WO2017149867A1 - Rotating machine and method for producing rotating machine - Google Patents

Rotating machine and method for producing rotating machine Download PDF

Info

Publication number
WO2017149867A1
WO2017149867A1 PCT/JP2016/084992 JP2016084992W WO2017149867A1 WO 2017149867 A1 WO2017149867 A1 WO 2017149867A1 JP 2016084992 W JP2016084992 W JP 2016084992W WO 2017149867 A1 WO2017149867 A1 WO 2017149867A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
disk
rotating machine
disc
axial direction
Prior art date
Application number
PCT/JP2016/084992
Other languages
French (fr)
Japanese (ja)
Inventor
伸 ▲柳▼沢
栄一 柳沢
中庭 彰宏
伸一郎 得山
Original Assignee
三菱重工コンプレッサ株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社, 三菱重工業株式会社 filed Critical 三菱重工コンプレッサ株式会社
Publication of WO2017149867A1 publication Critical patent/WO2017149867A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps

Definitions

  • the present invention relates to a rotating machine applied to an impeller such as a supercharger, a gas turbine, an industrial compressor, a centrifugal compressor, or a pump, and a method of manufacturing the rotating machine.
  • an impeller such as a supercharger, a gas turbine, an industrial compressor, a centrifugal compressor, or a pump
  • a piece impeller is desired. That is, it is desirable to form a predetermined shape from a base material made of a corrosion-resistant metal by machining or the like.
  • Patent Document 1 a plurality of impeller parts having a shape obtained by dividing the impeller on a surface in a direction intersecting with the rotation shaft of the impeller is formed.
  • this three-dimensional impeller has a divided structure for assembling these impeller components.
  • These divided impeller parts are integrated by diffusion bonding or brazing via a contact surface.
  • Patent Document 2 proposes an integral structure that does not cause problems due to the divided structure.
  • the impeller for a centrifugal compressor shown in Patent Document 2 is a structure in which a plurality of blades, a main body arranged at the root of the blade, and a shroud arranged at the tip of the blade are integrated. is there.
  • slits that penetrate the shroud in the thickness direction of the shroud along the circumferential direction, or a plurality of holes that penetrate the shroud in the thickness direction of the shroud are formed in the shroud. .
  • the present invention can be formed in a unitary structure as much as possible, thereby preventing a decrease in reliability of strength and hydrodynamic performance and improving mechanical reliability.
  • a method for manufacturing a machine is provided.
  • a rotating machine includes a disk that is rotatably provided integrally with a shaft body, a cover that is provided between the disk in an axial direction and a radial direction, and these disks.
  • the fluid flowing in the axial direction from the inflow port provided between the disk and the cover in the radial direction is provided in the axial distance between the disk and the cover.
  • a rotary machine having a plurality of blades that guide radially outward toward the outlet, wherein at least one of the disk and the cover is a first member that can be divided in the axial direction.
  • a second member, and the first member and the second member form a rotating body centered on the shaft body, and the first member is between the disk and the cover. At least one of the inlet and outlet Coupled to said second member in Kano vicinity.
  • the first member and the second member can be divided by moving at least one of the disk and the cover relative to each other in the axial direction and form a rotating body centered on the shaft.
  • the first member is configured to be coupled to the second member in the vicinity of at least one of the inlet and the outlet between the disk and the cover.
  • the first member may be an annular member forming a part of the cover in the vicinity of the inflow port.
  • the first member in the rotating machine according to the third aspect of the present invention, may be an annular member forming a part of the cover in the vicinity of the outflow port.
  • the first member may be an annular member forming a part of the disk near the outflow port. Good.
  • the first member is constituted by an annular member that forms part of the cover near the inlet / outlet or an annular member that forms part of the disk near the outlet. .
  • the first annular member is removed, and most of the members other than this member are integrated (ie, a one-piece closed impeller). )can do.
  • the first member and the second member are provided on the inner side in the radial direction and protrude in the axial direction.
  • the first projecting portion may be connected to the second projecting portion provided on the outer side in the radial direction and projecting in the axial direction and overlapping the first projecting portion.
  • the first member and the second member are provided on the inner side in the radial direction and protruded in the axial direction, and provided on the outer side in the radial direction and axially provided. And a second protrusion that overlaps the first protrusion. Therefore, due to the deformation caused by the centrifugal force, one protrusion is swelled and brought into close contact with the other protrusion, and the first member and the second member can be held together.
  • the protrusion of the first member and the protrusion of the second member are coupled via a screw centered on the shaft body. May be.
  • the protruding portion of the first member is connected to the protruding portion of the second member via a screw centered on the axis. Therefore, after processing the rotary machine with the rotary tool, the rotary machine can be easily formed into a completed shape.
  • the first member and the second member are elastically deformed or plastically deformed by a centrifugal force accompanying rotation. May be connected closely to each other.
  • the first member is a stationary member provided on a diaphragm forming a part of a fluid flow path inside a casing of the rotating machine that supports the rotating body.
  • the second member is formed of an opening edge near the inflow port or the outflow port of the cover, and a sealing material may be provided between the first member and the second member.
  • the stationary member provided in the diaphragm that forms a part of the fluid flow path inside the casing of the rotating machine that supports the rotating body constitutes the first member, and the inflow port of the cover Since the second member is configured from the opening edge or the opening edge near the outflow port, and the sealing material is interposed between the first member and the second member, the rotary machine is installed in the diaphragm. You can easily assemble it.
  • a rotating machine manufacturing method comprising: a disk provided so as to be rotatable integrally with a shaft body; and a cover provided between the disk in an axial direction and a radial direction.
  • a fluid that is provided between the disc and the cover and flows in the axial direction from an inlet provided in a radial interval between the disc and the cover is allowed to flow in the axial direction between the disc and the cover.
  • a base material having an outer shape including a disk and a cover is formed in the first step.
  • the rotary tool is inserted from a region corresponding to the radial and axial distance between the disk and the cover, and most of the flow path surrounded by the disk, the cover, and the blade is While being formed, by omitting at least one part of the disk and the cover, an opening step portion that widens the inflow port or the outflow port of the flow path is formed.
  • the rotary tool is inserted into the flow path through the opening step, and the remaining part of the flow path surrounded by the disk, the cover, and the blade is formed.
  • an annular member that forms at least one of the disc and the cover is attached to the opening step portion formed in the second step, so that the flow path is surrounded by the disc, the cover, and the blade.
  • the first member is not attached at the time of rotary machining in the third step.
  • the opening part of the inflow port and / or outflow port between a disk and a cover can be expanded. Through this widened opening, machining with a rotary tool can be performed in an area of the internal space that is difficult to reach from the outside.
  • the opening at the inlet and / or outlet is widened with the first member. For this reason, the entire structure is integrally formed by attaching the first member, and the strength of the rotating machine can be prevented from lowering when the rotating machine is used thereafter. Further, at the time of machining, only the first member is removed in order to machine the region of the internal space that is difficult to reach from the outside, and most of the parts other than the first member are made into an integral structure (that is, a one-piece closed impeller). ). In other words, it is possible to realize an integral structure of the rotating machine by providing a minimum part of the first member.
  • the second member since the second member has a structure in which the expanded opening of the inlet and / or outlet is filled with the first member, the whole is integrally formed by attaching the first member, and thereafter It is possible to prevent a decrease in strength and hydrodynamic performance of the rotating machine when the rotating machine is used. Further, in the present invention, at the time of processing, only the first member is removed in order to machine the region of the internal space that is difficult to reach from the outside, and most of the first member except the first member is made into an integral structure (that is, 1 piece closed impeller). In other words, it is possible to realize an integral structure of the rotating machine by providing a minimum part of the first member.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4.
  • FIG. 6 is an enlarged view of FIG. 5.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7. It is an enlarged view of FIG.
  • FIG. 7 is a top view which shows the impeller which concerns on 4th Embodiment of this invention.
  • FIGS. 1, 2, 3A, 3B, 3C, 3D, 3E, and 3F show an impeller 1 that is a rotating machine 100 according to the first embodiment.
  • the impeller 1 includes a disk 3 provided so as to be rotatable integrally with the hub 2, a cover 4 provided at an interval to the disk 3, and a wing member provided between the disk 3 and the cover 4. And a plurality of blades 5.
  • the disk 3 is provided integrally with the hub 2.
  • the disk 3 is fixed to a shaft body C serving as a rotating shaft via the hub 2.
  • the cover 4 is provided between the disk 3 at intervals in the axial direction Da and the radial direction Dr.
  • a flow path 6 serving as an internal space is formed between the cover 4 and the disk 3.
  • the flow path 6 is provided with the disk 3 and the cover 4 so that the interval in the axial direction Da is sequentially reduced outward in the radial direction Dr.
  • the blade 5 is a blade member that guides the working fluid from the distance in the radial direction Dr between the disk 3 and the cover 4 to the distance in the axial direction Da between the disk 3 and the cover 4 when the disk 3 rotates. .
  • the blade 5 thereby guides the working fluid toward the outside shown in the direction of arrow A in FIGS. 1 and 2.
  • the cover 4 is provided with a cap 10 serving as a first member.
  • the cap 10 is formed in a rotating body centered on the axis O of the disk 3.
  • the cap 10 is an annular hole filling member fixed to the cover 4 serving as a second member.
  • the cap 10 is installed on the opening edge 11 of the cover 4 located in the vicinity of the working fluid inlet 6A.
  • the opening edge portion 11 becomes an opening step portion 12 that widens the inlet 6A of the flow path 6 by omitting a part of the cover 4.
  • the cap 10 described above is attached to the opening step 12.
  • the cap 10 is not attached when the impeller is manufactured, so that the opening edge 11 of the inflow port 6A between the disk 3 and the cover 4 can be widened.
  • a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material.
  • the cap 10 is provided with a protruding portion 10A that is located inside the radial direction Dr and protrudes in the axial direction Da.
  • the opening edge portion 11 of the cover 4 is provided with a protruding portion 10A that is located outside the radial direction Dr of the cap 10 and protrudes in the axial direction Da.
  • the protruding portion 10A of the cap 10 and the protruding portion 11A of the cover opening edge portion 11 are arranged so as to overlap each other in the radial direction Dr. With such an arrangement, when a centrifugal force is applied, the protruding portion 10A of the cap 10 swells and comes into close contact with the protruding portion 11A of the cover opening edge portion 11.
  • a screw 13 centering on the axis O of the disk 3 is provided between the protrusion 10A of the cap 10 and the protrusion 11A of the cover opening edge 11.
  • the cap 10 can be easily attached to the opening edge 11 of the cover 4 by the coupling via the screw 13.
  • cap 10 may be brought into close contact with the cover opening edge 11 by elastic deformation or plastic deformation.
  • a protruding portion 10A protruding in the axial direction Da is provided on the opening edge portion 11 of the cover 4, and a protruding portion 10A of the cap 10 described later overlaps with the protruding portion 10A.
  • the cap 10 is provided with a protruding portion 10A that is located inside the radial direction Dr and protrudes in the axial direction Da.
  • a protruding portion 10 ⁇ / b> A is provided at the opening edge 11 of the cover 4 so as to protrude outside the radial direction Dr of the cap 10 and protrude in the axial direction Da.
  • FIGS. 3E and F an annular cap 10 that forms a part of the cover 4 is attached to the opening step portion 12 formed in the second step, so that it is surrounded by the disk 3, the cover 4, and the blade 5.
  • the completed flow path 6 is completed.
  • a screw 13 (see FIGS. 3E and 3F) centered on the axis O of the disk 3 is provided between the protrusion 10A of the cap 10 and the protrusion 11A of the cover opening edge 11.
  • the cap 10 can be attached to the opening edge 11 of the cover 4 by the coupling via the screw 13.
  • the disk 10 and the cover 4 can be removed by removing the cap 10 from the opening edge 11 of the cover 4 during the rotary machining process in the third step.
  • the opening of the inlet 6A can be widened. Through this widened opening, cutting with the rotary tool D can be performed in a region of the internal space that is difficult to reach from the outside.
  • a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material, and the processing cost related to the region can be kept low. .
  • the first embodiment is a structure in which the opening edge 11 of the inflow port 6 ⁇ / b> A of the flow path 6 is filled with the cap 10 in the cover 4. Therefore, the entire structure is integrated by attaching the cap 10, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine when the rotating machine is used thereafter.
  • the cap 10 is simply removed in order to cut an area of the internal space that is difficult to reach from the outside. Impeller). In other words, it is possible to realize an integral structure of the rotating machine by providing the minimum portion of the cap 10.
  • the cap 10 and the opening edge 11 of the cover 4 are provided on the inner side in the radial direction Dr and provided on the outer side in the radial direction Dr. It is connected via a protrusion 11A that protrudes in the axial direction Da and overlaps the protrusion 10A. Therefore, the protrusion 10 ⁇ / b> A swells and is brought into close contact with the protrusion 11 ⁇ / b> A due to deformation due to centrifugal force, and the cap 10 and the opening edge 11 of the cover 4 can be held together.
  • the protruding portion 10 ⁇ / b> A of the cap 10 is coupled to the protruding portion 11 ⁇ / b> A of the cover opening edge 11 via a screw 13 centered on the axis O. Therefore, after processing the rotary machine with the rotary tool D, the rotary machine can be easily formed into a completed shape.
  • the impeller 20 to be the rotary machine 101 according to the second embodiment is different from the impeller 1 of the first embodiment in that the opening edge 21 of the cover 4 is provided not on the inlet 6A of the flow path 6 but on the outlet 6B side.
  • the cap 22 is attached to the outlet 6 ⁇ / b> B of the flow path 6.
  • the cap 22 is formed in a rotating body centered on the axis O of the disk 3.
  • the cap 22 is an annular hole filling member fixed to the cover 4 serving as a second member.
  • the cap 22 is installed at the opening edge 21 of the cover 4 located in the vicinity of the working fluid outlet 6B.
  • the opening edge portion 21 becomes an opening step portion 23 that widens the outlet 6B of the flow path 6 by omitting a part of the cover 4.
  • the aforementioned cap 22 is attached to the opening step 23.
  • this cap 22 can be opened at the time of manufacturing the impeller, so that the opening edge 21 of the outlet 6B between the disk 3 and the cover 4 can be widened. Therefore, it is possible to perform cutting with a rotary tool in the region of the internal space that is difficult to reach from the outside through the widened opening edge 21.
  • a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material.
  • a protrusion 22 ⁇ / b> A is provided inside the cap 22 in the radial direction Dr.
  • a protrusion 21 ⁇ / b> A is provided on the outer side of the opening edge 21 of the cover 4 in the radial direction Dr.
  • the second embodiment has a structure in which the opening edge 21 of the outlet 6 ⁇ / b> B of the flow path 6 is filled with the cap 22 in the cover 4. For this reason, the entire structure is integrated by attaching the cap 22, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine when the rotating machine is used thereafter.
  • the cap 22 is simply removed in order to cut an area of the internal space that is difficult to reach from the outside. Impeller). That is, it is possible to realize an integral structure of the rotating machine by providing the minimum portion of the cap 22.
  • FIGS. A third embodiment of the present invention will be described with reference to FIGS.
  • the impeller 30 serving as the rotating machine 102 according to the third embodiment is different from the impeller 20 of the second embodiment in that an opening edge 31 for widening the opening is provided on the disk 3 side instead of the cover 4 side. The point is that the cap 32 is attached to the disk 3.
  • the cap 32 is formed in a rotating body centered on the axis O of the disk 3.
  • the cap 32 is an annular hole-filling member that is fixed to the disk 3 that is the second member.
  • the cap 32 is installed at the opening edge 31 of the disk 3 located near the working fluid outlet 6B.
  • the opening edge 31 is for forming an opening step 33 that widens the outlet 6B of the flow path 6 by omitting a part of the disk 3.
  • this cap 32 can be opened at the time of manufacturing the impeller, so that the opening edge 31 of the outlet 6B between the disk 3 and the cover 4 can be widened. Therefore, it is possible to perform cutting with a rotary tool in the region of the internal space that is difficult to reach from the outside through the widened opening edge 31.
  • a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material.
  • a screw (not shown) centered on the axis O of the disk 3 may be provided between the cap 32 and the disk 3 so that the cap 32 can be easily mounted via the screw.
  • the cap 32 may be brought into close contact with the cover opening edge 31 by applying an external force to be elastically deformed or plastically deformed.
  • the third embodiment has a structure in which the opening edge 31 in which the outlet 6B of the flow path 6 is widened is filled with the cap 32 in the disk 3. For this reason, the entire structure is integrated by attaching the cap 32, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine during subsequent use of the rotating machine.
  • the cap 32 is simply removed in order to cut an area of the internal space that is difficult to reach from the outside. Impeller). That is, it is possible to realize an integral structure of the rotating machine by providing the minimum portion of the cap 22.
  • the stationary member 50 is provided on a diaphragm 51 which is an interior product of the rotary machine body. Similar to the caps 10, 22, and 32 described above, the stationary member 50 is formed in a rotating body centered on the axis O of the disk 3. The stationary member 50 is installed in the opening edges 52 and 53 of the cover 4 serving as the second member. The opening edge portions 52 and 53 become opening step portions 54 and 55 that widen the inflow port 6A and the outflow port 6B of the flow path 6 when a part of the cover 4 is omitted. The stationary member 50 described above is disposed in the opening step portions 54 and 55.
  • the stationary member 50 is not attached when the impeller is manufactured, so that the inlet 6A of the flow path 6 and the opening edges 52 and 53 of the outlet 6B between the disk 3 and the cover 4 can be widened. . Therefore, it is possible to perform cutting with a rotary tool in the region of the internal space that is difficult to reach from the outside through the widened opening edges 52 and 53. As a result, in this example, a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material.
  • the opening edge portions 52 and 53 of the impeller 40 and the stationary member 50 of the diaphragm 51 are interposed.
  • sealing members 56 and 57 are provided with sealing members 56 and 57 for ensuring sealing.
  • the stationary member 50 provided on the diaphragm 51 serving as an interior part of the rotating machine main body is used as a cap. Further, sealing materials 56 and 57 are provided at the opening edges 52 and 53 of the inlet 6A and the outlet 6B of the cover 4.
  • the impeller 40 used as the rotary machine 103 can be couple
  • the fourth embodiment has a structure in which the opening edges 52 and 53 in which the inflow port 6 ⁇ / b> A and the outflow port 6 ⁇ / b> B are widened are filled with the stationary member 50 of the diaphragm 51 in the cover 4. Therefore, the entire structure is integrally formed by the arrangement of the stationary member 50, and it becomes possible to prevent a decrease in reliability of strength and hydrodynamic performance of the rotating machine when the rotating machine 103 is used thereafter.
  • the fourth embodiment at the time of processing, most of the parts excluding the attachment position of the stationary member 50 are made into an integral structure only by removing the diaphragm 51 from the diaphragm 51 in order to machine the region of the internal space that is difficult to reach from the outside (that is, 1 piece closed impeller).
  • the region of the internal space that is difficult to reach from the outside that is, 1 piece closed impeller.
  • the present invention relates to a rotating machine applied to an impeller of a centrifugal compressor such as a supercharger, a gas turbine, or an industrial compressor, and a method of manufacturing the rotating machine.
  • a centrifugal compressor such as a supercharger, a gas turbine, or an industrial compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

