WO2017149865A1 - Rotating machine and method for producing rotating machine - Google Patents

Rotating machine and method for producing rotating machine Download PDF

Info

Publication number
WO2017149865A1
WO2017149865A1 PCT/JP2016/084900 JP2016084900W WO2017149865A1 WO 2017149865 A1 WO2017149865 A1 WO 2017149865A1 JP 2016084900 W JP2016084900 W JP 2016084900W WO 2017149865 A1 WO2017149865 A1 WO 2017149865A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
hole
blade
disk
impeller
Prior art date
Application number
PCT/JP2016/084900
Other languages
French (fr)
Japanese (ja)
Inventor
伸 ▲柳▼沢
栄一 柳沢
中庭 彰宏
伸一郎 得山
Original Assignee
三菱重工コンプレッサ株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社, 三菱重工業株式会社 filed Critical 三菱重工コンプレッサ株式会社
Publication of WO2017149865A1 publication Critical patent/WO2017149865A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps

Definitions

  • the present invention relates to a rotating machine applied to an impeller such as a supercharger, a gas turbine, an industrial compressor, a centrifugal compressor, or a pump, and a method of manufacturing the rotating machine.
  • an impeller such as a supercharger, a gas turbine, an industrial compressor, a centrifugal compressor, or a pump
  • a piece impeller is desired. That is, it is desirable to form a predetermined shape from a base material made of a corrosion-resistant metal by machining or the like.
  • Patent Document 1 a plurality of impeller parts having a shape obtained by dividing the impeller on a surface in a direction intersecting with the rotation shaft of the impeller is formed.
  • this three-dimensional impeller has a divided structure for assembling these impeller components.
  • These divided impeller parts are integrated by diffusion bonding or brazing via a contact surface.
  • Patent Document 2 proposes an integral structure that does not cause problems due to the divided structure.
  • the impeller for a centrifugal compressor shown in Patent Document 2 is a structure in which a plurality of blades, a main body arranged at the root of the blade, and a shroud arranged at the tip of the blade are integrated. is there.
  • slits that penetrate the shroud in the thickness direction of the shroud along the circumferential direction, or a plurality of holes that penetrate the shroud in the thickness direction of the shroud are formed in the shroud. .
  • the present invention can be formed in a single structure, thereby preventing a decrease in the reliability of strength and hydrodynamic performance and improving the mechanical reliability, and a method of manufacturing the rotating machine I will provide a.
  • a rotating machine includes a disk that is rotatably provided integrally with a shaft body, a cover that is provided between the disk in an axial direction and a radial direction, and these disks.
  • a plurality of blades provided between the cover and guiding fluid between the disks and the cover to the outside, and penetrating through at least one of the disk, the cover, and the blade;
  • the cross section that intersects the penetrating direction is formed into a shape that gradually decreases.
  • the through hole that leads to the internal space surrounded by the disk, the cover, and the blade is provided. Therefore, the rotary tool can be inserted into the internal space through this through hole. Therefore, machining with the rotary tool can be performed in a region of the internal space that is difficult to reach from the outside by the rotary tool. As a result, it is possible to easily form a rotary machine such as an impeller having an integral structure by machining from a block-shaped base material, and it is possible to keep the machining cost related to the region low.
  • the through hole leading to the internal space of the disk, cover, and blade is filled with a plug.
  • the entire structure is integrally formed by the plug body, and it becomes possible to prevent the reliability of the strength and hydrodynamic performance of the rotating machine from being lowered during the subsequent use of the rotating machine.
  • it is a simple structure which has a through-hole connected to the internal space enclosed by the disk, the cover, and the blade, and a plug that fills the through-hole. Therefore, the influence on the flow path formed in the internal space and the ratio occupied by the joint surface of the plug body can be minimized. Further, the cross-section intersecting the penetration direction is gradually reduced toward the direction in which the external force (that is, centrifugal force, fluid supply pressure) applied to the disc, the cover, and the blade acts by the plug body.
  • the plug is pushed into the through hole by an external force applied as the rotating machine rotates.
  • an external force applied as the rotating machine rotates As a result, it is possible to prevent the plug body from falling off, maintain the integral structure of the entire rotating machine (that is, a one-piece closed impeller), and prevent deterioration of the strength and hydrodynamic performance of the rotating machine. It becomes possible.
  • the through hole may be formed in a shape that penetrates the disk and gradually decreases in cross section in the direction of centrifugal force applied to the disk.
  • the through hole may be formed in a shape that gradually penetrates the cover and gradually decreases in cross section in the direction of centrifugal force applied to the cover.
  • the through hole may be formed in a shape that penetrates the blade and gradually decreases in cross section in the direction of centrifugal force applied to the blade.
  • the through hole penetrating the disk / cover / blade is formed in a shape in which the cross section gradually decreases in the direction of the centrifugal force applied to the disk. For this reason, the plug body is pushed into the through-hole by an external force applied in association with the rotation, so that the entire rotary machine can be formed into an integral structure (that is, a one-piece closed impeller).
  • a notch is provided at an edge of the blade located at the inlet or outlet of the flow path serving as the internal space.
  • a hole filling member for closing the notch portion may be fixed to the edge portion of the blade.
  • the notch is formed at the edge of the blade located at the inlet or outlet of the flow path serving as the internal space. Therefore, the rotary tool can be inserted into the internal space through the notch, and machining with the rotary tool can be performed in an area of the internal space that is difficult to reach from the outside by the rotary tool. Furthermore, since the hole filling member is fixed to the edge of the blade so as to cover the notch after machining with the rotary tool, the hole filling member can serve to supplement the shape of the impeller.
  • the hole filling member is formed with a tapered surface so that a contact force with the blade is increased by an external force applied to the blade.
  • the tapered surface is formed on the hole filling member so that the contact force with the blade is increased by the external force applied to the blade. Therefore, the hole-filling member can be brought into close contact with the edge of the blade by an external force applied as the impeller rotates, thereby contributing to the integral structure of the impeller.
  • the through hole is provided through the plurality of blades arranged along the rotation direction of the shaft body.
  • the through hole is provided through the plurality of blades arranged along the rotation direction of the shaft body. Therefore, machining with the rotary tool can be performed in the region of the internal space that is difficult to reach from the outside by the rotary tool inserted through the through hole.
  • a method for manufacturing a rotary machine includes a disk that is rotatably provided integrally with a shaft body, and a cover that is provided between the disk in an axial direction and a radial direction.
  • a rotating machine manufacturing method comprising a plurality of blades provided between the disks and the cover to guide the fluid between the disks and the cover toward the outside.
  • a disk, a cover, and a blade by inserting a rotary tool from a region corresponding to a distance between the disk and the cover in a radial direction and an axial direction.
  • the base material having the outer shape including the disk and the cover is formed in the first step
  • the second or fourth step the radial direction between the disk and the cover and The rotary tool is inserted from a region corresponding to the interval in the axial direction. Thereby, most of the flow path surrounded by the disc, the cover, and the blade is formed.
  • the third step the flow is communicated toward the flow path surrounded by the disk, the cover, and the blade, and the external force applied to the disk, the cover, and the blade (that is, centrifugal force, fluid supply pressure) is applied.
  • a through hole having a shape in which a cross section intersecting with the through direction is gradually reduced is formed.
  • the rotary tool is inserted from the through hole, and the remaining portion of the flow path surrounded by the disk, the cover, and the blade is formed.
  • the plug is inserted into the through hole in the direction in which the external force acts to close the through hole. That is, according to the manufacturing method of the rotating machine having the above-described configuration, in the third step, a through-hole that leads to the internal space surrounded by the disk, the cover, and the blade is separately provided. Therefore, the rotary tool can be inserted into the internal space through the through hole in the fourth step, and machining with the rotary tool can be performed in the region of the internal space that is difficult to reach from the outside by the rotary tool.
  • the through holes communicating with the internal spaces of the disk, the cover, and the blade are filled with plugs.
  • the whole body is integrally structured by the plug body, and it becomes possible to prevent the reliability of the strength and hydrodynamic performance of the rotating machine from being lowered during the subsequent use of the rotating machine.
  • the cross section intersecting the penetration direction is gradually reduced toward the direction in which the centrifugal force applied to the disc, the cover and the blade becomes smaller. Therefore, the plug is pushed into the through hole by an external force applied as the rotating machine rotates. As a result, it is possible to prevent the plug body from falling off, maintain the integral structure of the entire rotating machine (that is, a one-piece closed impeller), and prevent deterioration of the strength and hydrodynamic performance of the rotating machine. It becomes possible.
  • the present invention by machining from a block-shaped base material, it is possible to easily form a rotating machine such as an impeller having an integral structure, and to reduce the machining cost related to the region of the internal space where the rotating tool is difficult to reach from the outside. It can be kept low. Further, in the present invention, since the through hole leading to the internal space of the disk, the cover and the blade is filled with the plug body, the entire structure is integrated by the plug body, and the strength of the rotating machine when the rotating machine is used thereafter. In addition, it is possible to prevent a decrease in reliability of hydrodynamic performance.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4. It is a top view which shows the impeller which concerns on 3rd Embodiment of this invention.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6. It is a figure which shows the concave notch part formed in the edge part of a braid
  • FIG. 1 It is a perspective view which shows the through-hole of the impeller which concerns on 4th Embodiment of this invention. It is a top view of FIG. It is sectional drawing which shows the state of the centrifugal force added to the plug body of an impeller.
  • FIGS. 1, 2, 3A, 3B, 3C, 3D, 3E, and 3F show an impeller 1 of a rotary machine 100 according to the first embodiment.
  • the impeller 1 includes a disk 3 provided so as to be rotatable integrally with the hub 2, a cover 4 provided at an interval to the disk 3, and a wing member provided between the disk 3 and the cover 4. And a plurality of blades 5.
  • the disk 3 is provided integrally with the hub 2.
  • the disk 3 is fixed to a shaft body C serving as a rotating shaft via the hub 2.
  • the cover 4 is provided between the disk 3 at intervals in the axial direction Da and the radial direction Dr.
  • a flow path 6 serving as an internal space is formed between the cover 4 and the disk 3.
  • the flow path 6 is provided with the disk 3 and the cover 4 so that the interval in the axial direction Da is sequentially reduced outward in the radial direction Dr.
  • the blade 5 is a blade member that guides the fluid from the distance in the radial direction Dr between the disk 3 and the cover 4 to the distance in the axial direction Da between the disk 3 and the cover 4 when the disk 3 rotates.
  • the blade 5 guides the fluid while decelerating outward in the direction of arrow A in FIGS. 1 and 2.
  • the cover 4 is provided with a plurality of through holes 10 that communicate with the internal space serving as the flow path 6. These through holes 10 communicate with an internal space surrounded by the disk 3, the cover 4, and two blades 5 adjacent in the circumferential direction. In addition, a plurality of through holes 10 are provided at regular intervals in the circumferential direction around the axis O of the disk 3.
  • a rotary tool such as an end mill can be inserted into the internal space through each through hole 10. Machining (for example, cutting or grinding) with the rotary tool can be performed in a region of the internal space that is difficult to reach from the outside by the rotary tool.
