにおいて電気化学セル10側に位置する側面が電気化学セル10の側面に接触するように構成されている。このため、本実施形態では、第4実施形態の場合と同様に、ガイド50bを用いて、電気化学セル10をセパレータ30に正確な位置に容易に取り付けることができる。
<第6実施形態>
 第6実施形態に係る電気化学装置について、図6Aと図6Bとを用いて説明する。ここでは、図6Aが図6B中のZ1-Z1部分に相当し、図6Bが図6A中のY1-Y1部分に相当する。図6Aおよび図6Bでは、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きい場合であって、電気化学装置1が常温状態である場合について示している。
 本実施形態の電気化学装置1は、図6Aおよび図6Bに示すように、電気化学セル10の一部およびセパレータ30の一部が、上記した第1実施形態の場合(図1A,図1B参照)と異なる。
 具体的には、電気化学セル10は、ピン挿入部101(図1Aなど参照)を有しておらず、ピン102を有する。また、セパレータ30は、ピン301(図1Aなど参照)を有しておらず、ピン挿入部302を有する。
 ピン102は、電気化学セル10においてセパレータ30に接触する下面から凸状に突き出るように形成されている。ピン102は、電気化学セル10を構成する電解質膜において水素極と酸素極とに挟まれた領域R10の周辺に位置する周辺領域に形成されている。ここでは、ピン102は、電気化学セル10の一つの直角部に形成されている。また、ピン102は、高さ方向に直交する断面が扇型形状であって、その扇型形状の中心角が直角(90°)である。ピン102は、扇型形状の直角部が電気化学セル10の直角部に一致するように形成されている。
 ピン挿入部302は、セパレータ30において電気化学セル10が載置される載置面に凹状になるように形成されている。ピン挿入部302の深さは、ピン102の高さと同じである。ここでは、ピン挿入部302は、電気化学セル10を収容する第1収容部K31の一つの直角部に形成されている。ピン挿入部302は、深さ方向に直交する断面が扇型形状であって、その扇型形状の中心角が直角(90°)である。ピン挿入部302は、扇型形状の直角部が第1収容部K31の直角部に一致するように形成されている。ピン挿入部302の扇型形状は、ピン102の扇型形状よりも半径が大きい。
 そして、本実施形態では、ピン102がピン挿入部302に挿入されることで、電気化学装置1が組み立てられる。ここでは、ピン102の円弧部とピン挿入部302の円弧部とが互いに接触するように、ピン102がピン挿入部302に挿入される。この挿入状態では、ピン102の直角部とピン挿入部302の直角部との間が接触しておらず、両者の間にギャップが介在している。
 電気化学装置1が常温状態から高温状態に変化した場合には、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きいので、電気化学セル10は、セパレータ30よりも膨張する。その結果、ピン102の直角部とピン挿入部302の直角部とが互いに接近する。しかし、上述したように、ピン102の直角部とピン挿入部302の直角部との間にはギャップが介在している。したがって、本実施形態では、電気化学装置1が高温状態になったときであっても、電気化学セル10に応力が発生することを防止可能である。
 以上のように、本実施形態では、電気化学セル10がピン102を有し、セパレータ30がピン挿入部302を有する。このため、ピン102をピン挿入部302に挿入することで、電気化学装置1を組み立てることができる。したがって、本実施形態では、少ない加工数で、電気化学セル10とセパレータ30との間の位置合わせを高精度に実現可能であり、電気化学装置1の製造効率を容易に向上させることができる。
