WO2017152813A1 - 蒸汽再压缩设备的并联控制系统及控制方法 - Google Patents

蒸汽再压缩设备的并联控制系统及控制方法 Download PDF

Info

Publication number
WO2017152813A1
WO2017152813A1 PCT/CN2017/075705 CN2017075705W WO2017152813A1 WO 2017152813 A1 WO2017152813 A1 WO 2017152813A1 CN 2017075705 W CN2017075705 W CN 2017075705W WO 2017152813 A1 WO2017152813 A1 WO 2017152813A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
recompression
steam recompression
control system
cooler
Prior art date
Application number
PCT/CN2017/075705
Other languages
English (en)
French (fr)
Inventor
钟洪玲
陈建
张启玖
游存芳
Original Assignee
北京国电龙源环保工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京国电龙源环保工程有限公司 filed Critical 北京国电龙源环保工程有限公司
Publication of WO2017152813A1 publication Critical patent/WO2017152813A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the invention relates to related evaporative crystallization, drying, absorbent stripping regeneration, multiphase multi-component reaction separation, solvent recovery, steam or spent steam upgrading in thermal power, steel, coal, metallurgy, pharmaceutical, cement and petrochemical industries.
  • the technical field of the process and its equipment in particular, relates to a parallel control system and method for a steam recompression device.
  • Steam is a commonly used raw material medium in the industry. It can be used for indirect heating and can directly participate in the reaction. As a reactant and a heat source, it is widely used in various industries. Of course, since steam is used as a raw material, it will be included in the cost. With the advancement of industry, the convergence between industries has become increasingly close, the cross-industry application or technology extension of similar processes, and the trend and requirements of large-scale installations have become more and more clear. Some of the original highlights of the process, due to the enlarged steam system Need to add more investment and lose the advantage.
  • the steam recompression equipment is a rotating equipment that pressurizes low-pressure or low-temperature steam by adding mechanical energy to achieve the temperature and pressure required for the process or engineering, and brings the opportunity to reverse the disadvantages of various steam-consuming process systems. .
  • the steam recompression equipment can effectively reduce the size of the equipment, reduce land use, and greatly reduce costs; when steam is used for indirect heat exchange to provide heat, steam
  • the recompression equipment can improve the quality of the steam after heat exchange and make it worth reusing. From the perspective of process flow, the investment in steam recompression equipment can solve the problem of high steam consumption in many processes.
  • the design of a parallel control system and method for steam recompression equipment is an open question.
  • the difficulty lies in that not only the steam recompression equipment itself needs to meet the long-term stable operation standard, but also meets the two requirements of the process.
  • the former is the precondition for the stable operation of the system, and the latter is the process requirement for the normal maintenance of the downstream process.
  • the dual requirements of the safe operation of these devices and the stabilization of process parameters have made it difficult to operate the parallel operation of steam recompression equipment. If there is an abnormality in the parallel operation of the steam recompression equipment, the downstream products will deteriorate or the output will be reduced. In the case of serious accidents such as damage to the upstream equipment and unplanned shutdown of the entire system, it will directly cause huge economic losses.
  • the present invention is to overcome the above deficiencies, and to provide a pressure and stability for maintaining upstream operating equipment.
  • the parallel control system of the steam recompression equipment with stable medium pressure and high output, low production cost and high safety factor.
  • a parallel control system for a steam recompression device comprising: an analytical tower, a first steam recompression device, and a first bypass, a second steam recompression device, and a second bypass, a first reboiler, a second reboiler, a first cooler, a second cooler, a steam separator, and a control connection between the components through a pipeline and a valve; wherein the top outlet of the analytical tower is connected in parallel to the first steam a recompression device and an inlet of the first bypass and second vapor recompression device and the second bypass thereof, the outlets of the first vapor recompression device and the second vapor recompression device are respectively associated with respective first reboilers and An inlet connection of the second reboiler, the outlets of the first bypass and the second bypass are respectively connected to the inlets of the first cooler and the second cooler, and the outlets of the first reboiler and the second
  • the steam recompression device is preferably a steam compressor.
  • the number of the steam recompression devices is two or more, and the control principle is unchanged.
  • first bypass and the second bypass have respective shut-off valves
  • first steam recompression device and the second steam recompression device have respective inlet regulating valves
  • first reboiler and The second reboiler has its own regulating valve, with a respective regulating valve between the first cooler, the second cooler and the steam separator.
  • the regulating valve is a regulating valve with a wide flow range and high response sensitivity.
  • the regulating valve is not limited in number, and generally refers to a single regulating valve; but when a single regulating valve cannot meet the requirements, two or more regulating valves need to be connected in parallel, that is, the regulating valve may be a single Adjust the valve or two or more regulating valves in parallel.
  • a regulating valve is arranged before and after the steam recompression device, and the regulating valves before and after the steam recompression device respectively control the pressure of the upstream device of the steam recompression device and the outlet medium pressure of the steam recompressing device.
  • the steam recompression equipment parallel system needs to meet two process requirements: 1) maintain the constant pressure of the upstream equipment of the steam recompression equipment; 2) maintain the constant pressure of the outlet medium of the steam recompression equipment.
  • the present invention further provides a control method used in the operation of the parallel control system of the steam recompression equipment, which mainly sets the regulation bypass and setting The above process requirements are achieved by adjusting the grade.