A rotating machine, wherein a disc (3) and/or a cover (4) have/has a first member (10) and a second member (11) which can be separated from one another in the axial direction (Da). The first member (10) and the second member (11) form a rotating body having a shaft as the center thereof. The first member (10) is joined to the second member (11) near the intake port (6A) and/or discharge port (6B) between the disc (3) and the cover (4).

Description

回転機械および回転機械の製造方法Rotating machine and method of manufacturing rotating machine
 本発明は、過給機、ガスタービン、産業用圧縮機、遠心圧縮機、ポンプ等のインペラに適用される回転機械および回転機械の製造方法に関する。
 本願は、2016年3月1日に出願された特願2016-039261号について優先権を主張し、その内容をここに援用する。
The present invention relates to a rotating machine applied to an impeller such as a supercharger, a gas turbine, an industrial compressor, a centrifugal compressor, or a pump, and a method of manufacturing the rotating machine.
This application claims priority on Japanese Patent Application No. 2016-039261 filed on Mar. 1, 2016, the contents of which are incorporated herein by reference.
 例えば、腐食性ガスを作動流体とする化学プロセス等の腐食性環境下で運転される遠心圧縮機の分野では、作動流体の流量増加および作動流体による腐食防止の観点から、溶接部を有しない1ピースのインペラとすることが望まれている。すなわち、耐腐食性金属製の母材から機械加工等によって所定形状に形成することが望ましいとされている。 For example, in the field of a centrifugal compressor operated in a corrosive environment such as a chemical process using a corrosive gas as a working fluid, there is no weld from the viewpoint of increasing the flow rate of the working fluid and preventing corrosion due to the working fluid. A piece impeller is desired. That is, it is desirable to form a predetermined shape from a base material made of a corrosion-resistant metal by machining or the like.
 例えば、特許文献1に示される三次元羽根車では、羽根車の回転軸に交わる方向の面で羽根車を分割した形状の複数の羽根車部品が形成されている。加えて、この三次元羽根車は、これら羽根車部品を組み立てる分割構造を有している。これら分割された羽根車部品は、当接面を介して拡散接合又はろう付けされることにより一体化されている。
 しかしながら、このような分割構造体では、作動流体の流量増加および作動流体による腐食防止の観点に基づく信頼性が低下する。加えて、製造時の組立て誤差が大きくなる。このため、特許文献2では、分割構造による問題点が生じない一体構造体が提案されている。
For example, in the three-dimensional impeller disclosed in Patent Document 1, a plurality of impeller parts having a shape obtained by dividing the impeller on a surface in a direction intersecting with the rotation shaft of the impeller is formed. In addition, this three-dimensional impeller has a divided structure for assembling these impeller components. These divided impeller parts are integrated by diffusion bonding or brazing via a contact surface.
However, in such a divided structure, the reliability based on the viewpoint of increasing the flow rate of the working fluid and preventing corrosion by the working fluid is reduced. In addition, an assembly error during manufacturing increases. For this reason, Patent Document 2 proposes an integral structure that does not cause problems due to the divided structure.
 特許文献2に示される遠心圧縮機用インペラは、複数枚のブレードと、該ブレードの根元部に配置される本体と、該ブレードの先端部に配置されるシュラウドとが一体化された構造体である。この遠心圧縮機用インペラは、前記シュラウドに、周方向に沿ってシュラウドの板厚方向に貫通するスリット、又は周方向に沿ってシュラウドの板厚方向に貫通する複数個の孔が形成されている。 The impeller for a centrifugal compressor shown in Patent Document 2 is a structure in which a plurality of blades, a main body arranged at the root of the blade, and a shroud arranged at the tip of the blade are integrated. is there. In the centrifugal compressor impeller, slits that penetrate the shroud in the thickness direction of the shroud along the circumferential direction, or a plurality of holes that penetrate the shroud in the thickness direction of the shroud are formed in the shroud. .
特開2004-308647号公報JP 2004-308647 A 特開2009-156122号公報JP 2009-156122 A
 しかしながら、特許文献2に示される回転機械では、一体構造化されるものの、加工時に形成したスリット又は孔が残存する。そのため、この回転機械では、強度及び流体力学的性能の信頼性低下を招く可能性がある。
 また、特許文献2に示される回転機械では、シュラウドに周方向に沿い板厚方向に貫通する大きなスリットが残る。そのため、この回転機械では、強度及び流体力学的性能の信頼性低下を招く可能性がある。
However, although the rotary machine shown in Patent Document 2 is integrally structured, slits or holes formed during processing remain. Therefore, in this rotating machine, there is a possibility that reliability of strength and hydrodynamic performance is reduced.
Moreover, in the rotary machine shown by patent document 2, the big slit which penetrates to a plate | board thickness direction along the circumferential direction remains in a shroud. Therefore, in this rotating machine, there is a possibility that reliability of strength and hydrodynamic performance is reduced.
 この発明は、可能な限りの一体構造での形成が可能であり、これによって強度及び流体力学的性能の信頼性低下を防止しかつ機械的な信頼性を向上させることが可能な回転機械および回転機械の製造方法を提供する。 The present invention can be formed in a unitary structure as much as possible, thereby preventing a decrease in reliability of strength and hydrodynamic performance and improving mechanical reliability. A method for manufacturing a machine is provided.
 本発明の第一態様の回転機械は、軸体と一体に回転可能に設けられたディスクと、このディスクとの間に軸方向および半径方向に間隔をおいて設けられたカバーと、これらディスクとカバーとの間に設けられて、これらディスクとカバーとの間の半径方向の間隔に設けられた流入口から前記軸方向へ流入した流体を、ディスクとカバーとの間の軸方向の間隔に設けられた流出口へ向けて半径方向外方へ案内する複数のブレードと、を有する回転機械であって、前記ディスク、カバーの少なくともいずれかは、互いに前記軸方向に分割可能な第一の部材と第二の部材とを有し、前記第一の部材と第二の部材とは、前記軸体を中心とする回転体状をなし、前記第一の部材は、前記ディスクとカバーとの間の流入口および流出口の少なくともいずれかの近傍で前記第二の部材に結合されている。 A rotating machine according to a first aspect of the present invention includes a disk that is rotatably provided integrally with a shaft body, a cover that is provided between the disk in an axial direction and a radial direction, and these disks. The fluid flowing in the axial direction from the inflow port provided between the disk and the cover in the radial direction is provided in the axial distance between the disk and the cover. A rotary machine having a plurality of blades that guide radially outward toward the outlet, wherein at least one of the disk and the cover is a first member that can be divided in the axial direction. A second member, and the first member and the second member form a rotating body centered on the shaft body, and the first member is between the disk and the cover. At least one of the inlet and outlet Coupled to said second member in Kano vicinity.
 このような構成によれば、ディスク、カバーの少なくともいずれかが、互いに軸方向に相対移動させることにより分割可能でかつ軸を中心とする回転体状をなす第一の部材と第二の部材とを有している。該第一の部材が、ディスクとカバーとの間の流入口および流出口の少なくともいずれかの近傍にて第二の部材に結合される構成である。
 これにより、回転機械加工時において、該第一の部材を未装着としておくことにより、ディスクとカバーとの間の流入口および/または流出口の開口部を広げることができる。この広げた開口部を通じて、外部から届き難い内部空間の領域にて回転工具による切削加工あるいは研削加工等の機械加工を行うことができる。
 その結果、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ当該領域に係る加工コストを低く抑えることができる。
 また、第二の部材において、流入口および/または流出口の広げた開口部を、第一の部材により埋める構造である。そのため、該第一の部材の取り付けによって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
 また、加工時に、外部から届き難い内部空間の領域を機械加工するために第一の部材を取り外しておくだけで、この第一の部材を除く大部分を一体構造化(すなわち、1ピースクローズドインペラ化)することができる。すなわち、第一の部材という最小限の部分を設けるだけで、回転機械の一体構造化を実現することが可能となる。
According to such a configuration, the first member and the second member can be divided by moving at least one of the disk and the cover relative to each other in the axial direction and form a rotating body centered on the shaft. have. The first member is configured to be coupled to the second member in the vicinity of at least one of the inlet and the outlet between the disk and the cover.
Thereby, the opening of the inflow port and / or the outflow port between the disk and the cover can be widened by leaving the first member unattached during rotary machining. Through this widened opening, it is possible to perform machining such as cutting or grinding with a rotary tool in a region of the internal space that is difficult to reach from the outside.
As a result, it is possible to easily form a rotary machine such as an impeller having an integral structure by machining from a block-shaped base material, and it is possible to keep the machining cost related to the region low.
Further, in the second member, the opening at the inlet and / or outlet is widened with the first member. For this reason, the entire structure is integrally formed by attaching the first member, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine during subsequent use of the rotating machine.
Further, at the time of machining, only the first member is removed in order to machine the region of the internal space that is difficult to reach from the outside, and most of the parts other than the first member are made into an integral structure (that is, a one-piece closed impeller). ). In other words, it is possible to realize an integral structure of the rotating machine by providing a minimum part of the first member.
 本発明の第二態様の回転機械では、第一態様において、前記第一の部材は、前記流入口近傍の前記カバーの一部をなす環状の部材であってもよい。 In the rotating machine according to the second aspect of the present invention, in the first aspect, the first member may be an annular member forming a part of the cover in the vicinity of the inflow port.
 本発明の第三態様の回転機械では、第一または第二態様において、前記第一の部材は、前記流出口近傍の前記カバーの一部をなす環状の部材であってもよい。 In the rotating machine according to the third aspect of the present invention, in the first or second aspect, the first member may be an annular member forming a part of the cover in the vicinity of the outflow port.
 本発明の第四態様の回転機械では、第一から第三態様のいずれか一つにおいて、前記第一の部材は、前記流出口近傍の前記ディスクの一部をなす環状の部材であってもよい。 In the rotating machine according to the fourth aspect of the present invention, in any one of the first to third aspects, the first member may be an annular member forming a part of the disk near the outflow port. Good.
 このような構成によれば、第一の部材を、流入口/流出口近傍のカバーの一部をなす環状の部材、又は流出口近傍のディスクの一部をなす環状の部材により構成している。そのため、加工時に、外部から届き難い内部空間の領域を機械加工するために該環状第一の部材を取り外しておくだけで、この部材を除く大部分を一体構造化(すなわち、1ピースクローズドインペラ化)することができる。すなわち、第一の部材という最小限の部分を設けるだけで、回転機械の一体構造化を実現することが可能となる。 According to such a configuration, the first member is constituted by an annular member that forms part of the cover near the inlet / outlet or an annular member that forms part of the disk near the outlet. . For this reason, at the time of machining, in order to machine the region of the internal space that is difficult to reach from the outside, only the first annular member is removed, and most of the members other than this member are integrated (ie, a one-piece closed impeller). )can do. In other words, it is possible to realize an integral structure of the rotating machine by providing a minimum part of the first member.
 本発明の第五態様の回転機械では、第一から第四態様のいずれか一つにおいて、前記第一の部材と第二の部材とは、半径方向の内側に設けられて軸方向に突出する第一の突出部と、半径方向の外側に設けられて軸方向に突出して前記第一の突出部と重なる第二の突出部とを介して連結されていてもよい。 In the rotating machine according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the first member and the second member are provided on the inner side in the radial direction and protrude in the axial direction. The first projecting portion may be connected to the second projecting portion provided on the outer side in the radial direction and projecting in the axial direction and overlapping the first projecting portion.
 このような構成によれば、第一の部材と第二の部材とが、半径方向の内側に設けられて軸方向に突出する第一の突出部と、半径方向の外側に設けられて軸方向に突出して該第一の突出部と重なる第二の突出部とを介して連結されている。そのため、遠心力による変形により、一の突出部が膨らんで他の突出部に密着され、これら第一の部材と第二の部材とを一体に保持することができる。 According to such a configuration, the first member and the second member are provided on the inner side in the radial direction and protruded in the axial direction, and provided on the outer side in the radial direction and axially provided. And a second protrusion that overlaps the first protrusion. Therefore, due to the deformation caused by the centrifugal force, one protrusion is swelled and brought into close contact with the other protrusion, and the first member and the second member can be held together.
 本発明の第六態様の回転機械では、第五態様において、前記第一の部材の突出部と前記第二の部材の突出部とは、前記軸体を中心とするねじを介して結合されていてもよい。 In the rotary machine of the sixth aspect of the present invention, in the fifth aspect, the protrusion of the first member and the protrusion of the second member are coupled via a screw centered on the shaft body. May be.
 このような構成によれば、第一の部材の突出部が第二の部材の突出部に軸を中心とするねじを介した結合とされている。そのため、回転工具による回転機械の加工後において、該回転機械を容易に完成形状とすることができる。 According to such a configuration, the protruding portion of the first member is connected to the protruding portion of the second member via a screw centered on the axis. Therefore, after processing the rotary machine with the rotary tool, the rotary machine can be easily formed into a completed shape.
 本発明の第七態様の回転機械では、第一から第六態様のいずれか一つにおいて、前記第一の部材と第二の部材とは、回転に伴う遠心力によって弾性変形または塑性変形することにより互いに密着して一体に連結されていてもよい。 In the rotating machine of the seventh aspect of the present invention, in any one of the first to sixth aspects, the first member and the second member are elastically deformed or plastically deformed by a centrifugal force accompanying rotation. May be connected closely to each other.
 本発明の第八態様の回転機械では、第一態様において、前記第一の部材は、前記回転体を支持する回転機械のケーシング内部で流体の流路の一部をなすダイヤフラムに設けられた静止部材からなり、前記第二の部材は、前記カバーの流入口又は流出口付近の開口縁部からなり、これら第一の部材と第二の部材との間にシール材が設けられていてもよい。 In the rotating machine according to the eighth aspect of the present invention, in the first aspect, the first member is a stationary member provided on a diaphragm forming a part of a fluid flow path inside a casing of the rotating machine that supports the rotating body. The second member is formed of an opening edge near the inflow port or the outflow port of the cover, and a sealing material may be provided between the first member and the second member. .
 このような構成によれば、前記回転体を支持する回転機械のケーシング内部で流体の流路の一部をなすダイヤフラムに設けられた静止部材が第一の部材を構成し、カバーの流入口の開口縁部又は流出口付近の開口縁部から第二の部材を構成し、かつこれら第一の部材と第二の部材との間にシール材を介在させたので、回転機械をダイヤフラム内に設置するだけで容易に組み立てることができる。 According to such a configuration, the stationary member provided in the diaphragm that forms a part of the fluid flow path inside the casing of the rotating machine that supports the rotating body constitutes the first member, and the inflow port of the cover Since the second member is configured from the opening edge or the opening edge near the outflow port, and the sealing material is interposed between the first member and the second member, the rotary machine is installed in the diaphragm. You can easily assemble it.
 本発明の第九態様の回転機械の製造方法は、軸体と一体に回転可能に設けられたディスクと、このディスクとの間に軸方向および半径方向に間隔をおいて設けられたカバーと、これらディスクとカバーとの間に設けられて、前記ディスクとカバーとの間の半径方向の間隔に設けられた流入口から前記軸方向へ流入した流体を、ディスクとカバーとの間の軸方向の間隔に設けられた流出口へ向けて半径方向外方へ案内する複数のブレードと、を有する回転機械の製造方法であって、前記ディスクとカバーとを含む外形を有する母材を形成する第1工程と、前記ディスクとカバーとの間の半径方向および軸線方向への間隔に相当する領域から回転工具を挿入して、前記ディスク、カバー、およびブレードによって囲まれる流路の大部分を形成するとともに、前記ディスク、カバーの少なくともいずれかの一部に対応する範囲の前記母材を加工して該流路の流入口、流出口の少なくともいずれかを広げる開口段部を形成する第2工程と、前記開口段部を通じて前記流路内に回転工具を挿入して、前記ディスク、カバー、およびブレードによって囲まれる該流路の残りの部分を形成する第3工程と、前記第2工程で形成した開口段部に、前記ディスクおよびカバーの少なくともいずれかの一部をなす環状の部材を取り付けることによって前記ディスク、カバー、およびブレードによって囲まれた流路を形成する第4工程と、を含む。 According to a ninth aspect of the present invention, there is provided a rotating machine manufacturing method comprising: a disk provided so as to be rotatable integrally with a shaft body; and a cover provided between the disk in an axial direction and a radial direction. A fluid that is provided between the disc and the cover and flows in the axial direction from an inlet provided in a radial interval between the disc and the cover is allowed to flow in the axial direction between the disc and the cover. A method of manufacturing a rotary machine having a plurality of blades that guide radially outward toward outlets provided at intervals, wherein a first base material having an outer shape including the disk and a cover is formed. Inserting a rotating tool from a region corresponding to a process and a radial and axial spacing between the disk and cover to form a majority of the flow path surrounded by the disk, cover and blade And a second step of processing the base material in a range corresponding to at least a part of at least one of the disk and the cover to form an opening step portion that widens at least one of the inflow port and the outflow port of the flow path; The third step of forming a remaining part of the flow path surrounded by the disk, the cover, and the blade by inserting a rotary tool into the flow path through the opening step, and the second process. And a fourth step of forming a flow path surrounded by the disk, the cover, and the blade by attaching an annular member forming at least one of the disk and the cover to the opening step.
 このような構成によれば、第1工程にてディスクとカバーとを含む外形を有する母材が形成される。
 その後、第2工程にて、ディスクとカバーとの間の半径方向および軸線方向への間隔に相当する領域から回転工具が挿入されて、ディスク、カバー、およびブレードによって囲まれる流路の大部分が形成されるとともに、ディスクおよびカバーの少なくともいずれか一部を省略することにより、該流路の流入口又は流出口を広げる開口段部が形成される。
 その後、第3工程にて、開口段部を通じて流路内に回転工具が挿入されて、ディスク、カバー、およびブレードによって囲まれる該流路の残りの部分が形成される。
 その後、第4工程にて、第2工程で形成した開口段部に、ディスクおよびカバーの少なくともいずれかの一部をなす環状の部材を取り付けることによってディスク、カバー、およびブレードによって囲まれた流路が完成する。
 すなわち、上記構成の回転機械の製造方法では、第3工程での回転機械加工時において、該第一の部材を未装着としている。これにより、ディスクとカバーとの間の流入口および/または流出口の開口部を広げることができる。この広げた開口部を通じて、外部から届き難い内部空間の領域にて回転工具による機械加工を行うことができる。その結果、ブロック形状の母材からの機械加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ当該領域に係る加工コストを低く抑えることができる。
 また、第二の部材において、流入口および/または流出口の広げた開口部を、第一の部材により埋める構造である。そのため、該第一の部材の取り付けによって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度低下を防止することが可能となる。
 また、加工時に、外部から届き難い内部空間の領域を機械加工するために第一の部材を取り外しておくだけで、この第一の部材を除く大部分を一体構造化(すなわち、1ピースクローズドインペラ化)することができる。すなわち、第一の部材という最小限の部分を設けるだけで、回転機械の一体構造化を実現することが可能となる。
According to such a configuration, a base material having an outer shape including a disk and a cover is formed in the first step.
Thereafter, in the second step, the rotary tool is inserted from a region corresponding to the radial and axial distance between the disk and the cover, and most of the flow path surrounded by the disk, the cover, and the blade is While being formed, by omitting at least one part of the disk and the cover, an opening step portion that widens the inflow port or the outflow port of the flow path is formed.
Thereafter, in the third step, the rotary tool is inserted into the flow path through the opening step, and the remaining part of the flow path surrounded by the disk, the cover, and the blade is formed.
Thereafter, in the fourth step, an annular member that forms at least one of the disc and the cover is attached to the opening step portion formed in the second step, so that the flow path is surrounded by the disc, the cover, and the blade. Is completed.
That is, in the manufacturing method of the rotary machine having the above-described configuration, the first member is not attached at the time of rotary machining in the third step. Thereby, the opening part of the inflow port and / or outflow port between a disk and a cover can be expanded. Through this widened opening, machining with a rotary tool can be performed in an area of the internal space that is difficult to reach from the outside. As a result, it is possible to easily form a rotary machine such as an impeller having an integral structure by machining from a block-shaped base material, and it is possible to keep the machining cost related to the region low.
Further, in the second member, the opening at the inlet and / or outlet is widened with the first member. For this reason, the entire structure is integrally formed by attaching the first member, and the strength of the rotating machine can be prevented from lowering when the rotating machine is used thereafter.
Further, at the time of machining, only the first member is removed in order to machine the region of the internal space that is difficult to reach from the outside, and most of the parts other than the first member are made into an integral structure (that is, a one-piece closed impeller). ). In other words, it is possible to realize an integral structure of the rotating machine by providing a minimum part of the first member.
 本発明では、第二の部材において、流入口および/または流出口の広げた開口部を、第一の部材により埋める構造であるので、該第一の部材の取り付けによって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度および流体力学的性能の低下を防止することが可能となる。
 また、本発明では、加工時に、外部から届き難い内部空間の領域の機械加工するために第一の部材を取り外しておくだけで、この第一の部材を除く大部分を一体構造化(すなわち、1ピースクローズドインペラ化)することができる。すなわち、第一の部材という最小限の部分を設けるだけで、回転機械の一体構造化を実現することが可能となる。
In the present invention, since the second member has a structure in which the expanded opening of the inlet and / or outlet is filled with the first member, the whole is integrally formed by attaching the first member, and thereafter It is possible to prevent a decrease in strength and hydrodynamic performance of the rotating machine when the rotating machine is used.
Further, in the present invention, at the time of processing, only the first member is removed in order to machine the region of the internal space that is difficult to reach from the outside, and most of the first member except the first member is made into an integral structure (that is, 1 piece closed impeller). In other words, it is possible to realize an integral structure of the rotating machine by providing a minimum part of the first member.
本発明の第1実施形態に係るインペラを示す平面図である。It is a top view which shows the impeller which concerns on 1st Embodiment of this invention. 図1のII-II線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明に係るインペラの製造方法を工程順に示す説明図の一部である。It is a part of explanatory drawing which shows the manufacturing method of the impeller which concerns on this invention in process order. 本発明の第2実施形態に係るインペラを示す平面図である。It is a top view which shows the impeller which concerns on 2nd Embodiment of this invention. 図4のV-V線に沿う断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 4. 図5の拡大図である。FIG. 6 is an enlarged view of FIG. 5. 本発明の第3実施形態に係るインペラを示す平面図である。It is a top view which shows the impeller which concerns on 3rd Embodiment of this invention. 図7のVIII-VIII線に沿う断面図である。FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7. 図8の拡大図である。It is an enlarged view of FIG. 本発明の第4実施形態に係るインペラを示す平面図である。It is a top view which shows the impeller which concerns on 4th Embodiment of this invention. 図10のXI-XI線に沿う断面図である。It is sectional drawing which follows the XI-XI line of FIG. 図11の拡大図である。It is an enlarged view of FIG.
(第1実施形態)
 本発明の第1実施形態について図1、図2、図3A、図3B、図3C、図3D、図3E、及び図3Fを参照して説明する。
 図1および図2は第1実施形態に係る回転機械100となるインペラ1である。インペラ1は、ハブ2と一体に回転可能に設けられたディスク3と、このディスク3に間隔をおいて設けられたカバー4と、これらディスク3とカバー4との間に設けられた翼部材となる複数のブレード5とから構成される。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. 1, 2, 3A, 3B, 3C, 3D, 3E, and 3F.
1 and 2 show an impeller 1 that is a rotating machine 100 according to the first embodiment. The impeller 1 includes a disk 3 provided so as to be rotatable integrally with the hub 2, a cover 4 provided at an interval to the disk 3, and a wing member provided between the disk 3 and the cover 4. And a plurality of blades 5.
 ディスク3はハブ2と一体に設けられたものである。ディスク3は、該ハブ2を介して回転軸となる軸体Cに固定される。
 カバー4は、ディスク3との間に軸方向Daおよび半径方向Drに間隔をおいて設けられたものである。カバー4は、該ディスク3との間に内部空間となる流路6が形成されている。この流路6は、半径方向Dr外方に向けて順次、軸方向Daの間隔が縮小するように、ディスク3およびカバー4が設置されている。
 ブレード5は、ディスク3の回転時に、該ディスク3とカバー4との間の半径方向Drの間隔からディスク3とカバー4との間の軸方向Daの間隔へ作動流体を案内する翼部材である。ブレード5は、これによって図1および図2に矢印A方向に示す外方に向けて、該作動流体を案内する。
The disk 3 is provided integrally with the hub 2. The disk 3 is fixed to a shaft body C serving as a rotating shaft via the hub 2.
The cover 4 is provided between the disk 3 at intervals in the axial direction Da and the radial direction Dr. A flow path 6 serving as an internal space is formed between the cover 4 and the disk 3. The flow path 6 is provided with the disk 3 and the cover 4 so that the interval in the axial direction Da is sequentially reduced outward in the radial direction Dr.
The blade 5 is a blade member that guides the working fluid from the distance in the radial direction Dr between the disk 3 and the cover 4 to the distance in the axial direction Da between the disk 3 and the cover 4 when the disk 3 rotates. . The blade 5 thereby guides the working fluid toward the outside shown in the direction of arrow A in FIGS. 1 and 2.
 カバー4には、第一の部材となるキャップ10が設けられている。
 このキャップ10は、ディスク3の軸線Oを中心とした回転体状に形成されている。加えて、キャップ10は、第二の部材となるカバー4に固定される環状の穴埋め部材である。キャップ10は、作動流体の流入口6A付近に位置するカバー4の開口縁部11に設置されている。
 この開口縁部11は、カバー4の一部が省略されることにより、該流路6の流入口6Aを広げる開口段部12となるものである。該開口段部12に、前述したキャップ10が取り付けられる。
 そして、このキャップ10は、インペラ製造時に未装着としておくことにより、ディスク3とカバー4との間の流入口6Aの開口縁部11を広げることができる。そのため、この広げた開口縁部11を通じて、外部から届き難い内部空間の領域にて回転工具による切削加工を行なわせることができる。その結果、本例では、ブロック形状の母材からの切削加工により、一体構造となるインペラ等の回転機械を容易に形成することができるものである。
The cover 4 is provided with a cap 10 serving as a first member.
The cap 10 is formed in a rotating body centered on the axis O of the disk 3. In addition, the cap 10 is an annular hole filling member fixed to the cover 4 serving as a second member. The cap 10 is installed on the opening edge 11 of the cover 4 located in the vicinity of the working fluid inlet 6A.
The opening edge portion 11 becomes an opening step portion 12 that widens the inlet 6A of the flow path 6 by omitting a part of the cover 4. The cap 10 described above is attached to the opening step 12.
The cap 10 is not attached when the impeller is manufactured, so that the opening edge 11 of the inflow port 6A between the disk 3 and the cover 4 can be widened. Therefore, it is possible to perform cutting with a rotary tool in the region of the internal space that is difficult to reach from the outside through the widened opening edge 11. As a result, in this example, a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material.
 キャップ10には、半径方向Drの内側に位置して軸方向Daに突出する突出部10Aが設けられている。加えて、カバー4の開口縁部11には、キャップ10の半径方向Drの外側に位置して軸方向Daに突出する突出部10Aが設けられている。
 これらキャップ10の突出部10Aと、カバー開口縁部11の突出部11Aとは半径方向Drに対して互いに重なるように配置されている。このような配置によって、遠心力が作用した場合に、該キャップ10の突出部10Aが膨らんでカバー開口縁部11の突出部11Aに密着される。
 また、キャップ10の突出部10Aと、カバー開口縁部11の突出部11Aとの間には、ディスク3の軸線Oを中心とするねじ13(図3(F)参照)が設けられている。このねじ13を介した結合により、キャップ10をカバー4の開口縁部11に容易に装着することができる。
The cap 10 is provided with a protruding portion 10A that is located inside the radial direction Dr and protrudes in the axial direction Da. In addition, the opening edge portion 11 of the cover 4 is provided with a protruding portion 10A that is located outside the radial direction Dr of the cap 10 and protrudes in the axial direction Da.
The protruding portion 10A of the cap 10 and the protruding portion 11A of the cover opening edge portion 11 are arranged so as to overlap each other in the radial direction Dr. With such an arrangement, when a centrifugal force is applied, the protruding portion 10A of the cap 10 swells and comes into close contact with the protruding portion 11A of the cover opening edge portion 11.
In addition, a screw 13 (see FIG. 3F) centering on the axis O of the disk 3 is provided between the protrusion 10A of the cap 10 and the protrusion 11A of the cover opening edge 11. The cap 10 can be easily attached to the opening edge 11 of the cover 4 by the coupling via the screw 13.
 なお、キャップ10を弾性変形又は塑性変形させることにより、カバー開口縁部11に密着させるようにしても良い。 It should be noted that the cap 10 may be brought into close contact with the cover opening edge 11 by elastic deformation or plastic deformation.
 次に、図3A~Fを参照して回転機械100となるインペラ1(1ピースクローズドインペラ)の製造方法について説明する。
〔第1工程〕
 図3Aに示す母材となる金属ブロック7を用意した上で、図3Bに示すように、エンドミル等の回転工具Dによりインペラ1がおおよその形状となるように加工する。
Next, a method for manufacturing the impeller 1 (one-piece closed impeller) that becomes the rotating machine 100 will be described with reference to FIGS. 3A to 3F.
[First step]
After preparing the metal block 7 which is a base material shown in FIG. 3A, as shown in FIG. 3B, the impeller 1 is processed into an approximate shape by a rotary tool D such as an end mill.
〔第2工程〕
 次に、図3Cに示すように、ディスク3とカバー4との間の半径方向Drおよび軸方向Daへの間隔に相当する領域から回転工具Dを挿入して、ディスク3、カバー4、およびブレード5によって囲まれる流路6の大部分を形成する。これとともに、ディスク3の流入口6A側の開口縁部11を省略することにより、該流路6の流入口6Aを広げる開口段部12を形成する。
 このとき、カバー4の開口縁部11に軸方向Daに突出する突出部10Aを設けるようにし、この突出部10Aに、後述するキャップ10の突出部10Aが重なるようにする。
 ここで、キャップ10には、半径方向Drの内側に位置して軸方向Daに突出する突出部10Aを設ける。加えて、カバー4の開口縁部11に、キャップ10の半径方向Drの外側に位置して軸方向Daに突出して突出部10Aを設ける。これにより、これら突出部10Aと、カバー開口縁部11の突出部11Aとを半径方向Drに対して互いに重なる位置関係とする。
[Second step]
Next, as shown in FIG. 3C, the rotary tool D is inserted from the area corresponding to the distance between the disk 3 and the cover 4 in the radial direction Dr and the axial direction Da, and the disk 3, the cover 4, and the blade 5 forms the majority of the flow path 6 surrounded by 5. At the same time, by omitting the opening edge 11 on the inlet 6 </ b> A side of the disk 3, an opening step portion 12 that widens the inlet 6 </ b> A of the channel 6 is formed.
At this time, a protruding portion 10A protruding in the axial direction Da is provided on the opening edge portion 11 of the cover 4, and a protruding portion 10A of the cap 10 described later overlaps with the protruding portion 10A.
Here, the cap 10 is provided with a protruding portion 10A that is located inside the radial direction Dr and protrudes in the axial direction Da. In addition, a protruding portion 10 </ b> A is provided at the opening edge 11 of the cover 4 so as to protrude outside the radial direction Dr of the cap 10 and protrude in the axial direction Da. Thereby, these protrusion parts 10A and the protrusion part 11A of the cover opening edge part 11 are set to a positional relationship overlapping each other in the radial direction Dr.
〔第3工程〕
 次に、図3Dに示すように、カバー開口縁部11の開口段部12を通じて流路6内に回転工具Dを挿入して、ディスク3、カバー4、およびブレード5によって囲まれる該流路6の残りの部分(第2工程で切削することができなかった部分)を形成する。
[Third step]
Next, as shown in FIG. 3D, the rotary tool D is inserted into the flow path 6 through the opening step 12 of the cover opening edge 11, and the flow path 6 surrounded by the disk 3, the cover 4, and the blade 5. The remaining portion (the portion that could not be cut in the second step) is formed.
〔第4工程〕
 次に、図3E及びFに示すように、第2工程で形成した開口段部12に、カバー4の一部をなす環状のキャップ10を取り付けることによってディスク3、カバー4、およびブレード5によって囲まれた流路6を完成する。
 ここで、キャップ10の突出部10Aと、カバー開口縁部11の突出部11Aとの間に、ディスク3の軸線Oを中心とするねじ13(図3E及びF参照)を設ける。このねじ13を介した結合により、キャップ10をカバー4の開口縁部11に装着可能とする。
[Fourth step]
Next, as shown in FIGS. 3E and F, an annular cap 10 that forms a part of the cover 4 is attached to the opening step portion 12 formed in the second step, so that it is surrounded by the disk 3, the cover 4, and the blade 5. The completed flow path 6 is completed.
Here, a screw 13 (see FIGS. 3E and 3F) centered on the axis O of the disk 3 is provided between the protrusion 10A of the cap 10 and the protrusion 11A of the cover opening edge 11. The cap 10 can be attached to the opening edge 11 of the cover 4 by the coupling via the screw 13.
 以上詳細に説明したように第1実施形態によれば、第3工程での回転機械加工時において、キャップ10をカバー4の開口縁部11に未装着としておくことにより、ディスク3とカバー4との間の流入口6Aの開口部を広げることができる。この広げた開口部を通じて、外部から届き難い内部空間の領域にて回転工具Dによる切削加工を行うことができる。その結果、本実施形態では、ブロック形状の母材からの切削加工により、一体構造となるインペラ等の回転機械を容易に形成することができ、かつ当該領域に係る加工コストを低く抑えることができる。 As described above in detail, according to the first embodiment, the disk 10 and the cover 4 can be removed by removing the cap 10 from the opening edge 11 of the cover 4 during the rotary machining process in the third step. The opening of the inlet 6A can be widened. Through this widened opening, cutting with the rotary tool D can be performed in a region of the internal space that is difficult to reach from the outside. As a result, in the present embodiment, a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material, and the processing cost related to the region can be kept low. .
 また、第1実施形態は、カバー4において、流路6の流入口6Aの広げた開口縁部11を、キャップ10により埋める構造である。そのため、該キャップ10の取り付けによって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
 また、第1実施形態では、加工時に、外部から届き難い内部空間の領域を切削するためにキャップ10を取り外しておくだけで、このキャップ10を除く大部分を一体構造化(すなわち、1ピースクローズドインペラ化)することができる。すなわち、キャップ10という最小限の部分を設けるだけで、回転機械の一体構造化を実現することが可能となる。
The first embodiment is a structure in which the opening edge 11 of the inflow port 6 </ b> A of the flow path 6 is filled with the cap 10 in the cover 4. Therefore, the entire structure is integrated by attaching the cap 10, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine when the rotating machine is used thereafter.
In the first embodiment, at the time of processing, the cap 10 is simply removed in order to cut an area of the internal space that is difficult to reach from the outside. Impeller). In other words, it is possible to realize an integral structure of the rotating machine by providing the minimum portion of the cap 10.
 また、第1実施形態では、キャップ10とカバー4の開口縁部11とが、半径方向Drの内側に設けられて軸方向Daに突出する突出部10Aと、半径方向Drの外側に設けられて軸方向Daに突出して該突出部10Aと重なる突出部11Aとを介して連結されている。そのため、遠心力による変形により、突出部10Aが膨らんで突出部11Aに密着され、これらキャップ10とカバー4の開口縁部11とを一体に保持することができる。
 また、第1実施形態では、キャップ10の突出部10Aがカバー開口縁部11の突出部11Aに軸線Oを中心とするねじ13を介した結合とされている。そのため、回転工具Dによる回転機械の加工後において、該回転機械を容易に完成形状とすることが可能となる。
In the first embodiment, the cap 10 and the opening edge 11 of the cover 4 are provided on the inner side in the radial direction Dr and provided on the outer side in the radial direction Dr. It is connected via a protrusion 11A that protrudes in the axial direction Da and overlaps the protrusion 10A. Therefore, the protrusion 10 </ b> A swells and is brought into close contact with the protrusion 11 </ b> A due to deformation due to centrifugal force, and the cap 10 and the opening edge 11 of the cover 4 can be held together.
In the first embodiment, the protruding portion 10 </ b> A of the cap 10 is coupled to the protruding portion 11 </ b> A of the cover opening edge 11 via a screw 13 centered on the axis O. Therefore, after processing the rotary machine with the rotary tool D, the rotary machine can be easily formed into a completed shape.
(第2実施形態)
 本発明の第2実施形態について図4~図6を参照して説明する。なお、以下の説明において第1実施形態と構成を共通にする箇所に同一符号を付し重複した説明を省略する。
 第2実施形態に係る回転機械101となるインペラ20が、第1実施形態のインペラ1と異なる点は、カバー4の開口縁部21が流路6の流入口6Aではなく流出口6B側に設けられている点、及びこの流路6の流出口6Bにキャップ22が装着される点である。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to portions that share the same configuration as the first embodiment, and redundant descriptions are omitted.
The impeller 20 to be the rotary machine 101 according to the second embodiment is different from the impeller 1 of the first embodiment in that the opening edge 21 of the cover 4 is provided not on the inlet 6A of the flow path 6 but on the outlet 6B side. The cap 22 is attached to the outlet 6 </ b> B of the flow path 6.
 このキャップ22は、キャップ10と同様に、ディスク3の軸線Oを中心とした回転体状に形成されている。キャップ22は、第二の部材となるカバー4に固定される環状の穴埋め部材である。キャップ22は、作動流体の流出口6B付近に位置するカバー4の開口縁部21に設置されている。
 この開口縁部21は、カバー4の一部が省略されることにより、該流路6の流出口6Bを広げる開口段部23となるものである。該開口段部23に、前述したキャップ22が取り付けられる。
Similar to the cap 10, the cap 22 is formed in a rotating body centered on the axis O of the disk 3. The cap 22 is an annular hole filling member fixed to the cover 4 serving as a second member. The cap 22 is installed at the opening edge 21 of the cover 4 located in the vicinity of the working fluid outlet 6B.
The opening edge portion 21 becomes an opening step portion 23 that widens the outlet 6B of the flow path 6 by omitting a part of the cover 4. The aforementioned cap 22 is attached to the opening step 23.
 そして、このキャップ22は、インペラ製造時に未装着としておくことにより、ディスク3とカバー4との間の流出口6Bの開口縁部21を広げることができる。そのため、この広げた開口縁部21を通じて、外部から届き難い内部空間の領域にて回転工具による切削加工を行なわせることができる。その結果、本例では、ブロック形状の母材からの切削加工により、一体構造となるインペラ等の回転機械を容易に形成することができるものである。 And this cap 22 can be opened at the time of manufacturing the impeller, so that the opening edge 21 of the outlet 6B between the disk 3 and the cover 4 can be widened. Therefore, it is possible to perform cutting with a rotary tool in the region of the internal space that is difficult to reach from the outside through the widened opening edge 21. As a result, in this example, a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material.
 キャップ22の半径方向Drの内側には突出部22Aが設けられている。カバー4の開口縁部21の半径方向Drの外側には突出部21Aが設けられている。このような突出部21A及び22Aの配置によって、遠心力が作用した場合に、該キャップ22の突出部22Aが膨らんでカバー開口縁部21の突出部21Aに密着させることができる。
 なお、これら突出部21Aと22Aとの間には、ディスク3の軸線Oを中心とするねじ(図示略)を設けても良い。
 また、キャップ22を弾性変形又は塑性変形させることにより、カバー開口縁部21に密着させるようにしても良い。
A protrusion 22 </ b> A is provided inside the cap 22 in the radial direction Dr. A protrusion 21 </ b> A is provided on the outer side of the opening edge 21 of the cover 4 in the radial direction Dr. With such an arrangement of the protrusions 21A and 22A, when a centrifugal force acts, the protrusion 22A of the cap 22 swells and can be brought into close contact with the protrusion 21A of the cover opening edge 21.
A screw (not shown) centered on the axis O of the disk 3 may be provided between the projecting portions 21A and 22A.
Further, the cap 22 may be brought into close contact with the cover opening edge 21 by elastically deforming or plastically deforming the cap 22.
 以上詳細に説明したように第2実施形態は、カバー4において、流路6の流出口6Bの広げた開口縁部21を、キャップ22により埋める構造である。そのため、該キャップ22の取り付けによって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
 また、第2実施形態では、加工時に、外部から届き難い内部空間の領域を切削するためにキャップ22を取り外しておくだけで、このキャップ22を除く大部分を一体構造化(すなわち、1ピースクローズドインペラ化)することができる。すなわち、キャップ22という最小限の部分を設けるだけで、回転機械の一体構造化を実現することが可能となる。
As described in detail above, the second embodiment has a structure in which the opening edge 21 of the outlet 6 </ b> B of the flow path 6 is filled with the cap 22 in the cover 4. For this reason, the entire structure is integrated by attaching the cap 22, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine when the rotating machine is used thereafter.
In the second embodiment, at the time of processing, the cap 22 is simply removed in order to cut an area of the internal space that is difficult to reach from the outside. Impeller). That is, it is possible to realize an integral structure of the rotating machine by providing the minimum portion of the cap 22.
(第3実施形態)
 本発明の第3実施形態について図7~図9を参照して説明する。なお、以下の説明において先の実施形態と構成を共通にする箇所に同一符号を付し重複した説明を省略する。
 第3実施形態に係る回転機械102となるインペラ30が、第2実施形態のインペラ20と異なる点は、開口を広げるための開口縁部31がカバー4側ではなくディスク3側に設けられている点、該ディスク3にキャップ32が装着される点である。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to portions that share the same configuration as the previous embodiment, and redundant descriptions are omitted.
The impeller 30 serving as the rotating machine 102 according to the third embodiment is different from the impeller 20 of the second embodiment in that an opening edge 31 for widening the opening is provided on the disk 3 side instead of the cover 4 side. The point is that the cap 32 is attached to the disk 3.
 このキャップ32は、前述したキャップ10及び22と同様に、ディスク3の軸線Oを中心とした回転体状に形成されている。キャップ32は、第二の部材となるディスク3に固定される環状の穴埋め部材である。キャップ32は、作動流体の流出口6B付近に位置するディスク3の開口縁部31に設置されている。
 この開口縁部31は、ディスク3の一部が省略されることにより、該流路6の流出口6Bを広げる開口段部33を形成するためのものである。
Similar to the caps 10 and 22 described above, the cap 32 is formed in a rotating body centered on the axis O of the disk 3. The cap 32 is an annular hole-filling member that is fixed to the disk 3 that is the second member. The cap 32 is installed at the opening edge 31 of the disk 3 located near the working fluid outlet 6B.
The opening edge 31 is for forming an opening step 33 that widens the outlet 6B of the flow path 6 by omitting a part of the disk 3.
 そして、このキャップ32は、インペラ製造時に未装着としておくことにより、ディスク3とカバー4との間の流出口6Bの開口縁部31を広げることができる。そのため、この広げた開口縁部31を通じて、外部から届き難い内部空間の領域にて回転工具による切削加工を行なわせることができる。その結果、本例では、ブロック形状の母材からの切削加工により、一体構造となるインペラ等の回転機械を容易に形成することができるものである。 And this cap 32 can be opened at the time of manufacturing the impeller, so that the opening edge 31 of the outlet 6B between the disk 3 and the cover 4 can be widened. Therefore, it is possible to perform cutting with a rotary tool in the region of the internal space that is difficult to reach from the outside through the widened opening edge 31. As a result, in this example, a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material.
 なお、キャップ32とディスク3との間にはディスク3の軸線Oを中心とするねじ(図示略)を設け、該ねじを介してキャップ32を容易に装着可能としても良い。
 また、キャップ32は、外力を作用させて弾性変形又は塑性変形させることにより、カバー開口縁部31に密着させるようにしても良い。
A screw (not shown) centered on the axis O of the disk 3 may be provided between the cap 32 and the disk 3 so that the cap 32 can be easily mounted via the screw.
The cap 32 may be brought into close contact with the cover opening edge 31 by applying an external force to be elastically deformed or plastically deformed.
 以上詳細に説明したように第3実施形態は、ディスク3において、流路6の流出口6Bを広げた開口縁部31を、キャップ32により埋める構造である。そのため、該キャップ32の取り付けによって全体が一体構造化し、その後の回転機械の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
 また、第3実施形態では、加工時に、外部から届き難い内部空間の領域を切削するためにキャップ32を取り外しておくだけで、このキャップ32を除く大部分を一体構造化(すなわち、1ピースクローズドインペラ化)することができる。すなわち、キャップ22という最小限の部分を設けるだけで、回転機械の一体構造化を実現することが可能となる。
As described above in detail, the third embodiment has a structure in which the opening edge 31 in which the outlet 6B of the flow path 6 is widened is filled with the cap 32 in the disk 3. For this reason, the entire structure is integrated by attaching the cap 32, and it is possible to prevent a decrease in the strength and hydrodynamic performance of the rotating machine during subsequent use of the rotating machine.
In the third embodiment, at the time of processing, the cap 32 is simply removed in order to cut an area of the internal space that is difficult to reach from the outside. Impeller). That is, it is possible to realize an integral structure of the rotating machine by providing the minimum portion of the cap 22.
(第4実施形態)
 本発明の第4実施形態について図10~図12を参照して説明する。なお、以下の説明において先の実施形態と構成を共通にする箇所に同一符号を付し重複した説明を省略する。
 第4実施形態に係る回転機械103となるインペラ40が、先の実施形態のインペラ1、20、及び30と異なる点は、第一の部材のキャップとして静止部材50を使用した点にある。
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are given to portions that share the same configuration as the previous embodiment, and redundant descriptions are omitted.
The impeller 40 which becomes the rotary machine 103 according to the fourth embodiment is different from the impellers 1, 20 and 30 of the previous embodiment in that the stationary member 50 is used as a cap of the first member.
 この静止部材50は、回転機械本体の内装品となるダイヤフラム51に設けられたものである。静止部材50は、前述したキャップ10、22、及び32と同様に、ディスク3の軸線Oを中心とした回転体状に形成されている。静止部材50は、第二の部材となるカバー4の開口縁部52及び53内に設置される。
 この開口縁部52及び53は、カバー4の一部が省略されることにより、該流路6の流入口6A及び流出口6Bを広げる開口段部54及び55となるものである。該開口段部54及び55内に、前述した静止部材50が配置される。
The stationary member 50 is provided on a diaphragm 51 which is an interior product of the rotary machine body. Similar to the caps 10, 22, and 32 described above, the stationary member 50 is formed in a rotating body centered on the axis O of the disk 3. The stationary member 50 is installed in the opening edges 52 and 53 of the cover 4 serving as the second member.
The opening edge portions 52 and 53 become opening step portions 54 and 55 that widen the inflow port 6A and the outflow port 6B of the flow path 6 when a part of the cover 4 is omitted. The stationary member 50 described above is disposed in the opening step portions 54 and 55.
 そして、この静止部材50は、インペラ製造時に未装着となることで、ディスク3とカバー4との間の流路6の流入口6A及び流出口6Bの開口縁部52及び53を広げることができる。そのため、この広げた開口縁部52及び53を通じて、外部から届き難い内部空間の領域にて回転工具による切削加工を行なわせることができる。その結果、本例では、ブロック形状の母材からの切削加工により、一体構造となるインペラ等の回転機械を容易に形成することができるものである。
 また、回転機械103となるインペラ40が、回転機械本体の内装品となるダイヤフラム51に組み付けられた状態で、該インペラ40の開口縁部52及び53と、ダイヤフラム51の静止部材50との間には密閉性を確保するためのシール部材56及び57が介在される。
The stationary member 50 is not attached when the impeller is manufactured, so that the inlet 6A of the flow path 6 and the opening edges 52 and 53 of the outlet 6B between the disk 3 and the cover 4 can be widened. . Therefore, it is possible to perform cutting with a rotary tool in the region of the internal space that is difficult to reach from the outside through the widened opening edges 52 and 53. As a result, in this example, a rotary machine such as an impeller having an integral structure can be easily formed by cutting from a block-shaped base material.
Further, in a state where the impeller 40 serving as the rotating machine 103 is assembled to the diaphragm 51 serving as the interior product of the rotating machine main body, the opening edge portions 52 and 53 of the impeller 40 and the stationary member 50 of the diaphragm 51 are interposed. Are provided with sealing members 56 and 57 for ensuring sealing.
 以上詳細に説明したように第4実施形態は、回転機械本体の内装品となるダイヤフラム51に設けられた静止部材50をキャップとしている。また、カバー4の流入口6A及び流出口6Bの開口縁部52及び53にシール材56及び57が設けられている。
 これにより第4実施形態では、回転機械103となるインペラ40をダイヤフラム51内に設置するだけで、カバー4の開口縁部52及び53に結合することができ、その組み立て作業性を向上させることができる。
As described above in detail, in the fourth embodiment, the stationary member 50 provided on the diaphragm 51 serving as an interior part of the rotating machine main body is used as a cap. Further, sealing materials 56 and 57 are provided at the opening edges 52 and 53 of the inlet 6A and the outlet 6B of the cover 4.
Thereby, in 4th Embodiment, the impeller 40 used as the rotary machine 103 can be couple | bonded with the opening edge parts 52 and 53 of the cover 4 only by installing in the diaphragm 51, and the assembly workability | operativity can be improved. it can.
 また、第4実施形態は、カバー4において、流入口6A及び流出口6Bを広げた開口縁部52及び53を、ダイヤフラム51の静止部材50により埋める構造である。そのため、該静止部材50の配置によって全体が一体構造化し、その後の回転機械103の使用時において回転機械の強度及び流体力学的性能の信頼性低下を防止することが可能となる。
 また、第4実施形態では、加工時に、外部から届き難い内部空間の領域を機械加工するためにダイヤフラム51から取り外しておくだけで、静止部材50の取付け箇所を除く大部分を一体構造化(すなわち、1ピースクローズドインペラ化)することができる。すなわち、静止部材50の取付け箇所という最小限の部分を設けるだけで、回転機械の一体構造化を実現することが可能となる。
Further, the fourth embodiment has a structure in which the opening edges 52 and 53 in which the inflow port 6 </ b> A and the outflow port 6 </ b> B are widened are filled with the stationary member 50 of the diaphragm 51 in the cover 4. Therefore, the entire structure is integrally formed by the arrangement of the stationary member 50, and it becomes possible to prevent a decrease in reliability of strength and hydrodynamic performance of the rotating machine when the rotating machine 103 is used thereafter.
Further, in the fourth embodiment, at the time of processing, most of the parts excluding the attachment position of the stationary member 50 are made into an integral structure only by removing the diaphragm 51 from the diaphragm 51 in order to machine the region of the internal space that is difficult to reach from the outside (that is, 1 piece closed impeller). In other words, it is possible to realize an integral structure of the rotating machine only by providing a minimum part of the stationary member 50 as an attachment location.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included.
 本発明は、過給機、ガスタービン、産業用圧縮機等の遠心圧縮機のインペラに適用される回転機械および回転機械の製造方法に関する。 The present invention relates to a rotating machine applied to an impeller of a centrifugal compressor such as a supercharger, a gas turbine, or an industrial compressor, and a method of manufacturing the rotating machine.
 1 インペラ 
 3 ディスク
 4 カバー
 5 ブレード
 6 流路
 6A 流入口
 6B 流出口
 10 キャップ(第一の部材)
 10A 突出部
 11 開口縁部(第二の部材)
 11A 突出部
 12 開口段部(第二の部材)
 13 ねじ
 20 インペラ
 21 開口縁部
 21A 突出部
 22 キャップ(第一の部材)
 22A 突出部
 23 開口段部(第二の部材)
 30 インペラ
 31 開口縁部(第二の部材)
 32 キャップ(第一の部材)
 50 静止部材(第一の部材)
 51 ダイヤフラム
 52 開口縁部(第二の部材)
 53 開口縁部(第二の部材)
 54 開口段部(第二の部材)
 55 開口段部(第二の部材)
 100 回転機械
 101 回転機械
 102 回転機械
 103 回転機械
 C 軸体
 D 回転工具
 O 軸線
1 impeller
3 Disc 4 Cover 5 Blade 6 Flow path 6A Inlet 6B Outlet 10 Cap (first member)
10A protrusion 11 opening edge (second member)
11A protrusion 12 opening step (second member)
13 Screw 20 Impeller 21 Opening edge 21A Projection 22 Cap (first member)
22A Protruding portion 23 Opening step portion (second member)
30 Impeller 31 Opening edge (second member)
32 Cap (first member)
50 Stationary member (first member)
51 Diaphragm 52 Opening edge (second member)
53 Opening edge (second member)
54 Opening step (second member)
55 Opening step (second member)
DESCRIPTION OF SYMBOLS 100 Rotating machine 101 Rotating machine 102 Rotating machine 103 Rotating machine C shaft body D Rotating tool O Axis line

Claims (9)

  1.  軸体と一体に回転可能に設けられたディスクと、
     このディスクとの間に軸方向および半径方向に間隔をおいて設けられたカバーと、
     これらディスクとカバーとの間に設けられて、これらディスクとカバーとの間の半径方向の間隔に設けられた流入口から前記軸方向へ流入した流体を、ディスクとカバーとの間の軸方向の間隔に設けられた流出口へ向けて半径方向外方へ案内する複数のブレードと、を有する回転機械であって、
     前記ディスク、カバーの少なくともいずれかは、互いに前記軸方向に分割可能な第一の部材と第二の部材とを有し、
     前記第一の部材と第二の部材とは、前記軸体を中心とする回転体状をなし、
     前記第一の部材は、前記ディスクとカバーとの間の流入口および流出口の少なくともいずれかの近傍で前記第二の部材に結合されている回転機械。
    A disc provided to be rotatable integrally with the shaft body;
    A cover provided between the disc in an axial direction and a radial direction;
    The fluid that is provided between the disc and the cover and flows in the axial direction from an inlet provided at a radial interval between the disc and the cover is allowed to flow in the axial direction between the disc and the cover. A rotating machine having a plurality of blades that guide radially outward toward the outlets provided at intervals,
    At least one of the disk and the cover has a first member and a second member that can be divided in the axial direction.
    The first member and the second member form a rotating body centered on the shaft body,
    The first member is a rotating machine coupled to the second member in the vicinity of at least one of an inlet and an outlet between the disk and the cover.
  2.  前記第一の部材は、前記流入口近傍の前記カバーの一部をなす環状の部材である請求項1に記載の回転機械。 The rotary machine according to claim 1, wherein the first member is an annular member that forms a part of the cover in the vicinity of the inflow port.
  3.  前記第一の部材は、前記流出口近傍の前記カバーの一部をなす環状の部材である請求項1又は2のいずれか一項に記載の回転機械。 The rotary machine according to any one of claims 1 and 2, wherein the first member is an annular member that forms a part of the cover in the vicinity of the outflow port.
  4.  前記第一の部材は、前記流出口近傍の前記ディスクの一部をなす環状の部材である請求項1~3のいずれか一項に記載の回転機械。 The rotary machine according to any one of claims 1 to 3, wherein the first member is an annular member forming a part of the disk in the vicinity of the outlet.
  5.  前記第一の部材と第二の部材とは、半径方向の内側に設けられて軸方向に突出する第一の突出部と、半径方向の外側に設けられて軸方向に突出して前記第一の突出部と重なる第二の突出部とを介して連結されている請求項1~4のいずれか一項に記載の回転機械。 The first member and the second member include a first protrusion provided on the inner side in the radial direction and protruding in the axial direction, and provided on the outer side in the radial direction and protruding in the axial direction. The rotating machine according to any one of claims 1 to 4, wherein the rotating machine is connected via a second protrusion overlapping the protrusion.
  6.  前記第一の部材の突出部と前記第二の部材の突出部とは、前記軸体を中心とするねじを介して結合されている請求項5に記載の回転機械。 6. The rotating machine according to claim 5, wherein the protruding portion of the first member and the protruding portion of the second member are coupled to each other via a screw centered on the shaft body.
  7.  前記第一の部材と第二の部材とは、回転に伴う遠心力によって弾性変形または塑性変形することにより互いに密着して一体に連結されている請求項1~6のいずれか一項に記載の回転機械。 7. The first member and the second member according to claim 1, wherein the first member and the second member are in close contact with each other by elastic deformation or plastic deformation by centrifugal force accompanying rotation. Rotating machine.
  8.  前記第一の部材は、前記回転体を支持する回転機械のケーシング内部で流体の流路の一部をなすダイヤフラムに設けられた静止部材からなり、
     前記第二の部材は、前記カバーの流入口又は流出口付近の開口縁部からなり、
     これら第一の部材と第二の部材との間にシール材が設けられている請求項1に記載の回転機械。
    The first member comprises a stationary member provided in a diaphragm that forms part of a fluid flow path inside a casing of a rotating machine that supports the rotating body,
    The second member consists of an opening edge near the inlet or outlet of the cover,
    The rotating machine according to claim 1, wherein a sealing material is provided between the first member and the second member.
  9.  軸体と一体に回転可能に設けられたディスクと、
     このディスクとの間に軸方向および半径方向に間隔をおいて設けられたカバーと、
     これらディスクとカバーとの間に設けられて、前記ディスクとカバーとの間の半径方向の間隔に設けられた流入口から前記軸方向へ流入した流体を、ディスクとカバーとの間の軸方向の間隔に設けられた流出口へ向けて半径方向外方へ案内する複数のブレードと、を有する回転機械の製造方法であって、
     前記ディスクとカバーとを含む外形を有する母材を形成する第1工程と、
     前記ディスクとカバーとの間の半径方向および軸線方向への間隔に相当する領域から回転工具を挿入して、前記ディスク、カバー、およびブレードによって囲まれる流路の大部分を形成するとともに、前記ディスク、カバーの少なくともいずれかの一部に対応する範囲の前記母材を加工して該流路の流入口、流出口の少なくともいずれかを広げる開口段部を形成する第2工程と、
     前記開口段部を通じて前記流路内に回転工具を挿入して、前記ディスク、カバー、およびブレードによって囲まれる該流路の残りの部分を形成する第3工程と、
     前記第2工程で形成した開口段部に、前記ディスクおよびカバーの少なくともいずれかの一部をなす環状の部材を取り付けることによって前記ディスク、カバー、およびブレードによって囲まれた流路を形成する第4工程と、を含む回転機械の製造方法。
    A disc provided to be rotatable integrally with the shaft body;
    A cover provided between the disc in an axial direction and a radial direction;
    A fluid that is provided between the disc and the cover and flows in the axial direction from an inlet provided in a radial interval between the disc and the cover is allowed to flow in the axial direction between the disc and the cover. A plurality of blades that guide radially outward toward the outlets provided at intervals, and a method of manufacturing a rotary machine,
    Forming a base material having an outer shape including the disk and a cover;
    A rotary tool is inserted from a region corresponding to the radial and axial spacing between the disk and the cover to form most of the flow path surrounded by the disk, the cover, and the blade, and the disk A second step of processing the base material in a range corresponding to at least one part of the cover to form an opening step portion that widens at least one of the inflow port and the outflow port of the flow path;
    A third step of inserting a rotating tool into the flow path through the opening step to form the remaining portion of the flow path surrounded by the disk, cover and blade;
    A fourth channel forming a flow path surrounded by the disk, the cover, and the blade is formed by attaching an annular member that forms at least one of the disk and the cover to the opening step formed in the second step. A method of manufacturing a rotating machine.
PCT/JP2016/084992 2016-03-01 2016-11-25 Rotating machine and method for producing rotating machine WO2017149867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016039261A JP2017155641A (en) 2016-03-01 2016-03-01 Rotary machine and process of manufacture of rotary machine
JP2016-039261 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017149867A1 true WO2017149867A1 (en) 2017-09-08

Family

ID=59743845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084992 WO2017149867A1 (en) 2016-03-01 2016-11-25 Rotating machine and method for producing rotating machine

Country Status (2)

Country Link
JP (1) JP2017155641A (en)
WO (1) WO2017149867A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047479A (en) * 2011-08-29 2013-03-07 Mitsubishi Heavy Ind Ltd Impeller and rotary machine with the same, and method for manufacturing impeller
JP2013139753A (en) * 2012-01-05 2013-07-18 Mitsubishi Heavy Ind Ltd Impeller, rotor comprising the same, and impeller manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047479A (en) * 2011-08-29 2013-03-07 Mitsubishi Heavy Ind Ltd Impeller and rotary machine with the same, and method for manufacturing impeller
JP2013139753A (en) * 2012-01-05 2013-07-18 Mitsubishi Heavy Ind Ltd Impeller, rotor comprising the same, and impeller manufacturing method

Also Published As

Publication number Publication date
JP2017155641A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
EP2784327B1 (en) Centrifugal compressor
EP3009686B1 (en) Impeller and fluid machine
JP5606358B2 (en) Impeller, rotor provided with the same, and method for manufacturing impeller
JP5907723B2 (en) Manufacturing method of rotating machine
CN101147001B (en) Vane cell pump
US20170030209A1 (en) Steam turbine nozzle segment having transitional interface, and nozzle assembly and steam turbine including such nozzle segment
JP5777529B2 (en) Impeller, rotor provided with the same, and method for manufacturing impeller
JP6589217B2 (en) Rotating machine, method of manufacturing rotating machine
JP6327505B2 (en) Impeller and rotating machine
JP5832106B2 (en) Rotating machine
WO2017149867A1 (en) Rotating machine and method for producing rotating machine
JP5533060B2 (en) Turbocharger
WO2017149865A1 (en) Rotating machine and method for producing rotating machine
CN115485479B (en) Closed impeller and manufacturing method of closed impeller
WO2020100986A1 (en) Impeller, pump provided with impeller, and method for manufacturing impeller
EP3557076B1 (en) Impeller, rotary machine, method for manufacturing impeller, and method for manufacturing rotary machine
JP7166048B2 (en) Intermediate member, pump, and pump maintenance method
JP6088810B2 (en) Impeller
WO2017159730A1 (en) Impeller, rotary machine, and impeller manufacturing method
JP2019113002A (en) Impeller and centrifugal pump
JP6668809B2 (en) Coreless torque converter and method of manufacturing the same
CN111720360A (en) Centrifugal impeller
CN116989002A (en) Ternary flow impeller and manufacturing method thereof
JP2013160069A (en) Impeller and rotary machine with impeller

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892702

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892702

Country of ref document: EP

Kind code of ref document: A1