 また、本実施形態では、電気化学装置1が常温状態から高温状態に変化することによってピン102がピン挿入部302に対して相対的に移動する場合であっても、そのピン102の相対的な移動方向においては、ピン102とピン挿入部302との間にギャップが介在している。このため、上述したように、本実施形態では、電気化学セル10に応力が発生することを防止可能であって、破損を効果的に抑制可能である。
 その他、本実施形態では、電気化学セル10の下面にピン102が形成されているので、電気化学セル10の表裏を正確に把握可能である。
<第7実施形態>
 第7実施形態に係る電気化学装置について、図7Aと図7Bとを用いて説明する。ここでは、図7Aが図7B中のZ1-Z1部分に相当し、図7Bが図7A中のY1-Y1部分に相当する。図7Aおよび図7Bでは、電気化学セル10の熱膨張係数がセパレータ30の熱膨張係数よりも大きい場合であって、電気化学装置1が常温状態である場合について示している。
 本実施形態の電気化学装置1は、図7Aおよび図7Bに示すように、第4実施形態の場合(図4A,図4B参照)と異なり、ガイド50cが電気化学セル10に一体的に設けられている。
 具体的には、ガイド50cは、平面形状が板状体であって、電気化学セル10の側面全体を囲うように設けられている。ガイド50cは、電気化学セル10がセパレータ30の収容空間K30のうち第1収容部K31に設置されたときには、電気化学セル10の側面と第1収容部K31の側面との間に介在するギャップに位置する。
 ガイド50cにおいて第1収容部K31側に位置する側面と電気化学セル10側に位置する側面との間の幅は、電気化学セル10をセパレータ30の設計位置に設置したときに電気化学セル10の側面とセパレータ30の側面との間に介在するギャップの幅に一致している。
 したがって、本実施形態では、ガイド50cを用いて、電気化学セル10をセパレータ30に正確な位置に容易に取り付けることができる。
 上記の他に、ガイド50cは、電気化学セル10およびセパレータ30よりも強度が低くなるように形成されている。ここでは、ガイド50cは、電気化学セル10よりも薄くなるように形成されている。たとえば、ガイド50cは、電気化学セル10の電解質膜と同様に、電解質材料を加工することで形成される。このため、電気化学装置1が使用等によって高温になることにより、電気化学セル10とセパレータ30とが膨張差で接近した場合には、ガイド50cが電気化学セル10およびセパレータ30よりも先に破損する。したがって、本実施形態では、電気化学セル10に応力が発生することを防止可能であって、電気化学セル10の破損を効果的に抑制可能である。
 なお、上記の実施形態では、ガイド50cが電気化学セル10の側面全体を囲うように設けられている場合について説明したが、これに限らない。ガイド50cが電気化学セル10の側面の一部に設けられていてもよい。
 また、上記の実施形態では、ガイド50cを電気化学セル10よりも薄くすることによって、ガイド50cの強度を低下させる場合について説明したが、これに限らない。たとえば、ガイド50cに複数の穴を設けること、ガイド50cの根本を細くすること等の方法で、ガイド50cの強度を低下させてもよい。
 以上説明した少なくとも一つの実施形態によれば、電気化学装置について製造効率を向上できる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…電気化学装置、2…構造体、2A…第1構造体、2B…第2構造体、10…電気化学セル、21…第1集電材、22…第2集電材、30…セパレータ、40…シール材、50…ガイド、50b…ガイド、50c…ガイド、101…ピン挿入部、101b…ピン挿入部、101c…ピン挿入部、102…ピン、301…ピン、301c…ピン、302…ピン挿入部、F31…第1ガス流路、F32…第2ガス流路、K30…収容空間、K31…第1収容部、K32…第2収容部、R10…領域。