  • each through hole 10 passes through the through hole 10 along a direction (arrow B1 direction) in which an external force (that is, centrifugal force, fluid supply pressure) applied to the disk 3, the cover 4, and the blade 5 acts.
  • the cross section intersecting the penetration direction is formed in a shape that gradually decreases.
  • Each through-hole 10 is filled and closed with a plug 11 after machining with the rotary tool described above.
  • the plug body 11 corresponds to the shape of the through hole 10 along the direction (arrow B1 direction) in which an external force (that is, centrifugal force, fluid supply pressure) applied to the disk 3, the cover 4, and the blade 5 acts.
  • the cross section that intersects the penetration direction is formed in a shape that gradually decreases.
  • the plug body 11 is elastically deformed or plastically deformed by being pushed into the through-hole 10 by applying an external force, and is brought into close contact with the inner peripheral surface of the through-hole 10. Further, the plug body 11 described above is not limited to close contact of the plug body 11 with the through-hole 10 by elastic deformation or plastic deformation.
  • the plug body 11 may have a female thread formed on the inner peripheral surface of the through-hole 10 and a male thread formed on the outer peripheral surface of the plug body 11 and screwed into the through-hole 10.
  • a rotary tool (indicated by symbol D) is inserted from a region corresponding to the distance between the disk 3 and the cover 4 in the radial direction Dr and the axial direction Da, and the disk 3 and the cover 4 are inserted. And most of the flow path 6 surrounded by the blade 5 is produced.
  • the external force applied to the disk 3, the cover 4 and the blade 5 communicates with the flow path 6 serving as an internal space surrounded by the disk 3, the cover 4 and the blade 5 (ie, centrifugal force, A through-hole 10 having a shape in which the cross section intersecting the penetration direction gradually decreases along the direction in which the fluid supply pressure) acts (the direction of arrow B1) is formed.
  • the portion where the through hole 10 is formed is a portion where the flow path 6 could not be formed in the previous second step, that is, in this example, as shown in FIG. 3 and / or near the center of the flow path 6 between the covers 4.
  • the plug body 11 having a shape in which the cross section intersecting the penetration direction gradually decreases is inserted into the through hole 10 in the direction in which the external force acts (direction of arrow B1).
  • the plug body 11 is pushed into the through-hole 10 by an external force applied as the impeller 1 rotates, so that the impeller 1 can be integrated (ie, a one-piece closed impeller).
  • the cover 4 is provided with the through hole 10 that leads to the internal space surrounded by the disk 3, the cover 4, and the blade 5. Therefore, the rotary tool D can be inserted into the internal space through the through hole 10, and machining with the rotary tool D can be performed in an area that is difficult to reach from the outside by the rotary tool D.
  • a rotary machine such as an impeller having an integrated structure can be easily formed by machining from a block-shaped base material, and the rotary tool is difficult to reach from the outside.
  • Such processing costs can be kept low.
  • the through hole 10 formed in the cover 4 is filled with the plug body 11. Therefore, the plug body 11 is formed as a whole in an integral structure, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine during subsequent use of the rotating machine.
  • the present embodiment has a simple configuration including a through hole 10 communicating with an internal space surrounded by the disk 3, the cover 4, and the blade 5, and a plug body 11 that fills the through hole 10. Therefore, it is possible to minimize the influence on the flow path 6 formed in the internal space and the ratio occupied by the joint surface of the plug body 11.
  • the cross section of the plug 11 that intersects the penetrating direction gradually becomes smaller in the direction (arrow B1 direction) in which the external force applied to the cover 4 (that is, centrifugal force and fluid supply pressure) acts. It is formed into a shape. Therefore, the plug body 11 is pushed into the through hole 10 by an external force applied as the rotating machine rotates. As a result, the plug body 11 is prevented from falling off, and the entire structure of the rotating machine (that is, a one-piece closed impeller) is maintained, thereby preventing deterioration in the strength and hydrodynamic performance of the rotating machine. Is possible.
  • FIGS. 4 and 5 A second embodiment of the present invention will be described with reference to FIGS. 4 and 5.
  • the same reference numerals are given to portions that share the same configuration as the first embodiment, and redundant descriptions are omitted.
  • the impeller 20 that is the rotating machine 101 according to the second embodiment is different from the impeller 1 of the first embodiment in that the disk 3 is also provided with a through hole 21.
  • a plurality of through holes 21 are also provided in the thickest portion of the disk 3. These through-holes 21 communicate with the flow path 6 serving as an internal space surrounded by the disk 3, the cover 4, and the two blades 5 adjacent in the circumferential direction, like the through-hole 10 of the cover 4 described above, and the disk 3. A plurality of them are provided at regular intervals in the circumferential direction around the axis O.
  • the rotary tool D such as an end mill can be inserted into the flow path 6 through each through-hole 21, and the rotary tool D is used in the region of the internal space that is difficult to reach from the outside by the rotary tool D. Machining can be performed.
  • each through hole 21 has a cross section that gradually intersects the penetrating direction along a direction (arrow B2 direction) in which an external force (that is, centrifugal force and fluid supply pressure) applied to the disk 3, the cover 4, and the blade 5 acts. It is formed in a smaller shape.
  • each through-hole 21 is filled and closed by a plug 22 after machining with the rotary tool D described above.
  • This plug body 22 corresponds to the shape of the through hole 21 along the direction (arrow B2 direction) in which an external force applied to the disk 3, the cover 4 and the blade 5 (that is, centrifugal force and fluid supply pressure) acts.
  • the cross section that intersects the penetration direction is formed in a shape that gradually decreases.
  • the plug 22 is preferably elastically deformed or plastically deformed and is in close contact with the inner peripheral surface of the through hole 21, as with the plug 11.
  • the above-described plug body 22 has a female screw formed on the inner peripheral surface of the through-hole 21 and a male screw formed on the outer peripheral surface of the plug body 22 and is screwed into the through-hole 21 regardless of elastic deformation or plastic deformation. You may make it.
  • the through-hole 21 communicating with the internal space surrounded by the disk 3, the cover 4 and the blade 5 is provided in the disk 3. Therefore, the rotary tool D can be inserted into the internal space via the through hole 21 together with the previous through hole 10, and machining with the rotary tool D is difficult to reach from the outside by the rotary tool D. It can be carried out.
  • a rotary machine such as an impeller having an integrated structure can be easily formed by machining from a block-shaped base material, and the rotary tool D is difficult to reach from the outside.
  • the same effects as in the first embodiment can be obtained, such as the processing cost related to the region can be kept low.
  • FIGS. A third embodiment of the present invention will be described with reference to FIGS.
  • the impeller 30 serving as the rotary machine 102 according to the third embodiment is different from the impellers 1 and 20 of the previous embodiment in that the concave notch 31 is formed on the edge 5A of the blade 5 located at the inlet opening of the flow path 6. Is further formed.
  • the notches 31 are respectively formed on edge portions 5A of the blades 5 provided at a predetermined interval in the circumferential direction with the axis O of the disk 3 as the center.
  • a rotary tool D such as an end mill can be inserted into the flow path 6 through each notch 31, and machining with the rotary tool D can be performed in the region of the internal space that is difficult to reach from the outside by the rotary tool D. .
  • the integrated impeller 30 having a complicated three-dimensional shape can be easily formed by machining from a block-shaped base material.
  • a hole filling member 32 for closing the notch 31 is fixed to the edge 5A of the blade 5 as shown in detail in FIGS. 8B and 9.
  • the hole filling member 32 is fixed to the edge 5 ⁇ / b> A of the blade 5 so as to cover the notch 31 after machining with the rotary tool D.
  • the hole filling member 32 serves to supplement the shape of the impeller 30.
  • a tapered surface 33 is provided between the blade 5 and the hole-filling member 32 so that a contact force with the blade 5 is increased by a centrifugal force (indicated by an arrow M) applied to the blade 5. And 34 are formed.
  • the tapered surfaces 33 and 34 cause the hole-filling member 32 to be brought into close contact with the edge 5A of the blade 5 by an external force applied as the impeller 30 rotates, thereby contributing to the integral structure of the impeller 30. it can.
  • the notch 31 that communicates with the internal space surrounded by the disk 3, the cover 4, and the blade 5 is provided in the edge 5 ⁇ / b> A of the blade 5. Therefore, the rotary tool D can be inserted into the internal space through the notch 31 together with the previous through holes 10 and 21, and the machine using the rotary tool D is difficult to reach from the outside by the rotary tool D. Processing can be performed.
  • a rotary machine such as an impeller having an integrated structure can be easily formed by machining from a block-shaped base material, and the rotary tool D is difficult to reach from the outside.
  • the effect similar to 1st and 2nd embodiment can be acquired, such as being able to hold down the processing cost concerning a field low.
  • the concave notch 31 and the hole filling member 32 for closing the notch 31 are provided at the edge 5A of the blade 5 located at the inlet opening of the flow path 6. It is not limited to this.
  • the notch 31 and the hole filling member 32 may be provided at the edge of the blade 5 located at the outlet opening of the flow path 6.
  • the through hole 41 shown in the fourth embodiment includes a plurality of blades 5 provided at regular intervals in the circumferential direction around the axis O of the disk 3. It is provided through.
  • the through hole 41 is provided through the plurality of blades 5 linearly.
  • each through-hole 41 has a direction in which an external force applied to the blade 5 (ie, centrifugal force, fluid supply pressure) acts (direction from the pressure surface Sp toward the negative pressure surface Ss, direction indicated by an arrow B3) ),
  • the cross section intersecting with the penetrating direction is formed in a shape that gradually becomes smaller, and after machining with the rotary tool D described above, it is buried and closed by the plug 42.
  • This plug body 42 corresponds to the shape of the through hole 41 along the direction (arrow B3 direction) in which an external force applied to the disk 3, the cover 4 and the blade 5 (that is, centrifugal force and fluid supply pressure) acts.
  • the cross section that intersects the penetration direction is formed in a shape that gradually decreases.
  • the plug body 42 is preferably elastically deformed or plastically deformed and is in close contact with the inner peripheral surface of the through hole 41, similarly to the plug body 11.
  • the above-described plug body 42 has a female screw formed on the inner peripheral surface of the through hole 41 and a male screw formed on the outer peripheral surface of the plug body 42 and is screwed into the through hole 41 regardless of elastic deformation or plastic deformation. It may be.
  • the through hole 41 that leads to the internal space surrounded by the disk 3, the cover 4, and the blade 5 is provided so as to penetrate the plurality of disks 3. Therefore, the rotary tool D can be inserted into the internal space via the through hole 41, and machining with the rotary tool D can be performed in an area that is difficult to reach from the outside by the rotary tool D.
  • a rotary machine such as an impeller having an integrated structure can be easily formed by machining from a block-shaped base material, and the rotary tool D is difficult to reach from the outside.
  • the effect similar to the above-mentioned embodiment can be acquired, such as being able to hold down the processing cost concerning an area
  • the present invention relates to a rotating machine applied to an impeller of a centrifugal compressor such as a supercharger, a gas turbine, or an industrial compressor, and a method of manufacturing the rotating machine.
  • a centrifugal compressor such as a supercharger, a gas turbine, or an industrial compressor

Abstract

This rotating machine has a stopper (11) for blocking a through-hole (10) that passes through at least one element among a disc (3), a cover (4), and a blade, and is provided so as to connect to a space surrounded by the disc (3), cover (4) and blade. The stopper (11) is shaped in a manner such that the cross-section thereof that intersects the through direction in which the through-hole (10) penetrates gets gradually smaller toward the direction (direction of arrow B1) in which an external force acts on the disc (3), cover (4) and blade.