  • the main point of this control method is to control different process parameters through the regulating valves before and after the steam recompression equipment, and adjust the bypass of the design recompression equipment to meet the adjustment needs under different system conditions.
  • the control method is described as follows:
  • Parallel control of the steam recompression system requires the full operation of the plant. From the equipment configuration, it is two or more steam.
  • the compression equipments operate in parallel, but there are three types of operating conditions that actually occur due to different system loads, namely, multiple units are put into operation at the same time, part of them are put into operation, and some are shut down and all are out of service. Under different working conditions, the significant change is the total flow of the re-compression equipment inlet. If the total flow changes but the same number of recompression devices are used and no adjustments are made, the process system will be affected.
  • the control of the upstream equipment pressure is equivalent to the control of the recompression equipment inlet pressure, that is, the designation of the equipment's own operating characteristics.
  • the control of the outlet medium pressure of the recompression equipment is closely related to the pipe network resistance characteristics downstream of the recompression equipment. The former is only subject to the import conditions. Once the import conditions are determined, the operating characteristic curve is determined, and the latter is subject to the dual constraints of the operating conditions of the outlet piping and the recompression equipment. There is a more obvious master-slave collocation relationship between the two.
  • control method for the full-load operating condition of the device is to meet the requirements of the upstream device pressure and the constant pressure of the outlet medium of the recompression device by the master-slave matching action of the two regulating valves at the inlet and outlet of the recompression device.
  • the control method for the partial load operation condition of the device is to control the upstream device pressure through the regulating valve downstream of the uncommissioning side recompression device without affecting the normal regulation of the commissioning recompression device.
  • the control method for the total shutdown of the device is to short-circuit the recompression device by setting the recompression device bypass pipe, and to control the upstream device pressure through the downstream regulating valve.
  • the pressure fluctuation range is large, and the flow variation interval is wide.
  • the selection of the regulating valve at the outlet of the recompression equipment needs to consider the requirements of parallel widening adjustment range and response sensitivity.
  • the present invention has the following advantages and benefits:
  • Fig. 1 is a schematic diagram of a parallel control system of a steam recompression device (abbreviated as MVR) and a control process thereof.
  • MVR steam recompression device
  • a parallel control system for a steam recompression device is preferably a steam compressor, the system comprising: an analytical tower 1, a first steam compressor 2, and a first side Road 9, second steam compressor 6 and second bypass 10, first reboiler 3, second reboiler 7, first cooler 4, second cooler 8, steam separator 5, each component
  • the connection is controlled by a pipeline and a valve; wherein the outlet of the analytical tower 1 is connected in parallel to the inlet of the first steam compressor 2 and its first bypass 9 and the second steam compressor 6 and its second bypass 10,
  • the outlets of a steam compressor 2 and a second steam compressor 6 are respectively connected to the inlets of the respective first reboiler 3 and second reboiler 7, and the outlets of the first bypass 9 and the second bypass 10 are respectively
  • the inlets of the first cooler 4 and the second cooler 8 are connected, and the outlets of the first reboiler 3 and the second reboiler 7 are respectively connected to the
  • the first steam compressor 2 and the second steam compressor 6 have respective inlet regulating valves A1, A2 and the first reboiler 3 and the second reboiler 7 have respective regulating valves C1, C2
  • the regulators B1, B2 are provided between the first cooler 4 and the steam separator 5, and between the second cooler 8 and the steam separator 5, respectively.
  • a control method/process flow of a parallel control system of a steam recompression device the main process of the main process of the parallel control system is to analyze the tower top non-condensing steam in sequence through two steam compressors Two reboilers and two coolers finally enter the steam separator 5, and the secondary process is to analyze the tower top non-condensing steam and directly enter the corresponding cooler through the two bypasses corresponding to the two steam compressors. Finally, it also enters the steam separator 5.
  • two valves for key adjustment are provided, which are the first steam recompression device 2, the regulating valves A1 and A2 of the inlet of the second steam recompression device 6, respectively, and the first cooler and the second cooler. Regulating valve between cooler and steam separator B1, B2.
  • the three operating conditions combined with the system operation are as follows:
  • the first steam compressor 2 and the second steam compressor 6 are put into operation, that is, the two main process flow lines are all working normally.
  • the two auxiliary process lines that is, the first bypass 9 provided by the first steam compressor 2 and the shut-off valves D1 and D2 of the second bypass 10 provided by the second steam compressor 6 are both closed, the first reboiling
  • the regulators C1 and C2 after the regulator 3 and the second reboiler 7 are fully open.
  • the steam at the top of the tower is passed through two steam compressors, two reboilers and two coolers.
  • the regulating valves A1 and B1 and the regulating valves A2 and B2 respectively regulate the main process line where they are located.
  • the control method/regulation scheme of the parallel control system for the steam recompression equipment under the working condition is designed: the pressure of the analytical tower 1 is controlled by the regulating valve A1, and the outlet pressure of the first steam compressor 2 is controlled by the regulating valve B1.
  • the former is the main and the latter is driven.
  • B1 the outlet pressure of the first steam compressor 2
  • the process flow line is regulated in the same manner as the main process flow line of the first steam compressor 2.
