WO2021187749A1 - Tundish flux and casting method using same - Google Patents

Tundish flux and casting method using same Download PDF

Info

Publication number
WO2021187749A1
WO2021187749A1 PCT/KR2021/001152 KR2021001152W WO2021187749A1 WO 2021187749 A1 WO2021187749 A1 WO 2021187749A1 KR 2021001152 W KR2021001152 W KR 2021001152W WO 2021187749 A1 WO2021187749 A1 WO 2021187749A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
tundish
molten steel
oxide
casting
Prior art date
Application number
PCT/KR2021/001152
Other languages
French (fr)
Korean (ko)
Inventor
정성훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2022555841A priority Critical patent/JP7420963B2/en
Priority to CN202180021169.3A priority patent/CN115279514A/en
Publication of WO2021187749A1 publication Critical patent/WO2021187749A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing

Definitions

  • the present invention relates to a tundish flux and a casting method using the same, and more particularly, to a tundish flux capable of improving the quality and productivity of a slab and a casting method using the same.
  • the casting process is a process of manufacturing slabs of various shapes such as slabs, blooms, billets, beam blanks, etc. by injecting molten steel in a tundish into a mold, and drawing out the reacted and solidified slabs in the mold.
  • the molten steel molten steel surface in the tundish is covered with flux to remove inclusions from the molten steel in the tundish, to suppress the occurrence of inclusions due to re-oxidation of the molten steel and the temperature drop of the molten steel.
  • the flux is provided in a solid state or a powder state, and the flux is introduced into a tundish in which a predetermined amount of molten steel is accommodated at the initial stage of casting.
  • a molten flux that is, a flux pool
  • a flux pool is formed to a predetermined thickness on the molten steel molten steel surface. That is, the molten steel bath surface is covered by the flux pool.
  • the solid flux supplied to the tundish is melted after a predetermined time has elapsed.
  • the amount of flux pool generated is insufficient, and the thickness thereof is thin.
  • the flux pool formed at the initial stage of casting has low solubility for inclusions and has a weak blocking effect with the atmosphere. For this reason, the removal rate of inclusions in the molten steel is low, and as a large amount of inclusions are generated due to reoxidation of the molten steel, defects due to inclusions in the molten steel occur on the surface or inside of the cast steel.
  • Patent Document 1 Korean Patent KR1233836
  • the present invention provides a tundish flux having improved solubility of inclusions and a casting method using the same.
  • the present invention provides a tundish flux capable of suppressing or preventing the reoxidation of molten steel and the occurrence of inclusions thereby, and a casting method using the same.
  • Examples of the present invention are tundish fluxes that are added to the tundish during casting, and based on the total weight%, calcium oxide (CaO) is 40 to 60 wt%, and aluminum oxide (Al 2 O 3 ) is 25 wt% % to 40% by weight, 5% to 10% by weight of silicon oxide (SiO 2 ), 2% to 10% by weight of boron oxide (B 2 O 3 ) and unavoidable impurities.
  • CaO calcium oxide
  • Al 2 O 3 aluminum oxide
  • SiO 2 silicon oxide
  • B 2 O 3 boron oxide
  • the boron oxide (B 2 O 3 ) may be included in an amount of 5 wt% to 10 wt%.
  • the tundish flux may further include at least one of 2 wt% to 10 wt% sodium oxide (Na 2 O) and 2 wt% to 10 wt% calcium fluoride (CaF 2 ).
  • the tundish flux may further include at least one of 2 wt% to 6 wt% sodium oxide (Na 2 O) and 2 wt% to 6 wt% calcium fluoride (CaF 2 ).
  • the calcium oxide (CaO) is 50% to 60% by weight
  • the aluminum oxide (Al 2 O 3 ) is 25% to 34% by weight
  • the silicon oxide (SiO 2 ) 6 wt% to 9 wt% may be included.
  • the melting point of the tundish flux is 1310° C. or less.
  • the melting point of the tundish flux may be 1280° C. or less.
  • the tundish flux has a viscosity of 7 poise or less at 1400°C.
  • the tundish flux may have a viscosity of 2 poise or more and 4 poise or less at 1400°C.
  • a casting method comprises the steps of providing a tundish flux; The process of supplying molten steel to the tundish; inputting the tundish flux into the tundish to form a flux pool on the molten steel molten steel surface in the tundish; and supplying the molten steel of the tundish to a mold, and solidifying the molten steel in the mold to cast a slab.
  • the ladle in which the molten steel is accommodated is alternately connected to the tundish a plurality of times to perform casting of multiple charges in which molten steel is continuously supplied to the tundish, and during the casting of the multiple charges, the molten steel of the first ladle is supplied to the tundish
  • the tundish flux is introduced into the tundish in the first charge casting to be performed, and the melting point of the flux pool in the tundish is 1400° C. or less during the last charge casting during the multi-charge casting.
  • the tundish flux injected into the tundish is all melted within 8 minutes.
  • the thickness of the flux pool in the tundish at the time of the first charge casting is 10 mm or more.
  • the molten steel oxygen content in the mold is 20 ppm or less.
  • solubility of inclusions or efficiency of removing inclusions is higher than in the related art. Accordingly, compared to the prior art, it is possible to manufacture a cast slab in which the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.
  • the melting point of the flux according to the embodiments is lower than that of the prior art, the melting rate is high. Accordingly, when using the flux according to the embodiments, it is possible to melt a large amount of flux within a shorter time than in the related art. Due to this, as a sufficient amount and thickness of the flux pool is formed in the initial stage of casting, reoxidation and temperature drop in the initial stage of casting can be more effectively prevented.
  • the melting point of the flux is low, it is possible to suppress or prevent the solidification of the flux even when casting of a plurality of charges is continuously performed. Therefore, it is possible to manufacture a slab in which the occurrence of defects due to inclusions is suppressed or prevented from the initial stage to the end of continuous casting, and the quality of the slab can be improved.
  • 1 is a view showing a general casting equipment.
  • FIG. 3 is a diagram illustrating an experimental apparatus.
  • FIG 4 is a photograph showing the molten state of the flux over time when the flux according to the first experimental example and the flux according to the third experimental example are introduced into the tundish.
  • FIG. 5 is a diagram illustrating the measurement of oxygen content (ppm) in the molten steel in the mold at each charge when casting is continuously performed seven times using the flux according to the first experimental example and the flux according to the third experimental example, respectively; is a result
  • FIG. 6 is a view showing the state of the flux in the tundish in the order of the charge when casting the charge six times continuously using the flux according to the first experimental example and the flux according to the third experimental example, respectively. It's a photo.
  • the present invention relates to a tundish flux having improved inclusion solubility or inclusion removal efficiency. Further, the present invention relates to a tundish flux capable of suppressing or preventing reoxidation and temperature drop of molten steel.
  • the solubility of inclusions means the degree to which inclusions are dissolved by the flux.
  • tundish flux Prior to the description of the tundish flux according to the embodiments of the present invention, a general casting method to which the tundish flux is applied will be described.
  • 1 is a view showing a general casting equipment.
  • the tundish 100 receives the molten steel from the ladle 200 and supplies it to the mold 300 .
  • the ladle 200 is moved to the upper side of the tundish 100, and the nozzle connected to the lower part of the ladle 200 (hereinafter, the ladle nozzle 220), for example, the lower part of the shroud nozzle is turned. to be located inside the dish 100 .
  • the molten steel in the ladle 200 is supplied to the tundish 100 through the ladle nozzle 220 , and then is supplied to the mold 300 through the immersion nozzle 400 .
  • the tundish 100 includes a body 110 having an internal space and a cover member 140 covering an upper side of the body 110 .
  • a hole into which the ladle nozzle 220 is inserted and a hole for sampling may be provided in the cover member 140 .
  • the tundish 100 is located outside the upper weir 120 and the upper weir 120 installed in the upper portion of the main body 110 so as to be located outside the position where the ladle nozzle 220 is inserted. (110) It may further include a lower weir (weir) 130 installed on the bottom.
  • first and second molds 300: 300a, 300b when two molds (hereinafter, first and second molds 300: 300a, 300b) are disposed on the lower side of the tundish 100, the ladle 200 is located on the upper side of the tundish 100
  • the ladle nozzle 220 is arranged to be positioned between the first mold 300a and the second mold 300b.
  • the upper weirs are provided as a pair, and the pair of upper weirs (hereinafter, first and second upper weirs 120: 120a, 120b) are located on both sides with the ladle nozzle 220 as the center. It may be connected to an upper portion of the body 110 .
  • the lower ends of the first and second upper weirs 120a and 120b are installed to be spaced apart from the bottom surface of the main body 110 .
  • the lower weir 130 may also be provided as a pair, and a pair of lower weirs (hereinafter, first and second lower weirs 130: 130a, 130b) connects the tundish 100 and the mold. It may be installed so as to be located between the submerged nozzle and the upper weir. That is, the first lower weir 130a is positioned between the first submerged nozzle 400a and the first upper weir 120a connecting the tundish 100 and the first mold 300a, and the tundish 100 A second lower weir 130b is positioned between the second submerged nozzle 400b and the second upper weir 120b connecting the and the second mold 300b.
  • first and second lower weirs 130: 130a, 130b connects the tundish 100 and the mold. It may be installed so as to be located between the submerged nozzle and the upper weir. That is, the first lower weir 130a is positioned between the first submerged nozzle 400a and the first upper weir 120a connecting the tund
  • the vertical extension length of the upper weir 120 may be formed longer than the extension length of the lower weir 130 .
  • the lower end of the upper weir 120 is provided to be positioned lower than the upper end of the lower weir 130 .
  • the inner space of the tundish 100 or the main body 110 is located outside the central area 111a, which is a space between the first upper weir 120a and the second upper weir 120b, one side of the central area 111a.
  • the space may be divided into a first outer region 111b and a second outer region 111c, which is a space located outside the other side of the central region 111a.
  • the first outer region 111b is a space between one sidewall and the first upper weir 120a in the main body 110
  • the second outer region 111c is the other sidewall and the second upper weir in the main body 110 . It can be described as the space between (120b).
  • a portion of the molten steel M passed through the ladle nozzle 220 and supplied to the central region 111a in the tundish 100 is a first upper weir 120a and a first lower weir ( 130a), it moves to the first outer region 111b, and moves to the first outer region 111b through the passage between the second upper weir 120b and the second lower weir 130b.
  • the molten steel moved to the first and second outer regions 111b and 111c is supplied to the first and second molds 300a and 300b through the first and second immersion nozzles 400a and 400b.
  • the tundish 100 receives the molten steel M from the ladle 200 as described above.
  • a process in which the molten steel M of the ladle 200 is supplied to the tundish 100 will be briefly described.
  • an outlet 210 which is a passage through which the molten steel M is discharged, is provided, and a filler including a metal oxide such as chromium oxide and silicon oxide is filled in the outlet 210.
  • the filler is sintered by the heat of the molten steel M accommodated in the ladle 200, and thus the outlet 210 is closed by the sintered filler.
  • the gate 221 provided in the ladle nozzle 220 is opened in this state, the filler sintered in the outlet 210 is destroyed by the load of the molten steel M. Accordingly, as the outlet 210 is naturally opened (opened), the molten steel M in the ladle 200 is supplied to the tundish 100 through the outlet 210 and the ladle nozzle 220 .
  • continuous casting in which the slab is cast by continuously supplying the molten steel M to the tundish 100 may be performed. That is, the molten steel is supplied to the tundish 100 before the molten steel M in the tundish 100 is completely discharged into the mold 300 or before the molten steel is emptied in the tundish 100 .
  • the ladle 200 in which the molten steel M is accommodated is connected to the tundish 100 a plurality of times. That is, before all the molten steel (M) in the tundish 100 is discharged, the empty ladle 200 located on the upper side of the tundish 100 is replaced with another ladle 200 in which the molten steel M is accommodated and connected.
  • casting a slab by using the molten steel accommodated in one ladle 200 is called one charge (charge).
  • charge the first (first) ladle, the second ladle, the third ladle, ...
  • the cast is cast while replacing the ladle in this order, and the casting is made according to the order of the ladle or the order to be replaced: 1st charge, 2nd charge, 3rd charge, ... named as
  • the molten steel M that is taken by the ladle 200 and moved to the tundish 100 is molten steel after a refining operation to remove impurities before that.
  • the refining operation to remove impurities is a preliminary desulfurization process to remove sulfur (S) from molten steel, a converter refining process to remove phosphorus (P) and carbon (C) from molten steel by blowing oxygen into the molten steel in the converter, and oxygen ( O) including deoxidation process.
  • a deoxidizing agent for example, aluminum (Al) is introduced into the molten steel.
  • inclusions such as metal oxides, for example, aluminum oxide (Al 2 O 3 ) in molten steel are generated, and these inclusions are a factor of surface or internal defects of the cast steel.
  • bubbling is performed using a vacuum degassing facility, for example, RH (Rheinstahl-Heraus), but there is a limit to lowering the inclusions in the molten steel below a desired predetermined content in this step. .
  • the inclusions are additionally removed in the casting process, and for this purpose, the tundish flux (hereinafter, flux F) in which the inclusions can be dissolved and absorbed is added to the upper portion of the tundish 100 .
  • the flux F is injected into the tundish 100 when the molten steel of 40% to 45% of the target amount of molten steel to be filled in the tundish is filled.
  • the flux F is added to the tundish 100 from the first charge, that is, the first charge, and then the flux is not added until the last charge.
  • continuous casting of multiple charges is performed using the flux injected from the first charge into the tundish.
  • the flux F is provided in a solid state or a powder state, and when the flux F is introduced into the molten steel M in the tundish 100, the flux F is melted by the heat of the molten steel. Accordingly, a molten flux layer or a liquid flux layer having a predetermined thickness is formed on the molten steel M.
  • the molten flux layer or the liquid flux layer may be referred to as a flux pool (FP).
  • FP flux pool
  • the inclusion absorption capacity of the flux pool FP is improved as solubility of inclusions of the flux pool FP increases.
  • the solubility of inclusions in the flux pool FP means the degree to which the flux pool FP can dissolve inclusions.
  • the flux pool FP In order for the flux pool FP to have sufficient inclusion solubility, it is necessary to ensure a low viscosity of the flux pool FP. That is, when the viscosity of the flux pool FP is sufficiently low, solubility of inclusions in the flux pool FP is improved.
  • the flux F input to the tundish 100 is in a solid or powder state, and the flux F input into the molten steel M in the tundish 100 must be melted to dissolve or absorb inclusions. do. It is advantageous to remove inclusions as the injected solid flux F melts faster or the flux pool FP is formed faster.
  • the melting point of the solid flux (F) is high, a long time is required until the flux (F) is melted when the flux (F) is introduced into the tundish (100). Accordingly, immediately after the flux F is added or at the beginning of casting, as casting is performed in a state in which the flux is melted or the flux pool is insufficient, the inclusions in the molten steel cannot be sufficiently removed, which may cause defects. Therefore, for rapid melting of the flux, it is necessary to provide a flux having a low melting point.
  • the tundish 100 is covered with the cover member 140 , contact with the atmosphere cannot be completely blocked. Accordingly, the molten steel M in the tundish 100 may be oxidized (hereinafter, re-oxidized) by contact with the atmosphere, and thus a large amount of inclusions may be generated in the molten steel. That is, oxygen in the atmosphere and an oxidizing component in molten steel, for example, aluminum (Al) react, so that a large amount of inclusions such as aluminum oxide (Al 2 O 3 ) may be generated. These inclusions become a factor causing surface and internal defects of the cast steel.
  • Al aluminum
  • the temperature of the molten steel accommodated in the tundish 100 is gradually decreased, and thus the molten steel may be solidified in the tundish 100 .
  • the immersion nozzle 400 for supplying the molten steel to the mold 300 may be blocked by the temperature drop and solidification of the molten steel, and in this case, the operation should be stopped.
  • the flux F is also introduced into the tundish 100 for the purpose of suppressing or preventing the reoxidation and temperature drop of the molten steel in the tundish 100 . That is, as the flux pool FP covers the molten steel M in the tundish 100, contact between the molten steel M and the atmosphere and the temperature drop of the molten steel can be suppressed or prevented.
  • the melting point of the solid flux is high, a long time is required until the flux is melted when the flux is introduced into the tundish. Accordingly, the flux of the flux becomes insufficient at the initial stage of casting in which the flux is added, and thus the flux pool may not be formed in some areas of the molten steel molten steel. Accordingly, a portion of the molten steel molten steel surface may be exposed to the atmosphere. In addition, the direct contact between the atmosphere and the molten steel can be suppressed only when the flux is sufficiently melted and the thickness of the flux pool is 10 mm or more. However, since the flux of the flux is insufficient at the initial stage of casting in which the flux is added, the thickness of the flux cannot be 10 mm or more.
  • the effect of inhibiting the reoxidation of the molten steel by the flux pool at the initial stage of casting is low. Therefore, it is necessary to provide a flux having a low melting point in order to inhibit the reoxidation of molten steel and decrease in temperature.
  • the viscosity of the molten flux that is, the flux pool FP
  • the flux is not spread widely or evenly on the molten steel M molten steel surface.
  • the flux pool FP is not evenly formed on the molten steel M, and is not formed in some areas, a portion of the molten steel M may be exposed. In this case, the molten steel is reoxidized through the exposed hot water surface. Therefore, it is necessary to ensure a low viscosity of the plus pool in order to prevent reoxidation of the molten steel.
  • Flux F includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and silicon oxide (SiO 2 ), and other unavoidable impurities. may be included.
  • the flux may further include at least one of sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
  • silicon oxide (SiO 2 ) is not an artificially added component to prepare the flux (F).
  • the flux may further include at least one of sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
  • sodium oxide (Na 2 O) and calcium fluoride ( CaF 2 ) is divided into different fluxes depending on whether each is included or not.
  • the flux according to the first embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ) and silicon oxide (SiO 2 ).
  • the flux according to the second embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), and sodium oxide (Na 2 O). .
  • the flux according to the third embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ) and calcium fluoride (CaF 2 ), and ,
  • the flux according to the fourth embodiment is calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), sodium oxide (Na 2 O), and calcium fluoride (CaF 2 ).
  • the flux according to these embodiments has a low melting point of 1310° C. or less, more specifically 1250° C. or more, and 1310° C. or less. And, it is completely melted within 8 minutes, more specifically, within 6 minutes to 7.5 minutes after adding the flux.
  • the melting point of the flux may be 1250°C or higher and 1280°C or lower.
  • the viscosity at 1400 °C is as low as 7 poise or less, more specifically 2 poise or more, and 7 poise or less.
  • the viscosity of the flux may be 2 poise or more and 4 poise or less.
  • solubility or removal efficiency of inclusions of such a flux pool is higher than that of the related art.
  • the flux (F) comprises 40 wt% to 60 wt% of calcium oxide (CaO) and 25 wt% to 40 wt% of aluminum oxide (Al 2 O) based on the total weight of the flux (F). 3 ), 2 wt% to 10 wt% boron oxide (B 2 O 3 ) and 5 wt% to 10 wt% silicon oxide (SiO 2 ).
  • the flux (F) is, more preferably, 50 wt% to 60 wt% of calcium oxide (CaO), and 25 wt% to 34 wt% of aluminum oxide (Al 2 O 3 ), based on the total weight% of the flux (F). , boron oxide (B 2 O 3 ) 5 wt% to 10 wt%, silicon oxide (SiO 2 ) 6 wt% to 9 wt% may be included.
  • Calcium oxide (CaO) and aluminum oxide (Al 2 O 3 ) are base materials constituting the tundish flux, and 40 to 60 wt% of calcium oxide (CaO) is included with respect to the total weight% of the flux (F), Aluminum oxide (Al 2 O 3 ) is included in an amount of 25 wt% to 40 wt%. More preferably, calcium oxide (CaO) may be included in an amount of 50 wt% to 60 wt%, and aluminum oxide (Al 2 O 3 ) may be included in an amount of 25 wt% to 34 wt%.
  • Silicon oxide (SiO 2 ) is contained in the flux in an amount of 5 wt% to 10 wt%, which is oxidized in each of a raw material containing aluminum oxide (Al 2 O 3 ) and a raw material containing calcium oxide (CaO) for producing the flux. This is because silicon (SiO 2 ) is included.
  • aluminum oxide (Al 2 O 3 ) is included to prepare a flux comprising 50% to 60% by weight of calcium oxide (CaO), 25% to 34% by weight of aluminum oxide (Al 2 O 3 )
  • a flux comprising 50% to 60% by weight of calcium oxide (CaO), 25% to 34% by weight of aluminum oxide (Al 2 O 3 )
  • 6 wt% to 9 wt% of silicon oxide (SiO 2 ) may be included in the flux (F).
  • Boron oxide (B 2 O 3 ) is included in an amount of 2 wt% to 10 wt% based on the total wt% of the flux (F). More preferably, boron oxide (B 2 O 3 ) may be included in an amount of 5 wt% to 10 wt%. Boron oxide (B 2 O 3 ) mainly functions to lower the melting point. However, when boron oxide (B 2 O 3 ) is less than 2% by weight, the effect of lowering the melting point is insignificant. Accordingly, there is a problem in that the melting point of the flux is high, and the melting rate of the flux F input to the tundish 100 is slow.
  • the melting point of the flux tends to decrease. And, since the flux melts faster as the melting point is lower, it is advantageous to remove inclusions in the initial stage of casting, re-oxidize the molten steel, and prevent temperature drop. And, in general, the flux input to the tundish uses the same component composition regardless of the steel type to be manufactured. However, most steel types do not specifically limit the content of boron (B) in molten steel, but when a steel type such as a thick plate is manufactured, the content of boron (B) is limited to a predetermined content or less.
  • a flux containing a large amount of boron oxide (B 2 O 3 ) cannot be used in the manufacture of steel grades that require limited boron (B) content, such as a heavy plate. This is because boron (B) in the flux is picked up into the molten steel to increase the boron (B) content in the molten steel.
  • a flux is separately provided for the production of a steel type requiring boron (B) content limitation, a corresponding cost is added.
  • the amount of boron oxide (B 2 O 3 ) is prepared to be included in an amount of 10% by weight or less based on the total weight% of the flux.
  • the boron oxide (B 2 O 3 ) exceeds 10% by weight, it may not be used in the manufacture of steel grades that require control of the boron (B) content, for example, a thick plate.
  • This flux F is provided in a powder or granular state, and the particle diameter thereof is provided to be 10 mm or less. Preferably it is provided to have a particle diameter of 0.1mm to 10mm, more preferably 0.1mm to 7mm.
  • the melting rate of the flux is slow, it may not be possible to secure a sufficient melting rate.
  • the smaller the particle size the higher the melting rate.
  • the above-described flux (F) includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and silicon oxide (SiO 2 ).
  • the present invention is not limited thereto, and the flux F may further include sodium oxide (Na 2 O).
  • the flux according to the second embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and silicon oxide (SiO 2 ), and sodium oxide (Na 2 O). ) is further included. More specifically, the flux (F) comprises 40 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 40 wt% of aluminum oxide (Al 2 O 3 ), and 2 wt% based on the total weight of the flux. to 10 wt% boron oxide (B 2 O 3 ), 5 wt% to 10 wt% silicon oxide (SiO 2 ) and 2 wt% to 10 wt% sodium oxide (Na 2 O).
  • the flux contains 50 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 34 wt% of aluminum oxide (Al 2 O 3 ), and 5 wt% to 5 wt% of boron oxide (B 2 O 3 ) 10 wt%, silicon oxide (SiO 2 ) 6 wt% to 9 wt%, sodium oxide (Na 2 O) 2 wt% to 6 wt% may be included.
  • CaO calcium oxide
  • Al 2 O 3 aluminum oxide
  • B 2 O 3 boron oxide
  • SiO 2 silicon oxide
  • Na 2 O 2 wt% to 6 wt% sodium oxide
  • Sodium oxide (Na 2 O) is a material having an effect of lowering the melting point and viscosity, and is included in an amount of 2 wt% to 10 wt%, more preferably 2 wt% to 6 wt%, based on the total weight of the flux. However, when sodium oxide (Na 2 O) is less than 2% by weight, the effect of lowering the melting point and viscosity by the addition of sodium oxide (Na 2 O) may be insignificant.
  • sodium oxide (Na 2 O) may react with aluminum oxide (Al 2 O 3 ) in the flux to generate a high melting point crystalline phase in the form of Na 2 O-Al 2 O 3 .
  • the melting point of the flux F increases as the high-melting-point crystalline phase is generated or the amount thereof is increased.
  • the higher the content of the high melting point crystal phase in the flux (F) the higher the viscosity of the flux pool (FP). Therefore, in order to suppress the high-melting crystalline phase generated by the sodium (Na 2 O) oxidation, to adjust the content of sodium (Na 2 O) oxidation to less than 10% by weight.
  • sodium oxide (Na 2 O) exceeds 10% by weight , the amount of reaction between sodium oxide (Na 2 O) and aluminum oxide (Al 2 O 3 ) is large, and a large amount of high melting point crystalline phase may be generated. And due to this, the melting point of the flux may increase, and the viscosity may increase.
  • the flux (F) includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), and sodium oxide (Na 2 O). ) is included.
  • the present invention is not limited thereto, and the flux F does not include sodium oxide (Na 2 O) and further includes calcium fluoride (CaF 2 ).
  • the flux F according to the third embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ) and silicon oxide (SiO 2 ), and calcium fluoride ( CaF 2 ) may be further included. More specifically, the flux (F) comprises 40% to 60% by weight of calcium oxide (CaO), 25% to 40% by weight of aluminum oxide (Al 2 O 3 ), 2% by weight, based on the total weight of the flux. to 10 wt% boron oxide (B 2 O 3 ), 5 wt% to 10 wt% silicon oxide (SiO 2 ) and 2 wt% to 10 wt% calcium fluoride (CaF 2 ).
  • the flux contains 50 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 34 wt% of aluminum oxide (Al 2 O 3 ), and 5 wt% to 5 wt% of boron oxide (B 2 O 3 ) 10 wt%, silicon oxide (SiO 2 ) 6 wt% to 9 wt%, calcium fluoride (CaF 2 ) 2 wt% to 6 wt% may be included.
  • CaO calcium oxide
  • Al 2 O 3 aluminum oxide
  • B 2 O 3 boron oxide
  • SiO 2 silicon oxide
  • CaF 2 calcium fluoride
  • Calcium fluoride (CaF 2 ) is a material having an effect of lowering the melting point and viscosity, and is included in an amount of 2 wt% to 10 wt%, more preferably 2 wt% to 6 wt%, based on the total weight of the flux. However, when calcium fluoride (CaF 2 ) is less than 2% by weight, the effect of reducing the melting point and viscosity by adding calcium fluoride (CaF 2 ) may be insignificant.
  • calcium fluoride (CaF 2 ) may react with aluminum oxide (Al 2 O 3 ) to generate a high melting point crystalline phase in the form of CaO-Al 2 O 3 , which is the melting point of the flux and the viscosity of the flux pool. is a factor that increases Therefore, in order to suppress the high-melting crystalline phase generated by a calcium fluoride (CaF 2), to adjust the content of calcium fluoride (CaF 2) to below 10% by weight.
  • the flux F according to the second and third embodiments described above includes any one of sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
  • the present invention is not limited thereto, and the flux F may include both sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
  • the flux (F) includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ) and silicon oxide (SiO 2 ), and sodium oxide ( Na 2 O) and calcium fluoride (CaF 2 ). More specifically, the flux (F) comprises 40 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 40 wt% of aluminum oxide (Al 2 O 3 ), and 2 wt% based on the total weight of the flux.
  • the flux contains 50 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 34 wt% of aluminum oxide (Al 2 O 3 ), and 5 wt% to 5 wt% of boron oxide (B 2 O 3 ) 10 wt%, silicon oxide (SiO 2 ) 6 wt% to 9 wt%, sodium oxide (Na 2 O) 2 wt% to 6 wt%, calcium fluoride (CaF 2 ) 2 wt% to 6 wt% may be included .
  • CaO calcium oxide
  • Al 2 O 3 aluminum oxide
  • B 2 O 3 boron oxide
  • SiO 2 silicon oxide
  • SiO 2 silicon oxide
  • CaF 2 calcium fluoride
  • the flux according to the first to fourth embodiments as described above has a low melting point of 1310° C. or less, and a viscosity at 1400° C. of 7 poise or less.
  • the solubility of inclusions is high compared to conventional fluxes, and the absorption or removal rate of inclusions is high.
  • Table 1 is a table showing the component composition, melting point, viscosity, and erosion rate of the fluxes according to Experimental Examples 1 to 5.
  • 2 is a graph showing the erosion rate of a specimen during an experiment using the flux according to Experimental Examples 1 to 5;
  • 3 is a diagram illustrating an experimental apparatus.
  • the first experimental example includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) as a conventional flux, boron oxide (B 2 O 3 ), sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
  • the fluxes according to the second to fifth experimental examples include calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), and boron oxide (B 2 O 3 ).
  • the fluxes according to Experimental Examples 3 to 5 further include at least one of sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
  • All of the first to fifth experimental examples include 40% to 60% by weight of calcium oxide (CaO), 25% to 40% by weight of aluminum oxide (Al 2 O 3 ), and 5% by weight of silicon oxide (SiO 2 ) to 10% by weight. And, all of the second to fifth experimental examples contain boron oxide (B 2 O 3 ) in an amount of 2 wt% to 10 wt%.
  • sodium oxide (Na 2 O) is contained in an amount of 2 wt% to 10 wt%
  • calcium fluoride (CaF 2 ) is contained in an amount of 2 wt% to 10 wt% included in %.
  • the second experimental example is the flux according to the first embodiment
  • the third experimental example is the flux according to the second embodiment
  • the fourth experimental example is the flux according to the third embodiment
  • the fifth experimental example is the fourth embodiment. It can be described as a flux according to
  • Viscosity is measured by heating each of the fluxes according to Experimental Examples 1 to 5 to a temperature of 1400°C, and measuring the flux at a temperature of 1400°C with a viscometer. And, the erosion rate is a result obtained by an experiment using the experimental apparatus shown in FIG. 3 . First, an experimental apparatus will be described with reference to FIG. 3 .
  • the experimental apparatus 10 is a tube 11 having an internal space, a crucible 12 that is installed inside the tube 11 and the flux F can be accommodated, and the crucible 12 is heated.
  • the tube 11 may be made of a material including quartz.
  • the heater 13 may be installed to surround the outer circumferential surface of the tube 11 from the outside of the tube 11 .
  • the heater 13 may be a means including a heating wire heated by a resistance heating method.
  • the thermometer 15 may be installed such that at least a part thereof is positioned inside the tube 11 so as to be positioned at the lower part of the crucible.
  • Such a thermometer 15 may be, for example, a thermocouple.
  • the specimen (S) is prepared with the same components as the inclusions in the molten steel, and the specimen (S) used for this experiment is made of aluminum oxide (Al 2 O 3 ).
  • the flux F is charged into the crucible 12 and the heater is operated to melt the flux. Accordingly, the flux pool FP is provided in the crucible.
  • the rotating body 14 is lowered to deposit the lower portion of the specimen S with the flux pool FP. Then, the specimen S is rotated for a predetermined time using the rotating body 14 .
  • the erosion rate can be calculated through the difference between the weight of the specimen (S) before immersion into the flux pool (FP) (the initial weight of the specimen) and the weight of the specimen (S) after the experiment is finished. More specifically,
  • the calculated weight is a weight reduced by dissolving into the flux pool FP (hereinafter, reduced weight).
  • the weight reduction ratio is calculated. Also, by multiplying the calculated weight reduction ratio by 100%, a weight reduction ratio (%) in % may be calculated. Then, if the calculated weight reduction ratio (%) is divided by the total time (min) that the specimen (S) is immersed in the flux pool (FP), the weight reduction ratio per hour, for example, per minute (min) (%/min) is It is calculated, and it is defined as the erosion rate (%/min).
  • the oxide of boron (B 2 O 3) a low melting point and viscosity as compared to the first experimental example that does not contain include, erosion rates two high. That is, in the first experimental example, the melting point is as high as 1360° C. or higher, and the viscosity is as high as 23 poise or more. In contrast, in Experimental Examples 2 to 5, the melting point was as low as 1310° C. or less, and the viscosity was as low as 7 poise or less.
  • the first experimental example is as low as 0.6 or less, but the second to fifth experimental examples are as high as 0.8 or more.
  • the specimen (S) is made of the same material as the inclusions, and since the specimen (S) is melted into the flux pool (FP) in the crucible and the weight of the specimen is reduced, the higher the calculated erosion rate, the more the flux pool is attached to the inclusions. It can be interpreted as having high solubility or inclusion removal efficiency. Accordingly, it can be seen that the flux pools generated by the fluxes according to Experimental Examples 2 to 5 have higher inclusion solubility and inclusion removal efficiency than in Experimental Example 1, respectively.
  • FIG. 2 is a graph showing the weight reduction ratio of the specimen according to the time immersed in the flux, as described above. That is, it is shown in FIG. 2 by accumulatively calculating the reduced weight of the specimen with the lapse of time immersed in the flux, dividing it by the initial weight of the specimen and displaying the ratio.
  • the weight reduction rate in FIG. 2 can be known.
  • the weight reduction rate in FIG. 2 can be interpreted as the erosion rate of the specimen.
  • the erosion rate of Experimental Examples 2 to 5 is faster than that of Experimental Example 1 . This means that in the flux pool formed by the flux according to Experimental Examples 2 to 5, the dissolution rate of inclusions is faster than that of Experimental Example 1.
  • the fluxes according to Experimental Examples 2 to 5 have lower viscosity and higher erosion rate and erosion rate than those of Experimental Example 1, respectively. Therefore, compared to the first experimental example, when casting using the flux according to the second to fifth experimental examples, the efficiency of removing the inclusions by dissolving and removing the inclusions of the molten steel is improved. Therefore, it is possible to manufacture a slab in which the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.
  • the melting points of the fluxes according to Experimental Examples 2 to 5 are lower than those of Experimental Example 1. Therefore, the melting rate of the fluxes according to Experimental Examples 2 to 5 is higher than that of Experimental Example 1 . Accordingly, when using the fluxes according to Experimental Examples 2 to 5 compared to Experiment 1, it is possible to generate a relatively large amount or thick flux pool within a short time. Therefore, as the flux pool FP of a sufficient amount and thickness is formed in the initial stage of casting, reoxidation and temperature drop in the initial stage of casting can be more effectively prevented.
  • the erosion rates of the third and fifth experimental examples are 1.4 or more, which is higher than that of the second and fourth experimental examples (1 or less), and the third and fourth experimental examples
  • the erosion rate of Experiment 5 was faster than that of Experiments 2 and 4. From this, it can be seen that the flux pool formed by the flux according to Experimental Examples 3 and 5 has higher inclusion solubility or inclusion removal efficiency than in Experimental Examples 2 and 4.
  • flux containing boron oxide (B 2 O 3 ) and sodium oxide (Na 2 O) (Experiment 3)
  • boron oxide (B 2 O 3 ), sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ) when using a flux Example 5 including all inclusions removal efficiency in molten steel It can be seen that this is improved.
  • oxide of boron (B 2 O 3) oxide and boron compared to using a flux (third experimental example) containing sodium (Na 2 O) oxide (B 2 O 3 ), sodium oxide (Na 2 O), and calcium fluoride (CaF 2 ) It can be seen that when a flux containing all of (Experiment 5) is used, the efficiency of removing inclusions in molten steel is improved.
  • FIG. 4 is a photograph showing the molten state of the flux over time when the flux according to Experimental Example 1 and the flux according to Experimental Example 3 of Table 1 were introduced into a tundish.
  • 5 is a diagram illustrating the measurement of oxygen content (ppm) in the molten steel in the mold at each charge when casting is continuously performed seven times using the flux according to the first experimental example and the flux according to the third experimental example, respectively; is a result
  • the fluxes according to the first and third experimental examples were introduced into the tundish 100 of the actual casting facility as shown in FIG. 1 . That is, the flux according to the first experimental example is input to the central region 111a and the first outer region 111b of the tundish 100, and the flux according to the third experimental example is input to the second outer region 111c. did.
  • a total of 70 tons of molten steel is supplied into the tundish 100, and the fluxes according to the first and third experimental examples were added at the time when the molten steel reached 30 tons in the tundish. At this time, the amount of flux injected into the central region 111a, the first outer region 111b, and the second outer region 111c was equal to 130 kg.
  • the flux injected into the central region 111a and the first and second outer regions 111b and 111c, respectively, is mutually exclusive. do not mix
  • the upper side of the first outer region 111b to which the flux according to the first experimental example is input and the upper side of the second outer region 111c to which the flux according to the third experimental example is input, respectively photo was taken in More specifically, a photograph was taken using a hole provided for sampling in the cover member 140 . At this time, pictures were taken over time, and they are summarized as shown in FIG. 4 .
  • the flux according to the first experimental example was applied to the central region 111a and the first outer region 111b of the tundish 100 and the flux according to the third experimental example was applied to the second outer region 111c.
  • the oxygen content (ppm) in the molten steel in the mold 300 was measured at each charge time. That is, the oxygen content was measured by sampling each of the molten steel M in the first mold 300a and the molten steel M in the second mold 300b at each charge time, and it is summarized as shown in FIG. 5 .
  • the molten steel in the first mold 300a is the molten steel covered by the flux according to the first experimental example in the tundish 100
  • the molten steel in the second mold 300b is in the tundish 100.
  • the molten steel was covered by the flux according to the third experimental example.
  • the flux (Example 1) injected into the first outer region 111b was completely melted at about 14 minutes after being injected.
  • the flux injected into the second outer region 111c (the third experimental example) is completely melted in about 6.9 minutes after being injected. From this, it can be seen that the flux according to Experimental Example 3 has a lower melting point and a melting rate of about twice that of the flux according to Experimental Example 1, respectively.
  • the third experimental example has a lower oxygen (O) content than the first experimental example.
  • the content of inclusions in the molten steel can be relatively known through the oxygen (O) content in the molten steel. That is, when the oxygen (O) content in the molten steel is low, it can be interpreted that the inclusion content in the molten steel is relatively low compared to when it is high. Accordingly, it can be seen from FIG. 5 that the efficiency of removing inclusions in the molten steel is higher when the flux according to the third experimental example is used compared to the first experimental example.
  • 6 is a photograph showing the state of the flux in the tundish according to the charge when casting the charge six times continuously using the flux according to the first experimental example and the flux according to the third experimental example, respectively; am. 7 shows a tundish at the second, fourth, and sixth charges when casting of the sixth charge is continuously performed using the flux according to the first experimental example and the flux according to the third experimental example, respectively; This is the result of measuring the melting point of my flux. 8 is a result of measuring the oxygen content (ppm) in the molten steel in the mold for each charge when the casting of six charges is continuously performed using the flux according to the first experimental example and the flux according to the third experimental example, respectively.
  • ppm oxygen content
  • the flux was introduced into the tundish 100 of the actual casting facility as shown in FIG. 1 , and casting was continuously performed six times.
  • the flux according to the first experimental example was injected into all of the central region 111a and the first and second outer regions 111b and 111c of the tundish 100, and six charge castings were continuously performed.
  • the flux according to the third experimental example was injected into all of the central region 111a and the first and second outer regions 111b and 111c of the tundish, and casting of the charge six times was continuously performed.
  • a total of 70 tons of molten steel was supplied into the tundish, and flux was added when the molten steel reached 30 tons in the tundish. And, the input amount of the flux according to the first and third experimental examples was the same as 130 kg.
  • the chaff is input to keep the molten steel (M) in the tundish. Accordingly, even during the experiment, each time the ladle 200 is replaced or a new charge is started, the rice husk was put into the tundish 100 .
  • FIG. 7 is a summary of these.
  • the overall saturation is higher or darker in the fourth, fifth, and sixth charges. This is because the solidified area of the flux pool in the fourth, fifth, and sixth charges is enlarged (or increased) compared to the third charge.
  • the solidification of the flux can be known by not only the chroma or contrast as described above, but also grasping the roughness of the surface with the naked eye rather than a photograph.
  • the partially solidified part has a rough surface like a stone, but the rest of the region is not. Accordingly, by visually grasping the surface roughness, it is possible to know whether the slag pool is solidified or the solidified area.
  • the solidification phenomenon of the flux starts to occur at the third charge. And from the fourth charge, the solidified area increases.
  • the solidification of the flux is because the filler and the rice husks of the ladle are added every time the ladle is replaced, and the melting point of the flux in the tundish is increased.
  • the solidification and solidification area of each of the first and third experimental examples as described above are determined by chroma or contrast in the photo of FIG. 6 , or by an operator visually grasping the surface roughness.
  • the melting point of the flux injected into the tundish increases. Referring to FIG. 7 , the melting point of the first experimental example exceeds 1400° C. during the fourth charge, while the third experimental example does not exceed 1350° C.
  • the third experimental example is lower than the first experimental example.
  • the oxygen content of the molten steel in the mold from the first charge to the casting of the last charge is 20 ppm or less.
  • solubility of inclusions or inclusion removal efficiency is higher than in the related art. Accordingly, compared to the prior art, it is possible to manufacture a cast slab in which the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.
  • the melting point of the flux according to the embodiments is lower than that of the prior art, the melting rate is high. Accordingly, when using the flux according to the embodiments, it is possible to melt a large amount of flux within a shorter time than in the related art. Due to this, as a sufficient amount and thickness of the flux pool is formed in the initial stage of casting, reoxidation and temperature drop in the initial stage of casting can be more effectively prevented.
  • the melting point of the flux is low, it is possible to suppress or prevent the solidification of the flux even when casting of a plurality of charges is continuously performed. Therefore, it is possible to manufacture a slab in which the occurrence of defects due to inclusions is suppressed or prevented from the initial stage to the end of continuous casting, and the quality of the slab can be improved.
  • solubility of inclusions or efficiency of removing inclusions is higher than in the related art. Accordingly, compared to the prior art, it is possible to manufacture a cast slab in which the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.
  • the melting point of the flux according to the embodiments is lower than that of the prior art, the melting rate is high. Accordingly, when using the flux according to the embodiments, it is possible to melt a large amount of flux within a shorter time than in the related art. Due to this, as a sufficient amount and thickness of the flux pool is formed in the initial stage of casting, reoxidation and temperature drop in the initial stage of casting can be more effectively prevented.

Abstract

Tundish flux according to embodiments of the present invention comprises, with respect to the total weight %, 40% to 60% by weight of calcium oxide (CaO), 25% to 40% by weight of aluminum oxide (Al2O3), 5% to 10% by weight of silicon oxide (SiO2), 2% to 10% by weight of boron oxide (B2O3), and unavoidable impurities. Therefore, according to the flux of the embodiments of the present invention, solubility of inclusions or efficiency of removing inclusions is higher than in the prior art. Thus, it is possible to manufacture a slab in which, compared to the prior art, the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.

