WO2017149697A1 - アンテナ装置及びアンテナ励振方法 - Google Patents
アンテナ装置及びアンテナ励振方法 Download PDFInfo
- Publication number
- WO2017149697A1 WO2017149697A1 PCT/JP2016/056425 JP2016056425W WO2017149697A1 WO 2017149697 A1 WO2017149697 A1 WO 2017149697A1 JP 2016056425 W JP2016056425 W JP 2016056425W WO 2017149697 A1 WO2017149697 A1 WO 2017149697A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- excitation
- distribution
- communication
- interference
- amplitude
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
- H01Q3/2611—Means for null steering; Adaptive interference nulling
- H01Q3/2617—Array of identical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/28—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
Definitions
- the present invention relates to an antenna device and an antenna excitation method for realizing secret communication in which a communicable area is limited.
- a directional beam can be formed by controlling the amplitude and phase of a carrier wave signal applied to a plurality of element antennas constituting the phased array antenna.
- a communication signal which is a signal to be communicated is transmitted not only in the main lobe direction of the directional beam but also in the side lobe direction. For this reason, even a receiving station that exists in a direction different from the communication direction may be able to receive the communication signal and demodulate the communication signal.
- Non-Patent Document 1 an antenna device that limits a communicable region by mounting an array antenna that transmits a signal only in the vicinity of the communication direction (hereinafter referred to as a “directional modulation array antenna”).
- a transmission band sequence is subjected to QPSK (Quadrature Phase Shift Keying) modulation processing to generate a baseband modulated signal that is a communication target signal, and each signal point in the baseband modulated signal
- QPSK Quadratture Phase Shift Keying
- the excitation distribution that correlates the amplitude phase of the signal and the electric field amplitude phase in the communication direction is calculated, and the calculated excitation distribution is calculated for the carrier signals applied to the multiple element antennas constituting the directional modulation array antenna. I give it by dividing.
- Patent Document 1 discloses an antenna device that further narrows the coverage area of a directional modulation array antenna.
- This antenna device limits the communicable region by making the excitation distribution of the directional modulation array antenna non-uniform. For example, when the directional modulation array antenna is a linear array antenna, compared to the carrier signal given to the element antenna arranged in the center, among the carrier signals given to the plurality of element antennas constituting the array antenna, The communicable area is limited by increasing the excitation amplitude of the carrier wave signal applied to the element antenna arranged at the end.
- the conventional antenna apparatus Since the conventional antenna apparatus is configured as described above, it is necessary to calculate the excitation distribution given by time division. In addition, it is necessary to calculate an excitation distribution in which the excitation amplitude of the carrier signal applied to the element antenna disposed at the end is larger than the carrier signal applied to the element antenna disposed in the center.
- These excitation distributions can be obtained by solving an evaluation function based on a bit error rate in each direction using an optimization method such as GA (Genetic Algorithm).
- GA Genetic Algorithm
- the present invention has been made to solve the above-described problems, and an antenna apparatus capable of reducing the amount of calculation of the excitation distribution of an array antenna used for realizing secret communication in which a communicable area is limited. And an antenna excitation method.
- An antenna apparatus includes an array antenna including a plurality of element antennas that radiate a carrier wave signal, a communication signal generation unit that generates a communication signal that is a communication target signal, and an interference signal that becomes an interference wave of the communication signal.
- a communication excitation distribution calculation unit that calculates an excitation distribution of a communication beam using an excitation phase distribution that directs a main lobe of a communication beam that is a radio wave that transmits a communication signal in a communication direction; and a communication direction
- An interference excitation distribution calculating unit that calculates an excitation distribution of an interference beam, which is a radio wave that transmits an interference signal, using an excitation phase distribution that forms a zero point of the antenna pattern in the antenna pattern, and a communication beam calculated by the communication excitation distribution calculating unit
- An excitation distribution synthesizer that synthesizes the excitation distribution and the interference beam excitation distribution calculated by the interference excitation distribution calculator is provided. Accordance excitation distribution after synthesis by cloth synthesis unit is obtained so as to control the amplitude and phase of the carrier signal supplied to the plurality of antenna elements.
- a communication excitation distribution calculation unit that calculates an excitation distribution of a communication beam using an excitation phase distribution that directs the main lobe of the communication beam in the communication direction, and an excitation phase that forms a zero point of the antenna pattern in the communication direction
- An interference excitation distribution calculation unit that calculates the excitation distribution of the interference beam using the distribution, and the excitation distribution synthesis unit calculates the communication beam excitation distribution calculated by the communication excitation distribution calculation unit and the interference excitation distribution calculation unit. Since it is configured to synthesize the excitation distribution of the interference beam, the amount of calculation of the excitation distribution of the array antenna used for realizing the secret communication in which the communicable area is limited can be reduced. .
- FIG. 4 is a flowchart showing processing contents of a carrier wave signal generation unit 1, a distributor 2, an amplitude phase control unit 30, and an array antenna 3. It is a flowchart which shows the processing content of the communication signal production
- FIG. 4 is a flowchart showing processing contents of an interference signal generation unit 5 and an interference excitation distribution calculation unit 14.
- FIG. 4 is a flowchart showing processing contents of a beam scanning phase distribution setting unit 18, a weight setting unit 19, and an excitation distribution combining unit 20. It is explanatory drawing which shows the amplitude characteristic of the communication beam calculated from excitation distribution W1 (t) of a communication beam, and the amplitude characteristic of the interference beam calculated from excitation distribution W2 (t) of an interference beam. It is explanatory drawing which shows the phase characteristic of the antenna pattern computed from synthetic
- FIG. 15A is an explanatory diagram illustrating an example of a linear array antenna
- FIG. 15B is an explanatory diagram illustrating an example of a planar array antenna
- FIG. 15C is an explanatory diagram illustrating an example of a conformal array antenna.
- FIG. FIG. 1 is a block diagram showing an antenna apparatus according to Embodiment 1 of the present invention
- FIG. 2 is a hardware block diagram of a signal processing unit 10 in the antenna apparatus according to Embodiment 1 of the present invention
- a carrier signal generator 1 is a signal oscillator that generates a carrier signal of a radio frequency, for example.
- the distributor 2 distributes the carrier wave signal generated by the carrier wave signal generator 1 into K (K is an integer of 2 or more) and outputs K carrier signals to the amplitude phase controller 30.
- the array antenna 3 is composed of K element antennas 3-1 to 3-K, and the element antennas 3-1 to 3-K are controlled in amplitude and phase by the amplitude / phase adjusters 31-1 to 31-K of the amplitude / phase control unit 30. Radiates the adjusted carrier signal into space.
- the communication signal generation unit 4 is composed of, for example, a semiconductor integrated circuit on which a CPU (Central Processing Unit) is mounted, or a one-chip microcomputer.
- a QPSK or the like is applied to a transmission bit sequence given from the outside.
- baseband modulation processing processing for generating a communication signal d (t) that is a signal to be communicated is performed.
- the modulation scheme for the transmission bit sequence is QPSK, but the modulation scheme is not limited to QPSK.
- a modulation method may be used.
- the interference signal generation unit 5 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like.
- the interference signal generation unit 5 interferes with the communication signal d (t) generated by the communication signal generation unit 4.
- a process of generating the signal i (t) is performed.
- the modulation scheme used when the interference signal generation unit 5 generates the interference signal i (t) may be the same as the modulation scheme used when the communication signal generation unit 4 generates the communication signal d (t). It may be different or different.
- the interference signal i (t) generated by the interference signal generation unit 5 may be a signal having a random phase without depending on the modulation method.
- the signal processing unit 10 includes a communication excitation distribution calculation unit 11, an interference excitation distribution calculation unit 14, a beam scanning phase distribution setting unit 18, a weight setting unit 19, an excitation distribution synthesis unit 20, and an antenna pattern display unit 21, and includes an array antenna. 3, that is, a process for calculating the excitation distribution for controlling the amplitude and phase of the carrier signal.
- the communication excitation distribution calculation unit 11 of the signal processing unit 10 includes a sum pattern excitation phase distribution setting unit 12 and a communication excitation distribution calculation processing unit 13.
- the sum pattern excitation phase distribution setting unit 12 is realized by a sum pattern excitation phase distribution setting processing circuit 41 composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer.
- a process of setting the excitation phase distribution S of the sum pattern in the array antenna 3 is performed as an excitation phase distribution in which the main lobe of the communication beam, which is a radio wave transmitting d (t), is directed in the communication direction.
- the communication excitation distribution calculation processing unit 13 is realized by a communication excitation distribution calculation processing circuit 42 configured by, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer, and the sum pattern excitation phase distribution. Using the excitation phase distribution S set by the setting unit 12, processing for calculating the communication beam excitation distribution W1 (t) is performed.
- the interference excitation distribution calculation unit 14 includes a difference pattern excitation phase distribution setting unit 15, a difference pattern excitation amplitude distribution setting unit 16, and an interference excitation distribution calculation processing unit 17.
- the difference pattern excitation phase distribution setting unit 15 is realized by a difference pattern excitation phase distribution setting processing circuit 43 configured by, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer.
