WO2017150787A1 - Device for injecting molten material, casting equipment using same, and casting method - Google Patents

Device for injecting molten material, casting equipment using same, and casting method Download PDF

Info

Publication number
WO2017150787A1
WO2017150787A1 PCT/KR2016/013161 KR2016013161W WO2017150787A1 WO 2017150787 A1 WO2017150787 A1 WO 2017150787A1 KR 2016013161 W KR2016013161 W KR 2016013161W WO 2017150787 A1 WO2017150787 A1 WO 2017150787A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
casting
raw material
mold flux
molten
Prior art date
Application number
PCT/KR2016/013161
Other languages
French (fr)
Korean (ko)
Inventor
문기현
유신
서경원
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2018536136A priority Critical patent/JP2019501027A/en
Priority to CN201680081282.XA priority patent/CN108602115A/en
Priority to EP16892800.0A priority patent/EP3424617A4/en
Publication of WO2017150787A1 publication Critical patent/WO2017150787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/165Controlling or regulating processes or operations for the supply of casting powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like

Definitions

  • the present invention relates to a melt injection device, a casting facility and a casting method using the same, and more particularly to a melt injection device, a casting facility and a casting method using the same that can improve the quality and productivity of the cast steel.
  • a melt injection device such as a molten mold flux injection device, used in a casting process of cast steel is an equipment for melting and supplying a mold flux, which is powder.
  • Conventional molten mold flux injection facilities include a hopper in which mold flux is stored, a melting furnace for receiving mold flux from the hopper and melting, and a torch provided on one side of the melting furnace to inject flame into the melting furnace to dissolve the mold flux. .
  • the discharge furnace may be formed in the melting furnace to discharge the molten molten flux.
  • mold flux of suitable physical properties should be used whenever steel grades are changed. Therefore, when the steel grade is changed, it is necessary to inject a mold flux manufactured to have suitable physical properties into the mold.
  • the mold flux according to the steel type it is good not to mix the mold flux having different physical properties, but due to the process characteristics, the transition between the mold fluxes having different physical properties are inevitably generated. In such a transition, mold flux does not flow smoothly between the mold and the coagulation cell, which causes a phenomenon in which the coagulation cell bursts.
  • the present invention provides a melt injection apparatus, a casting facility and a casting method using the same that can improve the casting efficiency.
  • the present invention provides a melt injection apparatus, a casting facility and a casting method using the same that can improve the quality of the cast steel.
  • the raw material supply unit for supplying different kinds of raw materials;
  • a mixing unit for preparing a mixture by mixing different kinds of raw materials supplied from the raw material supply unit;
  • a melting part connected to the mixing part to melt a mixture supplied from the mixing part to generate a melt, and a discharge port through which the melt is discharged is provided;
  • a control unit for controlling the components of the mixture by controlling operations of the raw material supply unit, the mixing unit, and the melting unit.
  • the raw material supplier may include a first raw material supplier for supplying a first raw material and a second raw material supplier for separately supplying a plurality of second raw materials having different components.
  • the first raw material supply unit a first storage unit for storing the first raw material; A first conveying pipe connecting the first reservoir and the mixing part; And a first cutting machine provided in at least one of the first reservoir and the first transfer pipe to adjust the discharge of the first raw material.
  • the second raw material supply unit a plurality of second storage for storing the plurality of second raw materials, respectively; A second transfer pipe connecting the plurality of second reservoirs and the mixing unit, respectively; And a second cutting machine provided in at least one of the second reservoir and the second transfer pipe to adjust the discharge of the second raw material.
  • the mixing unit and the mixing vessel in communication with the first supply pipe and the second supply pipe; An agitator provided in the mixing vessel to mix the first raw material and the second raw material; And a third transfer pipe configured to transfer the mixture of the first raw material and the second raw material to a melting part.
  • the mixing unit may include a mixing container in communication with the first supply pipe and the second supply pipe, and the mixing container may be rotatable.
  • the melting part the melting furnace having a melting space in which the first raw material and the second raw material is received and dissolved; And a heat source supply unit provided at one side of the melting furnace to supply a heat source to the melting space.
  • the heat source supply unit may use plasma as a heat source.
  • the controller may control whether or not the second raw material is added according to the input signal.
  • a casting apparatus comprising: a mold configured to receive molten steel for initial solidification; A melt injection device for injecting a molten mold flux into the mold; A measuring unit measuring at least one of a temperature of the mold and a component of a molten mold flux injected into the mold; And a controller configured to control an operation of the melt injection apparatus to change a component of a molten mold flux injected into the mold according to the measurement result of the measurement unit.
  • the melt injection device includes a first raw material supply unit for supplying the main mold flux; A second raw material supplier for supplying an additive; A mixing unit for mixing the main mold flux supplied from the first raw material supply unit and the second raw material supply unit and the additive to prepare a mixture; And a melting part for dissolving the mixture supplied from the mixing part to generate a molten mold flux and injecting the molten mold flux into the mold.
  • the second raw material supply unit may individually store a plurality of additives, and selectively supply the plurality of additives to the mixing unit.
  • the measuring unit may include a temperature measuring device for measuring the temperature of the mold.
  • the measurement unit may include a probe for collecting the molten mold flux injected into the mold, and an analyzer for analyzing the components of the molten mold flux collected by the probe.
  • the controller may determine whether the additive is added using the result measured by the measuring unit, and control the second raw material supply unit according to the result to adjust the type and amount of the additive.
  • a casting method comprising: providing a main mold flux; Injecting molten steel into the mold; Melting the main mold flux to produce a molten mold flux and injecting the molten mold flux into the molten steel; Casting of cast steel; And determining whether or not to add an additive according to a casting state in the process of casting the cast steel.
  • the additive may be provided.
  • the main mold flux and the additive may be melted together.
  • the temperature of the mold may be measured as the casting state, and whether or not the additive is added may be determined according to the measured temperature value of the mold.
  • the components of the molten mold flux injected into the mold as the cast state may be analyzed, and the additive may be determined according to the components of the molten mold flux analyzed.
  • the main mold flux and the additive may be mixed and melted to inject the molten mold flux having the changed component into the mold.
  • the molten mold flux having the component changed may be injected into the mold by mixing and melting the main mold flux and the additive.
  • additives of different components may be added according to the type of molten steel.
  • the dosage of the additive having the same component may be changed according to the type of the molten steel.
  • the present invention it is possible to quickly respond to changes in the composition of the mold slag during casting to improve casting efficiency and cast quality. That is, additives for controlling the components of the mold slag during casting may be added to respond to changes in the components of the mold slag in real time. Therefore, cracks on the surface of the slab and bursting of the solidification cell due to the change of the components of the mold slag can be prevented, thereby improving the quality of the slab. In addition, it is possible to perform a continuous cast of a single steel grade to improve the productivity.
  • the molten mold flux suitable for the steel grade can be quickly manufactured and supplied, thereby improving casting efficiency. Therefore, it is possible to reduce the time for the molten mold flux having different physical properties to be mixed and to suppress or prevent occurrence of bursting of the cast steel.
  • FIG. 1 is a view schematically showing a casting facility according to an embodiment of the present invention.
  • Figure 2 is a view showing the main configuration of the casting equipment shown in FIG.
  • Figure 3 is a block diagram showing the configuration of the casting equipment shown in FIG.
  • FIG. 4 is a flowchart sequentially showing a casting method according to a first embodiment of the present invention.
  • FIG. 5 is a block diagram conceptually showing a method of injecting molten mold flux into a mold when casting a slab by a casting method according to a second exemplary embodiment of the present invention.
  • Figure 6 is a graph showing the results of experiments depending on whether the additive is added when casting the cast in the casting method according to an embodiment of the present invention.
  • FIG. 1 is a view schematically showing a casting facility according to an embodiment of the present invention
  • Figure 2 is a view showing the main configuration of the casting facility shown in Figure 1
  • Figure 3 is a configuration of the casting facility shown in FIG. A block diagram showing.
  • a casting apparatus supplies a molten steel through a ladle 10 containing molten steel refined in a steelmaking process and an injection nozzle (not shown) connected to the ladle 10.
  • a mold 30 for receiving and temporarily storing it and supplying molten steel through an immersion nozzle 22 connected to the tundish 20 and supplying the mold 30 to the mold 30, and initially solidifying the mold 30 in a predetermined shape; It may include a cooling line 40 provided in the lower portion of the mold 30 and a plurality of segments are continuously arranged to perform a series of molding operations while cooling the non-solidified slab 1 drawn from the mold 30. .
  • the casting apparatus includes a melt injection apparatus 100 for melting and supplying a mold flux to a molten steel surface supplied to a mold 30, and a component change of a mold flux in the mold 30. It may include a measuring unit 130 for measuring various phenomena according to, and a control unit 140 for controlling the operation of the melt injection device 100 according to the measurement result of the measuring unit 130.
  • the melt injection apparatus 100 may supply a solid mold flux, ie, a molten mold 30, to the mold 30 by melting the solid mold flux.
  • a solid mold flux ie, a molten mold 30, to the mold 30 by melting the solid mold flux.
  • the melt injection apparatus is melted in real time with a heating means such as a plasma torch and supplied to the mold 30 as it is, so that the mold 30 provided to have a specific component according to the steel type.
  • a heating means such as a plasma torch
  • the melt injection apparatus continues to supply the mold 30 having the same component. It was not possible to respond in real time to changes in the composition.
  • the melt injection device 100 is configured to change the components of the melt mold 30 supplied to the mold 30 in real time.
  • the solid mold flux is called mold flux before being supplied to the melting furnace 112
  • the molten mold flux is called after melting the solid mold plus in the melting furnace 112.
  • the mold slag is added, after injecting the molten mold flux into the mold 30, the mold slag.
  • the melt injection apparatus 100 generates a molten mold flux by supplying and dissolving a raw material supply unit 110 supplying a solid mold flux and a solid mold flux, and forming the molten mold flux into a mold ( 30 may include a melting unit 120, a raw material supply unit 110, and a control unit 140 controlling the operations of the melting unit 120.
  • the raw material supply unit 110 includes a first raw material supply unit 112 for supplying a first raw material, a second raw material supply unit 114 for supplying a second raw material, a first raw material supply unit 112, and a second raw material supply unit 114. And a mixing unit 116 which is connected to the first raw material supply unit 112 and the second raw material supply unit 114 to mix the first raw material and the second raw material to produce a mixture of the first raw material and the second raw material; It may include.
  • the raw material supply unit 110 may supply a mixture of the first raw material and the second raw material to the melting unit 120 through the mixing unit 116, but between the mixing unit 116 and the melting unit 120 It may also include a raw material feeder 118 that can constantly supply the raw material or a mixture of the first raw material and the second raw material to the melting unit (120).
  • the first raw material supply part 112 includes a first reservoir 112a for storing a first raw material, for example, a main mold flux, and a first transfer pipe 112b for communicating the first reservoir 112a and the mixing unit 116. ) May be included.
  • the first reservoir 112a stores the first raw material in the solid state, for example, the main mold flux.
  • the first cutting machine 112c for discharging the main mold flux to the first transfer pipe 112b by a predetermined amount or uniformly in the portion where the main mold flux is discharged from the first reservoir 112a or the first transfer pipe 112b. ) May be provided.
  • the first cutting machine 112c may be a screw feeder provided in the first reservoir 112a or the first transfer pipe 112b and operated by the operation of the driving device. It may be a valve for opening and closing the connection portion of the first transfer pipe (112b) or the flow path inside the first transfer pipe (112b).
  • the second raw material supplier 114 includes a second reservoir 114a for storing a second raw material, for example, an additive, and a second transfer pipe 114b for communicating the second reservoir 114a with the mixing unit 116. It may include. In this case, a plurality of second reservoirs 114a may be provided to independently store various types of additives.
  • the second ejector 114c for discharging the additive to the mixing unit 116 by a predetermined amount or uniformly may be provided in the portion where the additive is discharged from each second reservoir 114a or the second transfer pipe 114b.
  • the second cutting machine 114c may be a screw feeder provided in the first reservoir 112a or the second transfer pipe 114b and operated by the operation of the driving device, or the second reservoir 114a. And it may be a valve for opening and closing the connection portion of the second transfer pipe (114b) or open and close the flow path inside the second transfer pipe (114b).
  • the second raw material supply unit 114 may selectively supply at least one additive of the plurality of additives.
  • the mixing unit 116 may supply a mold flux in which the main mold flux discharged from the first raw material supply unit 112 and the second raw material supply unit 114 and the additive is uniformly mixed to the melting unit 120.
  • the mixing unit 116 may supply only the first raw material supplied from the first raw material supply unit 112 to the melting unit 120.
  • the mixing unit 116 may include a main container flux supplied from the first raw material supply unit 112 and a second raw material supply unit 114, a mixing container 116a for receiving additives, and a main mold flux housed in the mixing container 116a. And an agitator (not shown) for uniformly mixing the additives, and a third transfer pipe 116b for transferring the mixture of the main mold flux and the additive, that is, the mold flux to the melter 120.
  • the mixing container 116a may accommodate the main mold flux and the additive in the solid state discharged from the first raw material supplier 112 and the second raw material supplier 114. A portion in which the mixture of the main mold flux and the additive is discharged from the mixing container 116a, or a third cutting machine for discharging the mixture of the first raw material and the second raw material by a predetermined amount or uniformly in the third transfer pipe 116b ( 116c).
  • the third cutting machine 116c may be a screw installed in the mixing vessel 116a or the third transfer pipe 116b and operated by driving of the motor, and the mixing vessel 116a and the third transfer pipe 116b. It may be a valve for opening and closing the connection portion of the) or opening and closing the flow path inside the third transfer pipe (116b).
  • the stirrer may be formed of a screw or an impeller configured to be rotatable in the mixing container 116a.
  • the stirrer may be a nozzle capable of blowing an inert gas or the like into the mixing vessel 116a.
  • the mixing unit 116 is described as being configured to include the mixing vessel 116a and the agitator, the mixing vessel 116a may be configured to be rotatable so that the main mold flux and the additive may be uniformly mixed without the agitator. .
  • the mixing unit 116 is not limited thereto and may be formed in various forms capable of uniformly mixing the main mold flux and the additive.
  • the mixing unit 116 may include a heater 116d for preheating the main mold flux or the mixture of the main mold flux and the additive.
  • the heater 116d may be provided in the stirrer or the mixing vessel, and the main mold flux or the mixture of the main mold flux and the additive may be heated to a predetermined temperature and supplied to the raw material feeder 118.
  • the raw material feeder 118 connects the third reservoir 118a communicating with the third transfer pipe 116b of the mixing unit 116, the third reservoir 118a and the melter 120, and an internal flow path thereof.
  • a fourth cutting machine 118c may be provided to discharge the mixture of the first raw material and the second raw material to the melting part 120 by a predetermined amount or uniformly.
  • the fourth cutting machine 118c is also provided in the third reservoir 118a or the fourth transfer pipe 118b like the first to third cutting machines 112c, 114c, and 116c described above, and is operated by the driving device. It may be a working screw feeder or valve.
  • the raw material supplier 118 may include a heater 118d for preheating the main mold flux or the mixture of the main mold flux and the additive supplied from the mixing unit 116.
  • the heater 118d may be provided in the third reservoir 118a or the fourth transfer pipe 118b.
  • the heater 118d may be heated to a predetermined temperature to supply the main mold flux or the mixture of the main mold flux and the additive to the molten part 120. Can be. This facilitates the dissolution of the main mold flux or the mixture of the main mold flux and the additive, thereby more quickly responding to the component change of the mold slag.
  • the molten part 120 generates and temporarily stores a molten mold flux by heating and melting a mold flux supplied from the mixing unit 116, that is, a mixture of a main mold flux and an additive, and discharges the molten mold flux. 30).
  • the melting unit 120 may include a melting furnace 112 in which the mixture supplied from the mixing unit 116 is accommodated, and a heat source supply unit 128 supplying a heat source into the melting furnace 112.
  • the melting furnace 112 has a dissolving space in which the main mold flux and the additive are injected and dissolved therein, and a discharge hole 126 for injecting the molten mold flux into the mold 30 may be formed at one side thereof.
  • the melting furnace 112 is formed in a substantially "V" shape in which the center is bent downward, and may be provided to be tiltable.
  • the melting furnace 112 has an injection hole 124 for injecting the mold flux discharged from the mixing unit 116 into the dissolution space, and a discharge hole 126 for injecting the molten mold flux generated in the dissolution space into the mold 30. ) May be included.
  • the heat source supply unit 128 may be connected to one side of the melting furnace 112 to supply a heat source to the melting space.
  • the heat source is supplied from one side of the melting furnace 112 to melt the mold flux in the melting space to generate and temporarily store the molten mold flux, and the molten mold flux is discharged through the outlet 126 on the other side to be injected into the mold 30.
  • the heat source supply unit 128 may include a gas supply pipe that supplies a plasma gas such as nitrogen (N 2 ), argon (Ar), helium (He), and the like to the plasma torch and the plasma torch.
  • the plasma torch is a device for generating a plasma having a high temperature of 20,000 ° C. or more using electricity.
  • the plasma torch generates plasma in a melting space of the melting furnace 112.
  • the plasma torch may include a plasma confinement tube in which the plasma gas supplied from the gas supply tube is accommodated, an induction coil disposed around the plasma confinement tube, and a power supply for supplying power to the induction coil. When power is applied to the induction coil from the power supply, plasma is generated inside the plasma confinement tube.
  • the generated plasma and the heat generated by the plasma may be used as a heat source for dissolving the mixture, that is, the solid mold flux and the additive, which is supplied to the dissolution space through the injection hole 124.
  • the molten mold flux of the melting space may be temporarily stored in the melting space and then discharged through the discharge port 126 to be injected into the mold 30 when the melting furnace 112 is tilted.
  • Melting furnace 112 constituting the melter 120 may be formed in various shapes in addition to, and can be discharged of the molten mold flux in various ways, of course.
  • Such a melting part 120 is a well-known technique, and a detailed description thereof will be omitted.
  • the melt injection apparatus 100 may inject and mold the components of the mold flux in real time by controlling and dissolving the components of the mold flux.
  • the measuring unit 130 may be provided in the mold 30 and may be a temperature measuring device for measuring the heat transfer behavior of the mold 30 or a probe for measuring the component of the mold flux injected into the mold 30. .
  • the temperature measuring device may be installed in the mold 30 to measure a temperature change of the mold 30.
  • Al 2 O 3 is introduced into the mold slag after a certain period of time after casting, thereby increasing the viscosity of the mold slag.
  • the mold slag flows unevenly between the mold 30 and the coagulation cell, and lubrication is not performed properly. Due to this effect, heat transfer from the coagulation cell to the mold 30 is not made uniformly, resulting in a deviation in the temperature value measured by the temperature measuring instrument. Therefore, casting performance may be improved by changing the components of the molten mold flux to be injected into the mold 30 in accordance with the temperature value measured by the temperature gauge and injecting the mold 30 into the mold 30.
  • the casting performance may be improved by changing the components of the molten mold flux to be injected into the mold 30 in order to change the components of the mold slag during casting and injecting the mold 30 into the mold 30.
  • the control unit 140 receives the measurement result of the measuring unit 130 and controls the operation of the raw material supply unit according to the measurement result to adjust the supply amount of the main mold flux and the additives to the component of the molten mold flux injected into the mold 30. Can be controlled. In addition, the controller 140 may control the operation of the melting unit 120 and the measuring unit 130 to adjust the supply amount of the molten mold flux injected into the mold 30 according to the measurement result.
  • the casting method according to the present invention may include a first embodiment of casting a cast steel using a single steel species and a second embodiment of casting a cast steel using two steel grades.
  • FIG. 4 is a flowchart sequentially showing a casting method according to a first embodiment of the present invention.
  • a process of preparing a main mold flux and an additive (S110), a process of injecting molten steel through the ladle 10, the tundish 20 into the mold 30 (S120).
  • the process of injecting the molten mold flux to the upper portion of the molten steel injected into the mold 30 (S130), the process of measuring the casting state (S140) and the analysis of the casting state to determine whether the additive is added (S150) and then the additive It may include a process of injecting (S160).
  • Injecting molten steel into the mold 30 and injecting molten mold flux may be continuously performed during casting.
  • the process of measuring the casting state and the process of injecting the additive may be repeatedly performed during the casting process by the process of determining the completion of the casting (S170).
  • the molten mold flux injected into the mold 30 at the initial stage of casting is referred to as the first molten mold flux
  • the molten mold flux mixed with the additive during casting is injected into the mold 30 as the second molten mold flux.
  • the solid main mold flux is provided in the first reservoir 112a, and the additive to be mixed with the main mold flux during casting is provided in the second reservoir 114a.
  • the molten mold flux may include CaO, SiO 2 , MnO, P 2 O 5 , Al 2 O 3 , MgO, TiO 2 , K 2 O, Na 2 O, F, Fe 2 O 3 , and the like.
  • the main mold flux may be manufactured to have a composition suitable for the molten steel used for casting.
  • additives are NaF (S), Na 3 AlF 6 , CaF 2 (S), AlF 3 (s), SiO 2 (s), Li 2 O (s), LiF (s), CaO, MnO, P 2 O 5 , MgO, Al 2 O 3 (s), TiO 2 , Fe 2 O 3 , K 2 O (s), Na 2 O (s), or any one of C, or may be a mixture of at least two components. .
  • the refining is completed in the refining process, and the molten steel accommodated in the ladle 10 is supplied to the tundish 20 through the injection nozzle, and the molten steel supplied to the tundish 20 is turned. It is injected into the mold 30 through the immersion nozzle 22 provided in the dish (20).
  • the first molten mold flux is injected into the molten steel in the mold 30.
  • the first molten mold flux may be manufactured by melting the main mold flux stored in the first reservoir 112a through the mixing vessel 116a of the mixing unit 116 in the melting unit 120.
  • the first molten mold flux injected at the beginning of casting may be manufactured by dissolving only the main mold flux in the melter 120.
  • the molten steel and the first molten mold flux may be injected into the mold 30 to cast the cast steel.
  • the first molten mold flux ie, the mold slag
  • injected into the mold 30 flows in between the mold 30 and the solidification cell (or molten steel) to control heat transfer between the mold 30 and the solidification cell, and lubricate to Smooth casting.
  • the mold slag in the initial casting retains its components when injected, but as the casting proceeds, impurities in the molten steel flow into the mold slag, thereby changing the components of the mold slag.
  • impurities in the molten steel flow into the mold slag, thereby changing the components of the mold slag.
  • the viscosity of the mold slag increases. In this case, the mold slag does not flow smoothly between the mold 30 and the solidification cell, so that the mold slag flows unevenly in the width direction and the longitudinal direction of the mold 30.
  • the mold slag flows uniformly between the mold and the solidification cell in response to changes in the composition of the mold slag. It is possible to improve the quality of the cast.
  • Whether the additive is added may be determined according to the casting state, for example, the temperature change of the mold 30 or the component change of the mold slag.
  • the temperature change of the mold 30 may be measured during casting, and an appropriate amount of an additive is mixed with the mold flux according to the measured temperature change, followed by melting and injecting the mold 30 into the mold 30, thereby rapidly responding to a component change of the mold slag. Therefore, the mold slag can be uniformly introduced between the mold 30 and the solidification cell to maintain the same heat transfer characteristics and lubrication performance as the initial casting until the casting is completed.
  • Temperature measurement of the mold 30 is installed in the mold 30 in the longitudinal direction and the width direction of the mold 30, and the temperature value in the longitudinal direction and / or the width direction of the mold 30 It can be measured. Then, the deviation of the temperature value measured by the temperature meter can be measured. If the measured temperature value is within the deviation range of more than 0 to about 5% from the initial measured temperature value, casting can proceed as it is. Alternatively, if the measured temperature value is out of the above-described deviation range, the addition of the additive may be determined.
  • the measured temperature value is out of the deviation range, it is determined that a large change in the components of the mold slag occurs, so that the molten mold flux into which the additive is added, that is, the second molten mold flux, may be injected into the mold 30.
  • Selection of the additive to be added to the mold 30 may be selected as follows.
  • the mold flux and the additive are mixed and melted, and then injected into the mold 30 to suppress or prevent a decrease in casting efficiency due to a change in component of the mold slag.
  • a large amount of Al 2 O 3 is introduced into the mold slag, at least one of NaF, CaF 2 , Li 2 CO 3, etc. may be used as an additive, and when fluorine is volatilized in the mold slag, Na 3 AlF 6 , NaF, etc. At least one of them can be used.
  • the viscosity of the mold slag in the mold 30 may be lowered to some extent, the mold slag may be uniformly injected between the mold 30 and the solidification cell.
  • Na 3 AlF 6 may be added at 50 g / min as an additive. That is, it can be added in the range of 1 to 5% by weight based on the total weight of the molten mold slag.
  • the fluorine content of the components of the mold slag injected into the mold 30 increases by about 2.7% by weight, and the viscosity of the mold slag is increased, thereby allowing the mold slag to smoothly flow between the mold and the solidification cell.
  • Al 2 O 3 and Na 2 O component is also slightly increased within the range of more than 0 to 2% by weight. Al 2 O 3 and Na 2 O content of the change does not significantly affect the casting mimihayeo than the fluorine content changes.
  • At least one of the various types of additives described above may be used.
  • Mixing of the main mold flux and the additive is performed through the control unit 140, and the control unit 140 receives the result measured by the measuring unit 130, for example, the temperature measuring device, and the first cutting machine of the first raw material supply unit 112. 112c and the main mold flux and the additives stored in the first reservoir 112a and the second reservoir 114a by controlling the operation of the second cutter 114c of the second raw material supply unit 114, respectively. It is supplied to the mixing container 116a of the part 116.
  • the controller 140 operates the stirrer of the mixing unit 116 to uniformly mix the main mold flux and the additives supplied to the mixing container 116a.
  • the control unit 140 operates the third extruder 116c of the mixing unit 116 to transfer the mixture of the main mold flux and the additive to the melting furnace 112 of the melting unit 120. Inject.
  • the mixture injected into the melting furnace 112 is melted by heat provided from the heat source supplying part 128 of the melting part 120, that is, plasma, and manufactured into the second molten mold flux.
  • the second molten mold flux thus prepared is injected into the mold 30 through the discharge port 126 formed in the melting furnace 112 by tilting the melting furnace 112 and mixed with the mold slag. This lowers the viscosity of the mold slag in the mold 30 can be uniformly introduced between the mold 30 and the coagulation cell.
  • the quality of the cast steel can be improved by quickly responding to the temperature change of the mold 30 due to the change of the components of the mold slag.
  • Component control of the mold slag during casting may be repeatedly performed a plurality of times according to the measurement result by the measuring unit 130. Therefore, since the components of the mold slag can be controlled in response to changes in the components of the mold slag during casting, the molten steel throughput, that is, the number of charges, is increased unless the deterioration of the device such as the immersion nozzle 22 occurs.
  • the casting time can be extended, and the performance of the cast can be improved, and the yield of the cast can be improved.
  • the change of the component slag of the mold slag is measured by changing the temperature of the mold 30.
  • the mold slag may be collected during casting to analyze the component of the mold slag.
  • Al 2 O 3 is introduced into the mold slag, since the color of the mold slag is changed, the component change of the mold slag can be measured visually.
  • FIG. 5 is a block diagram conceptually illustrating a method of injecting a molten mold flux into a mold when casting a slab by a casting method according to a second exemplary embodiment of the present invention.
  • mold flux having different components is used.
  • the mold flux used includes CaO, SiO 2 , MnO, P 2 O 5 , Al 2 O 3 , MgO, TiO 2 , K 2 O, Na 2 O, F, Fe 2 O 3 , There is a difference in content, and may further include other ingredients. Therefore, in the case of continuously casting such steel grades, different mold fluxes are injected when the steel grades are changed.
  • a suitable mold flux must be prepared separately according to the steel grade, and if the production quantity of the steel grade to be cast is small, the molten mold flux remaining in the melting furnace is discarded and the new mold flux is melted to prepare the molten mold flux or different components during casting. The mold flux of the mixture is mixed and the transition to the mold 30 is generated.
  • the components of the molten mold flux may be adjusted and injected into the mold 30 according to the steel type used during casting.
  • the mold flux applicable to all steel grades is called a main mold flux
  • the additive used in the initial casting is a first additive
  • the additive used when the steel grade is changed during casting is called a second additive
  • the additive used according to the result measured by the measuring unit 130 during casting is referred to as a third additive.
  • a process of preparing a main mold flux, a first additive, a second additive, and a third additive molds the first molten steel through the ladle 10 and the tundish 20 Injecting the first molten mold flux prepared by mixing the main mold flux and the first additive on the upper portion of the first molten steel injected into the mold 30, and casting the first molten steel.
  • the process of injecting the second molten steel into the mold 30, and injecting the second molten mold flux prepared by using the main mold flux and the second additive on top of the second molten steel injected into the mold 30 Process may be included.
  • the process of casting the cast using the first molten steel and the second molten steel may include the process of measuring the casting state and the process of injecting a third additive according to the casting state.
  • the casting process using the first molten steel and the casting process using the second molten steel may be continuously performed.
  • the process of measuring the casting state and the process of injecting the third additive may be completed by the casting of the second molten steel. It can be repeatedly performed during the casting process by the determined process.
  • the main mold flux may include CaO, SiO 2 , MnO, P 2 O 5 , Al 2 O 3 , MgO, TiO 2 , K 2 O, Na 2 O, F, Fe 2 O 3 , and the like.
  • first and second additives are for controlling the components of the mold flux according to the steel grade, and may include at least one of the components of the main mold flux, and may include at least one of the components of the second additive.
  • the first additive and the second additive are CaO, SiO 2 , MnO, P 2 O 5 , Al 2 O 3 , MgO, TiO 2 , K 2 O, Na 2 O, F, Fe 2 O 3 , NaF (S ), Na 3 AlF 6 , CaF 2 (S), AlF 3 (s), SiO 2 (s), Li 2 O (s), LiF (s), CaO, MnO, P 2 O 5 , MgO, Al 2 At least one of O 3 (s), TiO 2 , Fe 2 O 3 , K 2 O (s), Na 2 O (s), C.
  • the first additive and the second additive may be the same component.
  • the main mold flux thus prepared may be stored in the first reservoir 112a of the first raw material storage portion, and the first additive, the second additive, and the third additive are stored in the second reservoir 114a of the second raw material storage portion.
  • the second reservoir 114a may be provided in plural to store components of the first additive, the second additive, and the third additive.
  • the first molten steel is injected into the mold 30 and the first molten mold flux manufactured by mixing the main mold flux and the first additive on the first molten steel.
  • the second molten steel is injected into the mold 30, and the second molten mold flux prepared by mixing the main mold flux and the second additive on the second molten steel is injected.
  • the first molten mold flux and the second molten mold flux have a difference in content of Al 2 O 3 . That is, the first molten mold flux contains less Al 2 O 3 than the second molten mold flux.
  • the first molten steel is injected into the initial casting mold 30, a small amount of Al 2 O 3 , such as less than 1%, is added to the main mold flux and the first additive, and casting using the first molten steel is completed.
  • a small amount of Al 2 O 3 such as less than 1%
  • the second molten steel is injected, 1 to 3% of Al 2 O 3 may be added as the main mold flux and the second additive.
  • the second additive may be added by gradually increasing the second molten mold flux to have suitable properties for the second molten steel. This is because when the physical properties, such as viscosity or basicity, of the second molten mold flux are drastically changed, it may not be smoothly flowed between the mold and the solidification cell, and thus, cast rupture may occur.
  • the first additive and the second additive are made of the same component and the example of increasing the input amount, but the input amount of the first additive and the second additive gradually gradually depending on the type of molten steel injected into the mold 30 It may be reduced, and of course, the components of the first and second additives may be different from each other.
  • the method of performing casting using two kinds of molten steel has been described, but casting may be performed using two or more kinds of molten steel.
  • the casting state may be measured as in the above-described embodiment, and the components of the mold slag may be adjusted using the second additive according to the measurement result. to be.
  • Figure 6 is a graph showing the experimental results of the addition of additives when casting the cast in the casting method according to an embodiment of the present invention, showing the temperature change of the mold according to the addition of additives during casting.
  • the temperature measuring device has a plurality of points along the length direction of the mold 30, for example, the casting direction of the cast steel, in the width direction center of the mold 30, for example, the width direction of the cast steel, specifically 300, 400 from the top of the mold 30. , 500 and 600 mm points.
  • the second molten mold flux in which the main mold flux and the additive were mixed and melted, was introduced into the mold 30.
  • fluorine (F) was added as an additive.
  • the temperature of the mold 30 gradually changes stably and changes within a certain range.
  • Such a phenomenon may occur when the mold slag is changed during the casting through the reaction with impurities in the molten steel. Therefore, the casting can be performed smoothly by adjusting the components of the mold slag by adding an additive during casting, thereby suppressing or preventing the deterioration of the cast steel.
  • the present invention is not limited thereto, and may be applied to various operations such as refining processes using liquid dephosphorization material.
  • Melt injection apparatus according to the present invention, casting equipment and casting method using the same, can be applied to the continuous casting process for casting the cast steel can improve the quality and productivity of the cast steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

The present invention relates to a device for injecting a molten material, casting equipment using the same, and a casting method, which comprises the steps of: preparing a main mold flux; injecting molten steel into a mold; preparing a molten mold flux by melting the main mold flux, and injecting the molten mold flux into an upper part of the molten steel; casting a slab; and determining whether to inject an additive according to a cast state in the step of casting the slab, and the present invention improves the quality and productivity of the slab.

Description

용융물 주입 장치, 이를 이용한 주조설비 및 주조방법Melt injection device, casting equipment and casting method using the same
본 발명은 용융물 주입 장치, 이를 이용한 주조설비 및 주조방법에 관한 것으로, 보다 상세하게는 주편의 품질 및 생산성을 향상시킬 수 있는 용융물 주입 장치, 이를 이용한 주조설비 및 주조방법에 관한 것이다.The present invention relates to a melt injection device, a casting facility and a casting method using the same, and more particularly to a melt injection device, a casting facility and a casting method using the same that can improve the quality and productivity of the cast steel.
주편의 주조 공정에서 사용되는 용융물 주입장치, 예컨대 용융 몰드 플럭스 주입장치는 분체인 몰드 플럭스를 용융시켜 몰드로 공급하는 설비이다. 통상적인 용융 몰드 플럭스 주입설비는 몰드 플럭스가 저장되는 호퍼와, 호퍼로부터 몰드 플럭스를 공급받아 용융시키는 용해로와, 용해로의 일측에 구비되어 용해로 내부로 화염을 분사함으로써 몰드 플럭스를 용해시키는 토치를 포함한다. 이때, 용해로에는 용해된 용융 몰드 플럭스가 토출되는 토출구가 형성될 수 있다. A melt injection device, such as a molten mold flux injection device, used in a casting process of cast steel is an equipment for melting and supplying a mold flux, which is powder. Conventional molten mold flux injection facilities include a hopper in which mold flux is stored, a melting furnace for receiving mold flux from the hopper and melting, and a torch provided on one side of the melting furnace to inject flame into the melting furnace to dissolve the mold flux. . At this time, the discharge furnace may be formed in the melting furnace to discharge the molten molten flux.
이와 같이 몰드 플럭스를 용해시켜 몰드에 공급하면 몰드 내 용강의 온도 저하를 억제할 수 있는 동시에, 윤활성능을 향상시켜 주편 결함을 저감시킬 수 있다. By dissolving and supplying the mold flux to the mold in this way, the temperature drop of the molten steel in the mold can be suppressed, and the lubrication performance can be improved to reduce the cast defect.
그런데 강종마다 특성 성분을 갖도록 제조된 몰드 플럭스를 용해로에서 용융시켜 주편을 주조하는 경우, 강중에 함유되는 불순물과 몰드 플럭스 간의 반응에 의해 몰드 플럭스의 성분이 변화하는 현상이 발생한다. 예컨대 Al을 다량 함유하는 용강을 이용하여 주조를 하는 경우, 몰드 플럭스에 Al2O3가 픽업되면서 몰드 플럭스의 점도가 상승하게 된다. 이에 몰드 플럭스가 몰드와 주편(응고셀) 사이로 원활하게 유입되지 않아 용강과 몰드 사이의 열전달이 불균일해지고, 윤활능이 저하되어 응고셀 터짐 현상이 발생하거나 주편의 표면에 크랙이 발생하는 등의 조업 사고가 발생하게 된다. However, in the case of casting a slab by melting a mold flux manufactured to have a characteristic component for each steel grade in a melting furnace, a phenomenon in which a component of the mold flux changes due to a reaction between impurities contained in the steel and the mold flux occurs. For example, when casting using molten steel containing a large amount of Al, the viscosity of the mold flux increases as Al2O3 is picked up to the mold flux. As a result, the mold flux does not flow smoothly between the mold and the slab (coagulation cell), resulting in uneven heat transfer between the molten steel and the mold. Will occur.
이와 같은 몰드 플럭스의 물성 변화에 의해 단일 강종을 한 차지(charge) 이상의 다연연주를 수행하기 어려운 문제점이 있다. Due to such a change in the physical properties of the mold flux, there is a problem that it is difficult to perform a multi-ply casting of a single steel grade.
한편, 여러 강종을 다연연주하는 경우, 강종이 바뀔 때마다 그에 적합한 물성의 몰드 플럭스를 이용하여야 한다. 따라서 강종이 바뀌면 그에 적합한 물성을 갖도록 제조된 몰드 플럭스를 몰드에 주입해야 한다. 그런데 강종에 따른 몰드 플럭스를 공급할 때 서로 다른 물성을 갖는 몰드 플럭스가 혼합되지 않도록 하는 것이 좋으나, 공정 특성 상 서로 다른 물성을 갖는 몰드 플럭스가 상호 혼합되는 과도기가 발생할 수 밖에 없다. 이러한 과도기에는 몰드 플럭스가 몰드와 응고셀 사이로 원활하게 유입되지 못해 응고셀의 터짐 현상이 종종 발생하는 문제점이 있다. On the other hand, in the case of multiple performance of several steel grades, mold flux of suitable physical properties should be used whenever steel grades are changed. Therefore, when the steel grade is changed, it is necessary to inject a mold flux manufactured to have suitable physical properties into the mold. By the way, when supplying the mold flux according to the steel type, it is good not to mix the mold flux having different physical properties, but due to the process characteristics, the transition between the mold fluxes having different physical properties are inevitably generated. In such a transition, mold flux does not flow smoothly between the mold and the coagulation cell, which causes a phenomenon in which the coagulation cell bursts.
본 발명은 주조 효율을 향상시킬 수 있는 용융물 주입 장치, 이를 이용한 주조설비 및 주조방법을 제공한다. The present invention provides a melt injection apparatus, a casting facility and a casting method using the same that can improve the casting efficiency.
본 발명은 주편의 품질을 향상시킬 수 있는 용융물 주입 장치, 이를 이용한 주조설비 및 주조방법을 제공한다.The present invention provides a melt injection apparatus, a casting facility and a casting method using the same that can improve the quality of the cast steel.
본 발명의 실시 형태에 따른 용융물 주입 장치는, 이종의 원료를 각각 공급하는 원료공급부와; 상기 원료공급부에서 공급되는 이종의 원료를 혼합하여 혼합물을 제조하는 혼합부와; 상기 혼합부와 연결되어 상기 혼합부에서 공급되는 혼합물을 용융시켜 용융물을 생성하고, 상기 용융물이 토출되는 토출구가 마련되는 용융부; 및 상기 원료공급부, 혼합부 및 용융부의 동작을 제어하여 상기 혼합물의 성분을 조절하는 제어부;를 포함할 수 있다.Melt injection apparatus according to an embodiment of the present invention, the raw material supply unit for supplying different kinds of raw materials; A mixing unit for preparing a mixture by mixing different kinds of raw materials supplied from the raw material supply unit; A melting part connected to the mixing part to melt a mixture supplied from the mixing part to generate a melt, and a discharge port through which the melt is discharged is provided; And a control unit for controlling the components of the mixture by controlling operations of the raw material supply unit, the mixing unit, and the melting unit.
상기 원료공급부는 제1원료를 공급하는 제1원료공급부와, 서로 다른 성분을 갖는 복수의 제2원료를 개별적으로 공급하는 제2원료공급부를 포함할 수 있다. The raw material supplier may include a first raw material supplier for supplying a first raw material and a second raw material supplier for separately supplying a plurality of second raw materials having different components.
제1원료공급부는, 제1원료를 저장하는 제1저장기와; 상기 제1저장기와 상기 혼합부를 연결하는 제1이송배관; 및 상기 제1저장기와 상기 제1이송배관 중 적어도 하나에 구비되어 상기 제1원료의 배출량을 조절하는 제1절출기;를 포함할 수 있다.The first raw material supply unit, a first storage unit for storing the first raw material; A first conveying pipe connecting the first reservoir and the mixing part; And a first cutting machine provided in at least one of the first reservoir and the first transfer pipe to adjust the discharge of the first raw material.
상기 제2원료공급부는, 상기 복수의 제2원료를 각각 저장하는 복수의 제2저장기와; 상기 복수의 제2저장기와 상기 혼합부를 각각 연결하는 제2이송배관과; 및 상기 제2저장기와 상기 제2이송배관 중 적어도 하나에 구비되어 상기 제2원료의 배출량을 조절하는 제2절출기;를 포함할 수 있다. The second raw material supply unit, a plurality of second storage for storing the plurality of second raw materials, respectively; A second transfer pipe connecting the plurality of second reservoirs and the mixing unit, respectively; And a second cutting machine provided in at least one of the second reservoir and the second transfer pipe to adjust the discharge of the second raw material.
상기 혼합부는 상기 제1공급배관 및 상기 제2공급배관과 연통되는 혼합용기와; 상기 혼합용기 내에 구비되어 상기 제1원료와 제2원료를 혼합하는 교반기; 및 상기 제1원료와 제2원료의 혼합물을 용융부로 이송하는 제3이송배관;을 포함할 수 있다. The mixing unit and the mixing vessel in communication with the first supply pipe and the second supply pipe; An agitator provided in the mixing vessel to mix the first raw material and the second raw material; And a third transfer pipe configured to transfer the mixture of the first raw material and the second raw material to a melting part.
상기 혼합부는 상기 제1공급배관 및 상기 제2공급배관과 연통되는 혼합용기를 포함하고, 상기 혼합용기는 회전 가능할 수 있다. The mixing unit may include a mixing container in communication with the first supply pipe and the second supply pipe, and the mixing container may be rotatable.
상기 용융부는, 내부에 상기 제1원료와 제2원료가 수용되고 용해되는 용해공간을 구비하는 용해로와; 상기 용해로의 일측에 구비되어 상기 용해공간에 열원을 공급하는 열원 공급부;를 포함할 수 있다. The melting part, the melting furnace having a melting space in which the first raw material and the second raw material is received and dissolved; And a heat source supply unit provided at one side of the melting furnace to supply a heat source to the melting space.
상기 열원 공급부는 플라즈마를 열원으로 사용할 수 있다. The heat source supply unit may use plasma as a heat source.
상기 제어부는 입력되는 신호에 따라 상기 제2원료의 투입 여부를 제어할 수 있다. The controller may control whether or not the second raw material is added according to the input signal.
본 발명의 실시 형태에 따른 주조설비로서, 용강을 전달받아 초기 응고시키는 몰드와; 상기 몰드에 용융 몰드 플럭스를 주입하는 용융물 주입장치와; 상기 몰드의 온도 및 상기 몰드 내 주입되는 용융 몰드 플럭스의 성분 중 적어도 하나를 측정부; 및 상기 측정부의 측정 결과에 따라 상기 몰드에 주입되는 용융 몰드 플럭스의 성분을 변경 가능하도록 상기 용융물 주입장치의 동작을 제어하는 제어부;를 포함할 수 있다. According to an aspect of the present invention, there is provided a casting apparatus, comprising: a mold configured to receive molten steel for initial solidification; A melt injection device for injecting a molten mold flux into the mold; A measuring unit measuring at least one of a temperature of the mold and a component of a molten mold flux injected into the mold; And a controller configured to control an operation of the melt injection apparatus to change a component of a molten mold flux injected into the mold according to the measurement result of the measurement unit.
상기 용융물 주입장치는 메인 몰드 플럭스를 공급하는 제1원료공급부와; 첨가제를 공급하는 제2원료공급부와; 상기 제1원료공급부와 상기 제2원료공급부에서 공급되는 메인 몰드 플럭스와 상기 첨가제를 혼합하여 혼합물을 제조하는 혼합부; 및 상기 혼합부에서 공급되는 혼합물을 용해시켜 용융 몰드 플럭스를 생성하고, 상기 용융 몰드 플럭스를 상기 몰드에 주입하는 용융부;를 포함할 수 있다. The melt injection device includes a first raw material supply unit for supplying the main mold flux; A second raw material supplier for supplying an additive; A mixing unit for mixing the main mold flux supplied from the first raw material supply unit and the second raw material supply unit and the additive to prepare a mixture; And a melting part for dissolving the mixture supplied from the mixing part to generate a molten mold flux and injecting the molten mold flux into the mold.
*상기 제2원료공급부는 복수의 첨가제를 개별적으로 저장하고, 상기 복수의 첨가제를 상기 혼합부에 선택적으로 공급할 수 있다. The second raw material supply unit may individually store a plurality of additives, and selectively supply the plurality of additives to the mixing unit.
상기 측정부는 상기 몰드의 온도를 측정하는 온도측정기를 포함할 수 있다.The measuring unit may include a temperature measuring device for measuring the temperature of the mold.
상기 측정부는 상기 몰드에 주입된 용융 몰드 플럭스를 채취하는 프로브와, 상기 프로브에 의해 채취된 용융 몰드 플럭스의 성분을 분석하는 분석기를 포함할 수 있다. The measurement unit may include a probe for collecting the molten mold flux injected into the mold, and an analyzer for analyzing the components of the molten mold flux collected by the probe.
상기 제어부는 상기 측정부에 의해 측정된 결과를 이용하여 상기 첨가제의 투입여부를 결정하고, 그 결과에 따라 상기 제2원료공급부를 제어하여 첨가제의 종류 및 투입량을 조절할 수 있다. The controller may determine whether the additive is added using the result measured by the measuring unit, and control the second raw material supply unit according to the result to adjust the type and amount of the additive.
*본 발명의 실시 형태에 따른 주조방법으로서, 메인 몰드 플럭스를 마련하는 과정; 몰드에 용강을 주입하는 과정; 상기 메인 몰드 플럭스를 용융시켜 용융 몰드 플럭스를 제조하고, 상기 용강 상부에 상기 용융 몰드 플럭스를 주입하는 과정; 주편을 주조하는 과정; 및 상기 주편을 주조하는 과정에서 주조 상태에 따라 첨가제의 투입 여부를 결정하는 과정;을 포함할 수 있다. A casting method according to an embodiment of the present invention, comprising: providing a main mold flux; Injecting molten steel into the mold; Melting the main mold flux to produce a molten mold flux and injecting the molten mold flux into the molten steel; Casting of cast steel; And determining whether or not to add an additive according to a casting state in the process of casting the cast steel.
상기 메인 몰드 플럭스를 마련하는 과정에서, 상기 첨가제를 마련할 수 있다. In the process of preparing the main mold flux, the additive may be provided.
상기 메인 몰드 플럭스를 용융시켜 용융 몰드 플럭스를 제조하는 과정에서, 상기 메인 몰드 플럭스와 상기 첨가제를 함께 용융시킬 수 있다.In the process of manufacturing the molten mold flux by melting the main mold flux, the main mold flux and the additive may be melted together.
상기 주편을 주조하는 과정에서 상기 주조 상태로서 상기 몰드의 온도를 측정하고, 측정된 몰드의 온도값에 따라서 상기 첨가제의 투입 여부를 결정할 수 있다. In the casting of the cast steel, the temperature of the mold may be measured as the casting state, and whether or not the additive is added may be determined according to the measured temperature value of the mold.
상기 주편을 주조하는 과정에서 상기 주조 상태로서 상기 몰드에 주입된 용융 몰드 플럭스의 성분을 분석하고, 분석된 용융 몰드 플럭스의 성분에 따라 상기 첨가제의 투입 여부를 결정할 수 있다. In the casting of the cast steel, the components of the molten mold flux injected into the mold as the cast state may be analyzed, and the additive may be determined according to the components of the molten mold flux analyzed.
상기 첨가제의 투입이 결정되면, 상기 메인 몰드 플럭스와 상기 첨가제를 혼합한 후 용융시켜 성분이 변경된 용융 몰드 플럭스를 상기 몰드에 주입할 수 있다. When the addition of the additive is determined, the main mold flux and the additive may be mixed and melted to inject the molten mold flux having the changed component into the mold.
상기 주편을 주조하는 과정에서 상기 몰드에 주입되는 용강의 종류가 변경되면 상기 메인 몰드 플럭스와 상기 첨가제를 혼합한 후 용융시켜 성분이 변경된 용융 몰드 플럭스를 상기 몰드에 주입할 수 있다. When the type of molten steel injected into the mold is changed in the process of casting the cast steel, the molten mold flux having the component changed may be injected into the mold by mixing and melting the main mold flux and the additive.
상기 메인 몰드 플럭스와 상기 첨가제를 혼합할 때, 상기 용강의 종류에 따라 서로 다른 성분의 첨가제를 투입할 수 있다. When the main mold flux and the additive are mixed, additives of different components may be added according to the type of molten steel.
상기 메인 몰드 플럭스와 상기 첨가제를 혼합할 때, 상기 용강의 종류에 따라 동일한 성분을 갖는 첨가제의 투입량을 변경할 수 있다. When the main mold flux and the additive are mixed, the dosage of the additive having the same component may be changed according to the type of the molten steel.
본 발명의 실시형태들에 의하면, 주조 중 몰드 슬래그의 성분 변화에 신속하게 대응하여 주조 효율 및 주편의 품질을 향상시킬 수 있다. 즉, 주조 중 몰드 슬래그의 성분을 조절하기 위한 첨가제를 첨가하여 몰드 슬래그의 성분 변화에 실시간으로 대응할 수 있다. 따라서 몰드 슬래그의 성분 변화에 의한 주편 표면의 크랙이나 응고셀의 터짐 현상을 방지할 수 있으므로 주편의 품질을 향상시킬 수 있다. 또한, 단일 강종을 연연주가 가능해져 생산성도 향상시킬 수 있다. According to embodiments of the present invention, it is possible to quickly respond to changes in the composition of the mold slag during casting to improve casting efficiency and cast quality. That is, additives for controlling the components of the mold slag during casting may be added to respond to changes in the components of the mold slag in real time. Therefore, cracks on the surface of the slab and bursting of the solidification cell due to the change of the components of the mold slag can be prevented, thereby improving the quality of the slab. In addition, it is possible to perform a continuous cast of a single steel grade to improve the productivity.
또한, 여러 강종을 연연주하는 경우 강종에 적합한 용융 몰드 플럭스를 신속하게 제조하여 공급할 수 있으므로 주조 효율을 향상시킬 수 있다. 따라서 서로 다른 물성을 갖는 용융 몰드 플럭스가 혼합되는 시간을 저감하여 주편의 터짐 현상 등이 발생하는 것을 억제 혹은 방지할 수 있다. In addition, when performing the cast of several steel grades, the molten mold flux suitable for the steel grade can be quickly manufactured and supplied, thereby improving casting efficiency. Therefore, it is possible to reduce the time for the molten mold flux having different physical properties to be mixed and to suppress or prevent occurrence of bursting of the cast steel.
도 1은 본 발명의 실시 예에 따른 주조설비를 개략적으로 보여주는 도면.1 is a view schematically showing a casting facility according to an embodiment of the present invention.
도 2는 도 1에 도시된 주조설비의 요부 구성을 보여주는 도면. Figure 2 is a view showing the main configuration of the casting equipment shown in FIG.
도 3은 도 2에 도시된 주조설비의 구성을 보여주는 블록도. Figure 3 is a block diagram showing the configuration of the casting equipment shown in FIG.
도 4는 본 발명의 제1실시 예에 따른 주조 방법을 순차적으로 보여주는 순서도.4 is a flowchart sequentially showing a casting method according to a first embodiment of the present invention.
도 5는 본 발명의 제2실시 예에 따른 주조 방법으로 주편을 주조하는 경우 몰드에 용융 몰드 플럭스를 주입하는 방법을 개념적으로 보어주는 블록도.FIG. 5 is a block diagram conceptually showing a method of injecting molten mold flux into a mold when casting a slab by a casting method according to a second exemplary embodiment of the present invention. FIG.
도 6은 본 발명의 실시 예에 따른 주조 방법으로 주편을 주조할 때 첨가제의 투입 여부에 따른 실험 결과를 보여주는 그래프. Figure 6 is a graph showing the results of experiments depending on whether the additive is added when casting the cast in the casting method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 1은 본 발명의 실시 예에 따른 주조설비를 개략적으로 보여주는 도면이고, 도 2는 도 1에 도시된 주조설비의 요부 구성을 보여주는 도면이고, 도 3은 도 2에 도시된 주조설비의 구성을 보여주는 블록도이다.1 is a view schematically showing a casting facility according to an embodiment of the present invention, Figure 2 is a view showing the main configuration of the casting facility shown in Figure 1, Figure 3 is a configuration of the casting facility shown in FIG. A block diagram showing.
도 1을 참조하면, 본 발명의 실시 예에 따른 주조장치는, 제강공정에서 정련된 용강이 담기는 래들(10)과, 래들(10)에 연결되는 주입노즐(미도시)을 통해 용강을 공급받아 이를 일시 저장하고 몰드(30)에 공급하는 턴디쉬(20)와, 턴디쉬(20)에 연결되는 침지노즐(22)을 통해 용강을 전달받아 일정한 형상으로 초기 응고시키는 몰드(30)와, 몰드(30)의 하부에 구비되어 몰드(30)로부터 인발된 미응고 주편(1)을 냉각시키면서 일련의 성형 작업을 수행하도록 복수의 세그먼트가 연속적으로 배열되는 냉각라인(40)을 포함할 수 있다. Referring to FIG. 1, a casting apparatus according to an exemplary embodiment of the present invention supplies a molten steel through a ladle 10 containing molten steel refined in a steelmaking process and an injection nozzle (not shown) connected to the ladle 10. A mold 30 for receiving and temporarily storing it and supplying molten steel through an immersion nozzle 22 connected to the tundish 20 and supplying the mold 30 to the mold 30, and initially solidifying the mold 30 in a predetermined shape; It may include a cooling line 40 provided in the lower portion of the mold 30 and a plurality of segments are continuously arranged to perform a series of molding operations while cooling the non-solidified slab 1 drawn from the mold 30. .
또한, 도 2 및 도 3을 참조하면, 주조장치는 몰드(30)에 공급되는 용강 탕면에 몰드 플럭스를 용융시켜 공급하는 용융물 주입장치(100)와, 몰드(30) 내 몰드 플럭스의 성분 변화에 따른 여러 가지 현상을 측정하는 측정부(130)와, 측정부(130)의 측정 결과에 따라 용융물 주입장치(100)의 동작을 제어하는 제어부(140)를 포함할 수 있다. 2 and 3, the casting apparatus includes a melt injection apparatus 100 for melting and supplying a mold flux to a molten steel surface supplied to a mold 30, and a component change of a mold flux in the mold 30. It may include a measuring unit 130 for measuring various phenomena according to, and a control unit 140 for controlling the operation of the melt injection device 100 according to the measurement result of the measuring unit 130.
용융물 주입장치(100)는 고상의 몰드 플럭스를 용융시켜 몰드(30)에 액상의 몰드 플럭스, 즉 용융 몰드(30)를 공급할 수 있다. 종래에는 용융물 주입장치가 강종에 따라 특정 성분을 갖도록 제공되는 몰드(30)를 그대로 플라즈마 토치 등과 같은 가열수단으로 실시간으로 용융시켜 몰드(30)에 공급하였다. 그러나 주조 시 몰드(30) 내 공급된 용융 몰드(30)가 용강 중 불순물과 반응하여 그 성분이 변경되더라도, 용융물 주입장치에서는 계속 동일한 성분의 몰드(30)를 공급하기 때문에 주조 중 몰드(30)의 성분 변화에 실시간으로 대응하는 것이 불가능하였다. The melt injection apparatus 100 may supply a solid mold flux, ie, a molten mold 30, to the mold 30 by melting the solid mold flux. In the related art, the melt injection apparatus is melted in real time with a heating means such as a plasma torch and supplied to the mold 30 as it is, so that the mold 30 provided to have a specific component according to the steel type. However, even when the molten mold 30 supplied in the mold 30 reacts with impurities in molten steel during casting, and the component thereof is changed, the melt injection apparatus continues to supply the mold 30 having the same component. It was not possible to respond in real time to changes in the composition.
또한, 이강종을 연연주하는 경우에는 강종에 따라 서로 다른 성분의 몰드(30)가 제공되기 때문에 강종에 적합한 성분을 갖는 몰드(30)로 변경하는데 시간이 소요되고, 용해로(112) 내에서 서로 다른 성분의 몰드(30)가 불가피하게 혼합되어 몰드(30)와 응고셀 사이로 몰드(30)가 원활하게 주입되지 못해 응고셀 터짐 현상 등과 같은 문제점이 발생하였다. In addition, in the case of performing the performance of the different steel grades, since the mold 30 of different components is provided according to the steel grade, it takes time to change to the mold 30 having a component suitable for the steel grade, and different in the melting furnace 112. Since the mold 30 of the components are inevitably mixed, problems such as the solidification cell bursting phenomenon may occur because the mold 30 cannot be smoothly injected between the mold 30 and the solidification cell.
이에 본 발명에서는 전술한 용융물 주입장치의 문제점을 해결하기 위하여 몰드(30)에 공급되는 용융 몰드(30)의 성분을 실시간으로 변경할 수 있도록 용융물 주입장치(100)를 구성하였다. 이하에서는 몰드 플럭스를 지칭함에 있어, 용해로(112)에 공급되기 이전에는 고상의 몰드 플럭스를 몰드 플럭스라 하고, 용해로(112)에서 고상의 몰드 플러스를 용해시킨 이후에는 용융 몰드 플럭스라 한다. 또한, 용융 몰드 플럭스를 몰드(30)에 주입한 이후에는 몰드 슬래그라 한다. Accordingly, in the present invention, in order to solve the problems of the melt injection device described above, the melt injection device 100 is configured to change the components of the melt mold 30 supplied to the mold 30 in real time. Hereinafter, in referring to the mold flux, the solid mold flux is called mold flux before being supplied to the melting furnace 112, and the molten mold flux is called after melting the solid mold plus in the melting furnace 112. In addition, after injecting the molten mold flux into the mold 30, the mold slag.
본 발명의 실시 예에 따른 용융물 주입장치(100)는 고상의 몰드 플럭스를 공급하는 원료공급부(110)와, 고상의 몰드 플럭스를 공급받아 용해시켜 용융 몰드 플럭스를 생성하고, 용융 몰드 플럭스를 몰드(30)로 주입하는 용융부(120) 및 원료공급부(110)와 용융부(120)의 동작을 제어하는 제어부(140)를 포함할 수 있다. The melt injection apparatus 100 according to the embodiment of the present invention generates a molten mold flux by supplying and dissolving a raw material supply unit 110 supplying a solid mold flux and a solid mold flux, and forming the molten mold flux into a mold ( 30 may include a melting unit 120, a raw material supply unit 110, and a control unit 140 controlling the operations of the melting unit 120.
원료공급부(110)는 제1원료를 공급하는 제1원료공급부(112)와, 제2원료를 공급하는 제2원료공급부(114)와, 제1원료공급부(112)와 제2원료공급부(114)와 연결되고 제1원료공급부(112)와 제2원료공급부(114)에서 공급되는 제1원료와 제2원료를 혼합하여 제1원료와 제2원료의 혼합물을 제조하는 혼합부(116)를 포함할 수 있다. 또한, 원료공급부(110)는 제1원료와 제2원료의 혼합물을 혼합부(116)를 통해 용융부(120)로 공급할 수도 있지만, 혼합부(116)와 용융부(120) 사이에 제1원료 또는 제1원료와 제2원료의 혼합물을 용융부(120)로 일정하게 공급할 수 있는 원료공급기(118)를 포함할 수도 있다. The raw material supply unit 110 includes a first raw material supply unit 112 for supplying a first raw material, a second raw material supply unit 114 for supplying a second raw material, a first raw material supply unit 112, and a second raw material supply unit 114. And a mixing unit 116 which is connected to the first raw material supply unit 112 and the second raw material supply unit 114 to mix the first raw material and the second raw material to produce a mixture of the first raw material and the second raw material; It may include. In addition, the raw material supply unit 110 may supply a mixture of the first raw material and the second raw material to the melting unit 120 through the mixing unit 116, but between the mixing unit 116 and the melting unit 120 It may also include a raw material feeder 118 that can constantly supply the raw material or a mixture of the first raw material and the second raw material to the melting unit (120).
제1원료공급부(112)는 제1원료, 예컨대 메인 몰드 플럭스를 저장하는 제1저장기(112a)와, 제1저장기(112a)와 혼합부(116)를 연통시키는 제1이송배관(112b)을 포함할 수 있다. The first raw material supply part 112 includes a first reservoir 112a for storing a first raw material, for example, a main mold flux, and a first transfer pipe 112b for communicating the first reservoir 112a and the mixing unit 116. ) May be included.
제1저장기(112a)는 고체 상태의 제1원료, 예컨대 메인 몰드 플럭스를 저장한다. 제1저장기(112a)에서 메인 몰드 플럭스가 배출되는 부분이나 제1이송배관(112b)에는 메인 몰드 플럭스를 제1이송배관(112b)으로 일정량씩 또는 균일하게 배출하기 위한 제1절출기(112c)가 구비될 수 있다. 이때, 제1절출기(112c)는 제1저장기(112a)나 제1이송배관(112b)에 구비되어 구동장치의 동작에 의해 작동하는 스크류 피더일 수도 있고, 제1저장기(112a)와 제1이송배관(112b)의 연결부위나 제1이송배관(112b) 내부의 유로를 개폐하는 밸브일 수도 있다. The first reservoir 112a stores the first raw material in the solid state, for example, the main mold flux. The first cutting machine 112c for discharging the main mold flux to the first transfer pipe 112b by a predetermined amount or uniformly in the portion where the main mold flux is discharged from the first reservoir 112a or the first transfer pipe 112b. ) May be provided. In this case, the first cutting machine 112c may be a screw feeder provided in the first reservoir 112a or the first transfer pipe 112b and operated by the operation of the driving device. It may be a valve for opening and closing the connection portion of the first transfer pipe (112b) or the flow path inside the first transfer pipe (112b).
제2원료공급부(114)는 제2원료, 예컨대 첨가제를 저장하는 제2저장기(114a)와, 제2저장기(114a)와 혼합부(116)를 연통시키는 제2이송배관(114b)을 포함할 수 있다. 이때, 제2저장기(114a)는 복수개가 구비되어 다양한 종류의 첨가제를 각각 독립적으로 저장할 수 있다. 각각의 제2저장기(114a)에서 첨가제가 배출되는 부분이나 제2이송배관(114b)에는 첨가제를 혼합부(116)로 일정량씩 또는 균일하게 배출하기 위한 제2절출기(114c)가 구비될 수 있으며, 제2절출기(114c)는 제1저장기(112a)나 제2이송배관(114b) 내에 구비되어 구동장치의 동작에 의해 작동하는 스크류 피더일 수도 있고, 제2저장기(114a)와 제2이송배관(114b)의 연결부위를 개폐하거나 제2이송배관(114b) 내부의 유로를 개폐하는 밸브일 수 있다. The second raw material supplier 114 includes a second reservoir 114a for storing a second raw material, for example, an additive, and a second transfer pipe 114b for communicating the second reservoir 114a with the mixing unit 116. It may include. In this case, a plurality of second reservoirs 114a may be provided to independently store various types of additives. The second ejector 114c for discharging the additive to the mixing unit 116 by a predetermined amount or uniformly may be provided in the portion where the additive is discharged from each second reservoir 114a or the second transfer pipe 114b. The second cutting machine 114c may be a screw feeder provided in the first reservoir 112a or the second transfer pipe 114b and operated by the operation of the driving device, or the second reservoir 114a. And it may be a valve for opening and closing the connection portion of the second transfer pipe (114b) or open and close the flow path inside the second transfer pipe (114b).
이러한 구성을 통해 제2원료공급부(114)는 복수의 첨가제 중 적어도 어느 하나의 첨가제를 선택적으로 공급할 수 있다. Through this configuration, the second raw material supply unit 114 may selectively supply at least one additive of the plurality of additives.
혼합부(116)는 제1원료공급부(112) 및 제2원료공급부(114)에서 배출되는 메인 몰드 플럭스와 첨가제를 균일하게 혼합한 몰드 플럭스를 용융부(120)로 공급할 수 있다. 또한, 혼합부(116)는 제1원료공급부(112)에서 공급되는 제1원료만 용융부(120)로 공급할 수도 있다. 혼합부(116)는 제1원료공급부(112)와 제2원료공급부(114)에서 공급되는 메인 몰드 플럭스와 첨가제를 수용하는 혼합용기(116a)와, 혼합용기(116a) 내에 수용되는 메인 몰드 플럭스와 첨가제를 균일하게 혼합하기 위한 교반기(미도시) 및 메인 몰드 플럭스와 첨가제의 혼합물, 즉 몰드 플럭스를 용융부(120)로 이송하는 제3이송배관(116b)을 포함할 수 있다. The mixing unit 116 may supply a mold flux in which the main mold flux discharged from the first raw material supply unit 112 and the second raw material supply unit 114 and the additive is uniformly mixed to the melting unit 120. In addition, the mixing unit 116 may supply only the first raw material supplied from the first raw material supply unit 112 to the melting unit 120. The mixing unit 116 may include a main container flux supplied from the first raw material supply unit 112 and a second raw material supply unit 114, a mixing container 116a for receiving additives, and a main mold flux housed in the mixing container 116a. And an agitator (not shown) for uniformly mixing the additives, and a third transfer pipe 116b for transferring the mixture of the main mold flux and the additive, that is, the mold flux to the melter 120.
혼합용기(116a)는 제1원료공급부(112)와 제2원료공급부(114)에서 배출되는 고체 상태의 메인 몰드 플럭스와 첨가제를 수용할 수 있다. 혼합용기(116a)에서 메인 몰드 플럭스와 첨가제의 혼합물이 배출되는 부분이나, 제3이송배관(116b)에는 제1원료와 제2원료의 혼합물을 일정량씩 또는 균일하게 배출하기 위한 제3절출기(116c)가 구비될 수 있다. 이때, 제3절출기(116c)는 혼합용기(116a)나 제3이송배관(116b)에 설치되어 모터의 구동에 의해 동작하는 스크류일 수도 있고, 혼합용기(116a)와 제3이송배관(116b)의 연결부위를 개폐하거나, 제3이송배관(116b) 내부의 유로를 개폐하는 밸브일 수 있다. The mixing container 116a may accommodate the main mold flux and the additive in the solid state discharged from the first raw material supplier 112 and the second raw material supplier 114. A portion in which the mixture of the main mold flux and the additive is discharged from the mixing container 116a, or a third cutting machine for discharging the mixture of the first raw material and the second raw material by a predetermined amount or uniformly in the third transfer pipe 116b ( 116c). At this time, the third cutting machine 116c may be a screw installed in the mixing vessel 116a or the third transfer pipe 116b and operated by driving of the motor, and the mixing vessel 116a and the third transfer pipe 116b. It may be a valve for opening and closing the connection portion of the) or opening and closing the flow path inside the third transfer pipe (116b).
교반기는 혼합용기(116a) 내에서 회전 가능하도록 구성되는 스크류나 임펠러 등으로 형성될 수 있다. 이외에도 교반기는 혼합용기(116a) 내로 불활성 가스 등을 취입할 수 있는 노즐일 수도 있다.The stirrer may be formed of a screw or an impeller configured to be rotatable in the mixing container 116a. In addition, the stirrer may be a nozzle capable of blowing an inert gas or the like into the mixing vessel 116a.
여기에서는 혼합부(116)가 혼합용기(116a)와 교반기를 포함하도록 구성되는 것으로 설명하고 있으나, 혼합용기(116a)를 회전 가능하도록 구성하여 교반기 없이 메인 몰드 플럭스와 첨가제를 균일하게 혼합할 수도 있다. 혼합부(116)는 이에 한정되지 않고 메인 몰드 플럭스와 첨가제를 균일하게 혼합할 수 있는 다양한 형태로 형성될 수 있다. Although the mixing unit 116 is described as being configured to include the mixing vessel 116a and the agitator, the mixing vessel 116a may be configured to be rotatable so that the main mold flux and the additive may be uniformly mixed without the agitator. . The mixing unit 116 is not limited thereto and may be formed in various forms capable of uniformly mixing the main mold flux and the additive.
또한, 혼합부(116)는 메인 몰드 플럭스 또는 메인 몰드 플럭스와 첨가제의 혼합물을 예열하기 위한 가열기(116d)를 포함할 수 있다. 가열기(116d)는 교반기나 혼합용기에 구비될 수 있으며, 메인 몰드 플럭스 또는 메인 몰드 플럭스와 첨가제의 혼합물을 일정 온도로 가열하여 원료공급기(118)로 공급할 수 있다. In addition, the mixing unit 116 may include a heater 116d for preheating the main mold flux or the mixture of the main mold flux and the additive. The heater 116d may be provided in the stirrer or the mixing vessel, and the main mold flux or the mixture of the main mold flux and the additive may be heated to a predetermined temperature and supplied to the raw material feeder 118.
원료공급기(118)는 혼합부(116)의 제3이송배관(116b)과 연통되는 제3저장기(118a)와, 제3저장기(118a)와 용융부(120)를 연결하고 그 내부 유로를 통해 제1원료 또는 제1원료와 제2원료의 혼합물을 공급하는 제4이송배관(118b)와, 제3저장기(118a) 내부나 제4이송배관(118b)에 구비되어 제1원료 또는 제1원료와 제2원료의 혼합물을 용융부(120)로 일정량씩 또는 균일하게 배출하기 위한 제4절출기(118c)가 구비될 수 있다. 제4절출기(118c)도 전술한 제1 내지 제3절출기(112c, 114c, 116c)와 같이 제3저장기(118a)이나 제4이송배관(118b) 내에 구비되어 구동장치의 동작에 의해 작동하는 스크류 피더나 밸브일 수 있다. The raw material feeder 118 connects the third reservoir 118a communicating with the third transfer pipe 116b of the mixing unit 116, the third reservoir 118a and the melter 120, and an internal flow path thereof. The fourth feed pipe 118b for supplying the first raw material or the mixture of the first raw material and the second raw material through the inside of the third reservoir 118a or the fourth transfer pipe 118b through the first raw material or A fourth cutting machine 118c may be provided to discharge the mixture of the first raw material and the second raw material to the melting part 120 by a predetermined amount or uniformly. The fourth cutting machine 118c is also provided in the third reservoir 118a or the fourth transfer pipe 118b like the first to third cutting machines 112c, 114c, and 116c described above, and is operated by the driving device. It may be a working screw feeder or valve.
또한, 원료공급기(118)는 혼합부(116)에서 공급되는 메인 몰드 플럭스 또는 메인 몰드 플럭스와 첨가제의 혼합물을 예열하기 위한 가열기(118d)를 포함할 수 있다. 가열기(118d)는 제3저장기(118a)나 제4이송배관(118b)에 구비될 수 있으며, 메인 몰드 플럭스 또는 메인 몰드 플럭스와 첨가제의 혼합물을 일정 온도로 가열하여 용융부(120)로 공급할 수 있다. 이에 메인 몰드 플럭스 또는 메인 몰드 플럭스와 첨가제의 혼합물 용해를 촉진하여 몰드 슬래그의 성분 변화에 더욱 신속하게 대응할 수 있다. In addition, the raw material supplier 118 may include a heater 118d for preheating the main mold flux or the mixture of the main mold flux and the additive supplied from the mixing unit 116. The heater 118d may be provided in the third reservoir 118a or the fourth transfer pipe 118b. The heater 118d may be heated to a predetermined temperature to supply the main mold flux or the mixture of the main mold flux and the additive to the molten part 120. Can be. This facilitates the dissolution of the main mold flux or the mixture of the main mold flux and the additive, thereby more quickly responding to the component change of the mold slag.
용융부(120)는 상부에 혼합부(116)에서 공급되는 몰드 플럭스, 즉 메인 몰드 플럭스와 첨가제의 혼합물을 가열하여 용융시킴으로써 용융 몰드 플럭스를 생성 및 임시 저장하고, 용융 몰드 플럭스를 토출시켜 몰드(30)에 주입할 수 있다. 용융부(120)는 혼합부(116)에서 공급되는 혼합물이 수용되는 용해로(112)와, 용해로(112) 내부에 열원을 공급하는 열원공급부(128)를 포함할 수 있다. The molten part 120 generates and temporarily stores a molten mold flux by heating and melting a mold flux supplied from the mixing unit 116, that is, a mixture of a main mold flux and an additive, and discharges the molten mold flux. 30). The melting unit 120 may include a melting furnace 112 in which the mixture supplied from the mixing unit 116 is accommodated, and a heat source supply unit 128 supplying a heat source into the melting furnace 112.
용해로(112)는 내부에 메인 몰드 플럭스와 첨가제가 주입되어 용해되는 용해공간이 형성되고, 일측에는 용융 몰드 플럭스를 몰드(30)에 주입하기 위한 토출구(126)가 형성될 수 있다. 용해로(112)는 중심부가 하향 절곡된 대략 "V"자형으로 형성되고, 경동 가능하게 구비될 수 있다. 용해로(112)에는 상부에 혼합부(116)에서 배출되는 몰드 플럭스를 용해공간으로 주입하기 위한 주입구(124)와, 용해공간에서 생성된 용융 몰드 플럭스를 몰드(30)로 주입하기 위한 토출구(126)를 포함할 수 있다. 그리고 용해로(112)에는 용해 공간에 열원을 공급할 수 있도록 일측에는 열원공급부(128)가 연결될 수 있다. 이에 용해로(112)의 일측에서 열원이 공급되어 용해 공간 내의 몰드 플럭스가 용해되어 용융 몰드 플럭스가 생성 및 임시 저장되며, 타측의 토출구(126)를 통해 용융 몰드 플럭스가 토출되어 몰드(30)로 주입될 수 있다. 이는 용해로(112)가 경동 가능하게 구성되기 때문에 가능한 것으로, 용해로(112)의 경동 정도에 따라 용해 공간에 임시 저장되는 용융 몰드 플럭스의 토출량을 조절할 수 있다. The melting furnace 112 has a dissolving space in which the main mold flux and the additive are injected and dissolved therein, and a discharge hole 126 for injecting the molten mold flux into the mold 30 may be formed at one side thereof. The melting furnace 112 is formed in a substantially "V" shape in which the center is bent downward, and may be provided to be tiltable. The melting furnace 112 has an injection hole 124 for injecting the mold flux discharged from the mixing unit 116 into the dissolution space, and a discharge hole 126 for injecting the molten mold flux generated in the dissolution space into the mold 30. ) May be included. The heat source supply unit 128 may be connected to one side of the melting furnace 112 to supply a heat source to the melting space. The heat source is supplied from one side of the melting furnace 112 to melt the mold flux in the melting space to generate and temporarily store the molten mold flux, and the molten mold flux is discharged through the outlet 126 on the other side to be injected into the mold 30. Can be. This is possible because the melting furnace 112 is configured to be tiltable, and the discharge amount of the molten mold flux temporarily stored in the melting space can be adjusted according to the degree of tilt of the melting furnace 112.
열원공급부(128)는 플라즈마 토치와 플라즈마 토치에 질소(N2), 아르곤(Ar), 헬륨(He) 등과 같은 플라즈마 기체를 공급하는 가스공급관을 포함할 수 있다. 플라즈마 토치는 전기를 이용하여 20,000℃ 이상의 고온의 플라즈마를 발생시키는 장치로서, 용해로(112)의 용해 공간에 플라즈마를 발생시킨다. 플라즈마 토치는 가스공급관에서 공급되는 플라즈마 가스가 수용되는 플라즈마 가둠관과, 플라즈마 가둠관을 둘러싸며 배치되는 유도 코일 및 유도 코일에 전원을 공급하는 전원공급기 등을 포함할 수 있다. 이에 전원공급기에서 유도 코일에 전원을 인가하면 플라즈마 가둠관 내부에 플라즈마가 생성된다. 이렇게 생성된 플라즈마와 플라즈마에 의한 열은 주입구(124)를 통해 용해 공간으로 공급되는 혼합물, 즉 고상의 몰드 플럭스와 첨가제를 용해시키는 열원으로 사용될 수 있다. 용해 공간의 용융 몰드 플럭스는 용해 공간에 일시적으로 저장되었다가 용해로(112)를 경동시키면 토출구(126)를 통해 토출되어 몰드(30)에 주입될 수 있다. The heat source supply unit 128 may include a gas supply pipe that supplies a plasma gas such as nitrogen (N 2 ), argon (Ar), helium (He), and the like to the plasma torch and the plasma torch. The plasma torch is a device for generating a plasma having a high temperature of 20,000 ° C. or more using electricity. The plasma torch generates plasma in a melting space of the melting furnace 112. The plasma torch may include a plasma confinement tube in which the plasma gas supplied from the gas supply tube is accommodated, an induction coil disposed around the plasma confinement tube, and a power supply for supplying power to the induction coil. When power is applied to the induction coil from the power supply, plasma is generated inside the plasma confinement tube. The generated plasma and the heat generated by the plasma may be used as a heat source for dissolving the mixture, that is, the solid mold flux and the additive, which is supplied to the dissolution space through the injection hole 124. The molten mold flux of the melting space may be temporarily stored in the melting space and then discharged through the discharge port 126 to be injected into the mold 30 when the melting furnace 112 is tilted.
용융부(120)를 구성하는 용해로(112)는 이외에도 다양한 형상으로 형성될 수 있으며, 용융 몰드 플럭스도 다양한 방법으로 토출시킬 수 있음은 물론이다. 이와 같은 용융부(120)는 공지의 기술로서 보다 구체적인 설명은 생략한다. Melting furnace 112 constituting the melter 120 may be formed in various shapes in addition to, and can be discharged of the molten mold flux in various ways, of course. Such a melting part 120 is a well-known technique, and a detailed description thereof will be omitted.
이와 같은 구성을 통해 용융물 주입장치(100)는 몰드 플럭스의 성분을 실시간으로 조절하여 용해시킨 후 몰드(30)에 주입할 수 있다. Through such a configuration, the melt injection apparatus 100 may inject and mold the components of the mold flux in real time by controlling and dissolving the components of the mold flux.
또한, 측정부(130)는 몰드(30)에 구비될 수 있으며, 몰드(30)의 전열 거동을 측정하기 위한 온도측정기 또는 몰드(30) 내에 주입된 몰드 플럭스의 성분을 측정하는 프로브일 수 있다. In addition, the measuring unit 130 may be provided in the mold 30 and may be a temperature measuring device for measuring the heat transfer behavior of the mold 30 or a probe for measuring the component of the mold flux injected into the mold 30. .
측정부(130)로 온도측정기가 사용되는 경우, 온도측정기는 몰드(30)에 설치되어 몰드(30)의 온도 변화를 측정할 수 있다. 예컨대 단일강종을 다연연주하는 경우 주조 후 어느 정도 시간이 경과하면 몰드 슬래그에 Al2O3가 유입되어 몰드 슬래그의 점도가 상승하게 된다. 이에 몰드(30)와 응고셀 사이로 몰드 슬래그가 불균일하게 유입되고, 윤활작용이 제대로 이루어지지 않는다. 이러한 영향으로 응고셀에서 몰드(30)로 열전달이 균일하게 이루어지지 않아 온도측정기에 의해 측정되는 온도값에 편차가 발생하게 된다. 따라서 온도측정기에 의해 측정되는 온도값에 따라 앞으로 몰드(30)에 주입될 용융 몰드 플럭스의 성분을 변경하여 몰드(30)에 주입함으로써 주조 성능을 향상시킬 수 있다. When the temperature measuring device is used as the measuring unit 130, the temperature measuring device may be installed in the mold 30 to measure a temperature change of the mold 30. For example, in the case of multi-casting a single steel, Al 2 O 3 is introduced into the mold slag after a certain period of time after casting, thereby increasing the viscosity of the mold slag. The mold slag flows unevenly between the mold 30 and the coagulation cell, and lubrication is not performed properly. Due to this effect, heat transfer from the coagulation cell to the mold 30 is not made uniformly, resulting in a deviation in the temperature value measured by the temperature measuring instrument. Therefore, casting performance may be improved by changing the components of the molten mold flux to be injected into the mold 30 in accordance with the temperature value measured by the temperature gauge and injecting the mold 30 into the mold 30.
또한, 측정부(130)로서 프로브를 사용하는 경우 몰드(30) 내 몰드 슬래그 중 일부를 채취하고, 프로브를 통해 채취된 몰드 슬래그의 성분을 분석하여 몰드(30)에 주입되는 용융 몰드 플럭스와 몰드 슬래그의 성분을 비교 분석할 수 있다. 이에 주조 중 몰드 슬래그의 성분 변화에 대응하여 앞으로 몰드(30)에 주입될 용융 몰드 플럭스의 성분을 변경하여 몰드(30)에 주입함으로써 주조 성능을 향상시킬 수 있다. In addition, in the case of using the probe as the measuring unit 130, a part of the mold slag in the mold 30 is collected, and the molten mold flux and the mold injected into the mold 30 by analyzing the components of the mold slag collected through the probe. The components of the slag can be compared and analyzed. Accordingly, the casting performance may be improved by changing the components of the molten mold flux to be injected into the mold 30 in order to change the components of the mold slag during casting and injecting the mold 30 into the mold 30.
이와 같이 측정부(130)의 측정 결과를 이용하여 통해 몰드 플럭스에 첨가제를 혼합하는 내용에 대해서는 주조방법의 설명에서 다시 언급하기로 한다. As described above, the content of mixing the additive in the mold flux using the measurement result of the measuring unit 130 will be described again in the description of the casting method.
제어부(140)는 측정부(130)의 측정 결과를 전달받아 그 측정 결과에 따라 원료공급부의 동작을 제어하여 메인 몰드 플럭스와 첨가제의 공급량을 조절함으로써 몰드(30)에 주입되는 용융 몰드 플럭스의 성분을 제어할 수 있다. 또한, 제어부(140)는 용융부(120)와 측정부(130)의 동작을 제어하여 측정 결과에 따라 몰드(30)에 주입되는 용융 몰드 플럭스의 공급량도 조절할 수 있다. The control unit 140 receives the measurement result of the measuring unit 130 and controls the operation of the raw material supply unit according to the measurement result to adjust the supply amount of the main mold flux and the additives to the component of the molten mold flux injected into the mold 30. Can be controlled. In addition, the controller 140 may control the operation of the melting unit 120 and the measuring unit 130 to adjust the supply amount of the molten mold flux injected into the mold 30 according to the measurement result.
이하에서는 본 발명의 실시 예에 따른 주조방법에 대해서 설명한다. Hereinafter, a casting method according to an embodiment of the present invention will be described.
본 발명에 따른 주조방법은, 단일 강종을 이용하여 주편을 주조하는 제1실시 예와, 이강종을 이용하여 주편을 주조하는 제2실시 예를 포함할 수 있다. The casting method according to the present invention may include a first embodiment of casting a cast steel using a single steel species and a second embodiment of casting a cast steel using two steel grades.
도 4는 본 발명의 제1실시 예에 따른 주조 방법을 순차적으로 보여주는 순서도이다.4 is a flowchart sequentially showing a casting method according to a first embodiment of the present invention.
먼저, 단일 강종을 이용하여 주편을 주조하는 제1실시 예에 대해 설명한다. First, a first embodiment of casting a cast steel using a single steel grade will be described.
본 발명의 제1실시 예에 따른 주조방법은, 메인 몰드 플럭스와 첨가제를 마련하는 과정(S110), 래들(10), 턴디쉬(20)를 거친 용강을 몰드(30)에 주입하는 과정(S120), 몰드(30) 내 주입된 용강의 상부에 용융 몰드 플럭스를 주입하는 과정(S130), 주조 상태를 측정하는 과정(S140) 및 주조 상태를 분석하여 첨가제 투입여부를 판단(S150)한 후 첨가제를 투입하는 과정(S160)을 포함할 수 있다. 몰드(30)에 용강을 주입하는 과정, 용융 몰드 플럭스를 주입하는 과정은 주조가 진행되는 동안 연속적으로 이루어질 수 있다. 그리고 주조 상태를 측정하는 과정과, 첨가제를 주입하는 과정은 주조의 완료가 판단(S170)되는 과정에 의해 주조가 진행되는 동안 반복적으로 수행될 수 있다. In the casting method according to the first embodiment of the present invention, a process of preparing a main mold flux and an additive (S110), a process of injecting molten steel through the ladle 10, the tundish 20 into the mold 30 (S120). ), The process of injecting the molten mold flux to the upper portion of the molten steel injected into the mold 30 (S130), the process of measuring the casting state (S140) and the analysis of the casting state to determine whether the additive is added (S150) and then the additive It may include a process of injecting (S160). Injecting molten steel into the mold 30 and injecting molten mold flux may be continuously performed during casting. In addition, the process of measuring the casting state and the process of injecting the additive may be repeatedly performed during the casting process by the process of determining the completion of the casting (S170).
이하에서는 주조 초기에 몰드(30)로 주입되는 용융 몰드 플럭스를 제1용융 몰드 플럭스로, 주조 중 첨가제와 혼합되어 몰드(30)로 주입되는 용융 몰드 플럭스를 제2용융 몰드 플럭스라 한다. Hereinafter, the molten mold flux injected into the mold 30 at the initial stage of casting is referred to as the first molten mold flux, and the molten mold flux mixed with the additive during casting is injected into the mold 30 as the second molten mold flux.
메인 몰드 플럭스와 첨가제를 마련하는 과정은, 제1저장기(112a)에 고상의 메인 몰드 플럭스를 마련하고, 제2저장기(114a)에는 주조 중 메인 몰드 플럭스와 혼합될 첨가제를 마련한다. 이때, 용융 몰드 플럭스는 CaO, SiO2, MnO, P2O5, Al2O3, MgO, TiO2, K2O, Na2O, F, Fe2O3 등을 포함할 수 있다. 메인 몰드 플럭스는 주조에 사용되는 용강에 적합한 조성을 갖도록 제조된 것일 수 있다. 그리고 첨가제는 NaF(S), Na3AlF6, CaF2(S), AlF3(s), SiO2(s), Li2O(s), LiF(s), CaO, MnO, P2O5, MgO, Al2O3(s), TiO2, Fe2O3, K2O(s), Na2O(s), C 중 어느 하나거나, 적어도 2개의 성분을 혼합한 것일 수 있다. In the process of preparing the main mold flux and the additive, the solid main mold flux is provided in the first reservoir 112a, and the additive to be mixed with the main mold flux during casting is provided in the second reservoir 114a. In this case, the molten mold flux may include CaO, SiO 2 , MnO, P 2 O 5 , Al 2 O 3 , MgO, TiO 2 , K 2 O, Na 2 O, F, Fe 2 O 3 , and the like. The main mold flux may be manufactured to have a composition suitable for the molten steel used for casting. And the additives are NaF (S), Na 3 AlF 6 , CaF 2 (S), AlF 3 (s), SiO 2 (s), Li 2 O (s), LiF (s), CaO, MnO, P 2 O 5 , MgO, Al 2 O 3 (s), TiO 2 , Fe 2 O 3 , K 2 O (s), Na 2 O (s), or any one of C, or may be a mixture of at least two components. .
용강을 몰드(30)에 주입하는 과정은 정련공정에서 정련이 완료되어 래들(10)에 수용된 용강을 주입노즐을 통해 턴디쉬(20)로 공급하고, 턴디쉬(20)로 공급된 용강은 턴디쉬(20)에 구비되는 침지노즐(22)을 통해 몰드(30)에 주입한다. In the process of injecting molten steel into the mold 30, the refining is completed in the refining process, and the molten steel accommodated in the ladle 10 is supplied to the tundish 20 through the injection nozzle, and the molten steel supplied to the tundish 20 is turned. It is injected into the mold 30 through the immersion nozzle 22 provided in the dish (20).
몰드(30)에 용강이 어느 정도 주입되면 몰드(30) 내 용강 상부에 제1용융 몰드 플럭스를 주입한다. 제1용융 몰드 플럭스는 제1저장기(112a)에 저장된 메인 몰드 플럭스를 혼합부(116)의 혼합용기(116a)를 거쳐 용융부(120)에서 용융시켜 제조될 수 있다. 주조 초기에 주입되는 제1용융 몰드 플럭스는 용융부(120)에서 메인 몰드 플럭스만 용해시켜 제조된 것일 수 있다. When molten steel is injected into the mold 30 to some extent, the first molten mold flux is injected into the molten steel in the mold 30. The first molten mold flux may be manufactured by melting the main mold flux stored in the first reservoir 112a through the mixing vessel 116a of the mixing unit 116 in the melting unit 120. The first molten mold flux injected at the beginning of casting may be manufactured by dissolving only the main mold flux in the melter 120.
이와 같이 용강과 제1용융 몰드 플럭스를 몰드(30)에 주입하며 주편을 주조할 수 있다. 몰드(30)에 주입된 제1용융 몰드 플럭스, 즉 몰드 슬래그는 몰드(30)와 응고셀(또는 용강) 사이로 유입되어 몰드(30)와 응고셀 간의 열전달을 제어하고, 윤활 작용을 하여 주편의 주조를 원활하게 한다. As such, the molten steel and the first molten mold flux may be injected into the mold 30 to cast the cast steel. The first molten mold flux, ie, the mold slag, injected into the mold 30 flows in between the mold 30 and the solidification cell (or molten steel) to control heat transfer between the mold 30 and the solidification cell, and lubricate to Smooth casting.
주조 초기 몰드 슬래그는 주입되었을 때 성분을 유지하지만, 주조가 진행되면서 용강 중 불순물이 몰드 슬래그에 유입되어 몰드 슬래그의 성분이 변화하게 된다. 예컨대 용강 중 Al2O3가 몰드 슬래그에 유입되면 몰드 슬래그의 점도가 증가하게 된다. 이 경우, 몰드 슬래그가 몰드(30)와 응고셀 사이로 원활하게 유입되지 못하여, 몰드 슬래그가 몰드(30)의 폭방향 및 길이 방향으로 불균일하게 유입된다. The mold slag in the initial casting retains its components when injected, but as the casting proceeds, impurities in the molten steel flow into the mold slag, thereby changing the components of the mold slag. For example, when Al 2 O 3 in molten steel flows into the mold slag, the viscosity of the mold slag increases. In this case, the mold slag does not flow smoothly between the mold 30 and the solidification cell, so that the mold slag flows unevenly in the width direction and the longitudinal direction of the mold 30.
이러한 영향으로 몰드(30)와 응고셀 간에 열전달이 불균일하게 이루어져 응고셀이 제대로 형성되지 못하고, 이에 주조 후 주편에 표면 결함이 형성되거나 주편 터짐 현상이 발생하게 된다. Due to this effect, heat transfer is unevenly formed between the mold 30 and the coagulation cell, so that the coagulation cell is not properly formed, and thus, a surface defect is formed on the cast steel after casting, or a cast rupture phenomenon occurs.
이에 주조 중 메인 몰드 플럭스와 첨가제를 혼합한 후 용융시켜 제조된 제2용융 몰드 플럭스를 몰드(30)에 주입함으로써 몰드 슬래그의 성분 변화에 신속하게 대응하여 몰드 슬래그가 몰드와 응고셀 사이로 균일하게 유입되도록 하여 주편의 품질을 향상시킬 수 있다. Accordingly, by injecting the second molten mold flux, which is produced by mixing and melting the main mold flux and the additive during the casting, into the mold 30, the mold slag flows uniformly between the mold and the solidification cell in response to changes in the composition of the mold slag. It is possible to improve the quality of the cast.
첨가제의 투입 여부는 주조 상태, 예컨대 몰드(30)의 온도 변화나 몰드 슬래그의 성분 변화에 따라 결정될 수 있다. Whether the additive is added may be determined according to the casting state, for example, the temperature change of the mold 30 or the component change of the mold slag.
주조 중 몰드(30)의 온도 변화를 측정하고, 측정된 온도 변화에 따라 몰드 플럭스에 첨가제를 적정량 혼합한 후 용융시켜 몰드(30)에 주입함으로써 몰드 슬래그의 성분 변화에 신속하게 대응할 수 있다. 따라서 몰드 슬래그가 몰드(30)와 응고셀 사이로 균일하게 유입될 수 있도록 하여 주조가 완료될 때까지 주조 초기와 같은 전열 특성과 윤활 성능을 유지할 수 있다. The temperature change of the mold 30 may be measured during casting, and an appropriate amount of an additive is mixed with the mold flux according to the measured temperature change, followed by melting and injecting the mold 30 into the mold 30, thereby rapidly responding to a component change of the mold slag. Therefore, the mold slag can be uniformly introduced between the mold 30 and the solidification cell to maintain the same heat transfer characteristics and lubrication performance as the initial casting until the casting is completed.
몰드(30)의 온도 측정은 몰드(30)에 몰드(30)의 길이방향 및 폭방향으로 복수개의 온도측정기를 설치하고, 몰드(30)의 길이방향 및(또는) 폭방향에서의 온도값을 측정할 수 있다. 그런 다음, 온도 측정기에서 측정된 온도값의 편차를 측정할 수 있다. 측정된 온도값이 주조 초기 측정된 온도값으로부터 0 초과 내지 5% 정도의 편차 범위에 포함되면 주조를 그대로 진행할 수 있다. 또는 측정된 온도값이 상기 제시된 편차 범위를 벗어나는 경우 첨가제를 투입을 결정할 수 있다. Temperature measurement of the mold 30 is installed in the mold 30 in the longitudinal direction and the width direction of the mold 30, and the temperature value in the longitudinal direction and / or the width direction of the mold 30 It can be measured. Then, the deviation of the temperature value measured by the temperature meter can be measured. If the measured temperature value is within the deviation range of more than 0 to about 5% from the initial measured temperature value, casting can proceed as it is. Alternatively, if the measured temperature value is out of the above-described deviation range, the addition of the additive may be determined.
비교 결과, 측정된 온도값이 편차 범위 내에 포함되면 몰드 슬래그가 몰드(30)와 응고셀 사이로 균일하게 주입되고 있으며 몰드 슬래그의 성분 변화가 미미한 것으로 판단하여 주조 초기와 동일한 성분의 용융 몰드 플럭스, 즉 제1용융 몰드 플럭스를 몰드(30)에 주입한다. As a result of the comparison, when the measured temperature value falls within the deviation range, it is determined that the mold slag is uniformly injected between the mold 30 and the solidification cell and that the change in the composition of the mold slag is insignificant. The first molten mold flux is injected into the mold 30.
그러나 측정된 온도값이 편차 범위를 벗어나는 경우에는 몰드 슬래그의 성분 의 변화가 크게 일어난 것으로 판단하여 첨가제가 투입된 용융 몰드 플럭스, 즉 제2용융 몰드 플럭스를 몰드(30)에 주입할 수 있다. However, when the measured temperature value is out of the deviation range, it is determined that a large change in the components of the mold slag occurs, so that the molten mold flux into which the additive is added, that is, the second molten mold flux, may be injected into the mold 30.
몰드(30)에 투입될 첨가제의 선택은 다음과 같이 선택될 수 있다. Selection of the additive to be added to the mold 30 may be selected as follows.
주조 초기에는 몰드 슬래그의 성분 변화가 거의 없기 때문에 온도측정기로부터 측정되는 온도값은 일정한 범위 내에서 변화하게 된다. 그러나 주조가 진행되면서 용강 중 불순물이 몰드 슬래그에 유입되어 몰드 슬래그의 성분에 변화가 발생하게 된다. 예컨대 용강 중 Al2O3가 유입되거나, 몰드 슬래그 중 불소(F) 성분이 휘발되어 몰드 슬래그의 점도가 높아질 수 있다. 이 경우 몰드 슬래그가 몰드(30)와 응고셀 사이로 균일하게 유입되지 않아 전열 성능이 저하되어 몰드(30)에 설치되는 온도 측정기에서 측정되는 온도값에 변화가 발생하게 된다. 이와 같은 경우 몰드 플럭스와 첨가제를 혼합하여 용융시킨 후 몰드(30)에 주입함으로써 몰드 슬래그의 성분 변화에 의한 주조 효율의 저하를 억제 혹은 방지할 수 있다. 몰드 슬래그에 Al2O3가 다량 유입되는 경우에는 첨가제로서 NaF, CaF2, Li2CO3 등 중 적어도 어느 하나를 사용할 수 있고, 몰드 슬래그 중 불소가 휘발된 경우에는 Na3AlF6, NaF 등 중 적어도 어느 하나를 사용할 수 있다. 이에 몰드(30) 내 몰드 슬래그의 점도를 어느 정도 낮출 수 있으므로 몰드 슬래그가 몰드(30)와 응고셀 사이로 균일하게 주입될 수 있다. 예컨대 용융 몰드 슬래그를 1㎏/분으로 주입할 때 첨가제로 Na3AlF6 를 50g/분으로 투입할 수 있다. 즉, 용융 몰드 슬래그의 전체 중량에 대해서 1 ~ 5중량% 범위로 투입할 수 있다. 이 경우 몰드(30)에 주입되는 몰드 슬래그의 성분 중 불소함량이 ~ 2.7중량% 정도 증가하게 되고, 몰드 슬래그의 점도가 증대되어 몰드와 응고셀 사이로 몰드 슬래그가 원활하게 유입될 수 있다. 한편, Al2O3와 Na2O 성분도 0초과 내지 2중량% 범위 내에서 다소 증가하게 된다. Al2O3와 Na2O 함량의 변화는 불소함량 변화에 비해 미미하여 주조에 큰 영향을 미치지 않는다. In the initial stage of casting, there is little change in the composition of the mold slag, so that the temperature value measured from the temperature gauge changes within a certain range. However, as the casting proceeds, impurities in the molten steel flow into the mold slag, thereby causing a change in the composition of the mold slag. For example, Al 2 O 3 may be introduced into molten steel or fluorine (F) component may be volatilized in the mold slag to increase the viscosity of the mold slag. In this case, the mold slag does not uniformly flow between the mold 30 and the coagulation cell, so that the heat transfer performance is lowered, thereby causing a change in the temperature value measured by the temperature measuring device installed in the mold 30. In such a case, the mold flux and the additive are mixed and melted, and then injected into the mold 30 to suppress or prevent a decrease in casting efficiency due to a change in component of the mold slag. When a large amount of Al 2 O 3 is introduced into the mold slag, at least one of NaF, CaF 2 , Li 2 CO 3, etc. may be used as an additive, and when fluorine is volatilized in the mold slag, Na 3 AlF 6 , NaF, etc. At least one of them can be used. In this case, since the viscosity of the mold slag in the mold 30 may be lowered to some extent, the mold slag may be uniformly injected between the mold 30 and the solidification cell. For example, when injecting molten mold slag at 1 kg / min, Na 3 AlF 6 may be added at 50 g / min as an additive. That is, it can be added in the range of 1 to 5% by weight based on the total weight of the molten mold slag. In this case, the fluorine content of the components of the mold slag injected into the mold 30 increases by about 2.7% by weight, and the viscosity of the mold slag is increased, thereby allowing the mold slag to smoothly flow between the mold and the solidification cell. On the other hand, Al 2 O 3 and Na 2 O component is also slightly increased within the range of more than 0 to 2% by weight. Al 2 O 3 and Na 2 O content of the change does not significantly affect the casting mimihayeo than the fluorine content changes.
이외에도 첨가제는 앞서 설명한 다양한 종류의 첨가제 중 적어도 어느 하나가 사용될 수 있음은 물론이다. In addition to the additives, at least one of the various types of additives described above may be used.
메인 몰드 플럭스와 첨가제의 혼합은 제어부(140)를 통해 이루어지며, 제어부(140)는 측정부(130), 예컨대 온도측정기에서 측정된 결과를 전달받아 제1원료공급부(112)의 제1절출기(112c)와, 제2원료공급부(114)의 제2절출기(114c)의 동작을 제어하여 제1저장기(112a)와 제2저장기(114a)에 각각 저장된 메인 몰드 플럭스와 첨가제를 혼합부(116)의 혼합용기(116a)로 공급한다. Mixing of the main mold flux and the additive is performed through the control unit 140, and the control unit 140 receives the result measured by the measuring unit 130, for example, the temperature measuring device, and the first cutting machine of the first raw material supply unit 112. 112c and the main mold flux and the additives stored in the first reservoir 112a and the second reservoir 114a by controlling the operation of the second cutter 114c of the second raw material supply unit 114, respectively. It is supplied to the mixing container 116a of the part 116.
이후, 제어부(140)는 혼합부(116)의 교반기를 동작시켜 혼합용기(116a)로 공급된 메인 몰드 플럭스와 첨가제를 균일하게 혼합한다. 메인 몰드 플럭스와 첨가제가 균일하게 혼합되면 제어부(140)는 혼합부(116)의 제3절출기(116c)를 동작시켜 메인 몰드 플럭스와 첨가제의 혼합물을 용융부(120)의 용해로(112)에 주입한다. Thereafter, the controller 140 operates the stirrer of the mixing unit 116 to uniformly mix the main mold flux and the additives supplied to the mixing container 116a. When the main mold flux and the additive are uniformly mixed, the control unit 140 operates the third extruder 116c of the mixing unit 116 to transfer the mixture of the main mold flux and the additive to the melting furnace 112 of the melting unit 120. Inject.
용해로(112)에 주입된 혼합물은 용융부(120)의 열원공급부(128)에서 제공되는 열, 즉 플라즈마에 의해 용해되어 제2용융 몰드 플럭스로 제조된다. 이렇게 제조된 제2용융 몰드 플럭스는 용해로(112)의 경동에 의해 용해로(112)에 형성된 토출구(126)를 통해 몰드(30)로 주입되어 몰드 슬래그와 혼합된다. 이에 몰드(30) 내 몰드 슬래그의 점도가 낮아져 몰드(30)와 응고셀 사이로 균일하게 유입될 수 있다. The mixture injected into the melting furnace 112 is melted by heat provided from the heat source supplying part 128 of the melting part 120, that is, plasma, and manufactured into the second molten mold flux. The second molten mold flux thus prepared is injected into the mold 30 through the discharge port 126 formed in the melting furnace 112 by tilting the melting furnace 112 and mixed with the mold slag. This lowers the viscosity of the mold slag in the mold 30 can be uniformly introduced between the mold 30 and the coagulation cell.
이와 같이 주편을 주조하는 과정에서 몰드(30)의 온도를 지속적으로 감시하여, 몰드 슬래그의 성분 변화에 의한 몰드(30)의 온도 변화에 신속하게 대응하여 주편의 품질을 향상시킬 수 있다. 주조 중 몰드 슬래그의 성분 제어는 측정부(130)에 의한 측정 결과에 따라 다수 번 반복적으로 수행될 수 있다. 따라서 주조 중 몰드 슬래그의 성분 변화에 신속하게 대응하여 몰드 슬래그의 성분을 제어할 수 있기 때문에 침지노즐(22) 등과 같은 장치의 열화가 발생하지 않은 한 용강 처리량, 즉 차지(charge) 수를 증가시켜 주조 시간을 연장할 수 있고, 연연주가 가능하게 되어 주편의 생산량을 향상시킬 수 있다. As described above, by continuously monitoring the temperature of the mold 30 in the process of casting the cast steel, the quality of the cast steel can be improved by quickly responding to the temperature change of the mold 30 due to the change of the components of the mold slag. Component control of the mold slag during casting may be repeatedly performed a plurality of times according to the measurement result by the measuring unit 130. Therefore, since the components of the mold slag can be controlled in response to changes in the components of the mold slag during casting, the molten steel throughput, that is, the number of charges, is increased unless the deterioration of the device such as the immersion nozzle 22 occurs. The casting time can be extended, and the performance of the cast can be improved, and the yield of the cast can be improved.
여기에서는 몰드(30)의 온도 변화를 통해 몰드 슬래그의 성분 변화를 측정하는 것으로 설명하였으나, 주조 중 몰드 슬래그를 채취하여 몰드 슬래그의 성분을 분석할 수도 있다. 또는, 몰드 슬래그에 Al2O3가 유입되는 경우 몰드 슬래그의 색상이 변경되기 때문에 육안으로도 몰드 슬래그의 성분 변화를 측정할 수 있다. Herein, the change of the component slag of the mold slag is measured by changing the temperature of the mold 30. However, the mold slag may be collected during casting to analyze the component of the mold slag. Alternatively, when Al 2 O 3 is introduced into the mold slag, since the color of the mold slag is changed, the component change of the mold slag can be measured visually.
이하에서는 본 발명의 제2실시 예에 대해서 설명한다. Hereinafter, a second embodiment of the present invention will be described.
도 5는 본 발명의 제2실시 예에 따른 주조 방법으로 주편을 주조하는 경우 몰드에 용융 몰드 플럭스를 주입하는 방법을 개념적으로 보여주는 블록도이다.FIG. 5 is a block diagram conceptually illustrating a method of injecting a molten mold flux into a mold when casting a slab by a casting method according to a second exemplary embodiment of the present invention.
본 발명의 제2실시 예에서는 서로 다른 강종, 예컨대 이강종을 주조하는 방법에 대해서 설명한다. In the second embodiment of the present invention, a method of casting different steel grades, for example, two steel grades, will be described.
예컨대 고 Al 강이나 고 Mn강을 이용하여 주편을 주조하는 경우 서로 다른 성분을 갖는 몰드 플럭스를 사용하게 된다. 이때, 사용하는 몰드 플럭스는 CaO, SiO2, MnO, P2O5, Al2O3, MgO, TiO2, K2O, Na2O, F, Fe2O3 등을 포함하고 있으나, 그 함량에 차이가 있으며, 그 외의 다른 성분을 더 포함할 수 있다. 따라서 이와 같은 이강종을 연속적으로 주조하는 경우 강종이 바뀔 때 서로 다른 몰드 플럭스를 주입하게 된다. 이 경우 강종에 따라 적합한 몰드 플럭스를 별도로 마련해야 하고, 주조하고자 하는 강종의 생산량이 적은 경우에는 용융로 내 잔류하는 용융 몰드 플럭스를 폐기하고 새로운 몰드 플럭스를 용융시켜 용융 몰드 플럭스를 마련하거나 주조 중 서로 다른 성분의 몰드 플럭스가 혼합되어 몰드(30)로 공급되는 과도기가 발생하게 된다. For example, when casting a cast using high Al steel or high Mn steel, mold flux having different components is used. In this case, the mold flux used includes CaO, SiO 2 , MnO, P 2 O 5 , Al 2 O 3 , MgO, TiO 2 , K 2 O, Na 2 O, F, Fe 2 O 3 , There is a difference in content, and may further include other ingredients. Therefore, in the case of continuously casting such steel grades, different mold fluxes are injected when the steel grades are changed. In this case, a suitable mold flux must be prepared separately according to the steel grade, and if the production quantity of the steel grade to be cast is small, the molten mold flux remaining in the melting furnace is discarded and the new mold flux is melted to prepare the molten mold flux or different components during casting. The mold flux of the mixture is mixed and the transition to the mold 30 is generated.
따라서 본 발명의 제2실시 예에서는 주조 중 사용되는 강종에 따라 용융 몰드 플럭스의 성분을 조절하여 몰드(30)에 주입할 수 있다. Therefore, in the second embodiment of the present invention, the components of the molten mold flux may be adjusted and injected into the mold 30 according to the steel type used during casting.
이하에서는 모든 강종에 적용할 수 있는 몰드 플럭스는 메인 몰드 플럭스라 하고, 주조 초기 사용되는 첨가제는 제1첨가제, 주조 중 강종이 변경될 때 사용되는 첨가제는 제2첨가제라 한다. 또한, 주조 중 측정부(130)에 의해 측정된 결과에 따라 사용되는 첨가제는 제3첨가제라 한다. Hereinafter, the mold flux applicable to all steel grades is called a main mold flux, and the additive used in the initial casting is a first additive, and the additive used when the steel grade is changed during casting is called a second additive. In addition, the additive used according to the result measured by the measuring unit 130 during casting is referred to as a third additive.
본 발명의 제2실시 예에 따른 주조방법은, 메인 몰드 플럭스와 제1첨가제, 제2첨가제 및 제3첨가제를 마련하는 과정, 래들(10), 턴디쉬(20)를 거친 제1용강을 몰드(30)에 주입하는 과정, 몰드(30) 내 주입된 제1용강의 상부에 메인 몰드 플럭스와 제1첨가제를 혼합하여 제조된 제1용융 몰드 플럭스를 주입하는 과정, 제1용강을 이용한 주조가 완료되면, 제2용강을 몰드(30)에 주입하는 과정과, 몰드(30) 내 주입된 제2용강의 상부에 메인 몰드 플럭스와 제2첨가제를 이용하여 제조된 제2용융 몰드 플럭스를 주입하는 과정을 포함할 수 있다. 또한, 제1용강 및 제2용강을 이용하여 주편을 주조하는 과정에서 주조 상태를 측정하는 과정 및 주조 상태에 따라 제3첨가제를 주입하는 과정을 포함할 수 있다. In the casting method according to the second embodiment of the present invention, a process of preparing a main mold flux, a first additive, a second additive, and a third additive, molds the first molten steel through the ladle 10 and the tundish 20 Injecting the first molten mold flux prepared by mixing the main mold flux and the first additive on the upper portion of the first molten steel injected into the mold 30, and casting the first molten steel. Upon completion, the process of injecting the second molten steel into the mold 30, and injecting the second molten mold flux prepared by using the main mold flux and the second additive on top of the second molten steel injected into the mold 30 Process may be included. In addition, in the process of casting the cast using the first molten steel and the second molten steel may include the process of measuring the casting state and the process of injecting a third additive according to the casting state.
여기에서 제1용강을 이용한 주조공정과 제2용강을 이용한 주조공정을 연속적으로 수행될 수 있으며, 주조 상태를 측정하는 과정과, 제3첨가제를 주입하는 과정은 제2용강을 이용한 주조의 완료가 판단되는 과정에 의해 주조가 진행되는 동안 반복적으로 수행될 수 있다. Here, the casting process using the first molten steel and the casting process using the second molten steel may be continuously performed. The process of measuring the casting state and the process of injecting the third additive may be completed by the casting of the second molten steel. It can be repeatedly performed during the casting process by the determined process.
먼저, 메인 몰드 플럭스와, 제1첨가제, 제2첨가제 및 제3첨가제를 마련하는 과정은, 모든 강종에 적용할 수 있는 메인 몰드 플럭스와, 강종에 따라 몰드 플럭스의 성분을 조절하기 위한 제1첨가제 및 주조 중 몰드 슬래그의 성분을 조절하기 위한 제2첨가제를 마련한다. 메인 몰드 플럭스는 CaO, SiO2, MnO, P2O5, Al2O3, MgO, TiO2, K2O, Na2O, F, Fe2O3 등을 포함할 수 있다. 그리고 제3첨가제는 NaF(S), Na3AlF6, CaF2(S), AlF3(s), SiO2(s), Li2O(s), LiF(s), CaO, MnO, P2O5, MgO, Al2O3(s), TiO2, Fe2O3, K2O(s), Na2O(s), C 중 적어도 어느 하나일 수 있다. 그리고 제1첨가제와 제2첨가제는 강종에 따른 몰드 플럭스의 성분을 조절하기 위한 것으로 메인 몰드 플럭스의 성분 중 적어도 어느 하나를 포함할 수 있으며, 제2첨가제의 성분 중 적어도 어느 하나를 포함할 수 있다. 즉, 제1첨가제와 제2첨가제는 CaO, SiO2, MnO, P2O5, Al2O3, MgO, TiO2, K2O, Na2O, F, Fe2O3, NaF(S), Na3AlF6, CaF2(S), AlF3(s), SiO2(s), Li2O(s), LiF(s), CaO, MnO, P2O5, MgO, Al2O3(s), TiO2, Fe2O3, K2O(s), Na2O(s), C 중 적어도 어느 하나일 수 있다. 또한, 제1첨가제와 제2첨가제가 서로 동일한 성분일 수도 있다. First, the process of preparing the main mold flux, the first additive, the second additive and the third additive, the main mold flux applicable to all steel grades, and the first additive for adjusting the components of the mold flux according to the steel grade And a second additive for adjusting the components of the mold slag during casting. The main mold flux may include CaO, SiO 2 , MnO, P 2 O 5 , Al 2 O 3 , MgO, TiO 2 , K 2 O, Na 2 O, F, Fe 2 O 3 , and the like. And a third additive NaF (S), Na 3 AlF 6, CaF 2 (S), AlF 3 (s), SiO 2 (s), Li 2 O (s), LiF (s), CaO, MnO, P At least one of 2 O 5 , MgO, Al 2 O 3 (s), TiO 2 , Fe 2 O 3 , K 2 O (s), Na 2 O (s), C. In addition, the first and second additives are for controlling the components of the mold flux according to the steel grade, and may include at least one of the components of the main mold flux, and may include at least one of the components of the second additive. . That is, the first additive and the second additive are CaO, SiO 2 , MnO, P 2 O 5 , Al 2 O 3 , MgO, TiO 2 , K 2 O, Na 2 O, F, Fe 2 O 3 , NaF (S ), Na 3 AlF 6 , CaF 2 (S), AlF 3 (s), SiO 2 (s), Li 2 O (s), LiF (s), CaO, MnO, P 2 O 5 , MgO, Al 2 At least one of O 3 (s), TiO 2 , Fe 2 O 3 , K 2 O (s), Na 2 O (s), C. In addition, the first additive and the second additive may be the same component.
이렇게 마련된 메인 몰드 플럭스는 제1원료 저장부의 제1저장기(112a)에 저장될 수 있고, 제1첨가제와 제2첨가제 및 제3첨가제는 제2원료 저장부의 제2저장기(114a)에 저장될 수 있다. 이때, 제2저장기(114a)는 복수개로 구비되어 제1첨가제와 제2첨가제 및 제3첨가제 각각의 성분을 저장할 수 있다. The main mold flux thus prepared may be stored in the first reservoir 112a of the first raw material storage portion, and the first additive, the second additive, and the third additive are stored in the second reservoir 114a of the second raw material storage portion. Can be. In this case, the second reservoir 114a may be provided in plural to store components of the first additive, the second additive, and the third additive.
이후, 주조가 시작되면 제1용강을 몰드(30)에 주입하고 제1용강 상부에 메인 몰드 플럭스와 제1첨가제를 혼합하여 제조된 제1용융 몰드 플럭스를 주입한다. Then, when casting is started, the first molten steel is injected into the mold 30 and the first molten mold flux manufactured by mixing the main mold flux and the first additive on the first molten steel.
그리고 제1용강을 이용한 주조가 완료되면 몰드(30)에 제2용강을 주입하고 제2용강 상부에 메인 몰드 플럭스와 제2첨가제를 혼합하여 제조된 제2용융 몰드 플럭스를 주입한다. When the casting using the first molten steel is completed, the second molten steel is injected into the mold 30, and the second molten mold flux prepared by mixing the main mold flux and the second additive on the second molten steel is injected.
예컨대 제1용강이 고망간강과, 제2용강이 고망간-고알루미늄강인 경우, 제1용융 몰드 플럭스와 제2용융 몰드 플럭스는 Al2O3의 함량에 차이를 갖는다. 즉, 제1용융 몰드 플럭스에는 제2용융 몰드 플럭스에 비해 Al2O3가 적게 함유된다. For example, when the first molten steel is a high manganese steel and the second molten steel is a high manganese-high aluminum steel, the first molten mold flux and the second molten mold flux have a difference in content of Al 2 O 3 . That is, the first molten mold flux contains less Al 2 O 3 than the second molten mold flux.
따라서 주조 초기 몰드(30)에 제1용강이 주입될 때에는 메인 몰드 플럭스와 제1첨가제로 미량, 예컨대 1% 미만의 Al2O3를 투입하고, 제1용강을 이용한 주조가 완료되고 몰드(30)에 제2용강이 주입될 때에는 메인 몰드 플럭스와 제2첨가제로 1 ~ 3%의 Al2O3를 투입할 수 있다. 이때, 제2첨가제는 제2용융 몰드 플럭스가 제2용강에 적합한 물성을 갖도록 서서히 증가시키는 방법으로 투입될 수 있다. 이는 제2용융 몰드 플럭스의 물성, 예컨대 점도나 염기도가 급격하게 변경되면 몰드와 응고셀 사이로 원활하게 유입되지 않아 주편 터짐 현상이 발생할 수 있기 때문이다.Therefore, when the first molten steel is injected into the initial casting mold 30, a small amount of Al 2 O 3 , such as less than 1%, is added to the main mold flux and the first additive, and casting using the first molten steel is completed. ) When the second molten steel is injected, 1 to 3% of Al 2 O 3 may be added as the main mold flux and the second additive. In this case, the second additive may be added by gradually increasing the second molten mold flux to have suitable properties for the second molten steel. This is because when the physical properties, such as viscosity or basicity, of the second molten mold flux are drastically changed, it may not be smoothly flowed between the mold and the solidification cell, and thus, cast rupture may occur.
상기 예에서는 제1첨가제와 제2첨가제가 동일한 성분으로 이루어지고 그 투입량을 증가시키는 예에 대해서 설명하였으나, 몰드(30)에 주입되는 용강의 종류에 따라 제1첨가제와 제2첨가제의 투입량을 점차 감소시킬 수도 있으며, 제1첨가제와 제2첨가제의 성분이 상호 다를 수 있음은 물론이다. 또한, 2가지의 용강을 이용하여 주조를 수행하는 방법에 대해서 설명하였으나, 2가지 이상의 용강을 이용하여 주조를 수행할 수도 있다. In the above example, the first additive and the second additive are made of the same component and the example of increasing the input amount, but the input amount of the first additive and the second additive gradually gradually depending on the type of molten steel injected into the mold 30 It may be reduced, and of course, the components of the first and second additives may be different from each other. In addition, the method of performing casting using two kinds of molten steel has been described, but casting may be performed using two or more kinds of molten steel.
또한, 이강종, 즉 제1용강 및 제2용강을 이용하여 주조하는 동안 앞서 설명한 실시 예에서처럼 주조상태를 측정하고, 그 측정 결과에 따라 제2첨가제를 사용하여 몰드 슬래그의 성분을 조절할 수 있음은 물론이다. In addition, during casting using two kinds of steel, that is, the first molten steel and the second molten steel, the casting state may be measured as in the above-described embodiment, and the components of the mold slag may be adjusted using the second additive according to the measurement result. to be.
이하에서는 본 발명에 따른 주조방법으로 주편을 주조하는 실험 예에 대해서 설명한다. 본 실험 예는 단일 강종을 이용하여 주편을 주조하는 과정에서 첨가제의 투입 여부에 따른 몰드 온도 변화를 살펴본다. Hereinafter, an experimental example of casting the cast steel by the casting method according to the present invention. This experimental example looks at the change in the mold temperature according to the addition of additives during the casting of cast steel using a single steel grade.
도 6은 본 발명의 실시 예에 따른 주조 방법으로 주편을 주조할 때 첨가제의 투입 여부에 따른 실험 결과를 보여주는 그래프로서, 주조 중 첨가제 투입 여부에 따른 몰드의 온도 변화를 보여주고 있다. Figure 6 is a graph showing the experimental results of the addition of additives when casting the cast in the casting method according to an embodiment of the present invention, showing the temperature change of the mold according to the addition of additives during casting.
몰드(30)에 복수의 온도 측정기를 설치하고, 주조 중 몰드(30)의 온도를 측정하였다. 온도 측정기는 몰드(30)의 폭방향, 예컨대 주편의 폭방향 중심부에서 몰드(30)의 길이방향, 예컨대 주편의 주조방향을 따라 복수의 지점, 구체적으로는 몰드(30)의 상부로부터 300, 400, 500 및 600㎜ 지점에 설치하였다. A plurality of temperature measuring instruments were installed in the mold 30, and the temperature of the mold 30 was measured during casting. The temperature measuring device has a plurality of points along the length direction of the mold 30, for example, the casting direction of the cast steel, in the width direction center of the mold 30, for example, the width direction of the cast steel, specifically 300, 400 from the top of the mold 30. , 500 and 600 mm points.
그리고 몰드(30)에 용강을 주입하고 메인 몰드 플럭스를 용해시킨 제1용융 몰드 플럭스를 몰드(30)에 주입된 용강 상부에 주입하였다. Then, molten steel was injected into the mold 30 and the first molten mold flux in which the main mold flux was dissolved was injected into the upper portion of the molten steel injected into the mold 30.
도 6을 살펴보면, 주조 초기(A 구간)에는 몰드(30) 온도가 일정한 범위 내에서 변화하는 것을 알 수 있다. 그러나 주조 중반(B 구간)에서는 몰드(30) 온도가 급격하게 변화하며, 불규칙하게 요동치는 것을 알 수 있다. 일정 시간동안 몰드(30) 온도를 관찰하였으나 주조 초기(A 구간)과 같은 패턴으로 돌아오지 않았다. Looking at Figure 6, the casting initial (section A) it can be seen that the temperature of the mold 30 changes within a certain range. However, in the middle of casting (Section B), it can be seen that the temperature of the mold 30 changes abruptly and fluctuates irregularly. The temperature of the mold 30 was observed for a certain time but did not return to the same pattern as the initial casting (Section A).
이에 메인 몰드 플럭스와 첨가제를 혼합하여 용융시킨 제2용융 몰드 플럭스를 몰드(30)에 투입하였다. 이때, 첨가제로서 불소(F)를 투입하였다. Accordingly, the second molten mold flux, in which the main mold flux and the additive were mixed and melted, was introduced into the mold 30. At this time, fluorine (F) was added as an additive.
몰드(30)에 제2용융 몰드 플럭스가 투입되자, 몰드(30)의 온도는 점차 안정적으로 변화하며 일정한 범위 내에서 변화하였다. When the second molten mold flux is injected into the mold 30, the temperature of the mold 30 gradually changes stably and changes within a certain range.
이와 같은 현상은 주조 중 몰드 슬래그가 용강 중 불순물과의 반응을 통해 성분이 변화함으로써 발생할 수 있다. 따라서 주조 중 첨가제를 투입하여 몰드 슬래그의 성분을 조절함으로써 주조를 원활하게 수행할 수 있고, 그에 따라 주편의 품질 저하를 억제 혹은 방지할 수 있다. Such a phenomenon may occur when the mold slag is changed during the casting through the reaction with impurities in the molten steel. Therefore, the casting can be performed smoothly by adjusting the components of the mold slag by adding an additive during casting, thereby suppressing or preventing the deterioration of the cast steel.
상기에서는 주편을 주조하는 방법 및 장치에 대해서 설명하였으나, 이에 한정되지 않고 액상 탈린재를 이용한 정련 공정과 같이 다양한 조업에 적용될 수 있다. In the above, the method and apparatus for casting the cast steel have been described, but the present invention is not limited thereto, and may be applied to various operations such as refining processes using liquid dephosphorization material.
이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention, specific embodiments have been described. However, various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
본 발명에 따른 용융물 주입 장치, 이를 이용한 주조설비 및 주조방법은, 주편을 주조하는 연속주조공정에 적용되어 주편의 품질 및 생산성을 향상시킬 수 있다. Melt injection apparatus according to the present invention, casting equipment and casting method using the same, can be applied to the continuous casting process for casting the cast steel can improve the quality and productivity of the cast steel.

Claims (24)

  1. 이종의 원료를 각각 공급하는 원료공급부와;A raw material supply unit for supplying different kinds of raw materials;
    상기 원료공급부에서 공급되는 이종의 원료를 혼합하여 혼합물을 제조하는 혼합부와;A mixing unit for preparing a mixture by mixing different kinds of raw materials supplied from the raw material supply unit;
    상기 혼합부와 연결되어 상기 혼합부에서 공급되는 혼합물을 용융시켜 용융물을 생성하고, 상기 용융물이 토출되는 토출구가 마련되는 용융부; 및 A melting part connected to the mixing part to melt a mixture supplied from the mixing part to generate a melt, and a discharge port through which the melt is discharged is provided; And
    상기 원료공급부, 혼합부 및 용융부의 동작을 제어하여 상기 혼합물의 성분을 조절하는 제어부;A controller for controlling the components of the mixture by controlling operations of the raw material supply unit, the mixing unit, and the melting unit;
    를 포함하는 용융물 주입장치. Melt injection apparatus comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 원료공급부는 제1원료를 공급하는 제1원료공급부와, 서로 다른 성분을 갖는 복수의 제2원료를 개별적으로 공급하는 제2원료공급부를 포함하는 용융물 주입장치. The raw material supply unit comprises a first raw material supply unit for supplying a first raw material and a second raw material supply unit for supplying a plurality of second raw materials having different components individually.
  3. 청구항 2에 있어서,The method according to claim 2,
    제1원료공급부는,The first raw material supply unit,
    제1원료를 저장하는 제1저장기와;A first storage unit for storing the first raw material;
    상기 제1저장기와 상기 혼합부를 연결하는 제1이송배관; 및A first conveying pipe connecting the first reservoir and the mixing part; And
    상기 제1저장기와 상기 제1이송배관 중 적어도 하나에 구비되어 상기 제1원료의 배출량을 조절하는 제1절출기; A first cutting machine provided in at least one of the first reservoir and the first transfer pipe to adjust the discharge of the first raw material;
    를 포함하는 용융물 주입 장치. Melt injection apparatus comprising a.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제2원료공급부는, The second raw material supply unit,
    상기 복수의 제2원료를 각각 저장하는 복수의 제2저장기와;A plurality of second reservoirs respectively storing the plurality of second raw materials;
    상기 복수의 제2저장기와 상기 혼합부를 각각 연결하는 제2이송배관과; 및A second transfer pipe connecting the plurality of second reservoirs and the mixing unit, respectively; And
    상기 제2저장기와 상기 제2이송배관 중 적어도 하나에 구비되어 상기 제2원료의 배출량을 조절하는 제2절출기;A second cutting machine provided in at least one of the second storage unit and the second transfer pipe to adjust the discharge amount of the second raw material;
    를 포함하는 용융물 주입장치. Melt injection apparatus comprising a.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 혼합부는 상기 제1공급배관 및 상기 제2공급배관과 연통되는 혼합용기와;The mixing unit and the mixing vessel in communication with the first supply pipe and the second supply pipe;
    상기 혼합용기 내에 구비되어 상기 제1원료와 제2원료를 혼합하는 교반기; 및 An agitator provided in the mixing vessel to mix the first raw material and the second raw material; And
    상기 제1원료와 제2원료의 혼합물을 용융부로 이송하는 제3이송배관;A third transfer pipe transferring the mixture of the first raw material and the second raw material to a melting part;
    을 포함하는 용융물 주입 장치.Melt injection apparatus comprising a.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 혼합부는 상기 제1공급배관 및 상기 제2공급배관과 연통되는 혼합용기를 포함하고,The mixing unit includes a mixing vessel in communication with the first supply pipe and the second supply pipe,
    상기 혼합용기는 회전 가능한 용융물 주입 장치. The mixing vessel is rotatable melt injection device.
  7. 청구항 6에 있어서, The method according to claim 6,
    상기 용융부는,The melting part,
    내부에 상기 제1원료와 제2원료가 수용되고 용해되는 용해공간을 구비하는 용해로와;A melting furnace having a melting space in which the first raw material and the second raw material are accommodated and dissolved therein;
    상기 용해로의 일측에 구비되어 상기 용해공간에 열원을 공급하는 열원 공급부;를 포함하는 용융물 주입 장치. And a heat source supply unit provided at one side of the melting furnace to supply a heat source to the melting space.
  8. 청구항 7에 있어서, The method according to claim 7,
    상기 열원 공급부는 플라즈마를 열원으로 사용하는 용융물 주입장치. The heat source supply unit melt injection apparatus using a plasma as a heat source.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 제어부는 입력되는 신호에 따라 상기 제2원료의 투입 여부를 제어하는 용융물 주입장치. The control unit is a melt injection device for controlling the input of the second raw material in accordance with the input signal.
  10. 주조설비로서, As a casting facility,
    용강을 전달받아 초기 응고시키는 몰드와;A mold for receiving the molten steel and initially solidifying the molten steel;
    상기 몰드에 용융 몰드 플럭스를 주입하는 용융물 주입장치와;A melt injection device for injecting a molten mold flux into the mold;
    상기 몰드의 온도 및 상기 몰드 내 주입되는 용융 몰드 플럭스의 성분 중 적어도 하나를 측정부; 및 A measuring unit measuring at least one of a temperature of the mold and a component of a molten mold flux injected into the mold; And
    상기 측정부의 측정 결과에 따라 상기 몰드에 주입되는 용융 몰드 플럭스의 성분을 변경 가능하도록 상기 용융물 주입장치의 동작을 제어하는 제어부;를 포함하는 주조설비. And a control unit for controlling an operation of the melt injection apparatus to change a component of a molten mold flux injected into the mold according to a measurement result of the measurement unit.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 용융물 주입장치는 메인 몰드 플럭스를 공급하는 제1원료공급부와;The melt injection device includes a first raw material supply unit for supplying the main mold flux;
    첨가제를 공급하는 제2원료공급부와;A second raw material supplier for supplying an additive;
    상기 제1원료공급부와 상기 제2원료공급부에서 공급되는 메인 몰드 플럭스와 상기 첨가제를 혼합하여 혼합물을 제조하는 혼합부; 및A mixing unit for mixing the main mold flux supplied from the first raw material supply unit and the second raw material supply unit and the additive to prepare a mixture; And
    상기 혼합부에서 공급되는 혼합물을 용해시켜 용융 몰드 플럭스를 생성하고, 상기 용융 몰드 플럭스를 상기 몰드에 주입하는 용융부;A melter which melts the mixture supplied from the mixer to produce a molten mold flux and injects the molten mold flux into the mold;
    를 포함하는 주조설비. Casting equipment comprising a.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 제2원료공급부는 복수의 첨가제를 개별적으로 저장하고, The second raw material supply unit stores a plurality of additives individually,
    상기 복수의 첨가제를 상기 혼합부에 선택적으로 공급하는 주조설비.Casting facility for selectively supplying the plurality of additives to the mixing unit.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 측정부는 상기 몰드의 온도를 측정하는 온도측정기를 포함하는 주조설비. The measuring unit comprises a temperature measuring device for measuring the temperature of the mold.
  14. 청구항 12에 있어서, The method according to claim 12,
    상기 측정부는 상기 몰드에 주입된 용융 몰드 플럭스를 채취하는 프로브와, 상기 프로브에 의해 채취된 용융 몰드 플럭스의 성분을 분석하는 분석기를 포함하는 주조설비.The measuring unit includes a probe for collecting the molten mold flux injected into the mold, and a casting equipment including an analyzer for analyzing the components of the molten mold flux collected by the probe.
  15. 청구항 13 또는 청구항 14에 있어서, The method according to claim 13 or 14,
    상기 제어부는 상기 측정부에 의해 측정된 결과를 이용하여 상기 첨가제의 투입여부를 결정하고, 그 결과에 따라 상기 제2원료공급부를 제어하여 첨가제의 종류 및 투입량을 조절하는 주조설비. The control unit determines whether or not to add the additive using the results measured by the measuring unit, and controls the second raw material supply unit in accordance with the results to adjust the type and amount of additives.
  16. 주조방법으로서, As the casting method,
    메인 몰드 플럭스를 마련하는 과정;Preparing a main mold flux;
    몰드에 용강을 주입하는 과정;Injecting molten steel into the mold;
    상기 메인 몰드 플럭스를 용융시켜 용융 몰드 플럭스를 제조하고, 상기 용강 상부에 상기 용융 몰드 플럭스를 주입하는 과정; Melting the main mold flux to produce a molten mold flux and injecting the molten mold flux into the molten steel;
    주편을 주조하는 과정; 및Casting of cast steel; And
    상기 주편을 주조하는 과정에서 주조 상태에 따라 첨가제의 투입 여부를 결정하는 과정;을 포함하는 주조방법.Determining whether or not to add an additive according to the casting state in the casting of the cast steel.
  17. 청구항 16에 있어서, The method according to claim 16,
    상기 메인 몰드 플럭스를 마련하는 과정에서, In the process of preparing the main mold flux,
    상기 첨가제를 마련하는 주조방법.Casting method for providing the additive.
  18. 청구항 17에 있어서, The method according to claim 17,
    상기 메인 몰드 플럭스를 용융시켜 용융 몰드 플럭스를 제조하는 과정에서,In the process of manufacturing the molten mold flux by melting the main mold flux,
    상기 메인 몰드 플럭스와 상기 첨가제를 함께 용융시키는 주조방법.A casting method of melting the main mold flux and the additive together.
  19. 청구항 18에 있어서, The method according to claim 18,
    상기 주편을 주조하는 과정에서 상기 주조 상태로서 상기 몰드의 온도를 측정하고, In the casting of the cast steel, the temperature of the mold is measured as the casting state,
    측정된 몰드의 온도값에 따라서 상기 첨가제의 투입 여부를 결정하는 주조방법. Casting method for determining whether to add the additive in accordance with the measured temperature value of the mold.
  20. 청구항 18에 있어서,The method according to claim 18,
    상기 주편을 주조하는 과정에서 상기 주조 상태로서 상기 몰드에 주입된 용융 몰드 플럭스의 성분을 분석하고, Analyzing the components of the molten mold flux injected into the mold as the casting state in the process of casting the cast steel,
    분석된 용융 몰드 플럭스의 성분에 따라 상기 첨가제의 투입 여부를 결정하는 주조방법. Casting method for determining whether to add the additive according to the components of the molten mold flux analyzed.
  21. 청구항 19 또는 청구항 20에 있어서, The method according to claim 19 or 20,
    상기 첨가제의 투입이 결정되면, 상기 메인 몰드 플럭스와 상기 첨가제를 혼합한 후 용융시켜 성분이 변경된 용융 몰드 플럭스를 상기 몰드에 주입하는 주조방법. When the addition of the additive is determined, the main mold flux and the additive is mixed and melted to inject the molten mold flux, the component of which is changed into the mold.
  22. 청구항 21에 있어서, The method according to claim 21,
    상기 주편을 주조하는 과정에서 상기 몰드에 주입되는 용강의 종류가 변경되면 상기 메인 몰드 플럭스와 상기 첨가제를 혼합한 후 용융시켜 성분이 변경된 용융 몰드 플럭스를 상기 몰드에 주입하는 주조방법. And casting the molten mold flux, the component of which is changed, by mixing the main mold flux and the additive and then melting the molten steel injected into the mold during the casting of the cast steel.
  23. 청구항 22에 있어서, The method according to claim 22,
    상기 메인 몰드 플럭스와 상기 첨가제를 혼합할 때, 상기 용강의 종류에 따라 서로 다른 성분의 첨가제를 투입하는 주조방법.When mixing the main mold flux and the additive, a casting method for adding an additive of different components according to the type of molten steel.
  24. 청구항 22에 있어서, The method according to claim 22,
    상기 메인 몰드 플럭스와 상기 첨가제를 혼합할 때, 상기 용강의 종류에 따라 동일한 성분을 갖는 첨가제의 투입량을 변경하는 주조방법.When mixing the main mold flux and the additive, the casting method for changing the dosage of the additive having the same component according to the type of the molten steel.
PCT/KR2016/013161 2016-03-02 2016-11-15 Device for injecting molten material, casting equipment using same, and casting method WO2017150787A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018536136A JP2019501027A (en) 2016-03-02 2016-11-15 Melt injection device, casting equipment and casting method using the same
CN201680081282.XA CN108602115A (en) 2016-03-02 2016-11-15 The device of injection melted material, Casting Equipment and casting method with this device
EP16892800.0A EP3424617A4 (en) 2016-03-02 2016-11-15 Device for injecting molten material, casting equipment using same, and casting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160025300A KR101790001B1 (en) 2016-03-02 2016-03-02 Melt supply equipment, casting apparatus and casting method
KR10-2016-0025300 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017150787A1 true WO2017150787A1 (en) 2017-09-08

Family

ID=59743936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013161 WO2017150787A1 (en) 2016-03-02 2016-11-15 Device for injecting molten material, casting equipment using same, and casting method

Country Status (5)

Country Link
EP (1) EP3424617A4 (en)
JP (1) JP2019501027A (en)
KR (1) KR101790001B1 (en)
CN (1) CN108602115A (en)
WO (1) WO2017150787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260434A (en) * 2021-12-31 2022-04-01 永兴特种材料科技股份有限公司 Automatic covering slag adding device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156716B1 (en) * 2018-09-28 2020-09-16 주식회사 포스코 Apparatus for casting and method for casting
KR102310993B1 (en) 2020-06-12 2021-10-08 주식회사 제이피에스 Apparatus of runner for preventing thermal loss of casting melted material
CN113751681B (en) * 2021-09-14 2023-06-16 鞍钢股份有限公司 Continuous casting powder suitable for high titanium steel
KR20230055788A (en) 2021-10-19 2023-04-26 주식회사 제이피에스 Apparatus of runner for heating of casting melted material through selectively radiating of electromagnetic waves
KR20230055789A (en) 2021-10-19 2023-04-26 주식회사 제이피에스 furnace system for heating of casting melted material through selectively radiating of electromagnetic waves
WO2023166506A1 (en) * 2022-03-01 2023-09-07 Magnus Metal Ltd. Additive casting deposition system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101114422B1 (en) * 2008-12-24 2012-02-22 글로벌텍 주식회사 Molten mold flux feeding apparatus and molten mold flux feeding method
KR20140003856A (en) * 2012-06-29 2014-01-10 주식회사 포스코 Melt supply equipment
KR20140070037A (en) * 2012-11-30 2014-06-10 주식회사 포스코 Feeding apparatus for mold flux and the continuous casting method using it
KR101455534B1 (en) * 2013-06-27 2014-10-28 현대제철 주식회사 Probe device for experiment
JP2015085387A (en) * 2013-09-27 2015-05-07 日新製鋼株式会社 Continuous casting method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116367A (en) * 1975-11-12 1978-09-26 Nippon Steel Corporation Apparatus for supplying powder to continuous casting mold
JPS54114435A (en) * 1978-02-25 1979-09-06 Sumitomo Metal Ind Powder supplying apparatus in continuous casting
JPS571551A (en) * 1980-06-06 1982-01-06 Nippon Steel Corp Equipment for feeding additive in continuous casting
WO1983002911A1 (en) * 1982-02-24 1983-09-01 Yaji, Motoyasu Method of controlling continuous casting facility
JPS6281252A (en) * 1985-10-07 1987-04-14 Kawasaki Steel Corp Continuous casting method
JPH01118350A (en) * 1987-10-29 1989-05-10 Nippon Supingu Kk Method and device for supplying powder for continuous casting
JP3771309B2 (en) * 1996-02-02 2006-04-26 電気化学工業株式会社 Mixing equipment
DE19614760A1 (en) * 1996-04-02 1997-10-09 Mannesmann Ag Process for optimizing the strand surface quality
JPH115147A (en) * 1997-06-12 1999-01-12 Nkk Corp Method and device for supplying powder in continuous casting
JP2004306088A (en) * 2003-04-07 2004-11-04 Nippon Steel Corp Powder feeding equipment and feeding method for continuous casting
KR100749027B1 (en) * 2006-06-23 2007-08-13 주식회사 포스코 Continuous casting machine and method using molten mold flux
CN101844211B (en) * 2009-03-23 2012-06-13 鞍钢股份有限公司 Method for accurately controlling alkalinity of tundish slag in continuous casting steel casting process
JP6284017B2 (en) * 2014-03-26 2018-02-28 新日鐵住金株式会社 Mold flux for continuous casting of Al-containing steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101114422B1 (en) * 2008-12-24 2012-02-22 글로벌텍 주식회사 Molten mold flux feeding apparatus and molten mold flux feeding method
KR20140003856A (en) * 2012-06-29 2014-01-10 주식회사 포스코 Melt supply equipment
KR20140070037A (en) * 2012-11-30 2014-06-10 주식회사 포스코 Feeding apparatus for mold flux and the continuous casting method using it
KR101455534B1 (en) * 2013-06-27 2014-10-28 현대제철 주식회사 Probe device for experiment
JP2015085387A (en) * 2013-09-27 2015-05-07 日新製鋼株式会社 Continuous casting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3424617A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260434A (en) * 2021-12-31 2022-04-01 永兴特种材料科技股份有限公司 Automatic covering slag adding device
CN114260434B (en) * 2021-12-31 2023-07-07 湖州永兴特种不锈钢有限公司 Automatic device of covering slag adds

Also Published As

Publication number Publication date
JP2019501027A (en) 2019-01-17
EP3424617A4 (en) 2019-04-03
KR101790001B1 (en) 2017-11-20
KR20170102760A (en) 2017-09-12
CN108602115A (en) 2018-09-28
EP3424617A1 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
WO2017150787A1 (en) Device for injecting molten material, casting equipment using same, and casting method
KR920000524B1 (en) Melting furnace and method for melting metal
KR20080027766A (en) Continuous steel production and apparatus
WO2018026066A1 (en) Molten metal treatment apparatus and treatment method
CN107695311A (en) Put into material and utilize its casting method
JPH02282692A (en) Electric furnace accompanied by gas for molten metal and method thereof
WO2021133018A1 (en) Molten material treatment apparatus and method
WO2018048161A1 (en) Method for manufacturing steel
JPH09239501A (en) Method for refining molten steel in tundish
JP3265189B2 (en) Tundish waste flux and tundish slag waste treatment
JPH01107948A (en) Method and device for reusing tundish
KR100396090B1 (en) Porous Plug in Ladle
CN103805735B (en) A kind of using method of sampler
WO2017188539A1 (en) Mold flux and casting method using same
WO2020032331A1 (en) Method for treating molten steel and apparatus therefor
WO2015020262A1 (en) Molten iron refining method and device thereof
JPH06320235A (en) Split casting method
WO2021187749A1 (en) Tundish flux and casting method using same
WO2024071633A1 (en) Method for manufacturing steel
JPH03210948A (en) Tundish
JP4189313B2 (en) Continuous casting method of molten steel using hot rotating tundish
CN118106466A (en) Method for online replacing intermediate tank of multi-machine multi-strand continuous casting machine
KR960000329B1 (en) Filler supplying method
JPS62240709A (en) Equipment for temperature rising of molten steel in ladle
JPH05237598A (en) Method for inoculating casting and device therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018536136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016892800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016892800

Country of ref document: EP

Effective date: 20181002

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892800

Country of ref document: EP

Kind code of ref document: A1