  • the first steam compressor 2 is operated, the second steam compressor 6 is stopped, or the second steam compressor 6 is operated, and the first steam compressor 2 is stopped, that is, only one main process flow line is put into operation.
  • the total amount of non-condensable steam produced by the analytical tower 1 exceeds the flow limit of a single steam compressor and its corresponding reboiler and cooler, and the bypass provided by the steam compressor is required to function at this time.
  • the shut-off valve D1 of the first bypass 9 corresponding to the first steam compressor 2 is closed and the second steam is compressed.
  • the regulating valve D2 of the second bypass 10 corresponding to the machine 6 is fully open; the inlet regulating valve A1 of the first steam compressor 2 is fully opened, the interlock is released, and the pressure of the analytical tower 1 is transferred to be adjusted by the second cooler 8
  • the valve B2 is controlled, and the outlet regulating valve B1 of the first cooler 4 still controls the outlet pressure of the first steam compressor 2, and according to this scheme, the first steam compressor 2 can be stably operated, and the action regulating valve is omitted.
  • A1 controls the pressure of the column 1 and must operate the regulating valve B1 to adjust the outlet pressure of the first steam compressor 2, and can effectively maintain the constant pressure of the analytical column 1.
  • the control scheme when the second steam compressor 6 is operated and the first steam compressor 2 is out of service can be obtained by analogy of the above scheme.
  • the first steam compressor 2 and the second steam compressor 6 are all stopped, and the regulating valves A1, C1 and the regulating valves A2, C2 are closed.
  • the non-condensable steam produced by the analytical tower 1 will all pass through the first bypass 9 provided by the first steam compressor 2 and the second bypass 10 provided by the second steam compressor 6 to enter the corresponding first cooler 4 and Two coolers 8, at this time
  • the pressure of the analytical column 1 is controlled by the regulating valves B1, B2.
  • the selection of the regulating valve must consider the design requirements of widening the adjustment range and response sensitivity.
  • the parallel operation control strategy of the steam recompression equipment proposed by the invention can provide reference for the control of the parallel operation system of the steam recompression equipment in various industries.
  • the illustrated embodiment can also be directly used as a reference for solving the problem.
  • the control strategy proposed by the invention can not only meet the process requirements under various working conditions, maintain the stability of the system parameters, but also meet the requirements of efficient and long-lasting operation of a single recompression device. All the valve fittings involved are fully utilized, the idea is simple and clear, the system is safe and stable, and it is obviously a strategy that can guarantee huge economic benefits. It is also the reason that the method and apparatus of the present invention have a promising application in related fields.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

一种蒸汽再压缩设备的并联控制系统及控制方法,控制系统包括:解析塔(1)、蒸汽再压缩设备及其旁路(9,10)、再沸器(3,7)、冷却器(4,8)和汽水分离器(5),各设备之间通过管路及调节阀控制连接,重点涉及到蒸汽再压缩设备进出口的调节阀(A1,A2)以及蒸汽再压缩设备设有的旁路(9,10)。通过调节阀和旁路关断阀(D1,D2)配合,能够实现系统全工况下关键工艺参数稳定调节的目标,保障工艺装置的长周期安稳运行,生产成本降低,安全系数高,带来可观的经济效益,不仅解决了多台蒸汽再压缩设备并联运行的关键问题,而且具备在节能环保等跨多个行业领域推广应用的前景。

Description

蒸汽再压缩设备的并联控制系统及控制方法 技术领域
本发明涉及火电、钢铁、煤炭、冶金、制药、水泥和石油化工行业中相关蒸发结晶、干燥、吸收剂吹脱再生、多相多组分反应分离、溶剂回收、蒸汽或乏汽提质再利用等工艺及其设备的技术领域,具体涉及一种蒸汽再压缩设备的并联控制系统及方法。
背景技术
蒸汽是工业中常用的原料介质,既可以用于间接加热,又能够直接参与反应,作为反应物和热源,几乎在各个行业都有广泛应用。当然,蒸汽既然作为一种原料,就会被计入成本。随着工业进步,各行业之间的衔接配合日益密切,相似工艺的跨行业应用或技术引申,以及装置大型化的趋势和要求越来越明确,一些原本亮点突出的工艺,因放大后蒸汽系统需追加的投入而丧失优势。蒸汽再压缩设备是一种通过外加机械能将低压或低温的蒸汽加压、以达到工艺或工程所需温度和压力的转动设备,为各类蒸汽耗量大的工艺系统带来了扭转劣势的机会。当蒸汽作为反应原料而用于受温度压力影响较小的工艺系统时,蒸汽再压缩设备能够有效缩减设备的尺寸,减少用地、大幅削减成本;当蒸汽用于间接换热而提供热能时,蒸汽再压缩设备能够提升换热后的乏汽品质,使之具备再次利用的价值。从工艺流程角度讲,蒸汽再压缩设备的投入可以解决许多工艺蒸汽耗量高的问题。然而,工程问题涵盖的范围远比工艺流程问题宽泛,涉及的内容不仅限于工艺流程的优选设计,还包括关键设备的逻辑控制、复杂工况的工艺参数调节、配套的土建电气结构、技术经济性等方面的内容。所以,利用蒸汽再压缩技术解决部分工艺系统蒸汽耗量大的问题还有很多需要研究和改进的地方。
蒸汽再压缩设备并联控制系统及方法的设计就是一个悬而未决的问题。难点在于,不仅蒸汽再压缩设备自身需要达到长周期安稳运行的标准,而且要满足工艺上的两个要求,一是上游设备的运行压力稳定,二是再压缩设备出口介质的温度压力稳定。前者是系统稳定运行的前提条件,后者是下游流程正常维系的工艺要求。这些设备自身安全运转及保障工艺参数稳定的双重要求为蒸汽再压缩设备并联运行这一工程问题增加了难度。如果蒸汽再压缩设备并联运行出现异常,轻则会造成下游产品变质或产量降低,重则出现上游设备损坏、整个系统非计划停工等严重事故,将直接导致巨大的经济损失。
发明内容
本发明是为了克服以上的不足,提供一种既能保持上游运行设备压力稳定又能维持 再压缩设备出口介质压力稳定,同时保证产品质量和产量高、生产成本低、安全系数高的蒸汽再压缩设备的并联控制系统。
本发明通过以下的技术方案来实现:一种蒸汽再压缩设备的并联控制系统,包括:解析塔、第一蒸汽再压缩设备及第一旁路、第二蒸汽再压缩设备及第二旁路、第一再沸器、第二再沸器、第一冷却器、第二冷却器、汽水分离器,各部件之间通过管路及阀门控制连接;其中,解析塔塔顶出口并联连接第一蒸汽再压缩设备及其第一旁路和第二蒸汽再压缩设备及其第二旁路的入口,第一蒸汽再压缩设备和第二蒸汽再压缩设备的出口分别与相应的第一再沸器和第二再沸器的入口连接,第一旁路和第二旁路的出口分别与第一冷却器和第二冷却器的入口连接,第一再沸器和第二再沸器的出口分别与第一冷却器和第二冷却器的入口连接,第一冷却器和第二冷却器的出口并联于汽水分离器的入口。
其中,所述蒸汽再压缩设备优选为蒸汽压缩机。
其中,所述蒸汽再压缩设备的数量为两台或三台以上,控制原理不变。
其中,所述第一旁路和第二旁路具有各自的关断阀,所述第一蒸汽再压缩设备和第二蒸汽再压缩设备具有各自的进口调节阀,所述第一再沸器和第二再沸器后具有各自的调节阀,第一冷却器、第二冷却器与汽水分离器之间具有各自的调节阀。
其中,所述调节阀为流量范围宽泛且响应灵敏度高的调节阀。
其中,所述调节阀没有限定个数,通常指的是单个的调节阀;但当单个调节阀无法满足要求时,需要并联两个甚至更多个调节阀,即所述调节阀可以是单个的调节阀或并联的两个以上的调节阀。
总体上看,在蒸汽再压缩设备的前后均布置有调节阀,蒸汽再压缩设备前后的调节阀分别控制蒸汽再压缩设备上游设备的压力和蒸汽再压缩设备出口介质压力。
蒸汽再压缩设备并联系统需要满足两个工艺要求:1)维持蒸汽再压缩设备上游设备的压力恒定;2)维持蒸汽再压缩设备出口介质压力恒定。
为了解决蒸汽再压缩设备并联运行与维持系统工艺参数稳定的兼容问题,本发明又提供了一种蒸汽再压缩设备的并联控制系统运行时所采用的控制方法,其主要通过设置调节旁路以及设置调节等级的方式实现上述工艺要求。
此控制方法的要点在于通过蒸汽再压缩设备前后的调节阀分别控制不同的工艺参数,同时调节设计再压缩设备的旁路以满足不同系统工况下的调节需要。
该控制方法说明如下:
蒸汽再压缩系统并联控制需要应对装置运行的全工况。从设备配置上看是两台或多台蒸汽再 压缩设备并联运行,但实际会因系统负荷的不同而出现三类运行工况,分别是多台同时投运、一部分投运且一部分停运以及全部停运。不同工况条件下,明显变化的是再压缩设备进口的总流量。若总流量改变却还投用同样多的再压缩设备且不加任何调节,就会影响到工艺系统。
当装置满负荷状况下,再压缩系统全部的蒸汽再压缩设备多台同时都投运。上游设备压力的控制相当于再压缩设备进口压力的控制,即设备自身运行特性的指定。而再压缩设备出口介质压力的控制,则与再压缩设备下游的管网阻力特性密切相关。前者仅受到进口条件的约束,一旦进口条件确定,运行特性曲线就确定,而后者受到出口管系和再压缩设备自身运转条件的双重制约。两者存在较为明显的主从搭配关系。因此,针对装置满负荷运行条件的控制方法是通过再压缩设备进出口两个调节阀的主从搭配动作来满足上游的设备压力和再压缩设备出口介质压力恒定的要求。
当装置部分负荷运行状况下,再压缩系统的运行存在取舍问题。若投入的再压缩设备运行总额定流量大于装置总流量,则可能无法满足单台设备运转最小流量要求,影响设备的正常运行和使用寿命。若投入的再压缩设备总额定流量小于装置总流量,则全部的流量无法及时输出,肯定会导致上游设备压力的升高,直至发生灾情。因此,针对装置部分负荷运行条件的控制方法是通过未投运侧再压缩设备下游的调节阀来控制上游设备压力,而不影响投运再压缩设备的正常调控。
当装置蒸汽再压缩设备全部停运的状况下,此时蒸汽再压缩设备下游的设备处于停运状态,工艺上不再要求维持再压缩设备出口压力稳定,但上游设备压力还需要控制。因此,针对装置全部停运的控制方法是通过设置再压缩设备旁路管道短路掉再压缩设备,并且通过下游的调节阀来控制上游设备压力。
此外,由于再压缩设备并联控制系统需要应对的装置负荷状况多,压力波动范围大,流量变化区间宽,再压缩设备出口的调节阀选型需要考虑并联拓宽调节范围以及响应灵敏性等要求。
本发明与现有技术相比,具有的优点和有益效果如下:
(1)通过并联控制系统解决了多台蒸汽再压缩设备并联运行时难于同时保障上游运行设备压力稳定和再压缩设备出口介质压力稳定的难题,使得蒸汽利用率高,所需蒸汽消耗等成本减少,大大降低生产成本,同时保证产品的高质量和高产量;
(2)可应用在废气处理等众多行业中,应用前景广泛;
(3)搭配蒸汽再压缩设备的旁路后,还能很好的适应系统不同工况下的设计需求,消除了因 液相产品深度反应变质而可能引发系统设备事故的隐患,安全系数高。
附图说明
图1为的一种蒸汽再压缩设备(简称为MVR)的并联控制系统及其运行的控制工艺简图。
图中标号:1、解析塔,2、第一蒸汽压缩机,3、第一再沸器,4、第一冷却器,5、汽水分离器,6、第二蒸汽压缩机,7、第二再沸器,8、第二冷却器,9、第一旁路,10、第二旁路,A1、第一蒸汽压缩机的进口调节阀,A2、第二蒸汽压缩机的进口调节阀,B1、第一冷却器的出口调节阀,B2、第二冷却器的出口调节阀,C1、第一再沸器后的调节阀,C2、第二再沸器后的调节阀,D1、第一旁路的关断阀,D2、第二旁路的关断阀。
具体实施方式
为了加深对本发明的理解,下面将结合附图和具体实施例对本发明作进一步描述说明:
如图1所示,一种蒸汽再压缩设备的并联控制系统,蒸汽再压缩设备(简称为MVR)优选为蒸汽压缩机,该系统包括:解析塔1、第一蒸汽压缩机2及第一旁路9、第二蒸汽压缩机6及第二旁路10、第一再沸器3、第二再沸器7、第一冷却器4、第二冷却器8、汽水分离器5,各部件之间通过管路及阀门控制连接;其中,解析塔1塔顶出口并联连接第一蒸汽压缩机2及其第一旁路9和第二蒸汽压缩机6及其第二旁路10的入口,第一蒸汽压缩机2和第二蒸汽压缩机6的出口分别与相应的第一再沸器3和第二再沸器7的入口连接,第一旁路9和第二旁路10的出口分别与第一冷却器4和第二冷却器8的入口连接,第一再沸器3和第二再沸器7的出口分别与第一冷却器4和第二冷却器8的入口连接,第一冷却器4和第二冷却器8的出口并联于汽水分离器5的入口;第一旁路9和第二旁路10具有各自的关断阀D1、D2,第一蒸汽压缩机2和第二蒸汽压缩机6具有各自的进口调节阀A1、A2,第一再沸器3后和第二再沸器7后具有各自的调节阀C1、C2,第一冷却器4与汽水分离器5之间、第二冷却器8与汽水分离器5之间分别具有调节阀B1、B2。
如图1所示,一种蒸汽再压缩设备的并联控制系统运行时的控制方法/工艺流程,该并联控制系统的主工艺主流程是解析塔1塔顶不凝蒸汽依次经过两台蒸汽压缩机、两台再沸器和两台冷却器,最终进入汽水分离器5,次工艺流程是解析塔1塔顶不凝蒸汽经两台蒸汽压缩机对应设置的两条旁路直接进入相应的冷却器,最终也进入汽水分离器5。在控制系统中,设置两处起关键调节作用的阀门,分别是第一蒸汽再压缩设备2、第二蒸汽再压缩设备6进口的调节阀A1、A2,以及第一冷却器、第二冷却器冷却器和汽水分离器之间的调节阀 B1、B2。结合系统运行的三种工况说明如下:
工况一,第一蒸汽压缩机2和第二蒸汽压缩机6均投运,即两条主工艺流程线均正常工作。此时两条副工艺流程线即第一蒸汽压缩机2设置的第一旁路9和第二蒸汽压缩机6设置的第二旁路10的关断阀D1和D2均闭合,第一再沸器3和第二再沸器7后的调节阀C1和C2全开。塔顶不凝蒸汽依次经过两台蒸汽压缩机、两台再沸器和两台冷却器,调节阀A1、B1和调节阀A2、B2分别对自身所在的主工艺流程线起调节作用。以第一蒸汽压缩机2所在主工艺流程线为例:只动作A1(改变蒸汽压缩机运行特性),虽然能够控制解析塔1压力,但第一蒸汽压缩机2出口压力会随之变化;只动作B1(改变管网阻力特性),能够调节第一蒸汽压缩机2出口压力达标,但同时也会改变解析塔1压力,若解析塔1压力偏离设计值较多,仍需要回去调节A1。可见,解析塔1压力属于工艺流程的上游调控点,必须首先调好,才方便对下游的蒸汽压缩机出口压力作有效调控。所以,设计了用于工况一条件下的蒸汽再压缩设备的并联控制系统的控制方法/调控方案:由调节阀A1控制解析塔1压力,调节阀B1控制第一蒸汽压缩机2出口压力,前者为主、后者从动,系统出现运行波动时,先调节A1以满足解析塔1压力要求,再动作B1调节第一蒸汽压缩机2出口压力,第二蒸汽压缩机6所在的另一条主工艺流程线的调控方式与第一蒸汽压缩机2的主工艺流程线的调控方式相同。
工况二,第一蒸汽压缩机2工作、第二蒸汽压缩机6停运,或者第二蒸汽压缩机6工作、第一蒸汽压缩机2停运,即只有一条主工艺流程线投运。这时因解析塔1产出的不凝蒸汽总量超过单台蒸汽压缩机及其对应再沸器、冷却器的流量限制,此时需要蒸汽压缩机设置的旁路发挥作用。以第一蒸汽压缩机2投运、第二蒸汽压缩机6停运为例:此时,第一蒸汽压缩机2所对应设置的第一旁路9的关断阀D1关闭且第二蒸汽压缩机6所对应的第二旁路10的调节阀D2全开;第一蒸汽压缩机2的进口调节阀A1全开,联锁解除,解析塔1压力转而由第二冷却器8后的调节阀B2控制,而第一冷却器4的出口调节阀B1仍旧控制第一蒸汽压缩机2的出口压力,按此方案调控,既能维持第一蒸汽压缩机2稳定运行、省去了动作调节阀A1控制解析塔1压力的同时必须动作调节阀B1来调节第一蒸汽压缩机2出口压力的麻烦,又能有效维持解析塔1压力恒定。依据相同的原理,当第二蒸汽压缩机6工作、第一蒸汽压缩机2停运时的调控方案可通过上述方案类比得到。
工况三,第一蒸汽压缩机2和第二蒸汽压缩机6都停运,调节阀A1、C1和调节阀A2、C2均闭合。解析塔1产出的不凝蒸汽将全部通过第一蒸汽压缩机2设置的第一旁路9和第二蒸汽压缩机6设置的第二旁路10进入相对应的第一冷却器4和第二冷却器8,此时 由调节阀B1、B2控制解析塔1压力。
因系统操作压力波动范围大,且流量变化区间宽,调节阀的选型须考虑拓宽调节范围及响应灵敏性等方面的设计要求。
本发明提出的蒸汽再压缩设备并联运行控制策略,可为各行业涉及蒸汽再压缩设备并联运行系统的控制提供参考。所述示例的实施方案也可直接作为解决问题的参照。采用本发明提出的控制策略,既可以满足各个工况下的工艺要求、维持系统参数稳定,又能够满足单台再压缩设备高效持久运行的需要。所有涉及到的阀门管件全部得到充分的利用,思路简单清晰,系统安全稳定,显而易见是一种能保障巨大经济效益的策略。也正是因此,本发明所述的方法和设备具备在相关领域推广应用的前景。
以上对本发明及其实施方式进行了描述,应当说明的是:该描述仅用于说明而非限制性的,对于本领域的普通技术人员而言,在不脱离本发明的原理和精神的情况下,可以对这些具体实施方式进行多种变化、修改、替换和变型,这些不经创造性的劳动而设计出与本技术方案相同或相似的结构、装置、设备或产品及其使用方法和/或用途,均应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种蒸汽再压缩设备的并联控制系统,其特征在于,包括:解析塔(1)、第一蒸汽再压缩设备及第一旁路(9)、第二蒸汽再压缩设备及第二旁路(10)、第一再沸器(3)、第二再沸器(7)、第一冷却器(4)、第二冷却器(8)和汽水分离器(5),各部件之间通过管路及阀门控制连接;其中,解析塔(1)塔顶出口并联连接第一蒸汽再压缩设备及其第一旁路(9)和第二蒸汽再压缩设备及其第二旁路(10)的入口,第一蒸汽再压缩设备和第二蒸汽再压缩设备的出口分别与相应的第一再沸器(3)和第二再沸器(7)的入口连接,第一旁路(9)和第二旁路(10)的出口分别与第一冷却器(4)和第二冷却器(8)的入口连接,第一再沸器(3)和第二再沸器(7)的出口分别与第一冷却器(4)和第二冷却器(8)的入口连接,第一冷却器(4)和第二冷却器(8)的出口并联于汽水分离器(5)的入口。
  2. 根据权利要求1所述的蒸汽再压缩设备的并联控制系统,其特征在于:所述的的蒸汽再压缩设备的数量是两台或三台以上。
  3. 根据权利要求1或2所述的蒸汽再压缩设备的并联控制系统,其特征在于:所述的蒸汽再压缩设备为蒸汽压缩机。
  4. 根据权利要求1所述的蒸汽再压缩设备的并联控制系统,其特征在于:所述第一旁路和第二旁路具有各自的关断阀(D1、D2),所述第一蒸汽再压缩设备和第二蒸汽再压缩设备具有各自的进口调节阀(A1、A2),所述第一再沸器和第二再沸器后具有各自的调节阀(C1、C2),第一冷却器、第二冷却器与汽水分离器之间具有各自的调节阀(B1、B2)。
  5. 根据权利要求1所述的蒸汽再压缩设备的并联控制系统,其特征在于:所述蒸汽再压缩设备的前后均布置有调节阀,所述调节阀为流量范围宽泛且响应灵敏度高的调节阀,所述调节阀是指单个的调节阀或并联的两个以上的调节阀。
  6. 一种如权利要求1-5任意一项所述的蒸汽再压缩设备的并联控制系统运行的控制方法,其特征在于:通过蒸汽再压缩设备前后的调节阀分别控制蒸汽再压缩设备上游设备的压力和蒸汽再压缩设备出口介质压力,同时通过对再压缩设备旁路的调节来满足不同系统工况下的调节需要。
  7. 根据权利要求6所述的蒸汽再压缩设备的并联控制系统运行的控制方法,其特征在于:当蒸汽再压缩设备的并联控制系统满负荷运行时,该控制方法是通过再压缩设备进出口两个调节阀的主从搭配动作来满足上游的设备压力和再压缩设备出口介质压力恒定的要求。
  8. 根据权利要求6所述的蒸汽再压缩设备的并联控制系统运行的控制方法,其特征在于:当蒸汽再压缩设备的并联控制系统部分负荷运行时,通过未投运侧再压缩设备下游的调节阀来控制上游设备压力,而不影响投运再压缩设备的正常调控。
  9. 根据权利要求6所述的蒸汽再压缩设备的并联控制系统运行的控制方法,其特征在于:当蒸汽再压缩设备的并联控制系统全部停运时,通过设置再压缩设备旁路管道短路掉再压缩设备,并且通过下游的调节阀来控制上游设备压力。
  10. 根据权利要求9所述的蒸汽再压缩设备的并联控制系统运行的控制方法,其特征在于:当旁路短路掉对应的蒸汽再压缩设备实现不同系统负荷下的控制目标时,通过冷却器出口的调节阀来进行控制解析塔压力。
PCT/CN2017/075705 2016-03-08 2017-03-06 蒸汽再压缩设备的并联控制系统及控制方法 WO2017152813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610129539.6 2016-03-08
CN201610129539.6A CN105589352B (zh) 2016-03-08 2016-03-08 蒸汽再压缩设备的并联控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2017152813A1 true WO2017152813A1 (zh) 2017-09-14

Family

ID=55929018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075705 WO2017152813A1 (zh) 2016-03-08 2017-03-06 蒸汽再压缩设备的并联控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN105589352B (zh)
WO (1) WO2017152813A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726049A (zh) * 2017-11-22 2018-02-23 广东生和堂健康食品股份有限公司 一种蒸汽减压系统
CN109357163A (zh) * 2018-11-23 2019-02-19 中国石油工程建设有限公司 一种气态乙烷管道停输再启动系统及方法
CN113864644A (zh) * 2021-09-07 2021-12-31 山东电力工程咨询院有限公司 一种具备fcb功能机组的高压旁路阀减温水系统
CN114754291A (zh) * 2022-03-28 2022-07-15 浙江英集动力科技有限公司 一种自适应工况的反供蒸汽加压调控系统及方法
CN115095898A (zh) * 2022-06-01 2022-09-23 华能国际电力股份有限公司上安电厂 一种基于乏汽凝汽器的供热系统经济运行分析方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589352B (zh) * 2016-03-08 2018-01-12 北京国电龙源环保工程有限公司 蒸汽再压缩设备的并联控制系统及控制方法
CN108379858B (zh) * 2018-03-01 2020-11-27 青岛海湾精细化工有限公司 一种蒸发系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024210A (ja) * 2003-07-01 2005-01-27 Denso Corp 蒸気圧縮式冷凍機
CN202410615U (zh) * 2012-01-19 2012-09-05 杭州林达化工技术工程有限公司 一种可调节合成回路循环比的防喘振压缩循环装置
CN202744506U (zh) * 2012-07-06 2013-02-20 杭州林达化工技术工程有限公司 一种合成甲醇和合成甲烷联产设备
CN203208699U (zh) * 2013-04-24 2013-09-25 江苏科化节能环保设备有限公司 一种容积式压缩机mvr热泵蒸发系统
CN104560584A (zh) * 2014-12-31 2015-04-29 上海锦江电子技术工程有限公司 一种蒸粮食用列管节能换热器设备及酿造白酒节能系统
CN105589352A (zh) * 2016-03-08 2016-05-18 北京国电龙源环保工程有限公司 蒸汽再压缩设备的并联控制系统及控制方法
CN205540046U (zh) * 2016-03-08 2016-08-31 北京国电龙源环保工程有限公司 蒸汽再压缩设备的并联控制系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1002722A2 (ru) * 1981-10-14 1983-03-07 Предприятие П/Я А-1094 Система пароподготовки
CN101549211B (zh) * 2009-04-21 2011-07-20 西安交通大学 热泵精馏节能改造方法和装置
CN201555020U (zh) * 2009-11-30 2010-08-18 重庆智得热工工业有限公司 一种蒸汽喷射式余汽回收循环装置及系统
CN102654064B (zh) * 2012-05-15 2015-03-11 西安陕鼓动力股份有限公司 一种双进汽冷凝式汽轮机蒸汽切换的控制方法
CN104214123B (zh) * 2013-06-05 2016-12-28 中国石油天然气股份有限公司 一种双压缩机的联动控制装置及方法
CN204233807U (zh) * 2014-11-25 2015-04-01 北京石油化工工程有限公司 一种热旁路精馏塔顶压力控制系统
CN105363235B (zh) * 2015-12-07 2017-07-04 中建安装工程有限公司 一种脱除mtbe中硫化物的热泵精馏装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024210A (ja) * 2003-07-01 2005-01-27 Denso Corp 蒸気圧縮式冷凍機