- the excitation phase distribution D of the difference pattern in the array antenna 3 is set as the excitation phase distribution that forms the zero point of the antenna pattern.
- the difference pattern excitation amplitude distribution setting unit 16 is realized by, for example, a semiconductor integrated circuit on which a CPU is mounted, or a difference pattern excitation amplitude distribution setting processing circuit 44 configured by a one-chip microcomputer or the like.
- a process of setting an excitation amplitude distribution A that increases the gain in the direction corresponding to the side lobe direction of the communication beam among the gains of the interference beam that is a radio wave transmitting i (t) is performed.
- the interference excitation distribution calculation processing unit 17 is realized by, for example, an interference excitation distribution calculation processing circuit 45 configured by a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer, and the difference pattern excitation phase distribution. Using the excitation phase distribution D set by the setting unit 15 and the excitation amplitude distribution A set by the difference pattern excitation amplitude distribution setting unit 16, a process for calculating the excitation distribution W2 (t) of the interference beam is performed.
- the beam scanning phase distribution setting unit 18 is realized by, for example, a semiconductor integrated circuit on which a CPU is mounted, or a beam scanning phase distribution setting processing circuit 46 configured by a one-chip microcomputer or the like, and determines a communication direction. Processing for setting the beam scanning phase distribution P is performed.
- the weight setting unit 19 is realized by a weight setting processing circuit 47 configured by, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and is calculated by the communication excitation distribution calculation unit 11.
- a process of setting a weight m for the communication beam excitation distribution W1 (t) and a weight n for the interference beam excitation distribution W2 (t) calculated by the interference excitation distribution calculation unit 14 is performed.
- the excitation distribution synthesis unit 20 is realized by, for example, an excitation distribution synthesis processing circuit 48 configured by a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and is set by the weight setting unit 19.
- the communication beam excitation distribution W1 (t) calculated by the communication excitation distribution calculation unit 11 according to the weights m and n and the interference beam excitation distribution W2 (t) calculated by the interference excitation distribution calculation unit 14 are combined. Then, a process of multiplying the combined excitation distribution by the beam scanning phase distribution P set by the beam scanning phase distribution setting unit 18 is performed.
- the excitation distribution combining unit 20 outputs an excitation distribution obtained by multiplying the beam scanning phase distribution P as a combined excitation distribution E (t).
- the antenna pattern display unit 21 is realized by an antenna pattern display processing circuit 49 configured by, for example, a semiconductor integrated circuit mounting a CPU or a one-chip microcomputer, and is output from the excitation distribution combining unit 20.
- the antenna pattern is calculated from the combined excitation distribution E (t) and the antenna pattern is output to the display 6.
- the display 6 is composed of a liquid crystal display, for example, and displays the antenna pattern output from the antenna pattern display unit 21.
- the amplitude phase control unit 30 includes amplitude phase adjusters 31-1 to 31-K and a controller 32, and the element antennas 3-1 to 3-1 are controlled according to the combined excitation distribution E (t) output from the excitation distribution combining unit 20. Controls the amplitude and phase of the carrier signal applied to 3-K.
- the amplitude phase adjusters 31-1 to 31-K include a phase control device 31a and an amplitude control device 31b.
- the phase control device 31a is constituted by a phase shifter, for example, and adjusts the phase of the carrier signal distributed by the distributor 2 in accordance with the phase adjustment amount indicated by the control signal output from the controller 32.
- the amplitude control device 31b is composed of, for example, a variable gain amplifier, and adjusts the amplitude of the carrier signal after the phase adjustment by the phase control device 31a according to the amplitude adjustment amount indicated by the control signal output from the controller 32.
- the controller 32 controls the amplitude and phase adjustment amounts in the amplitude phase adjusters 31-1 to 31-K according to the combined excitation distribution E (t) output from the excitation distribution combining unit 20.
- FIG. 3 is a hardware configuration diagram when the signal processing unit 10 is configured by a computer.
- a communication excitation distribution calculating unit 11, an interference excitation distribution calculating unit 14, a beam scanning phase distribution setting unit 18, a weight setting unit 19, an excitation distribution combining unit 20, and an antenna pattern are components of the signal processing unit 10.
- the signal processing unit 10 may be configured with a computer.
- FIG. 3 is a hardware configuration diagram when the signal processing unit 10 is configured by a computer.
- the processor 52 of the computer may execute the program stored in the memory 51.
- the input interface device 53 is an interface device including a signal input / output port such as a USB (Universal Serial Bus) port or a serial port, and is connected to the communication signal generation unit 4 and the interference signal generation unit 5.
- the communication signal d (t) output from the communication signal generation unit 4 and the interference signal i (t) output from the interference signal generation unit 5 are input.
- the output interface device 54 is an interface device including a signal input / output port such as a USB port or a serial port.
- the output interface device 54 is connected to the amplitude / phase control unit 30 and is output from the excitation distribution combining unit 20. Is output to the amplitude phase control unit 30.
- the display interface device 55 is an interface device for connecting to the display device 6, and outputs the antenna pattern output from the antenna pattern display unit 21 to the display device 6.
- FIG. 4 is a flowchart showing the processing contents of the carrier wave signal generation unit 1, the divider 2, the amplitude / phase control unit 30, and the array antenna 3.
- FIG. 5 is a flowchart showing the processing contents of the communication signal generation unit 4 and the communication excitation distribution calculation unit 11.
- FIG. 6 is a flowchart showing the processing contents of the interference signal generation unit 5 and the interference excitation distribution calculation unit 14.
- FIG. 7 is a flowchart showing the processing contents of the beam scanning phase distribution setting unit 18, the weight setting unit 19, and the excitation distribution synthesis unit 20.
- FIG. 8 is an explanatory diagram showing the communication beam amplitude characteristic calculated from the communication beam excitation distribution W1 (t) and the interference beam amplitude characteristic calculated from the interference beam excitation distribution W2 (t). In FIG. 8, G1 represents the amplitude characteristic of the communication beam, and G2 represents the amplitude characteristic of the interference beam.
- FIG. 9 is an explanatory diagram showing the phase characteristics of the antenna pattern calculated from the combined excitation distribution E (t
- the carrier signal generator 1 generates, for example, a radio frequency carrier signal and outputs the carrier signal to the distributor 2 (step ST1 in FIG. 4).
- distributor 2 receives the carrier signal from carrier signal generator 1, distributor 2 distributes the carrier signal into K and outputs K carrier signals to amplitude phase controller 30 (step ST2).
- the communication signal generation unit 4 generates a communication signal d (t), which is a communication target signal, by performing baseband modulation processing such as QPSK on a transmission bit sequence given from the outside, for example.
- the signal d (t) is output to the communication excitation distribution calculation unit 11 of the signal processing unit 10 (step ST11 in FIG. 5).
- t represents time
- the modulation method is QPSK
- the signal points in the communication signal d (t) are exp (j ⁇ / 4), exp (j3 ⁇ / 4), exp ( ⁇ j3 ⁇ / 4), exp ( ⁇ j ⁇ / 4).
- the sum pattern excitation phase distribution setting unit 12 of the communication excitation distribution calculation unit 11 sets the excitation pattern distribution S of the sum pattern in the array antenna 3 as an excitation phase distribution in which the main lobe of the communication beam is directed in the communication direction (step ST12). . Since the excitation phase distribution S of the sum pattern is a known excitation phase distribution, detailed description thereof is omitted, but the excitation phase distribution S of the sum pattern is represented by a matrix of K rows and 1 column, and each element of the matrix is a complex number. It is. Since the excitation phase of the sum pattern is 0 degrees, the excitation phase distribution S is a matrix having exp (j0) as an element.
- the interference signal generation unit 5 generates an interference signal i (t) that becomes an interference wave of the communication signal d (t) generated by the communication signal generation unit 4, and uses the interference signal i (t) of the signal processing unit 10. It outputs to the interference excitation distribution calculation part 14 (step ST21 of FIG. 6). For example, a signal having a random phase is generated as the interference signal i (t).
- the difference pattern excitation phase distribution setting unit 15 of the interference excitation distribution calculation unit 14 uses an array antenna as an excitation phase distribution that forms a zero point of the antenna pattern in the communication direction in the interference beam that is a radio wave that transmits the interference signal i (t). 3 is set (step ST22).
- the excitation phase distribution D of the difference pattern is a known excitation phase distribution and will not be described in detail. However, the excitation phase distribution D of the difference pattern is represented by a matrix of K rows and 1 column, for example, one row of the matrix. The elements from the eye to the K / 2 line are exp (j ⁇ ), and the elements from the (K / 2) +1 line to the K line are exp (j0).
- an amplitude characteristic such as G2 in FIG. 8 can be obtained as the amplitude characteristic of the interference beam.
- the zero point of the antenna pattern is formed in the direction of 0 degrees.
- the sum pattern excitation phase distribution setting unit 12 sets the sum pattern excitation phase distribution S
- the difference pattern excitation phase distribution setting unit 15 sets the difference pattern excitation phase distribution D.
- excitation phase distributions other than the sum pattern and the difference pattern may be set to generate a communication beam and an interference beam that are orthogonal to each other.
- excitation phase distributions in which a communication beam and an interference beam that do not have an orthogonal relationship may be set. Even when the excitation distribution of the communication beam and the interference beam having no orthogonal relationship is processed, the amount of calculation is greatly reduced compared to the case where the excitation distribution is calculated using the optimization method.
- the difference pattern excitation amplitude distribution setting unit 16 has a gain in the direction corresponding to the side lobe direction of the communication beam among the gains of the interference beam.
- An excitation amplitude distribution A having a difference pattern for increasing the gain is set (step ST23 in FIG. 6). As shown in FIG. 8, when the gain of the interference beam is higher than the gain of the side lobe of the communication beam in the side lobe direction of the communication beam, the interference signal i (t) becomes larger than the communication signal d (t). .
- the difference pattern excitation amplitude distribution setting unit 16 sets the relationship between the amplitude characteristic of the communication beam and the amplitude characteristic of the interference beam as shown in the amplitude characteristics G1 and G2 in FIG. ,
- the excitation amplitude distribution A of the difference pattern that increases the gain of the interference beam is set.
- the excitation amplitude distribution A of the difference pattern is represented by a matrix of K rows and 1 column. For example, each element of the matrix is a positive integer.
- the excitation amplitude distribution A of the difference pattern can be obtained from, for example, a Taylor distribution.
- the side lobe level decreases as the distance from the main beam decreases. Therefore, the Taylor distribution is improved, and the distribution in which the side lobe level increases as the distance from the main beam increases. May be used. That is, the Taylor distribution is known as a distribution that lowers the side lobe level.
- the Taylor distribution is used for the excitation amplitude distribution A of the difference pattern, the side lobe level can be increased and the side lobe direction of the communication beam can be increased. In, the gain of the interference beam can be increased.
- the interference excitation distribution calculation processing unit 17 obtains the following equation (2).
- the interference signal i (t) output from the interference signal generator 5 is multiplied by the diagonal matrix of the excitation phase distribution D and the excitation amplitude distribution A to obtain the interference beam excitation distribution W2 (t).
- W2 (t) i (t) .diag (A) .D (2)
- diag (A) is a diagonal matrix with A as a diagonal element.
- the beam scanning phase distribution setting unit 18 sets the beam scanning phase distribution P that determines the communication direction (step ST31 in FIG. 7). For example, the sum pattern excitation phase distribution setting unit 12 sets the excitation phase distribution S for directing the main lobe of the communication beam in the direction of 0 degrees, and the difference pattern excitation phase distribution setting unit 15 sets the antenna pattern in the direction of 0 degrees. Even when the excitation phase distribution D forming the zero point is set, for example, when the communication direction needs to be directed to 30 degrees or 45 degrees, the beam scanning phase distribution setting unit 18 performs communication. If the beam scanning phase distribution P indicating the direction of 30 degrees or 45 degrees is set, the communication direction becomes the direction of 30 degrees or 45 degrees.
- the main lobe of the communication beam is directed in the direction of 30 degrees or 45 degrees, and the zero point of the antenna pattern is formed in the direction of 30 degrees or 45 degrees for the interference beam.
- the beam scanning phase distribution P is represented by a matrix of K rows and 1 column, and the elements of the matrix are complex numbers.
- FIG. 8 shows an example in which the beam scanning phase distribution P is set so that the communication direction is a direction of 0 degree.
- the beam scanning phase distribution setting unit 18 When it is necessary to switch the communication direction as appropriate, the beam scanning phase distribution setting unit 18 needs to be mounted. However, for example, when the communication direction is always the front direction of the array antenna 3, the communication direction is fixed. Instead of mounting the beam scanning phase distribution setting unit 18, the excitation distribution combining unit 20 may store the beam scanning phase distribution P set in advance.
- the weight setting unit 19 weights the communication beam excitation distribution W1 (t) calculated by the communication excitation distribution calculation unit 11 and the interference beam excitation distribution W2 (t) calculated by the interference excitation distribution calculation unit 14.
- N (m and n are positive integers) are set (step ST32).
- the weights m and n determine the composite ratio of the communication beam excitation distribution W1 (t) and the interference beam excitation distribution W2 (t). For example, if m ⁇ n, the excitation distribution W1 (t). In the combined excitation distribution E (t) of the excitation distribution W2 (t), the contribution of the interference beam excitation distribution W2 (t) can be increased. That is, the interference signal i (t) transmitted by the interference beam can be increased to narrow the communicable area.
- the contribution of the interference beam excitation distribution W2 (t) in the combined excitation distribution E (t) of the excitation distribution W1 (t) and the excitation distribution W2 (t) can be reduced. . That is, it is possible to reduce the interference signal i (t) transmitted by the interference beam and to expand the communicable area.
- the excitation distribution synthesizing unit 20 uses the weights m and n set in advance without mounting the weight setting unit 19. You may make it memorize.
- the excitation distribution combining unit 20 has a weight m as shown in the following equation (3).
- N the communication beam excitation distribution W1 (t) calculated by the communication excitation distribution calculation unit 11 and the interference beam excitation distribution W2 (t) calculated by the interference excitation distribution calculation unit 14 are combined.
- the combined excitation distribution E (t) is calculated by multiplying the combined excitation distribution by the diagonal matrix of the beam scanning phase distribution P (step ST33).
- E (t) diag (P) ⁇ ⁇ m ⁇ W1 (t) + n ⁇ W2 (t) ⁇ (3)
- the combined excitation distribution E (t) is obtained by combining the communication beam and the interference beam that are orthogonal to each other. As can be seen from Equation (3), the communication beam and the interference beam that are orthogonal to each other are obtained.
- the composition process only performs simple calculations. That is, the communication beam and the interference beam can be synthesized simply by adding and multiplying the matrix. For this reason, compared with the case where the composite excitation distribution E (t) is calculated by using the optimization method, the calculation amount is about 1 / hundreds of several hundredths.
- the excitation distribution combining unit 20 outputs the combined excitation distribution E (t) to the amplitude / phase control unit 30 as the excitation distribution of the array antenna 3.
- the controller 32 of the amplitude phase control unit 30 When the controller 32 of the amplitude phase control unit 30 receives the composite excitation distribution E (t) from the excitation distribution synthesis unit 20, the controller 32 in the amplitude phase adjusters 31-1 to 31-K follows the composite excitation distribution E (t). Control signals indicating the amplitude and phase adjustment amounts are output to the amplitude / phase adjusters 31-1 to 31-K. Since the process itself of specifying the amplitude and phase adjustment amounts from the combined excitation distribution E (t) and outputting the control signal indicating the amplitude and phase adjustment amounts is a known technique, detailed description thereof is omitted.
- the phase control device 31a of the amplitude / phase adjusters 31-1 to 31-K receives the control signal from the controller 32 and adjusts the phase of the carrier signal distributed by the distributor 2 according to the phase adjustment amount indicated by the control signal. And the phase-adjusted carrier wave signal is output to the amplitude control device 31b (step ST3 in FIG. 4).
- the amplitude control device 31b of the amplitude phase adjusters 31-1 to 31-K receives the control signal from the controller 32, the carrier wave signal output from the phase control device 31a according to the amplitude adjustment amount indicated by the control signal.
- the amplitude is adjusted, and the carrier wave signal after amplitude adjustment is output from the element antennas 3-1 to 3-K (step ST4).
- a carrier wave signal whose amplitude and phase are adjusted is radiated from the element antennas 3-1 to 3-K to the space (step ST5).
- the communication beam and the interference beam formed by the carrier wave signals radiated from the element antennas 3-1 to 3-K are as shown in FIG. 8, for example.
- the amplitude characteristic of the communication beam is G1
- the main lobe has a peak at 0 degree.
- the amplitude characteristic of the interference beam is G2
- the zero point of the antenna pattern is formed in the direction of 0 degrees.
- the receiving station existing in the direction of 0 degrees can receive the communication signal d (t) transmitted by the communication beam, but does not transmit the interference signal i (t). Therefore, the communication signal d (t) can be demodulated without being affected by the interference signal i (t).
- the gain of the interference beam is larger than the gain of the communication beam. For this reason, since the receiving station existing in the side lobe direction of the communication beam is greatly affected by the interference signal i (t) transmitted by the interference beam, the communication signal d (t) transmitted by the communication beam. However, it is difficult to demodulate the communication signal d (t). Therefore, since the communication signal d (t) can be demodulated only at an angle in which the communication direction is around 0 degrees, the communicable area is limited.
- the communication excitation distribution calculation for calculating the communication beam excitation distribution W1 (t) using the excitation phase distribution S for directing the main lobe of the communication beam in the communication direction.
- the excitation distribution W2 (t) is combined, so that the range of the communicable area can be appropriately changed.
- the beam scanning phase distribution setting unit 18 that sets the beam scanning phase distribution P that determines the communication direction
- the excitation distribution combining unit 20 includes the communication beam excitation distribution W1 (t) and the interference beam.
- the resultant excitation distribution is multiplied by the diagonal matrix of the beam scanning phase distribution P set by the beam scanning phase distribution setting unit 18 to synthesize the combined excitation distribution W2 (t). Since the configuration is such that E (t) is calculated, the communication direction can be changed as appropriate.
- the interference excitation distribution calculation unit 14 sets the excitation amplitude distribution A that increases the gain in the direction corresponding to the side lobe direction of the communication beam among the gains of the interference beam, and the excitation Since the interference signal i (t) is multiplied by the diagonal matrix of the amplitude distribution A, the gain of the side lobe of the communication beam can be relatively reduced compared to the gain of the interference beam. . For this reason, it is difficult to demodulate the communication signal d (t) at the receiving station existing in the side lobe direction of the communication beam, and there is an effect that the confidentiality can be improved.
- the excitation is shown.
- the distribution combining unit 20 calculates in advance a combined excitation distribution E (t) corresponding to the communication signal d (t) and the interference signal i (t), and stores the combined excitation distribution E (t) in the memory 51 or the like.
- the combined excitation distribution E (t (t) corresponding to the communication signal d (t) and the interference signal i (t) is received from the memory 51.
- the resultant excitation distribution E (t) may be output to the amplitude / phase control unit 30.
- a beam scanning phase distribution setting unit 18 that sets a beam scanning phase distribution P
- an excitation distribution combining unit 20 includes an excitation distribution W1 (t) of a communication beam and an excitation distribution W2 (t of an interference beam. ) Is multiplied by the diagonal matrix of the beam scanning phase distribution P.
- two beam scanning phase distribution setting units 18 are implemented, and one beam scanning phase distribution setting unit 18 is mounted.
- the interference excitation distribution calculation processing unit 17 is set by the difference pattern excitation amplitude distribution setting unit 16 in order to relatively reduce the gain of the side lobe of the communication beam as compared with the gain of the interference beam.
- the interference signal i (t) is multiplied by the diagonal matrix of the excitation amplitude distribution A thus generated, the communication excitation distribution calculation processing unit 13 reduces the gain in the side lobe direction of the communication beam.
- the communication signal d (t) may be multiplied by the angle matrix.
- FIG. 10 is a block diagram showing an antenna apparatus according to Embodiment 2 of the present invention
- FIG. 11 is a hardware block diagram of a signal processing unit 10 in the antenna apparatus according to Embodiment 2 of the present invention.
- the sum pattern excitation amplitude distribution setting unit 22 is realized by a sum pattern excitation amplitude distribution setting processing circuit 50 configured by, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer.
- the excitation amplitude distribution B for lowering the gain in the side lobe direction is set.
- the communication excitation distribution calculation processing unit 23 is realized by the communication excitation distribution calculation processing circuit 42, and is set by the excitation phase distribution S and the sum pattern excitation amplitude distribution setting unit 22 set by the sum pattern excitation phase distribution setting unit 12. Processing for calculating the communication beam excitation distribution W1 (t) is performed using the excited excitation amplitude distribution B.
- the sum pattern excitation amplitude distribution setting unit 22 of the communication excitation distribution calculation unit 11 reduces the gain in the side lobe direction of the communication beam in order to make it difficult to demodulate the communication signal d (t) in the side lobe direction of the communication beam.
- a pattern excitation amplitude distribution B is set.
- the excitation amplitude distribution B of the sum pattern is represented by a matrix of K rows and 1 column. For example, each element of the matrix is a positive integer.
- a Taylor distribution can be used as the excitation amplitude distribution B of the sum pattern.
- the communication excitation distribution calculation processing unit 23 of the communication excitation distribution calculation unit 11 is configured such that the sum pattern excitation phase distribution setting unit 12 sets the excitation pattern distribution S of the sum pattern as in the first embodiment, and sets the sum pattern excitation amplitude distribution.
- the communication phase generator S outputs the diagonal matrix of the excitation phase distribution S and the excitation amplitude distribution B and outputs the communication.
- W1 (t) d (t) ⁇ diag (B) ⁇ S (4)
- diag (B) is a diagonal matrix with B as a diagonal element.
- the communication excitation distribution calculation unit 11 sets the excitation amplitude distribution B of the sum pattern that lowers the gain in the side lobe direction of the communication beam, and the excitation amplitude distribution B Since the communication signal d (t) is multiplied by the diagonal matrix, the gain of the side lobe of the communication beam can be relatively reduced as compared with the gain of the interference beam. For this reason, it is difficult to demodulate the communication signal d (t) at the receiving station existing in the side lobe direction of the communication beam, and there is an effect that the confidentiality can be improved.
- the interference excitation distribution calculation processing unit 17 is set by the difference pattern excitation amplitude distribution setting unit 16 in order to relatively reduce the gain of the side lobe of the communication beam as compared with the gain of the interference beam.
- the interference matrix i (t) is multiplied by the diagonal matrix of the excited excitation amplitude distribution A
- the communication excitation distribution calculation processing unit 13 further reduces the gain in the side lobe direction of the communication beam.
- the communication signal d (t) may be multiplied by the diagonal matrix of B.
- FIG. 12 is a block diagram showing an antenna apparatus according to Embodiment 3 of the present invention.
- the sum pattern excitation amplitude distribution setting unit 22 is mounted on the communication excitation distribution calculation unit 11
- the difference pattern excitation amplitude distribution setting unit 16 is mounted on the interference excitation distribution calculation unit 14.
- the sum pattern excitation phase distribution setting unit 12 sets the excitation phase distribution S of the sum pattern
- the sum pattern excitation amplitude distribution setting unit 22 sets the sum pattern.
- the interference excitation distribution calculation processing unit 17 of the interference excitation distribution calculating unit 14 sets the excitation phase distribution D by the difference pattern excitation phase distribution setting unit 15 and sets the excitation amplitude distribution A by the difference pattern excitation amplitude distribution setting unit 16. Then, as in the first embodiment, the interference signal i (t) output from the interference signal generation unit 5 is multiplied by the diagonal matrix of the excitation phase distribution D and the excitation amplitude distribution A, so that the interference beam An excitation distribution W2 (t) is calculated.
- the gain of the side lobe of the communication beam can be relatively reduced compared to the gain of the interference beam. For this reason, it is difficult to demodulate the communication signal d (t) at the receiving station existing in the side lobe direction of the communication beam, and there is an effect that the confidentiality can be improved.
- the interference excitation distribution calculation processing unit 17 is set by the difference pattern excitation amplitude distribution setting unit 16 in order to relatively reduce the gain of the side lobe of the communication beam as compared with the gain of the interference beam.
- the interference signal i (t) is multiplied by the diagonal matrix of the excitation amplitude distribution A
- the communication excitation distribution calculation processing unit 13 exceeds the gain of the interference beam by increasing the gain in the side lobe direction of the communication beam.
- the communication signal d (t) may be multiplied by a diagonal matrix of the excitation amplitude distribution C that increases the gain in the side lobe direction of the communication beam within the range.
- the gain in the side lobe direction of the communication beam increases within a range that does not exceed the gain of the interference beam. Therefore, the communication signal d (t) increases in the side lobe direction. Since t) is larger than the communication signal d (t), it is difficult to demodulate the communication signal d (t) in the side lobe direction of the communication beam.
- the excitation amplitude distribution C of the sum pattern is represented by a matrix of K rows and 1 column, and each element of the matrix is a positive integer, for example.
- the excitation amplitude distribution C of the sum pattern for example, among the element antennas 3-1 to 3 -K constituting the array antenna 3, compared with the amplitude distribution of the element antenna arranged at the center, An inversely tapered amplitude distribution can be used so that the amplitude distribution at the element antenna arranged at the height is high.
- the beam width of the communication beam is narrowed, so that the communication area can be expected to be narrowed.
- Embodiment 4 the phase control device 31a of the amplitude / phase adjusters 31-1 to 31-K is distributed by the distributor 2 in accordance with the phase adjustment amount indicated by the control signal output from the controller 32.
- the amplitude control device 31b of the amplitude phase adjusters 31-1 to 31-K outputs the output from the phase control device 31a according to the amplitude adjustment amount indicated by the control signal output from the controller 32.
- the adjustment of the amplitude of the carrier signal is shown, the amplitude and phase of the carrier signal may be adjusted by digital signal processing.
- FIG. 13 is a block diagram showing an antenna apparatus according to Embodiment 4 of the present invention.
- the carrier signal generator 61 is a signal oscillator that generates a carrier signal that is a digital signal.
- the amplitude phase control unit 70 includes amplitude phase adjusters 71-1 to 71-K and a controller 72.
- the element antennas 3-1 to 3-1 are controlled according to the combined excitation distribution E (t) output from the excitation distribution combining unit 20. Controls the amplitude and phase of the carrier signal applied to 3-K.
- the amplitude / phase adjusters 71-1 to 71-K include a digital signal processor 71a, a digital / analog converter (hereinafter referred to as "D / A converter") 71b, and an amplifier 71c, and are output from the controller 72.
- the phase of the carrier wave signal is adjusted by digital signal processing according to the phase adjustment amount indicated by the control signal, and the amplitude of the carrier wave signal is adjusted by digital signal processing according to the amplitude adjustment amount indicated by the control signal output from the controller 72. adjust.
- the controller 72 controls the amplitude and phase adjustment amounts in the amplitude phase adjusters 71-1 to 71-K in accordance with the combined excitation distribution E (t) output from the excitation distribution combining unit 20.
- the digital signal processor 71a of the amplitude / phase adjusters 71-1 to 71-K is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like. Adjust the phase.
- the D / A converter 71b of the amplitude / phase adjusters 71-1 to 71-K converts the carrier signal whose amplitude and phase are adjusted by the digital signal processor 71a into an analog signal.
- the amplifier 71c of the amplitude / phase adjusters 71-1 to 71-K amplifies the carrier signal converted into an analog signal by the D / A converter 71b, and the amplified carrier signal is sent to the element antennas 3-1 to 3-K. Output.
- FIG. 14 is a flowchart showing the processing contents of the carrier wave signal generation unit 61, the amplitude phase control unit 70, and the array antenna 3.
- the processing content of the signal processing unit 10 may be the same as in the first and second embodiments.
- the carrier wave signal generator 61 generates a carrier wave signal that is a digital signal, and outputs the carrier wave signal to the amplitude phase adjusters 71-1 to 71-K of the amplitude phase controller 70 (step ST41 in FIG. 14).
- the controller 72 of the amplitude phase control unit 70 calculates the combined excitation distribution E (t) when the excitation distribution combining unit 20 of the signal processing unit 10 calculates the combined excitation distribution E (t) as in the third embodiment. ), Control signals indicating amplitude and phase adjustment amounts in the amplitude phase adjusters 71-1 to 71-K are output to the amplitude phase adjusters 71-1 to 71-K. Since the process itself of specifying the amplitude and phase adjustment amounts from the combined excitation distribution E (t) and outputting the control signal indicating the amplitude and phase adjustment amounts is a known technique, detailed description thereof is omitted.
- the digital signal processor 71a of the amplitude / phase adjusters 71-1 to 71-K Upon receiving a control signal from the controller 72, the digital signal processor 71a of the amplitude / phase adjusters 71-1 to 71-K receives the control signal from the controller 72 and performs digital signal processing to generate a carrier signal 61 in accordance with the phase adjustment amount indicated by the control signal. In addition, the phase of the carrier signal output from the control signal is adjusted, and the amplitude of the carrier signal is adjusted by digital signal processing according to the amplitude adjustment amount indicated by the control signal (step ST42).
- the D / A converter 71b of the amplitude / phase adjusters 71-1 to 71-K receives the carrier signal whose amplitude and phase are adjusted from the digital signal processor 71a
- the D / A converter 71b converts the carrier signal into an analog signal.
- the amplifier 71c Upon receiving an analog carrier signal from the D / A converter 71b, the amplifier 71c of the amplitude / phase adjusters 71-1 to 71-K amplifies the carrier signal, and the amplified carrier signal is transmitted to the element antennas 3-1 to 3-K is output (step ST44).
- a carrier wave signal whose amplitude and phase are adjusted is radiated from the element antennas 3-1 to 3-K to the space (step ST45).
- the communication beam and the interference beam formed by the carrier wave signals radiated from the element antennas 3-1 to 3-K are as shown in FIG. 8, for example.
- the amplitude characteristic of the communication beam is G1
- the main lobe has a peak at 0 degree.
- the amplitude characteristic of the interference beam is G2
- the zero point of the antenna pattern is formed in the direction of 0 degrees.
- the receiving station existing in the direction of 0 degrees can receive the communication signal d (t) transmitted by the communication beam, but does not transmit the interference signal i (t). Therefore, the communication signal d (t) can be demodulated without being affected by the interference signal i (t).
- the gain of the interference beam is larger than the gain of the communication beam. For this reason, since the receiving station existing in the side lobe direction of the communication beam is greatly affected by the interference signal i (t) transmitted by the interference beam, the communication signal d (t) transmitted by the communication beam. However, it is difficult to demodulate the communication signal d (t). Therefore, since the communication signal d (t) can be demodulated only at an angle in which the communication direction is around 0 degrees, the communicable area is limited.
- communication excitation distribution calculation for calculating the communication beam excitation distribution W1 (t) using the excitation phase distribution S for directing the main lobe of the communication beam in the communication direction.
- the amplitude and phase adjusters 71-1 to 71-K adjust the phase of the carrier wave signal by digital signal processing according to the phase adjustment amount indicated by the control signal output from the controller 72. Since the amplitude of the carrier wave signal is adjusted by digital signal processing according to the adjustment amount of the amplitude indicated by the control signal output from the controller 72, the antenna is compared with the first to third embodiments. There exists an effect which can improve the formation precision of a pattern.
- FIG. 15 is an explanatory diagram showing an example of the array antenna 3.
- FIG. 15A shows an example of a linear array antenna
- FIG. 15B shows an example of a planar array antenna
- FIG. 15C shows an example of a conformal array antenna.
- the antenna device and the antenna excitation method according to the present invention are suitable for realizing secret communication with a small amount of calculation and a limited communicable area.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radio Transmission System (AREA)
Abstract
通信ビームのメインローブを通信方向に向ける励振位相分布Sを用いて、通信ビームの励振分布W1(t)を算出する通信励振分布算出部(11)と、通信方向にアンテナパターンの零点を形成する励振位相分布Dを用いて、干渉ビームの励振分布W2(t)を算出する干渉励振分布算出部(14)と、通信ビームの励振分布W1(t)と干渉ビームの励振分布W2(t)とを合成する励振分布合成部(20)とを設け、振幅位相制御部(30)が、励振分布合成部(20)による合成後の励振分布にしたがって素子アンテナ(3-1)~(3-K)に与える搬送波信号の振幅及び位相を制御する。
Description
この発明は、通信可能領域が限定されている秘匿通信を実現するアンテナ装置及びアンテナ励振方法に関するものである。
フェーズドアレーアンテナを実装しているアンテナ装置では、そのフェーズドアレーアンテナを構成している複数の素子アンテナに与える搬送波信号の振幅及び位相を制御することで、指向性ビームを形成することができる。
指向性ビームを用いる通信では、指向性ビームのメインローブ方向だけでなく、サイドローブ方向にも通信対象の信号である通信信号が送信される。このため、通信方向と異なる方向に存在している受信局でも通信信号を受信して、その通信信号を復調することが可能になる場合がある。
指向性ビームを用いる通信では、指向性ビームのメインローブ方向だけでなく、サイドローブ方向にも通信対象の信号である通信信号が送信される。このため、通信方向と異なる方向に存在している受信局でも通信信号を受信して、その通信信号を復調することが可能になる場合がある。
以下の非特許文献1には、通信方向の近傍のみに信号を送信するアレーアンテナ(以降、「指向性変調アレーアンテナ」と称する)を実装することで、通信可能領域を限定しているアンテナ装置が開示されている。
このアンテナ装置では、送信ビット系列に対して、QPSK(Quadrature Phase Shift Keying)の変調処理を施すことで、通信対象の信号であるベースバンド変調信号を生成し、そのベースバンド変調信号における各信号点の振幅位相と、通信方向における電界振幅位相とを対応させる励振分布を算出し、指向性変調アレーアンテナを構成している複数の素子アンテナに与える搬送波信号に対して、その算出した励振分布を時分割で与えるようにしている。
このアンテナ装置では、送信ビット系列に対して、QPSK(Quadrature Phase Shift Keying)の変調処理を施すことで、通信対象の信号であるベースバンド変調信号を生成し、そのベースバンド変調信号における各信号点の振幅位相と、通信方向における電界振幅位相とを対応させる励振分布を算出し、指向性変調アレーアンテナを構成している複数の素子アンテナに与える搬送波信号に対して、その算出した励振分布を時分割で与えるようにしている。
以下の特許文献1には、指向性変調アレーアンテナの更なる狭覆域化を図っているアンテナ装置が開示されている。
このアンテナ装置は、指向性変調アレーアンテナの励振分布を非一様にして、通信可能領域を限定している。例えば、指向性変調アレーアンテナがリニアアレーアンテナである場合、アレーアンテナを構成している複数の素子アンテナに与える搬送波信号の中で、中央に配置されている素子アンテナに与える搬送波信号と比べて、端部に配置されている素子アンテナに与える搬送波信号の励振振幅を大きくすることで、通信可能領域を限定している。
このアンテナ装置は、指向性変調アレーアンテナの励振分布を非一様にして、通信可能領域を限定している。例えば、指向性変調アレーアンテナがリニアアレーアンテナである場合、アレーアンテナを構成している複数の素子アンテナに与える搬送波信号の中で、中央に配置されている素子アンテナに与える搬送波信号と比べて、端部に配置されている素子アンテナに与える搬送波信号の励振振幅を大きくすることで、通信可能領域を限定している。
M. P. Daly, "Directional Modulation Technique for Phased Arrays", IEEE Trans. Antennas Propagat., vol.57, pp.2633-2640, 2009.
従来のアンテナ装置は以上のように構成されているので、時分割で与える励振分布を算出する必要がある。また、中央に配置されている素子アンテナに与える搬送波信号と比べて、端部に配置されている素子アンテナに与える搬送波信号の励振振幅が大きくなる励振分布を算出する必要がある。これらの励振分布は、各方角のビット誤り率等に基づいた評価関数を、GA(Genetic Algorithm:遺伝的アルゴリズム)などの最適化手法を用いて解くことで得ることができる。しかし、最適化手法を用いる場合、計算量が膨大になるため、励振分布を得るまでに長時間を要することがあるという課題があった。
この発明は上記のような課題を解決するためになされたもので、通信可能領域が限定されている秘匿通信を実現するために用いるアレーアンテナの励振分布の計算量を低減することができるアンテナ装置及びアンテナ励振方法を得ることを目的とする。
この発明に係るアンテナ装置は、搬送波信号を放射する複数の素子アンテナからなるアレーアンテナと、通信対象の信号である通信信号を生成する通信信号生成部と、通信信号の妨害波となる干渉信号を生成する干渉信号生成部と、通信信号を送信する電波である通信ビームのメインローブを通信方向に向ける励振位相分布を用いて、通信ビームの励振分布を算出する通信励振分布算出部と、通信方向にアンテナパターンの零点を形成する励振位相分布を用いて、干渉信号を送信する電波である干渉ビームの励振分布を算出する干渉励振分布算出部と、通信励振分布算出部により算出された通信ビームの励振分布と干渉励振分布算出部により算出された干渉ビームの励振分布とを合成する励振分布合成部とを設け、振幅位相制御部が、励振分布合成部による合成後の励振分布にしたがって複数の素子アンテナに与える搬送波信号の振幅及び位相を制御するようにしたものである。
この発明によれば、通信ビームのメインローブを通信方向に向ける励振位相分布を用いて、通信ビームの励振分布を算出する通信励振分布算出部と、通信方向にアンテナパターンの零点を形成する励振位相分布を用いて、干渉ビームの励振分布を算出する干渉励振分布算出部とを設け、励振分布合成部が、通信励振分布算出部により算出された通信ビームの励振分布と干渉励振分布算出部により算出された干渉ビームの励振分布とを合成するように構成したので、通信可能領域が限定されている秘匿通信を実現するために用いるアレーアンテナの励振分布の計算量を低減することができる効果がある。
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
図1はこの発明の実施の形態1によるアンテナ装置を示す構成図であり、図2はこの発明の実施の形態1によるアンテナ装置における信号処理部10のハードウェア構成図である。
図1及び図2において、搬送波信号発生部1は例えば無線周波数の搬送波信号を発生する信号発振器である。
分配器2は搬送波信号発生部1により発生された搬送波信号をK(Kは2以上の整数)個に分配して、K個の搬送波信号を振幅位相制御部30に出力する。
アレーアンテナ3はK個の素子アンテナ3-1~3-Kからなり、素子アンテナ3-1~3-Kは振幅位相制御部30の振幅位相調整器31-1~31-Kにより振幅及び位相が調整された搬送波信号を空間に放射する。
図1はこの発明の実施の形態1によるアンテナ装置を示す構成図であり、図2はこの発明の実施の形態1によるアンテナ装置における信号処理部10のハードウェア構成図である。
図1及び図2において、搬送波信号発生部1は例えば無線周波数の搬送波信号を発生する信号発振器である。
分配器2は搬送波信号発生部1により発生された搬送波信号をK(Kは2以上の整数)個に分配して、K個の搬送波信号を振幅位相制御部30に出力する。
アレーアンテナ3はK個の素子アンテナ3-1~3-Kからなり、素子アンテナ3-1~3-Kは振幅位相制御部30の振幅位相調整器31-1~31-Kにより振幅及び位相が調整された搬送波信号を空間に放射する。
通信信号生成部4は例えばCPU(Central Processing Unit)を実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、例えば、外部から与えられる送信ビット系列に対して、QPSKなどのベースバンド変調処理を施すことで、通信対象の信号である通信信号d(t)を生成する処理を実施する。
ここでは、送信ビット系列に対する変調方式がQPSKである例を示しているが、変調方式はQPSKに限るものではなく、例えば、BPSK(Binary Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)や64QAMなどの変調方式を用いるようにしてもよい。
ここでは、送信ビット系列に対する変調方式がQPSKである例を示しているが、変調方式はQPSKに限るものではなく、例えば、BPSK(Binary Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)や64QAMなどの変調方式を用いるようにしてもよい。
干渉信号生成部5は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、通信信号生成部4により生成される通信信号d(t)の妨害波となる干渉信号i(t)を生成する処理を実施する。
なお、干渉信号生成部5が干渉信号i(t)を生成する際に用いる変調方式は、通信信号生成部4が通信信号d(t)を生成する際に用いる変調方式と同じであってもよいし、異なるものであってもよい。また、干渉信号生成部5により生成される干渉信号i(t)は、変調方式に依存せずに、ランダムな位相となる信号でもよい。
なお、干渉信号生成部5が干渉信号i(t)を生成する際に用いる変調方式は、通信信号生成部4が通信信号d(t)を生成する際に用いる変調方式と同じであってもよいし、異なるものであってもよい。また、干渉信号生成部5により生成される干渉信号i(t)は、変調方式に依存せずに、ランダムな位相となる信号でもよい。
信号処理部10は通信励振分布算出部11、干渉励振分布算出部14、ビーム走査位相分布設定部18、重み設定部19、励振分布合成部20及びアンテナパターン表示部21を備えており、アレーアンテナ3の励振分布、即ち、搬送波信号の振幅及び位相を制御するための励振分布を算出する処理を実施する。
信号処理部10の通信励振分布算出部11は和パターン励振位相分布設定部12及び通信励振分布算出処理部13を備えている。
和パターン励振位相分布設定部12は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている和パターン励振位相分布設定処理回路41によって実現されるものであり、通信信号d(t)を送信する電波である通信ビームのメインローブを通信方向に向ける励振位相分布として、アレーアンテナ3における和パターンの励振位相分布Sを設定する処理を実施する。
通信励振分布算出処理部13は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている通信励振分布算出処理回路42によって実現されるものであり、和パターン励振位相分布設定部12により設定された励振位相分布Sを用いて、通信ビームの励振分布W1(t)を算出する処理を実施する。
信号処理部10の通信励振分布算出部11は和パターン励振位相分布設定部12及び通信励振分布算出処理部13を備えている。
和パターン励振位相分布設定部12は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている和パターン励振位相分布設定処理回路41によって実現されるものであり、通信信号d(t)を送信する電波である通信ビームのメインローブを通信方向に向ける励振位相分布として、アレーアンテナ3における和パターンの励振位相分布Sを設定する処理を実施する。
通信励振分布算出処理部13は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている通信励振分布算出処理回路42によって実現されるものであり、和パターン励振位相分布設定部12により設定された励振位相分布Sを用いて、通信ビームの励振分布W1(t)を算出する処理を実施する。
干渉励振分布算出部14は差パターン励振位相分布設定部15、差パターン励振振幅分布設定部16及び干渉励振分布算出処理部17を備えている。
差パターン励振位相分布設定部15は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている差パターン励振位相分布設定処理回路43によって実現されるものであり、通信方向にアンテナパターンの零点を形成する励振位相分布として、アレーアンテナ3における差パターンの励振位相分布Dを設定する処理を実施する。
差パターン励振振幅分布設定部16は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている差パターン励振振幅分布設定処理回路44によって実現されるものであり、干渉信号i(t)を送信する電波である干渉ビームの利得のうち、通信ビームのサイドローブ方向に対応する方向の利得を高める励振振幅分布Aを設定する処理を実施する。
干渉励振分布算出処理部17は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている干渉励振分布算出処理回路45によって実現されるものであり、差パターン励振位相分布設定部15により設定された励振位相分布Dと差パターン励振振幅分布設定部16により設定された励振振幅分布Aを用いて、干渉ビームの励振分布W2(t)を算出する処理を実施する。
差パターン励振位相分布設定部15は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている差パターン励振位相分布設定処理回路43によって実現されるものであり、通信方向にアンテナパターンの零点を形成する励振位相分布として、アレーアンテナ3における差パターンの励振位相分布Dを設定する処理を実施する。
差パターン励振振幅分布設定部16は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている差パターン励振振幅分布設定処理回路44によって実現されるものであり、干渉信号i(t)を送信する電波である干渉ビームの利得のうち、通信ビームのサイドローブ方向に対応する方向の利得を高める励振振幅分布Aを設定する処理を実施する。
干渉励振分布算出処理部17は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている干渉励振分布算出処理回路45によって実現されるものであり、差パターン励振位相分布設定部15により設定された励振位相分布Dと差パターン励振振幅分布設定部16により設定された励振振幅分布Aを用いて、干渉ビームの励振分布W2(t)を算出する処理を実施する。
ビーム走査位相分布設定部18は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されているビーム走査位相分布設定処理回路46によって実現されるものであり、通信方向を定めるビーム走査位相分布Pを設定する処理を実施する。
重み設定部19は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている重み設定処理回路47によって実現されるものであり、通信励振分布算出部11により算出された通信ビームの励振分布W1(t)に対する重みmと、干渉励振分布算出部14により算出された干渉ビームの励振分布W2(t)に対する重みnを設定する処理を実施する。
重み設定部19は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている重み設定処理回路47によって実現されるものであり、通信励振分布算出部11により算出された通信ビームの励振分布W1(t)に対する重みmと、干渉励振分布算出部14により算出された干渉ビームの励振分布W2(t)に対する重みnを設定する処理を実施する。
励振分布合成部20は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている励振分布合成処理回路48によって実現されるものであり、重み設定部19により設定された重みm,nにしたがって通信励振分布算出部11により算出された通信ビームの励振分布W1(t)と、干渉励振分布算出部14により算出された干渉ビームの励振分布W2(t)とを合成し、合成後の励振分布に対して、ビーム走査位相分布設定部18により設定されたビーム走査位相分布Pを乗算する処理を実施する。
励振分布合成部20はビーム走査位相分布Pを乗算した励振分布を合成励振分布E(t)として出力する。
アンテナパターン表示部21は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されているアンテナパターン表示処理回路49によって実現されるものであり、励振分布合成部20より出力された合成励振分布E(t)からアンテナパターンを計算し、そのアンテナパターンを表示器6に出力する処理を実施する。
表示器6は例えば液晶ディスプレイなどから構成されており、アンテナパターン表示部21から出力されたアンテナパターンを表示する。
励振分布合成部20はビーム走査位相分布Pを乗算した励振分布を合成励振分布E(t)として出力する。
アンテナパターン表示部21は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されているアンテナパターン表示処理回路49によって実現されるものであり、励振分布合成部20より出力された合成励振分布E(t)からアンテナパターンを計算し、そのアンテナパターンを表示器6に出力する処理を実施する。
表示器6は例えば液晶ディスプレイなどから構成されており、アンテナパターン表示部21から出力されたアンテナパターンを表示する。
振幅位相制御部30は振幅位相調整器31-1~31-K及び制御器32を備えており、励振分布合成部20から出力された合成励振分布E(t)にしたがって素子アンテナ3-1~3-Kに与える搬送波信号の振幅及び位相を制御する。
振幅位相調整器31-1~31-Kは位相制御装置31a及び振幅制御装置31bを備えている。
位相制御装置31aは例えば移相器によって構成されており、制御器32から出力された制御信号が示す位相の調整量にしたがって分配器2により分配された搬送波信号の位相を調整する。
振幅制御装置31bは例えば可変利得増幅器によって構成されており、制御器32から出力された制御信号が示す振幅の調整量にしたがって位相制御装置31aによる位相調整後の搬送波信号の振幅を調整する。
制御器32は励振分布合成部20から出力された合成励振分布E(t)にしたがって振幅位相調整器31-1~31-Kにおける振幅及び位相の調整量を制御する。
振幅位相調整器31-1~31-Kは位相制御装置31a及び振幅制御装置31bを備えている。
位相制御装置31aは例えば移相器によって構成されており、制御器32から出力された制御信号が示す位相の調整量にしたがって分配器2により分配された搬送波信号の位相を調整する。
振幅制御装置31bは例えば可変利得増幅器によって構成されており、制御器32から出力された制御信号が示す振幅の調整量にしたがって位相制御装置31aによる位相調整後の搬送波信号の振幅を調整する。
制御器32は励振分布合成部20から出力された合成励振分布E(t)にしたがって振幅位相調整器31-1~31-Kにおける振幅及び位相の調整量を制御する。
図1の例では、信号処理部10の構成要素である通信励振分布算出部11、干渉励振分布算出部14、ビーム走査位相分布設定部18、重み設定部19、励振分布合成部20及びアンテナパターン表示部21のそれぞれが専用のハードウェアで構成されているものを想定しているが、信号処理部10がコンピュータで構成されていてもよい。
図3は信号処理部10がコンピュータで構成される場合のハードウェア構成図である。
信号処理部10がコンピュータで構成される場合、通信励振分布算出部11、干渉励振分布算出部14、ビーム走査位相分布設定部18、重み設定部19、励振分布合成部20及びアンテナパターン表示部21の処理内容を記述しているプログラムをコンピュータのメモリ51に格納し、当該コンピュータのプロセッサ52がメモリ51に格納されているプログラムを実行するようにすればよい。
図3は信号処理部10がコンピュータで構成される場合のハードウェア構成図である。
信号処理部10がコンピュータで構成される場合、通信励振分布算出部11、干渉励振分布算出部14、ビーム走査位相分布設定部18、重み設定部19、励振分布合成部20及びアンテナパターン表示部21の処理内容を記述しているプログラムをコンピュータのメモリ51に格納し、当該コンピュータのプロセッサ52がメモリ51に格納されているプログラムを実行するようにすればよい。
なお、図3において、入力インタフェース機器53は例えばUSB(Universal Serial Bus)ポートやシリアルポートなどの信号入出力ポートを備えるインタフェース機器であり、通信信号生成部4及び干渉信号生成部5と接続されて、通信信号生成部4から出力された通信信号d(t)及び干渉信号生成部5から出力された干渉信号i(t)を入力する。
出力インタフェース機器54は例えばUSBポートやシリアルポートなどの信号入出力ポートを備えるインタフェース機器であり、振幅位相制御部30と接続されて、励振分布合成部20から出力された合成励振分布E(t)を振幅位相制御部30に出力する。
表示インタフェース機器55は表示器6と接続するためのインタフェース機器であり、アンテナパターン表示部21から出力されたアンテナパターンを表示器6に出力する。
出力インタフェース機器54は例えばUSBポートやシリアルポートなどの信号入出力ポートを備えるインタフェース機器であり、振幅位相制御部30と接続されて、励振分布合成部20から出力された合成励振分布E(t)を振幅位相制御部30に出力する。
表示インタフェース機器55は表示器6と接続するためのインタフェース機器であり、アンテナパターン表示部21から出力されたアンテナパターンを表示器6に出力する。
図4は搬送波信号発生部1、分配器2、振幅位相制御部30及びアレーアンテナ3の処理内容を示すフローチャートである。
図5は通信信号生成部4及び通信励振分布算出部11の処理内容を示すフローチャートである。
図6は干渉信号生成部5及び干渉励振分布算出部14の処理内容を示すフローチャートである。
図7はビーム走査位相分布設定部18、重み設定部19及び励振分布合成部20の処理内容を示すフローチャートである。
図8は通信ビームの励振分布W1(t)から算出される通信ビームの振幅特性と、干渉ビームの励振分布W2(t)から算出される干渉ビームの振幅特性とを示す説明図である。
図8において、G1は通信ビームの振幅特性を示し、G2は干渉ビームの振幅特性を示している。
図9は合成励振分布E(t)から算出されるアンテナパターンの位相特性を示す説明図である。
図5は通信信号生成部4及び通信励振分布算出部11の処理内容を示すフローチャートである。
図6は干渉信号生成部5及び干渉励振分布算出部14の処理内容を示すフローチャートである。
図7はビーム走査位相分布設定部18、重み設定部19及び励振分布合成部20の処理内容を示すフローチャートである。
図8は通信ビームの励振分布W1(t)から算出される通信ビームの振幅特性と、干渉ビームの励振分布W2(t)から算出される干渉ビームの振幅特性とを示す説明図である。
図8において、G1は通信ビームの振幅特性を示し、G2は干渉ビームの振幅特性を示している。
図9は合成励振分布E(t)から算出されるアンテナパターンの位相特性を示す説明図である。
次に動作について説明する。
搬送波信号発生部1は、例えば無線周波数の搬送波信号を発生し、その搬送波信号を分配器2に出力する(図4のステップST1)。
分配器2は、搬送波信号発生部1から搬送波信号を受けると、その搬送波信号をK個に分配して、K個の搬送波信号を振幅位相制御部30に出力する(ステップST2)。