Description

턴디시 플럭스 및 이를 이용한 주조 방법Tundish flux and casting method using same
본 발명은 턴디시 플럭스 및 이를 이용한 주조 방법에 관한 것으로, 보다 상세하게는 주편의 품질 및 생산성을 향상시킬 수 있는 턴디시 플럭스 및 이를 이용한 주조 방법에 관한 것이다. The present invention relates to a tundish flux and a casting method using the same, and more particularly, to a tundish flux capable of improving the quality and productivity of a slab and a casting method using the same.
주조 공정은 턴디시 내 용강을 주형으로 주입하고, 주형 내에서 반응고된 주편을 인발하여 슬라브, 블룸, 빌렛, 빔 블랭크 등과 같은 다양한 형상의 주편을 제조하는 공정이다.The casting process is a process of manufacturing slabs of various shapes such as slabs, blooms, billets, beam blanks, etc. by injecting molten steel in a tundish into a mold, and drawing out the reacted and solidified slabs in the mold.
이러한 주조 공정 시에, 턴디시 내 용강의 개재물 제거, 용강 재산화에 의한 개재물 발생 및 용강의 온도 하락을 억제하기 위하여, 턴디시 내 용강 탕면을 플럭스로 커버한다.During this casting process, the molten steel molten steel surface in the tundish is covered with flux to remove inclusions from the molten steel in the tundish, to suppress the occurrence of inclusions due to re-oxidation of the molten steel and the temperature drop of the molten steel.
플럭스는 고상 또는 파우더 상태로 마련되며, 주조 초기에 소정량의 용강이 수용되어 있는 턴디시로 상기 플럭스를 투입한다. 턴디시로 플럭스가 투입되면, 이는 용강의 열에 의해 용융된다. 이에 용강 탕면 상에 용융된 플럭스 즉, 플럭스 풀이 소정 두께로 형성된다. 즉, 용강 탕면이 플럭스 풀에 의해 커버된다. 용강 탕면에 플럭스 풀이 형성되면, 용강 중 개재물이 플럭스 풀로 용해되어 흡수되며, 이에 용강 중 개재물이 제거된다. 또한, 플럭스 풀이 대기와 용강 간의 접촉을 차단하기 때문에, 용강의 재산화 및 온도 하락을 억제한다.The flux is provided in a solid state or a powder state, and the flux is introduced into a tundish in which a predetermined amount of molten steel is accommodated at the initial stage of casting. When flux is introduced into the tundish, it is melted by the heat of molten steel. Accordingly, a molten flux, that is, a flux pool, is formed to a predetermined thickness on the molten steel molten steel surface. That is, the molten steel bath surface is covered by the flux pool. When a flux pool is formed on the surface of the molten steel, inclusions in the molten steel are dissolved and absorbed into the flux pool, thereby removing the inclusions in the molten steel. In addition, since the flux pool blocks contact between the atmosphere and the molten steel, reoxidation of the molten steel and temperature drop are suppressed.
한편, 턴디시로 공급된 고상의 플럭스는 소정 시간이 경과되어야 용융된다. 그런데, 주조 초기에는 투입된 플럭스가 용융될 시간이 부족하여, 플럭스 풀의 생성량 부족하고, 그 두께가 얇다. 이에, 주조 초기에 형성된 플럭스 풀은 개재물에 대한 용해도가 낮고, 대기와의 차단 효과가 약하다. 이로 인해, 용강 중 개재물 제거율이 낮고, 용강의 재산화에 의한 개재물이 다량 발생됨에 따라, 주편 표면 또는 내부에 용강 중 개재물에 의한 결함이 발생된다.On the other hand, the solid flux supplied to the tundish is melted after a predetermined time has elapsed. However, in the initial stage of casting, there is not enough time for the injected flux to melt, so the amount of flux pool generated is insufficient, and the thickness thereof is thin. Accordingly, the flux pool formed at the initial stage of casting has low solubility for inclusions and has a weak blocking effect with the atmosphere. For this reason, the removal rate of inclusions in the molten steel is low, and as a large amount of inclusions are generated due to reoxidation of the molten steel, defects due to inclusions in the molten steel occur on the surface or inside of the cast steel.
(선행기술문헌)(Prior art literature)
(특허문헌 1) 한국등록특허 KR1233836(Patent Document 1) Korean Patent KR1233836
본 발명은 개재물 용해도가 향상된 턴디시 플럭스 및 이를 이용한 주조 방법을 제공한다.The present invention provides a tundish flux having improved solubility of inclusions and a casting method using the same.
본 발명은 용강의 재산화 및 이로 인한 개재물 발생을 억제 또는 방지할 수 있는 턴디시 플럭스 및 이를 이용한 주조 방법을 제공한다.The present invention provides a tundish flux capable of suppressing or preventing the reoxidation of molten steel and the occurrence of inclusions thereby, and a casting method using the same.
본 발명의 실시예들은 주조시에 턴디시로 투입되는 턴디시 플럭스로서, 전체 중량%에 대하여, 산화칼슘(CaO)을 40 중량% 내지 60 중량%, 산화알루미늄(Al2O3)을 25 중량% 내지 40 중량%, 산화규소(SiO2)를 5 중량% 내지 10 중량%, 산화보론(B2O3)을 2 중량% 내지 10 중량% 및 불가피한 불순물을 포함한다.Examples of the present invention are tundish fluxes that are added to the tundish during casting, and based on the total weight%, calcium oxide (CaO) is 40 to 60 wt%, and aluminum oxide (Al 2 O 3 ) is 25 wt% % to 40% by weight, 5% to 10% by weight of silicon oxide (SiO 2 ), 2% to 10% by weight of boron oxide (B 2 O 3 ) and unavoidable impurities.
상기 턴디시 플럭스 전체 중량%에 대하여, 상기 산화보론(B2O3)이 5 중량% 내지 10 중량% 포함될 수 있다.Based on the total weight % of the tundish flux, the boron oxide (B 2 O 3 ) may be included in an amount of 5 wt% to 10 wt%.
상기 턴디시 플럭스는 2 중량% 내지 10 중량% 산화나트륨(Na2O) 및 2 중량% 내지 10 중량%의 불화칼슘(CaF2) 중 적어도 하나를 더 포함할 수 있다.The tundish flux may further include at least one of 2 wt% to 10 wt% sodium oxide (Na 2 O) and 2 wt% to 10 wt% calcium fluoride (CaF 2 ).
상기 턴디시 플럭스는 2 중량% 내지 6 중량% 산화나트륨(Na2O) 및 2 중량% 내지 6 중량%의 불화칼슘(CaF2) 중 적어도 하나를 더 포함할 수 있다.The tundish flux may further include at least one of 2 wt% to 6 wt% sodium oxide (Na 2 O) and 2 wt% to 6 wt% calcium fluoride (CaF 2 ).
상기 턴디시 플럭스 전체 중량%에 대하여, 상기 산화칼슘(CaO)이 50 중량% 내지 60 중량%, 상기 산화알루미늄(Al2O3)이 25 중량% 내지 34 중량%, 상기 산화규소(SiO2)가 6 중량% 내지 9 중량% 포함될 수 있다.Based on the total weight % of the tundish flux, the calcium oxide (CaO) is 50% to 60% by weight, the aluminum oxide (Al 2 O 3 ) is 25% to 34% by weight, the silicon oxide (SiO 2 ) 6 wt% to 9 wt% may be included.
상기 턴디시 플럭스의 융점은 1310℃ 이하이다.The melting point of the tundish flux is 1310° C. or less.
상기 턴디시 플럭스의 융점은 1280℃ 이하일 수 있다.The melting point of the tundish flux may be 1280° C. or less.
상기 턴디시 플럭스는 1400℃에서의 점도가 7 poise 이하이다.The tundish flux has a viscosity of 7 poise or less at 1400°C.
상기 턴디시 플럭스는 1400℃에서의 점도가 2 poise 이상, 4 poise 이하일 수 있다.The tundish flux may have a viscosity of 2 poise or more and 4 poise or less at 1400°C.
본 발명의 실시예에 따른 주조 방법은 턴디시 플럭스를 마련하는 과정; 턴디시에 용강을 공급하는 과정; 상기 턴디시 내로 상기 턴디시 플럭스를 투입시켜, 상기 턴디시 내 용강 탕면 상에 플럭스 풀을 형성하는 과정; 및 상기 턴디시의 용강을 주형으로 공급하고, 상기 주형에서 용강을 응고시켜 주편을 주조하는 과정;을 포함한다.A casting method according to an embodiment of the present invention comprises the steps of providing a tundish flux; The process of supplying molten steel to the tundish; inputting the tundish flux into the tundish to form a flux pool on the molten steel molten steel surface in the tundish; and supplying the molten steel of the tundish to a mold, and solidifying the molten steel in the mold to cast a slab.
용강이 수용된 래들을 상기 턴디시에 복수번 교체 연결하여, 상기 턴디시로 용강을 연속으로 공급하는 복수 차지의 주조를 실시하며, 상기 복수 차지의 주조 중, 첫 번째 래들의 용강을 턴디시로 공급하는 첫 번째 차지 주조에서 상기 턴디시로 상기 턴디시 플럭스를 투입하며, 상기 복수 차지의 주조 중, 마지막 차지 주조시에 상기 턴디시 내 플럭스 풀의 융점이 1400℃ 이하이다.The ladle in which the molten steel is accommodated is alternately connected to the tundish a plurality of times to perform casting of multiple charges in which molten steel is continuously supplied to the tundish, and during the casting of the multiple charges, the molten steel of the first ladle is supplied to the tundish The tundish flux is introduced into the tundish in the first charge casting to be performed, and the melting point of the flux pool in the tundish is 1400° C. or less during the last charge casting during the multi-charge casting.
상기 턴디시로 투입된 상기 턴디시 플럭스는 8분 내에 모두 용융된다.The tundish flux injected into the tundish is all melted within 8 minutes.
상기 첫 번째 차지 주조 시에 턴디시 내 플럭스 풀의 두께가 10mm 이상이다.The thickness of the flux pool in the tundish at the time of the first charge casting is 10 mm or more.
상기 복수 차지의 주조 중, 첫 번째 차지에서부터 마지막 차지의 주조까지 상기 주형 내 용강 산소 함량이 20ppm 이하이다.During the multi-charge casting, from the first charge to the last charge casting, the molten steel oxygen content in the mold is 20 ppm or less.
본 발명의 실시예들에 따른 플럭스에 의하면, 개재물의 용해도 또는 개재물 제거 효율이 종래에 비해 높다. 이에 따라, 종래에 비해 개재물에 의한 결함 발생이 억제 또는 방지된 주편을 제조할 수 있고, 주편의 품질을 향상시킬 수 있다.According to the flux according to the embodiments of the present invention, solubility of inclusions or efficiency of removing inclusions is higher than in the related art. Accordingly, compared to the prior art, it is possible to manufacture a cast slab in which the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.
또한, 실시예들에 따른 플럭스의 융점이 종래에 비해 낮아, 용융 속도가 빠르다. 이에, 실시예들에 따른 플럭스를 이용하는 경우, 종래에 비해 짧은 시간 내에 많은 양의 플럭스를 용융시킬 수 있다. 이로 인해, 주조 초기에 충분한 양 및 두께의 플럭스 풀이 형성됨에 따라, 주조 초기의 재산화 및 온도 하락을 보다 효과적으로 방지할 수 있다.In addition, since the melting point of the flux according to the embodiments is lower than that of the prior art, the melting rate is high. Accordingly, when using the flux according to the embodiments, it is possible to melt a large amount of flux within a shorter time than in the related art. Due to this, as a sufficient amount and thickness of the flux pool is formed in the initial stage of casting, reoxidation and temperature drop in the initial stage of casting can be more effectively prevented.
그리고, 플럭스의 융점이 낮아, 복수 차지의 주조를 연속 실시하더라도, 플럭스의 고화를 억제 또는 방지할 수 있다. 따라서, 연속 주조 초기에서부터 말기까지 개재물에 의한 결함 발생이 억제 또는 방지된 주편을 제조할 수 있고, 주편의 품질을 향상시킬 수 있다.In addition, since the melting point of the flux is low, it is possible to suppress or prevent the solidification of the flux even when casting of a plurality of charges is continuously performed. Therefore, it is possible to manufacture a slab in which the occurrence of defects due to inclusions is suppressed or prevented from the initial stage to the end of continuous casting, and the quality of the slab can be improved.
도 1은 일반적인 주조 설비를 도시한 도면이다.1 is a view showing a general casting equipment.
도 2는 제 1 내지 제 5 실험예에 따른 플럭스를 이용한 실험시에 시편의 침식 속도를 나타낸 그래프이다.2 is a graph showing the erosion rate of a specimen during an experiment using the flux according to Experimental Examples 1 to 5;
도 3은 실험 장치를 도시한 도면이다.3 is a diagram illustrating an experimental apparatus.
도 4는 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스를 턴디시로 투입시켰을 때, 시간에 따른 플럭스의 용융 상태를 찍은 사진이다.4 is a photograph showing the molten state of the flux over time when the flux according to the first experimental example and the flux according to the third experimental example are introduced into the tundish.
도 5는 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스 각각을 이용하여 일곱 번의 차지를 연속 실시하는 주조를 실시할 때, 각 차지시 마다 주형 내 용강 중 산소 함량(ppm)을 측정한 결과이다.5 is a diagram illustrating the measurement of oxygen content (ppm) in the molten steel in the mold at each charge when casting is continuously performed seven times using the flux according to the first experimental example and the flux according to the third experimental example, respectively; is a result
도 6은 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스 각각을 이용하여 여섯 번 차지(charge)의 주조를 연속 실시할 때, 턴디시 내 플럭스의 상태를 차지 순번에 따라 촬영하여 나타낸 사진이다.6 is a view showing the state of the flux in the tundish in the order of the charge when casting the charge six times continuously using the flux according to the first experimental example and the flux according to the third experimental example, respectively. It's a photo.
도 7은 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스 각각을 이용하여 여섯 번 차지(charge)의 주조를 연속 실시할 때, 두 번째, 네 번 째, 여섯 번째 차지 시에 턴디시 내 플럭스의 융점을 측정한 결과이다.7 shows a tundish at the second, fourth, and sixth charges when casting of the sixth charge is continuously performed using the flux according to the first experimental example and the flux according to the third experimental example, respectively; This is the result of measuring the melting point of my flux.
도 8은 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스 각각을 이용하여 여섯 번 차지의 주조를 연속 실시할 때, 각 차지시 마다 주형 내 용강 중 산소 함량(ppm)을 측정한 결과이다.8 shows the results of measuring the oxygen content (ppm) in the molten steel in the mold at each charge when the casting of six charges is continuously performed using the flux according to the first experimental example and the flux according to the third experimental example, respectively; am.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한유 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and the scope of the invention to those of ordinary skill in the art will be completely It is provided to inform you. The drawings may be exaggerated in order to explain the embodiments of the present invention, and like reference numerals in the drawings refer to like elements.
본 발명은 개재물 용해도 또는 개재물 제거 효율이 향상된 턴디시 플럭스에 관한 것이다. 또한, 본 발명은 용강의 재산화 및 온도 하락을 억제 또는 방지할 수 있는 턴디시 플럭스에 관한 것이다. 여기서, 개재물 용해도란, 플럭스로 개재물이 용해되는 정도를 의미한다.The present invention relates to a tundish flux having improved inclusion solubility or inclusion removal efficiency. Further, the present invention relates to a tundish flux capable of suppressing or preventing reoxidation and temperature drop of molten steel. Here, the solubility of inclusions means the degree to which inclusions are dissolved by the flux.
본 발명의 실시예들에 따른 턴디시 플럭스 설명에 앞서, 먼저 턴디시 플럭스가 적용되는 일반적인 주조 방법에 대해 설명한다.Prior to the description of the tundish flux according to the embodiments of the present invention, a general casting method to which the tundish flux is applied will be described.
도 1은 일반적인 주조 설비를 도시한 도면이다.1 is a view showing a general casting equipment.
주조 공정은 턴디시(100) 내에 수강되어 있는 용강(M)이 침지 노즐(400)을 통하여 주형(300)으로 유입되면, 냉각되어 있는 주형(300) 내에서 용강(M)의 응고가 시작되어 중간 제품인 반응고 상태의 주편이 얻어지는 공정이다. 주형(300)으로부터 인발된 반응고 주편은 상기 주형(300)의 하측에서 일 방향으로 나열 배치된 복수의 세그먼트(미도시)를 따라 이동하면서 성형 및 추가 냉각되어 완전 응고된 주편이 된다.In the casting process, when the molten steel M received in the tundish 100 flows into the mold 300 through the immersion nozzle 400, the solidification of the molten steel M starts in the cooled mold 300, This is a process in which cast steel in a solid state, which is an intermediate product, is obtained. The reaction solid slab drawn from the mold 300 is molded and further cooled while moving along a plurality of segments (not shown) arranged in one direction from the lower side of the mold 300 to become a fully solidified slab.
턴디시(100)는 래들(200)로부터 용강을 제공받아, 이를 주형(300)으로 공급한다. 이를 위해, 래들(200)을 턴디시(100) 상측으로 이동시키고, 상기 래들(200)의 하부에 연결된 노즐(이하, 래들 노즐(220)), 예컨대 쉬라우드 노즐(Shoroud nozzle)의 하부가 턴디시(100) 내부에 위치되도록 한다. 이에, 래들(200) 내 용강은 래들 노즐(220)을 통해 턴디시(100)로 공급된 후, 침지 노즐(400)을 통해 주형(300)으로 공급된다.The tundish 100 receives the molten steel from the ladle 200 and supplies it to the mold 300 . To this end, the ladle 200 is moved to the upper side of the tundish 100, and the nozzle connected to the lower part of the ladle 200 (hereinafter, the ladle nozzle 220), for example, the lower part of the shroud nozzle is turned. to be located inside the dish 100 . Accordingly, the molten steel in the ladle 200 is supplied to the tundish 100 through the ladle nozzle 220 , and then is supplied to the mold 300 through the immersion nozzle 400 .
턴디시(100)는 내부 공간을 가지는 본체(110) 및 본체(110)의 상측을 덮는 커버 부재(140)를 포함한다. 커버 부재(140)에는 래들 노즐(220)이 삽입되는 구멍 및 샘플링을 위한 구멍이 마련될 수 있다.The tundish 100 includes a body 110 having an internal space and a cover member 140 covering an upper side of the body 110 . A hole into which the ladle nozzle 220 is inserted and a hole for sampling may be provided in the cover member 140 .
또한, 턴디시(100)는 래들 노즐(220)이 삽입되는 위치의 외측에 위치하도록 본체(110) 내 상부에 설치된 상부 둑(weir)(120) 및 상부 둑(120)의 외측에 위치하도록 본체(110) 내 바닥에 설치된 하부 둑(weir)(130)을 더 포함할 수 있다.In addition, the tundish 100 is located outside the upper weir 120 and the upper weir 120 installed in the upper portion of the main body 110 so as to be located outside the position where the ladle nozzle 220 is inserted. (110) It may further include a lower weir (weir) 130 installed on the bottom.
예를 들어, 턴디시(100)의 하측에 2 개의 주형(이하, 제 1 및 제 2 주형(300: 300a, 300b))이 배치되는 경우, 래들(200)이 턴디시(100) 상측에 위치될 때, 래들 노즐(220)이 제 1 주형(300a)과 제 2 주형(300b) 사이에 위치되도록 배치된다. 그리고, 상부 둑은 한 쌍으로 마련되며, 한 쌍의 상부 둑(이하, 제 1 및 제 2 상부 둑(120: 120a, 120b))은 래들 노즐(220)을 중심으로 하여 양 측에 각기 위치되도록 본체(110) 내 상부에 연결될 수 있다. 이때, 제 1 및 제 2 상부 둑(120a, 120b)의 하단은 본체(110) 내 바닥면과 이격되도록 설치된다.For example, when two molds (hereinafter, first and second molds 300: 300a, 300b) are disposed on the lower side of the tundish 100, the ladle 200 is located on the upper side of the tundish 100 When done, the ladle nozzle 220 is arranged to be positioned between the first mold 300a and the second mold 300b. And, the upper weirs are provided as a pair, and the pair of upper weirs (hereinafter, first and second upper weirs 120: 120a, 120b) are located on both sides with the ladle nozzle 220 as the center. It may be connected to an upper portion of the body 110 . At this time, the lower ends of the first and second upper weirs 120a and 120b are installed to be spaced apart from the bottom surface of the main body 110 .
또한, 하부 둑(130) 역시 한 쌍으로 마련될 수 있으며, 한 쌍의 하부 둑(이하, 제 1 및 제 2 하부 둑(130: 130a, 130b))은 턴디시(100)와 주형을 연결하는 침지 노즐과 상부 둑 사이에 위치하도록 설치될 수 있다. 즉, 턴디시(100)와 제 1 주형(300a)을 연결하는 제 1 침지 노즐(400a)과 제 1 상부 둑(120a) 사이에 제 1 하부 둑(130a)이 위치되고, 턴디시(100)와 제 2 주형(300b)을 연결하는 제 2 침지 노즐(400b)과 제 2 상부 둑(120b) 사이에 제 2 하부 둑(130b)이 위치된다.In addition, the lower weir 130 may also be provided as a pair, and a pair of lower weirs (hereinafter, first and second lower weirs 130: 130a, 130b) connects the tundish 100 and the mold. It may be installed so as to be located between the submerged nozzle and the upper weir. That is, the first lower weir 130a is positioned between the first submerged nozzle 400a and the first upper weir 120a connecting the tundish 100 and the first mold 300a, and the tundish 100 A second lower weir 130b is positioned between the second submerged nozzle 400b and the second upper weir 120b connecting the and the second mold 300b.
그리고, 상부 둑(120)의 상하 연장 길이는 하부 둑(130)의 연장 길이에 비해 길게 형성될 수 있다. 또한, 상부 둑(120)의 하단이 하부 둑(130)의 상단에 비해 낮게 위치하도록 마련된다.In addition, the vertical extension length of the upper weir 120 may be formed longer than the extension length of the lower weir 130 . In addition, the lower end of the upper weir 120 is provided to be positioned lower than the upper end of the lower weir 130 .