Description

回転機械および回転機械の製造方法Rotating machine and method of manufacturing rotating machine
 本発明は、過給機、ガスタービン、産業用圧縮機、遠心圧縮機、ポンプ等のインペラに適用される回転機械および回転機械の製造方法に関する。
 本願は、2016年3月1日に出願された特願2016-039260号について優先権を主張し、その内容をここに援用する。
The present invention relates to a rotating machine applied to an impeller such as a supercharger, a gas turbine, an industrial compressor, a centrifugal compressor, or a pump, and a method of manufacturing the rotating machine.
This application claims priority on Japanese Patent Application No. 2016-039260 filed on Mar. 1, 2016, the contents of which are incorporated herein by reference.
 例えば、腐食性ガスを作動流体とする化学プロセス等の腐食性環境下で運転される遠心圧縮機の分野では、作動流体の流量増加および作動流体による腐食防止の観点から、溶接部を有しない1ピースのインペラとすることが望まれている。すなわち、耐腐食性金属製の母材から機械加工等によって所定形状に形成することが望ましいとされている。 For example, in the field of a centrifugal compressor operated in a corrosive environment such as a chemical process using a corrosive gas as a working fluid, there is no weld from the viewpoint of increasing the flow rate of the working fluid and preventing corrosion due to the working fluid. A piece impeller is desired. That is, it is desirable to form a predetermined shape from a base material made of a corrosion-resistant metal by machining or the like.
 例えば、特許文献1に示される三次元羽根車では、羽根車の回転軸に交わる方向の面で羽根車を分割した形状の複数の羽根車部品が形成されている。加えて、この三次元羽根車は、これら羽根車部品を組み立てる分割構造を有している。これら分割された羽根車部品は、当接面を介して拡散接合又はろう付けされることにより一体化されている。
 しかしながら、このような分割構造体では、作動流体の流量増加および作動流体による腐食防止の観点に基づく信頼性が低下する。加えて、製造時の組立て誤差が大きくなる。このため、特許文献2では、分割構造による問題点が生じない一体構造体が提案されている。
For example, in the three-dimensional impeller disclosed in Patent Document 1, a plurality of impeller parts having a shape obtained by dividing the impeller on a surface in a direction intersecting with the rotation shaft of the impeller is formed. In addition, this three-dimensional impeller has a divided structure for assembling these impeller components. These divided impeller parts are integrated by diffusion bonding or brazing via a contact surface.
However, in such a divided structure, the reliability based on the viewpoint of increasing the flow rate of the working fluid and preventing corrosion by the working fluid is reduced. In addition, an assembly error during manufacturing increases. For this reason, Patent Document 2 proposes an integral structure that does not cause problems due to the divided structure.
 特許文献2に示される遠心圧縮機用インペラは、複数枚のブレードと、該ブレードの根元部に配置される本体と、該ブレードの先端部に配置されるシュラウドとが一体化された構造体である。この遠心圧縮機用インペラは、前記シュラウドに、周方向に沿ってシュラウドの板厚方向に貫通するスリット、又は周方向に沿ってシュラウドの板厚方向に貫通する複数個の孔が形成されている。 The impeller for a centrifugal compressor shown in Patent Document 2 is a structure in which a plurality of blades, a main body arranged at the root of the blade, and a shroud arranged at the tip of the blade are integrated. is there. In the centrifugal compressor impeller, slits that penetrate the shroud in the thickness direction of the shroud along the circumferential direction, or a plurality of holes that penetrate the shroud in the thickness direction of the shroud are formed in the shroud. .
特開2004-308647号公報JP 2004-308647 A 特開2009-156122号公報JP 2009-156122 A
 しかしながら、特許文献2に示される回転機械では、一体構造化されるものの、加工時に形成したスリット又は孔が残存する。そのため、この回転機械では、強度及び流体力学的性能の信頼性低下を招く可能性がある。
 また、特許文献2に示される回転機械では、シュラウドに周方向に沿い板厚方向に貫通する大きなスリットが残る。そのため、この回転機械では、強度及び流体力学的性能の信頼性低下を招く可能性がある。
However, although the rotary machine shown in Patent Document 2 is integrally structured, slits or holes formed during processing remain. Therefore, in this rotating machine, there is a possibility that reliability of strength and hydrodynamic performance is reduced.
Moreover, in the rotary machine shown by patent document 2, the big slit which penetrates to a plate | board thickness direction along the circumferential direction remains in a shroud. Therefore, in this rotating machine, there is a possibility that reliability of strength and hydrodynamic performance is reduced.
 この発明は、一体構造での形成が可能であり、これによって強度及び流体力学的性能の信頼性低下を防止しかつ機械的な信頼性を向上させることが可能な回転機械および回転機械の製造方法を提供する。 The present invention can be formed in a single structure, thereby preventing a decrease in the reliability of strength and hydrodynamic performance and improving the mechanical reliability, and a method of manufacturing the rotating machine I will provide a.
 本発明の第一態様の回転機械は、軸体と一体に回転可能に設けられたディスクと、このディスクとの間に軸方向および半径方向に間隔をおいて設けられたカバーと、これらディスクとカバーとの間に設けられて、これらディスクとカバーとの間の流体を外方に向けて案内する複数のブレードと、前記ディスク、カバー、およびブレードの少なくともいずれかを貫通し、前記ディスク、カバー、およびブレードによって囲まれた内部空間に連通する貫通孔を塞いでいる栓体と、を有し、前記栓体は、前記ディスク、カバーおよびブレードへ外力が作用する方向へ、前記貫通孔の貫通している貫通方向と交差する断面が漸次小さくなる形状に形成されている。 A rotating machine according to a first aspect of the present invention includes a disk that is rotatably provided integrally with a shaft body, a cover that is provided between the disk in an axial direction and a radial direction, and these disks. A plurality of blades provided between the cover and guiding fluid between the disks and the cover to the outside, and penetrating through at least one of the disk, the cover, and the blade; And a plug body closing a through hole communicating with the internal space surrounded by the blade, the plug body penetrating the through hole in a direction in which an external force acts on the disk, the cover and the blade. The cross section that intersects the penetrating direction is formed into a shape that gradually decreases.
 このような構成によれば、ディスク、カバー、およびブレードによって囲まれた内部空間に通じる貫通孔が設けられている。そのため、この貫通孔を通じて回転工具を内部空間に挿入することができる。したがって、該回転工具によって外部から届き難い内部空間の領域にて、該回転工具による機械加工を行うことができる。
 その結果、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ当該領域に係る加工コストを低く抑えることができる。
 また、ディスク、カバー、およびブレードの内部空間に通じる貫通孔を栓体により埋める構造である。そのため、該栓体によって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
 また、ディスク、カバー、およびブレードによって囲まれた内部空間に連通しする貫通孔と、該貫通孔を埋める栓体とを有する簡易な構成である。そのため、内部空間に形成される流路に対する影響、栓体の接合面が占める割合を最小限に抑えることができる。
 また、栓体がこれらディスク、カバー、およびブレードに加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向へ向けて貫通方向と交差する断面が漸次小さくなる形状に形成されている。そのため、回転機械の回転に伴って加わる外力により、該栓体が貫通孔内に押し込まれる。その結果、栓体が抜け落ちることが防止され、回転機械全体の一体構造化(すなわち、1ピースクローズドインペラ)を維持して、回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
According to such a configuration, the through hole that leads to the internal space surrounded by the disk, the cover, and the blade is provided. Therefore, the rotary tool can be inserted into the internal space through this through hole. Therefore, machining with the rotary tool can be performed in a region of the internal space that is difficult to reach from the outside by the rotary tool.
As a result, it is possible to easily form a rotary machine such as an impeller having an integral structure by machining from a block-shaped base material, and it is possible to keep the machining cost related to the region low.
In addition, the through hole leading to the internal space of the disk, cover, and blade is filled with a plug. For this reason, the entire structure is integrally formed by the plug body, and it becomes possible to prevent the reliability of the strength and hydrodynamic performance of the rotating machine from being lowered during the subsequent use of the rotating machine.
Moreover, it is a simple structure which has a through-hole connected to the internal space enclosed by the disk, the cover, and the blade, and a plug that fills the through-hole. Therefore, the influence on the flow path formed in the internal space and the ratio occupied by the joint surface of the plug body can be minimized.
Further, the cross-section intersecting the penetration direction is gradually reduced toward the direction in which the external force (that is, centrifugal force, fluid supply pressure) applied to the disc, the cover, and the blade acts by the plug body. Therefore, the plug is pushed into the through hole by an external force applied as the rotating machine rotates. As a result, it is possible to prevent the plug body from falling off, maintain the integral structure of the entire rotating machine (that is, a one-piece closed impeller), and prevent deterioration of the strength and hydrodynamic performance of the rotating machine. It becomes possible.
 本発明の第二態様の回転機械では、第一態様において、前記貫通孔は、前記ディスクを貫通し、前記ディスクに加わる遠心力の方向へ断面が漸次小さくなる形状に形成されていてもよい。 In the rotating machine according to the second aspect of the present invention, in the first aspect, the through hole may be formed in a shape that penetrates the disk and gradually decreases in cross section in the direction of centrifugal force applied to the disk.
 本発明の第三態様の回転機械では、第一態様において、前記貫通孔は、前記カバーを貫通し、前記カバーに加わる遠心力の方向へ断面が漸次小さくなる形状に形成されていてもよい。 In the rotating machine according to the third aspect of the present invention, in the first aspect, the through hole may be formed in a shape that gradually penetrates the cover and gradually decreases in cross section in the direction of centrifugal force applied to the cover.
 本発明の第四態様の回転機械では、第一態様において、前記貫通孔は、前記ブレードを貫通し、前記ブレードに加わる遠心力の方向へ断面が漸次小さくなる形状に形成されていてもよい。 In the rotating machine according to the fourth aspect of the present invention, in the first aspect, the through hole may be formed in a shape that penetrates the blade and gradually decreases in cross section in the direction of centrifugal force applied to the blade.
 上記のような構成によれば、ディスク/カバー/ブレードを貫通する貫通孔について、ディスクに加わる遠心力の方向へ断面が漸次小さくなる形状に形成されている。そのため、回転に伴って加わる外力により、該栓体が貫通孔内に押し込まれて、回転機械全体の一体構造化(すなわち、1ピースクローズドインペラ)を形成することができる。 According to the configuration as described above, the through hole penetrating the disk / cover / blade is formed in a shape in which the cross section gradually decreases in the direction of the centrifugal force applied to the disk. For this reason, the plug body is pushed into the through-hole by an external force applied in association with the rotation, so that the entire rotary machine can be formed into an integral structure (that is, a one-piece closed impeller).
 本発明の第五態様の回転機械では、第一から第四態様のいずれか一つにおいて、前記内部空間となる流路の流入口又は流出口に位置する前記ブレードの縁部には切欠部が形成されており、前記ブレードの縁部には、前記切欠部を塞ぐための穴埋め部材が固定されていてもよい。 In the rotating machine according to the fifth aspect of the present invention, in any one of the first to fourth aspects, a notch is provided at an edge of the blade located at the inlet or outlet of the flow path serving as the internal space. A hole filling member for closing the notch portion may be fixed to the edge portion of the blade.
 上記のような構成によれば、内部空間となる流路の流入口又は流出口に位置するブレードの縁部には切欠部が形成されている。そのため、該切欠部を通じて、回転工具を内部空間に挿入することができ、該回転工具によって外部から届き難い内部空間の領域にて、該回転工具による機械加工を行うことができる。
 さらに、回転工具による機械加工後に、穴埋め部材が切欠部を覆うようにブレードの縁部に固定されることから、該穴埋め部材により、インペラの形状を補う役目をすることができる。
According to the above configuration, the notch is formed at the edge of the blade located at the inlet or outlet of the flow path serving as the internal space. Therefore, the rotary tool can be inserted into the internal space through the notch, and machining with the rotary tool can be performed in an area of the internal space that is difficult to reach from the outside by the rotary tool.
Furthermore, since the hole filling member is fixed to the edge of the blade so as to cover the notch after machining with the rotary tool, the hole filling member can serve to supplement the shape of the impeller.
 本発明の第六態様の回転機械では、第五態様において、前記穴埋め部材は、前記ブレードに加わる外力により該ブレードとの接触力が上昇するようにテーパー面が形成されていることを特徴とする。 In the rotary machine according to the sixth aspect of the present invention, in the fifth aspect, the hole filling member is formed with a tapered surface so that a contact force with the blade is increased by an external force applied to the blade. .
 上記のような構成によれば、穴埋め部材に、ブレードに加わる外力により該ブレードとの接触力が上昇するようにテーパー面が形成されている。そのため、該穴埋め部材が、インペラの回転に伴って加わる外力によりブレードの縁部に密着して、該インペラの一体構造化に寄与することができる。 According to the configuration as described above, the tapered surface is formed on the hole filling member so that the contact force with the blade is increased by the external force applied to the blade. Therefore, the hole-filling member can be brought into close contact with the edge of the blade by an external force applied as the impeller rotates, thereby contributing to the integral structure of the impeller.
 本発明の第七態様の回転機械では、第一態様において、前記貫通孔は前記軸体の回転方向に沿って配置された複数の前記ブレードを貫通して設けられたことを特徴とする。 In the rotating machine according to the seventh aspect of the present invention, in the first aspect, the through hole is provided through the plurality of blades arranged along the rotation direction of the shaft body.
 上記のような構成によれば、軸体の回転方向に沿って配置された複数のブレードを貫通して貫通孔が設けられている。そのため、該貫通孔を通じて挿入した回転工具により、外部から届き難い内部空間の領域にて、該回転工具による機械加工を行うことができる。 According to the above configuration, the through hole is provided through the plurality of blades arranged along the rotation direction of the shaft body. Therefore, machining with the rotary tool can be performed in the region of the internal space that is difficult to reach from the outside by the rotary tool inserted through the through hole.
 本発明の第八態様の回転機械の製造方法は、軸体と一体に回転可能に設けられたディスクと、このディスクとの間に軸方向および半径方向に間隔をおいて設けられたカバーと、これらディスクとカバーとの間に設けられて、これらディスクとカバーとの間の流体を外方に向けて案内する複数のブレードと、を有する回転機械の製造方法であって、前記ディスクとカバーとを含む外形を有する母材を形成する第1工程と、前記ディスクとカバーとの間の半径方向および軸線方向への間隔に相当する領域から回転工具を挿入して、前記ディスク、カバー、およびブレードによって囲まれる流路の一部を形成する第2工程と、前記ディスク、カバー、およびブレードによって囲まれる流路に連通し、これらディスク、カバー、およびブレードに外力が作用する方向へ、貫通方向と交差する断面が漸次小さくなる形状の貫通孔を形成する第3工程と、前記貫通孔から回転工具を挿入して、前記ディスク、カバー、およびブレードによって囲まれ、前記第2工程による加工がされていない前記流路の他の部分を形成する第4工程と、前記貫通孔に前記外力が作用する方向へ向けて栓体を挿入して閉塞させる第5工程と、を含む。 A method for manufacturing a rotary machine according to an eighth aspect of the present invention includes a disk that is rotatably provided integrally with a shaft body, and a cover that is provided between the disk in an axial direction and a radial direction. A rotating machine manufacturing method comprising a plurality of blades provided between the disks and the cover to guide the fluid between the disks and the cover toward the outside. A disk, a cover, and a blade by inserting a rotary tool from a region corresponding to a distance between the disk and the cover in a radial direction and an axial direction. A second step of forming a part of the flow path surrounded by the disk, the flow path surrounded by the disk, the cover, and the blade. A third step of forming a through-hole having a shape in which the cross section intersecting the penetration direction gradually decreases in the direction in which the penetration acts, and a rotary tool is inserted from the through-hole, and is surrounded by the disk, the cover, and the blade, A fourth step of forming another part of the flow path that has not been processed in the second step, and a fifth step of inserting and closing the plug body in a direction in which the external force acts on the through-hole. ,including.
 上記のような構成によれば、第1工程にてディスクとカバーとを含む外形を有する母材が形成された後、第2または第4工程にて、ディスクとカバーとの間の半径方向および軸線方向への間隔に相当する領域から回転工具が挿入される。これにより、これらディスク、カバーおよびブレードによって囲まれる流路の大部分が形成される。
 その後、第3工程にて、ディスク、カバーおよびブレードによって囲まれる流路に向けて連通し、かつこれらディスク、カバーおよびブレードに加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向へ、前記貫通方向と交差する断面が漸次小さくなる形状の貫通孔が形成される。
 その後、第4または第2工程にて、該貫通孔から回転工具を挿入して、ディスク、カバーおよびブレードによって囲まれる流路の残りの部分が形成される。その後、第5工程にて、貫通孔内に、外力が作用する方向へ向けて栓体が挿入されて貫通孔が閉塞される。
 すなわち、上記構成の回転機械の製造方法によれば、第3工程にて、ディスク、カバーおよびブレードによって囲まれた内部空間に通じる貫通孔が別途設けられている。そのため、第4工程にて該貫通孔を通じて回転工具を内部空間に挿入することができ、該回転工具によって外部から届き難い内部空間の領域にて、該回転工具による機械加工を行うことができる。
 その結果、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ当該領域に係る加工コストを低く抑えることができる。
 また、第5工程にて、ディスク、カバーおよびブレードの内部空間に通じる貫通孔が栓体により埋められるようにしている。そのため、該栓体により全体が一体構造化し、その後の回転機械の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
 また、栓体がこれらディスク、カバーおよびブレードに加わる遠心力が小さくなる方向へ向けて貫通方向と交差する断面が漸次小さくなる形状に形成されている。そのため、回転機械の回転に伴って加わる外力により、該栓体が貫通孔内に押し込まれる。その結果、栓体が抜け落ちることが防止され、回転機械全体の一体構造化(すなわち、1ピースクローズドインペラ)を維持して、回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
According to the above configuration, after the base material having the outer shape including the disk and the cover is formed in the first step, in the second or fourth step, the radial direction between the disk and the cover and The rotary tool is inserted from a region corresponding to the interval in the axial direction. Thereby, most of the flow path surrounded by the disc, the cover, and the blade is formed.
Thereafter, in the third step, the flow is communicated toward the flow path surrounded by the disk, the cover, and the blade, and the external force applied to the disk, the cover, and the blade (that is, centrifugal force, fluid supply pressure) is applied. A through hole having a shape in which a cross section intersecting with the through direction is gradually reduced is formed.
Thereafter, in the fourth or second step, the rotary tool is inserted from the through hole, and the remaining portion of the flow path surrounded by the disk, the cover, and the blade is formed. Thereafter, in the fifth step, the plug is inserted into the through hole in the direction in which the external force acts to close the through hole.
That is, according to the manufacturing method of the rotating machine having the above-described configuration, in the third step, a through-hole that leads to the internal space surrounded by the disk, the cover, and the blade is separately provided. Therefore, the rotary tool can be inserted into the internal space through the through hole in the fourth step, and machining with the rotary tool can be performed in the region of the internal space that is difficult to reach from the outside by the rotary tool.
As a result, it is possible to easily form a rotary machine such as an impeller having an integral structure by machining from a block-shaped base material, and it is possible to keep the machining cost related to the region low.
Further, in the fifth step, the through holes communicating with the internal spaces of the disk, the cover, and the blade are filled with plugs. For this reason, the whole body is integrally structured by the plug body, and it becomes possible to prevent the reliability of the strength and hydrodynamic performance of the rotating machine from being lowered during the subsequent use of the rotating machine.
Further, the cross section intersecting the penetration direction is gradually reduced toward the direction in which the centrifugal force applied to the disc, the cover and the blade becomes smaller. Therefore, the plug is pushed into the through hole by an external force applied as the rotating machine rotates. As a result, it is possible to prevent the plug body from falling off, maintain the integral structure of the entire rotating machine (that is, a one-piece closed impeller), and prevent deterioration of the strength and hydrodynamic performance of the rotating machine. It becomes possible.
 本発明では、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ回転工具が外部から届き難い内部空間の領域に係る加工コストを低く抑えることができる。
 また、本発明では、ディスク、カバーおよびブレードの内部空間に通じる貫通孔を栓体により埋める構造であるので、該栓体によって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
In the present invention, by machining from a block-shaped base material, it is possible to easily form a rotating machine such as an impeller having an integral structure, and to reduce the machining cost related to the region of the internal space where the rotating tool is difficult to reach from the outside. It can be kept low.
Further, in the present invention, since the through hole leading to the internal space of the disk, the cover and the blade is filled with the plug body, the entire structure is integrated by the plug body, and the strength of the rotating machine when the rotating machine is used thereafter. In addition, it is possible to prevent a decrease in reliability of hydrodynamic performance.
本発明の第1実施形態に係るインペラを示す平面図である。It is a top view which shows the impeller which concerns on 1st Embodiment of this invention. 図1のII-II線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明の第2実施形態に係るインペラを示す平面図である。It is a top view which shows the impeller which concerns on 2nd Embodiment of this invention. 図4のV-V線に沿う断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 4. 本発明の第3実施形態に係るインペラを示す平面図である。It is a top view which shows the impeller which concerns on 3rd Embodiment of this invention. 図6のVII-VII線に沿う断面図である。FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6. ブレードの縁部に形成された凹状の切欠部を示す図である。It is a figure which shows the concave notch part formed in the edge part of a braid | blade. ブレードの縁部に固定された穴埋め部材を示す図である。It is a figure which shows the hole-filling member fixed to the edge part of the braid | blade. ブレードの縁部に固定された穴埋め部材を示す斜視図である。It is a perspective view which shows the hole-filling member fixed to the edge part of the braid | blade. 本発明の第4実施形態に係るインペラの貫通孔を示す斜視図である。It is a perspective view which shows the through-hole of the impeller which concerns on 4th Embodiment of this invention. 図10の平面図である。It is a top view of FIG. インペラの栓体に加わる遠心力の状態を示す断面図である。It is sectional drawing which shows the state of the centrifugal force added to the plug body of an impeller.
(第1実施形態)
 本発明の第1実施形態について図1、図2、図3A、図3B、図3C、図3D、図3E、及び図3Fを参照して説明する。
 図1および図2は第1実施形態に係る回転機械100のインペラ1である。インペラ1は、ハブ2と一体に回転可能に設けられたディスク3と、このディスク3に間隔をおいて設けられたカバー4と、これらディスク3とカバー4との間に設けられた翼部材となる複数のブレード5とから構成される。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. 1, 2, 3A, 3B, 3C, 3D, 3E, and 3F.
1 and 2 show an impeller 1 of a rotary machine 100 according to the first embodiment. The impeller 1 includes a disk 3 provided so as to be rotatable integrally with the hub 2, a cover 4 provided at an interval to the disk 3, and a wing member provided between the disk 3 and the cover 4. And a plurality of blades 5.
 ディスク3は、ハブ2と一体に設けられたものである。ディスク3は、該ハブ2を介して回転軸となる軸体Cに固定される。
 カバー4は、ディスク3との間に軸方向Daおよび半径方向Drに間隔をおいて設けられたものである。カバー4は、該ディスク3との間に内部空間となる流路6が形成されている。この流路6は、半径方向Dr外方に向けて順次、軸方向Daの間隔が縮小するように、ディスク3およびカバー4が設置されている。
 ブレード5は、ディスク3の回転時に、該ディスク3とカバー4との間の半径方向Drの間隔からディスク3とカバー4との間の軸方向Daの間隔へ流体を案内する翼部材である。ブレード5は、これによって図1および図2に矢印A方向に示す外方に向けて、該流体を減速しつつ案内する。
The disk 3 is provided integrally with the hub 2. The disk 3 is fixed to a shaft body C serving as a rotating shaft via the hub 2.
The cover 4 is provided between the disk 3 at intervals in the axial direction Da and the radial direction Dr. A flow path 6 serving as an internal space is formed between the cover 4 and the disk 3. The flow path 6 is provided with the disk 3 and the cover 4 so that the interval in the axial direction Da is sequentially reduced outward in the radial direction Dr.
The blade 5 is a blade member that guides the fluid from the distance in the radial direction Dr between the disk 3 and the cover 4 to the distance in the axial direction Da between the disk 3 and the cover 4 when the disk 3 rotates. Thus, the blade 5 guides the fluid while decelerating outward in the direction of arrow A in FIGS. 1 and 2.
 カバー4には、流路6となる内部空間に連通する複数の貫通孔10が設けられている。
 これら貫通孔10は、ディスク3、カバー4および周方向に隣接する2つのブレード5によって囲まれた内部空間に連通している。加えて、貫通孔10は、ディスク3の軸線Oを中心として周方向に一定の間隔をおいて複数設けられている。
 そして、インペラ製作時において、各貫通孔10を通じてエンドミル等の回転工具を内部空間に挿入することができる。該回転工具によって外部から届き難い内部空間の領域にて、該回転工具による機械加工(例えば切削加工や研削加工)を行うことができる。その結果、本例では、ブロック形状の母材からの機械加工により、複雑な三次元形状を有する一体構造のインペラ1を容易に形成することができる。
 また、各貫通孔10は、ディスク3、カバー4およびブレード5に加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向(矢印B1方向)に沿い、貫通孔10の貫通している貫通方向と交差する断面が漸次小さくなる形状に形成されているものである。各貫通孔10は、前述した回転工具による機械加工後に、栓体11により埋められ閉塞される。
The cover 4 is provided with a plurality of through holes 10 that communicate with the internal space serving as the flow path 6.
These through holes 10 communicate with an internal space surrounded by the disk 3, the cover 4, and two blades 5 adjacent in the circumferential direction. In addition, a plurality of through holes 10 are provided at regular intervals in the circumferential direction around the axis O of the disk 3.
When the impeller is manufactured, a rotary tool such as an end mill can be inserted into the internal space through each through hole 10. Machining (for example, cutting or grinding) with the rotary tool can be performed in a region of the internal space that is difficult to reach from the outside by the rotary tool. As a result, in this example, the integrated impeller 1 having a complicated three-dimensional shape can be easily formed by machining from a block-shaped base material.
Further, each through hole 10 passes through the through hole 10 along a direction (arrow B1 direction) in which an external force (that is, centrifugal force, fluid supply pressure) applied to the disk 3, the cover 4, and the blade 5 acts. The cross section intersecting the penetration direction is formed in a shape that gradually decreases. Each through-hole 10 is filled and closed with a plug 11 after machining with the rotary tool described above.
 この栓体11は、貫通孔10の形状に対応して、ディスク3、カバー4およびブレード5に加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向(矢印B1方向)に沿い、貫通方向と交差する断面が漸次小さくなる形状に形成されている。
 このような構成により、栓体11が、インペラ1の回転に伴って加わる外力により貫通孔10内に押し込まれて、該インペラ1の一体構造化(すなわち、1ピースクローズドインペラ)を維持することができる。
The plug body 11 corresponds to the shape of the through hole 10 along the direction (arrow B1 direction) in which an external force (that is, centrifugal force, fluid supply pressure) applied to the disk 3, the cover 4, and the blade 5 acts. The cross section that intersects the penetration direction is formed in a shape that gradually decreases.
With such a configuration, the plug body 11 is pushed into the through-hole 10 by an external force applied as the impeller 1 rotates, so that the impeller 1 is integrally structured (that is, a one-piece closed impeller). it can.
 なお、栓体11は、外力を作用させて貫通孔10に押し込むことにより、弾性変形又は塑性変形させ、貫通孔10の内周面に密着させるようにする。
 また、上述した栓体11は、栓体11を弾性変形又は塑性変形して貫通孔10に密着させることに限定されない。栓体11は、貫通孔10の内周面に雌ねじが形成され、かつ栓体11の外周面に雄ねじが形成され、貫通孔10内にねじ込まれるようにしても良い。
The plug body 11 is elastically deformed or plastically deformed by being pushed into the through-hole 10 by applying an external force, and is brought into close contact with the inner peripheral surface of the through-hole 10.
Further, the plug body 11 described above is not limited to close contact of the plug body 11 with the through-hole 10 by elastic deformation or plastic deformation. The plug body 11 may have a female thread formed on the inner peripheral surface of the through-hole 10 and a male thread formed on the outer peripheral surface of the plug body 11 and screwed into the through-hole 10.
 次に、図3A~Fを参照して回転機械100となるインペラ1(1ピースクローズドインペラ)の製造方法について説明する。
〔第1工程〕
 まず、図3Aに示す母材となる金属ブロック12を用意する。その後、図3Bに示すように、エンドミル等の回転工具によりインペラ1がおおよその形状となるように加工する。
Next, a method for manufacturing the impeller 1 (one-piece closed impeller) that becomes the rotating machine 100 will be described with reference to FIGS. 3A to 3F.
[First step]
First, a metal block 12 as a base material shown in FIG. 3A is prepared. Thereafter, as shown in FIG. 3B, the impeller 1 is processed into an approximate shape with a rotary tool such as an end mill.
〔第2工程〕
 図3Cに示されるように、ディスク3とカバー4との間の半径方向Drおよび軸方向Daへの間隔に相当する領域から回転工具(符号Dで示す)を挿入して、ディスク3、カバー4およびブレード5によって囲まれる流路6の大部分を作製する。
[Second step]
As shown in FIG. 3C, a rotary tool (indicated by symbol D) is inserted from a region corresponding to the distance between the disk 3 and the cover 4 in the radial direction Dr and the axial direction Da, and the disk 3 and the cover 4 are inserted. And most of the flow path 6 surrounded by the blade 5 is produced.
〔第3工程〕
 図3D~Eに示されるように、ディスク3、カバー4およびブレード5によって囲まれる内部空間となる流路6に連通し、これらディスク3、カバー4およびブレード5に加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向(矢印B1方向)に沿い、貫通方向と交差する断面が漸次小さくなる形状の貫通孔10を形成する。
 なお、この貫通孔10を形成する箇所は、先の第2工程にて流路6を形成できなかった部分、すなわち、本例では、図3Dに示されるように、回転工具Dが届きにくいディスク3および/又はカバー4間の流路6中央部付近としている。
[Third step]
As shown in FIGS. 3D to 3E, the external force applied to the disk 3, the cover 4 and the blade 5 communicates with the flow path 6 serving as an internal space surrounded by the disk 3, the cover 4 and the blade 5 (ie, centrifugal force, A through-hole 10 having a shape in which the cross section intersecting the penetration direction gradually decreases along the direction in which the fluid supply pressure) acts (the direction of arrow B1) is formed.
The portion where the through hole 10 is formed is a portion where the flow path 6 could not be formed in the previous second step, that is, in this example, as shown in FIG. 3 and / or near the center of the flow path 6 between the covers 4.
〔第4工程〕
 図3Eに示されるように、貫通孔10から回転工具Dを挿入して、ディスク3、カバー4およびブレード5によって囲まれる流路6の残りの部分を掘削する。
[Fourth step]
As shown in FIG. 3E, the rotary tool D is inserted from the through hole 10 to excavate the remaining portion of the flow path 6 surrounded by the disk 3, the cover 4, and the blade 5.
〔第5工程〕
 図3Fに示されるように、貫通孔10内に、貫通方向と交差する断面が漸次小さくなる形状の栓体11を、外力が作用する方向(矢印B1方向)へ向けて挿入する。これにより、栓体11が、インペラ1の回転に伴って加わる外力により貫通孔10内に押し込まれて、該インペラ1の一体構造化(すなわち、1ピースクローズドインペラ)を維持することができる。
[Fifth step]
As shown in FIG. 3F, the plug body 11 having a shape in which the cross section intersecting the penetration direction gradually decreases is inserted into the through hole 10 in the direction in which the external force acts (direction of arrow B1). As a result, the plug body 11 is pushed into the through-hole 10 by an external force applied as the impeller 1 rotates, so that the impeller 1 can be integrated (ie, a one-piece closed impeller).
 以上詳細に説明したように第1実施形態によれば、ディスク3、カバー4およびブレード5によって囲まれた内部空間に通じる貫通孔10が、該カバー4に設けられる構成である。そのため、この貫通孔10を通じて回転工具Dを内部空間に挿入することができ、該回転工具Dによって外部から届き難い領域にて、該回転工具Dによる機械加工を行うことができる。
 その結果、本実施形態では、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ回転工具が外部から届き難い内部空間の領域に係る加工コストを低く抑えることができる。
 また、本実施形態では、カバー4に形成された貫通孔10を栓体11により埋める構造である。そのため、該栓体11によって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
As described above in detail, according to the first embodiment, the cover 4 is provided with the through hole 10 that leads to the internal space surrounded by the disk 3, the cover 4, and the blade 5. Therefore, the rotary tool D can be inserted into the internal space through the through hole 10, and machining with the rotary tool D can be performed in an area that is difficult to reach from the outside by the rotary tool D.
As a result, in the present embodiment, a rotary machine such as an impeller having an integrated structure can be easily formed by machining from a block-shaped base material, and the rotary tool is difficult to reach from the outside. Such processing costs can be kept low.
In the present embodiment, the through hole 10 formed in the cover 4 is filled with the plug body 11. Therefore, the plug body 11 is formed as a whole in an integral structure, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine during subsequent use of the rotating machine.
 また、本実施形態は、ディスク3、カバー4およびブレード5によって囲まれた内部空間に連通しする貫通孔10と、該貫通孔10を埋める栓体11とを有する簡易な構成である。そのため、内部空間に形成される流路6に対する影響、栓体11の接合面が占める割合を最小限に抑えることができる。
 また、本実施形態では、栓体11が、カバー4に加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向(矢印B1方向)へ向けて貫通方向と交差する断面が漸次小さくなる形状に形成されている。そのため、回転機械の回転に伴って加わる外力により、該栓体11が貫通孔10内に押し込まれる。
 その結果、栓体11が抜け落ちることが防止され、回転機械全体の一体構造化(すなわち、1ピースクローズドインペラ)を維持して、回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
Further, the present embodiment has a simple configuration including a through hole 10 communicating with an internal space surrounded by the disk 3, the cover 4, and the blade 5, and a plug body 11 that fills the through hole 10. Therefore, it is possible to minimize the influence on the flow path 6 formed in the internal space and the ratio occupied by the joint surface of the plug body 11.
In the present embodiment, the cross section of the plug 11 that intersects the penetrating direction gradually becomes smaller in the direction (arrow B1 direction) in which the external force applied to the cover 4 (that is, centrifugal force and fluid supply pressure) acts. It is formed into a shape. Therefore, the plug body 11 is pushed into the through hole 10 by an external force applied as the rotating machine rotates.
As a result, the plug body 11 is prevented from falling off, and the entire structure of the rotating machine (that is, a one-piece closed impeller) is maintained, thereby preventing deterioration in the strength and hydrodynamic performance of the rotating machine. Is possible.
(第2実施形態)
 本発明の第2実施形態について図4および図5を参照して説明する。なお、以下の説明において第1実施形態と構成を共通にする箇所に同一符号を付し重複した説明を省略する。
 第2実施形態に係る回転機械101となるインペラ20が第1実施形態のインペラ1と異なる点は、ディスク3にも貫通孔21が設けられている点である。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. 4 and 5. In the following description, the same reference numerals are given to portions that share the same configuration as the first embodiment, and redundant descriptions are omitted.
The impeller 20 that is the rotating machine 101 according to the second embodiment is different from the impeller 1 of the first embodiment in that the disk 3 is also provided with a through hole 21.
 すなわち、図5に詳細に示されるように、ディスク3の最も肉厚となる部分にも貫通孔21が複数設けられている。
 これら貫通孔21は、前述したカバー4の貫通孔10と同様、ディスク3、カバー4および周方向に隣接する2つのブレード5によって囲まれた内部空間となる流路6に連通し、かつディスク3の軸線Oを中心として周方向に一定の間隔をおいて複数設けられている。
 そして、インペラ製作時において、各貫通孔21を通じてエンドミル等の回転工具Dを流路6に挿入することができ、該回転工具Dによって外部から届き難い内部空間の領域にて、該回転工具Dによる機械加工を行うことができる。その結果、本例では、ブロック形状の母材からの機械加工により、複雑な三次元形状を有する一体構造のインペラ20を容易に形成することができる。
 また、各貫通孔21は、ディスク3、カバー4およびブレード5に加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向(矢印B2方向)に沿い、貫通方向と交差する断面が漸次小さくなる形状に形成されている。加えて、各貫通孔21は、前述した回転工具Dによる機械加工後に、栓体22により埋められ閉塞される。
That is, as shown in detail in FIG. 5, a plurality of through holes 21 are also provided in the thickest portion of the disk 3.
These through-holes 21 communicate with the flow path 6 serving as an internal space surrounded by the disk 3, the cover 4, and the two blades 5 adjacent in the circumferential direction, like the through-hole 10 of the cover 4 described above, and the disk 3. A plurality of them are provided at regular intervals in the circumferential direction around the axis O.
When the impeller is manufactured, the rotary tool D such as an end mill can be inserted into the flow path 6 through each through-hole 21, and the rotary tool D is used in the region of the internal space that is difficult to reach from the outside by the rotary tool D. Machining can be performed. As a result, in this example, the integrated impeller 20 having a complicated three-dimensional shape can be easily formed by machining from a block-shaped base material.
Each through hole 21 has a cross section that gradually intersects the penetrating direction along a direction (arrow B2 direction) in which an external force (that is, centrifugal force and fluid supply pressure) applied to the disk 3, the cover 4, and the blade 5 acts. It is formed in a smaller shape. In addition, each through-hole 21 is filled and closed by a plug 22 after machining with the rotary tool D described above.
 この栓体22は、貫通孔21の形状に対応して、ディスク3、カバー4およびブレード5に加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向(矢印B2方向)に沿い、貫通方向と交差する断面が漸次小さくなる形状に形成されている。
 このような構成により、栓体22が、インペラ20の回転に伴って加わる外力により貫通孔21内に押し込まれて、該インペラ20の一体構造化(すなわち、1ピースクローズドインペラ)を維持することができる。
This plug body 22 corresponds to the shape of the through hole 21 along the direction (arrow B2 direction) in which an external force applied to the disk 3, the cover 4 and the blade 5 (that is, centrifugal force and fluid supply pressure) acts. The cross section that intersects the penetration direction is formed in a shape that gradually decreases.
With such a configuration, the plug body 22 is pushed into the through hole 21 by an external force applied as the impeller 20 rotates, and the impeller 20 is maintained in an integrated structure (that is, a one-piece closed impeller). it can.
 なお、栓体22は、栓体11と同様、弾性変形又は塑性変形させ、貫通孔21の内周面に密着させると良い。
 また、上述した栓体22は、弾性変形又は塑性変形によらず、貫通孔21の内周面に雌ねじが形成され、かつ栓体22の外周面に雄ねじが形成され、貫通孔21内にねじ込まれるようにしても良い。
The plug 22 is preferably elastically deformed or plastically deformed and is in close contact with the inner peripheral surface of the through hole 21, as with the plug 11.
In addition, the above-described plug body 22 has a female screw formed on the inner peripheral surface of the through-hole 21 and a male screw formed on the outer peripheral surface of the plug body 22 and is screwed into the through-hole 21 regardless of elastic deformation or plastic deformation. You may make it.
 以上詳細に説明したように第2実施形態によれば、ディスク3、カバー4およびブレード5によって囲まれた内部空間に通じる貫通孔21が、該ディスク3に設けられる構成である。そのため、先の貫通孔10とともに貫通孔21を経由して、回転工具Dを内部空間に挿入することができ、該回転工具Dによって外部から届き難い領域にて、該回転工具Dによる機械加工を行うことができる。
 その結果、第2実施形態では、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ回転工具Dが外部から届き難い内部空間の領域に係る加工コストを低く抑えることができる等、第1実施形態と同様の効果を得ることができる。
As described above in detail, according to the second embodiment, the through-hole 21 communicating with the internal space surrounded by the disk 3, the cover 4 and the blade 5 is provided in the disk 3. Therefore, the rotary tool D can be inserted into the internal space via the through hole 21 together with the previous through hole 10, and machining with the rotary tool D is difficult to reach from the outside by the rotary tool D. It can be carried out.
As a result, in the second embodiment, a rotary machine such as an impeller having an integrated structure can be easily formed by machining from a block-shaped base material, and the rotary tool D is difficult to reach from the outside. The same effects as in the first embodiment can be obtained, such as the processing cost related to the region can be kept low.
(第3実施形態)
 本発明の第3実施形態について図6~図9を参照して説明する。なお、以下の説明において先の実施形態と構成を共通にする箇所に同一符号を付し重複した説明を省略する。
 第3実施形態に係る回転機械102となるインペラ30が先の実施形態のインペラ1及び20と異なる点は、流路6の流入口開口に位置するブレード5の縁部5Aに凹状の切欠部31がさらに形成されている点である。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to portions that share the same configuration as the previous embodiment, and redundant descriptions are omitted.
The impeller 30 serving as the rotary machine 102 according to the third embodiment is different from the impellers 1 and 20 of the previous embodiment in that the concave notch 31 is formed on the edge 5A of the blade 5 located at the inlet opening of the flow path 6. Is further formed.
 該切欠部31は、図8Aに示すように、ディスク3の軸線Oを中心として周方向に一定の間隔をおいて複数設けられたブレード5の縁部5Aにそれぞれ形成されている。各切欠部31を通じてエンドミル等の回転工具Dを流路6に挿入することができ、該回転工具Dによって外部から届き難い内部空間の領域にて、該回転工具Dによる機械加工を行うことができる。
 その結果、本例では、ブロック形状の母材からの機械加工により、複雑な三次元形状を有する一体構造のインペラ30を容易に形成することができる。
As shown in FIG. 8A, the notches 31 are respectively formed on edge portions 5A of the blades 5 provided at a predetermined interval in the circumferential direction with the axis O of the disk 3 as the center. A rotary tool D such as an end mill can be inserted into the flow path 6 through each notch 31, and machining with the rotary tool D can be performed in the region of the internal space that is difficult to reach from the outside by the rotary tool D. .
As a result, in this example, the integrated impeller 30 having a complicated three-dimensional shape can be easily formed by machining from a block-shaped base material.
 ブレード5の縁部5Aには、図8Bおよび図9に詳細に示されるように切欠部31を塞ぐための穴埋め部材32が固定される。
 この穴埋め部材32は、回転工具Dによる機械加工後に、切欠部31を覆うようにブレード5の縁部5Aに固定されている。該穴埋め部材32は、インペラ30の形状を補う役目をする。
A hole filling member 32 for closing the notch 31 is fixed to the edge 5A of the blade 5 as shown in detail in FIGS. 8B and 9.
The hole filling member 32 is fixed to the edge 5 </ b> A of the blade 5 so as to cover the notch 31 after machining with the rotary tool D. The hole filling member 32 serves to supplement the shape of the impeller 30.
 また、ブレード5と穴埋め部材32との間には、図9に示されるように、ブレード5に加わる遠心力(矢印Mで示す)により該ブレード5との接触力が上昇するようにテーパー面33及び34が形成されている。
 そして、このようなテーパー面33及び34により、穴埋め部材32が、インペラ30の回転に伴って加わる外力によりブレード5の縁部5Aに密着して、該インペラ30の一体構造化に寄与することができる。
Further, as shown in FIG. 9, a tapered surface 33 is provided between the blade 5 and the hole-filling member 32 so that a contact force with the blade 5 is increased by a centrifugal force (indicated by an arrow M) applied to the blade 5. And 34 are formed.
The tapered surfaces 33 and 34 cause the hole-filling member 32 to be brought into close contact with the edge 5A of the blade 5 by an external force applied as the impeller 30 rotates, thereby contributing to the integral structure of the impeller 30. it can.
 以上詳細に説明したように第3実施形態によれば、ディスク3、カバー4およびブレード5によって囲まれた内部空間に通じる切欠部31が、該ブレード5の縁部5Aに設けられている。そのため、先の貫通孔10及び21とともに切欠部31を経由して、回転工具Dを内部空間に挿入することができ、該回転工具Dによって外部から届き難い領域にて、該回転工具Dによる機械加工を行うことができる。
 その結果、第3実施形態では、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ回転工具Dが外部から届き難い内部空間の領域に係る加工コストを低く抑えることができる等、第1および第2実施形態と同様の効果を得ることができる。
As described in detail above, according to the third embodiment, the notch 31 that communicates with the internal space surrounded by the disk 3, the cover 4, and the blade 5 is provided in the edge 5 </ b> A of the blade 5. Therefore, the rotary tool D can be inserted into the internal space through the notch 31 together with the previous through holes 10 and 21, and the machine using the rotary tool D is difficult to reach from the outside by the rotary tool D. Processing can be performed.
As a result, in the third embodiment, a rotary machine such as an impeller having an integrated structure can be easily formed by machining from a block-shaped base material, and the rotary tool D is difficult to reach from the outside. The effect similar to 1st and 2nd embodiment can be acquired, such as being able to hold down the processing cost concerning a field low.
 なお、第3実施形態において、流路6の流入口開口に位置するブレード5の縁部5Aに凹状の切欠部31、および該切欠部31を塞ぐための穴埋め部材32を設けるようにしたが、これに限定されるものではない。これら切欠部31および穴埋め部材32は、流路6の流出口開口に位置するブレード5の縁部に設けられていても良い。 In the third embodiment, the concave notch 31 and the hole filling member 32 for closing the notch 31 are provided at the edge 5A of the blade 5 located at the inlet opening of the flow path 6. It is not limited to this. The notch 31 and the hole filling member 32 may be provided at the edge of the blade 5 located at the outlet opening of the flow path 6.
(第4実施形態)
 本発明の第4実施形態について図10~図12を参照して説明する。なお、以下の説明において先の実施形態と構成を共通にする箇所に同一符号を付し重複した説明を省略する。
 第4実施形態に係る回転機械103となるインペラ40が先の実施形態のインペラ1及び20及び30と異なる点は、貫通孔41が形成される位置である。
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to portions that share the same configuration as the previous embodiment, and redundant descriptions are omitted.
The difference between the impeller 40 serving as the rotary machine 103 according to the fourth embodiment and the impellers 1, 20, and 30 of the previous embodiment is a position where the through hole 41 is formed.
 すなわち、第4実施形態に示される貫通孔41は、図10および図11に示されるように、ディスク3の軸線Oを中心として周方向に一定の間隔をおいて設けられた複数のブレード5を貫通して設けられている。
 該貫通孔41は、複数のブレード5を直線状に貫通して設けられている。貫通孔41は、インペラ製作時において、該貫通孔41を通じてエンドミル等の回転工具Dを流路6に挿入することができ、該回転工具Dによって外部から届き難い内部空間の領域にて、該回転工具Dによる機械加工を行うことができる。
 その結果、本例では、ブロック形状の母材からの機械加工により、複雑な三次元形状を有する一体構造のインペラ20を容易に形成することができる。
 また、各貫通孔41は、図12に示すように、ブレード5に加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向(圧力面Spから負圧面Ssに向かう方向、矢印B3方向)に沿い、貫通方向と交差する断面が漸次小さくなる形状に形成されているものであり、前述した回転工具Dによる機械加工後に、栓体42により埋められ閉塞される。
That is, as shown in FIGS. 10 and 11, the through hole 41 shown in the fourth embodiment includes a plurality of blades 5 provided at regular intervals in the circumferential direction around the axis O of the disk 3. It is provided through.
The through hole 41 is provided through the plurality of blades 5 linearly. When the impeller is manufactured, the through-hole 41 allows the rotary tool D such as an end mill to be inserted into the flow path 6 through the through-hole 41, and the rotation tool D rotates the rotation tool D in the region of the internal space that is difficult to reach from the outside. Machining with the tool D can be performed.
As a result, in this example, the integrated impeller 20 having a complicated three-dimensional shape can be easily formed by machining from a block-shaped base material.
Further, as shown in FIG. 12, each through-hole 41 has a direction in which an external force applied to the blade 5 (ie, centrifugal force, fluid supply pressure) acts (direction from the pressure surface Sp toward the negative pressure surface Ss, direction indicated by an arrow B3) ), The cross section intersecting with the penetrating direction is formed in a shape that gradually becomes smaller, and after machining with the rotary tool D described above, it is buried and closed by the plug 42.
 この栓体42は、貫通孔41の形状に対応して、ディスク3、カバー4およびブレード5に加わる外力(すなわち、遠心力、流体の供給圧力)が作用する方向(矢印B3方向)に沿い、貫通方向と交差する断面が漸次小さくなる形状に形成されている。
 このような構成により、栓体42が、インペラ20の回転に伴う外力により貫通孔41内に押し込まれて、該インペラ20の一体構造化(すなわち、1ピースクローズドインペラ)を維持することができる。
This plug body 42 corresponds to the shape of the through hole 41 along the direction (arrow B3 direction) in which an external force applied to the disk 3, the cover 4 and the blade 5 (that is, centrifugal force and fluid supply pressure) acts. The cross section that intersects the penetration direction is formed in a shape that gradually decreases.
With such a configuration, the plug body 42 is pushed into the through-hole 41 by an external force accompanying the rotation of the impeller 20, and the integrated structure of the impeller 20 (that is, a one-piece closed impeller) can be maintained.
 なお、栓体42は、栓体11と同様、弾性変形又は塑性変形させ、貫通孔41の内周面に密着させると良い。
 また、上述した栓体42は、弾性変形又は塑性変形によらず、貫通孔41の内周面に雌ねじが形成され、かつ栓体42の外周面に雄ねじが形成され、貫通孔41内にねじ込まれても良い。
The plug body 42 is preferably elastically deformed or plastically deformed and is in close contact with the inner peripheral surface of the through hole 41, similarly to the plug body 11.
In addition, the above-described plug body 42 has a female screw formed on the inner peripheral surface of the through hole 41 and a male screw formed on the outer peripheral surface of the plug body 42 and is screwed into the through hole 41 regardless of elastic deformation or plastic deformation. It may be.
 以上詳細に説明したように第4実施形態によれば、ディスク3、カバー4およびブレード5によって囲まれた内部空間に通じる貫通孔41が、複数のディスク3を貫通するように設けられている。そのため、該貫通孔41を経由して、回転工具Dを内部空間に挿入することができ、該回転工具Dによって外部から届き難い領域にて、該回転工具Dによる機械加工を行うことができる。
 その結果、第4実施形態では、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ回転工具Dが外部から届き難い内部空間の領域に係る加工コストを低く抑えることができる等、前述の実施形態と同様の効果を得ることができる。
As described above in detail, according to the fourth embodiment, the through hole 41 that leads to the internal space surrounded by the disk 3, the cover 4, and the blade 5 is provided so as to penetrate the plurality of disks 3. Therefore, the rotary tool D can be inserted into the internal space via the through hole 41, and machining with the rotary tool D can be performed in an area that is difficult to reach from the outside by the rotary tool D.
As a result, in the fourth embodiment, a rotary machine such as an impeller having an integrated structure can be easily formed by machining from a block-shaped base material, and the rotary tool D is difficult to reach from the outside. The effect similar to the above-mentioned embodiment can be acquired, such as being able to hold down the processing cost concerning an area | region low.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included.
 本発明は、過給機、ガスタービン、産業用圧縮機等の遠心圧縮機のインペラに適用される回転機械および回転機械の製造方法に関する。 The present invention relates to a rotating machine applied to an impeller of a centrifugal compressor such as a supercharger, a gas turbine, or an industrial compressor, and a method of manufacturing the rotating machine.
 1 インペラ 
 3 ディスク
 4 カバー
 5 ブレード
 5A 縁部
 6 流路
 10 貫通孔
 11 栓体
 20 インペラ
 21 貫通孔
 22 栓体
 30 インペラ
 31 切欠部
 32 穴埋め部材
 33 テーパー面
 34 テーパー面
 40 インペラ
 41 貫通孔
 42 栓体
 100 回転機械
 101 回転機械
 102 回転機械
 103 回転機械
 B1 外力が作用する方向
 B2 外力が作用する方向
 B3 外力が作用する方向
 C 軸体
 D 回転工具
 O 軸線
1 impeller
3 disk 4 cover 5 blade 5A edge 6 flow path 10 through hole 11 plug body 20 impeller 21 through hole 22 plug body 30 impeller 31 notch 32 hole filling member 33 taper surface 34 taper surface 40 impeller 41 through hole 42 plug body 100 rotation Machine 101 Rotating machine 102 Rotating machine 103 Rotating machine B1 Direction in which external force acts B2 Direction in which external force acts B3 Direction in which external force acts C Shaft body D Rotating tool O Axis line

Claims (9)

  1.  軸体と一体に回転可能に設けられたディスクと、
     このディスクとの間に軸方向および半径方向に間隔をおいて設けられたカバーと、
     これらディスクとカバーとの間に設けられて、これらディスクとカバーとの間の流体を外方に向けて案内する複数のブレードと、
     前記ディスク、カバー、およびブレードの少なくともいずれかを貫通し、前記ディスク、カバー、およびブレードによって囲まれた内部空間に連通する貫通孔を塞いでいる栓体と、を有し、
     前記栓体は、前記ディスク、カバーおよびブレードへ外力が作用する方向へ、前記貫通孔の貫通している貫通方向と交差する断面が漸次小さくなる形状に形成されている回転機械。
    A disc provided to be rotatable integrally with the shaft body;
    A cover provided between the disc in an axial direction and a radial direction;
    A plurality of blades provided between the disks and the cover for guiding the fluid between the disks and the cover outward;
    A plug that passes through at least one of the disk, the cover, and the blade, and closes a through hole that communicates with the internal space surrounded by the disk, the cover, and the blade;
    The plug body is a rotating machine having a shape in which a cross section intersecting with a penetrating direction through which the through-hole penetrates gradually decreases in a direction in which an external force acts on the disk, cover, and blade.
  2.  前記貫通孔は、前記ディスクを貫通し、前記ディスクに加わる遠心力の方向へ断面が漸次小さくなる形状に形成されている請求項1に記載の回転機械。 The rotary machine according to claim 1, wherein the through hole is formed in a shape that penetrates the disk and gradually decreases in cross section in the direction of centrifugal force applied to the disk.
  3.  前記貫通孔は、前記カバーを貫通し、前記カバーに加わる遠心力の方向へ断面が漸次小さくなる形状に形成されている請求項1に記載の回転機械。 The rotary machine according to claim 1, wherein the through hole is formed in a shape that penetrates the cover and gradually decreases in cross section in the direction of centrifugal force applied to the cover.
  4.  前記貫通孔は、前記ブレードを貫通し、前記ブレードに加わる遠心力の方向へ断面が漸次小さくなる形状に形成されている請求項1に記載の回転機械。 The rotating machine according to claim 1, wherein the through hole is formed in a shape that penetrates the blade and gradually decreases in cross section in a direction of centrifugal force applied to the blade.
  5.  前記内部空間となる流路の入口又は流出口に位置する前記ブレードの縁部には切欠部が形成されており、
     前記ブレードの縁部には、前記切欠部を塞ぐための穴埋め部材が固定されている請求項1~4のいずれか1項に記載の回転機械。
    A notch is formed at the edge of the blade located at the inlet or outlet of the flow path serving as the internal space,
    The rotary machine according to any one of claims 1 to 4, wherein a hole filling member for closing the notch is fixed to an edge of the blade.
  6.  前記穴埋め部材は、前記ブレードに加わる遠心力により該ブレードとの接触力が上昇するようにテーパー面が形成されている請求項5に記載の回転機械。 The rotary machine according to claim 5, wherein the hole filling member has a tapered surface so that a contact force with the blade is increased by a centrifugal force applied to the blade.
  7.  前記貫通孔は、前記軸体の回転方向に沿って配置された複数の前記ブレードを貫通している請求項1に記載の回転機械。 The rotary machine according to claim 1, wherein the through-hole passes through the plurality of blades arranged along a rotation direction of the shaft body.
  8.  軸体と一体に回転可能に設けられたディスクと、
     このディスクとの間に軸方向および半径方向に間隔をおいて設けられたカバーと、
     これらディスクとカバーとの間に設けられて、これらディスクとカバーとの間の流体を外方に向けて案内する複数のブレードと、を有する回転機械の製造方法であって、
     前記ディスクとカバーとを含む外形を有する母材を形成する第1工程と、
     前記ディスクとカバーとの間の半径方向および軸線方向への間隔に相当する領域から回転工具を挿入して、前記ディスク、カバー、およびブレードによって囲まれる流路の一部を形成する第2工程と、
     前記ディスク、カバー、およびブレードによって囲まれる流路に連通し、これらディスク、カバー、およびブレードに外力が作用する方向へ、貫通方向と交差する断面が漸次小さくなる形状の貫通孔を形成する第3工程と、
     前記貫通孔から回転工具を挿入して、前記ディスク、カバー、およびブレードによって囲まれ、前記第2工程による加工がされていない前記流路の他の部分を形成する第4工程と、
     前記貫通孔に前記外力が作用する方向へ向けて栓体を挿入して閉塞させる第5工程と、を含む回転機械の製造方法。
    A disc provided to be rotatable integrally with the shaft body;
    A cover provided between the disc in an axial direction and a radial direction;
    A rotating machine having a plurality of blades provided between the disks and the cover to guide the fluid between the disks and the cover outward,
    Forming a base material having an outer shape including the disk and a cover;
    A second step of forming a part of a flow path surrounded by the disk, the cover, and the blade by inserting a rotary tool from a region corresponding to a radial and axial distance between the disk and the cover; ,
    A third hole is formed which communicates with a flow path surrounded by the disk, the cover, and the blade, and forms a through hole having a shape in which a cross section intersecting the penetration direction gradually decreases in a direction in which an external force acts on the disk, the cover, and the blade. Process,
    A fourth step of inserting a rotary tool from the through-hole and forming another portion of the flow path surrounded by the disk, cover and blade and not processed by the second step;
    And a fifth step of closing the plug body by inserting the plug body in a direction in which the external force acts on the through hole.
  9.  請求項8に記載された回転機械の製造方法における第4工程によって前記流路の一部を形成した後、前記流路の他の部分を第2工程によって形成する回転機械の製造方法。 A method for manufacturing a rotary machine, wherein after forming a part of the flow path by the fourth step in the method of manufacturing a rotary machine according to claim 8, another part of the flow path is formed by the second process.
PCT/JP2016/084900 2016-03-01 2016-11-25 Rotating machine and method for producing rotating machine WO2017149865A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-039260 2016-03-01
JP2016039260A JP2017155640A (en) 2016-03-01 2016-03-01 Rotary machine and manufacturing method of rotary machine

