WO2017149703A1 - Traffic situation estimation system and traffic situation estimation method - Google Patents

Traffic situation estimation system and traffic situation estimation method Download PDF

Info

Publication number
WO2017149703A1
WO2017149703A1 PCT/JP2016/056461 JP2016056461W WO2017149703A1 WO 2017149703 A1 WO2017149703 A1 WO 2017149703A1 JP 2016056461 W JP2016056461 W JP 2016056461W WO 2017149703 A1 WO2017149703 A1 WO 2017149703A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
connection
data
traffic situation
train
Prior art date
Application number
PCT/JP2016/056461
Other languages
French (fr)
Japanese (ja)
Inventor
理恵子 大塚
匠 井口
鈴木 敬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/056461 priority Critical patent/WO2017149703A1/en
Priority to EP16889665.2A priority patent/EP3425606B1/en
Priority to JP2017530231A priority patent/JP6326177B2/en
Publication of WO2017149703A1 publication Critical patent/WO2017149703A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/14Following schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/57Trackside diagnosis or maintenance, e.g. software upgrades for vehicles or trains, e.g. trackside supervision of train conditions

Definitions

  • the present invention relates to a system for estimating traffic conditions.
  • a Japanese railway company collects train location information acquired by train operation management systems and passenger information measured by sensors attached to trains in the suburbs of Tokyo, and provides information such as train delays and congestion. Has started a service to deliver to passengers.
  • railway companies and telecommunications companies are the main actors, and wireless base stations (for example, public wireless LAN access points) are being installed in public transportation facilities such as airports, stations, trains, and commercial facilities. Under such an environment, a high-precision positioning verification experiment for measuring the movement of people indoors and outdoors using a public wireless LAN or the like has been performed.
  • wireless base stations for example, public wireless LAN access points
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-120953
  • Patent Document 1 uses an acceleration sensor mounted on a portable terminal to determine arrival at a station or departure from a station based on a detection result of an acceleration detection unit and a determination result of a communication area determination unit. The technology is disclosed.
  • the method of distributing information acquired by the train operation management system to the passengers requires a system that attaches sensors to the train and collects the measured data via wireless, which requires installation and development costs. A large sum. Also, it is difficult for many railway companies to introduce and operate in a short time.
  • the object of the present invention has been made in view of the above point, and without collecting data from a passenger's portable terminal, to a wireless base station (for example, a public wireless LAN access point) installed in a station premises. It is to estimate the arrival and departure times of trains using connection information.
  • a wireless base station for example, a public wireless LAN access point
  • a typical example of the invention disclosed in the present application is as follows. That is, a traffic situation estimation system including a processor that executes a program and a storage device that stores the program, wherein a plurality of base stations of a wireless communication system are installed in a boarding facility for using a transportation means
  • the storage device stores connection information including a connection start location and a connection end location between a terminal possessed by a user of the transportation means and one of the plurality of base stations, and the processor
  • the number of terminals staying at the boarding / exiting facility for using the means of transportation is extracted by extracting terminals having different connection end locations from the connection information and multiplying the number of extracted terminals by a predetermined first coefficient.
  • the number of transportation means for example, trains
  • the number of transportation means for example, trains
  • problems, configurations, and effects other than those described above will become apparent from the description of the following embodiments.
  • Embodiments of the present invention will be described with reference to FIGS.
  • the Example of this invention estimates the time when a train arrives and departs at a station, and the number of users, this invention is applicable to the transportation means (for example, bus, ferry, etc.) which many people use.
  • the present invention can be applied to a taxi stand to estimate the degree of congestion at the stand (that is, the number of passengers waiting for the ride).
  • FIG. 1 is a diagram showing an outline of a public wireless LAN in a system according to an embodiment of the present invention.
  • the public wireless LAN is a service that provides connection to the Internet through a wireless LAN, and a user 101 connects to the Internet from an access point 102 from a mobile terminal 103 such as a notebook PC, smartphone, or tablet PC.
  • a mobile terminal 103 such as a notebook PC, smartphone, or tablet PC.
  • the range in which radio waves can reach from one access point is generally about several tens of e-mails. Therefore, a plurality of access points are often installed in large spaces such as large commercial facilities and stations.
  • the wireless LAN access point 102 and each mobile terminal communicate with a common SSID, thereby preventing interference and useless communication.
  • the connection start time and connection end time of each mobile terminal can be acquired.
  • FIG. 2 is a diagram showing the relationship between the public wireless LAN and the movement behavior in the station premises in the system of the embodiment of the present invention.
  • a public wireless LAN access point 102 in a station is installed near a ticket gate or on a platform, and the position of the mobile terminal can be roughly estimated from the radio wave intensity between each access point 102 and the mobile terminal.
  • the mobile terminal first connects to the access point 102A installed on the platform floor.
  • the user 101 heads for the ticket gate 104 to leave the station, the user 101 shifts to connection with the access point 102B installed near the ticket gate. In this way, by tracking the access point 102 to which each mobile terminal is connected in time series, it is possible to estimate the movement of passengers in the station premises.
  • a plurality of access points may be installed at the same installation location (for example, 3 units in the platform 1 platform).
  • FIG. 3 is a diagram showing a structure of a record for storing the public wireless LAN connection information 122 according to the embodiment of the present invention.
  • the public wireless LAN connection information 122 includes information such as an access point ID 211, a connection time 212, and a connection device ID 213 representing a connected mobile device ID, and is data of a device connected at the time.
  • the connection time 212 may hold records in units of seconds, or may be in units of several seconds. By maintaining the connection time in fine units, the estimation accuracy of the train arrival and departure times is increased. Since the connected device ID 213 only needs to be uniquely identifiable throughout the day, it may be anonymized by changing the ID provision rule every day.
  • the public wireless LAN connection information 122 holds data included in a predetermined time window as in stream data processing, and new data is added and data at the old time is deleted as time advances. Is done.
  • FIG. 4A is a diagram showing a configuration of the entire system according to the embodiment of the present invention
  • FIG. 4B is a diagram showing a configuration of the data server 111
  • FIG. 4C is a diagram showing a configuration of the calculation server 112.
  • automatic ticket gates 104 are installed in many railway stations, and the automatic ticket gates 104 read non-contact type IC cards (or portable terminals having equivalent functions) or magnetic tickets, thereby User 101 enters the station and leaves the station.
  • Information read by the automatic ticket checker 104 is transmitted to the data management server group 108 managed by the railway operator via the network 107 and stored as ticket pass data.
  • the public wireless LAN access point 102 installed near the ticket gate or on the platform transmits the connected device information to the data management server group 108 in real time as described above.
  • surveillance cameras 105 have been installed near the ticket gates and on platforms. The video data acquired by the monitoring camera 105 can be checked in real time via the network 107 at a command station that manages the operation of the railway.
  • the traffic situation estimation system 110 includes a data server 111, a calculation server 112, and an information distribution server 113, and collects, stores, and analyzes connected device information and ticket gate passage data of the public wireless LAN access point 102. Note that descriptions of functions, configurations, and data processing techniques of the wireless system and the ticket gate, which are not directly related to the description of the present embodiment, are omitted.
  • the video data and ticket gate passing data acquired by the monitoring camera 105 are transmitted to the data server 111 via the network 107 at the timing when new data is acquired or at predetermined time intervals (every hour, every other day, etc.). Is done.
  • a traffic situation estimation system 110 including a server group such as a data server 111, a calculation server 112, and an information distribution server 113 is used by a computer 117 and a passenger 115 used by a railway operator 116 via networks 107 and 114. Communication with the terminal 118 is possible.
  • the data server 111, the calculation server 112, and the information distribution server 113 are described as server groups. However, one or a plurality of servers may be configured to execute the functions of these server groups. .
  • the data server 111 is a computer mainly including a network interface, a processor, a memory, and a storage unit.
  • the memory includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element.
  • the ROM stores an immutable program (for example, BIOS).
  • BIOS basic input-output system
  • the RAM is a high-speed and volatile storage element such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor and data used when the program is executed.
  • the storage unit is configured by a large-capacity and non-volatile storage device such as a magnetic storage device (HDD), a CD-ROM drive, or a flash memory (SSD), and is used when executing a program executed by the processor and a program. Store the data. That is, the program is read from the storage unit, loaded into the memory, and executed by the processor.
  • a large-capacity and non-volatile storage device such as a magnetic storage device (HDD), a CD-ROM drive, or a flash memory (SSD)
  • the data server 111 receives the public wireless LAN connection information 122 and the ticket passer data 126 via the network 107 at a predetermined timing (predetermined update time interval) and records them in the data storage unit (DB) 121.
  • the storage unit includes a data storage unit (DB) 121.
  • the data storage unit 121 includes public wireless LAN connection information 122, master data 123 indicating a station structure, station premises movement data 124, train time data 125, ticket gate passing number data 126, train number data 127, station stay number data 128, and the like. Is stored.
  • the master data 123 is input and updated from the outside (for example, the computer 117 used by the railway operator 116) every time it is changed.
  • the station premises movement data 124, the train time data 125, the train number data 127, and the station stay number data 128 are result data generated by the calculation server 112.
  • the calculation server 112 uses the data group stored in the data server 111 to execute processing for estimating the train arrival and departure times.
  • the calculation server 112 is a computer mainly including a network interface (I / F (A)) 130, a processor (CPU) 131, a memory 132, and a storage unit 133.
  • the network interface 130 is an interface for connecting to the networks 107 and 114.
  • the processor 131 executes a program stored in the memory 132.
  • the memory 132 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element.
  • the ROM stores an immutable program (for example, BIOS).
  • BIOS basic input/output
  • the RAM is a high-speed and volatile storage element such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 131 and data used when the program is executed.
  • the storage unit 133 is configured by a large-capacity and non-volatile storage device such as a magnetic storage device (HDD), a CD-ROM drive, or a flash memory (SSD), for example, and is used when executing the program executed by the processor 131 and the program. Data to be stored. That is, the program is read from the storage unit 133, loaded into the memory 132, and executed by the processor 131.
  • the storage unit 133 includes a station premises movement data generation program 134, a train time estimation program 135, a train delay degree calculation program 136, a rebate coefficient calculation program 137, a train passenger count calculation program 138, and a station stay count calculation.
  • a data storage unit (DB) 152 that stores programs such as the program 139 and data such as the rebate coefficient table 153 and stores intermediate data generated in the course of calculation processing is included.
  • the data server 111 may store the rebate coefficient table 153 instead of the calculation server 112.
  • a plurality of recording devices may be provided, and a program or data may be divided and recorded on a plurality of recording devices.
  • data to be analyzed is acquired from the data server 111 and temporarily stored in the memory 132, and the processor 131 reads the programs 134, 135, 136, 137, 138, and 139 from the memory 132 and executes them. By doing so, various functions are realized. These programs may be automatically executed according to a predetermined time interval (for example, every few seconds, every few minutes, etc.).
  • the information distribution server 113 is a computer having a network interface (I / F (B)) 145, a processor (CPU) 146, a memory 147, and a storage unit 148.
  • the network interface 145 is an interface for connecting to the networks 107 and 114.
  • the processor 146 executes a program stored in the memory 147.
  • the memory 147 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element.
  • the ROM stores an immutable program (for example, BIOS).
  • BIOS basic input/output
  • the RAM is a high-speed and volatile storage element such as DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 146 and data used when the program is executed.
  • the storage unit 148 is configured by a large-capacity non-volatile storage device such as a magnetic storage device (HDD), a CD-ROM drive, or a flash memory (SSD), for example, and is used when executing the program executed by the processor 131 and the program. Data to be stored. That is, the program is read from the storage unit 148, loaded into the memory 147, and executed by the processor 146. Specifically, the storage unit 148 stores programs such as the condition acquisition program 141 and the information distribution program 142 and intermediate data generated in the course of calculation processing.
  • HDD magnetic storage device
  • CD-ROM drive CD-ROM drive
  • SSD flash memory
  • the information distribution server 113 is accessed via the networks 114 and 151 from the terminal 120 used by the system operator 119, the computer 117 used by the railway operator 116, and the terminal 118 used by the passenger 115, and provides information.
  • information provided by the information distribution server 113 includes information for setting conditions related to user verification and screen display, estimation results of the number of people staying at a station, and the computer or terminal basically accesses the information distribution server 113. Provided at the timing.
  • the system operator 119 who operates the traffic situation estimation system 110 uses the terminal 120 to transmit the configuration and situation of data stored in the traffic situation estimation system 110 via the network 151, the situation and calculation result of the calculation server 112, You can check the status of search requests from users.
  • Each server 111, 112, 113 may have an input interface and an output interface.
  • the input interface is an interface that is connected to a keyboard, a mouse, and the like and receives input from an operator.
  • the output interface is an interface that is connected to a display device, a printer, or the like and outputs the execution result of the program in a form that can be visually recognized by the operator.
  • a program executed by the processors 131 and 146 of each server is provided to each server 112 and 113 via a removable medium (CD-ROM, flash memory, etc.) or a network, and is a non-volatile storage device that is a non-temporary storage medium 133 and 148. For this reason, each of the servers 112 and 113 may have an interface for reading data from a removable medium.
  • Each of the servers 111, 112, and 113 is a computer system that is configured on a single physical computer or a plurality of logically or physically configured computers, and is a separate thread on the same computer. It may operate on a virtual machine constructed on a plurality of physical computer resources.
  • FIG. 5 is a diagram illustrating a data structure of the master data 123 stored in the data server 111 according to the embodiment of this invention.
  • the master data 123 includes information such as installation location information 170 indicating the installation location of the access point 102, movement pattern definition information 180 within the station premises, and a train plan timetable 190.
  • the installation location information 170 of the access point 102 is data representing the location where the access point 102 of the public wireless LAN is installed, including information such as an access point ID 171, installation station name 172, and installation location details 173.
  • an access point ID 171 an access point ID 171
  • installation station name 172 an installation station name 172
  • installation location details 173 an installation location details 173.
  • the station premises movement definition information 180 includes information such as a station name 181, a connection start location 182, a connection end location 183, and a type 184. For each combination of the public wireless LAN connection start location and connection end location in the station premises, the behavior is defined. Data classified into types. The type 184 can be classified into three types: boarding, getting off, and boarding. Further, when a plurality of access points 102 are installed on the platform, it can be estimated that each mobile terminal is located on the platform, so that the mobile terminal stays in addition to the information of the type 184 of getting on and getting off. Information on the location on the platform may be added. By doing so, it becomes possible to perform detailed analysis such as the number of doors on the train where each mobile terminal got on and off.
  • the train schedule time table 190 includes information such as a station name 191, a train ID 192, a stop location 193, a date 194, an arrival time 195, and a departure time 196, and is data representing the order of trains that arrive and depart each platform at each station.
  • the railway operator decides an operation schedule in advance for vehicle operation, driver arrangement, and the like, and manages schedule diagram information indicating the timing at which the train is operated.
  • the train schedule timetable 190 may record the schedule information as it is, or may extract and record necessary information.
  • the train plan timetable 190 may be updated sequentially at the timing when the plan schedule is formulated and updated, or may be updated by a batch process executed at a predetermined time. Since the operation schedule may be changed depending on the day of the week or the season, the day 194 is used to identify which day the operation schedule is.
  • FIG. 6 is a diagram illustrating a data structure of the station premises movement data 124 stored in the data server 111 according to the embodiment of this invention.
  • the station premises movement data 124 is generated from the public wireless LAN connection information 122.
  • the in-station movement data 124 includes information such as the connected device ID 231, station name 232, date 233, connection start time 234, connection start location 235, connection end time 236, and connection end location 237, and each mobile terminal is connected within the station premises. This is data representing the time and place at which the connection is started and the time and place at which the connection is finished.
  • the action type in the station premises of each mobile terminal is determined. Can be sought.
  • FIG. 7 is a flowchart of processing in which the station premises movement data generation program 134 of the embodiment of the present invention generates the station premises movement data 124.
  • step 302 the value of the connection time 212 is referred to, and the data is divided at a place where an interval of t minutes or more is available (step 303).
  • the threshold t is generally a time interval for passengers to use the station, and may be defined between several tens of minutes to several hours, or an accurate time interval may be obtained using public wireless LAN information. That is, one set of connection start time and connection end time generated in step 302 is divided into a plurality of sets of connection start time and connection end time in step 302.
  • connection start time and another connection end time may be combined, and the connection end time and another connection start time may be combined.
  • step 304 The following processing is repeated using the divided data (step 304).
  • the value of the connection time 212 is obtained from the first record and is held as the connection start time (step 305). Further, the value of the access point ID 211 is obtained from the first record, and the station name and installation location are searched with reference to the installation location information 220 included in the master data 123 (step 306).
  • the value of the connection time 212 is acquired from the last record and held as the connection end time (step 307). Further, the value of the access point ID 211 is obtained from the last record, and the station name and the installation location are searched with reference to the installation location information 220 included in the master data 123 (step 308). Note that when a plurality of access points are installed at the same installation location (for example, three in the home of the No. 1 line), the installation locations of the plurality of access points are handled as the same in the above processing.
  • the information on the connected device ID, the acquired station name, the connection start time, the connection start location, the connection end time, and the connection end location is stored in the station premises movement data 124 (step 309).
  • the date information stores the date of the current time.
  • FIG. 8 is a diagram for explaining a method of estimating the departure / arrival time of a train and the number of passengers on the train from the in-station movement data 124 according to the embodiment of the present invention.
  • the following three objects are estimated using the station premises movement data 124.
  • the mobile terminal owned by the passenger on the train starts connection to the access point 102 installed at the station when the train arrives at the station. For this reason, by creating a histogram with the number of connected devices that have started connection on the platform and analyzing the time series change, the arrival time of the train is detected as shown in “A. Detection of arrival time of train”. be able to. Similarly, by analyzing a time-series change in the number of connected devices that have ended connection on the platform, the departure time of the train can be detected as shown in “B. Detection of departure time of the train”.
  • connection device having the same platform as the connection start location and the connection end location of the in-station movement data 124 is a passenger who is on the train.
  • the number of people on the train can be detected as shown in “C. Detection of the number of people on the train”.
  • the histogram may include noise.
  • Noise can be filtered by removing data with the number of devices less than a predetermined threshold.
  • the threshold value used for filtering may be a fixed value or a dynamically changing value (for example, an average value for a predetermined period before the time). Further, noise may be filtered by removing data whose appearance time width in the histogram is shorter than a predetermined time.
  • FIG. 9 is a diagram illustrating a data structure of the train time data 125 stored in the data server 111 according to the embodiment of this invention.
  • the train time data 125 includes information such as a station name 241, a train ID 242, a station premises 243, a date 244, an arrival time 245 and a departure time 246, and is data representing arrival / departure time information of each train.
  • the train time data 125 stores the result of estimating train arrival / departure information using the station premises movement data 124.
  • FIG. 10 is a flowchart of a process in which the train time estimation program 135 according to the embodiment of the present invention estimates the train arrival and departure times from the station premises movement data 124.
  • the train time estimation program 135 is executed for each station.
  • step 402 referring to the station name 181 of the station premises movement definition information 180 included in the master data 123, all records including the corresponding station are extracted (step 401). Then, the following processing is repeated for all the extracted records (definition patterns) (step 402).
  • step 402 all the records corresponding to the definition pattern are extracted with reference to the connection start location 235 and the connection end location 237 of the station premises movement data 124 (step 403).
  • a record number histogram is created in accordance with a predetermined time unit (step 404). As shown in FIG. 8, when estimating the arrival time of a train, attention is paid to passengers who get off the train to the platform, and a histogram is created using the connection start time 234. Further, when estimating the departure time of the train, attention is paid to passengers who have left the station on the train, and a histogram is created using the connection end time 236.
  • the time unit for creating the histogram is determined in advance from several seconds to several tens of seconds according to the target station and the target time zone. For example, in a station or time zone with a large number of connected devices, a train created in a short time (for example, every second) can detect the arrival and departure times of trains with high accuracy, but in a station or time zone with a small number of connected devices.
  • the data may be collected for a long time (for example, every several tens of seconds).
  • step 405 data is detected from the histogram, train IDs are assigned in the order of detection (step 405), and stored in the train time data 125 (step 406).
  • the detection of data from the histogram may be performed by detecting peaks, rising edges, and falling edges from the histogram. For example, when the peak is detected, the arrival time of the train can be accurately estimated. Moreover, when the rising edge is detected, the departure time of the train can be accurately estimated.
  • the train plan timetable 190 When the train plan timetable 190 is available as the master data 123, the train arrival time 195 or the planned departure time 196 is compared with the estimated time, the train ID 192 having the closest departure / arrival time is searched, and the train You may store in train ID242 of the time data 125. When the difference between the train operation status on the day and the plan is small, it is more useful for analyzing the delay for each train to give the planned train ID.
  • FIG. 11 is a flowchart of a process in which the train delay degree calculation program 136 according to the embodiment of the present invention calculates a train delay.
  • the train delay degree calculation program 136 uses the train time data 125 to calculate the delays of all trains operated on a certain day. First, all the records of the specified date are extracted from the train time data 125 (step 501), rearranged using the station name 241, train ID 242, and station premises 243 as keys (step 502), and the following processing is performed for all records. Repeat (step 503).
  • step 503 when the train ID is given using the train plan timetable 190 in the process of generating the train time data (125), the delay is simply compared with the planned arrival time and departure time. Specifically, a record including the corresponding train ID is extracted from the train plan timetable 190 (step 504), and a train arrival time value ATplan and a train departure time value DTplan are acquired (step 505). Further, the train arrival time value AT and the train departure time value DT are acquired from the train time data 125 (step 506). Finally, the ATplan is subtracted from the AT to calculate the train arrival time delay, and the DTplan is subtracted from the DT to calculate the train departure time delay (step 507).
  • the train ID when the train ID is given according to the arrival order of the train for each station and each platform in the process of generating the train time data 125, the combination of the station name 241, the train ID 242 and the station premises 243 is the same in the past predetermined period.
  • the record may be extracted from the train time data 125, the average value of the train arrival times may be calculated as ATplan, and the average value of the train departure times may be calculated and compared as DTplan with the train arrival time AT and the train departure time DT. By using the average value, the train arrival time and the train departure time delay can be obtained without the train plan timetable 190.
  • FIG. 12 is a diagram showing a data structure of the ticket passing number data 126 stored in the data server 111 according to the embodiment of this invention.
  • the ticket gate passing number data 126 includes information such as a station name 251, a date 252, a time zone 253, a type 254, and a passing number 255, and is data representing the number of passengers who have passed the ticket gate of the station.
  • the ticket passing number data 126 can be created by counting the passing records of the automatic ticket gate 104 and IC ticket data. Alternatively, a person may be detected from video captured by the monitoring camera 105 installed near the ticket gate using image analysis technology or signal analysis technology, and the number of people passing through the ticket gate may be counted.
  • the data server 111 may execute the process of calculating the number of passing ticket gates by video analysis or signal analysis, or may be processed outside the system.
  • a statistical value for example, an average value obtained from the already stored ticket passer data 126 may be used.
  • the number of passing people may be recorded separately for the visitors and the participants, or the total value may be recorded without dividing the visitors and the participants.
  • the unit of the time zone 253 is determined in advance from several minutes to several hours.
  • the ticket gate passing number data 126 is necessary for estimating the total number of passengers using the station. Because some passengers do not use the public wireless LAN and have a plurality of mobile terminals alone, the number of connected devices and the total number of passengers obtained from the public wireless LAN connection information 122 Because they are not equal. The ratio of public wireless LAN connected devices and the total number of passengers will vary slightly depending on the station and time zone, as the percentage of people with mobile devices will increase at the nearest stations and commuting hours in the business district. It is done.
  • FIG. 13 is a diagram illustrating a data structure of the rebate coefficient table 153 stored in the calculation server 112 according to the embodiment of this invention.
  • the rebate coefficient table 153 includes data on the station name 261, the time zone 262, and the coefficient 263, and is data representing the ratio between the number of public wireless LAN connected devices and the total number of passengers.
  • the granularity of the time zone 262 may be aligned with the time zone 253 of the ticket gate passing number data 126.
  • the rebate coefficient table 153 may record different coefficients depending on day attributes such as weekdays and holidays. Further, the rebate coefficient table 153 may record different coefficients depending on the action type, such as boarding, getting off, getting on the train, and staying at the station. Furthermore, the rebate coefficient table 153 may record different coefficients depending on the location within the station. By subdividing the rebate coefficient table 153, the number of persons can be estimated more accurately.
  • FIG. 14 is a flowchart of processing for generating the rebate coefficient table 153 by the rebate coefficient calculation program 137 according to the embodiment of this invention.
  • the rebate coefficient calculation program 137 need not be executed every day, but may be executed at a predetermined timing (once every several days, once every several weeks, etc.).
  • a record for the corresponding period is extracted from the ticket passing number data 126 and the station premises movement data 124 (step 601).
  • a certain day may be designated as the relevant period, or a plurality of days may be designated. However, it is preferable to use data on the day when both the ticket gate passing number data 126 and the station premises movement data 124 exist. Although it is preferable to use the ticket gate passing number data 126 and the station premises movement data 124 on the same day, the statistical values (for example, average values) of the ticket gate passing number data 126 and the station premises movement data 124 on the same day are used. Also good. Next, the following processing is repeated for all stations (step 602).
  • the station premises movement data 124 is totaled according to the granularity of the time zone 253 of the ticket passing number data 126, and the number N of connected devices in each time zone is obtained (step 603).
  • the time information used for counting may be the connection start time 234 or the connection end time 236.
  • step 604 the following processing is repeated for all time zones.
  • step 604 the record of the corresponding station and time zone is extracted from the ticket gate passing number data 126, and the passing number T is acquired (step 605).
  • the ticket gate passing number data 126 is stored separately for entrance and exit, the total value is calculated.
  • T ⁇ N is calculated, and the calculated coefficient is stored in the rebate coefficient table 153 (step 606).
  • FIG. 15 is a diagram illustrating a data structure of the train number data 127 stored in the data server 111 according to the embodiment of this invention.
  • the train number data 127 includes information such as a station name 271, a train ID 272, a station premises 273, a date 274, a type 275, and a number 276, and is data representing the number of passengers on each train, the number of people getting off, and the number of people on the train. .
  • As the type 275 one of the three types of getting on, getting off, and getting on is recorded.
  • FIG. 16 is a flowchart of a process in which the train passenger counting program 138 according to the embodiment of the present invention generates the train passenger number data 127.
  • the train passenger number counting program 138 is executed on a daily basis and on a station basis based on information input from the outside, and generates train number data 127 using the station premises movement data 124.
  • a record of a corresponding day and a corresponding station is extracted from the station premises movement data 124 (step 701). The following process is repeated for all the extracted records (step 702).
  • step 702 the combination of the station name 232, the connection start location 235, and the connection end location 237 of the station premises movement data 124 is used as a key to refer to the station premises movement definition information 180 and extract the corresponding type 184 (step 702). 703).
  • step 703 the train time data 125 is referred to, and the train estimated to be used by the passenger who owns the connected device is specified (step 704).
  • the type 184 is “boarding”, paying attention to the connection end location 237 and the connection end time 236, referring to the departure time 246 of the train time data 125, the difference between the connection end time 236 and the departure time 246.
  • the type 184 when the type 184 is “get off”, paying attention to the connection start location 235 and the connection start time 234, referring to the arrival time 245 of the train time data 125, the difference between the connection start time 234 and the arrival time 245 Train ID of the train with the smallest (or less than a predetermined threshold).
  • the train ID is acquired by a method such as comparing the connection start time 234 with the arrival time 245 of the train time data 125 and determining whether it is within a predetermined threshold. At this time, the connection end time 236 and the departure time 246 of the train time data 125 may be compared.
  • the rebate coefficient table 153 is referred to and a rebate coefficient is acquired (Step 705).
  • a rebate coefficient is acquired in consideration of the day of the week on the date of the day.
  • the record of “station name, train ID, date, type” corresponding to the record of the train number data 127 is included. If the train number data 127 includes a record of “station name, train ID, date, type”, the value of “rebate coefficient ⁇ 1” is added to the number data. If the train number data 127 does not include the corresponding “station name, train ID, date, type” record, a new record is created, and “rebate coefficient ⁇ 1” is recorded as the number of people.
  • FIG. 17 is a diagram showing a data structure of station staying number data 128 stored in the data server 111 of the embodiment of the present invention.
  • the station staying number data 128 includes information such as the station name 281, the station premises location 282, the date 283, the time zone 284, and the staying number 285, and is data representing the number of staying persons in the station and the station premises.
  • the division of the time zone 284 may be defined in advance between several seconds to several hours. If the station staying number data 128 is generated with a fine granularity such as several seconds or several minutes, it is possible to accumulate the short-term changes in the congestion in the station yard accompanying the arrival and departure of the train.
  • FIG. 18 is a flowchart of a process in which the staying person totaling program 139 according to the embodiment of the present invention generates station staying person data 128.
  • the station staying person totaling program 139 is executed on a daily basis and on a station-by-station basis based on information input from the outside in the same manner as the train passenger numbering totaling program 138. 128 is generated.
  • a record of a corresponding day and a corresponding station is extracted from the movement data 124 in the station (step 801). The following process is repeated for all the extracted records (step 802).
  • connection start location 235 and the connection end location 237 are acquired from the station premises movement data 124, and it is determined whether the connection start location 235 and the connection end location 237 are the same (step 803).
  • a record in which the connection start place 235 and the connection end place 237 are the same is presumed to belong to a passenger on the train, and the process is skipped so as not to be counted as a staying person at the station (step 808).
  • connection start location 235 and the connection end location 237 are different, the number of staying persons is counted for each connection start location and connection end location.
  • the connection start time 234 is acquired, and the corresponding time zone is obtained in accordance with the granularity of the time zone of the station staying person data 128 (step 804). Then, it is searched whether there is a record of “station name, connection start location, date, time zone” in the station residence number data 128. If the corresponding record exists, the rebate coefficient table 153 is referred to and the rebate coefficient value is added. If there is no corresponding record, a new record is added to the station staying number data 128 (step 805).
  • connection end time 236 is acquired, and the corresponding time zone is obtained according to the granularity of the time zone of the station staying person data 128 (step 806). Then, it is searched whether there is a record of “station name, connection end location, date, time zone” in the station residence number data 128. If the corresponding record exists, the rebate coefficient table 153 is referred to and the rebate coefficient value is added. If there is no corresponding record, a new record is added to the station residence number data 128 (step 807).
  • FIG. 19 is a diagram illustrating an example of a screen 1001 distributed by the information distribution server 113 according to the embodiment of this invention.
  • a screen 1001 is a screen distributed to the terminal 120 of the system operator 119 and the computer 117 of the railway operator 116, and displays, for example, the current train delay status, train congestion status, station congestion status, and the like.
  • the screen 1001 includes a map display area 1011, a ranking display area 1012, and a graph display area 1013.
  • the map display area 1011 the number of people staying at the station corresponding to the degree of congestion of the station and the number of passengers on the train corresponding to the degree of congestion of the train are displayed on the map.
  • the ranking display area 1012 the number of people staying and the number of passengers are displayed in ascending or descending order.
  • the graph display area 1013 the number of people staying and the number of passengers from the first departure on the day to the current time are displayed in a time series graph.
  • a warning 1014 that informs the user of the abnormality may be displayed.
  • a certain date in the past is specified and displayed, the date and time when the data is displayed may be displayed on the screen.
  • Information on the number of people staying at the station and the number of trains is communicated to the user in an easy-to-understand manner by changing the display mode of the stations and trains (for example, the size and color of the images) based on a predetermined leveling definition. be able to.
  • information on the number of people staying at the station and the number of trains may be displayed in text.
  • the stations may be sorted and displayed in a table format in the order of congestion throughout a certain time period or one day.
  • information for business improvement such as reviewing operation plans and planning measures to eliminate congestion at stations.
  • These screens can be operated using an input interface such as a mouse or keyboard. For example, you can use the wheel buttons to zoom in / out the map screen, select a station or train with a mouse click, Detailed information such as operation results may be displayed.
  • FIG. 20 is a diagram illustrating an example of a screen 1020 that is distributed to the terminal 118 by the information distribution server 113 according to the embodiment of this invention.
  • the screen 1020 is a screen distributed to the terminal 118 of the passenger 115.
  • the mobile terminal 118 of the passenger 115 needs to configure the screen in consideration of the characteristics that the screen size is small and the resolution is low.
  • the screen 1020 includes an interface 1021 for selecting a route, a direction, and a station, and an information display area 1022 having a scroll function. For this reason, the user can easily select a station or train for which information is desired.
  • station information close to the current location of the user may be selected and displayed.
  • the screen 1020 displays the delay situation of the train that will arrive at the station where the user is staying and the congestion situation. Thereby, the user can determine whether to get on the next train or on the next train.
  • FIG. 21 is a diagram illustrating an example of a screen 1110 for setting conditions for information distributed by the information distribution server 113 according to the embodiment of this invention.
  • the condition setting screen 1110 is a screen displayed on the computer 117 of the railway operator 116, the terminal 118 of the passenger 115, and the terminal 120 of the system operator 119.
  • a request is transmitted to the information distribution server 113 by directly inputting or selecting a search target station 1111, a search target date 1112, or the like using a pull-down menu and operating an execution button 1113.
  • These display conditions can be set by the user using an input interface such as a mouse, a keyboard, or a touch panel.
  • one of each of the target route, the station, and the target date can be selected, but an interface for selecting a plurality of options simultaneously may be adopted.
  • FIG. 22 is a flowchart of information distribution processing according to the embodiment of this invention.
  • the information distribution server 113 executes an information distribution process.
  • the condition input on the search condition setting screen 1100 is acquired from the received request (step 1200).
  • records corresponding to the stations and dates to be counted are extracted from the train time data 125, the train number data 127, and the station staying number data 128 according to the input search conditions (step 1201).
  • the extracted record is processed into a format such as a time series graph or mapping to a map screen, and distributed to the device that transmitted the request (step 1202).
  • the information distribution server 113 may create a distribution screen by combining a plurality of programs in accordance with the characteristics of the distribution destination device and the content of the information to be distributed.
  • the technology of a web server can be used for screen distribution, and information distributed can be viewed by a web browser executed by a distribution destination apparatus.
  • a dedicated application executed on the distribution destination device may create a screen to be displayed using the data transmitted from the information distribution server 113.
  • the embodiment of the present invention it is possible to estimate the time when the train (transportation means) arrives at the station (alighting facility) and the time when the train leaves the station.
  • the number of people on the train, the number of people who get off the train, and the number of people on the train can be estimated.
  • by accumulating estimated values of train arrival / departure times, number of passengers, and number of people staying at the station, and calculating average values it is possible to know whether train delays and congestion are abnormal than usual.
  • a terminal having a different connection start location and connection end location is extracted from the public wireless LAN connection information 122, and the number of extracted terminals is multiplied by a rebate coefficient to obtain a transportation means (eg, train, bus, etc.).
  • a transportation means eg, train, bus, etc.
  • the number of people staying at boarding / exiting facilities is estimated in order to use a ferry, taxi, etc., so it is possible to know the degree of congestion of stations, etc. without making large capital investments. For this reason, when a plurality of stations are available, the passenger can select and use a vacant station.
  • Transportation operators can ensure the safety of stations, etc. by assigning personnel or regulating the number of people according to the congestion level of stations.
  • many transportation means can be dispatched to crowded platforms to reduce congestion in a short time.
  • the number of terminals using the transportation means is extracted by extracting from the public wireless LAN connection information 122 terminals whose connection start location and connection end location are the same, and multiplying the number of extracted terminals by a rebate coefficient. Therefore, it is possible to know the degree of congestion of trains and the like without making a large capital investment. Passengers can select and use available trains. Transportation companies can use it as basic data when planning congestion mitigation measures (for example, schedule revisions).
  • the time from the connection start time to the connection end time of the same terminal acquired from the public wireless LAN connection information 122 is equal to or longer than the predetermined time t, the time from the connection start time to the connection end time is divided. It is possible to estimate the exact number of people by appropriately dividing the data of users who used a station multiple times.
  • connection data between the base station and the terminal installed at the landing is obtained from the public wireless LAN connection information 122, and the statistical processing of the data is used to determine the time when the number of terminals that started the connection is large. Since the estimated time is the arrival time of the transportation means, it is possible to know the operation status (delay) of the train without making a large capital investment. The passenger can know the delay of the train before going to the station. Transportation companies can use the daily arrival time data as basic data for timetable improvement.
  • connection data between the base station and the terminal installed at the landing is obtained from the public wireless LAN connection information 122, and the statistical processing of the data determines the time when the number of terminals that have completed the connection is large. Since the time is estimated to be the departure time of the transportation means, it is possible to know the operation status (delay) of the train without making a large capital investment. The passenger can know the delay of the train before going to the station. Transportation companies can use the daily arrival time data as basic data for timetable improvement.
  • connection data since at least one of data less than a predetermined number and data whose appearance time is shorter than a predetermined time in a unit time is excluded, it is possible to accurately extract data resulting from the arrival and departure of transportation means. It is possible to prevent erroneous detection of time.
  • the average value of the estimated arrival time or departure time in a predetermined period is calculated, and the delay of the means of transportation is estimated by the difference between the calculated average value and the estimated arrival time or departure time. You can know the delay without a table.
  • a traffic situation estimation system comprising a processor that executes a program and a storage device that stores the program, Multiple base stations for wireless communication systems are installed at boarding facilities to use transportation means, At least one of the base stations is installed at a place of getting on and off of the transportation means,
  • the storage device stores connection information including a connection start location and a connection end location between a terminal possessed by a user of the transportation means and any of the plurality of base stations,
  • the processor is A terminal whose connection start location and connection end location are the same boarding / exiting location is extracted from the connection information,
  • a traffic situation estimation system for estimating the number of people using a transportation means by multiplying the number of extracted terminals by a predetermined second coefficient.
  • a traffic situation estimation system comprising a processor that executes a program and a storage device that stores the program
  • the base station of the wireless communication system is installed at the landing of the transportation means in a boarding facility for using the transportation means
  • the storage device stores connection information including a connection start location and a connection start time between a terminal possessed by a user of the transportation means and any of the plurality of base stations
  • the processor is By statistical processing of connection data between the base station and the terminal installed at the landing included in the connection information, determine the time when the number of terminals that started connection is large, A traffic situation estimation system for estimating the determined time as an arrival time of a transportation means.
  • a traffic situation estimation system comprising a processor that executes a program and a storage device that stores the program
  • the base station of the radio communication system is installed at the boarding place of the transportation means at the boarding facility for using the transportation means
  • the storage device stores connection information including a connection end location and a connection end time between a terminal possessed by a user of the transportation means and any of the plurality of base stations
  • the processor is By the statistical processing of the connection data between the base station and the terminal installed at the landing included in the connection information, determine the time when the number of terminals that have terminated the connection is large, A traffic situation estimation system for estimating the determined time as a departure time of a transportation means.
  • the present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • another configuration may be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

This traffic situation estimation system is provided with a processor that executes a program, and a storage device that stores the program, wherein: a plurality of base stations of a wireless communication system are installed in a boarding facility for using a means of transportation; the storage device stores connection information including places where connection has been initiated and terminated between one of the base stations and terminals owned by users of the means of transportation; and the processor extracts, on the basis of the connection information, terminals of which the places where connection has been initiated and terminated are different, and estimates the number of users staying at the boarding facility in order to use the means of transportation, by multiplying the number of extracted terminals by a prescribed first coefficient.

Description

交通状況推定システム及び交通状況推定方法Traffic situation estimation system and traffic situation estimation method
 本発明は、交通状況を推定するシステムに関する。 The present invention relates to a system for estimating traffic conditions.
 鉄道事業者は高品質な輸送サービスを乗客に提供するために、列車の遅延や混雑、駅の混雑などの運行状況をリアルタイムに配信するサービスの実現に取り組んでいる。日本の鉄道会社は、東京近郊において、列車の運行管理システムが取得した列車の走行位置情報や、列車に取り付けられているセンサが測定した乗車人員情報を収集し、列車の遅れや混雑などの情報を乗客に配信するサービスを始めている。 Railway operators are working on the realization of a service that delivers real-time service status such as train delays, congestion, and station congestion in order to provide passengers with high-quality transportation services. A Japanese railway company collects train location information acquired by train operation management systems and passenger information measured by sensors attached to trains in the suburbs of Tokyo, and provides information such as train delays and congestion. Has started a service to deliver to passengers.
 また、特に鉄道会社や通信会社が主体となって、空港、駅、列車などの公共交通機関や商業施設などに、無線基地局(例えば、公衆無線LANアクセスポイント)の設置が進められている。このような環境下で、公衆無線LAN等を用いて屋内外の人の移動を測定する高精度測位の実証実験が行われている。 Also, particularly, railway companies and telecommunications companies are the main actors, and wireless base stations (for example, public wireless LAN access points) are being installed in public transportation facilities such as airports, stations, trains, and commercial facilities. Under such an environment, a high-precision positioning verification experiment for measuring the movement of people indoors and outdoors using a public wireless LAN or the like has been performed.
 本技術分野の先行技術として特許文献1(特開2007-120953号公報)がある。特許文献1は、携帯端末に搭載された加速度センサを使用して、駅への到着、駅からの出発を、加速度検出手段の検出結果と、通信圏判別手段の判別結果とに基づいて判別する技術を開示している。 There is Patent Document 1 (Japanese Patent Laid-Open No. 2007-120953) as a prior art in this technical field. Patent Document 1 uses an acceleration sensor mounted on a portable terminal to determine arrival at a station or departure from a station based on a detection result of an acceleration detection unit and a determination result of a communication area determination unit. The technology is disclosed.
特開2007-120953号公報Japanese Patent Laid-Open No. 2007-120953
 前述したように、列車の運行管理システムが取得した情報を乗客に配信する方法では、列車にセンサを取り付け、計測したデータを無線を介して収集するシステムが必要であり、設置や開発のコストが多額となる。また、多くの鉄道会社が短期に導入し、運用することは困難である。 As described above, the method of distributing information acquired by the train operation management system to the passengers requires a system that attaches sensors to the train and collects the measured data via wireless, which requires installation and development costs. A large sum. Also, it is difficult for many railway companies to introduce and operate in a short time.
 一方、高精度測位を用いると、携帯端末を所有している乗客の駅構内における位置を追跡できるため、乗客が列車に乗ったかを判定でき、列車の発着時刻をリアルタイムに測定できる。しかし、列車の発着時刻を測定するためには、各列車に乗る乗客を少なくとも一人以上検出する必要がある。また、特許文献1の方法を用いると、個人が所有している携帯端末で測定した加速度データを用いて列車が駅に到着した時刻を検出できるが、全ての駅及び全ての列車の発着時刻を検出するためには、多くの乗客の携帯端末で計測した加速度データを収集して分析する必要がある。従って、特許文献1に記載の方法で全ての列車の発着時刻を検出するためには、専用のアプリやセンサを搭載した携帯端末の所有者を全ての列車に配置して、データを収集する必要がある。 On the other hand, if high-precision positioning is used, the position of the passenger who owns the mobile terminal in the station premises can be tracked, so it is possible to determine whether the passenger has got on the train and to measure the arrival and departure times of the train in real time. However, in order to measure the train arrival and departure times, it is necessary to detect at least one passenger on each train. Moreover, if the method of patent document 1 is used, although the time when a train arrived at a station can be detected using the acceleration data measured with the portable terminal which an individual owns, the arrival and departure times of all the stations and all the trains are detected. In order to detect, it is necessary to collect and analyze the acceleration data measured by the mobile terminals of many passengers. Therefore, in order to detect the arrival and departure times of all trains by the method described in Patent Document 1, it is necessary to arrange the owners of portable terminals equipped with dedicated applications and sensors in all trains and collect data. There is.
 本発明の目的は、かかる点を鑑みてなされたものであり、乗客の携帯端末からデータを収集することなく、駅構内に設置されている無線基地局(例えば、公衆無線LANアクセスポイント)への接続情報を用いて、列車の発着時刻を推定することである。 The object of the present invention has been made in view of the above point, and without collecting data from a passenger's portable terminal, to a wireless base station (for example, a public wireless LAN access point) installed in a station premises. It is to estimate the arrival and departure times of trains using connection information.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、プログラムを実行するプロセッサと、前記プログラムを格納する記憶デバイスとを備える交通状況推定システムであって、無線通信システムの基地局が、輸送手段を利用するための乗降施設に複数設置されており、前記記憶デバイスは、前記輸送手段の利用者が所持する端末と前記複数の基地局のいずれかとの接続開始場所及び接続終了場所を含む接続情報を格納しており、前記プロセッサは、接続開始場所と接続終了場所とが異なる端末を前記接続情報から抽出し、前記抽出された端末の数に所定の第1の係数を乗じることによって、輸送手段を利用するために前記乗降施設に滞留する人数を推定する。 A typical example of the invention disclosed in the present application is as follows. That is, a traffic situation estimation system including a processor that executes a program and a storage device that stores the program, wherein a plurality of base stations of a wireless communication system are installed in a boarding facility for using a transportation means The storage device stores connection information including a connection start location and a connection end location between a terminal possessed by a user of the transportation means and one of the plurality of base stations, and the processor The number of terminals staying at the boarding / exiting facility for using the means of transportation is extracted by extracting terminals having different connection end locations from the connection information and multiplying the number of extracted terminals by a predetermined first coefficient. presume.
 本発明の一態様によれば、輸送手段(例えば、列車)の利用者数を推定できる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to one aspect of the present invention, the number of transportation means (for example, trains) users can be estimated. Problems, configurations, and effects other than those described above will become apparent from the description of the following embodiments.
本発明の実施例のシステムにおける公衆無線LANの概要を示す図である。It is a figure which shows the outline | summary of the public wireless LAN in the system of the Example of this invention. 本発明の実施例のシステムにおける公衆無線LANと駅構内の移動行動の関係を示す図である。It is a figure which shows the relationship between public wireless LAN and the movement action in a station premises in the system of the Example of this invention. 本発明の実施例の公衆無線LAN接続情報を格納するレコードの構造を示す図である。It is a figure which shows the structure of the record which stores the public wireless LAN connection information of the Example of this invention. 本発明の実施例のシステム全体の構成を示す図である。It is a figure which shows the structure of the whole system of the Example of this invention. 本発明の実施例のデータサーバの構成を示す図である。It is a figure which shows the structure of the data server of the Example of this invention. 本発明の実施例の計算サーバの構成を示す図である。It is a figure which shows the structure of the calculation server of the Example of this invention. 本発明の実施例のマスタデータのデータ構造を示す図である。It is a figure which shows the data structure of the master data of the Example of this invention. 本発明の実施例の駅構内移動データのデータ構造を示す図である。It is a figure which shows the data structure of the station premises movement data of the Example of this invention. 本発明の実施例の駅構内移動データ生成処理のフローチャートである。It is a flowchart of the station premises movement data generation process of the Example of this invention. 本発明の実施例の列車の発着時刻及び列車の乗車人数を推定する方法を説明する図である。It is a figure explaining the method of estimating the departure / arrival time of the train of the Example of this invention, and the number of passengers of a train. 本発明の実施例の列車時刻データのデータ構造を示す図である。It is a figure which shows the data structure of the train time data of the Example of this invention. 本発明の実施例の列車発着時刻推定処理のフローチャートである。It is a flowchart of the train departure / arrival time estimation process of the Example of this invention. 本発明の実施例の列車遅延計算処理のフローチャートである。It is a flowchart of the train delay calculation process of the Example of this invention. 本発明の実施例の改札通過者数データのデータ構造を示す図である。It is a figure which shows the data structure of the ticket gate passer-by number data of the Example of this invention. 本発明の実施例の割戻係数表のデータ構造を示す図である。It is a figure which shows the data structure of the rebate coefficient table | surface of the Example of this invention. 本発明の実施例の割戻係数表生成処理のフローチャートである。It is a flowchart of the rebate coefficient table production | generation process of the Example of this invention. 本発明の実施例の列車人数データのデータ構造を示す図である。It is a figure which shows the data structure of the train number data of the Example of this invention. 本発明の実施例の列車人数データを生成処理のフローチャートである。It is a flowchart of a production | generation process of the train number data of the Example of this invention. 本発明の実施例の駅滞留人数データのデータ構造を示す図である。It is a figure which shows the data structure of the station staying number data of the Example of this invention. 本発明の実施例の駅滞留人数データ生成処理のフローチャートである。It is a flowchart of a station staying number data generation process of the Example of this invention. 本発明の実施例の情報配信サーバが配信する画面の一例を示す図である。It is a figure which shows an example of the screen which the information delivery server of the Example of this invention delivers. 本発明の実施例の情報配信サーバが配信する画面の一例を示す図である。It is a figure which shows an example of the screen which the information delivery server of the Example of this invention delivers. 本発明の実施例の条件設定画面の一例を示す図である。It is a figure which shows an example of the condition setting screen of the Example of this invention. 本発明の実施例の情報配信処理のフローチャートである。It is a flowchart of the information delivery process of the Example of this invention.
 図1から図22を用いて、本発明の実施形態を説明する。なお、本発明の実施例は、列車が駅に発着する時刻や利用者数を推定するものであるが、本発明は、多数人が利用する輸送手段(例えば、バス、フェリーなど)に適用できる。さらに、本発明をタクシー乗り場に適用し、乗り場の混雑度(すなわち、乗車待ち客の人数)を推定できる。 Embodiments of the present invention will be described with reference to FIGS. In addition, although the Example of this invention estimates the time when a train arrives and departs at a station, and the number of users, this invention is applicable to the transportation means (for example, bus, ferry, etc.) which many people use. . Furthermore, the present invention can be applied to a taxi stand to estimate the degree of congestion at the stand (that is, the number of passengers waiting for the ride).
 図1は、本発明の実施例のシステムにおける公衆無線LANの概要を示す図である。 FIG. 1 is a diagram showing an outline of a public wireless LAN in a system according to an embodiment of the present invention.
 公衆無線LANとは、無線LANにより、インターネットへの接続を提供するサービスで、利用者101はノートPC、スマートフォン、タブレットPCなどのモバイル端末103からアクセスポイント102を介してインターネットへ接続する。一つのアクセスポイントから電波が到達可能な範囲は、一般的に数十メール程度であるため、大型商業施設や駅などの広い空間では、複数のアクセスポイントが設置されることが多い。 The public wireless LAN is a service that provides connection to the Internet through a wireless LAN, and a user 101 connects to the Internet from an access point 102 from a mobile terminal 103 such as a notebook PC, smartphone, or tablet PC. The range in which radio waves can reach from one access point is generally about several tens of e-mails. Therefore, a plurality of access points are often installed in large spaces such as large commercial facilities and stations.
 モバイル端末が複数のアクセスポイント102と交信可能な場合の混信を防ぐため、無線LANのアクセスポイント102と各モバイル端末とは、共通のSSIDによって通信を行うことで混信や無駄な通信を防いでおり、アクセスポイント102側では各モバイル端末の接続開始時刻及び接続終了時刻を取得することができる。また、利用者が、予め、モバイル端末の識別子であるMACアドレス等の登録によって利用できる公衆無線LANサービスもある。このため、各モバイル端末の移動履歴を、無線LANの接続データから分析できる。これらの設定や登録は基本的に公衆無線LANを利用したいモバイル端末所有者が自ら行う必要がある。 In order to prevent interference when a mobile terminal can communicate with a plurality of access points 102, the wireless LAN access point 102 and each mobile terminal communicate with a common SSID, thereby preventing interference and useless communication. On the access point 102 side, the connection start time and connection end time of each mobile terminal can be acquired. There is also a public wireless LAN service that a user can use in advance by registering a MAC address, which is an identifier of a mobile terminal. For this reason, the movement history of each mobile terminal can be analyzed from the connection data of the wireless LAN. These settings and registrations must basically be made by the mobile terminal owner who wants to use the public wireless LAN.
 図2は、本発明の実施例のシステムにおける公衆無線LANと駅構内の移動行動の関係を示す図である。 FIG. 2 is a diagram showing the relationship between the public wireless LAN and the movement behavior in the station premises in the system of the embodiment of the present invention.
 一般的に、駅構内の公衆無線LANのアクセスポイント102は改札付近やプラットホームに設置されており、各アクセスポイント102とモバイル端末との間の電波強度からモバイル端末の位置を大まかに推定できる。例えば、公衆無線LANを利用しているモバイル端末を持った利用者101が電車を降りると、まず、モバイル端末はプラットホーム階に設置されたアクセスポイント102Aと接続する。利用者101が駅を出るために改札104に向かうと、改札付近に設置されたアクセスポイント102Bとの接続に移行する。このように、各モバイル端末が接続しているアクセスポイント102を時系列に追跡することによって、駅構内における乗客の移動を推定できる。 Generally, a public wireless LAN access point 102 in a station is installed near a ticket gate or on a platform, and the position of the mobile terminal can be roughly estimated from the radio wave intensity between each access point 102 and the mobile terminal. For example, when a user 101 having a mobile terminal using a public wireless LAN gets off the train, the mobile terminal first connects to the access point 102A installed on the platform floor. When the user 101 heads for the ticket gate 104 to leave the station, the user 101 shifts to connection with the access point 102B installed near the ticket gate. In this way, by tracking the access point 102 to which each mobile terminal is connected in time series, it is possible to estimate the movement of passengers in the station premises.
 なお、複数のアクセスポイントが同じ設置場所に(例えば、1番線ホームに3台)設置されてもよい。 In addition, a plurality of access points may be installed at the same installation location (for example, 3 units in the platform 1 platform).
 図3は、本発明の実施例の公衆無線LAN接続情報122を格納するレコードの構造を示す図である。 FIG. 3 is a diagram showing a structure of a record for storing the public wireless LAN connection information 122 according to the embodiment of the present invention.
 公衆無線LAN接続情報122は、アクセスポイントID211、接続時刻212、接続されているモバイル機器IDを表す接続機器ID213などの情報を含み、当該時刻に接続されている機器のデータである。接続時刻212は、秒の単位でレコードを保持してもよいし、数秒を単位としてもよい。細かい単位で接続時刻を保持することによって、列車の発着時刻の推定精度が高くなる。接続機器ID213は、一日の中で一意に識別できればよいため、日々、ID付与ルールを変えて匿名化してもよい。公衆無線LAN接続情報122には、ストリームデータ処理のように、予め定められた時間ウインドウに含まれるデータが保持されており、時間が進むに応じて新しいデータが追加され、古い時刻のデータが削除される。 The public wireless LAN connection information 122 includes information such as an access point ID 211, a connection time 212, and a connection device ID 213 representing a connected mobile device ID, and is data of a device connected at the time. The connection time 212 may hold records in units of seconds, or may be in units of several seconds. By maintaining the connection time in fine units, the estimation accuracy of the train arrival and departure times is increased. Since the connected device ID 213 only needs to be uniquely identifiable throughout the day, it may be anonymized by changing the ID provision rule every day. The public wireless LAN connection information 122 holds data included in a predetermined time window as in stream data processing, and new data is added and data at the old time is deleted as time advances. Is done.
 図4Aは、本発明の実施例のシステム全体の構成を示す図であり、図4Bは、データサーバ111の構成を示す図であり、図4Cは、計算サーバ112の構成を示す図である。 FIG. 4A is a diagram showing a configuration of the entire system according to the embodiment of the present invention, FIG. 4B is a diagram showing a configuration of the data server 111, and FIG. 4C is a diagram showing a configuration of the calculation server 112.
 近年、多くの鉄道の駅には自動改札機104が設置されており、自動改札機104が非接触型ICカード(又は、同等の機能を持つ携帯端末)又は磁気乗車券を読み取ることによって、鉄道の利用者101が駅へ入場し、駅から出場している。自動改札機104が読み取った情報は、ネットワーク107を介して、鉄道事業者が管理するデータ管理サーバ群108へ送信され、改札通過データとして蓄積される。また、改札付近やプラットホームに設置された公衆無線LANアクセスポイント102は、前述したとおり、接続機器情報がデータ管理サーバ群108にリアルタイムに送信される。さらに、近年は、改札付近やプラットホームに監視カメラ105が設置されている。監視カメラ105が取得した映像データは、鉄道の運行を管理する指令所などで、ネットワーク107を介してリアルタイムに映像を確認できる。 In recent years, automatic ticket gates 104 are installed in many railway stations, and the automatic ticket gates 104 read non-contact type IC cards (or portable terminals having equivalent functions) or magnetic tickets, thereby User 101 enters the station and leaves the station. Information read by the automatic ticket checker 104 is transmitted to the data management server group 108 managed by the railway operator via the network 107 and stored as ticket pass data. The public wireless LAN access point 102 installed near the ticket gate or on the platform transmits the connected device information to the data management server group 108 in real time as described above. Furthermore, in recent years, surveillance cameras 105 have been installed near the ticket gates and on platforms. The video data acquired by the monitoring camera 105 can be checked in real time via the network 107 at a command station that manages the operation of the railway.
 交通状況推定システム110は、データサーバ111、計算サーバ112及び情報配信サーバ113から構成されており、公衆無線LANアクセスポイント102の接続機器情報や改札通過データを収集し、蓄積し、分析する。なお、本実施例を説明する際に直接関係しない、無線システムや改札機などの機能、構成、データ処理技術については説明を省略する。 The traffic situation estimation system 110 includes a data server 111, a calculation server 112, and an information distribution server 113, and collects, stores, and analyzes connected device information and ticket gate passage data of the public wireless LAN access point 102. Note that descriptions of functions, configurations, and data processing techniques of the wireless system and the ticket gate, which are not directly related to the description of the present embodiment, are omitted.
 監視カメラ105が取得した映像データ及び改札通過データは、新たなデータを取得したタイミング、又は所定の時間間隔(1時間おき、一日おきなど)で、ネットワーク107を介して、データサーバ111へ送信される。データサーバ111、計算サーバ112及び情報配信サーバ113などのサーバ群から構成される交通状況推定システム110は、ネットワーク107、114を介して、鉄道事業者116が使用する計算機117や乗客115が使用する端末118と通信できる。なお、本実施例では、データサーバ111、計算サーバ112及び情報配信サーバ113をサーバ群として説明するが、一つ又は複数のサーバで、これらサーバ群の機能を実行できるように構成してもよい。 The video data and ticket gate passing data acquired by the monitoring camera 105 are transmitted to the data server 111 via the network 107 at the timing when new data is acquired or at predetermined time intervals (every hour, every other day, etc.). Is done. A traffic situation estimation system 110 including a server group such as a data server 111, a calculation server 112, and an information distribution server 113 is used by a computer 117 and a passenger 115 used by a railway operator 116 via networks 107 and 114. Communication with the terminal 118 is possible. In the present embodiment, the data server 111, the calculation server 112, and the information distribution server 113 are described as server groups. However, one or a plurality of servers may be configured to execute the functions of these server groups. .
 図4Bに示すように、データサーバ111は、主にネットワークインタフェース、プロセッサ、メモリ及び記憶部を有する計算機である。 As shown in FIG. 4B, the data server 111 is a computer mainly including a network interface, a processor, a memory, and a storage unit.
 プロセッサは、メモリに格納されたプログラムを実行する。メモリは、不揮発性の記憶素子であるROM及び揮発性の記憶素子であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶素子であり、プロセッサが実行するプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。 Processor executes a program stored in memory. The memory includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element. The ROM stores an immutable program (for example, BIOS). The RAM is a high-speed and volatile storage element such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor and data used when the program is executed.
 記憶部は、例えば、磁気記憶装置(HDD)、CD-ROMドライブ、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置によって構成され、プロセッサが実行するプログラム及びプログラムの実行時に使用されるデータを格納する。すなわち、プログラムは、記憶部から読み出されて、メモリにロードされて、プロセッサによって実行される。 The storage unit is configured by a large-capacity and non-volatile storage device such as a magnetic storage device (HDD), a CD-ROM drive, or a flash memory (SSD), and is used when executing a program executed by the processor and a program. Store the data. That is, the program is read from the storage unit, loaded into the memory, and executed by the processor.
 データサーバ111は、ネットワーク107を介して公衆無線LAN接続情報122及び改札通過人数データ126を所定のタイミング(所定の更新時間間隔)に受信し、データ格納部(DB)121に記録する。具体的には、記憶部は、データ格納部(DB)121を有する。データ格納部121は、公衆無線LAN接続情報122、駅の構造を表すマスタデータ123、駅構内移動データ124、列車時刻データ125、改札通過人数データ126、列車人数データ127及び駅滞留人数データ128などを格納する。マスタデータ123は、変更の都度、外部(例えば、鉄道事業者116が使用する計算機117)から、入力され、更新される。駅構内移動データ124、列車時刻データ125、列車人数データ127及び駅滞留人数データ128は、計算サーバ112が生成した結果データである。 The data server 111 receives the public wireless LAN connection information 122 and the ticket passer data 126 via the network 107 at a predetermined timing (predetermined update time interval) and records them in the data storage unit (DB) 121. Specifically, the storage unit includes a data storage unit (DB) 121. The data storage unit 121 includes public wireless LAN connection information 122, master data 123 indicating a station structure, station premises movement data 124, train time data 125, ticket gate passing number data 126, train number data 127, station stay number data 128, and the like. Is stored. The master data 123 is input and updated from the outside (for example, the computer 117 used by the railway operator 116) every time it is changed. The station premises movement data 124, the train time data 125, the train number data 127, and the station stay number data 128 are result data generated by the calculation server 112.
 図4Cに示すように、計算サーバ112は、データサーバ111に蓄積されたデータ群を用いて、列車の発着時刻を推定する処理を実行する。計算サーバ112は、主にネットワークインタフェース(I/F(A))130、プロセッサ(CPU)131、メモリ132及び記憶部133を有する計算機である。 As shown in FIG. 4C, the calculation server 112 uses the data group stored in the data server 111 to execute processing for estimating the train arrival and departure times. The calculation server 112 is a computer mainly including a network interface (I / F (A)) 130, a processor (CPU) 131, a memory 132, and a storage unit 133.
 ネットワークインタフェース130は、ネットワーク107、114に接続するためのインタフェースである。プロセッサ131は、メモリ132に格納されたプログラムを実行する。メモリ132は、不揮発性の記憶素子であるROM及び揮発性の記憶素子であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶素子であり、プロセッサ131が実行するプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。 The network interface 130 is an interface for connecting to the networks 107 and 114. The processor 131 executes a program stored in the memory 132. The memory 132 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element. The ROM stores an immutable program (for example, BIOS). The RAM is a high-speed and volatile storage element such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 131 and data used when the program is executed.
 記憶部133は、例えば、磁気記憶装置(HDD)、CD-ROMドライブ、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置によって構成され、プロセッサ131が実行するプログラム及びプログラムの実行時に使用されるデータを格納する。すなわち、プログラムは、記憶部133から読み出されて、メモリ132にロードされて、プロセッサ131によって実行される。具体的には、記憶部133は、駅構内移動データ生成プログラム134、列車時刻推定プログラム135、列車遅延度合算出プログラム136、割戻係数計算プログラム137、列車乗車人数集計プログラム138、駅の滞留人数集計プログラム139などのプログラムと、割戻係数表153等のデータを格納し、計算処理の過程で生成される中間データを格納するデータ格納部(DB)152を含む。なお、計算サーバ112ではなくデータサーバ111が、割戻係数表153を格納してもよい。 The storage unit 133 is configured by a large-capacity and non-volatile storage device such as a magnetic storage device (HDD), a CD-ROM drive, or a flash memory (SSD), for example, and is used when executing the program executed by the processor 131 and the program. Data to be stored. That is, the program is read from the storage unit 133, loaded into the memory 132, and executed by the processor 131. Specifically, the storage unit 133 includes a station premises movement data generation program 134, a train time estimation program 135, a train delay degree calculation program 136, a rebate coefficient calculation program 137, a train passenger count calculation program 138, and a station stay count calculation. A data storage unit (DB) 152 that stores programs such as the program 139 and data such as the rebate coefficient table 153 and stores intermediate data generated in the course of calculation processing is included. Note that the data server 111 may store the rebate coefficient table 153 instead of the calculation server 112.
 なお、複数の記録装置を設け、プログラムやデータを複数の記録装置に分割して記録してもよい。 Note that a plurality of recording devices may be provided, and a program or data may be divided and recorded on a plurality of recording devices.
 プログラムが実行される際、分析対象のデータをデータサーバ111から取得してメモリ132へ一時的に格納し、プロセッサ131がプログラム134、135、136、137、138、139をメモリ132から読み出して実行することにより各種機能を実現する。これらのプログラムは、予め定められた時間間隔(例えば、数秒おき、数分おきなど)に従って自動的に実行するとよい。 When the program is executed, data to be analyzed is acquired from the data server 111 and temporarily stored in the memory 132, and the processor 131 reads the programs 134, 135, 136, 137, 138, and 139 from the memory 132 and executes them. By doing so, various functions are realized. These programs may be automatically executed according to a predetermined time interval (for example, every few seconds, every few minutes, etc.).
 情報配信サーバ113は、図4Aに示すように、ネットワークインタフェース(I/F(B))145、プロセッサ(CPU)146、メモリ147及び記憶部148を有する計算機である。 As shown in FIG. 4A, the information distribution server 113 is a computer having a network interface (I / F (B)) 145, a processor (CPU) 146, a memory 147, and a storage unit 148.
 ネットワークインタフェース145は、ネットワーク107、114に接続するためのインタフェースである。プロセッサ146は、メモリ147に格納されたプログラムを実行する。メモリ147は、不揮発性の記憶素子であるROM及び揮発性の記憶素子であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶素子であり、プロセッサ146が実行するプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。 The network interface 145 is an interface for connecting to the networks 107 and 114. The processor 146 executes a program stored in the memory 147. The memory 147 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element. The ROM stores an immutable program (for example, BIOS). The RAM is a high-speed and volatile storage element such as DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 146 and data used when the program is executed.
 記憶部148は、例えば、磁気記憶装置(HDD)、CD-ROMドライブ、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置によって構成され、プロセッサ131が実行するプログラム及びプログラムの実行時に使用されるデータを格納する。すなわち、プログラムは、記憶部148から読み出されて、メモリ147にロードされて、プロセッサ146によって実行される。具体的には、記憶部148は、条件取得プログラム141及び情報配信プログラム142などのプログラムと、計算処理の過程で生成される中間データを格納する。 The storage unit 148 is configured by a large-capacity non-volatile storage device such as a magnetic storage device (HDD), a CD-ROM drive, or a flash memory (SSD), for example, and is used when executing the program executed by the processor 131 and the program. Data to be stored. That is, the program is read from the storage unit 148, loaded into the memory 147, and executed by the processor 146. Specifically, the storage unit 148 stores programs such as the condition acquisition program 141 and the information distribution program 142 and intermediate data generated in the course of calculation processing.
 情報配信サーバ113は、システム運用者119が使用する端末120、鉄道事業者116が使用する計算機117、乗客115が使用する端末118からネットワーク114、151を介してアクセスされ、情報を提供する。例えば、情報配信サーバ113が提供する情報は、利用者の照合や画面表示に関する条件設定のための情報、駅の滞留人数推定結果などであり、基本的に計算機や端末が情報配信サーバ113にアクセスしたタイミングで提供される。 The information distribution server 113 is accessed via the networks 114 and 151 from the terminal 120 used by the system operator 119, the computer 117 used by the railway operator 116, and the terminal 118 used by the passenger 115, and provides information. For example, information provided by the information distribution server 113 includes information for setting conditions related to user verification and screen display, estimation results of the number of people staying at a station, and the computer or terminal basically accesses the information distribution server 113. Provided at the timing.
 交通状況推定システム110を運用するシステム運用者119は、端末120を用いて、ネットワーク151を介して、交通状況推定システム110に蓄積されたデータの構成や状況、計算サーバ112の状況や計算結果、利用者からの検索リクエスト状況などを確認することができる。 The system operator 119 who operates the traffic situation estimation system 110 uses the terminal 120 to transmit the configuration and situation of data stored in the traffic situation estimation system 110 via the network 151, the situation and calculation result of the calculation server 112, You can check the status of search requests from users.
 各サーバ111、112、113は、入力インタフェース及び出力インターフェースを有してもよい。入力インタフェースは、キーボードやマウスなどが接続され、オペレータからの入力を受けるインタフェースである。出力インタフェースは、ディスプレイ装置やプリンタなどが接続され、プログラムの実行結果をオペレータが視認可能な形式で出力するインタフェースである。 Each server 111, 112, 113 may have an input interface and an output interface. The input interface is an interface that is connected to a keyboard, a mouse, and the like and receives input from an operator. The output interface is an interface that is connected to a display device, a printer, or the like and outputs the execution result of the program in a form that can be visually recognized by the operator.
 各サーバのプロセッサ131、146が実行するプログラムは、リムーバブルメディア(CD-ROM、フラッシュメモリなど)又はネットワークを介して各サーバ112、113に提供され、非一時的記憶媒体である不揮発性の記憶装置133、148に格納される。このため、各サーバ112、113は、リムーバブルメディアからデータを読み込むインタフェースを有するとよい。 A program executed by the processors 131 and 146 of each server is provided to each server 112 and 113 via a removable medium (CD-ROM, flash memory, etc.) or a network, and is a non-volatile storage device that is a non-temporary storage medium 133 and 148. For this reason, each of the servers 112 and 113 may have an interface for reading data from a removable medium.
 各サーバ111、112、113は、物理的に一つの計算機上で、又は、論理的又は物理的に構成された複数の計算機上で構成される計算機システムであり、同一の計算機上で別個のスレッドで動作してもよく、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。 Each of the servers 111, 112, and 113 is a computer system that is configured on a single physical computer or a plurality of logically or physically configured computers, and is a separate thread on the same computer. It may operate on a virtual machine constructed on a plurality of physical computer resources.
 図5は、本発明の実施例のデータサーバ111内に格納されるマスタデータ123のデータ構造を示す図である。 FIG. 5 is a diagram illustrating a data structure of the master data 123 stored in the data server 111 according to the embodiment of this invention.
 マスタデータ123は、アクセスポイント102の設置場所を表す設置場所情報170、駅構内の移動パターンの定義情報180及び列車計画時刻表190などの情報を含む。 The master data 123 includes information such as installation location information 170 indicating the installation location of the access point 102, movement pattern definition information 180 within the station premises, and a train plan timetable 190.
 アクセスポイント102の設置場所情報170は、アクセスポイントID171、設置駅名172及び設置場所の詳細173などの情報を含み、公衆無線LANのアクセスポイント102が設置されている場所を表すデータである。アクセスポイント102の場所が変更された場合、システム運用者又は鉄道事業者がシステムの外部から入力し、データを更新する。 The installation location information 170 of the access point 102 is data representing the location where the access point 102 of the public wireless LAN is installed, including information such as an access point ID 171, installation station name 172, and installation location details 173. When the location of the access point 102 is changed, the system operator or the railway operator inputs from the outside of the system and updates the data.
 駅構内移動定義情報180は、駅名181、接続開始場所182、接続終了場所183及び種別184などの情報を含み、駅構内における公衆無線LANの接続開始場所と接続終了場所との組み合わせ毎に、行動種別に分類したデータである。種別184は、乗車、降車、乗車中の3種類に分類できる。また、プラットホームに複数のアクセスポイント102が設置されている場合には、各モバイル端末がプラットホームのどの位置にいると推定できるため、乗車や降車の種別184の情報に加えて、モバイル端末が滞在しているプラットホーム上の位置の情報を加えてもよい。こうすることで、各モバイル端末が乗降した場所が列車の何番目のドアであるかなど細かい分析が可能になる。 The station premises movement definition information 180 includes information such as a station name 181, a connection start location 182, a connection end location 183, and a type 184. For each combination of the public wireless LAN connection start location and connection end location in the station premises, the behavior is defined. Data classified into types. The type 184 can be classified into three types: boarding, getting off, and boarding. Further, when a plurality of access points 102 are installed on the platform, it can be estimated that each mobile terminal is located on the platform, so that the mobile terminal stays in addition to the information of the type 184 of getting on and getting off. Information on the location on the platform may be added. By doing so, it becomes possible to perform detailed analysis such as the number of doors on the train where each mobile terminal got on and off.
 列車計画時刻表190は、駅名191、列車ID192、停車場所193、日付194、到着時刻195及び出発時刻196などの情報を含み、各駅の各プラットホームに発着する列車の順番を表すデータである。鉄道事業者は車両運用や運転士の手配などのため、予め運行スケジュールを決めており、列車が運行されるタイミングを示す計画ダイヤ情報を管理している。列車計画時刻表190は、計画ダイヤ情報をそのまま記録してもよいし、必要な情報を抽出して記録してもよい。また、列車計画時刻表190は、計画ダイヤが策定及び更新されたタイミングで逐次、更新してもよいし、予め定められた時刻に実行されるバッチ処理によって更新してもよい。運行スケジュールは、曜日や季節によって変更されることがあるため、日付194を用いて、どの日の運行ダイヤであるかを識別する。 The train schedule time table 190 includes information such as a station name 191, a train ID 192, a stop location 193, a date 194, an arrival time 195, and a departure time 196, and is data representing the order of trains that arrive and depart each platform at each station. The railway operator decides an operation schedule in advance for vehicle operation, driver arrangement, and the like, and manages schedule diagram information indicating the timing at which the train is operated. The train schedule timetable 190 may record the schedule information as it is, or may extract and record necessary information. Moreover, the train plan timetable 190 may be updated sequentially at the timing when the plan schedule is formulated and updated, or may be updated by a batch process executed at a predetermined time. Since the operation schedule may be changed depending on the day of the week or the season, the day 194 is used to identify which day the operation schedule is.
 図6は、本発明の実施例のデータサーバ111内に格納される駅構内移動データ124のデータ構造を示す図である。 FIG. 6 is a diagram illustrating a data structure of the station premises movement data 124 stored in the data server 111 according to the embodiment of this invention.
 駅構内移動データ124は、公衆無線LAN接続情報122から生成される。駅構内移動データ124は、接続機器ID231、駅名232、日付233、接続開始時刻234、接続開始場所235、接続終了時刻236及び接続終了場所237などの情報を含み、各モバイル端末が駅構内において接続を開始した時刻及び場所、接続を終了した時刻及び場所を表すデータである。駅構内移動データ124に含まれる駅名232、接続開始場所235及び接続終了場所237の組み合わせを用いて、マスタデータ123の駅構内移動定義情報180を参照すると、各モバイル端末の駅構内における行動種別を求めることができる。 The station premises movement data 124 is generated from the public wireless LAN connection information 122. The in-station movement data 124 includes information such as the connected device ID 231, station name 232, date 233, connection start time 234, connection start location 235, connection end time 236, and connection end location 237, and each mobile terminal is connected within the station premises. This is data representing the time and place at which the connection is started and the time and place at which the connection is finished. Using the combination of the station name 232, the connection start location 235, and the connection end location 237 included in the station premises movement data 124, referring to the station premises movement definition information 180 of the master data 123, the action type in the station premises of each mobile terminal is determined. Can be sought.
 図7は、本発明の実施例の駅構内移動データ生成プログラム134が駅構内移動データ124を生成する処理のフローチャートである。 FIG. 7 is a flowchart of processing in which the station premises movement data generation program 134 of the embodiment of the present invention generates the station premises movement data 124.
 まず、データサーバ111内の公衆無線LAN接続情報122に含まれる、全てのレコードを接続時刻212及び接続機器ID213で並び替える(ステップ301)。そして、並び替えたデータを用いて、全ての接続機器IDについて以下の処理を繰り返す(ステップ302)。 First, all records included in the public wireless LAN connection information 122 in the data server 111 are rearranged by the connection time 212 and the connection device ID 213 (step 301). Then, the following processing is repeated for all connected device IDs using the rearranged data (step 302).
 ステップ302の繰り返しにおいて、まず、接続時刻212の値を参照し、t分以上の間隔が空いている箇所でデータを分割する(ステップ303)。これは、ある人が一日の中で朝と夜などの複数回、公衆無線LANを利用した通信記録を分割して、正しく処理するためである。閾値t分は一般的に乗客が駅を利用する時間間隔でよく、数十分~数時間の間で定義するか、公衆無線LAN情報を用いて正確な時間間隔を求めてもよい。すなわち、ステップ302で生成した接続開始時刻と接続終了時刻との一つの組を、ステップ302で、接続開始時刻と接続終了時刻との複数の組に分割する。この分割は、当該接続開始時刻と他の接続終了時刻とを組み合わせ、かつ、当該接続終了時刻と他の接続開始時刻とを組み合わせてもよい。また、当該接続開始時刻から所定時間接続しており、かつ、当該接続終了時刻前の所定時間接続していると判定してもよい。後者の場合捏属データが欠落していても、正確に接続時間を求めることができる。 In the repetition of step 302, first, the value of the connection time 212 is referred to, and the data is divided at a place where an interval of t minutes or more is available (step 303). This is because a certain person divides a communication record using the public wireless LAN several times in the day, such as morning and night, and processes it correctly. The threshold t is generally a time interval for passengers to use the station, and may be defined between several tens of minutes to several hours, or an accurate time interval may be obtained using public wireless LAN information. That is, one set of connection start time and connection end time generated in step 302 is divided into a plurality of sets of connection start time and connection end time in step 302. In this division, the connection start time and another connection end time may be combined, and the connection end time and another connection start time may be combined. Alternatively, it may be determined that the connection is established for a predetermined time from the connection start time and the connection is established for a predetermined time before the connection end time. In the latter case, the connection time can be obtained accurately even if the metal data is missing.
 分割したデータを用いて以下の処理を繰り返す(ステップ304)。ステップ304の繰り返しにおいて、一番先頭のレコードから接続時刻212の値を取得し、接続開始時刻として保持する(ステップ305)。さらに、一番先頭のレコードからアクセスポイントID211の値を取得し、マスタデータ123に含まれる設置場所情報220を参照し、駅名及び設置場所を検索する(ステップ306)。 次に、一番末尾のレコードから接続時刻212の値を取得し、接続終了時刻として保持する(ステップ307)。さらに、一番末尾のレコードからアクセスポイントID211の値を取得し、マスタデータ123に含まれる設置場所情報220を参照し、駅名及び設置場所を検索する(ステップ308)。なお、複数のアクセスポイントが同じ設置場所に(例えば、1番線ホームに3台)設置されている場合、以上の処理では、当該複数のアクセスポイントの設置場所は同じとして取り扱う。 The following processing is repeated using the divided data (step 304). In the repetition of step 304, the value of the connection time 212 is obtained from the first record and is held as the connection start time (step 305). Further, the value of the access point ID 211 is obtained from the first record, and the station name and installation location are searched with reference to the installation location information 220 included in the master data 123 (step 306). Next, the value of the connection time 212 is acquired from the last record and held as the connection end time (step 307). Further, the value of the access point ID 211 is obtained from the last record, and the station name and the installation location are searched with reference to the installation location information 220 included in the master data 123 (step 308). Note that when a plurality of access points are installed at the same installation location (for example, three in the home of the No. 1 line), the installation locations of the plurality of access points are handled as the same in the above processing.
 そして、接続機器ID、取得した駅名、接続開始時刻、接続開始場所、接続終了時刻、及び接続終了場所の情報を駅構内移動データ124に格納する(ステップ309)。日付情報は現在時刻の日付を格納する。 Then, the information on the connected device ID, the acquired station name, the connection start time, the connection start location, the connection end time, and the connection end location is stored in the station premises movement data 124 (step 309). The date information stores the date of the current time.
 図8は、本発明の実施例の駅構内移動データ124から、列車の発着時刻及び列車の乗車人数を推定する方法を説明する図である。 FIG. 8 is a diagram for explaining a method of estimating the departure / arrival time of a train and the number of passengers on the train from the in-station movement data 124 according to the embodiment of the present invention.
 本実施例において駅構内移動データ124を用いて推定する対象は、下記の三つである。
A. 列車の到着時刻
B.列車の出発時刻
C.列車乗車中の人数
In this embodiment, the following three objects are estimated using the station premises movement data 124.
A. Train arrival time Train departure time Number of people on the train
 列車に乗っている乗客が所有しているモバイル端末は、列車が駅に到着すると駅に設置されたアクセスポイント102への接続を開始する。このため、プラットホームで接続を開始した接続機器の数でヒストグラムを作成し、時系列変化を分析することによって、「A. 列車の到着時刻の検出」に示すように、列車の到着時刻を検出することができる。同様に、プラットホームで接続を終了した接続機器数の時系列変化を分析することによって、「B.列車の出発時刻の検出」に示すように、列車の出発時刻を検出することができる。 The mobile terminal owned by the passenger on the train starts connection to the access point 102 installed at the station when the train arrives at the station. For this reason, by creating a histogram with the number of connected devices that have started connection on the platform and analyzing the time series change, the arrival time of the train is detected as shown in “A. Detection of arrival time of train”. be able to. Similarly, by analyzing a time-series change in the number of connected devices that have ended connection on the platform, the departure time of the train can be detected as shown in “B. Detection of departure time of the train”.
 また、列車に乗車中の乗客が所有しているモバイル端末は、列車が駅に停車している間は、その駅の公衆無線LANアクセスポイントに接続される。よって、駅構内移動データ124の接続開始場所と、接続終了場所が同一プラットホームである接続機器は、その列車に乗車していた乗客であると推定できる。この条件を満たす接続機器の数を集計することによって、「C.列車乗車中の人数の検出」に示すように、列車乗車中の人数を検出できる。 Also, a mobile terminal owned by a passenger on the train is connected to a public wireless LAN access point at the station while the train is stopped at the station. Therefore, it can be presumed that the connection device having the same platform as the connection start location and the connection end location of the in-station movement data 124 is a passenger who is on the train. By counting the number of connected devices that satisfy this condition, the number of people on the train can be detected as shown in “C. Detection of the number of people on the train”.
 なお、図8に示すように、ヒストグラムはノイズを含む場合がある。機器数が所定の閾値より少ないデータを除去することによって、ノイズをフィルタリングすることができる。フィルタリングに用いる閾値は、固定値でも、動的に変化する値(例えば、当該時刻より前の所定期間の平均値)でもよい。また、ヒストグラムにおけるデータの出現時間の幅が所定時間より短いデータを除去することによって、ノイズをフィルタリングしてもよい。 As shown in FIG. 8, the histogram may include noise. Noise can be filtered by removing data with the number of devices less than a predetermined threshold. The threshold value used for filtering may be a fixed value or a dynamically changing value (for example, an average value for a predetermined period before the time). Further, noise may be filtered by removing data whose appearance time width in the histogram is shorter than a predetermined time.
 図9は、本発明の実施例のデータサーバ111に格納される列車時刻データ125のデータ構造を示す図である。 FIG. 9 is a diagram illustrating a data structure of the train time data 125 stored in the data server 111 according to the embodiment of this invention.
 列車時刻データ125は、駅名241、列車ID242、駅構内場所243、日付244、到着時刻245及び出発時刻246などの情報を含み、各列車の発着時刻情報を表すデータである。列車時刻データ125は、駅構内移動データ124を用いて列車の発着情報を推定した結果を格納する。 The train time data 125 includes information such as a station name 241, a train ID 242, a station premises 243, a date 244, an arrival time 245 and a departure time 246, and is data representing arrival / departure time information of each train. The train time data 125 stores the result of estimating train arrival / departure information using the station premises movement data 124.
 図10は、本発明の実施例の列車時刻推定プログラム135が、駅構内移動データ124から列車の発着時刻を推定する処理のフローチャートである。列車時刻推定プログラム135は駅毎に実行される。 FIG. 10 is a flowchart of a process in which the train time estimation program 135 according to the embodiment of the present invention estimates the train arrival and departure times from the station premises movement data 124. The train time estimation program 135 is executed for each station.
 まず、マスタデータ123に含まれる駅構内移動定義情報180の駅名181を参照し、該当駅を含む全てのレコードを抽出する(ステップ401)。そして、抽出した全てのレコード(定義パターン)について以下の処理を繰り返す(ステップ402)。 First, referring to the station name 181 of the station premises movement definition information 180 included in the master data 123, all records including the corresponding station are extracted (step 401). Then, the following processing is repeated for all the extracted records (definition patterns) (step 402).
 ステップ402の繰り返しにおいて、駅構内移動データ124の接続開始場所235及び接続終了場所237を参照し、定義パターンに該当する全てのレコードを抽出する(ステップ403)。抽出したレコードの接続開始時刻234及び接続終了時刻236を用いて、予め定められた時間単位に従ってレコード数のヒストグラムを作成する(ステップ404)。図8に示すとおり、列車の到着時刻を推定する場合、列車からプラットホームに降りた乗客に着目し、接続開始時刻234を用いてヒストグラムを作成する。また、列車の出発時刻を推定する場合、列車に乗って駅を離れた乗客に着目し、接続終了時刻236を用いてヒストグラムを作成する。ヒストグラムを作成する時間単位は、対象駅や対象時間帯に応じて、数秒から数十秒の間で予め定めておく。例えば、接続機器数が多い駅や時間帯においては、短時間(例えば1秒毎)に作成した方が列車の発着時刻を高精度に検出できるが、接続機器数が少ない駅や時間帯においては、長時間(例えば、数十秒毎)で集計すればよい。 In the repetition of step 402, all the records corresponding to the definition pattern are extracted with reference to the connection start location 235 and the connection end location 237 of the station premises movement data 124 (step 403). Using the connection start time 234 and connection end time 236 of the extracted record, a record number histogram is created in accordance with a predetermined time unit (step 404). As shown in FIG. 8, when estimating the arrival time of a train, attention is paid to passengers who get off the train to the platform, and a histogram is created using the connection start time 234. Further, when estimating the departure time of the train, attention is paid to passengers who have left the station on the train, and a histogram is created using the connection end time 236. The time unit for creating the histogram is determined in advance from several seconds to several tens of seconds according to the target station and the target time zone. For example, in a station or time zone with a large number of connected devices, a train created in a short time (for example, every second) can detect the arrival and departure times of trains with high accuracy, but in a station or time zone with a small number of connected devices. The data may be collected for a long time (for example, every several tens of seconds).
 次に、ヒストグラムからデータを検出し、検出された順に列車IDを付与し(ステップ405)、列車時刻データ125に格納する(ステップ406)。ヒストグラムからのデータの検出は、ヒストグラムからピークや立ち上がり、立ち下がりを検出するとよい。例えば、ピークを検出すると、列車の到着時刻を正確に推定できる。また、立ち上がりを検出すると、列車の出発時刻を正確に推定できる。 Next, data is detected from the histogram, train IDs are assigned in the order of detection (step 405), and stored in the train time data 125 (step 406). The detection of data from the histogram may be performed by detecting peaks, rising edges, and falling edges from the histogram. For example, when the peak is detected, the arrival time of the train can be accurately estimated. Moreover, when the rising edge is detected, the departure time of the train can be accurately estimated.
 マスタデータ123として、列車計画時刻表190が利用可能な場合には、元々の計画到着時刻195や計画出発時刻196と推定した時刻とを比較し、発着時刻が最も近い列車ID192を検索し、列車時刻データ125の列車ID242に格納してもよい。その日の列車運行状況と計画との差が小さい場合、計画上の列車IDを付与する方が、列車毎の遅延の分析に有用である。 When the train plan timetable 190 is available as the master data 123, the train arrival time 195 or the planned departure time 196 is compared with the estimated time, the train ID 192 having the closest departure / arrival time is searched, and the train You may store in train ID242 of the time data 125. When the difference between the train operation status on the day and the plan is small, it is more useful for analyzing the delay for each train to give the planned train ID.
 図11は、本発明の実施例の列車遅延度合算出プログラム136が、列車の遅延を計算する処理のフローチャートである。 FIG. 11 is a flowchart of a process in which the train delay degree calculation program 136 according to the embodiment of the present invention calculates a train delay.
 列車遅延度合算出プログラム136は、列車時刻データ125を用いて、ある日に運行された全ての列車の遅延を計算する。まず、列車時刻データ125から指定された日のレコードを全て抽出し(ステップ501)、駅名241、列車ID242及び駅構内場所243をキーとして並び替え(ステップ502)、全てのレコードについて以下の処理を繰り返す(ステップ503)。 The train delay degree calculation program 136 uses the train time data 125 to calculate the delays of all trains operated on a certain day. First, all the records of the specified date are extracted from the train time data 125 (step 501), rearranged using the station name 241, train ID 242, and station premises 243 as keys (step 502), and the following processing is performed for all records. Repeat (step 503).
 ステップ503の繰り返しにおいて、列車時刻データ(125)を生成する処理で列車計画時刻表190を用いて列車IDを付与した場合、単に計画上の到着時刻及び出発時刻と比較して遅れを計算する。具体的には、列車計画時刻表190から該当の列車IDを含むレコードを抽出し(ステップ504)、列車到着時刻の値ATplan及び列車出発時刻の値DTplanを取得する(ステップ505)。また、列車時刻データ125から列車到着時刻の値AT及び列車出発時刻の値DTを取得する(ステップ506)。最後に、ATからATplanを減じて列車到着時刻の遅延を計算し、DTからDTplanを減じて列車出発時刻の遅延を計算する(ステップ507)。 In the repetition of step 503, when the train ID is given using the train plan timetable 190 in the process of generating the train time data (125), the delay is simply compared with the planned arrival time and departure time. Specifically, a record including the corresponding train ID is extracted from the train plan timetable 190 (step 504), and a train arrival time value ATplan and a train departure time value DTplan are acquired (step 505). Further, the train arrival time value AT and the train departure time value DT are acquired from the train time data 125 (step 506). Finally, the ATplan is subtracted from the AT to calculate the train arrival time delay, and the DTplan is subtracted from the DT to calculate the train departure time delay (step 507).
 以上の方法によって計算された列車の遅延を所定期間(例えば、直近1か月)平均することによって、列車の慢性的な遅れを知ることができ、列車ダイヤを改正による輸送改善を行うことができる。 By averaging the train delay calculated by the above method for a predetermined period (for example, the most recent month), it is possible to know the chronic delay of the train and to improve the transportation by revising the train schedule. .
 なお、列車時刻データ125を生成する処理で駅毎及びプラットホーム毎の列車の到着順に従って列車IDを付与した場合、過去の所定期間において、駅名241、列車ID242及び駅構内場所243の組み合わせが同一のレコードを列車時刻データ125から抽出し、列車到着時刻の平均値を計算しATplanとし、列車出発時刻の平均値を計算しDTplanとして、列車到着時刻AT、列車出発時刻DTと比較してもよい。平均値を利用することによって、列車計画時刻表190がなくても、列車到着時刻及び列車出発時刻の遅延を求めることができる。 In addition, when the train ID is given according to the arrival order of the train for each station and each platform in the process of generating the train time data 125, the combination of the station name 241, the train ID 242 and the station premises 243 is the same in the past predetermined period. The record may be extracted from the train time data 125, the average value of the train arrival times may be calculated as ATplan, and the average value of the train departure times may be calculated and compared as DTplan with the train arrival time AT and the train departure time DT. By using the average value, the train arrival time and the train departure time delay can be obtained without the train plan timetable 190.
 図12は、本発明の実施例のデータサーバ111に格納される改札通過人数データ126のデータ構造を示す図である。 FIG. 12 is a diagram showing a data structure of the ticket passing number data 126 stored in the data server 111 according to the embodiment of this invention.
 改札通過人数データ126は、駅名251、日付252、時間帯253、種別254及び通過人数255などの情報を含み、駅の改札を通過した乗客の人数を表すデータである。改札通過人数データ126は、自動改札機104の通過記録やIC乗車券データを集計して作成できる。又は、改札付近に設置されている監視カメラ105で撮影された映像から、画像解析技術や信号解析技術を用いて人物を検出し、改札の通過人数を集計してもよい。映像解析や信号解析によって改札の通過人数を計算する処理はデータサーバ111が実行してもよいし、システムの外部で処理してもよい。 The ticket gate passing number data 126 includes information such as a station name 251, a date 252, a time zone 253, a type 254, and a passing number 255, and is data representing the number of passengers who have passed the ticket gate of the station. The ticket passing number data 126 can be created by counting the passing records of the automatic ticket gate 104 and IC ticket data. Alternatively, a person may be detected from video captured by the monitoring camera 105 installed near the ticket gate using image analysis technology or signal analysis technology, and the number of people passing through the ticket gate may be counted. The data server 111 may execute the process of calculating the number of passing ticket gates by video analysis or signal analysis, or may be processed outside the system.
 日毎のデータが取得できない場合、既に格納されている改札通過人数データ126から求めた統計値(例えば、平均値など)を用いてもよい。通過人数は、入場者と出場者とを分けて記録してもよいし、入場者と出場者とを分けずに合計値を記録してもよい。 If the daily data cannot be obtained, a statistical value (for example, an average value) obtained from the already stored ticket passer data 126 may be used. The number of passing people may be recorded separately for the visitors and the participants, or the total value may be recorded without dividing the visitors and the participants.
 時間帯253の単位は、数分から数時間の間で、予め定めておく。改札通過人数データ126は、駅を利用する全乗客数を推定するために必要である。なぜなら、一部の乗客は公衆無線LANを利用しておらず、また、一人で複数台のモバイル端末を所持しているため、公衆無線LAN接続情報122から得られる接続機器数と全乗客数とは等しくないためである。オフィス街の最寄駅や通勤時間帯にはモバイル端末を持つ人の割合が多くなると思われるため、公衆無線LAN接続機器数と全乗客数との割合は、駅や時間帯によって多少変化すると考えられる。 The unit of the time zone 253 is determined in advance from several minutes to several hours. The ticket gate passing number data 126 is necessary for estimating the total number of passengers using the station. Because some passengers do not use the public wireless LAN and have a plurality of mobile terminals alone, the number of connected devices and the total number of passengers obtained from the public wireless LAN connection information 122 Because they are not equal. The ratio of public wireless LAN connected devices and the total number of passengers will vary slightly depending on the station and time zone, as the percentage of people with mobile devices will increase at the nearest stations and commuting hours in the business district. It is done.
 図13は、本発明の実施例の計算サーバ112に格納される割戻係数表153のデータ構造を示す図である。 FIG. 13 is a diagram illustrating a data structure of the rebate coefficient table 153 stored in the calculation server 112 according to the embodiment of this invention.
 割戻係数表153は、駅名261、時間帯262及び係数263の情報を含み、公衆無線LAN接続機器数と全乗客数との比率を表すデータである。時間帯262の粒度は、改札通過人数データ126の時間帯253と揃えるとよい。また、割戻係数表153は、平日、休日など、日の属性によって異なる係数を記録してもよい。また、割戻係数表153は、乗車、降車、列車乗車中、駅滞留など、行動種別によって異なる係数を記録してもよい。さらに、割戻係数表153は、駅構内の場所によって異なる係数を記録してもよい。割戻係数表153を細分化することによって、より正確に人数を推定することができる。 The rebate coefficient table 153 includes data on the station name 261, the time zone 262, and the coefficient 263, and is data representing the ratio between the number of public wireless LAN connected devices and the total number of passengers. The granularity of the time zone 262 may be aligned with the time zone 253 of the ticket gate passing number data 126. Also, the rebate coefficient table 153 may record different coefficients depending on day attributes such as weekdays and holidays. Further, the rebate coefficient table 153 may record different coefficients depending on the action type, such as boarding, getting off, getting on the train, and staying at the station. Furthermore, the rebate coefficient table 153 may record different coefficients depending on the location within the station. By subdividing the rebate coefficient table 153, the number of persons can be estimated more accurately.
 図14は、本発明の実施例の割戻係数計算プログラム137が、割戻係数表153を生成する処理のフローチャートである。 FIG. 14 is a flowchart of processing for generating the rebate coefficient table 153 by the rebate coefficient calculation program 137 according to the embodiment of this invention.
 割戻係数計算プログラム137は、毎日実行する必要はなく、所定のタイミング(数日に一回、数週間に一回など)で実行すればよい。まず、改札通過人数データ126及び駅構内移動データ124から該当期間のレコードを抽出する(ステップ601)。該当期間は、ある一日が指定されてもよいし、複数日が指定されてもよい。ただし、改札通過人数データ126及び駅構内移動データ124が両方が存在する日のデータの利用が好ましい。なお、同日の改札通過人数データ126及び駅構内移動データ124を利用するとよいが、属性が同じ日の改札通過人数データ126及び駅構内移動データ124の統計値(例えば、平均値)を利用してもよい。次に、全ての駅について以下の処理を繰り返す(ステップ602)。 The rebate coefficient calculation program 137 need not be executed every day, but may be executed at a predetermined timing (once every several days, once every several weeks, etc.). First, a record for the corresponding period is extracted from the ticket passing number data 126 and the station premises movement data 124 (step 601). A certain day may be designated as the relevant period, or a plurality of days may be designated. However, it is preferable to use data on the day when both the ticket gate passing number data 126 and the station premises movement data 124 exist. Although it is preferable to use the ticket gate passing number data 126 and the station premises movement data 124 on the same day, the statistical values (for example, average values) of the ticket gate passing number data 126 and the station premises movement data 124 on the same day are used. Also good. Next, the following processing is repeated for all stations (step 602).
 ステップ602の繰り返しにおいて、駅構内移動データ124を、改札通過人数データ126の時間帯253の粒度に従って集計し、各時間帯の接続機器数Nを求める(ステップ603)。集計する際に用いる時刻情報は、接続開始時刻234でもよいし、接続終了時刻236でもよい。 In the repetition of step 602, the station premises movement data 124 is totaled according to the granularity of the time zone 253 of the ticket passing number data 126, and the number N of connected devices in each time zone is obtained (step 603). The time information used for counting may be the connection start time 234 or the connection end time 236.
 そして、全ての時間帯について以下の処理を繰り返す(ステップ604)。ステップ604の繰り返しにおいて、該当の駅及び時間帯のレコードを改札通過人数データ126から抽出し、通過人数Tを取得する(ステップ605)。改札通過人数データ126が入場と出場とに分けて格納されている場合、合計値を計算する。最後にT÷Nを計算し、計算された係数を割戻係数表153に格納する(ステップ606)。 Then, the following processing is repeated for all time zones (step 604). In the repetition of step 604, the record of the corresponding station and time zone is extracted from the ticket gate passing number data 126, and the passing number T is acquired (step 605). When the ticket gate passing number data 126 is stored separately for entrance and exit, the total value is calculated. Finally, T ÷ N is calculated, and the calculated coefficient is stored in the rebate coefficient table 153 (step 606).
 図15は、本発明の実施例のデータサーバ111に格納される列車人数データ127のデータ構造を示す図である。 FIG. 15 is a diagram illustrating a data structure of the train number data 127 stored in the data server 111 according to the embodiment of this invention.
 列車人数データ127は、駅名271、列車ID272、駅構内場所273、日付274、種別275及び人数276などの情報を含み、各列車の乗車人数、降車人数、乗車中の人数などを表すデータである。種別275は、乗車、降車、乗車中の3種類のうち、いずれかが記録される。 The train number data 127 includes information such as a station name 271, a train ID 272, a station premises 273, a date 274, a type 275, and a number 276, and is data representing the number of passengers on each train, the number of people getting off, and the number of people on the train. . As the type 275, one of the three types of getting on, getting off, and getting on is recorded.
 図16は、本発明の実施例の列車乗車人数集計プログラム138が、列車人数データ127を生成する処理のフローチャートである。 FIG. 16 is a flowchart of a process in which the train passenger counting program 138 according to the embodiment of the present invention generates the train passenger number data 127.
 列車乗車人数集計プログラム138は、外部から入力された情報に基づいて定められる日毎かつ駅毎に実行され、駅構内移動データ124を用いて列車人数データ127を生成する。まず、駅構内移動データ124から該当日及び該当駅のレコードを抽出する(ステップ701)。抽出した全てのレコードについて以下の処理を繰り返す(ステップ702)。 The train passenger number counting program 138 is executed on a daily basis and on a station basis based on information input from the outside, and generates train number data 127 using the station premises movement data 124. First, a record of a corresponding day and a corresponding station is extracted from the station premises movement data 124 (step 701). The following process is repeated for all the extracted records (step 702).
 ステップ702の繰り返しにおいて、駅構内移動データ124の駅名232、接続開始場所235及び接続終了場所237の組み合わせをキーにして、駅構内移動定義情報180を参照し、該当する種別184を抽出する(ステップ703)。次に、列車時刻データ125を参照し、この接続機器を所有する乗客が使ったと推定される列車を特定する(ステップ704)。ここで、種別184が「乗車」である場合、接続終了場所237及び接続終了時刻236に着目し、列車時刻データ125の出発時刻246を参照して、接続終了時刻236と出発時刻246との差が最も小さい(又は、所定の閾値以下である)列車の列車IDを取得する。同様に、種別184が「降車」である場合、接続開始場所235及び接続開始時刻234に着目し、列車時刻データ125の到着時刻245を参照して、接続開始時刻234と到着時刻245との差が最も小さい(又は、所定の閾値以下である)列車の列車IDを取得する。種別184が「乗車中」である場合、接続開始時刻234と列車時刻データ125の到着時刻245とを比較し、所定の閾値以内であるかを判定するなどの方法で列車IDを取得する。この際、接続終了時刻236と列車時刻データ125の出発時刻246とを比較してもよい。 In the repetition of step 702, the combination of the station name 232, the connection start location 235, and the connection end location 237 of the station premises movement data 124 is used as a key to refer to the station premises movement definition information 180 and extract the corresponding type 184 (step 702). 703). Next, the train time data 125 is referred to, and the train estimated to be used by the passenger who owns the connected device is specified (step 704). Here, when the type 184 is “boarding”, paying attention to the connection end location 237 and the connection end time 236, referring to the departure time 246 of the train time data 125, the difference between the connection end time 236 and the departure time 246. Train ID of the train with the smallest (or less than a predetermined threshold). Similarly, when the type 184 is “get off”, paying attention to the connection start location 235 and the connection start time 234, referring to the arrival time 245 of the train time data 125, the difference between the connection start time 234 and the arrival time 245 Train ID of the train with the smallest (or less than a predetermined threshold). When the type 184 is “in boarding”, the train ID is acquired by a method such as comparing the connection start time 234 with the arrival time 245 of the train time data 125 and determining whether it is within a predetermined threshold. At this time, the connection end time 236 and the departure time 246 of the train time data 125 may be compared.
 そして、ステップ704で取得した列車IDの到着時刻245又は出発時刻246を用いて割戻係数表153を参照し、割戻係数を取得する(ステップ705)。割戻係数表153が平日、休日に分けて割戻係数を保持している場合、該当日の日付の曜日を考慮して割戻計数を取得する。 Then, by using the arrival time 245 or departure time 246 of the train ID acquired in Step 704, the rebate coefficient table 153 is referred to and a rebate coefficient is acquired (Step 705). When the rebate coefficient table 153 holds rebate coefficients for weekdays and holidays, a rebate count is acquired in consideration of the day of the week on the date of the day.
 その後、列車人数データ127のレコードに該当する「駅名、列車ID、日付、種別」のレコードが含まれているか検索する。列車人数データ127に該当する「駅名、列車ID、日付、種別」のレコードが含まれていれば、人数データに「割戻係数×1」の値を加算する。列車人数データ127に該当する「駅名、列車ID、日付、種別」のレコードが含まれていなければ、新規にレコードを作成し、人数の値には「割戻係数×1」を記録する。 Then, it is searched whether the record of “station name, train ID, date, type” corresponding to the record of the train number data 127 is included. If the train number data 127 includes a record of “station name, train ID, date, type”, the value of “rebate coefficient × 1” is added to the number data. If the train number data 127 does not include the corresponding “station name, train ID, date, type” record, a new record is created, and “rebate coefficient × 1” is recorded as the number of people.
 図17は、本発明の実施例のデータサーバ111に格納される駅滞留人数データ128のデータ構造を示す図である。 FIG. 17 is a diagram showing a data structure of station staying number data 128 stored in the data server 111 of the embodiment of the present invention.
 駅滞留人数データ128は、駅名281、駅構内場所282、日付283、時間帯284及び滞留人数285などの情報を含み、駅及び駅構内の滞留人数を表すデータである。時間帯284の区分は、数秒から数時間の間で予め定義しておくとよい。数秒や数分など細かい粒度で、駅滞留人数データ128を生成すると、列車の発着に伴う、駅構内の混雑の短時間の変化をより細かく蓄積できる。 The station staying number data 128 includes information such as the station name 281, the station premises location 282, the date 283, the time zone 284, and the staying number 285, and is data representing the number of staying persons in the station and the station premises. The division of the time zone 284 may be defined in advance between several seconds to several hours. If the station staying number data 128 is generated with a fine granularity such as several seconds or several minutes, it is possible to accumulate the short-term changes in the congestion in the station yard accompanying the arrival and departure of the train.
 図18は、本発明の実施例の滞留人数集計プログラム139が、駅滞留人数データ128を生成する処理のフローチャートである。 FIG. 18 is a flowchart of a process in which the staying person totaling program 139 according to the embodiment of the present invention generates station staying person data 128.
 駅の滞留人数集計プログラム139は、列車乗車人数集計プログラム138と同様に、外部から入力された情報に基づいて定められる日毎かつ駅毎に実行され、駅構内移動データ124を用いて駅滞留人数データ128を生成する。 The station staying person totaling program 139 is executed on a daily basis and on a station-by-station basis based on information input from the outside in the same manner as the train passenger numbering totaling program 138. 128 is generated.
 まず、駅構内移動データ124から該当日及び該当駅のレコードを抽出する(ステップ801)。抽出した全てのレコードについて以下の処理を繰り返す(ステップ802)。 First, a record of a corresponding day and a corresponding station is extracted from the movement data 124 in the station (step 801). The following process is repeated for all the extracted records (step 802).
 ステップ802の繰り返しにおいて、駅構内移動データ124から接続開始場所235及び接続終了場所237を取得し、接続開始場所235と接続終了場所237とが同じかを判定する(ステップ803)。接続開始場所235と接続終了場所237とが同じであるレコードは、列車に乗車中の乗客のものであると推定され、駅の滞留人数としてカウントしないように、処理をスキップする(ステップ808)。 In the repetition of step 802, the connection start location 235 and the connection end location 237 are acquired from the station premises movement data 124, and it is determined whether the connection start location 235 and the connection end location 237 are the same (step 803). A record in which the connection start place 235 and the connection end place 237 are the same is presumed to belong to a passenger on the train, and the process is skipped so as not to be counted as a staying person at the station (step 808).
 接続開始場所235と接続終了場所237とが異なっている場合、接続開始場所と接続終了場所のそれぞれについて滞留人数を計上する。まず、接続開始時刻234を取得し、駅滞留人数データ128の時間帯の粒度に合わせて、該当する時間帯を求める(ステップ804)。そして、駅滞留人数データ128に「駅名、接続開始場所、日付、時間帯」のレコードが存在するかを検索する。該当するレコードが存在すれば、割戻係数表153を参照し、割戻係数の値を加算する。該当するレコードが存在しなければ、新しいレコードを駅滞留人数データ128に追加する(ステップ805)。 If the connection start location 235 and the connection end location 237 are different, the number of staying persons is counted for each connection start location and connection end location. First, the connection start time 234 is acquired, and the corresponding time zone is obtained in accordance with the granularity of the time zone of the station staying person data 128 (step 804). Then, it is searched whether there is a record of “station name, connection start location, date, time zone” in the station residence number data 128. If the corresponding record exists, the rebate coefficient table 153 is referred to and the rebate coefficient value is added. If there is no corresponding record, a new record is added to the station staying number data 128 (step 805).
 次に、接続終了時刻236を取得し、駅滞留人数データ128の時間帯の粒度に合わせて、該当する時間帯を求める(ステップ806)。そして、駅滞留人数データ128に「駅名、接続終了場所、日付、時間帯」のレコードが存在するかを検索する。該当するレコードが存在すれば、割戻係数表153を参照し、割戻係数の値を加算する。該当するレコードが存在しなければ、新しいレコードを駅滞留人数データ128に追加する(ステップ807)。 Next, the connection end time 236 is acquired, and the corresponding time zone is obtained according to the granularity of the time zone of the station staying person data 128 (step 806). Then, it is searched whether there is a record of “station name, connection end location, date, time zone” in the station residence number data 128. If the corresponding record exists, the rebate coefficient table 153 is referred to and the rebate coefficient value is added. If there is no corresponding record, a new record is added to the station residence number data 128 (step 807).
 図19は、本発明の実施例の情報配信サーバ113が配信する画面1001の一例を示す図である。 FIG. 19 is a diagram illustrating an example of a screen 1001 distributed by the information distribution server 113 according to the embodiment of this invention.
 画面1001は、システム運用者119の端末120や、鉄道事業者116の計算機117に配信される画面であり、例えば、現在の列車の遅延状況、列車の混雑状況、駅の混雑状況などを表示する。また、画面1001は、地図表示領域1011、ランキング表示領域1012及びグラフ表示領域1013を含む。地図表示領域1011では、駅の混雑度にあたる駅の滞留人数や、列車の混雑度にあたる列車の乗車人数を地図上に表示する。ランキング表示領域1012では、滞留人数や乗車人数を昇順又は降順で表示する。グラフ表示領域1013では、当日始発運行から現在時刻までの滞留人数や乗車人数を時系列グラフで表示する。 A screen 1001 is a screen distributed to the terminal 120 of the system operator 119 and the computer 117 of the railway operator 116, and displays, for example, the current train delay status, train congestion status, station congestion status, and the like. . The screen 1001 includes a map display area 1011, a ranking display area 1012, and a graph display area 1013. In the map display area 1011, the number of people staying at the station corresponding to the degree of congestion of the station and the number of passengers on the train corresponding to the degree of congestion of the train are displayed on the map. In the ranking display area 1012, the number of people staying and the number of passengers are displayed in ascending or descending order. In the graph display area 1013, the number of people staying and the number of passengers from the first departure on the day to the current time are displayed in a time series graph.
 また、列車の遅延状況や駅の滞留人数が所定条件を満たす異常である(例えば、過去の平均値から大きくかい離した)場合、利用者に異常を伝える警告1014を表示してもよい。また、過去のある日を指定して表示する場合、データが表示される日付及び時刻が画面上に表示されるとよい。駅の滞留人数や列車人数の情報は、予め定められたレベル分け定義に基づいて、駅や列車の表示態様(例えば、画像の大きさや色)を変えることで、利用者に分かりやすく状況を伝えることができる。 Also, if the train delay condition or the number of people staying at the station is an abnormality that satisfies a predetermined condition (for example, far from the past average value), a warning 1014 that informs the user of the abnormality may be displayed. In addition, when a certain date in the past is specified and displayed, the date and time when the data is displayed may be displayed on the screen. Information on the number of people staying at the station and the number of trains is communicated to the user in an easy-to-understand manner by changing the display mode of the stations and trains (for example, the size and color of the images) based on a predetermined leveling definition. be able to.
 また、駅の滞留人数や列車人数の情報はテキストで表示してもよい。さらに、ある時間帯又は一日を通して、混雑する順に駅をソートし表形式で表示してもよい。全体を俯瞰できる画面をシステム運用者や鉄道事業者に提示することによって、運行計画の見直しや、駅の混雑解消施策の立案など、業務改善のための情報を得ることができる。これらの画面はマウスやキーボードなどの入力インタフェースを用いて操作が可能で、例えば、ホイールボタンなどで地図画面のズームイン/ズームアウトを操作したり、マウスクリックで駅や列車を選択し、列車IDや運行実績など詳細な情報を表示してもよい。 Also, information on the number of people staying at the station and the number of trains may be displayed in text. Further, the stations may be sorted and displayed in a table format in the order of congestion throughout a certain time period or one day. By presenting an overview screen to system operators and railway operators, it is possible to obtain information for business improvement such as reviewing operation plans and planning measures to eliminate congestion at stations. These screens can be operated using an input interface such as a mouse or keyboard. For example, you can use the wheel buttons to zoom in / out the map screen, select a station or train with a mouse click, Detailed information such as operation results may be displayed.
 図20は、本発明の実施例の情報配信サーバ113が端末118に配信する画面1020の一例を示す図である。 FIG. 20 is a diagram illustrating an example of a screen 1020 that is distributed to the terminal 118 by the information distribution server 113 according to the embodiment of this invention.
 画面1020は、乗客115の端末118に配信される画面である。乗客115のモバイル端末118は、画面のサイズが小さく、解像度が低い特性を考慮して画面を構成する必要がある。例えば、画面1020は、路線、方面及び駅を選択するインタフェース1021及びスクロール機能を有する情報表示領域1022を含む。このため、利用者が情報を見たい駅や列車を簡単に選択できる。 The screen 1020 is a screen distributed to the terminal 118 of the passenger 115. The mobile terminal 118 of the passenger 115 needs to configure the screen in consideration of the characteristics that the screen size is small and the resolution is low. For example, the screen 1020 includes an interface 1021 for selecting a route, a direction, and a station, and an information display area 1022 having a scroll function. For this reason, the user can easily select a station or train for which information is desired.
 また、端末118のGPS機能と連動して、利用者の現在位置に近い駅の情報を選択して表示してもよい。画面1020は、利用者が滞在している駅に、これから到着する列車の遅延状況や、混雑の状況を表示する。これによって、利用者は、次の列車に乗るべきか、さらに次の列車に乗るべきかを判断できる。 Also, in conjunction with the GPS function of the terminal 118, station information close to the current location of the user may be selected and displayed. The screen 1020 displays the delay situation of the train that will arrive at the station where the user is staying and the congestion situation. Thereby, the user can determine whether to get on the next train or on the next train.
 図21は、本発明の実施例の情報配信サーバ113が配信する情報の条件を設定する画面1110の一例を示す図である。 FIG. 21 is a diagram illustrating an example of a screen 1110 for setting conditions for information distributed by the information distribution server 113 according to the embodiment of this invention.
 条件設定画面1110は、鉄道事業者116の計算機117や、乗客115の端末118や、システム運用者119の端末120に表示される画面である。条件設定画面1110では、検索対象の駅1111、検索対象の日付1112などを直接入力、又はプルダウンメニューなどで選択し、実行ボタン1113を操作することによって、情報配信サーバ113にリクエストが送信される。これらの表示条件は、利用者がマウス、キーボード、タッチパネルなどの入力インタフェースを用いて設定できる。 The condition setting screen 1110 is a screen displayed on the computer 117 of the railway operator 116, the terminal 118 of the passenger 115, and the terminal 120 of the system operator 119. On the condition setting screen 1110, a request is transmitted to the information distribution server 113 by directly inputting or selecting a search target station 1111, a search target date 1112, or the like using a pull-down menu and operating an execution button 1113. These display conditions can be set by the user using an input interface such as a mouse, a keyboard, or a touch panel.
 図21に示す条件設定画面1110では、対象路線や駅、対象日は各々一つが選択できるが、複数の選択肢を同時に選択するインタフェースを採用してもよい。また、複数の駅を選択する場合、路線を選択した後に駅を選択するなど、段階的なインタフェースを採用してもよい。 In the condition setting screen 1110 shown in FIG. 21, one of each of the target route, the station, and the target date can be selected, but an interface for selecting a plurality of options simultaneously may be adopted. Moreover, when selecting a some station, you may employ | adopt a stepwise interface, such as selecting a station after selecting a route.
 図22は、本発明の実施例の情報配信処理のフローチャートである。 FIG. 22 is a flowchart of information distribution processing according to the embodiment of this invention.
 情報配信サーバ113は、条件設定画面1110に入力された検索条件に従ったリクエストを受信すると、情報配信処理を実行する。まず、受信したリクエストから、検索条件設定画面1100で入力された条件を取得する(ステップ1200)。次に、入力された検索条件に従って列車時刻データ125、列車人数データ127及び駅滞留人数データ128から集計対象の駅及び日付に該当するレコードを抽出する(ステップ1201)。その後、抽出したレコードを時系列グラフや地図画面へのマッピングなどの形式に加工し、リクエストを送信した装置に配信する(ステップ1202)。 When the information distribution server 113 receives a request according to the search condition input on the condition setting screen 1110, the information distribution server 113 executes an information distribution process. First, the condition input on the search condition setting screen 1100 is acquired from the received request (step 1200). Next, records corresponding to the stations and dates to be counted are extracted from the train time data 125, the train number data 127, and the station staying number data 128 according to the input search conditions (step 1201). Thereafter, the extracted record is processed into a format such as a time series graph or mapping to a map screen, and distributed to the device that transmitted the request (step 1202).
 情報配信サーバ113は、配信先の装置の特性や配信する情報の内容に合わせて複数のプログラムを組み合わせて、配信する画面を作成するとよい。例えば、画面の配信にwebサーバの技術を用いることができ、配信先の装置で実行されるwebブラウザによって、配信される情報を見ることができる。なお、配信先の装置で実行される専用のアプリケーションが、情報配信サーバ113から送信されたデータを用いて表示すべき画面を作成してもよい。 The information distribution server 113 may create a distribution screen by combining a plurality of programs in accordance with the characteristics of the distribution destination device and the content of the information to be distributed. For example, the technology of a web server can be used for screen distribution, and information distributed can be viewed by a web browser executed by a distribution destination apparatus. Note that a dedicated application executed on the distribution destination device may create a screen to be displayed using the data transmitted from the information distribution server 113.
 以上に説明したように、本発明の実施例によると、列車(輸送手段)が駅(乗降施設)に到着した時刻や、列車が駅を出発した時刻を推定できる。また、列車に乗った人数、列車から降りた人数や、列車の乗車中の人数を推定することができる。さらに、列車の発着時刻、乗車人数、駅の滞留人数の推定値を蓄積し、平均値を計算することによって、列車の遅れや混雑が通常時より異常であるかを知ることができる。 As described above, according to the embodiment of the present invention, it is possible to estimate the time when the train (transportation means) arrives at the station (alighting facility) and the time when the train leaves the station. In addition, the number of people on the train, the number of people who get off the train, and the number of people on the train can be estimated. Furthermore, by accumulating estimated values of train arrival / departure times, number of passengers, and number of people staying at the station, and calculating average values, it is possible to know whether train delays and congestion are abnormal than usual.
 具体的には、接続開始場所と接続終了場所とが異なる端末を公衆無線LAN接続情報122から抽出し、抽出された端末の数に割戻係数を乗じることによって、輸送手段(例えば、列車、バス、フェリー、タクシーなど)を利用するために乗降施設(駅、ターミナルなど)に滞留する人数を推定するので、多額の設備投資をすることなく、駅などの混雑度を知ることができる。このため、乗客は、複数の駅が利用可能な場合、空いている駅を選択して利用できる。輸送事業者は、駅などの混雑度に応じて人員を配置したり、規制をすることによって、駅などの安全を確保できる。さらに、混んでいる乗り場に多くの輸送手段(バス、タクシーなど)を配車して、短時間で混雑を緩和できる。 Specifically, a terminal having a different connection start location and connection end location is extracted from the public wireless LAN connection information 122, and the number of extracted terminals is multiplied by a rebate coefficient to obtain a transportation means (eg, train, bus, etc.). The number of people staying at boarding / exiting facilities (stations, terminals, etc.) is estimated in order to use a ferry, taxi, etc., so it is possible to know the degree of congestion of stations, etc. without making large capital investments. For this reason, when a plurality of stations are available, the passenger can select and use a vacant station. Transportation operators can ensure the safety of stations, etc. by assigning personnel or regulating the number of people according to the congestion level of stations. In addition, many transportation means (buses, taxis, etc.) can be dispatched to crowded platforms to reduce congestion in a short time.
 また、接続開始場所と接続終了場所とが同じ乗降場所である端末を公衆無線LAN接続情報122から抽出し、抽出された端末の数に割戻係数を乗じることによって、輸送手段を利用中の人数を推定するので、多額の設備投資をすることなく、列車などの混雑度を知ることができる。乗客は、空いている列車を選択して利用できる。輸送事業者は、混雑緩和策(例えば、ダイヤ改正)を立案する際の基礎資料として利用できる。 In addition, the number of terminals using the transportation means is extracted by extracting from the public wireless LAN connection information 122 terminals whose connection start location and connection end location are the same, and multiplying the number of extracted terminals by a rebate coefficient. Therefore, it is possible to know the degree of congestion of trains and the like without making a large capital investment. Passengers can select and use available trains. Transportation companies can use it as basic data when planning congestion mitigation measures (for example, schedule revisions).
 また、公衆無線LAN接続情報122から取得した同じ端末の接続開始時刻から接続終了時刻までの時間がと所定時間t以上である場合、当該接続開始時刻から当該接続終了時刻までの時間を分割するので、一つの駅を複数回利用した利用者のデータを適切に分割して、正確な人数を推定できる。 Further, when the time from the connection start time to the connection end time of the same terminal acquired from the public wireless LAN connection information 122 is equal to or longer than the predetermined time t, the time from the connection start time to the connection end time is divided. It is possible to estimate the exact number of people by appropriately dividing the data of users who used a station multiple times.
 また、時間帯によって異なる割戻係数を定義するので、時間帯により利用者の性質が異なることに対応して、正確な人数を推定できる。 Also, since different rebate coefficients are defined depending on the time of day, it is possible to estimate the exact number of people corresponding to the fact that the nature of users varies depending on the time of day.
 また、降り場に設置された基地局と端末との接続データを公衆無線LAN接続情報122から取得し、該データの統計処理によって、接続を開始した端末数が多い時刻を判定し、前記判定された時刻を輸送手段の到着時刻であると推定するので、多額の設備投資をすることなく、列車の運行状況(遅延)を知ることができる。乗客は、駅などに行く前に、列車などの遅延を知ることができる。輸送事業者は、日々の到着時刻のデータをダイヤ改善の基礎資料として利用できる。 Further, the connection data between the base station and the terminal installed at the landing is obtained from the public wireless LAN connection information 122, and the statistical processing of the data is used to determine the time when the number of terminals that started the connection is large. Since the estimated time is the arrival time of the transportation means, it is possible to know the operation status (delay) of the train without making a large capital investment. The passenger can know the delay of the train before going to the station. Transportation companies can use the daily arrival time data as basic data for timetable improvement.
 また、乗り場に設置された基地局と端末との接続データを公衆無線LAN接続情報122から取得し、該データの統計処理によって、接続を終了した端末数が多い時刻を判定し、前記判定された時刻を輸送手段の出発時刻であると推定するので、多額の設備投資をすることなく、列車の運行状況(遅延)を知ることができる。乗客は、駅などに行く前に、列車などの遅延を知ることができる。輸送事業者は、日々の到着時刻のデータをダイヤ改善の基礎資料として利用できる。 In addition, the connection data between the base station and the terminal installed at the landing is obtained from the public wireless LAN connection information 122, and the statistical processing of the data determines the time when the number of terminals that have completed the connection is large. Since the time is estimated to be the departure time of the transportation means, it is possible to know the operation status (delay) of the train without making a large capital investment. The passenger can know the delay of the train before going to the station. Transportation companies can use the daily arrival time data as basic data for timetable improvement.
 また、接続データを統計処理する際、単位時間において所定数より少ないデータ及び出現時間が所定時間より短いデータの少なくとも一方を除外するので、輸送手段の発着に起因するデータを正確に抽出でき、発着時刻の誤検出を防ぐことができる。 In addition, when statistically processing connection data, since at least one of data less than a predetermined number and data whose appearance time is shorter than a predetermined time in a unit time is excluded, it is possible to accurately extract data resulting from the arrival and departure of transportation means. It is possible to prevent erroneous detection of time.
 また、推定された到着時刻又は出発時刻の所定期間における平均値を計算し、計算された平均値と推定された到着時刻又は出発時刻との差によって、輸送手段の遅延を推定するので、計画時刻表がなくても遅延を知ることができる。 In addition, the average value of the estimated arrival time or departure time in a predetermined period is calculated, and the delay of the means of transportation is estimated by the difference between the calculated average value and the estimated arrival time or departure time. You can know the delay without a table.
 特許請求の範囲に記載した以外の本発明の観点の代表的なものとして、次のものがあげられる。 The following are typical examples of aspects of the present invention other than those described in the claims.
 (1)プログラムを実行するプロセッサと、前記プログラムを格納する記憶デバイスとを備える交通状況推定システムであって、
 無線通信システムの基地局が、輸送手段を利用するための乗降施設に複数設置されており、
 少なくとも一つの前記基地局は、輸送手段の乗降場所に設置されており、
 前記記憶デバイスは、前記輸送手段の利用者が所持する端末と前記複数の基地局のいずれかとの接続開始場所及び接続終了場所を含む接続情報を格納しており、
 前記プロセッサは、
 接続開始場所と接続終了場所とが同じ乗降場所である端末を前記接続情報から抽出し、
 前記抽出された端末の数に所定の第2の係数を乗じることによって、輸送手段を利用中の人数を推定する交通状況推定システム。
(1) A traffic situation estimation system comprising a processor that executes a program and a storage device that stores the program,
Multiple base stations for wireless communication systems are installed at boarding facilities to use transportation means,
At least one of the base stations is installed at a place of getting on and off of the transportation means,
The storage device stores connection information including a connection start location and a connection end location between a terminal possessed by a user of the transportation means and any of the plurality of base stations,
The processor is
A terminal whose connection start location and connection end location are the same boarding / exiting location is extracted from the connection information,
A traffic situation estimation system for estimating the number of people using a transportation means by multiplying the number of extracted terminals by a predetermined second coefficient.
 (2)プログラムを実行するプロセッサと、前記プログラムを格納する記憶デバイスとを備える交通状況推定システムであって、
 無線通信システムの基地局が、輸送手段を利用するための乗降施設において輸送手段の降り場に設置されており、
 前記記憶デバイスは、前記輸送手段の利用者が所持する端末と前記複数の基地局のいずれかとの接続開始場所及び接続開始時刻を含む接続情報を格納しており、
 前記プロセッサは、
 前記接続情報に含まれる前記降り場に設置された基地局と前記端末との接続データの統計処理によって、接続を開始した端末数が多い時刻を判定し、
 前記判定された時刻を輸送手段の到着時刻であると推定する交通状況推定システム。
(2) A traffic situation estimation system comprising a processor that executes a program and a storage device that stores the program,
The base station of the wireless communication system is installed at the landing of the transportation means in a boarding facility for using the transportation means,
The storage device stores connection information including a connection start location and a connection start time between a terminal possessed by a user of the transportation means and any of the plurality of base stations,
The processor is
By statistical processing of connection data between the base station and the terminal installed at the landing included in the connection information, determine the time when the number of terminals that started connection is large,
A traffic situation estimation system for estimating the determined time as an arrival time of a transportation means.
 (3)プログラムを実行するプロセッサと、前記プログラムを格納する記憶デバイスとを備える交通状況推定システムであって、
 無線通信システムの基地局が、輸送手段を利用するための乗降施設において輸送手段の乗り場に設置されており、
 前記記憶デバイスは、前記輸送手段の利用者が所持する端末と前記複数の基地局のいずれかとの接続終了場所及び接続終了時刻を含む接続情報を格納しており、
 前記プロセッサは、
 前記接続情報に含まれる前記乗り場に設置された基地局と前記端末との接続データの統計処理によって、接続を終了した端末数が多い時刻を判定し、
 前記判定された時刻を輸送手段の出発時刻であると推定する交通状況推定システム。
(3) A traffic situation estimation system comprising a processor that executes a program and a storage device that stores the program,
The base station of the radio communication system is installed at the boarding place of the transportation means at the boarding facility for using the transportation means,
The storage device stores connection information including a connection end location and a connection end time between a terminal possessed by a user of the transportation means and any of the plurality of base stations,
The processor is
By the statistical processing of the connection data between the base station and the terminal installed at the landing included in the connection information, determine the time when the number of terminals that have terminated the connection is large,
A traffic situation estimation system for estimating the determined time as a departure time of a transportation means.
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 The present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Moreover, you may add the structure of another Example to the structure of a certain Example. In addition, for a part of the configuration of each embodiment, another configuration may be added, deleted, or replaced.
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Claims (12)

  1.  プログラムを実行するプロセッサと、前記プログラムを格納する記憶デバイスとを備える交通状況推定システムであって、
     無線通信システムの基地局が、輸送手段を利用するための乗降施設に複数設置されており、
     前記記憶デバイスは、前記輸送手段の利用者が所持する端末と前記複数の基地局のいずれかとの接続開始場所及び接続終了場所を含む接続情報を格納しており、
     前記プロセッサは、
     接続開始場所と接続終了場所とが異なる端末を前記接続情報から抽出し、
     前記抽出された端末の数に所定の第1の係数を乗じることによって、輸送手段を利用するために前記乗降施設に滞留する人数を推定する交通状況推定システム。
    A traffic situation estimation system comprising a processor that executes a program and a storage device that stores the program,
    Multiple base stations for wireless communication systems are installed at boarding facilities to use transportation means,
    The storage device stores connection information including a connection start location and a connection end location between a terminal possessed by a user of the transportation means and any of the plurality of base stations,
    The processor is
    A terminal having a different connection start location and connection end location is extracted from the connection information,
    A traffic situation estimation system for estimating the number of people staying at the boarding / exiting facility to use a transportation means by multiplying the number of extracted terminals by a predetermined first coefficient.
  2.  請求項1に記載の交通状況推定システムであって、
     少なくとも一つの前記基地局は、輸送手段の乗降場所に設置されており、
     前記プロセッサは、
     接続開始場所と接続終了場所とが同じ乗降場所である端末を前記接続情報から抽出し、
     前記抽出された端末の数に所定の第2の係数を乗じることによって、輸送手段を利用中の人数を推定する交通状況推定システム。
    The traffic situation estimation system according to claim 1,
    At least one of the base stations is installed at a place of getting on and off of the transportation means,
    The processor is
    A terminal whose connection start location and connection end location are the same boarding / exiting location is extracted from the connection information,
    A traffic situation estimation system for estimating the number of people using a transportation means by multiplying the number of extracted terminals by a predetermined second coefficient.
  3.  請求項1に記載の交通状況推定システムであって、
     前記接続情報は、前記端末と前記基地局との接続開始時刻及び接続終了時刻を含み、
     前記プロセッサは、前記接続情報から取得した同じ端末の接続開始時刻から接続終了時刻までの時間と所定時間との比較によって、前記接続開始時刻と前記接続終了時刻との間の時間が長いと判定された場合、当該接続開始時刻から当該接続終了時刻までの時間を分割する交通状況推定システム。
    The traffic situation estimation system according to claim 1,
    The connection information includes a connection start time and a connection end time between the terminal and the base station,
    The processor determines that the time between the connection start time and the connection end time is long by comparing the time from the connection start time to the connection end time of the same terminal acquired from the connection information with a predetermined time. A traffic situation estimation system that divides the time from the connection start time to the connection end time.
  4.  請求項1に記載の交通状況推定システムであって、
     前記記憶デバイスは、時間帯によって異なる係数が定義可能なように、前記第1の係数を格納する交通状況推定システム。
    The traffic situation estimation system according to claim 1,
    The traffic condition estimation system in which the storage device stores the first coefficient so that a different coefficient can be defined depending on a time zone.
  5.  請求項1に記載の交通状況推定システムであって、
     前記接続情報は、前記端末と前記基地局との接続開始時刻を含み、
     少なくとも一つの前記基地局は、輸送手段の降り場に設置されており、
     前記プロセッサは、
     前記接続情報に含まれる前記降り場に設置された基地局と前記端末との接続データの統計処理によって、接続を開始した端末数が多い時刻を判定し、
     前記判定された時刻を輸送手段の到着時刻であると推定する交通状況推定システム。
    The traffic situation estimation system according to claim 1,
    The connection information includes a connection start time between the terminal and the base station,
    At least one of the base stations is installed at the landing of the means of transportation;
    The processor is
    By statistical processing of connection data between the base station and the terminal installed at the landing included in the connection information, determine the time when the number of terminals that started connection is large,
    A traffic situation estimation system for estimating the determined time as an arrival time of a transportation means.
  6.  請求項1に記載の交通状況推定システムであって、
     前記接続情報は、前記端末と前記基地局との接続終了時刻を含み、
     少なくとも一つの前記基地局は、輸送手段の乗り場に設置されており、
     前記プロセッサは、
     前記接続情報に含まれる前記乗り場に設置された基地局と前記端末との接続データの統計処理によって、接続を終了した端末数が多い時刻を判定し、
     前記判定された時刻を輸送手段の出発時刻であると推定する交通状況推定システム。
    The traffic situation estimation system according to claim 1,
    The connection information includes a connection end time between the terminal and the base station,
    At least one of the base stations is installed at a transportation platform,
    The processor is
    By the statistical processing of the connection data between the base station and the terminal installed at the landing included in the connection information, determine the time when the number of terminals that have terminated the connection is large,
    A traffic situation estimation system for estimating the determined time as a departure time of a transportation means.
  7.  請求項5に記載の交通状況推定システムであって、
     前記プロセッサは、前記接続データを統計処理する際、単位時間において所定数より少ないデータ及び出現時間が所定時間より短いデータの少なくとも一方を除外することによって、輸送手段の出発に起因するデータを抽出する交通状況推定システム。
    The traffic situation estimation system according to claim 5,
    When the processor statistically processes the connection data, the processor extracts data resulting from the departure of the vehicle by excluding at least one of data less than a predetermined number and data having an appearance time shorter than the predetermined time in a unit time. Traffic situation estimation system.
  8.  請求項5に記載の交通状況推定システムであって、
     前記プロセッサは、
     前記推定された到着時刻の所定期間における平均値を計算し、
     前記計算された平均値と前記推定された到着時刻との差によって、輸送手段の遅延を推定する交通状況推定システム。
    The traffic situation estimation system according to claim 5,
    The processor is
    Calculating an average value of the estimated arrival time in a predetermined period;
    A traffic situation estimation system for estimating a delay of a transportation means based on a difference between the calculated average value and the estimated arrival time.
  9.  計算機が実行する交通状況推定方法であって、
     前記計算機は、プログラムを実行するプロセッサと、前記プログラムを格納する記憶デバイスとを有し、
     無線通信システムの基地局が、輸送手段を利用するための乗降施設に複数設置されており、
     前記記憶デバイスは、前記輸送手段の利用者が所持する端末と前記複数の基地局のいずれかとの接続開始場所及び接続終了場所を含む接続情報を格納しており、
     前記交通状況推定方法は、
     前記プロセッサが、接続開始場所と接続終了場所とが異なる端末を前記接続情報から抽出するステップと、
     前記プロセッサが、前記抽出された端末の数に所定の第1の係数を乗じることによって、輸送手段を利用するために前記乗降施設に滞留する人数を推定するステップとを含む交通状況推定方法。
    A traffic situation estimation method executed by a computer,
    The computer includes a processor that executes a program, and a storage device that stores the program,
    Multiple base stations for wireless communication systems are installed at boarding facilities to use transportation means,
    The storage device stores connection information including a connection start location and a connection end location between a terminal possessed by a user of the transportation means and any of the plurality of base stations,
    The traffic situation estimation method is:
    The processor extracting, from the connection information, a terminal having a connection start location and a connection end location different from each other;
    The processor estimates the number of people staying at the boarding / alighting facility for using the transportation means by multiplying the number of extracted terminals by a predetermined first coefficient.
  10.  請求項9に記載の交通状況推定方法であって、
     少なくとも一つの前記基地局は、輸送手段の乗降場所に設置されており、
     前記交通状況推定方法は、
     前記プロセッサが、接続開始場所と接続終了場所とが同じ乗降場所である端末を前記接続情報から抽出するステップと、
     前記プロセッサが、前記抽出された端末の数に所定の第2の係数を乗じることによって、輸送手段を利用中の人数を推定するステップとを含む交通状況推定方法。
    The traffic situation estimation method according to claim 9,
    At least one of the base stations is installed at a place of getting on and off of the transportation means,
    The traffic situation estimation method is:
    The processor extracting from the connection information a terminal where the connection start location and the connection end location are the same boarding location;
    A method of estimating the number of people using the transportation means by the processor multiplying the number of extracted terminals by a predetermined second coefficient.
  11.  請求項9に記載の交通状況推定方法であって、
     前記接続情報は、前記端末と前記基地局との接続開始時刻を含み、
     少なくとも一つの前記基地局は、輸送手段の降り場に設置されており、
     前記交通状況推定方法は、
     前記プロセッサが、前記接続情報に含まれる前記降り場に設置された基地局と前記端末との接続データの統計処理によって、接続を開始した端末数が多い時刻を判定するステップと、
     前記プロセッサが、前記判定された時刻を輸送手段の到着時刻であると推定するステップとを含む交通状況推定方法。
    The traffic situation estimation method according to claim 9,
    The connection information includes a connection start time between the terminal and the base station,
    At least one of the base stations is installed at the landing of the means of transportation;
    The traffic situation estimation method is:
    The processor determines a time when the number of terminals that have started connection is large by statistical processing of connection data between the base station installed at the landing and the terminal included in the connection information;
    A method of estimating the traffic situation, wherein the processor estimates the determined time as an arrival time of a transportation means.
  12.  請求項9に記載の交通状況推定方法であって、
     前記接続情報は、前記基地局と前記端末との接続終了時刻を含み、
     少なくとも一つの前記基地局は、輸送手段の乗り場に設置されており、
     前記プロセッサが、前記接続情報に含まれる前記乗り場に設置された基地局と前記端末との接続データの統計処理によって、接続を終了した端末数が多い時刻を判定するステップと、
     前記プロセッサが、前記判定された時刻を輸送手段の出発時刻であると推定するステップとを含む交通状況推定方法。
    The traffic situation estimation method according to claim 9,
    The connection information includes a connection end time between the base station and the terminal,
    At least one of the base stations is installed at a transportation platform,
    The processor determines a time when the number of terminals that have completed connection is large by statistical processing of connection data between a base station and the terminal installed at the landing included in the connection information;
    A step of estimating the determined time as the departure time of the transportation means by the processor.
PCT/JP2016/056461 2016-03-02 2016-03-02 Traffic situation estimation system and traffic situation estimation method WO2017149703A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/056461 WO2017149703A1 (en) 2016-03-02 2016-03-02 Traffic situation estimation system and traffic situation estimation method
EP16889665.2A EP3425606B1 (en) 2016-03-02 2016-03-02 Traffic situation estimation system and traffic situation estimation method
JP2017530231A JP6326177B2 (en) 2016-03-02 2016-03-02 Traffic situation estimation system and traffic situation estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056461 WO2017149703A1 (en) 2016-03-02 2016-03-02 Traffic situation estimation system and traffic situation estimation method

Publications (1)

Publication Number Publication Date
WO2017149703A1 true WO2017149703A1 (en) 2017-09-08

Family

ID=59742617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056461 WO2017149703A1 (en) 2016-03-02 2016-03-02 Traffic situation estimation system and traffic situation estimation method

Country Status (3)

Country Link
EP (1) EP3425606B1 (en)
JP (1) JP6326177B2 (en)
WO (1) WO2017149703A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030493A (en) * 2018-08-20 2020-02-27 Zホールディングス株式会社 Determination device, determination method, and determination program
JP2020155799A (en) * 2019-03-18 2020-09-24 ソフトバンク株式会社 Information processing system, mobile station number estimation method, population estimation method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923731B1 (en) * 2020-09-08 2021-08-25 Kddi株式会社 Information providing equipment, information terminals, programs and information providing systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212641A (en) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp Station congestion degree estimation system
JP2007120953A (en) 2005-10-25 2007-05-17 Navitime Japan Co Ltd Navigation system, portable terminal device, and start/arrival discrimination method
JP2010277190A (en) * 2009-05-26 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Device and method for extraction of staying place context, and program
JP2013242822A (en) * 2012-05-23 2013-12-05 Hitachi Ltd Alternative route information display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243478A (en) * 2005-06-23 2008-08-13 艾尔塞奇公司 Method and system for using cellular data for transportation planning and engineering
GB2497928B (en) * 2011-12-21 2014-11-19 Vodafone Ip Licensing Ltd Transport system monitoring using mobile network data
IL229671A0 (en) * 2013-11-28 2014-03-31 Google Inc Determining transportation status using network connections

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212641A (en) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp Station congestion degree estimation system
JP2007120953A (en) 2005-10-25 2007-05-17 Navitime Japan Co Ltd Navigation system, portable terminal device, and start/arrival discrimination method
JP2010277190A (en) * 2009-05-26 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Device and method for extraction of staying place context, and program
JP2013242822A (en) * 2012-05-23 2013-12-05 Hitachi Ltd Alternative route information display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030493A (en) * 2018-08-20 2020-02-27 Zホールディングス株式会社 Determination device, determination method, and determination program
JP2020155799A (en) * 2019-03-18 2020-09-24 ソフトバンク株式会社 Information processing system, mobile station number estimation method, population estimation method, and program
JP7060537B2 (en) 2019-03-18 2022-04-26 ソフトバンク株式会社 Information processing system, mobile station number estimation method, population estimation method and program

Also Published As

Publication number Publication date
JP6326177B2 (en) 2018-05-16
EP3425606A4 (en) 2019-10-23
EP3425606A1 (en) 2019-01-09
EP3425606B1 (en) 2021-08-18
JPWO2017149703A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6752435B2 (en) Transportation system, timetable proposal system and train operation system
Zhu et al. A probabilistic passenger-to-train assignment model based on automated data
JP6875311B2 (en) Transportation congestion prediction system and congestion prediction method
US10453335B2 (en) Traffic prediction and real time analysis system
JP6675860B2 (en) Data processing method and data processing system
US10430736B2 (en) System and method for estimating a dynamic origin-destination matrix
JP5986641B2 (en) Traffic analysis system
US8731835B2 (en) System and method for trip plan crowdsourcing using automatic fare collection data
US8977496B2 (en) System and method for estimating origins and destinations from identified end-point time-location stamps
JP5951903B2 (en) Fee refund system and method
US20190095836A1 (en) Prediction of actual loads from fare collection data
US9836979B2 (en) Method and system for latent demand modeling for a transportation system
JP6326177B2 (en) Traffic situation estimation system and traffic situation estimation method
JP6454222B2 (en) Data processing system and data processing method
Zhao et al. Isolating high-priority metro and feeder bus transfers using smart card data
Sharma et al. Machine learning methods for commercial vehicle wait time prediction at a border crossing
JP7555813B2 (en) Data processing method and data processing system
JP7163105B2 (en) Demand forecasting system and method
US11252379B2 (en) Information processing system, information processing method, and non-transitory storage medium
CN107784385B (en) Method, device and system for clearing and sorting in rail transit
JP2023180731A (en) Station stayer estimation system and station stayer estimation method
Keklikoglou PASSENGER DETECTION THOUGH VIDEO PROCESSING AND SIGNAL SENSORS IN THE BOSTON SUBWAY TO ADDRESS LEFT-BEHIND PASSENGERS

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017530231

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016889665

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889665

Country of ref document: EP

Kind code of ref document: A1