턴디시(100) 또는 본체(110)의 내부 공간은 제 1 상부 둑(120a)과 제 2 상부 둑(120b) 사이의 공간인 중앙 영역(111a), 중앙 영역(111a)의 일측 외측에 위치된 공간인 제 1 외측 영역(111b) 및 중앙 영역(111a)의 타측 외측에 위치된 공간인 제 2 외측 영역(111c)으로 분할될 수 있다. 여기서, 제 1 외측 영역(111b)은 본체(110) 내 일 측벽과 제 1 상부 둑(120a) 사이의 공간이고, 제 2 외측 영역(111c)은 본체(110) 내 타 측벽과 제 2 상부 둑(120b) 사이의 공간으로 설명될 수 있다. 이러한 턴디시(100)에 의하면 래들 노즐(220)을 통과하여 턴디시(100) 내 중앙 영역(111a)으로 공급된 용강(M)의 일부는 제 1 상부 둑(120a)과 제 1 하부 둑(130a) 사이의 통로를 통해 제 1 외측 영역(111b)으로 이동하고, 제 2 상부 둑(120b)과 제 2 하부 둑(130b) 사이의 통로를 통해 제 1 외측 영역(111b)으로 이동한다. 그리고 제 1 및 제 2 외측 영역(111b, 111c)으로 이동된 용강은 제 1 및 제 2 침지 노즐(400a, 400b)을 통해 제 1 및 제 2 주형(300a, 300b)으로 공급된다.The inner space of the tundish 100 or the main body 110 is located outside the central area 111a, which is a space between the first upper weir 120a and the second upper weir 120b, one side of the central area 111a. The space may be divided into a first outer region 111b and a second outer region 111c, which is a space located outside the other side of the central region 111a. Here, the first outer region 111b is a space between one sidewall and the first upper weir 120a in the main body 110 , and the second outer region 111c is the other sidewall and the second upper weir in the main body 110 . It can be described as the space between (120b). According to the tundish 100, a portion of the molten steel M passed through the ladle nozzle 220 and supplied to the central region 111a in the tundish 100 is a first upper weir 120a and a first lower weir ( 130a), it moves to the first outer region 111b, and moves to the first outer region 111b through the passage between the second upper weir 120b and the second lower weir 130b. The molten steel moved to the first and second outer regions 111b and 111c is supplied to the first and second molds 300a and 300b through the first and second immersion nozzles 400a and 400b.
턴디시(100)는 상술한 바와 같이 래들(200)로부터 용강(M)을 제공 받는데, 이하 래들(200)의 용강(M)이 턴디시(100)로 공급되는 과정을 간략히 설명한다. 래들(200)의 바닥에는 용강(M)의 배출되는 통로인 배출구(210)가 마련되어 있고 배출구(210) 내에는 산화크롬 및 산화규소 등과 같은 금속 산화물을 포함하는 필러(filler)가 충진되어 있다. 필러는 래들(200) 내 수용된 용강(M)의 열에 의해 소결되며, 이에 따라 배출구(210)가 소결된 필러에 의해 폐쇄되어 있다. 이 상태에서 래들 노즐(220)에 마련되어 있는 게이트(221)를 오픈(open)시키면, 배출구(210) 내에서 소결되어 있던 필러(filler)가 용강(M)의 하중에 의해 파괴된다. 이에 배출구(210)가 자연 개공(개방)됨으로써, 래들(200) 내 용강(M)이 배출구(210) 및 래들 노즐(220)을 통과하여 턴디시(100)로 공급된다.The tundish 100 receives the molten steel M from the ladle 200 as described above. Hereinafter, a process in which the molten steel M of the ladle 200 is supplied to the tundish 100 will be briefly described. At the bottom of the ladle 200, an outlet 210, which is a passage through which the molten steel M is discharged, is provided, and a filler including a metal oxide such as chromium oxide and silicon oxide is filled in the outlet 210. The filler is sintered by the heat of the molten steel M accommodated in the ladle 200, and thus the outlet 210 is closed by the sintered filler. When the gate 221 provided in the ladle nozzle 220 is opened in this state, the filler sintered in the outlet 210 is destroyed by the load of the molten steel M. Accordingly, as the outlet 210 is naturally opened (opened), the molten steel M in the ladle 200 is supplied to the tundish 100 through the outlet 210 and the ladle nozzle 220 .
한편, 주편을 주조하는데 있어서, 턴디시(100)로 용강(M)을 연속으로 공급하여 주편을 주조하는 연속 주조를 실시할 수 있다. 즉, 턴디시(100) 내 용강(M)이 주형(300)으로 완전히 배출되기 전에 또는 턴디시(100) 내에 용강이 비워지기 전에 상기 턴디시(100)로 용강을 공급한다. 이를 위해, 용강(M)이 수용되어 있는 래들(200)을 턴디시(100)에 복수번 연결한다. 즉, 턴디시(100) 내 용강(M)이 모두 배출되기 전에, 턴디시(100) 상측에 위치된 빈 래들(200)을 용강(M)이 수용되어 있는 다른 래들(200)로 교체하여 연결하며, 이를 복수번 실시한다. 일반적으로, 하나의 래들(200)에 수용된 용강을 이용하여 주편을 주조하는 것을 1 차지(charge)라고 한다. 그리고, 첫 번째(최초) 래들, 두 번째 래들, 세 번째 래들, … 순서로 래들을 교체하면서 주편을 주조하는데, 래들의 순번 또는 교체되는 순번에 따라 그 주조를 첫 번째 차지, 두 번째 차지, 세 번째 차지, … 로 명명한다.On the other hand, in casting the slab, continuous casting in which the slab is cast by continuously supplying the molten steel M to the tundish 100 may be performed. That is, the molten steel is supplied to the tundish 100 before the molten steel M in the tundish 100 is completely discharged into the mold 300 or before the molten steel is emptied in the tundish 100 . For this, the ladle 200 in which the molten steel M is accommodated is connected to the tundish 100 a plurality of times. That is, before all the molten steel (M) in the tundish 100 is discharged, the empty ladle 200 located on the upper side of the tundish 100 is replaced with another ladle 200 in which the molten steel M is accommodated and connected. and do this multiple times. In general, casting a slab by using the molten steel accommodated in one ladle 200 is called one charge (charge). And, the first (first) ladle, the second ladle, the third ladle, … The cast is cast while replacing the ladle in this order, and the casting is made according to the order of the ladle or the order to be replaced: 1st charge, 2nd charge, 3rd charge, ... named as
한편, 래들(200)에 수강되어 턴디시(100)로 이동되는 용강(M)은, 그 전에 불순물을 제거하는 정련 조업을 마친 용강이다. 불순물을 제거하는 정련 조업은 용강 중 황(S)을 제거하는 예비 탈황 과정, 전로 내 용강으로 산소를 취입하여 용강 중 인(P) 및 탄소(C)를 제거하는 전로 정련 과정 및 용강 중 산소(O)를 제거하는 탈산 과정을 포함한다.On the other hand, the molten steel M that is taken by the ladle 200 and moved to the tundish 100 is molten steel after a refining operation to remove impurities before that. The refining operation to remove impurities is a preliminary desulfurization process to remove sulfur (S) from molten steel, a converter refining process to remove phosphorus (P) and carbon (C) from molten steel by blowing oxygen into the molten steel in the converter, and oxygen ( O) including deoxidation process.
용강 중 산소(O)를 제거하는 탈산을 실시하는데 있어서, 용강으로 탈산제 예컨대 알루미늄(Al)을 투입한다. 그런데 탈산 조업시에 용강 중 금속 산화물 예컨대 산화알루미늄(Al2O3)과 같은 개재물이 생성되고, 이 개재물은 주편의 표면 또는 내부 결함의 요인이 된다. 이에, 용강 중 개재물 제거를 위해 진공탈가스 설비 예컨대 RH(Rheinstahl-Heraus)를 이용하여 버블링(bubbling)을 실시하고 있지만, 이 단계에서 용강 중 개재물을 목적하는 소정 함량 이하로 낮추는 데는 한계가 있다.In performing deoxidation to remove oxygen (O) in molten steel, a deoxidizing agent, for example, aluminum (Al) is introduced into the molten steel. However, in the deoxidation operation, inclusions such as metal oxides, for example, aluminum oxide (Al 2 O 3 ) in molten steel are generated, and these inclusions are a factor of surface or internal defects of the cast steel. Accordingly, in order to remove inclusions in the molten steel, bubbling is performed using a vacuum degassing facility, for example, RH (Rheinstahl-Heraus), but there is a limit to lowering the inclusions in the molten steel below a desired predetermined content in this step. .
이에, 주조 공정에서 추가로 개재물을 제거하고 있으며, 이를 위해 턴디시(100) 상부에 개재물이 용해되어 흡수될 수 있는 턴디시 플럭스(이하, 플럭스(F))를 투입한다. 이때, 턴디시 내에 채우고자 하는 용강 목표량의 40% 내지 45%의 용강이 채워진 시점에 턴디시(100)로 플럭스(F)를 투입한다.Accordingly, the inclusions are additionally removed in the casting process, and for this purpose, the tundish flux (hereinafter, flux F) in which the inclusions can be dissolved and absorbed is added to the upper portion of the tundish 100 . At this time, the flux F is injected into the tundish 100 when the molten steel of 40% to 45% of the target amount of molten steel to be filled in the tundish is filled.
또한, 복수의 차지를 연속 실시하는 연속 주조 시에, 최초 차지 즉, 첫 번째 차지에서 턴디시(100)로 플럭스(F)를 투입한 후, 마지막 차지까지 추가로 플럭스를 투입하지 않는다. 즉, 첫 번째 차지에서 턴디시로 투입된 플럭스를 사용하여 복수 차지의 연속 주조를 실시한다.In addition, during continuous casting in which a plurality of charges are continuously performed, the flux F is added to the tundish 100 from the first charge, that is, the first charge, and then the flux is not added until the last charge. In other words, continuous casting of multiple charges is performed using the flux injected from the first charge into the tundish.
플럭스(F)는 고상 또는 파우더 상태로 마련되며, 턴디시(100) 내 용강(M)으로 플럭스(F)가 투입되면, 플럭스(F)가 용강의 열에 의해 용융된다. 이에, 용강(M) 탕면 상에 소정 두께의 용융된 플럭스층 또는 액상의 플럭스층이 형성된다. 여기서 용융된 플럭스층 또는 액상의 플럭스층은 플럭스 풀(pool)(FP)로 명명될 수 있다. 이렇게, 플럭스(F)가 용융되어 액상의 플럭스 풀(FP)이 마련되면, 용강(M) 중 개재물이 상기 플럭스 풀(FP)로 용해되어 흡수되며, 이로 인해 용강으로부터 개재물이 제거된다. 즉, 고상의 플럭스(F)가 용융되어 액상의 플럭스 풀(FP)이 형성되어야, 용강(M) 중 개재물이 상기 플럭스 풀(FP)로 용해되어 제거될 수 있다.The flux F is provided in a solid state or a powder state, and when the flux F is introduced into the molten steel M in the tundish 100, the flux F is melted by the heat of the molten steel. Accordingly, a molten flux layer or a liquid flux layer having a predetermined thickness is formed on the molten steel M. Here, the molten flux layer or the liquid flux layer may be referred to as a flux pool (FP). In this way, when the flux F is melted to prepare the liquid flux pool FP, the inclusions in the molten steel M are dissolved and absorbed into the flux pool FP, thereby removing the inclusions from the molten steel. That is, when the solid flux F is melted to form a liquid flux pool FP, inclusions in the molten steel M can be dissolved into the flux pool FP and removed.
플럭스 풀(FP)의 개재물 흡수능은 상기 플럭스 풀(FP)의 개재물 용해도가 증가함에 따라 향상된다. 여기서, 플럭스 풀(FP)의 개재물 용해도란, 플럭스 풀(FP)이 개재물을 용해시킬 수 있는 정도를 의미한다.The inclusion absorption capacity of the flux pool FP is improved as solubility of inclusions of the flux pool FP increases. Here, the solubility of inclusions in the flux pool FP means the degree to which the flux pool FP can dissolve inclusions.
플럭스 풀(FP)이 충분한 개재물 용해도를 가지려면, 플럭스 풀(FP)의 점도를 낮게 확보해야 할 필요가 있다. 즉, 플럭스 풀(FP)의 점도가 충분히 낮을 때, 플럭스 풀(FP)의 개재물 용해도가 향상된다.In order for the flux pool FP to have sufficient inclusion solubility, it is necessary to ensure a low viscosity of the flux pool FP. That is, when the viscosity of the flux pool FP is sufficiently low, solubility of inclusions in the flux pool FP is improved.
상술한 바와 같이, 턴디시(100)로 투입되는 플럭스(F)는 고상 또는 파우더 상태로서, 턴디시(100) 내 용강(M)으로 투입된 플럭스(F)가 용융되어야만 개재물의 용해 또는 흡수가 가능하다. 이에 투입된 고상의 플럭스(F)가 빨리 용융될 수록 또는 플럭스 풀(FP)이 빨리 형성될 수록 개재물 제거에 유리하다.As described above, the flux F input to the tundish 100 is in a solid or powder state, and the flux F input into the molten steel M in the tundish 100 must be melted to dissolve or absorb inclusions. do. It is advantageous to remove inclusions as the injected solid flux F melts faster or the flux pool FP is formed faster.
그런데, 고상 플럭스(F)의 융점이 높으면 턴디시(100)로 플럭스(F)가 투입되었을 때 용융될 때까지 장시간의 시간이 필요하게 된다. 이에, 플럭스(F)가 투입된 직후 또는 주조 초기에는 플럭스의 용융 또는 플럭스 풀이 부족한 상태에서 주조가 실시됨에 따라, 용강 중 개재물을 충분히 제거할 수 없어, 이로 인한 결함이 발생될 수 있다. 따라서, 플럭스의 빠른 용융을 위해, 융점이 낮은 플럭스를 마련할 필요가 있다.However, if the melting point of the solid flux (F) is high, a long time is required until the flux (F) is melted when the flux (F) is introduced into the tundish (100). Accordingly, immediately after the flux F is added or at the beginning of casting, as casting is performed in a state in which the flux is melted or the flux pool is insufficient, the inclusions in the molten steel cannot be sufficiently removed, which may cause defects. Therefore, for rapid melting of the flux, it is necessary to provide a flux having a low melting point.
또한, 턴디시(100)는 커버 부재(140)로 커버되어 있지만, 대기와의 접촉을 완벽히 차단할 수 없다. 이에, 턴디시(100) 내 용강(M)은 대기와의 접촉에 의해 산화(이하, 재산화)될 수 있으며, 이에 따라 용강 중에 대량의 개재물이 발생될 수 있다. 즉, 대기 중 산소와 용강 중 산화 성분 예컨대 알루미늄(Al)이 반응하여 산화알루미늄(Al2O3)과 같은 개재물이 다량 발생될 수 있다. 이러한 개재물은 주편의 표면 및 내부 결함 등을 발생시키는 요인이 된다. 그리고, 턴디시(100)에는 별도의 열원이 제공되지 않기 때문에, 턴디시(100) 내에 수용된 용강은 점차 그 온도가 하락하게 되며, 이에 턴디시(100) 내에서 용강이 응고될 수 있다. 그리고, 용강의 온도 하락 및 응고에 의해 주형(300)으로 용강을 공급하는 침지 노즐(400)이 막힐 수 있으며, 이러한 경우 조업을 중단해야 한다.In addition, although the tundish 100 is covered with the cover member 140 , contact with the atmosphere cannot be completely blocked. Accordingly, the molten steel M in the tundish 100 may be oxidized (hereinafter, re-oxidized) by contact with the atmosphere, and thus a large amount of inclusions may be generated in the molten steel. That is, oxygen in the atmosphere and an oxidizing component in molten steel, for example, aluminum (Al) react, so that a large amount of inclusions such as aluminum oxide (Al 2 O 3 ) may be generated. These inclusions become a factor causing surface and internal defects of the cast steel. And, since a separate heat source is not provided to the tundish 100 , the temperature of the molten steel accommodated in the tundish 100 is gradually decreased, and thus the molten steel may be solidified in the tundish 100 . And, the immersion nozzle 400 for supplying the molten steel to the mold 300 may be blocked by the temperature drop and solidification of the molten steel, and in this case, the operation should be stopped.
이에, 턴디시(100) 내 용강의 재산화 및 온도 하락을 억제 또는 방지하기 위한 목적으로도 턴디시(100)로 플럭스(F)를 투입한다. 즉, 턴디시(100) 내 용강(M) 탕면을 플럭스 풀(FP)이 커버함에 따라, 용강(M)과 대기와의 접촉 및 용강의 온도 하락을 억제 또는 방지할 수 있다.Accordingly, the flux F is also introduced into the tundish 100 for the purpose of suppressing or preventing the reoxidation and temperature drop of the molten steel in the tundish 100 . That is, as the flux pool FP covers the molten steel M in the tundish 100, contact between the molten steel M and the atmosphere and the temperature drop of the molten steel can be suppressed or prevented.
그런데, 고상 플럭스의 융점이 높으면 턴디시로 플럭스가 투입되었을 때 용융될 때까지 장시간의 시간이 필요하게 된다. 이에, 플럭스가 투입된 주조 초기에 플럭스의 용융이 부족하게 되고, 이에 용강 탕면에서 일부 영역에 플럭스 풀이 형성되지 않을 수 있다. 이에, 용강 탕면의 일부가 대기에 노출될 수 있다. 또한, 플럭스가 충분이 용융되어 플럭스 풀의 두께가 10mm 이상이 되어야 대기와 용강 간의 직접적인 접촉을 억제할 수 있다. 그런데, 플럭스가 투입된 주조 초기에는 플럭스의 용융이 부족하기 때문에, 플럭스의 두께가 10mm 이상이 되지 못한다. 이에, 주조 초기에 플럭스 풀에 의한 용강의 재산화 억제 효과가 낮다. 따라서, 용강의 재산화 및 온도 하락 억제를 위해 융점이 낮은 플럭스를 마련할 필요가 있다.However, if the melting point of the solid flux is high, a long time is required until the flux is melted when the flux is introduced into the tundish. Accordingly, the flux of the flux becomes insufficient at the initial stage of casting in which the flux is added, and thus the flux pool may not be formed in some areas of the molten steel molten steel. Accordingly, a portion of the molten steel molten steel surface may be exposed to the atmosphere. In addition, the direct contact between the atmosphere and the molten steel can be suppressed only when the flux is sufficiently melted and the thickness of the flux pool is 10 mm or more. However, since the flux of the flux is insufficient at the initial stage of casting in which the flux is added, the thickness of the flux cannot be 10 mm or more. Accordingly, the effect of inhibiting the reoxidation of the molten steel by the flux pool at the initial stage of casting is low. Therefore, it is necessary to provide a flux having a low melting point in order to inhibit the reoxidation of molten steel and decrease in temperature.
또한, 용융된 플럭스 즉, 플럭스 풀(FP)의 점도가 높으면, 용강(M) 탕면 상에서 플럭스가 넓게 또는 고르게 퍼지지 않는다. 다른 말로 설명하면, 용강(M) 탕면에 플럭스 풀(FP)이 고르게 형성되지 않고, 일부 영역에 형성되지 않아 용강(M) 탕면의 일부가 노출될 수 있다. 이러한 경우 노출된 탕면을 통해 용강이 재산화가 일어난다. 따라서, 용강의 재산화 방지를 위해 플러스 풀의 점도를 낮게 확보해야 할 필요가 있다.In addition, when the viscosity of the molten flux, that is, the flux pool FP is high, the flux is not spread widely or evenly on the molten steel M molten steel surface. In other words, since the flux pool FP is not evenly formed on the molten steel M, and is not formed in some areas, a portion of the molten steel M may be exposed. In this case, the molten steel is reoxidized through the exposed hot water surface. Therefore, it is necessary to ensure a low viscosity of the plus pool in order to prevent reoxidation of the molten steel.
이하에서는, 본 발명의 실시예들에 따른 플럭스의 성분과 관련하여 상세하게 설명하기로 한다.Hereinafter, the components of the flux according to the embodiments of the present invention will be described in detail.
본 발명의 실시예들에 따른 플럭스(F)는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3) 및 산화규소(SiO2)를 포함하고, 이외 불가피한 불순물이 포함될 수 있다. 또한, 플럭스는 산화나트륨(Na2O) 및 불화칼슘(CaF2) 중 적어도 하나를 더 포함할 수 있다.Flux F according to embodiments of the present invention includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and silicon oxide (SiO 2 ), and other unavoidable impurities. may be included. In addition, the flux may further include at least one of sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
여기서, 산화규소(SiO2)는 플럭스(F) 제조를 위해 인위적으로 첨가되는 성분은 아니다. 플럭스(F) 제조를 위해 혼합되는 산화알루미늄(Al2O3)을 포함하는 원료 및 산화칼슘(CaO)을 포함하는 원료 각각에 산화규소(SiO2)가 포함되어 있어, 플럭스 내에 산화규소(SiO2)가 포함되게 된다.Here, silicon oxide (SiO 2 ) is not an artificially added component to prepare the flux (F). A raw material containing aluminum oxide (Al 2 O 3 ) and a raw material containing calcium oxide (CaO), which are mixed for the production of the flux (F), each contain silicon oxide (SiO 2 ), so that silicon oxide (SiO 2 ) is contained in the flux 2 ) will be included.
상술한 바와 같이, 플럭스는 산화나트륨(Na2O) 및 불화칼슘(CaF2) 중 적어도 하나를 더 포함할 수 있는데, 이하에서는 설명의 편의를 위하여, 산화나트륨(Na2O) 및 불화칼슘(CaF2) 각각의 포함 여부에 따라 서로 다른 플럭스로 나누어 설명한다.As described above, the flux may further include at least one of sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ). Hereinafter, for convenience of description, sodium oxide (Na 2 O) and calcium fluoride ( CaF 2 ) is divided into different fluxes depending on whether each is included or not.
즉, 산화보론(B2O3)을 포함하고, 산화나트륨(Na2O) 및 불화칼슘(CaF2)을 포함하지 않는 플럭스를 제 1 실시예에 따른 플럭스, 산화보론(B2O3) 및 산화나트륨(Na2O)을 포함하고, 불화칼슘(CaF2)을 포함하지 않는 플럭스를 제 2 실시예에 따른 플럭스, 산화보론(B2O3) 및 불화칼슘(CaF2)을 포함하고, 산화나트륨(Na2O)을 포함하지 않는 플럭스를 제 3 실시예에 따른 플럭스, 산화보론(B2O3), 산화나트륨(Na2O) 및 불화칼슘(CaF2)을 모두 포함하는 플럭스를 제 4 실시예에 따른 플럭스로 명명한다.That is, the flux according to the first embodiment containing boron oxide (B 2 O 3 ) and not including sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ), boron oxide (B 2 O 3 ) And sodium oxide (Na 2 O), including the flux not containing calcium fluoride (CaF 2 ), the flux according to the second embodiment, boron oxide (B 2 O 3 ) and calcium fluoride (CaF 2 ) and , the flux containing no sodium oxide (Na 2 O), the flux according to the third embodiment, boron oxide (B 2 O 3 ), sodium oxide (Na 2 O), and the flux containing all of calcium fluoride (CaF 2 ) is called the flux according to the fourth embodiment.
구분division CaOCaO Al2O3 Al 2 O 3 SiO2 SiO 2 B2O3 B 2 O 3 Na2ONa 2 O CaF2 CaF 2
제 1 실시예first embodiment XX XX
제 2 실시예 second embodiment XX
제 3 실시예third embodiment XX
제 4 실시예4th embodiment