Claims (6)

  1.  電解質膜を水素極と酸素極とが挟むように設けられている平板型の電気化学セルと、
     前記電気化学セルが設置されるセパレータと
     を有し、
     前記電気化学セルと前記セパレータとのうち、一方がピンを有し、他方がピン挿入部を有し、前記ピンが前記ピン挿入部に挿入される、
     電気化学装置。
  2.  前記ピン挿入部は、貫通孔であって、貫通方向に直交する断面が楕円形状である、
     請求項1に記載の電気化学装置。
  3.  前記ピン挿入部は、凹状に形成された溝である、
     請求項1に記載の電気化学装置。
  4.  前記ピン挿入部は、当該電気化学装置の温度上昇に伴う熱膨張によって前記ピンが前記ピン挿入部の内部において相対的に移動するときに、前記ピンの相対的な移動を許容する空間を含む、
     請求項1から3のいずれかに記載の電気化学装置。
  5.  電解質膜を水素極と酸素極とが挟むように設けられている平板型の電気化学セルと、
     前記電気化学セルが設置されるセパレータと
     を有し、
     前記セパレータは、前記電気化学セルを収容する収容空間を含み、前記電気化学セルを収容した状態で前記電気化学セルの側面と前記収容空間の側面との間にギャップが介在すると共に、前記ギャップにガイドが設置されており、
     前記ガイドは、前記電気化学セルおよび前記セパレータよりも強度が低い、
     電気化学装置。
  6.  前記ガイドは、前記電気化学セルに一体的に形成されていると共に、前記電気化学セルよりも厚みが薄い、
     請求項5に記載の電気化学装置。
PCT/JP2016/001222 2016-03-07 2016-03-07 電気化学装置 WO2017154034A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001222 WO2017154034A1 (ja) 2016-03-07 2016-03-07 電気化学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001222 WO2017154034A1 (ja) 2016-03-07 2016-03-07 電気化学装置

Publications (1)

Publication Number Publication Date
WO2017154034A1 true WO2017154034A1 (ja) 2017-09-14

Family

ID=59790123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001222 WO2017154034A1 (ja) 2016-03-07 2016-03-07 電気化学装置

Country Status (1)

Country Link
WO (1) WO2017154034A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195656A (ja) * 1989-01-24 1990-08-02 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH03219563A (ja) * 1988-07-23 1991-09-26 Fuji Electric Co Ltd 固体電解質型燃料電池
JP2000048831A (ja) * 1998-07-27 2000-02-18 Tokyo Gas Co Ltd 固体電解質型燃料電池
JP2010135283A (ja) * 2008-11-07 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池とその作製方法
JP2011134448A (ja) * 2009-12-22 2011-07-07 Honda Motor Co Ltd 固体電解質型燃料電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219563A (ja) * 1988-07-23 1991-09-26 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH02195656A (ja) * 1989-01-24 1990-08-02 Fuji Electric Co Ltd 固体電解質型燃料電池
JP2000048831A (ja) * 1998-07-27 2000-02-18 Tokyo Gas Co Ltd 固体電解質型燃料電池
JP2010135283A (ja) * 2008-11-07 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池とその作製方法
JP2011134448A (ja) * 2009-12-22 2011-07-07 Honda Motor Co Ltd 固体電解質型燃料電池

Similar Documents

Publication Publication Date Title
JP4422458B2 (ja) 燃料電池
US20060088752A1 (en) Fuel cell stack
US20190131635A1 (en) Cell Frame for Fuel Cell and Fuel Cell Stack Using the Same
JP6442364B2 (ja) 電気化学反応単位および燃料電池スタック
US20030064261A1 (en) Fuel cell stacking body
JP6702585B2 (ja) 平板型電気化学セルスタック
JP6667278B2 (ja) 電気化学反応セルスタック
WO2017154034A1 (ja) 電気化学装置
JP2013114784A (ja) 燃料電池
JP2020187864A (ja) 電気化学セル、電気化学セルスタック、燃料電池および水素製造装置
JP7194242B1 (ja) 電気化学反応セルスタック
US20170358805A1 (en) Structure of fuel cell
JP2008293953A (ja) 燃料電池用スタック
JP2006269159A (ja) 燃料電池スタック
JP2018081771A (ja) インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタック
KR102389981B1 (ko) 연료전지용 프레임 및 이를 포함하는 연료전지 스택 구조물
JP2009277390A (ja) 燃料電池の流路板及びこれを用いた燃料電池
US20240097152A1 (en) Electrochemical device
JP6773526B2 (ja) インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタック
US20190305324A1 (en) Fuel cell stack and separator for fuel cell stack
JP7149221B2 (ja) 電気化学反応セルスタック
KR102668307B1 (ko) 셀 모니터링 커넥터가 탈착 가능한 연료 전지
JP7507738B2 (ja) 電気化学反応単位および電気化学反応セルスタック
KR102684741B1 (ko) 셀 유닛 및 전지 스텍 장치
JP4997077B2 (ja) 燃料電池

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893367

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP