WO2017152806A1 - 蒸汽直接接触加热法分离系统的热负荷分配装置及方法 - Google Patents

蒸汽直接接触加热法分离系统的热负荷分配装置及方法 Download PDF

Info

Publication number
WO2017152806A1
WO2017152806A1 PCT/CN2017/075540 CN2017075540W WO2017152806A1 WO 2017152806 A1 WO2017152806 A1 WO 2017152806A1 CN 2017075540 W CN2017075540 W CN 2017075540W WO 2017152806 A1 WO2017152806 A1 WO 2017152806A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
reboiler
separator
primary
reboilers
Prior art date
Application number
PCT/CN2017/075540
Other languages
English (en)
French (fr)
Inventor
钟洪玲
王宇光
张启玖
付煊
Original Assignee
北京国电龙源环保工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京国电龙源环保工程有限公司 filed Critical 北京国电龙源环保工程有限公司
Publication of WO2017152806A1 publication Critical patent/WO2017152806A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Definitions

  • the invention relates to a process and a device for contacting, heat exchange, reacting and separating multiphase medium in the field of multiphase mass transfer and separation technology in the fields of thermal power, steel, pharmaceutical, metallurgy, cement and petrochemical industries, in particular to a direct contact of steam Heat load distribution device and method for heat exchange equipment of heating separation system.
  • Steam direct contact heating method is referred to as steam direct heating method.
  • Steam direct contact heating method is a kind of separation product which is driven by direct contact with steam, continuous supply of reaction heat or change of gas-liquid equilibrium to promote the separation process. Or the conventional technology of maintaining the target of material balance of the system, the method has the advantages of clear principle, sufficient equipment manufacturing and sufficient operating experience.
  • the mechanical recompression improves the quality of the steam in the separation system, which can greatly reduce the amount of steam required by the system and reduce the operating cost, so that this separation technology can be further The prospect of multi-domain promotion and application.
  • the heat load distribution of the heat exchange equipment in the specific steam direct heating separation system is also a key factor in accounting for the economic production cost. If the heat load is improperly distributed, the quality of the spent steam will be lower and the required steam consumption will be lower. Large, the production cost of products that are separated from the same output and quality will be greatly increased, making it difficult to carry out large-scale industrial production. In addition, if the separated multiphase product requires a high degree of vapor-liquid separation, the deterioration of the deep reaction of the liquid phase product may cause a hidden danger of system equipment accidents.
  • the present invention provides a heat load distribution device for each heat exchange device in a steam direct contact heating separation system with a steam recompression device
  • the heat load distribution device of the heat exchange device of the separation system includes a separator and a primary Reboiler, secondary reboiler, steam recompression equipment and its bypass and cooler, each equipment is connected by pipeline and valve
  • the steam recompression equipment is a steam compressor, which is provided with a bypass for passing The remaining non-condensable steam at the top of the separator
  • the hot side medium inlet of the primary reboiler is connected to the raw steam inlet line
  • the hot side medium outlet of the primary reboiler is connected to the condensate drain line
  • the left side of the separator is connected to the primary reboiler
  • the cold side medium inlet and the cold side medium outlet, the right side of the separator is connected to the cold side medium inlet and the cold side medium outlet of the secondary reboiler, the bottom
  • separator is connected to the steam compressor and the bypass connected to the cooler is controlled to open and close
  • control valve is connected to the pipeline connected to the cooler by the secondary reboiler and the control valve for controlling opening and closing.
  • the primary reboiler may be one or more, preferably two; the secondary reboiler may be one, two or more, preferably two; the steam compressor may be one, two One or more than three, preferably two; the bypass corresponding to the steam compressor may be one, two or more, preferably two; the cooler may be one, two or more, preferably Two.
  • the separator is a place where the multi-phase stream is directly contacted and reacted and separated. As long as the operating parameters such as temperature and pressure of the separator are controlled, the ideal separation effect can be achieved.
  • the non-condensed vapor after the reaction in the separator enters the secondary reboiler via the steam recompression device to become a heat source for the secondary reboiler.
  • the heat exchange core equipment of the separation system is a primary reboiler and a secondary reboiler; the primary reboiler and the secondary reboiler generate steam by heating the liquid phase in the separator, which is the reaction steam in the separator
  • the source is the premise of the normal operation of the separator and the main equipment for controlling the concentration of the separated liquid product.
  • the hot side medium of the primary reboiler is raw steam, the cold side medium is the liquid phase produced by separation in the separator; the hot side medium of the secondary reboiler is the non-condensed vapor containing the separated product at the top of the separator
  • the recompressed steam produced by the steam recompression plant which is also the liquid phase produced after separation in the separator. If the primary reboiler, the secondary reboiler operate abnormally or the heat transfer effect is not up to standard, it will directly affect the quality and output of the product. Therefore, the primary reboiler and the secondary reboiler are even more important than the separation. Device.
  • Reboilers at all levels have requirements for heat transfer and hot side flow.
  • the number of the primary reboiler, the secondary reboiler, the vapor compressor, and the bypass and the cooler are both two, preferably the first primary reboiler, the second primary reboiler, and the first secondary
  • the heat exchange capacity of the boiler and the second secondary reboiler are the same, and the flow rate is determined by the heat exchange amount.
  • the steam recompression equipment needs to design the pressure ratio and other parameters according to the above flow rate and heat exchange amount.
  • the piping, length and arrangement of the piping connected to the primary reboiler and the secondary reboiler are the same so that the cold side flow of the primary reboiler and the secondary reboiler are identical.
  • the heat side input heat exchange amount is the same and meets the design requirements to ensure that the liquid phase product produced by each reboiler has the same concentration and generates enough steam for the separator to use.
  • the present invention further provides a heat exchange heat exchange device in a steam direct contact heating separation system with a steam recompression device.
  • Load distribution method Under different system operating loads, the heat load distribution methods of each device are different:
  • the heat exchange load of each reboiler is reasonably distributed, and it is necessary to ensure that the secondary reboiler can accommodate all the non-condensed steam at the top of the separator.
  • the relevant parameters of the primary reboiler, secondary reboiler and steam recompression equipment are designed according to the heat exchange amount and flow rate requirements. The quantity and type can be adjusted according to system load requirements and site requirements.
  • the present invention has the following advantages and benefits:
  • Figure 1 is a schematic diagram of a heat load distribution device for a single set of heat exchange equipment in a steam direct contact heating separation system.
  • FIG. 2 is a schematic diagram of the heat load distribution device of the two sets of heat exchange equipment in the steam direct contact heating separation system
  • FIG. 1 is a schematic diagram of a heat load distribution device and a process flow of a single heat exchange device in a steam direct contact heating separation system, the separation system including a separator 2, a primary reboiler 1, a secondary reboiler 4, a steam compressor 3, its bypass 6 and the cooler 5, the equipment is connected by a pipeline and a valve; the hot side medium inlet of the primary reboiler 1 is connected to the raw steam inlet pipe.
  • the hot side medium outlet of the primary reboiler 1 is connected to the condensed water discharge line
  • the left side of the separator 2 is connected to the cold side medium inlet and the cold side medium outlet of the primary reboiler 1
  • the right side of the separator 2 is connected to the secondary reboiler
  • the cold side medium inlet and the cold side medium outlet of the separator 2 is connected to the liquid phase outlet
  • the gas phase outlet at the top of the separator 2 is connected to the inlet of the vapor compressor 3 and its bypass 6 in parallel
  • the outlet connection of the steam compressor 3
  • the hot side medium inlet of the secondary reboiler 4 is connected to the inlet of the cooler 5
  • the hot side medium outlet of the secondary reboiler 4 is connected to the inlet of the cooler 5
  • the outlet of the cooler 5 is connected to the separated product Export.
  • FIG. 2 is a schematic diagram of a heat load distribution device and a process flow of a dual heat exchange device in a steam direct contact heating separation system, the separation system including a separator 2, a first primary reboiler 1-1, and a second primary reboiler 1-2, a first secondary reboiler 4-1, a second secondary reboiler 4-2, a first steam compressor 3-1 and its first bypass 6-1, a second steam compressor 3 -2 and its second bypass 6-2, first cooler 5-1 and second cooler 5-2, each device is connected by a pipe and a valve; the first primary reboiler 1-1 and the second The hot side medium inlet of the primary reboiler 1-2 is connected to the raw steam passage line, and the hot side medium outlets of the first primary reboiler 1-1 and the second primary reboiler 1-2 are connected to the condensed water discharge line.
  • the left side of the separator 2 is connected to the cold side medium inlet and the cold side medium outlet of the two primary reboilers, and the right side of the separator 2 is connected to the cold side medium inlet and the cold side medium outlet of the two secondary reboilers, the separator 2
  • the bottom is connected to the liquid phase outlet, and the gas phase outlet at the top of the separator is connected to the inlet of the first steam compressor 3-1 and the second steam compressor 3-2 in parallel and the bypass of the two steam compressors.
  • the outlets of the first steam compressor 3-1 and the second steam compressor 3-2 are respectively connected to the hot side medium inlets of the first secondary reboiler 4-1 and the second secondary reboiler 4-2, first The outlets of the bypass 6-1 and the second bypass 6-2 are connected to the inlets of the first cooler 5-1 and the second cooler 5-2, respectively, the first secondary reboiler 4-1 and the second secondary The hot side medium outlets of the reboiler 4-2 are connected to the inlets of the first cooler 5-1 and the second cooler 5-2, respectively, and the outlets of the two coolers are connected to the separated product outlet.
  • the separator 2 is a place where the multiphase stream is directly contacted and reacted and separated; the primary reboiler 1 and the secondary reboiler 4 in the separation system need to ensure that one or more secondary reboilers 4 can accommodate the entire Non-condensable steam at the top of the separator; one or more steam compressors 3 and their bypass 6 are used to pass the remaining non-condensable steam at the top of the separator; one or more primary reboilers 1 and one
  • the heat exchange amount of the plurality of secondary reboilers 4 is the same, and the flow rate is determined by the heat exchange amount.
  • the pressure ratio of the steam compressor 3 and the like are designed according to the above flow rate and heat exchange amount.
  • the piping, length and arrangement of one or more primary reboilers 1 and one or more secondary reboilers 4 are the same, such that one or more primary reboilers 1 and one or more The flow on the cold side of the secondary reboiler 4 is uniform.
  • the heat exchange input of one or more primary reboilers 1 and one or more secondary reboilers 4 is also the same and meets the design requirements to ensure the liquid phase product produced by each reboiler.
  • the concentration is consistent and enough steam is generated for the separator to use.
  • the hot side medium inlet of the primary reboiler 1 is supplied with raw steam
  • the hot side medium outlet of the primary reboiler 1 is discharged with condensed water
  • the initially separated liquid in the separator 2 Phase rebate
  • the inlets of the first and second reboilers 4 enter the primary reboiler 1 and the secondary reboiler 4 to absorb heat and produce a portion of the water vapor. After returning to the separator 2, the liquid product is discharged from the bottom of the separator 2, and the steam is discharged.
  • the reaction is carried out in the separator 2, and the non-condensed vapor containing the separated product after the reaction is discharged from the top of the separator, and then sequentially enters the steam compressor 3, the secondary reboiler 4 and the cooler 5, and the remaining remaining at the top of the separator 2
  • the non-condensable steam of the steam compressor 3 line can pass directly into the cooler 5 through the bypass 6, and the final separated product is discharged from the product outlet of the separated product connected to the cooler.
  • the hot side medium inlets of the first primary reboiler 1-1 and the second primary reboiler 1-2 are supplied with steam, the first primary reboiler 1 1 and the hot side medium outlet of the second primary reboiler 1-2 flows out of the condensed water, and the initially separated liquid phase in the separator 2 passes through the first primary reboiler 1-1 and the second primary reboiler 1-2, respectively.
  • the inlets of the first secondary reboiler 4-1 and the second secondary reboiler 4-2 enter the first primary reboiler 1-1, the second primary reboiler 1-2, and the first secondary, respectively
  • the reboiler 4-1 and the second secondary reboiler 4-2 absorb heat and produce a part of water vapor. After returning to the separator 2, the liquid product is discharged from the bottom of the separator 2, and the steam is first reacted in the separator 2.
  • the non-condensed vapor containing the separated product is discharged from the top of the separator 2, and then sequentially enters two steam compressors in parallel, two secondary reboilers in parallel, and two coolers in parallel, and the top of the separator 2 remains.
  • the non-condensed steam that has not passed through the first steam compressor 3-1 and the second steam compressor 3-2 can directly enter the first through the corresponding first bypass 6-1 and second bypass 6-2 A cooler 5-1 and a second cooler 5-2, the last separated product is discharged from the product outlet of the separated product connecting the two coolers.
  • the preferred embodiment is the cold of the first primary reboiler 1-1, the second primary reboiler 1-2, the first secondary reboiler 4-1 and the second secondary reboiler 4-2.
  • the side flow rates are uniform due to the heat exchange of the first primary reboiler 1-1, the second primary reboiler 1-2, the first secondary reboiler 4-1 and the second secondary reboiler 4-2
  • the amounts are the same, and the liquid product concentrations produced by each are the same.
  • each reboiler When the top of the separator is not fully vaporized (ie 100% load), the four reboilers operate simultaneously and only this mode of operation. Each reboiler is assigned a 25% heat load. Each secondary reboiler receives 50% of the total uncondensed vapor at the top of the separator;
  • the first primary reboiler, the second primary reboiler, the first secondary reboiler or the second secondary reboiler are operated at 100% load of the output of the device
  • the remaining separator is not condensed through the second bypass or the first bypass into the second cooler or the first cooler;
  • the first primary reboiler and the second primary reboiler operate and both operate at 100% load of the plant output, the first secondary reboiler and the second The stage reboiler and the corresponding first steam compressor and the second steam compressor are all stopped, and the steam at the top of the separator directly enters the cooler through the first bypass and the second bypass;
  • any primary reboiler and any secondary reboiler work at 100% load of the output of the equipment. At this time, the top of the separator does not condense steam. Accepted by a working secondary reboiler;
  • any primary reboiler works at 100% load of the equipment output, with two secondary reboilers working at 50% load of the equipment output, such as for power saving Or the steam compressor fails, replacing one of the secondary reboilers with a primary reboiler, and the excess non-condensable steam at the top of the separator enters the cooler through the bypass of the shutdown steam compressor;
  • the heat load distribution device and method for the heat exchange equipment of the steam direct contact separation system proposed by the invention can not only meet the process requirements under different load conditions, maintain the stability of the system parameters, meet the set output and quality of the product, and can guarantee The stable operation of the core equipment.
  • the distribution is simple and clear, the logic control is convenient, the system runs stably, and the huge economic benefit can be guaranteed. Therefore, the heat load distribution method and device system of the present invention have broad application prospects in related fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

一种带蒸汽再压缩设备的蒸汽直接接触加热法多相分离系统换热设备的热负荷分配装置及方法,包括分离器(2)、初级再沸器(1,1-1,1-2)、次级再沸器(4,4-1,4-2)、蒸汽再压缩设备(3,3-1,3-2)及其旁路(6,6-1,6-2)、冷却器(5,5-1,5-2)。通过初级再沸器(1,1-1,1-2)、次级再沸器(4,4-1,4-2)的流量及换热量的合理分配,能够保障分离产品的质量和产量;搭配蒸汽再压缩设备的旁路(6,6-1,6-2)后,还能很好的适应系统不同工况下的设计需求。该方法及装置,解决了带蒸汽再压缩设备的蒸汽直接接触法分离系统中关于热负荷分配的核心问题,能简单高效地达成工艺目标,不凝蒸汽利用率高、所需消耗蒸汽量少、大大降低生产成本,带来可观的经济效益。

Description

蒸汽直接接触加热法分离系统的热负荷分配装置及方法 技术领域
本发明涉及火电、钢铁、制药、冶金、水泥和石油化工等行业多相传质与分离技术领域中多相介质接触、换热、反应及分离的工艺及其设备,具体地涉及一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置及方法。
背景技术
蒸汽直接接触加热法简称蒸汽直接加热法,蒸汽直接接触加热法的分离技术是一类通过蒸汽与介质直接接触、持续提供反应热或改变气液平衡来推动分离过程有效进行、从而实现分离目的产物或维持系统物料平衡等目标的常规技术,该方法具备原理清晰,设备制造、运行经验充足等优点。通过在蒸汽直接加热法分离系统中加入蒸汽压缩机等设备,经过机械再压缩提升分离系统乏汽的品质,能大幅减少系统所需生蒸汽量,降低运行成本,使此项分离技术具备在更多领域推广应用的前景。
但具体蒸汽直接加热分离系统中换热设备的热负荷分配也是核算经济生产成本的一大重要关键因素,此分离技术如果热负荷分配不当,会导致乏汽品质较低,所需消耗蒸汽量较大,分离同样产量和质量的产品消耗的生产成本也会相应大幅提升,难以进行大规模工业化生产。另外,如果分离的多相产品要求汽液分离度较高,液相产品深度反应的变质可能引发系统设备事故的隐患。
发明内容
为了解决上述问题,本发明提供一种带蒸汽再压缩设备的蒸汽直接接触加热法分离系统中各级换热设备热负荷分配装置,该分离系统换热设备的热负荷分配装置包括分离器、初级再沸器、次级再沸器、蒸汽再压缩设备及其旁路、冷却器,各设备间通过管路和阀门连接;蒸汽再压缩设备为蒸汽压缩机,其设有旁路,用来通过分离器顶部剩余的不凝蒸汽;初级再沸器的热侧介质入口连接生蒸汽通入管路,初级再沸器的热侧介质出口连接冷凝水排出管路,分离器左侧连接初级再沸器的冷侧介质入口和冷侧介质出口,分离器右侧连接次级再沸器的冷侧介质入口和冷侧介质出口,分离器底部连接液相出口,分离器顶部的气相出口连接蒸汽压缩机及其旁路的入口,蒸汽压缩机的出口连接次级再沸器的热侧介质入口,旁路的出口和次级再沸器的热侧介质出口都连接到冷却器的入口,分离器通过旁路与冷却器的入口连接;冷却器的出口连接分离产物的产品出口。
其中,分离器与蒸汽压缩机连接的管路以及与冷却器连接的旁路上连接有控制开闭 的控制阀门;次级再沸器与冷却器连接的管路上连接有控制开闭的控制阀门。
其中,初级再沸器可以是一台或者多台,优选为两台;次级再沸器可以是一台、两台或者三台以上,优选为两台;蒸汽压缩机可以是一台、两台或者三台以上,优选为两台;与蒸汽压缩机对应的旁路可以是一条、两条或者三条以上,优选为两条;冷却器可以是一台、两台或者三台以上,优选为两台。
其中,分离器是多相物流直接接触并反应分离的场所,只要控制好分离器的温度、压力等操作参数,就可以达到理想的分离效果。分离器内反应后的不凝蒸汽经由蒸汽再压缩设备进入次级再沸器而成为次级再沸器的热源。
其中,该分离系统的换热核心设备是初级再沸器和次级再沸器;初级再沸器和次级再沸器通过加热分离器内的液相而生成蒸汽,是分离器中反应蒸汽的来源,既是分离器正常运行的前提,也是控制分离出的液相产品浓度的主要设备。初级再沸器的热侧介质为生蒸汽,冷侧介质为分离器内经分离后产出的液相;次级再沸器的热侧介质为分离器顶部的内含分离产物的不凝蒸汽经蒸汽再压缩设备产生的再压缩蒸汽,冷侧介质也是分离器内经分离后产出的液相。如果初级再沸器、次级再沸器运行失常或是换热效果不达标,就会直接影响到产品的质量和产量,所以,初级再沸器和次级再沸器的重要性甚至超过分离器。
各级再沸器有换热量和热侧流量的要求。当初级再沸器、次级再沸器、蒸汽压缩机及其旁路、冷却器的数量都为两个时,优选第一初级再沸器、第二初级再沸器和第一次级再沸器、第二次级再沸器的换热量均相同,流量由换热量决定。蒸汽再压缩设备需根据上述流量及换热量设计压比等参数。由于设备布置及调控的需要,优选与初级再沸器和次级再沸器连接的管道规格、长度和布置均相同,使得初级再沸器和次级再沸器的冷侧流量一致。优选热侧输入的换热量相同并达到设计要求,以保证每台再沸器产出的液相产品浓度一致并生成足够多的蒸汽供分离器使用。
为了解决各再沸器的热负荷如何分配以及能否有效达到额定要求这一关键问题,本发明进一步提供了一种带蒸汽再压缩设备的蒸汽直接接触加热法分离系统中各级换热设备热负荷分配方法。不同系统运行负荷下,各设备热负荷分配方法不同:
当系统满负荷时,所有的初级再沸器和次级再沸器的热负荷均匀分配,冷侧经分离反应后的液相产物获得的换热量相同,各再沸器产生的蒸汽量也相同。
当系统处于低负荷时,受到蒸汽再压缩设备运行条件的限制或从经济性角度考虑,所有的初级再沸器运行,所有的次级再沸器及其对应的蒸汽再压缩设备均停运,分离器顶部不凝蒸汽通过旁路直接进入系统下游的设备。
当系统处于低负荷和满负荷之间的工况点时,基本存在两种运行情况。一是初级再沸器、次级再沸器均分总的换热量,且分离器顶部的不凝蒸汽流量恰好满足次级再沸器的流量要求;二是次级再沸器部分投入运行,分离器顶部不凝蒸汽总流量及其经再压缩后的总焓值都高于投运次级再沸器能够接纳的限度,强行接纳将引发换热量超标和系统阻力提升、工艺参数剧变,导致冷侧经分离反应的液相产物温度过高而深度反应变质,必须将多余的蒸汽外排。
根据分离器顶部不凝蒸汽总量合理分配各再沸器的换热负荷,同时需保证次级再沸器能容纳全部的分离器顶部不凝蒸汽。根据换热量及流量要求设计初级再沸器、次级再沸器及蒸汽再压缩设备的相关参数。其数量及型式可根据系统负荷要求及场地要求调整。
本发明与现有技术相比,具有的优点和有益效果如下:
(1)解决带蒸汽再压缩设备的蒸汽直接接触法分离系统中关于热负荷分配的核心问题,使得热负荷分配合适,使得不凝蒸汽利用率高,所需消耗蒸汽量较少,大大降低消耗的生产成本;
(2)通过初级再沸器、次级再沸器的流量及换热量的合理分配,能够保障分离产品的质量和产量;
(3)搭配蒸汽再压缩设备的旁路后,还能很好的适应系统不同工况下的设计需求,消除了因液相产品深度反应变质而可能引发系统设备事故的隐患。
附图说明
图1为本蒸汽直接接触加热法分离系统中单套换热设备热负荷分配装置示意图。
图2为本蒸汽直接接触加热法分离系统中双套换热设备热负荷分配装置示意图
图中标号:1、初级再沸器,1-1、第一初级再沸器,1-2、第二初级再沸器,2、分离器,3、蒸汽压缩机,3-1、第一蒸汽压缩机,3-2、第二蒸汽压缩机,4、次级再沸器,4-1、第一次级再沸器,4-2、第二次级再沸器,5、冷却器,5-1、第一冷却器,5-2、第二冷却器,6、旁路,6-1、第一旁路,6-2、第二旁路。
具体实施方式
为了加深对本发明的理解,下面将结合附图和具体实施例对本发明作进一步描述说明:
图1为蒸汽直接接触加热法分离系统中单套换热设备热负荷分配装置和工艺流程的示意图,该分离系统包括分离器2、初级再沸器1、次级再沸器4、蒸汽压缩机3及其旁路6和冷却器5,各设备间通过管路和阀门连接;初级再沸器1的热侧介质入口连接生蒸汽通入管路, 初级再沸器1的热侧介质出口连接冷凝水排出管路,分离器2左侧连接初级再沸器1的冷侧介质入口和冷侧介质出口,分离器2右侧连接次级再沸器4的冷侧介质入口和冷侧介质出口,分离器2底部连接液相出口,分离器2顶部的气相出口连接并联的蒸汽压缩机3及其旁路6的入口,蒸汽压缩机3的出口连接次级再沸器4的热侧介质入口,旁路6的出口连接冷却器5的入口,次级再沸器4的热侧介质出口连接冷却器5的入口,冷却器5的出口连接分离产物出口。
图2为蒸汽直接接触加热法分离系统中双套换热设备热负荷分配装置和工艺流程的示意图,该分离系统包括分离器2、第一初级再沸器1-1、第二初级再沸器1-2、第一次级再沸器4-1、第二次级再沸器4-2、第一蒸汽压缩机3-1及其第一旁路6-1、第二蒸汽压缩机3-2及其第二旁路6-2、第一冷却器5-1和第二冷却器5-2,各设备间通过管路和阀门连接;第一初级再沸器1-1和第二初级再沸器1-2的热侧介质入口连接生蒸汽通入管路,第一初级再沸器1-1和第二初级再沸器1-2的热侧介质出口连接冷凝水排出管路,分离器2左侧连接两台初级再沸器的冷侧介质入口和冷侧介质出口,分离器2右侧连接两台次级再沸器的冷侧介质入口和冷侧介质出口,分离器2底部连接液相出口,分离器顶部的气相出口连接并联的第一蒸汽压缩机3-1和第二蒸汽压缩机3-2以及两台蒸汽压缩机的旁路的入口,第一蒸汽压缩机3-1和第二蒸汽压缩机3-2的出口分别连接第一次级再沸器4-1和第二次级再沸器4-2的热侧介质入口,第一旁路6-1和第二旁路6-2的出口分别连接第一冷却器5-1和第二冷却器5-2的入口,第一次级再沸器4-1和第二次级再沸器4-2的热侧介质出口分别连接第一冷却器5-1和第二冷却器5-2的入口,两台冷却器的出口均连接分离产物出口。
分离器2是多相物流直接接触并反应分离的场所;该分离系统中的初级再沸器1和次级再沸器4,需要保证一台或多台次级再沸器4能容纳全部的分离器顶部的不凝蒸汽;一台或多台蒸汽压缩机3及其设置的旁路6是用来通过分离器顶部剩余的不凝蒸汽;一台或多台初级再沸器1和一台或多台次级再沸器4的换热量均相同,流量由换热量决定。蒸汽压缩机3的压比等参数根据上述流量及换热量设计。与一台或多台初级再沸器1和一台或多台次级再沸器4连接的管道规格、长度和布置均相同,使得一台或多台初级再沸器1和一台或多台次级再沸器4的冷侧流量一致。一台或多台初级再沸器1和一台或多台次级再沸器4的热侧输入的换热量也相同并达到设计要求,以保证每台再沸器产出的液相产品浓度一致并生成足够多的蒸汽供分离器使用。
以图1为例,热负荷分配装置工作时:初级再沸器1的热侧介质入口通入生蒸汽,初级再沸器1的热侧介质出口流出冷凝水,分离器2内经初步分离的液相分别通过初级再沸 器1和次级再沸器4的入口进入初级再沸器1和次级再沸器4吸热并产出部分水蒸汽,返回分离器2后液相产品从分离器2底部排出,蒸汽则先在分离器2内反应,反应后包含分离产物的不凝蒸汽从分离器顶部排出,然后依次进入蒸汽压缩机3、次级再沸器4和冷却器5,分离器2顶部剩余的未经过蒸汽压缩机3管路的不凝蒸汽可通过旁路6直接进入冷却器5,最后分离后的产物由连接冷却器的分离产物的产品出口排出。
以图2为例,热负荷分配装置工作时:第一初级再沸器1-1和第二初级再沸器1-2的热侧介质入口通入生蒸汽,第一初级再沸器1-1和第二初级再沸器1-2的热侧介质出口流出冷凝水,分离器2内经初步分离的液相分别通过第一初级再沸器1-1、第二初级再沸器1-2、第一次级再沸器4-1和第二次级再沸器4-2的入口分别进入第一初级再沸器1-1、第二初级再沸器1-2、第一次级再沸器4-1和第二次级再沸器4-2吸热并产出部分水蒸汽,返回分离器2后液相产品从分离器2底部排出,蒸汽则先在分离器2内反应,反应后包含分离产物的不凝蒸汽从分离器2顶部排出,然后依次进入并联的两台蒸汽压缩机、并联的两台次级再沸器和并联的两台冷却器,分离器2顶部剩余的未经过第一蒸汽压缩机3-1和第二蒸汽压缩机3-2管路的不凝蒸汽可通过相对应的第一旁路6-1和第二旁路6-2分别直接进入第一冷却器5-1和第二冷却器5-2,最后分离后的产物由连接两台冷却器的分离产物的产品出口排出。
图2中,优选方案为第一初级再沸器1-1、第二初级再沸器1-2、第一次级再沸器4-1和第二次级再沸器4-2的冷侧流量都一致,由于第一初级再沸器1-1、第二初级再沸器1-2、第一次级再沸器4-1和第二次级再沸器4-2的换热量都相同,各自产出的液相产品浓度就是相同的。
由于实际汽液相分离过程中会遇到不凝蒸汽的负荷量不同,需要采用不同的热负荷分配方法,结合分离器操作温度和压力,通过再压缩设备压比的设计、两级再沸器的选型计算等能够实现系统热量和流量合理分配的设计目标。
结合图2,列出具体的几种运行方式如下:
运行方式一:
当分离器顶部不凝蒸汽满负荷(即100%负荷)时,四台再沸器同时运行,且只有这一种运行模式。每台再沸器都分配25%的热负荷。每台次级再沸器各接纳50%的分离器顶部总不凝蒸汽量;
运行方式二:
当分离器顶部不凝蒸汽为75%负荷时,四台再沸器均运行在设备出力的75%负荷下;
运行方式三:
当分离器顶部不凝蒸汽为75%负荷时,第一初级再沸器、第二初级再沸器,第一次级再沸器或第二次级再沸器运行在设备出力100%负荷下,其余分离器顶部不凝蒸汽通过第二旁路或第一旁路进入第二冷却器或第一冷却器;
运行方式四:
当分离器顶部不凝蒸汽为50%负荷时,第一初级再沸器和第二初级再沸器运行且都工作在设备出力的100%负荷下,第一次级再沸器和第二次级再沸器及对应的第一蒸汽压缩机和第二蒸汽压缩机均停运,分离器顶部蒸汽通过第一旁路、第二旁路直接进入冷却器;
运行方式五:
当分离器顶部不凝蒸汽为50%负荷时,任意一台初级再沸器和任意一台次级再沸器都工作在设备出力的100%负荷下,此时分离器顶部不凝蒸汽恰好能被工作的次级再沸器接纳;
运行方式六:
当分离器顶不凝蒸汽为50%负荷时,任意一台初级再沸器工作在设备出力100%负荷,带两台次级再沸器工作在设备出力50%负荷,如出于节电考虑或蒸汽压缩机故障,将其中一台次级再沸器替换为一台初级再沸器,分离器顶部多余不凝蒸汽通过停运蒸汽压缩机的旁路进入冷却器;
运行方式七:
当分离器顶不凝蒸汽小于50%负荷时,也可以有类似上述运行方式四到六的三种运行模式,通过降设备负荷达到运行目标。但从经济性角度考虑,优选两台初级再沸器运行,两台次级再沸器及对应的两台蒸汽压缩机全部停运,分离器顶部不凝蒸汽从旁路直接进入冷却器这一分配方法。
本发明提出的蒸汽直接接触法分离系统换热设备的热负荷分配装置和方法,既可以满足不同负荷工况下的工艺要求、维持系统参数稳定、满足产品的设定产量和质量,又能够保障核心设备的稳定运行。分配简单清晰,逻辑控制方便,系统运行稳定,能保障巨大的经济效益,因此本发明所述的热负荷分配方法和装置系统在相关领域具备广阔的应用前景。
应当说明的是:以上对本发明及其实施方式进行了描述,上述实施例仅仅用于描述和说明,参照特定的实例所做的描述说明和附图都应理解为是说明性的而非限制性的,对于本领域的普通技术人员而言,在不脱离本发明的原理和精神的情况下,可以对这些具体实施方式进行多种变化、修改、等效替换和变型,这些不经创造性的设计出与本技术方案相同或相似的结构装置或产品及其使用方法,均应落在本发明的保护范围之内。

Claims (10)

  1. 一种带蒸汽再压缩设备的蒸汽直接接触加热法分离系统换热设备的热负荷分配装置,其特征在于:该分离系统换热设备的热负荷分配装置包括分离器(2)、初级再沸器(1)、次级再沸器(4)、蒸汽压缩机(3)和冷却器(5),蒸汽压缩机(3)设有旁路;各设备间通过管路和阀门连接;
    所述初级再沸器(1)的热侧介质入口连接生蒸汽通入管路,初级再沸器(1)的热侧介质出口连接冷凝水排出管路,初级再沸器(1)的冷侧介质入口与冷侧介质出口通过管路分别与分离器(2)连接;
    所述分离器(2)的左侧连接初级再沸器(1)的冷侧介质入口和冷侧介质出口,分离器(2)的右侧连接次级再沸器(4)的冷侧介质入口和冷侧介质出口,分离器(2)的底部连接液相出口,分离器(2)的顶部连接气相出口、并通过管路连接蒸汽压缩机(3)及其旁路(6)的入口;
    所述旁路(6)的出口和次级再沸器(4)的热侧介质出口都连接到冷却器(5)的入口;
    所述蒸汽压缩机(3)通过管路与次级再沸器(4)的热侧介质入口连接;
    所述分离器(2)通过旁路与冷却器(5)的入口连接;
    所述冷却器(5)的出口连接分离产物的产品出口。
  2. 根据权利要求1所述的一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置,其特征在于:所述初级再沸器(1)和次级再沸器(4)的换热量均相同,所述初级再沸器(1)和次级再沸器(4)的冷测流量均相同。
  3. 根据权利要求1或2所述的一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置,其特征在于:所述分离器(2)与蒸汽压缩机(3)连接的管路以及分离器(2)与冷却器(5)连接的旁路(6)上连接有控制开闭的控制阀门;所述次级再沸器(4)与冷却器(5)连接的管路上连接有控制开闭的控制阀门。
  4. 根据权利要求1至3任意一项所述的一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置,其特征在于:初级再沸器(1)的数量为两台,分别为第一初级再沸器(1-1)和第二初级再沸器(1-2);次级再沸器(4)的数量为两台,分别为第一次级再沸器(4-1)和第二次级再沸器(4-2);蒸汽压缩机(3)的数量为两台,分别为第一蒸汽压缩机(3-1)和第二蒸汽压缩机(3-2);旁路(6)的数量为两条且与两台蒸汽压缩机分别对应,分别为第一旁路(6-1)和第二旁路(6-2);冷却器(5)的数量为两台,分别为第一冷却器(5-1)和第二冷却器(5-2)。
  5. 根据权利要求1至3任意一项所述的一种蒸汽直接接触加热法分离系统换热设备的热负 荷分配装置,其特征在于:初级再沸器(1)的数量为三台以上;次级再沸器(4)的数量为三台以上;蒸汽压缩机(3)的数量为三台以上;旁路(6)的数量为三条以上且与每台蒸汽压缩机分别对应;冷却器(5)的数量为三台以上。
  6. 如权利要求1-5中任意一项所述的一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置的分配方法,其特征在于:初级再沸器的热侧介质入口通入生蒸汽,初级再沸器的热侧介质出口流出冷凝水,分离器内经初步分离的液相分别通过初级、次级再沸器的入口进入初级再沸器和次级再沸器吸热并产出部分水蒸汽,返回分离器后液相产品从分离器底部排出,蒸汽则先在分离器内反应,反应后包含分离产物的不凝蒸汽从分离器顶部排出,然后依次进入蒸汽压缩机、次级再沸器和冷却器,分离器顶部剩余的未经过蒸汽压缩机管路的不凝蒸汽通过旁路直接进入冷却器,最后分离后的产物由连接冷却器的产品出口排出;为了满足系统的热负荷的要求,通过调整所有的初级再沸器、次级再沸器的负荷,实现蒸汽直接接触加热法分离系统换热设备的热负荷分配。
  7. 根据权利要求6所述的一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置的分配方法,其特征在于:当系统满负荷时,所有的初级再沸器和次级再沸器的热负荷均匀分配,冷侧经分离反应后的液相产物获得的换热量相同,各再沸器产生的蒸汽量也相同。
  8. 根据权利要求6所述的一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置的分配方法,其特征在于:当系统处于低负荷时,所有的初级再沸器运行,所有的次级再沸器及其对应的蒸汽再压缩设备均停运,分离器顶部不凝蒸汽直接通过旁路进入系统下游的设备。
  9. 根据权利要求6所述的一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置的分配方法,其特征在于:当系统处于低负荷和满负荷之间的工况点时,所有的初级再沸器和次级再沸器全部运行且均分总的换热量,且分离器顶部的不凝蒸汽流量恰好满足次级再沸器的流量要求。
  10. 根据权利要求6所述的一种蒸汽直接接触加热法分离系统换热设备的热负荷分配装置的分配方法,其特征在于:当系统处于低负荷和满负荷之间的工况点时,次级再沸器部分投入运行,分离器顶部不凝蒸汽总流量及其经再压缩后的总焓值都高于投运次级再沸器能够接纳的限度,必须通过旁路将多余的蒸汽外排。
PCT/CN2017/075540 2016-03-08 2017-03-03 蒸汽直接接触加热法分离系统的热负荷分配装置及方法 WO2017152806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610129538.1A CN105588472B (zh) 2016-03-08 2016-03-08 蒸汽直接接触加热法分离系统的热负荷分配装置的分配方法
CN201610129538.1 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017152806A1 true WO2017152806A1 (zh) 2017-09-14

Family

ID=55928238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075540 WO2017152806A1 (zh) 2016-03-08 2017-03-03 蒸汽直接接触加热法分离系统的热负荷分配装置及方法

Country Status (2)

Country Link
CN (1) CN105588472B (zh)
WO (1) WO2017152806A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855900A (zh) * 2019-04-03 2019-06-07 无锡化工装备股份有限公司 一种升降膜式蒸发器综合测试实验系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588472B (zh) * 2016-03-08 2018-01-12 北京国电龙源环保工程有限公司 蒸汽直接接触加热法分离系统的热负荷分配装置的分配方法
CN108379858B (zh) * 2018-03-01 2020-11-27 青岛海湾精细化工有限公司 一种蒸发系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549211A (zh) * 2009-04-21 2009-10-07 西安交通大学 热泵精馏节能改造方法和装置
US20120000244A1 (en) * 2010-06-30 2012-01-05 Uop Llc Heat pump distillation for <50% light component in feed
CN102875329A (zh) * 2012-10-22 2013-01-16 莒南县凯利化工有限公司 一种热泵精馏分离异戊醇同分异构体的工艺及装置
CN105588472A (zh) * 2016-03-08 2016-05-18 北京国电龙源环保工程有限公司 蒸汽直接接触加热法分离系统的热负荷分配装置及方法
CN205537296U (zh) * 2016-03-08 2016-08-31 北京国电龙源环保工程有限公司 蒸汽直接接触加热法分离系统的热负荷分配装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2419723A1 (de) * 1974-04-24 1975-12-11 Bayer Ag Trennung von gemischen mit nahe benachbarten siedepunkten im vakuum
CN1006786B (zh) * 1984-04-26 1990-02-14 新日铁化学株式会社 苯乙烯类的蒸馏方法
CN104941393A (zh) * 2015-07-07 2015-09-30 中国华能集团清洁能源技术研究院有限公司 一种回收二氧化碳再生气余热的再生系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549211A (zh) * 2009-04-21 2009-10-07 西安交通大学 热泵精馏节能改造方法和装置
US20120000244A1 (en) * 2010-06-30 2012-01-05 Uop Llc Heat pump distillation for <50% light component in feed
CN102875329A (zh) * 2012-10-22 2013-01-16 莒南县凯利化工有限公司 一种热泵精馏分离异戊醇同分异构体的工艺及装置
CN105588472A (zh) * 2016-03-08 2016-05-18 北京国电龙源环保工程有限公司 蒸汽直接接触加热法分离系统的热负荷分配装置及方法
CN205537296U (zh) * 2016-03-08 2016-08-31 北京国电龙源环保工程有限公司 蒸汽直接接触加热法分离系统的热负荷分配装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855900A (zh) * 2019-04-03 2019-06-07 无锡化工装备股份有限公司 一种升降膜式蒸发器综合测试实验系统
CN109855900B (zh) * 2019-04-03 2024-02-02 无锡化工装备股份有限公司 一种升降膜式蒸发器综合测试实验系统

Also Published As

Publication number Publication date
CN105588472A (zh) 2016-05-18
CN105588472B (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
Feng et al. Design and control of vapor recompression assisted extractive distillation for separating n-hexane and ethyl acetate
RU2476789C1 (ru) Способ низкотемпературной подготовки природного газа и извлечения нестабильного углеводородного конденсата из пластового газа (варианты) и установка для его осуществления
CN104667550B (zh) 一种mvr连续蒸发系统
CN101549211B (zh) 热泵精馏节能改造方法和装置
WO2017152806A1 (zh) 蒸汽直接接触加热法分离系统的热负荷分配装置及方法
WO2017152813A1 (zh) 蒸汽再压缩设备的并联控制系统及控制方法
CN206304378U (zh) 一种蒸汽再压缩利用的节能mvr蒸发器
RU119631U1 (ru) Установка для промысловой подготовки газового конденсата с большим содержанием тяжелых углеводородов
WO2013114936A1 (ja) 蒸留装置および蒸留方法
CN108036583A (zh) 一种混合烷烃反应产物膨胀制冷分离系统及其方法
CN111389039B (zh) 一种精馏热能闭式循环节能系统
CN113440882B (zh) 一种应用于苯乙烯分离系统的装置及方法
CN104606910A (zh) 一种基于蓄热技术的热泵精馏装置及其启动方法
CN205537296U (zh) 蒸汽直接接触加热法分离系统的热负荷分配装置
CN112284038B (zh) 一种烷烃脱氢的混合冷剂制冷式冷箱分离装置及其方法
CN212440104U (zh) 一种精馏热能闭式循环节能系统
CN108586185A (zh) 一种差压热偶丙烯精制分离系统及分离方法
CN111704518B (zh) 一种脱乙烷塔塔顶气态乙烷冷凝率控制的装置及方法
CN112284037B (zh) 一种烷烃脱氢的级联制冷式冷箱分离装置及其工艺方法
CN205586961U (zh) 一种烷烃脱氢装置低低压蒸汽凝结水节能系统
CN212651376U (zh) 机械蒸汽再压缩热泵精馏系统
RU128924U1 (ru) Установка низкотемпературного разделения газа
CN112569618B (zh) 一种重沸器系统及其蒸汽进料方法
CN206803597U (zh) 天然气油气回收系统
CN113827997A (zh) 机械蒸汽再压缩热泵精馏系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762492

Country of ref document: EP

Kind code of ref document: A1