표 1을 참조하여 다시 설명하면, 제 1 실시예에 따른 플럭스는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3) 및 산화규소(SiO2)를 포함하며, 제 2 실시예에 따른 플럭스는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3), 산화규소(SiO2) 및 산화나트륨(Na2O)을 포함한다. 또한, 제 3 실시예에 따른 플럭스는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3), 산화규소(SiO2) 및 불화칼슘(CaF2)을 포함하고, 제 4 실시예에 따른 플럭스는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3), 산화규소(SiO2), 산화나트륨(Na2O) 및 불화칼슘(CaF2)을 포함한다. 이러한 실시예들에 따른 플럭스는 융점이 1310℃ 이하, 보다 구체적으로는 1250℃ 이상, 1310℃ 이하로 낮다. 그리고, 플럭스 투입 후 8분 이내, 보다 구체적으로는 6분 내지 7.5분 내에 완전히 용융된다.Referring back to Table 1, the flux according to the first embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ) and silicon oxide (SiO 2 ). , the flux according to the second embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), and sodium oxide (Na 2 O). . In addition, the flux according to the third embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ) and calcium fluoride (CaF 2 ), and , The flux according to the fourth embodiment is calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), sodium oxide (Na 2 O), and calcium fluoride (CaF 2 ). The flux according to these embodiments has a low melting point of 1310° C. or less, more specifically 1250° C. or more, and 1310° C. or less. And, it is completely melted within 8 minutes, more specifically, within 6 minutes to 7.5 minutes after adding the flux.
또한, 플럭스의 융점은 1250℃ 이상, 1280℃ 이하일 수 있다. 그리고, 1400℃에서 점도가 7 poise 이하, 보다 구체적으로는 2 poise 이상, 7 poise 이하로 낮다. 또한, 플럭스의 점도는 2 poise 이상, 4 poise 이하일 수 있다. 그리고, 이러한 플럭스 풀의 개재물 용해도 또는 제거 효율이 종래에 비해 높다.In addition, the melting point of the flux may be 1250°C or higher and 1280°C or lower. And, the viscosity at 1400 ℃ is as low as 7 poise or less, more specifically 2 poise or more, and 7 poise or less. Also, the viscosity of the flux may be 2 poise or more and 4 poise or less. In addition, solubility or removal efficiency of inclusions of such a flux pool is higher than that of the related art.
이하, 제 1 실시예에 따른 플럭스에 대해 구체적으로 설명한다. 성분 함량을 설명하는데 있어서 '하한치 내지 상한치'의 형태로 설명되는데, 이들은 '하한치 이상, 상한치 이하'를 의미한다.Hereinafter, the flux according to the first embodiment will be described in detail. In describing the component content, it is described in the form of 'from the lower limit to the upper limit', which means 'above the lower limit and below the upper limit'.
제 1 실시예에 따른 플럭스(F)는, 플럭스(F) 전체 중량%에 대하여, 40 중량% 내지 60 중량%의 산화칼슘(CaO), 25 중량% 내지 40 중량%의 산화알루미늄(Al2O3), 2 중량% 내지 10 중량%의 산화보론(B2O3) 및 5 중량% 내지 10 중량%의 산화규소(SiO2)를 포함한다. 플럭스(F)는, 보다 바람직하게, 플럭스(F) 전체 중량%에 대하여, 산화칼슘(CaO)이 50 중량% 내지 60 중량%, 산화알루미늄(Al2O3)이 25 중량% 내지 34 중량%, 산화보론(B2O3)이 5 중량% 내지 10 중량%, 산화규소(SiO2)가 6 중량% 내지 9 중량% 포함될 수 있다.The flux (F) according to the first embodiment comprises 40 wt% to 60 wt% of calcium oxide (CaO) and 25 wt% to 40 wt% of aluminum oxide (Al 2 O) based on the total weight of the flux (F). 3 ), 2 wt% to 10 wt% boron oxide (B 2 O 3 ) and 5 wt% to 10 wt% silicon oxide (SiO 2 ). The flux (F) is, more preferably, 50 wt% to 60 wt% of calcium oxide (CaO), and 25 wt% to 34 wt% of aluminum oxide (Al 2 O 3 ), based on the total weight% of the flux (F). , boron oxide (B 2 O 3 ) 5 wt% to 10 wt%, silicon oxide (SiO 2 ) 6 wt% to 9 wt% may be included.
산화칼슘(CaO) 및 산화알루미늄(Al2O3)은 턴디시 플럭스를 구성하는 베이스 물질로서, 플럭스(F) 전체 중량%에 대하여 산화칼슘(CaO)은 40 중량% 내지 60 중량% 포함되고, 산화알루미늄(Al2O3)은 25 중량% 내지 40 중량% 포함된다. 보다 바람직하게는 산화칼슘(CaO)은 50 중량% 내지 60 중량% 포함되고, 산화알루미늄(Al2O3)은 25 중량% 내지 34 중량% 포함될 수 있다.Calcium oxide (CaO) and aluminum oxide (Al 2 O 3 ) are base materials constituting the tundish flux, and 40 to 60 wt% of calcium oxide (CaO) is included with respect to the total weight% of the flux (F), Aluminum oxide (Al 2 O 3 ) is included in an amount of 25 wt% to 40 wt%. More preferably, calcium oxide (CaO) may be included in an amount of 50 wt% to 60 wt%, and aluminum oxide (Al 2 O 3 ) may be included in an amount of 25 wt% to 34 wt%.
한편, 산화칼슘(CaO)이 40 중량% 내지 60 중량%를 벗어나거나, 산화알루미늄(Al2O3)이 25 중량% 내지 40 중량% 범위를 벗어나는 경우, 플럭스(F)의 융점 및 플럭스 풀(FP)의 점도가 높은 문제가 있다. 이에, 턴디시(100)로 투입된 플럭스(F)의 용융 속도가 늦고, 개재물 용해도가 낮으며, 용강 탕면 전체에 플럭스 풀(FP)이 균일하게 퍼지지 않아, 탕면이 노출되는 문제가 발생될 수 있다.On the other hand, when calcium oxide (CaO) is out of the range of 40 wt% to 60 wt%, or aluminum oxide (Al 2 O 3 ) is out of the range of 25 wt% to 40 wt%, the melting point of the flux (F) and the flux pool ( There is a problem that the viscosity of FP) is high. Accordingly, the melting rate of the flux F injected into the tundish 100 is slow, the solubility of inclusions is low, and the flux pool FP is not uniformly spread over the entire molten steel slab surface, which may cause a problem that the molten steel surface is exposed. .
산화규소(SiO2)는 플럭스 내에 5 중량% 내지 10 중량%로 함유되는데, 이는 플럭스 제조를 위한 산화알루미늄(Al2O3)을 포함하는 원료 및 산화칼슘(CaO)을 포함하는 원료 각각에 산화규소(SiO2)가 포함되어 있기 때문이다. 즉, 40 중량% 내지 60 중량%의 산화칼슘(CaO), 25 중량% 내지 40 중량%의 산화알루미늄(Al2O3)을 포함하는 플럭스 제조를 위해 산화알루미늄(Al2O3)을 포함하는 원료 및 산화칼슘(CaO)을 포함하는 원료를 혼합하면, 상기 플럭스(F) 내에 5 중량% 내지 10 중량%의 산화규소(SiO2)가 포함되게 될 수 있다. 다른 예로, 50 중량% 내지 60 중량%의 산화칼슘(CaO), 25 중량% 내지 34 중량%의 산화알루미늄(Al2O3)을 포함하는 플럭스 제조를 위해 산화알루미늄(Al2O3)을 포함하는 원료 및 산화칼슘(CaO)을 포함하는 원료를 혼합하면, 상기 플럭스(F) 내에 6 중량% 내지 9 중량%의 산화규소(SiO2)가 포함되게 될 수 있다.Silicon oxide (SiO 2 ) is contained in the flux in an amount of 5 wt% to 10 wt%, which is oxidized in each of a raw material containing aluminum oxide (Al 2 O 3 ) and a raw material containing calcium oxide (CaO) for producing the flux. This is because silicon (SiO 2 ) is included. That is, 40 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 40 wt% of aluminum oxide (Al 2 O 3 ) For producing a flux containing aluminum oxide (Al 2 O 3 ) containing When the raw material and the raw material including calcium oxide (CaO) are mixed, 5 wt% to 10 wt% of silicon oxide (SiO 2 ) may be included in the flux (F). In another example, aluminum oxide (Al 2 O 3 ) is included to prepare a flux comprising 50% to 60% by weight of calcium oxide (CaO), 25% to 34% by weight of aluminum oxide (Al 2 O 3 ) When the raw material and the raw material containing calcium oxide (CaO) are mixed, 6 wt% to 9 wt% of silicon oxide (SiO 2 ) may be included in the flux (F).
산화보론(B2O3)은 플럭스(F) 전체 중량%에 대하여 2 중량% 내지 10 중량%로 포함된다. 보다 바람직하게는 산화보론(B2O3)이 5 중량% 내지 10 중량%로 포함될 수 있다. 산화보론(B2O3)은 주로 융점을 저하시키는 기능을 한다. 그런데, 산화보론(B2O3)이 2 중량% 미만인 경우 융점을 저하시키는 효과가 미미하다. 이에 따라, 플럭스의 융점이 높아, 턴디시(100)로 투입된 플럭스(F)의 용융 속도가 늦은 문제가 있다.Boron oxide (B 2 O 3 ) is included in an amount of 2 wt% to 10 wt% based on the total wt% of the flux (F). More preferably, boron oxide (B 2 O 3 ) may be included in an amount of 5 wt% to 10 wt%. Boron oxide (B 2 O 3 ) mainly functions to lower the melting point. However, when boron oxide (B 2 O 3 ) is less than 2% by weight, the effect of lowering the melting point is insignificant. Accordingly, there is a problem in that the melting point of the flux is high, and the melting rate of the flux F input to the tundish 100 is slow.
한편, 산화보론(B2O3)의 함량이 증가할 수록 플럭스의 융점이 감소하는 경향이 있다. 그리고, 융점이 낮을수록 플럭스가 빨리 용융되므로, 주조 초기의 개재물 제거, 용강 재산화 및 온도 하락을 방지하는데 유리하다. 그리고, 일반적으로 턴디시로 투입되는 플럭스는 제조되는 강종에 상관없이 동일한 성분 조성의 플럭스를 사용한다. 그런데, 대부분의 강종은 용강 중 보론(B) 함량을 특별히 제한하지 않으나, 두께가 두꺼운 후판(厚板)과 같은 강종을 제조하는 경우 보론(B)의 함량을 소정 함량 이하로 제한한다. On the other hand, as the content of boron oxide (B 2 O 3 ) increases, the melting point of the flux tends to decrease. And, since the flux melts faster as the melting point is lower, it is advantageous to remove inclusions in the initial stage of casting, re-oxidize the molten steel, and prevent temperature drop. And, in general, the flux input to the tundish uses the same component composition regardless of the steel type to be manufactured. However, most steel types do not specifically limit the content of boron (B) in molten steel, but when a steel type such as a thick plate is manufactured, the content of boron (B) is limited to a predetermined content or less.
이에, 산화보론(B2O3)이 다량 함유된 플럭스는 후판과 같이 보론(B) 함량의 제한이 필요한 강종 제조시에 사용할 수 없다. 이는, 플럭스 내 보론(B)이 용강으로 픽업되어 용강 중 보론(B) 함량을 증가시키기 때문이다. 또한, 보론(B) 함량 제한이 필요한 강종의 제조를 위해 플럭스를 별도로 마련하는 경우, 그에 따른 비용이 추가된다.Therefore, a flux containing a large amount of boron oxide (B 2 O 3 ) cannot be used in the manufacture of steel grades that require limited boron (B) content, such as a heavy plate. This is because boron (B) in the flux is picked up into the molten steel to increase the boron (B) content in the molten steel. In addition, when a flux is separately provided for the production of a steel type requiring boron (B) content limitation, a corresponding cost is added.
따라서, 보론(B) 함량이 제한되지 않는 강종과 보론(B) 함량이 제한되는 강종에 상관없이 범용으로 사용될 수 있는 플럭스를 마련할 필요가 있다. 이에, 실시예에서는 산화보론(B2O3)이 플럭스 전체 중량%에 대하여 10 중량% 이하로 포함되도록 마련한다. 한편, 산화보론(B2O3)이 10 중량%를 초과하는 경우, 이는 보론(B) 함량의 제어가 필요한 강종 예컨대 후판 제조에 사용되지 못하게 될 수 있다.Therefore, it is necessary to provide a flux that can be used universally regardless of a steel type having no limited boron (B) content and a steel type having a limited boron (B) content. Accordingly, in the embodiment, the amount of boron oxide (B 2 O 3 ) is prepared to be included in an amount of 10% by weight or less based on the total weight% of the flux. On the other hand, if the boron oxide (B 2 O 3 ) exceeds 10% by weight, it may not be used in the manufacture of steel grades that require control of the boron (B) content, for example, a thick plate.
이러한 플럭스(F)는 파우더 또는 과립 상태로 마련되는데, 그 입경이 10mm 이하가 되도록 마련된다. 바람직하게는 0.1mm 내지 10mm, 보다 바람직하게는 0.1mm 내지 7mm의 입경을 가지도록 마련된다.This flux F is provided in a powder or granular state, and the particle diameter thereof is provided to be 10 mm or less. Preferably it is provided to have a particle diameter of 0.1mm to 10mm, more preferably 0.1mm to 7mm.
한편, 플럭스(F)를 구성하는 입자들의 입경이 10mm를 초과하는 경우, 플럭스의 용융 속도가 늦어 충분한 용융 속도를 확보할 수 없을 수 있다. 그리고, 입경이 작을수록 용융 속도가 증가하지만, 입경이 너무 작은 경우 플럭스(F)를 턴디시(100)로 투입시키거나, 제조된 플럭스(F)를 이송시킬 때, 분진이 다량 발생되어 조업에 어려움이 발생될 수 있다. 따라서, 0.1mm 내지 10mm의 입경을 가지도록 플럭스를 마련하는 것이 바람직하다.On the other hand, when the particle diameter of the particles constituting the flux F exceeds 10 mm, the melting rate of the flux is slow, it may not be possible to secure a sufficient melting rate. In addition, the smaller the particle size, the higher the melting rate. However, when the particle size is too small, when the flux F is introduced into the tundish 100 or the prepared flux F is transferred, a large amount of dust is generated and is difficult to operate. difficulties may arise. Therefore, it is preferable to provide the flux to have a particle diameter of 0.1 mm to 10 mm.
상술한 플럭스(F)는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3) 및 산화규소(SiO2)를 포함한다. 하지만 이에 한정되지 않고, 플럭스(F)는 산화나트륨(Na2O)을 더 포함할 수 있다.The above-described flux (F) includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and silicon oxide (SiO 2 ). However, the present invention is not limited thereto, and the flux F may further include sodium oxide (Na 2 O).
즉, 제 2 실시예에 따른 플럭스는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3) 및 산화규소(SiO2)를 포함하고, 산화나트륨(Na2O)을 더 포함한다. 보다 구체적으로, 플럭스(F)는 플럭스 전체 중량%에 대하여, 40 중량% 내지 60 중량%의 산화칼슘(CaO), 25 중량% 내지 40 중량%의 산화알루미늄(Al2O3), 2 중량% 내지 10 중량%의 산화보론(B2O3), 5 중량% 내지 10 중량%의 산화규소(SiO2) 및 2 중량% 내지 10 중량%의 산화나트륨(Na2O)을 포함한다. 보다 바람직하게 플럭스는, 산화칼슘(CaO)이 50 중량% 내지 60 중량%, 산화알루미늄(Al2O3)이 25 중량% 내지 34 중량%, 산화보론(B2O3)이 5 중량% 내지 10 중량%, 산화규소(SiO2)가 6 중량% 내지 9 중량%, 산화나트륨(Na2O)이 2 중량% 내지 6 중량% 포함될 수 있다.That is, the flux according to the second embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and silicon oxide (SiO 2 ), and sodium oxide (Na 2 O). ) is further included. More specifically, the flux (F) comprises 40 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 40 wt% of aluminum oxide (Al 2 O 3 ), and 2 wt% based on the total weight of the flux. to 10 wt% boron oxide (B 2 O 3 ), 5 wt% to 10 wt% silicon oxide (SiO 2 ) and 2 wt% to 10 wt% sodium oxide (Na 2 O). More preferably, the flux contains 50 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 34 wt% of aluminum oxide (Al 2 O 3 ), and 5 wt% to 5 wt% of boron oxide (B 2 O 3 ) 10 wt%, silicon oxide (SiO 2 ) 6 wt% to 9 wt%, sodium oxide (Na 2 O) 2 wt% to 6 wt% may be included.
산화나트륨(Na2O)은 융점 및 점도를 낮추는 효과가 있는 물질로서, 플럭스 전체 중량%에 대하여 2 중량% 내지 10 중량%, 보다 바람직하게는 2 중량% 내지 6 중량% 포함된다. 그런데, 산화나트륨(Na2O)이 2 중량% 미만인 경우, 산화나트륨(Na2O)의 첨가에 의한 융점 및 점도를 저하시키는 효과가 미미할 수 있다.Sodium oxide (Na 2 O) is a material having an effect of lowering the melting point and viscosity, and is included in an amount of 2 wt% to 10 wt%, more preferably 2 wt% to 6 wt%, based on the total weight of the flux. However, when sodium oxide (Na 2 O) is less than 2% by weight, the effect of lowering the melting point and viscosity by the addition of sodium oxide (Na 2 O) may be insignificant.
한편, 산화나트륨(Na2O)은 플럭스 중 산화알루미늄(Al2O3)과 반응하여 Na2O-Al2O3 형태의 고융점 결정상을 생성시킬 수 있다. 그리고 고융점 결정상이 생성되거나, 그 생성량이 많을수록 플럭스(F)의 융점이 상승된다. 또한, 플럭스(F) 내 고융점 결정상의 함량이 많을수록 플럭스 풀(FP)의 점도가 높다. 따라서, 산화나트륨(Na2O)에 의한 고융점 결정상 생성을 억제시키기 위하여, 산화나트륨(Na2O)의 함량을 10 중량% 이하로 조절한다.Meanwhile, sodium oxide (Na 2 O) may react with aluminum oxide (Al 2 O 3 ) in the flux to generate a high melting point crystalline phase in the form of Na 2 O-Al 2 O 3 . In addition, the melting point of the flux F increases as the high-melting-point crystalline phase is generated or the amount thereof is increased. In addition, the higher the content of the high melting point crystal phase in the flux (F), the higher the viscosity of the flux pool (FP). Therefore, in order to suppress the high-melting crystalline phase generated by the sodium (Na 2 O) oxidation, to adjust the content of sodium (Na 2 O) oxidation to less than 10% by weight.
한편, 산화나트륨(Na2O)이 10 중량%를 초과하는 경우, 산화나트륨(Na2O)과 산화알루미늄(Al2O3) 간의 반응량이 많아, 다량의 고융점 결정상이 생성될 수 있다. 그리고 이로 인해, 플럭스의 융점이 증가하고, 점도가 증가될 수 있다.On the other hand, when sodium oxide (Na 2 O) exceeds 10% by weight , the amount of reaction between sodium oxide (Na 2 O) and aluminum oxide (Al 2 O 3 ) is large, and a large amount of high melting point crystalline phase may be generated. And due to this, the melting point of the flux may increase, and the viscosity may increase.
상술한 제 2 실시예에 따른 플럭스(F)는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3), 산화규소(SiO2) 및 산화나트륨(Na2O)을 포함한다. 하지만 이에 한정되지 않고, 플럭스(F)는 산화나트륨(Na2O)을 포함하지 않고, 불화칼슘(CaF2)을 더 포함한다. The flux (F) according to the second embodiment described above includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), and sodium oxide (Na 2 O). ) is included. However, the present invention is not limited thereto, and the flux F does not include sodium oxide (Na 2 O) and further includes calcium fluoride (CaF 2 ).
즉, 제 3 실시예에 따른 플럭스(F)는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3) 및 산화규소(SiO2)를 포함하고, 불화칼슘(CaF2)을 더 포함할 수 있다. 보다 구체적으로, 플럭스(F)는 플럭스 전체 중량%에 대하여, 40 중량% 내지 60 중량%의 산화칼슘(CaO), 25 중량% 내지 40 중량%의 산화알루미늄(Al2O3), 2 중량% 내지 10 중량%의 산화보론(B2O3), 5 중량% 내지 10 중량%의 산화규소(SiO2) 및 2 중량% 내지 10 중량%의 불화칼슘(CaF2)을 포함한다. 보다 바람직하게 플럭스는, 산화칼슘(CaO)이 50 중량% 내지 60 중량%, 산화알루미늄(Al2O3)이 25 중량% 내지 34 중량%, 산화보론(B2O3)이 5 중량% 내지 10 중량%, 산화규소(SiO2)가 6 중량% 내지 9 중량%, 불화칼슘(CaF2)이 2 중량% 내지 6 중량% 포함될 수 있다.That is, the flux F according to the third embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ) and silicon oxide (SiO 2 ), and calcium fluoride ( CaF 2 ) may be further included. More specifically, the flux (F) comprises 40% to 60% by weight of calcium oxide (CaO), 25% to 40% by weight of aluminum oxide (Al 2 O 3 ), 2% by weight, based on the total weight of the flux. to 10 wt% boron oxide (B 2 O 3 ), 5 wt% to 10 wt% silicon oxide (SiO 2 ) and 2 wt% to 10 wt% calcium fluoride (CaF 2 ). More preferably, the flux contains 50 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 34 wt% of aluminum oxide (Al 2 O 3 ), and 5 wt% to 5 wt% of boron oxide (B 2 O 3 ) 10 wt%, silicon oxide (SiO 2 ) 6 wt% to 9 wt%, calcium fluoride (CaF 2 ) 2 wt% to 6 wt% may be included.
불화칼슘(CaF2)은 융점 및 점도를 낮추는 효과가 있는 물질로서, 플럭스 전체 중량%에 대하여 2 중량% 내지 10 중량%, 보다 바람직하게는 2 중량% 내지 6 중량% 포함된다. 그런데, 불화칼슘(CaF2)이 2 중량% 미만인 경우, 불화칼슘(CaF2)에 첨가 의한 융점 및 점도를 저하시키는 효과가 미미할 수 있다.Calcium fluoride (CaF 2 ) is a material having an effect of lowering the melting point and viscosity, and is included in an amount of 2 wt% to 10 wt%, more preferably 2 wt% to 6 wt%, based on the total weight of the flux. However, when calcium fluoride (CaF 2 ) is less than 2% by weight, the effect of reducing the melting point and viscosity by adding calcium fluoride (CaF 2 ) may be insignificant.
한편, 불화칼슘(CaF2)은 산화알루미늄(Al2O3)과 반응하여 CaO-Al2O3 형태의 고융점 결정상을 생성시킬 수 있고, 이 고융점 결정상은 플럭스의 융점 및 플럭스 풀의 점도를 증가시키는 요인이 된다. 따라서, 불화칼슘(CaF2)에 의한 고융점 결정상 생성을 억제시키기 위하여, 불화칼슘(CaF2)의 함량을 10 중량% 이하로 조절한다. On the other hand, calcium fluoride (CaF 2 ) may react with aluminum oxide (Al 2 O 3 ) to generate a high melting point crystalline phase in the form of CaO-Al 2 O 3 , which is the melting point of the flux and the viscosity of the flux pool. is a factor that increases Therefore, in order to suppress the high-melting crystalline phase generated by a calcium fluoride (CaF 2), to adjust the content of calcium fluoride (CaF 2) to below 10% by weight.
하지만, 불화칼슘(CaF2)이 10 중량%를 초과하는 경우, 불화칼슘(CaF2)과 산화알루미늄(Al2O3) 간의 반응량이 많아, 다량의 고융점 결정상이 생성될 수 있다. 그리고 이로 인해, 플럭스의 융점이 증가하고, 점도가 증가될 수 있다.However, when calcium fluoride (CaF 2 ) exceeds 10% by weight , the amount of reaction between calcium fluoride (CaF 2 ) and aluminum oxide (Al 2 O 3 ) is large, and a large amount of high-melting-point crystal phases may be generated. And due to this, the melting point of the flux may increase, and the viscosity may increase.
상술한 제 2 및 제 3 실시예에 따른 플럭스(F)는 산화나트륨(Na2O) 및 불화칼슘(CaF2) 중 어느 하나가 포함된다. 하지만 이에 한정되지 않고, 플럭스(F)는 산화나트륨(Na2O) 및 불화칼슘(CaF2) 모두를 포함할 수 있다.The flux F according to the second and third embodiments described above includes any one of sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ). However, the present invention is not limited thereto, and the flux F may include both sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