CN202410615U (zh) * 2012-01-19 2012-09-05 杭州林达化工技术工程有限公司 一种可调节合成回路循环比的防喘振压缩循环装置
CN202744506U (zh) * 2012-07-06 2013-02-20 杭州林达化工技术工程有限公司 一种合成甲醇和合成甲烷联产设备
CN203208699U (zh) * 2013-04-24 2013-09-25 江苏科化节能环保设备有限公司 一种容积式压缩机mvr热泵蒸发系统
CN104560584A (zh) * 2014-12-31 2015-04-29 上海锦江电子技术工程有限公司 一种蒸粮食用列管节能换热器设备及酿造白酒节能系统
CN105589352A (zh) * 2016-03-08 2016-05-18 北京国电龙源环保工程有限公司 蒸汽再压缩设备的并联控制系统及控制方法
CN205540046U (zh) * 2016-03-08 2016-08-31 北京国电龙源环保工程有限公司 蒸汽再压缩设备的并联控制系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726049A (zh) * 2017-11-22 2018-02-23 广东生和堂健康食品股份有限公司 一种蒸汽减压系统
CN109357163A (zh) * 2018-11-23 2019-02-19 中国石油工程建设有限公司 一种气态乙烷管道停输再启动系统及方法
CN109357163B (zh) * 2018-11-23 2023-10-03 中国石油工程建设有限公司 一种气态乙烷管道停输再启动系统及方法
CN113864644A (zh) * 2021-09-07 2021-12-31 山东电力工程咨询院有限公司 一种具备fcb功能机组的高压旁路阀减温水系统
CN114754291A (zh) * 2022-03-28 2022-07-15 浙江英集动力科技有限公司 一种自适应工况的反供蒸汽加压调控系统及方法
CN114754291B (zh) * 2022-03-28 2023-11-24 浙江英集动力科技有限公司 一种自适应工况的反供蒸汽加压调控系统及方法
CN115095898A (zh) * 2022-06-01 2022-09-23 华能国际电力股份有限公司上安电厂 一种基于乏汽凝汽器的供热系统经济运行分析方法

Also Published As

Publication number Publication date
CN105589352A (zh) 2016-05-18
CN105589352B (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
WO2017152813A1 (zh) 蒸汽再压缩设备的并联控制系统及控制方法
WO2020187338A1 (zh) 基于pid控制的自适应智能化注水系统的注水方法
CN104481598A (zh) 一种火电厂汽轮机在线滑压优化方法
CN113107623B (zh) 一种双低压缸汽轮机低负荷运行时提升供热抽汽参数的装置及方法
CN108194156A (zh) 一种无冷却蒸汽旁路的低压缸零出力供热系统及方法
CN104680247A (zh) 一种工业循环水系统的优化方法
CN104232846B (zh) 一种向rh精炼炉供汽的系统及方法
WO2017152806A1 (zh) 蒸汽直接接触加热法分离系统的热负荷分配装置及方法
CN206018587U (zh) 一种蒸汽减温减压装置
Wang et al. Difference control of parallel streams temperatures
CN104074561B (zh) 一种热电联产汽轮机组节流调整系统及其以热定电的方法
CN207797861U (zh) 一种热风换热器冷凝水过冷排放系统
CN112197610A (zh) 一种燃煤机组一次调频复合控制系统及其工作方法
CN205540046U (zh) 蒸汽再压缩设备的并联控制系统
WO2016176983A1 (zh) 一种加氢工艺的控温方法及其设计方法和用途
CN106884689B (zh) 一种小型抽汽式供热汽轮机排汽降湿的方法
CN112284038B (zh) 一种烷烃脱氢的混合冷剂制冷式冷箱分离装置及其方法
CN204788017U (zh) 一种蒸气换热器
CN1175177C (zh) 多炉一机的高炉煤气余压能量回收透平发电工艺
JP2017057837A (ja) 蒸気タービン設備と蒸気タービン設備の運転方法
Tong et al. Optimization strategy for contradiction between intermitting oxygen consumption in converter steelmaking and continuous oxygen production by air separation unit
CN112413639B (zh) 加热炉群助燃风量智能控制方法和系统
Luyben Control structures for process piping systems
CN213609863U (zh) 一种芳烃联合装置的甲苯塔的塔顶取热装置
CN202251024U (zh) 防止离心式天然气压缩机机组段间异常超压装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762499

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762499

Country of ref document: EP

Kind code of ref document: A1