Publications (1)

Publication Number Publication Date
WO2017149865A1 true WO2017149865A1 (en) 2017-09-08

Family

ID=59742685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084900 WO2017149865A1 (en) 2016-03-01 2016-11-25 Rotating machine and method for producing rotating machine

Country Status (2)

Country Link
JP (1) JP2017155640A (en)
WO (1) WO2017149865A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168070A1 (en) * 2018-02-28 2019-09-06 ダイキン工業株式会社 Method for manufacturing processed article, tool path calculation method, processed article, and impeller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7390230B2 (en) 2020-03-25 2023-12-01 三菱重工コンプレッサ株式会社 Impeller manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117396A (en) * 1992-10-05 1994-04-26 Hitachi Ltd Manufacture of impeller
JP2009156122A (en) * 2007-12-26 2009-07-16 Mitsubishi Heavy Ind Ltd Impeller for centrifugal compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117396A (en) * 1992-10-05 1994-04-26 Hitachi Ltd Manufacture of impeller
JP2009156122A (en) * 2007-12-26 2009-07-16 Mitsubishi Heavy Ind Ltd Impeller for centrifugal compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168070A1 (en) * 2018-02-28 2019-09-06 ダイキン工業株式会社 Method for manufacturing processed article, tool path calculation method, processed article, and impeller
JP2019153298A (en) * 2018-02-28 2019-09-12 ダイキン工業株式会社 Processed product manufacturing method, tool path calculation method, processed product, and impeller
CN111771172A (en) * 2018-02-28 2020-10-13 大金工业株式会社 Method for manufacturing machined product, tool path calculation method, machined product, and impeller
CN111771172B (en) * 2018-02-28 2021-09-28 大金工业株式会社 Method for manufacturing machined product, tool path calculation method, machined product, and impeller
US11167360B2 (en) 2018-02-28 2021-11-09 Daikin Industries, Ltd. Method for manufacturing processed article, tool path calculation method, processed article, and impeller

Also Published As

Publication number Publication date
JP2017155640A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US9868155B2 (en) Monolithic shrouded impeller
JP4991663B2 (en) Steam turbine blade assembly
EP2942487B1 (en) Reducing variation in cooling hole meter length
US20060018578A1 (en) Axial bearing
WO2017149865A1 (en) Rotating machine and method for producing rotating machine
EP2679826A1 (en) Impeller, rotor comprising same, and impeller manufacturing method
JP5777529B2 (en) Impeller, rotor provided with the same, and method for manufacturing impeller
US10669868B2 (en) Turbine blade and locking set
EP2669477B1 (en) Shroud for airfoils
US10994347B2 (en) Method for manufacturing centrifugal rotary machine and method for manufacturing impeller thereof
JP6521273B2 (en) Steam turbine
JP7434199B2 (en) turbine rotor blade
JPH08121106A (en) Turbine moving blade
WO2017149867A1 (en) Rotating machine and method for producing rotating machine
JP6088810B2 (en) Impeller
CN108884718A (en) The manufacturing method of steam turbine blade, steam turbine and steam turbine blade
JP6936126B2 (en) Impeller, rotating machine
JP6288900B1 (en) Impeller, rotating machine, manufacturing method of impeller, and manufacturing method of rotating machine
JP2008095574A (en) Turbine blade, and manufacturing method of turbine rotor
JP6991007B2 (en) Turbomachinery guide wing arrangement
US11927114B2 (en) Rotor of steam turbine, steam turbine, and method for fixing rotor blade
JP7021027B2 (en) Turbine blades
KR102610387B1 (en) rotors and compressors
JP5905518B2 (en) Impeller
JP5905517B2 (en) Impeller

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892700

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892700

Country of ref document: EP

Kind code of ref document: A1