즉, 제 4 실시예에 따른 플럭스(F)는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화보론(B2O3) 및 산화규소(SiO2)를 포함하고, 산화나트륨(Na2O) 및 불화칼슘(CaF2)을 더 포함한다. 보다 구체적으로, 플럭스(F)는 플럭스 전체 중량%에 대하여, 40 중량% 내지 60 중량%의 산화칼슘(CaO), 25 중량% 내지 40 중량%의 산화알루미늄(Al2O3), 2 중량% 내지 10 중량%의 산화보론(B2O3), 5 중량% 내지 10 중량%의 산화규소(SiO2), 2 중량% 내지 10 중량%의 산화나트륨(Na2O) 및 2 중량% 내지 10 중량%의 불화칼슘(CaF2)을 포함한다. 보다 바람직하게 플럭스는, 산화칼슘(CaO)이 50 중량% 내지 60 중량%, 산화알루미늄(Al2O3)이 25 중량% 내지 34 중량%, 산화보론(B2O3)이 5 중량% 내지 10 중량%, 산화규소(SiO2)가 6 중량% 내지 9 중량%, 산화나트륨(Na2O)이 2 중량% 내지 6, 불화칼슘(CaF2)이 2 중량% 내지 6 중량% 포함될 수 있다.That is, the flux (F) according to the fourth embodiment includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ) and silicon oxide (SiO 2 ), and sodium oxide ( Na 2 O) and calcium fluoride (CaF 2 ). More specifically, the flux (F) comprises 40 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 40 wt% of aluminum oxide (Al 2 O 3 ), and 2 wt% based on the total weight of the flux. to 10 wt% boron oxide (B 2 O 3 ), 5 wt% to 10 wt% silicon oxide (SiO 2 ), 2 wt% to 10 wt% sodium oxide (Na 2 O) and 2 wt% to 10 wt% % by weight of calcium fluoride (CaF 2 ). More preferably, the flux contains 50 wt% to 60 wt% of calcium oxide (CaO), 25 wt% to 34 wt% of aluminum oxide (Al 2 O 3 ), and 5 wt% to 5 wt% of boron oxide (B 2 O 3 ) 10 wt%, silicon oxide (SiO 2 ) 6 wt% to 9 wt%, sodium oxide (Na 2 O) 2 wt% to 6 wt%, calcium fluoride (CaF 2 ) 2 wt% to 6 wt% may be included .
상술한 바와 같은 제 1 내지 제 4 실시예들에 따른 플럭스는 융점이 1310℃ 이하로 낮고, 1400℃에서의 점도가 7 poise 이하로 낮다. 또한, 종래의 플럭스에 비해 개재물 용해도가 높아, 개재물의 흡수율 또는 제거율이 높다.The flux according to the first to fourth embodiments as described above has a low melting point of 1310° C. or less, and a viscosity at 1400° C. of 7 poise or less. In addition, the solubility of inclusions is high compared to conventional fluxes, and the absorption or removal rate of inclusions is high.
표 1은 제 1 내지 제 5 실험예에 따른 플럭스의 성분 조성, 융점, 점도 및 침식율을 나타낸 표이다. 도 2는 제 1 내지 제 5 실험예에 따른 플럭스를 이용한 실험시에 시편의 침식 속도를 나타낸 그래프이다. 도 3은 실험 장치를 도시한 도면이다.Table 1 is a table showing the component composition, melting point, viscosity, and erosion rate of the fluxes according to Experimental Examples 1 to 5. 2 is a graph showing the erosion rate of a specimen during an experiment using the flux according to Experimental Examples 1 to 5; 3 is a diagram illustrating an experimental apparatus.
제 1 실험예는 종래의 플럭스로서 산화칼슘(CaO), 산화알루미늄(Al2O3) 및 산화규소(SiO2)를 포함하고, 산화보론(B2O3), 산화나트륨(Na2O) 및 불화칼슘(CaF2)을 포함하지 않는다. 그리고 제 2 내지 제 5 실험예에 따른 플럭스는 산화칼슘(CaO), 산화알루미늄(Al2O3), 산화규소(SiO2) 및 산화보론(B2O3)을 포함한다. 또한, 제 3 내지 제 5 실험예에 따른 플럭스는, 산화나트륨(Na2O) 및 불화칼슘(CaF2) 중 적어도 하나를 더 포함한다.The first experimental example includes calcium oxide (CaO), aluminum oxide (Al 2 O 3 ) and silicon oxide (SiO 2 ) as a conventional flux, boron oxide (B 2 O 3 ), sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ). And the fluxes according to the second to fifth experimental examples include calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), and boron oxide (B 2 O 3 ). In addition, the fluxes according to Experimental Examples 3 to 5 further include at least one of sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ).
제 1 내지 제 5 실험예는 모두 산화칼슘(CaO)이 40 중량% 내지 60 중량%, 산화알루미늄(Al2O3)이 25 중량% 내지 40 중량%, 산화규소(SiO2)가 5 중량% 내지 10 중량%로 포함되어 있다. 그리고, 제 2 내지 제 5 실험예는 모두 산화보론(B2O3)이 2 중량% 내지 10 중량%로 포함되어 있다. 또한, 제 3 및 제 5 실험예는 산화나트륨(Na2O)이 2 중량% 내지 10 중량%로 포함되며, 제 4 및 제 5 실험예는 불화칼슘(CaF2)이 2 중량% 내지 10 중량%로 포함되어 있다.All of the first to fifth experimental examples include 40% to 60% by weight of calcium oxide (CaO), 25% to 40% by weight of aluminum oxide (Al 2 O 3 ), and 5% by weight of silicon oxide (SiO 2 ) to 10% by weight. And, all of the second to fifth experimental examples contain boron oxide (B 2 O 3 ) in an amount of 2 wt% to 10 wt%. In addition, in Experimental Examples 3 and 5, sodium oxide (Na 2 O) is contained in an amount of 2 wt% to 10 wt%, and in Experimental Examples 4 and 5, calcium fluoride (CaF 2 ) is contained in an amount of 2 wt% to 10 wt% included in %.
이에, 제 2 실험예는 제 1 실시예에 따른 플럭스, 제 3 실험예는 제 2 실시예에 따른 플럭스, 제 4 실험예는 제 3 실시예에 따른 플럭스, 제 5 실험예는 제 4 실시예에 따른 플럭스로 설명될 수 있다.Accordingly, the second experimental example is the flux according to the first embodiment, the third experimental example is the flux according to the second embodiment, the fourth experimental example is the flux according to the third embodiment, and the fifth experimental example is the fourth embodiment. It can be described as a flux according to
구분division CaO
(중량%)
CaO
(weight%)
Al2O3
(중량%)
Al 2 O 3
(weight%)
SiO2
(중량%)
SiO 2
(weight%)
Na2O
(중량%)
Na 2 O
(weight%)
B2O3
(중량%)
B 2 O 3
(weight%)
CaF2
(중량%)
CaF 2
(weight%)
융점(℃)Melting point (℃) 점도(poise)
(@1400℃)
viscosity
(@1400℃)
침식율
(%/m
min)
erosion rate
(%/m
min)
제 1 실험예 Experiment 1 56.8756.87 37.6037.60 5.315.31 00 00 00 13711371 23.723.7 0.5360.536
제 2 실험예2nd Experimental Example 60.0060.00 29.5129.51 5.325.32 00 5.095.09 00 12711271 3.013.01 0.9180.918
제 3 실험예3rd Experimental Example 55.5455.54 31.6431.64 5.105.10 2.592.59 5.125.12 00 13031303 3.53.5 1.4571.457
제 4 실시예4th embodiment 57.1857.18 26.6226.62 5.065.06 00 5.435.43 5.715.71 12791279 6.436.43 0.8680.868
제 5 실험예 Experiment 5 53.7753.77 28.2428.24 5.355.35 2.112.11 5.375.37 5.155.15 12831283 2.192.19 1.5631.563
점도는 제 1 내지 제 5 실험예에 따른 플럭스 각각을 1400℃의 온도로 가열하고, 1400℃의 온도에서 점도 측정기로 측정한 것이다. 그리고, 침식율은 도 3에 도시된 실험 장치를 이용하여 실험하여 얻은 결과이다. 먼저 도 3을 참조하여 실험 장치에 대해 설명한다.Viscosity is measured by heating each of the fluxes according to Experimental Examples 1 to 5 to a temperature of 1400°C, and measuring the flux at a temperature of 1400°C with a viscometer. And, the erosion rate is a result obtained by an experiment using the experimental apparatus shown in FIG. 3 . First, an experimental apparatus will be described with reference to FIG. 3 .
도 3을 참조하면, 실험 장치(10)는 내부 공간을 가지는 튜브(11), 튜브(11) 내부에 설치되며 플럭스(F)가 수용될 수 있는 도가니(12), 도가니(12)를 가열하는 히터(13), 시편(S)의 하부가 도가니(12) 내부에 삽입될 수 있도록 상기 시편(S)을 지지하고, 회전 가능한 회전체(14), 도가니(12)의 온도를 측정할 수 있는 측온기(15)를 포함한다.Referring to FIG. 3 , the experimental apparatus 10 is a tube 11 having an internal space, a crucible 12 that is installed inside the tube 11 and the flux F can be accommodated, and the crucible 12 is heated. The heater 13, supporting the specimen S so that the lower part of the specimen S can be inserted into the crucible 12, and measuring the temperature of the rotatable rotating body 14 and the crucible 12 It includes a thermometer (15).
튜브(11)는 쿼츠(quartz)를 포함하는 재료로 마련될 수 있다. 히터(13)는 튜브(11)의 외측에서 상기 튜브(11)의 외주면을 둘러 싸도록 설치될 수 있다. 여기서 히터(13)는 저항 가열 방식으로 히팅되는 발열선을 포함하는 수단일 수 있다. 측온기(15)는 도가니의 하부에 위치되도록 적어도 일부가 튜브(11) 내부에 위치되도록 설치될 수 있다. 이러한 측온기(15)는 예컨대 열전대(thermo couple)일 수 있다.The tube 11 may be made of a material including quartz. The heater 13 may be installed to surround the outer circumferential surface of the tube 11 from the outside of the tube 11 . Here, the heater 13 may be a means including a heating wire heated by a resistance heating method. The thermometer 15 may be installed such that at least a part thereof is positioned inside the tube 11 so as to be positioned at the lower part of the crucible. Such a thermometer 15 may be, for example, a thermocouple.
시편(S)은 용강 중 개재물과 동일한 성분으로 마련되며, 본 실험을 위해 사용된 시편(S)은 산화알루미늄(Al2O3)으로 이루어져 있다.The specimen (S) is prepared with the same components as the inclusions in the molten steel, and the specimen (S) used for this experiment is made of aluminum oxide (Al 2 O 3 ).
실험을 위하여, 도가니(12) 내에 플럭스(F)를 장입시키고, 히터를 동작시켜 플럭스를 용융시킨다. 이에, 도가니 내에 플럭스 풀(FP)이 마련된다. 플럭스 풀(FP)이 형성되면 회전체(14)를 하강시켜 시편(S)의 하부를 플럭스 풀(FP)로 침적시킨다. 그리고, 회전체(14)를 이용하여 시편(S)을 소정의 시간 동안 회전시킨다.For the experiment, the flux F is charged into the crucible 12 and the heater is operated to melt the flux. Accordingly, the flux pool FP is provided in the crucible. When the flux pool FP is formed, the rotating body 14 is lowered to deposit the lower portion of the specimen S with the flux pool FP. Then, the specimen S is rotated for a predetermined time using the rotating body 14 .
이러한 실험은 제 1 내지 제 5 실험예에 따른 플럭스 각각을 이용하여 별도로 실시된다. 그리고 실험시마다 도가니(12)로 투입되는 플럭스의 양, 시편(S)이 플럭스 풀(FP)로 침적되는 깊이, 침적시키는 시간, 회전 시간, 회전 속도를 모두 동일하게 하였다. 그리고, 실험시마다 사용되는 시편(S)은 그 조성, 크기 및 질량이 동일하다.These experiments were conducted separately using each of the fluxes according to Experimental Examples 1 to 5. In addition, the amount of flux injected into the crucible 12 for each experiment, the depth at which the specimen S is immersed into the flux pool FP, immersion time, rotation time, and rotation speed were all the same. And, the specimen S used for each experiment has the same composition, size, and mass.
침식율은, 플럭스 풀(FP)로 침적되기 전 시편(S)의 무게(시편의 최초 무게)와 실험이 종료 된 후 시편(S)의 무게 간의 차이를 통해 산출할 수 있다. 보다 구체적으로 설명하면, The erosion rate can be calculated through the difference between the weight of the specimen (S) before immersion into the flux pool (FP) (the initial weight of the specimen) and the weight of the specimen (S) after the experiment is finished. More specifically,
실험 시작 전에 시편(S)의 무게(시편의 최초 무게)를 측정하고, 실험이 종료된 후에 시편(S)의 무게를 측정한다. 그리고, 시편(S)의 최초 무게와 실험 종료 후 시편의(S) 무게 간의 차이를 산출한다. 여기서, 산출된 무게가 플럭스 풀(FP)로 용해되어 감소된 무게(이하, 감소 무게)이다.Measure the weight of the specimen (S) before the start of the experiment (the initial weight of the specimen), and measure the weight of the specimen (S) after the experiment is finished. Then, the difference between the initial weight of the specimen (S) and the weight of the specimen (S) after the end of the experiment is calculated. Here, the calculated weight is a weight reduced by dissolving into the flux pool FP (hereinafter, reduced weight).
그리고, 감소 무게를 시편(S)의 최초 무게로 나누면(감소 무게/시편의 최초 무게) 무게 감소 비율이 산출된다. 또한, 산출된 무게 감소 비율에 100%를 곱셈하여 % 단위의 무게 감소 비율(%)을 산출할 수 있다. 이후, 산출된 무게 감소 비율(%)을 시편(S)이 플럭스 풀(FP)에 침적된 전체 시간(min)으로 나누면, 시간 당 예컨대, 분(min) 당 무게 감소 비율(%/min)이 산출되며, 이를 침식율(%/min)로 정의한다.Then, when the reduced weight is divided by the initial weight of the specimen (S) (reduced weight / initial weight of the specimen), the weight reduction ratio is calculated. Also, by multiplying the calculated weight reduction ratio by 100%, a weight reduction ratio (%) in % may be calculated. Then, if the calculated weight reduction ratio (%) is divided by the total time (min) that the specimen (S) is immersed in the flux pool (FP), the weight reduction ratio per hour, for example, per minute (min) (%/min) is It is calculated, and it is defined as the erosion rate (%/min).
표 1을 참조하면, 산화보론(B2O3)이 포함된 제 2 내지 제 5 실험예가 산화보론(B2O3)이 포함되지 않은 제 1 실험예에 비해 융점 및 점도가 낮고, 침식율이 높다. 즉, 제 1 실험예는 융점이 1360℃ 이상으로 높고, 점도는 23 poise 이상으로 높다. 이에 반해 제 2 내지 제 5 실험예는 융점이 1310℃ 이하로 낮고, 점도는 7 poise 이하로 낮다.Referring to Table 1, the oxide of boron (B 2 O 3) The second to fifth experiment example of the oxidation of boron (B 2 O 3) a low melting point and viscosity as compared to the first experimental example that does not contain include, erosion rates two high. That is, in the first experimental example, the melting point is as high as 1360° C. or higher, and the viscosity is as high as 23 poise or more. In contrast, in Experimental Examples 2 to 5, the melting point was as low as 1310° C. or less, and the viscosity was as low as 7 poise or less.
또한, 침식율을 비교하면, 제 1 실험예는 0.6 이하로 낮으나, 제 2 내지 제 5 실험예는 0.8 이상으로 높다. In addition, when the erosion rate is compared, the first experimental example is as low as 0.6 or less, but the second to fifth experimental examples are as high as 0.8 or more.
여기서, 시편(S)은 개재물과 동일한 물질로 이루지고, 시편(S)이 도가니 내 플럭스 풀(FP)로 용융되어 상기 시편의 무게가 감소하는 것이기 때문에, 산출된 침식율이 높을수록 플럭스 풀이 개재물에 대한 용해도 또는 개재물 제거 효율이 높은 것으로 해석할 수 있다. 따라서, 제 2 내지 제 5 실험예에 따른 플럭스에 의해 생성된 플럭스 풀이 제 1 실험예에 비해 개재물 용해도 및 개재물 제거 효율이 높음을 알 수 있다.Here, the specimen (S) is made of the same material as the inclusions, and since the specimen (S) is melted into the flux pool (FP) in the crucible and the weight of the specimen is reduced, the higher the calculated erosion rate, the more the flux pool is attached to the inclusions. It can be interpreted as having high solubility or inclusion removal efficiency. Accordingly, it can be seen that the flux pools generated by the fluxes according to Experimental Examples 2 to 5 have higher inclusion solubility and inclusion removal efficiency than in Experimental Example 1, respectively.
도 2는 상술한 바와 같이, 플럭스에 침적된 시간에 따른 시편의 무게 감소 비율 나타낸 것이다. 즉, 플럭스에 침적된 시간 경과에 따라 시편의 감소 무게를 누적 계산하고, 이를 시편의 최초 무게로 나누어 비율화하여 나타내면 도 2와 같다. 2 is a graph showing the weight reduction ratio of the specimen according to the time immersed in the flux, as described above. That is, it is shown in FIG. 2 by accumulatively calculating the reduced weight of the specimen with the lapse of time immersed in the flux, dividing it by the initial weight of the specimen and displaying the ratio.
도 2에서 제 1 실험예를 예를 들어 설명하면, 시편이 플럭스에 침적된 시간이 10분이 되었을 때 시편의 최초 무게의 약 6%가 감소된 상태이다. 또한, 시편이 플럭스에 침적된 시간이 20분이 되었을 때 시편의 최초 무게의 약 9%가 감소된 상태이다. 그리고 이렇게 시간에 따른 무게 감소 비율 변화를 통해 무게 감소 속도를 알 수 있다. 여기서, 시편의 무게 감소는 시편이 플럭스 풀로 용해 즉, 침식되어 일어나는 것이므로, 도 2의 무게 감소 속도는 시편의 침식 속도로 해석될 수 있다.Referring to the first experimental example in FIG. 2 as an example, when the time that the specimen is immersed in the flux is 10 minutes, about 6% of the initial weight of the specimen is reduced. In addition, when the specimen was immersed in the flux for 20 minutes, about 9% of the initial weight of the specimen was reduced. And through this change in the weight reduction ratio over time, the weight reduction rate can be known. Here, since the weight reduction of the specimen is caused by dissolution, that is, erosion of the specimen into the flux pool, the weight reduction rate in FIG. 2 can be interpreted as the erosion rate of the specimen.
도 2를 참조하면, 제 2 내지 제 5 실험예는 제 1 실험예에 비해 침식 속도가 빠르다. 이는 제 2 내지 제 5 실험예에 따른 플럭스에 의해 형성된 플럭스 풀이 제 1 실험예에 비해 개재물의 용해 속도가 빠름을 의미한다.Referring to FIG. 2 , the erosion rate of Experimental Examples 2 to 5 is faster than that of Experimental Example 1 . This means that in the flux pool formed by the flux according to Experimental Examples 2 to 5, the dissolution rate of inclusions is faster than that of Experimental Example 1.
이렇게 제 2 내지 제 5 실험예에 따른 플럭스는 제 1 실험예에 비해 점도가 낮고, 침식율 및 침식 속도가 높다. 따라서, 제 1 실험예에 비해, 제 2 내지 제 5 실험예에 따른 플럭스를 이용하여 주조할 때, 용강의 개재물을 용해시켜 제거하는 개재물 제거 효율이 향상된다. 따라서, 개재물에 의한 결함 발생이 억제 또는 방지된 주편을 제조할 수 있고, 주편의 품질을 향상시킬 수 있다.As such, the fluxes according to Experimental Examples 2 to 5 have lower viscosity and higher erosion rate and erosion rate than those of Experimental Example 1, respectively. Therefore, compared to the first experimental example, when casting using the flux according to the second to fifth experimental examples, the efficiency of removing the inclusions by dissolving and removing the inclusions of the molten steel is improved. Therefore, it is possible to manufacture a slab in which the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.
또한, 제 2 내지 제 5 실험예에 따른 플럭스의 융점이 제 1 실험예에 비해 낮다. 따라서, 제 1 실험예에 비해, 제 2 내지 제 5 실험예에 따른 플럭스의 용융 속도가 빠르다. 이에, 제 1 실험예에 비해 제 2 내지 제 5 실험예에 따른 플럭스를 이용하는 경우, 짧은 시간 내에 상대적으로 많은 양 또는 두께가 두꺼운 플럭스 풀을 생성할 수 있다. 따라서, 주조 초기에 충분한 양 및 두께의 플럭스 풀(FP)이 형성됨에 따라, 주조 초기의 재산화 및 온도 하락을 보다 효과적으로 방지할 수 있다.In addition, the melting points of the fluxes according to Experimental Examples 2 to 5 are lower than those of Experimental Example 1. Therefore, the melting rate of the fluxes according to Experimental Examples 2 to 5 is higher than that of Experimental Example 1 . Accordingly, when using the fluxes according to Experimental Examples 2 to 5 compared to Experiment 1, it is possible to generate a relatively large amount or thick flux pool within a short time. Therefore, as the flux pool FP of a sufficient amount and thickness is formed in the initial stage of casting, reoxidation and temperature drop in the initial stage of casting can be more effectively prevented.
표 1 및 도 2로 다시 돌아가 제 2 내지 제 5 실험예를 비교하면, 제 3 및 제 5 실험예의 침식율은 1.4 이상으로 제 2 및 제 4 실험예(1 이하)에 비해 높고, 제 3 및 제 5 실험예의 침식 속도가 제 2 및 제 4 실험예에 비해 빠르다. 이로부터, 제 2 및 제 4 실험예에 비해 제 3 및 제 5 실험예에 따른 플럭스에 의해 형성된 플럭스 풀이 개재물 용해도 또는 개재물 제거 효율이 높음을 알 수 있다.Returning to Table 1 and FIG. 2 and comparing the second to fifth experimental examples, the erosion rates of the third and fifth experimental examples are 1.4 or more, which is higher than that of the second and fourth experimental examples (1 or less), and the third and fourth experimental examples The erosion rate of Experiment 5 was faster than that of Experiments 2 and 4. From this, it can be seen that the flux pool formed by the flux according to Experimental Examples 3 and 5 has higher inclusion solubility or inclusion removal efficiency than in Experimental Examples 2 and 4.
이를 다른 말로 설명하면, 산화보론(B2O3), 산화나트륨(Na2O) 및 불화칼슘(CaF2) 중, 산화보론(B2O3)을 포함하는 플럭스(제 2 실험예), 산화보론(B2O3) 및 불화칼슘(CaF2)을 포함하는 플럭스(제 4 실험예)를 사용할 때에 비해, 산화보론(B2O3) 및 산화나트륨(Na2O)을 포함하는 플럭스(제 3 실험예), 산화보론(B2O3), 산화나트륨(Na2O) 및 불화칼슘(CaF2)을 모두 포함하는 플럭스(제 5 실험예)를 사용할 때, 용강 중 개재물 제거 효율이 향상됨을 알 수 있다.In other words, boron oxide (B 2 O 3 ), sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ), a flux including boron oxide (B 2 O 3 ) (Experiment 2), Compared to the case of using a flux containing boron oxide (B 2 O 3 ) and calcium fluoride (CaF 2 ) (Experiment 4), flux containing boron oxide (B 2 O 3 ) and sodium oxide (Na 2 O) (Experiment 3), boron oxide (B 2 O 3 ), sodium oxide (Na 2 O) and calcium fluoride (CaF 2 ) when using a flux (Example 5) including all inclusions removal efficiency in molten steel It can be seen that this is improved.
또한, 제 3 실험예와 제 5 실험예를 비교하면, 산화보론(B2O3) 및 산화나트륨(Na2O)을 포함하는 플럭스(제 3 실험예)를 사용할 때에 비해 산화보론(B2O3), 산화나트륨(Na2O) 및 불화칼슘(CaF2)을 모두 포함하는 플럭스(제 5 실험예)를 사용할 때, 용강 중 개재물 제거 효율이 향상됨을 알 수 있다.In addition, the third Comparing the experimental examples in the fifth experimental example, oxide of boron (B 2 O 3) oxide and boron compared to using a flux (third experimental example) containing sodium (Na 2 O) oxide (B 2 O 3 ), sodium oxide (Na 2 O), and calcium fluoride (CaF 2 ) It can be seen that when a flux containing all of (Experiment 5) is used, the efficiency of removing inclusions in molten steel is improved.
도 4는 표 1의 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스를 턴디시로 투입시켰을 때, 시간에 따른 플럭스의 용융 상태를 찍은 사진이다. 도 5는 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스 각각을 이용하여 일곱 번의 차지를 연속 실시하는 주조를 실시할 때, 각 차지시 마다 주형 내 용강 중 산소 함량(ppm)을 측정한 결과이다.4 is a photograph showing the molten state of the flux over time when the flux according to Experimental Example 1 and the flux according to Experimental Example 3 of Table 1 were introduced into a tundish. 5 is a diagram illustrating the measurement of oxygen content (ppm) in the molten steel in the mold at each charge when casting is continuously performed seven times using the flux according to the first experimental example and the flux according to the third experimental example, respectively; is a result
실험을 위해, 도 1에 도시된 바와 같은 실제 주조 설비의 턴디시(100)로 제 1 및 제 3 실험예에 따른 플럭스를 투입하였다. 즉, 턴디시(100)의 중앙 영역(111a) 및 제 1 외측 영역(111b)에 제 1 실험예에 따른 플럭스를 투입하고, 제 2 외측 영역(111c)에 제 3 실험예에 따른 플럭스를 투입하였다.For the experiment, the fluxes according to the first and third experimental examples were introduced into the tundish 100 of the actual casting facility as shown in FIG. 1 . That is, the flux according to the first experimental example is input to the central region 111a and the first outer region 111b of the tundish 100, and the flux according to the third experimental example is input to the second outer region 111c. did.
턴디시(100) 내에 총 70톤(ton)의 용강을 공급하는데, 턴디시 내에 용강이 30 톤(ton)이 되는 시점에 제 1 및 제 3 실험예에 따른 플럭스를 투입하였다. 이때, 중앙 영역(111a), 제 1 외측 영역(111b) 및 제 2 외측 영역(111c)으로 투입되는 플럭스의 양을 130kg으로 동일하게 하였다.A total of 70 tons of molten steel is supplied into the tundish 100, and the fluxes according to the first and third experimental examples were added at the time when the molten steel reached 30 tons in the tundish. At this time, the amount of flux injected into the central region 111a, the first outer region 111b, and the second outer region 111c was equal to 130 kg.
턴디시(100) 내부는 제 1 및 제 2 상부 둑(120a, 120b)에 의해 분리되어 있기 때문에, 중앙 영역(111a), 제 1 및 제 2 외측 영역(111b, 111c) 각각으로 투입된 플럭스는 서로 혼합되지 않는다.Since the inside of the tundish 100 is separated by the first and second upper weirs 120a and 120b, the flux injected into the central region 111a and the first and second outer regions 111b and 111c, respectively, is mutually exclusive. do not mix
턴디시(100)로 플럭스의 투입이 완료된 후, 제 1 실험예에 따른 플럭스가 투입된 제 1 외측 영역(111b)의 상측 및 제 3 실험예가 따른 플럭스가 투입된 제 2 외측 영역(111c)의 상측 각각에서 사진을 촬영하였다. 보다 구체적으로, 커버 부재(140)에 샘플링을 마련된 구멍을 이용하여 촬영하였다. 이때, 시간 경과에 따라 사진을 촬영하였으며, 이를 정리하여 도 4와 같이 나타내었다.After the input of the flux into the tundish 100 is completed, the upper side of the first outer region 111b to which the flux according to the first experimental example is input and the upper side of the second outer region 111c to which the flux according to the third experimental example is input, respectively photo was taken in More specifically, a photograph was taken using a hole provided for sampling in the cover member 140 . At this time, pictures were taken over time, and they are summarized as shown in FIG. 4 .
또한, 상술한 바와 같이 턴디시(100)의 중앙 영역(111a) 및 제 1 외측 영역(111b)에 제 1 실험예에 따른 플럭스, 제 2 외측 영역(111c)에 제 3 실험예에 따른 플럭스를 투입하여 일곱 번 차지의 주조를 연속을 실시할 때, 각 차지시 마다 주형(300) 내 용강 중 산소 함량(ppm)을 측정하였다. 즉, 각 차지시 마다 제 1 주형(300a) 내 용강(M) 및 제 2 주형(300b) 내 용강(M) 각각을 샘플링하여 산소 함량을 측정하였고, 이를 정리하여 도 5와 같이 나타내었다.In addition, as described above, the flux according to the first experimental example was applied to the central region 111a and the first outer region 111b of the tundish 100 and the flux according to the third experimental example was applied to the second outer region 111c. When the casting was continuously carried out seven times by input, the oxygen content (ppm) in the molten steel in the mold 300 was measured at each charge time. That is, the oxygen content was measured by sampling each of the molten steel M in the first mold 300a and the molten steel M in the second mold 300b at each charge time, and it is summarized as shown in FIG. 5 .
여기서, 제 1 주형(300a) 내 용강은, 턴디시(100) 내에서 제 1 실험예에 따른 플럭스에 의해 커버되어 있던 용강이고, 제 2 주형(300b) 내 용강은 턴디시(100) 내에서 제 3 실험예에 따른 플럭스에 의해 커버되어 있던 용강이다.Here, the molten steel in the first mold 300a is the molten steel covered by the flux according to the first experimental example in the tundish 100, and the molten steel in the second mold 300b is in the tundish 100. The molten steel was covered by the flux according to the third experimental example.
도 4를 참조하면, 제 1 외측 영역(111b)에 투입된 플럭스(제 1 실험예)는, 투입된 후 약 14분이 되는 시점에 완전 용융되었다. 반면, 제 2 외측 영역(111c)에 투입된 플럭스(제 3 실험예)는 투입된 후 약 6.9분 만에 되는 완전 용융된 것을 알 수 있다. 이로부터, 제 3 실험예에 따른 플럭스가 제 1 실험예에 따른 플럭스에 비해 융점이 낮고, 용융 속도가 약 2 배 빠름을 알 수 있다.Referring to FIG. 4 , the flux (Example 1) injected into the first outer region 111b was completely melted at about 14 minutes after being injected. On the other hand, it can be seen that the flux injected into the second outer region 111c (the third experimental example) is completely melted in about 6.9 minutes after being injected. From this, it can be seen that the flux according to Experimental Example 3 has a lower melting point and a melting rate of about twice that of the flux according to Experimental Example 1, respectively.
또한, 도 5를 참조하면, 차지 순번이 증가함에 따라 용강 중 산소(O) 함량이 감소하는 경향을 가지는데, 제 3 실험예가 제 1 실험예에 비해 산소(O) 함량이 낮음을 알 수 있다.In addition, referring to FIG. 5 , as the charge order increases, the oxygen (O) content in the molten steel tends to decrease, and it can be seen that the third experimental example has a lower oxygen (O) content than the first experimental example. .
한편, 용강 중 개재물은 금속 산화물 형태로 존재하기 때문에, 용강 중 산소(O) 함량을 통해 용강 중 개재물 함량을 상대적으로 알 수 있다. 즉, 용강 중 산소(O) 함량이 낮을 때 높을 때에 비해, 용강 중 개재물 함량이 상대적으로 낮은 것으로 해석할 수 있다. 이에, 도 5를 통해, 제 1 실험예에 비해 제 3 실험예에 따른 플럭스 사용시에 용강 중 개재물 제거 효율이 높음을 알 수 있다.Meanwhile, since the inclusions in the molten steel exist in the form of metal oxides, the content of inclusions in the molten steel can be relatively known through the oxygen (O) content in the molten steel. That is, when the oxygen (O) content in the molten steel is low, it can be interpreted that the inclusion content in the molten steel is relatively low compared to when it is high. Accordingly, it can be seen from FIG. 5 that the efficiency of removing inclusions in the molten steel is higher when the flux according to the third experimental example is used compared to the first experimental example.
도 6은 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스 각각을 이용하여 여섯 번 차지(charge)의 주조를 연속 실시할 때, 턴디시 내 플럭스의 상태를 차지에 따라 촬영하여 나타낸 사진이다. 도 7은 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스 각각을 이용하여 여섯 번 차지(charge)의 주조를 연속 실시할 때, 두 번째, 네 번 째, 여섯 번째 차지 시에 턴디시 내 플럭스의 융점을 측정한 결과이다. 도 8은 제 1 실험예에 따른 플럭스 및 제 3 실험예에 따른 플럭스 각각을 이용하여 여섯 번 차지의 주조를 연속 실시할 때, 차지 마다 주형 내 용강 중 산소 함량(ppm)을 측정한 결과이다.6 is a photograph showing the state of the flux in the tundish according to the charge when casting the charge six times continuously using the flux according to the first experimental example and the flux according to the third experimental example, respectively; am. 7 shows a tundish at the second, fourth, and sixth charges when casting of the sixth charge is continuously performed using the flux according to the first experimental example and the flux according to the third experimental example, respectively; This is the result of measuring the melting point of my flux. 8 is a result of measuring the oxygen content (ppm) in the molten steel in the mold for each charge when the casting of six charges is continuously performed using the flux according to the first experimental example and the flux according to the third experimental example, respectively.
실험을 위해, 도 1에 도시된 바와 같은 실제 주조 설비의 턴디시(100)로 플럭스를 투입하여, 여섯 번 차지의 주조를 연속으로 실시하였다. 이때, 턴디시(100)의 중앙 영역(111a), 제 1 및 제 2 외측 영역(111b, 111c) 모두에 제 1 실험예에 따른 플럭스를 투입하여 여섯 번의 차지의 주조를 연속으로 실시하였다. 또한, 마찬가지로 턴디시의 중앙 영역(111a), 제 1 및 제 2 외측 영역(111b, 111c) 모두에 제 3 실험예에 따른 플럭스를 투입하여 여섯 번의 차지의 주조를 연속으로 실시하였다.For the experiment, the flux was introduced into the tundish 100 of the actual casting facility as shown in FIG. 1 , and casting was continuously performed six times. At this time, the flux according to the first experimental example was injected into all of the central region 111a and the first and second outer regions 111b and 111c of the tundish 100, and six charge castings were continuously performed. Also, in the same manner, the flux according to the third experimental example was injected into all of the central region 111a and the first and second outer regions 111b and 111c of the tundish, and casting of the charge six times was continuously performed.
턴디시 내에 총 70톤(ton)의 용강을 공급하는데, 턴디시 내에 용강이 30 톤(ton)이 되는 시점에 플럭스를 투입하였다. 그리고, 제 1 및 제 3 실험예에 따른 플럭스의 투입량을 130kg으로 동일하게 하였다.A total of 70 tons of molten steel was supplied into the tundish, and flux was added when the molten steel reached 30 tons in the tundish. And, the input amount of the flux according to the first and third experimental examples was the same as 130 kg.
또한, 실제 주조 조업시에 복수의 차지의 주조를 연속으로 실시할 때, 턴디시 내 용강(M)의 보온을 위해 회화왕겨가 투입된다. 이에, 실험시에도 래들(200)이 교체될 때마다 또는 새로운 차지가 시작할 때마다 턴디시(100)로 회화왕겨를 투입하였다.In addition, when the casting of a plurality of charges is continuously performed during the actual casting operation, the chaff is input to keep the molten steel (M) in the tundish. Accordingly, even during the experiment, each time the ladle 200 is replaced or a new charge is started, the rice husk was put into the tundish 100 .
이렇게 투입된 제 1 및 제 3 실험예에 따른 플럭스를 이용하여 여섯 번 차지의 주조를 연속으로 실시한다. 이때, 두 번째 차지에서부터 여섯 번째 차지까지 각 차지시 마다 턴디시(100) 중앙 영역(111a)의 상측에서 사진을 촬영하였으며, 이를 정리하여 도 6과 같이 나타내었다.Casting of the charge six times is continuously performed using the fluxes according to the first and third experimental examples thus added. At this time, a photo was taken from the upper side of the central area 111a of the tundish 100 at each charge from the second to the sixth charge, and it is summarized as shown in FIG. 6 .
그리고, 여섯 번 차지의 연속 주조를 실시하면서, 두 번째, 네 번 째, 여섯 번째 차지 시에 턴디시 내 플럭스를 샘플링하여 융점을 측정하였고, 이를 정리하여 나타낸 것이 도 7이다. And, while continuous casting of the sixth charge was performed, the flux in the tundish was sampled at the second, fourth, and sixth charges to measure the melting point, and FIG. 7 is a summary of these.
또한, 여섯 번 차지의 연속 주조를 실시하면서, 두 번째 차지에서부터 여섯 번째 차지까지 각 차지시 마다 주형 내 용강 중 산소 함량(ppm)을 측정하였으며, 이를 정리하여 나타낸 것이 도 8이다.In addition, during continuous casting of six charges, the oxygen content (ppm) in the molten steel in the mold was measured at each charge from the second charge to the sixth charge, and FIG. 8 shows the results.
도 6의 제 1 실험예의 세 번째 차지의 사진을 보면, 상대적으로 채도가 높은 또는 어두운 부분이 있는데, 이 부분이 플럭스 풀이 고화된 부분이다. 또한, 세 번째 차지에 비해, 네 번째 차지, 다섯 번째 차지, 여섯 번째 차지에서 전체적으로 채도가 높거나 어둡다. 이는, 세 번째 차지에 비해 네 번째 차지, 다섯 번째 차지, 여섯 번째 차지에서의 플럭스 풀의 고화 면적이 확대(또는 증가)하기 때문이다. Referring to the photo of the third charge in the first experimental example of FIG. 6 , there is a relatively high saturation or dark portion, which is a portion where the flux pool is solidified. Also, compared to the third charge, the overall saturation is higher or darker in the fourth, fifth, and sixth charges. This is because the solidified area of the flux pool in the fourth, fifth, and sixth charges is enlarged (or increased) compared to the third charge.
또한, 플럭스의 고화는 상술한 바와 같은 채도 또는 명암뿐만 아니라, 사진이 아닌 육안으로 표면의 거칠기를 파악하여 알 수도 있다. 제 1 실험예의 세 번째 차지를 예를 들어 설명하면, 부분적으로 고화가된 부분은 그 표면이 돌과 같이 거칠지만, 나머지 영역은 그렇지 않다. 이에, 육안으로 표면 거칠기를 파악하여 슬래그 풀의 고화여부 또는 고화 면적을 알 수 있다.In addition, the solidification of the flux can be known by not only the chroma or contrast as described above, but also grasping the roughness of the surface with the naked eye rather than a photograph. When explaining the third charge of the first experimental example as an example, the partially solidified part has a rough surface like a stone, but the rest of the region is not. Accordingly, by visually grasping the surface roughness, it is possible to know whether the slag pool is solidified or the solidified area.
제 1 실험예의 경우 세 번째 차지에서 플럭스의 고화 현상이 발생되기 시작한다. 그리고 네 번째 차지부터는 고화된 면적이 증가한다. 플럭스의 고화는 래들 교체시마다 래들의 필러(filler) 및 회화왕겨가 투입되어, 턴디시 내 플럭스의 융점이 높아지기 때문이다.In the case of the first experimental example, the solidification phenomenon of the flux starts to occur at the third charge. And from the fourth charge, the solidified area increases. The solidification of the flux is because the filler and the rice husks of the ladle are added every time the ladle is replaced, and the melting point of the flux in the tundish is increased.
반면, 제 3 실험예의 경우 여섯 번째 차지에서까지도 고화가 발생되지 않았다. 이는, 제 3 실험예에 따른 플럭스가 제 1 실험예에 비해 융점이 낮아, 고화 현상이 제 1 실험예에 비해 완화되기 때문이다. 따라서, 제 3 실험예에 따른 플럭스는 제 1 실험예에 비해 고화가 늦게 시작되거나, 고화되지 않는다. 이에 플럭스의 사용 차지 횟수 또는 사용 시간을 늘릴 수 있다.On the other hand, in the case of the third experimental example, solidification did not occur even at the sixth charge. This is because the flux according to the third experimental example has a lower melting point than that of the first experimental example, and thus the solidification phenomenon is alleviated compared to that of the first experimental example. Therefore, the flux according to Experimental Example 3 starts to solidify later or does not solidify compared to Experimental Example 1. Accordingly, it is possible to increase the number of charges used or the duration of use of the flux.
상술한 바와 같은 제 1 및 제 3 실험예 각각의 고화 여부 및 고화 면적은 도 6의 사진 상에서의 채도 또는 명암으로 파악하거나, 작업자가 육안으로 표면 거칠기를 파악하여 판단한 것이다.The solidification and solidification area of each of the first and third experimental examples as described above are determined by chroma or contrast in the photo of FIG. 6 , or by an operator visually grasping the surface roughness.
플럭스가 고화되거나, 고화된 량이 증가하면 턴디시로 투입된 플럭스의 융점이 증가한다. 도 7을 참조하면, 제 1 실험예는 네 번째 차지 시 융점이 1400℃를 초과하는 반면, 제 3 실험예는 여섯 번째 차지(마지막 차지)까지도 융점이 1350℃를 넘지 않고, 1400℃ 이하이다.When the flux solidifies or the amount of solidification increases, the melting point of the flux injected into the tundish increases. Referring to FIG. 7 , the melting point of the first experimental example exceeds 1400° C. during the fourth charge, while the third experimental example does not exceed 1350° C.
이로부터, 래들 교체시마다 동일량으로 래들 필러 및 회화왕겨가 투입되더라도, 제 3 실시예에 따른 플럭스를 사용하는 제 1 실시예에 비해 턴디시 내 플럭스의 융점을 낮게 유지할 수 있음을 알 수 있다.From this, it can be seen that even if the same amount of ladle filler and rice husk are added every time the ladle is replaced, the melting point of the flux in the tundish can be maintained lower than in the first embodiment using the flux according to the third embodiment.
또한, 도 8을 참조하여 각 차지에 따른 주형 내 용강 중 산소(O) 함량(ppm)을 비교하면, 제 3 실험예가 제 1 실험예에 비해 낮다. 그리고, 제 3 실험예의 경우 첫 번째 차지에서부터 마지막 차지의 주조까지 주형 내 용강 산소 함량이 20ppm 이하이다. 이를 통해, 제 1 실험예에 비해 제 3 실험예에 따른 플럭스 사용시에 개재물 제거 효율이 높음을 알 수 있다.In addition, when comparing the oxygen (O) content (ppm) in the molten steel in the mold according to each charge with reference to FIG. 8 , the third experimental example is lower than the first experimental example. And, in the third experimental example, the oxygen content of the molten steel in the mold from the first charge to the casting of the last charge is 20 ppm or less. Through this, it can be seen that the inclusion removal efficiency is higher when the flux according to the third experimental example is used compared to the first experimental example.
본 발명의 실시예들에 따른 플럭스 또는 상기 플럭스에 의해 형성된 플럭스 풀은 개재물의 용해도 또는 개재물 제거 효율이 종래에 비해 높다. 이에 따라, 종래에 비해 개재물에 의한 결함 발생이 억제 또는 방지된 주편을 제조할 수 있고, 주편의 품질을 향상시킬 수 있다.In the flux or the flux pool formed by the flux according to the embodiments of the present invention, solubility of inclusions or inclusion removal efficiency is higher than in the related art. Accordingly, compared to the prior art, it is possible to manufacture a cast slab in which the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.
또한, 실시예들에 따른 플럭스의 융점이 종래에 비해 낮아, 용융 속도가 빠르다. 이에, 실시예들에 따른 플럭스를 이용하는 경우, 종래에 비해 짧은 시간 내에 많은 양의 플럭스를 용융시킬 수 있다. 이로 인해, 주조 초기에 충분한 양 및 두께의 플럭스 풀이 형성됨에 따라, 주조 초기의 재산화 및 온도 하락을 보다 효과적으로 방지할 수 있다.In addition, since the melting point of the flux according to the embodiments is lower than that of the prior art, the melting rate is high. Accordingly, when using the flux according to the embodiments, it is possible to melt a large amount of flux within a shorter time than in the related art. Due to this, as a sufficient amount and thickness of the flux pool is formed in the initial stage of casting, reoxidation and temperature drop in the initial stage of casting can be more effectively prevented.
그리고, 플럭스의 융점이 낮아, 복수 차지의 주조를 연속 실시하더라도, 플럭스의 고화를 억제 또는 방지할 수 있다. 따라서, 연속 주조 초기에서부터 말기까지 개재물에 의한 결함 발생이 억제 또는 방지된 주편을 제조할 수 있고, 주편의 품질을 향상시킬 수 있다.In addition, since the melting point of the flux is low, it is possible to suppress or prevent the solidification of the flux even when casting of a plurality of charges is continuously performed. Therefore, it is possible to manufacture a slab in which the occurrence of defects due to inclusions is suppressed or prevented from the initial stage to the end of continuous casting, and the quality of the slab can be improved.
본 발명의 실시예들에 따른 플럭스에 의하면, 개재물의 용해도 또는 개재물 제거 효율이 종래에 비해 높다. 이에 따라, 종래에 비해 개재물에 의한 결함 발생이 억제 또는 방지된 주편을 제조할 수 있고, 주편의 품질을 향상시킬 수 있다.According to the flux according to the embodiments of the present invention, solubility of inclusions or efficiency of removing inclusions is higher than in the related art. Accordingly, compared to the prior art, it is possible to manufacture a cast slab in which the occurrence of defects due to inclusions is suppressed or prevented, and the quality of the slab can be improved.
또한, 실시예들에 따른 플럭스의 융점이 종래에 비해 낮아, 용융 속도가 빠르다. 이에, 실시예들에 따른 플럭스를 이용하는 경우, 종래에 비해 짧은 시간 내에 많은 양의 플럭스를 용융시킬 수 있다. 이로 인해, 주조 초기에 충분한 양 및 두께의 플럭스 풀이 형성됨에 따라, 주조 초기의 재산화 및 온도 하락을 보다 효과적으로 방지할 수 있다.In addition, since the melting point of the flux according to the embodiments is lower than that of the prior art, the melting rate is high. Accordingly, when using the flux according to the embodiments, it is possible to melt a large amount of flux within a shorter time than in the related art. Due to this, as a sufficient amount and thickness of the flux pool is formed in the initial stage of casting, reoxidation and temperature drop in the initial stage of casting can be more effectively prevented.

Claims (14)

  1. 주조시에 턴디시로 투입되는 턴디시 플럭스로서,As a tundish flux injected into a tundish at the time of casting,
    전체 중량%에 대하여, 산화칼슘(CaO)을 40 중량% 내지 60 중량%, 산화알루미늄(Al2O3)을 25 중량% 내지 40 중량%, 산화규소(SiO2)를 5 중량% 내지 10 중량%, 산화보론(B2O3)을 2 중량% 내지 10 중량% 및 불가피한 불순물을 포함하는 턴디시 플럭스. Based on the total weight%, calcium oxide (CaO) 40% to 60% by weight, aluminum oxide (Al 2 O 3 ) 25% to 40% by weight, silicon oxide (SiO 2 ) 5% to 10% by weight %, boron oxide (B 2 O 3 ) Tundish flux containing 2% to 10% by weight and unavoidable impurities.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 턴디시 플럭스 전체 중량%에 대하여, 상기 산화보론(B2O3)이 5 중량% 내지 10 중량% 포함된 턴디시 플럭스.The tundish flux comprising 5 to 10 wt% of the boron oxide (B 2 O 3 ) based on the total weight of the tundish flux.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 턴디시 플럭스는 2 중량% 내지 10 중량% 산화나트륨(Na2O) 및 2 중량% 내지 10 중량%의 불화칼슘(CaF2) 중 적어도 하나를 더 포함하는 턴디시 플럭스.The tundish flux further comprises at least one of 2 wt% to 10 wt% sodium oxide (Na 2 O) and 2 wt% to 10 wt% calcium fluoride (CaF 2 ).
  4. 청구항 2에 있어서,3. The method according to claim 2,
    상기 턴디시 플럭스는 2 중량% 내지 6 중량% 산화나트륨(Na2O) 및 2 중량% 내지 6 중량%의 불화칼슘(CaF2) 중 적어도 하나를 더 포함하는 턴디시 플럭스.The tundish flux further comprises at least one of 2 wt% to 6 wt% sodium oxide (Na 2 O) and 2 wt% to 6 wt% calcium fluoride (CaF 2 ).
  5. 청구항 4에 있어서,5. The method according to claim 4,
    상기 턴디시 플럭스 전체 중량%에 대하여, 상기 산화칼슘(CaO)이 50 중량% 내지 60 중량%, 상기 산화알루미늄(Al2O3)이 25 중량% 내지 34 중량%, 상기 산화규소(SiO2)가 6 중량% 내지 9 중량% 포함된 턴디시 플럭스. Based on the total weight % of the tundish flux, the calcium oxide (CaO) is 50% to 60% by weight, the aluminum oxide (Al 2 O 3 ) is 25% to 34% by weight, the silicon oxide (SiO 2 ) A tundish flux containing 6% to 9% by weight of
  6. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서,6. The method according to any one of claims 1 to 5,
    상기 턴디시 플럭스의 융점은 1310℃ 이하인 턴디시 플럭스.The melting point of the tundish flux is 1310 ℃ or less tundish flux.
  7. 청구항 6에 있어서,7. The method of claim 6,
    상기 턴디시 플럭스의 융점은 1280℃ 이하인 턴디시 플럭스.The melting point of the tundish flux is 1280 ℃ or less tundish flux.
  8. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서,6. The method according to any one of claims 1 to 5,
    상기 턴디시 플럭스는 1400℃에서의 점도가 7 poise 이하인 턴디시 플럭스.The tundish flux is a tundish flux having a viscosity of 7 poise or less at 1400°C.
  9. 청구항 8에 있어서,9. The method of claim 8,
    상기 턴디시 플럭스는 1400℃에서의 점도가 2 poise 이상, 4 poise 이하인 턴디시 플럭스.The tundish flux is a tundish flux having a viscosity of 2 poise or more and 4 poise or less at 1400°C.
  10. 청구항 1 내지 청구항 5 중 어느 한 항에 기재된 턴디시 플럭스를 마련하는 과정;The process of preparing the tundish flux according to any one of claims 1 to 5;
    턴디시에 용강을 공급하는 과정;The process of supplying molten steel to the tundish;
    상기 턴디시 내로 상기 턴디시 플럭스를 투입시켜, 상기 턴디시 내 용강 탕면 상에 플럭스 풀을 형성하는 과정; 및inputting the tundish flux into the tundish to form a flux pool on the molten steel molten steel surface in the tundish; and
    상기 턴디시의 용강을 주형으로 공급하고, 상기 주형에서 용강을 응고시켜 주편을 주조하는 과정;supplying the molten steel of the tundish to a mold, and solidifying the molten steel in the mold to cast a slab;
    을 포함하는 주조 방법.A casting method comprising a.
  11. 청구항 10에 있어서,11. The method of claim 10,
    용강이 수용된 래들을 상기 턴디시에 복수번 교체 연결하여, 상기 턴디시로 용강을 연속으로 공급하는 복수 차지의 주조를 실시하며,By replacing and connecting the ladle in which the molten steel is accommodated to the tundish a plurality of times, casting of multiple charges is performed to continuously supply the molten steel to the tundish,
    상기 복수 차지의 주조 중, 첫 번째 래들의 용강을 턴디시로 공급하는 첫 번째 차지 주조에서 상기 턴디시로 상기 턴디시 플럭스를 투입하며, During the casting of the plurality of charges, the tundish flux is injected into the tundish in the first charge casting for supplying the molten steel of the first ladle to the tundish,
    상기 복수 차지의 주조 중, 마지막 차지 주조시에 상기 턴디시 내 플럭스 풀의 융점이 1400℃ 이하인 주조 방법.A casting method wherein the melting point of the flux pool in the tundish is 1400° C. or less during the last charge casting among the multiple-charge casting.
  12. 청구항 11에 있어서,12. The method of claim 11,
    상기 턴디시로 투입된 상기 턴디시 플럭스는 8분 내에 모두 용융되는 주조 방법.A casting method in which all of the tundish flux injected into the tundish is melted within 8 minutes.
  13. 청구항 11에 있어서,12. The method of claim 11,
    상기 첫 번째 차지 주조 시에 턴디시 내 플럭스 풀의 두께가 10mm 이상인 주조 방법.A casting method in which the thickness of the flux pool in the tundish is 10 mm or more at the time of the first charge casting.
  14. 청구항 11에 있어서,12. The method of claim 11,
    상기 복수 차지의 주조 중, 첫 번째 차지에서부터 마지막 차지의 주조까지 상기 주형 내 용강 산소 함량이 20ppm 이하인 주조 방법.A casting method wherein the molten steel oxygen content in the mold is 20 ppm or less from the first charge to the last charge casting during the multi-charge casting.
PCT/KR2021/001152 2020-03-18 2021-01-28 Tundish flux and casting method using same WO2021187749A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022555841A JP7420963B2 (en) 2020-03-18 2021-01-28 Tundish flux and casting method using the same
CN202180021169.3A CN115279514A (en) 2020-03-18 2021-01-28 Tundish covering slag and casting method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0033221 2020-03-18
KR1020200033221A KR102288415B1 (en) 2020-03-18 2020-03-18 Tundish flux and casting method using the same

Publications (1)

Publication Number Publication Date
WO2021187749A1 true WO2021187749A1 (en) 2021-09-23

Family

ID=77316310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001152 WO2021187749A1 (en) 2020-03-18 2021-01-28 Tundish flux and casting method using same

Country Status (4)

Country Link
JP (1) JP7420963B2 (en)
KR (1) KR102288415B1 (en)
CN (1) CN115279514A (en)
WO (1) WO2021187749A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191153A (en) * 1999-12-28 2001-07-17 Nippon Yakin Kogyo Co Ltd Powder for continuously casting b-containing steel and continuous casting method
KR20120092708A (en) * 2010-01-21 2012-08-21 신닛뽄세이테쯔 카부시키카이샤 Mould powder for continuous casting of steel
CN103962521A (en) * 2013-01-25 2014-08-06 宝山钢铁股份有限公司 Fluoride-free continuous casting slag for ultra-low carbon steel
KR20170011712A (en) * 2015-07-24 2017-02-02 손일 Mold flux for continuous casting of high carbon steel
KR101818157B1 (en) * 2016-08-08 2018-01-12 주식회사 포스코 Input material and casting method using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944407B1 (en) * 2009-01-06 2010-02-25 스톨베르그 앤드 삼일 주식회사 Mold flux for continuous casting of high al steel grade
CN101502871B (en) * 2009-02-27 2012-05-23 济南钢铁股份有限公司 Cogged ingot continuous casting crystallizer protecting slag and preparation method thereof
KR101233836B1 (en) 2010-11-26 2013-02-15 주식회사 포스코 Tundish flux composite and Method of manufacturing the same
CN102764866B (en) * 2012-07-20 2014-01-29 钢铁研究总院 High-Al2O3 content high-aluminum steel continuous casting slag powder
CN105436446A (en) * 2014-09-28 2016-03-30 宝钢特钢有限公司 Continuous casting mold flux for high-manganese and high-aluminum steel and preparation method thereof
CN104439133A (en) * 2014-12-16 2015-03-25 中南大学 Novel casting powder and application thereof
CN104874755B (en) 2015-05-25 2017-07-11 中南大学 A kind of chrome-bearing steel tundish covering flux and its application
KR101828185B1 (en) * 2016-12-22 2018-03-29 연세대학교 산학협력단 Mold flux for continuous casting and method of continuous casting steel using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191153A (en) * 1999-12-28 2001-07-17 Nippon Yakin Kogyo Co Ltd Powder for continuously casting b-containing steel and continuous casting method
KR20120092708A (en) * 2010-01-21 2012-08-21 신닛뽄세이테쯔 카부시키카이샤 Mould powder for continuous casting of steel
CN103962521A (en) * 2013-01-25 2014-08-06 宝山钢铁股份有限公司 Fluoride-free continuous casting slag for ultra-low carbon steel
KR20170011712A (en) * 2015-07-24 2017-02-02 손일 Mold flux for continuous casting of high carbon steel
KR101818157B1 (en) * 2016-08-08 2018-01-12 주식회사 포스코 Input material and casting method using the same

Also Published As

Publication number Publication date
KR102288415B1 (en) 2021-08-10
JP7420963B2 (en) 2024-01-23
CN115279514A (en) 2022-11-01
JP2023518735A (en) 2023-05-08

Similar Documents

Publication Publication Date Title
WO2021187749A1 (en) Tundish flux and casting method using same
WO2017078336A1 (en) Molten steel treatment apparatus and method
WO2022235053A1 (en) High-strength aluminum alloy for 3d printing, and manufacturing method therefor
JP2894190B2 (en) Flux for addition in tundish
WO2021006476A1 (en) Mold flux and casting method using same
JP3265189B2 (en) Tundish waste flux and tundish slag waste treatment
WO2021230392A1 (en) High-entropy alloy and method for manufacturing same
KR101825132B1 (en) Casting flux and the manufacturing method using the same
WO2014058157A1 (en) Impellor and melt-pool processing method using same
KR100489236B1 (en) Tundish flux
WO2024071633A1 (en) Method for manufacturing steel
WO2023101504A1 (en) Mold manufacturing method and mold
JPS63174764A (en) Method for preventing molten steel oxidation at casting start in continuous casting
JPH06339754A (en) Method for continuously casting thin sheet
KR20240044256A (en) Tundish flux for high manganese steel casting and high manganese steel casting method using the same
JP3075911B2 (en) Method for softening and discharging slag in tundish
US3866662A (en) Method of casting quiet steel in molds
KR100516461B1 (en) Tundish flux having exothermic property
KR20230160068A (en) Heat insulating material and casting method using the same
WO2020096391A1 (en) Compress-reducing device
WO2019103494A1 (en) Mold flux, steel material and steel material manufacturing method
JPS62192237A (en) Production of lead free cutting steel
JP3093617B2 (en) Hot continuous use of tundish
JP3015992B2 (en) Mold coating agent for continuous casting of steel and continuous casting method of steel using the same
KR20200036426A (en) Tundish flux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770947

Country of ref document: EP

Kind code of ref document: A1