搬送波信号発生部1は、例えば無線周波数の搬送波信号を発生し、その搬送波信号を分配器2に出力する(図4のステップST1)。
分配器2は、搬送波信号発生部1から搬送波信号を受けると、その搬送波信号をK個に分配して、K個の搬送波信号を振幅位相制御部30に出力する(ステップST2)。
通信信号生成部4は、例えば、外部から与えられる送信ビット系列に対して、QPSKなどのベースバンド変調処理を施すことで、通信対象の信号である通信信号d(t)を生成し、その通信信号d(t)を信号処理部10の通信励振分布算出部11に出力する(図5のステップST11)。
ここで、tは時刻を表しており、変調方式がQPSKである場合、通信信号d(t)における各信号点は、exp(jπ/4)、exp(j3π/4)、exp(-j3π/4)、exp(-jπ/4)となる。
ここで、tは時刻を表しており、変調方式がQPSKである場合、通信信号d(t)における各信号点は、exp(jπ/4)、exp(j3π/4)、exp(-j3π/4)、exp(-jπ/4)となる。
通信励振分布算出部11の和パターン励振位相分布設定部12は、通信ビームのメインローブを通信方向に向ける励振位相分布として、アレーアンテナ3における和パターンの励振位相分布Sを設定する(ステップST12)。
和パターンの励振位相分布Sは、公知の励振位相分布であるため詳細な説明を省略するが、和パターンの励振位相分布SはK行1列の行列で表され、その行列の各要素は複素数である。和パターンの励振位相は0度であるため、励振位相分布Sはexp(j0)を要素とする行列となる。
和パターンの励振位相分布Sを用いて、通信ビームの励振分布を算出すれば、通信ビームの振幅特性として、図8のG1のような振幅特性が得られることが知られている。
図8に示している通信ビームの振幅特性G1では、通信ビームのメインローブが0度でピークを有しているため、0度の方向が通信方向となる。
通信励振分布算出処理部13は、和パターン励振位相分布設定部12が和パターンの励振位相分布Sを設定すると、下記の式(1)に示すように、その励振位相分布Sを通信信号生成部4から出力された通信信号d(t)に乗算することで、通信ビームの励振分布W1(t)を算出する(ステップST13)。
W1(t)=d(t)・S (1)
和パターンの励振位相分布Sは、公知の励振位相分布であるため詳細な説明を省略するが、和パターンの励振位相分布SはK行1列の行列で表され、その行列の各要素は複素数である。和パターンの励振位相は0度であるため、励振位相分布Sはexp(j0)を要素とする行列となる。
和パターンの励振位相分布Sを用いて、通信ビームの励振分布を算出すれば、通信ビームの振幅特性として、図8のG1のような振幅特性が得られることが知られている。
図8に示している通信ビームの振幅特性G1では、通信ビームのメインローブが0度でピークを有しているため、0度の方向が通信方向となる。
通信励振分布算出処理部13は、和パターン励振位相分布設定部12が和パターンの励振位相分布Sを設定すると、下記の式(1)に示すように、その励振位相分布Sを通信信号生成部4から出力された通信信号d(t)に乗算することで、通信ビームの励振分布W1(t)を算出する(ステップST13)。
W1(t)=d(t)・S (1)
干渉信号生成部5は、通信信号生成部4により生成される通信信号d(t)の妨害波となる干渉信号i(t)を生成し、その干渉信号i(t)を信号処理部10の干渉励振分布算出部14に出力する(図6のステップST21)。例えば、干渉信号i(t)として、位相がランダムな信号を生成する。
干渉励振分布算出部14の差パターン励振位相分布設定部15は、干渉信号i(t)を送信する電波である干渉ビームにおいて、通信方向にアンテナパターンの零点を形成する励振位相分布として、アレーアンテナ3における差パターンの励振位相分布Dを設定する(ステップST22)。
差パターンの励振位相分布Dは、公知の励振位相分布であるため詳細な説明を省略するが、差パターンの励振位相分布DはK行1列の行列で表され、例えば、その行列の1行目からK/2行目までの要素がexp(jπ)、(K/2)+1行目からK行目までの要素がexp(j0)である。
差パターンの励振位相分布Dを用いて、干渉ビームの励振分布を算出すれば、干渉ビームの振幅特性として、図8のG2のような振幅特性が得られることが知られている。
図8に示している干渉ビームの振幅特性G2では、0度の方向にアンテナパターンの零点が形成されている。
差パターンの励振位相分布Dは、公知の励振位相分布であるため詳細な説明を省略するが、差パターンの励振位相分布DはK行1列の行列で表され、例えば、その行列の1行目からK/2行目までの要素がexp(jπ)、(K/2)+1行目からK行目までの要素がexp(j0)である。
差パターンの励振位相分布Dを用いて、干渉ビームの励振分布を算出すれば、干渉ビームの振幅特性として、図8のG2のような振幅特性が得られることが知られている。
図8に示している干渉ビームの振幅特性G2では、0度の方向にアンテナパターンの零点が形成されている。
この実施の形態1では、直交関係がない2つのビームの合成処理と比べて、直交関係がある2つのビームの励振分布の合成処理の計算量が少ないことに鑑み、直交関係にある通信ビームと干渉ビームを生成するため、和パターン励振位相分布設定部12が和パターンの励振位相分布Sを設定して、差パターン励振位相分布設定部15が差パターンの励振位相分布Dを設定するものを示している。
ただし、これは一例に過ぎず、和パターンと差パターン以外の励振位相分布をそれぞれ設定して、直交関係にある通信ビームと干渉ビームを生成するようにしてもよい。
また、計算量が多少増加することが想定されるが、直交関係がない通信ビームと干渉ビームが生成される励振位相分布をそれぞれ設定してもよい。直交関係がない通信ビームと干渉ビームの励振分布の合成処理を実施する場合でも、最適化手法を用いて励振分布を算出する場合よりは、計算量が大幅に低減される。
ただし、これは一例に過ぎず、和パターンと差パターン以外の励振位相分布をそれぞれ設定して、直交関係にある通信ビームと干渉ビームを生成するようにしてもよい。
また、計算量が多少増加することが想定されるが、直交関係がない通信ビームと干渉ビームが生成される励振位相分布をそれぞれ設定してもよい。直交関係がない通信ビームと干渉ビームの励振分布の合成処理を実施する場合でも、最適化手法を用いて励振分布を算出する場合よりは、計算量が大幅に低減される。
差パターン励振振幅分布設定部16は、通信ビームのサイドローブ方向では通信信号d(t)の復調を困難にするために、干渉ビームの利得のうち、通信ビームのサイドローブ方向に対応する方向の利得を高める差パターンの励振振幅分布Aを設定する(図6のステップST23)。
図8に示すように、通信ビームのサイドローブ方向において、干渉ビームの利得が通信ビームのサイドローブの利得より高くなっている場合、干渉信号i(t)が通信信号d(t)より大きくなる。この場合、通信信号d(t)が干渉信号i(t)に埋もれてしまうため、通信ビームのサイドローブ方向での通信信号d(t)の復調が困難になる。
そこで、差パターン励振振幅分布設定部16は、通信ビームの振幅特性と干渉ビームの振幅特性との関係を、図8の振幅特性G1,G2のような関係にするため、通信ビームのサイドローブ方向において、干渉ビームの利得を高める差パターンの励振振幅分布Aを設定する。
差パターンの励振振幅分布AはK行1列の行列で表され、例えば、その行列の各要素は正の整数である。差パターンの励振振幅分布Aとして、例えば、テイラー分布などから求めることができる。
テイラー分布では、メインビームから離れるほど、サイドローブレベルが小さくなる分布であるため、テイラー分布を改良して、メインビームから離れるほど、サイドローブレベルが大きくなる分布を、差パターンの励振振幅分布Aとして用いればよい。
即ち、テイラー分布は、サイドローブレベルを低くする分布として知られているが、差パターンの励振振幅分布Aにテイラー分布を用いると、サイドローブレベルを高くすることができ、通信ビームのサイドローブ方向において、干渉ビームの利得を高めることができる。
図8に示すように、通信ビームのサイドローブ方向において、干渉ビームの利得が通信ビームのサイドローブの利得より高くなっている場合、干渉信号i(t)が通信信号d(t)より大きくなる。この場合、通信信号d(t)が干渉信号i(t)に埋もれてしまうため、通信ビームのサイドローブ方向での通信信号d(t)の復調が困難になる。
そこで、差パターン励振振幅分布設定部16は、通信ビームの振幅特性と干渉ビームの振幅特性との関係を、図8の振幅特性G1,G2のような関係にするため、通信ビームのサイドローブ方向において、干渉ビームの利得を高める差パターンの励振振幅分布Aを設定する。
差パターンの励振振幅分布AはK行1列の行列で表され、例えば、その行列の各要素は正の整数である。差パターンの励振振幅分布Aとして、例えば、テイラー分布などから求めることができる。
テイラー分布では、メインビームから離れるほど、サイドローブレベルが小さくなる分布であるため、テイラー分布を改良して、メインビームから離れるほど、サイドローブレベルが大きくなる分布を、差パターンの励振振幅分布Aとして用いればよい。
即ち、テイラー分布は、サイドローブレベルを低くする分布として知られているが、差パターンの励振振幅分布Aにテイラー分布を用いると、サイドローブレベルを高くすることができ、通信ビームのサイドローブ方向において、干渉ビームの利得を高めることができる。
干渉励振分布算出処理部17は、差パターン励振位相分布設定部15が励振位相分布Dを設定し、差パターン励振振幅分布設定部16が励振振幅分布Aを設定すると、下記の式(2)に示すように、その励振位相分布Dと励振振幅分布Aの対角行列を干渉信号生成部5から出力された干渉信号i(t)に乗算することで、干渉ビームの励振分布W2(t)を算出する(図6のステップST24)。
W2(t)=i(t)・diag(A)・D (2)
式(2)において、diag(A)はAを対角要素とする対角行列である。
W2(t)=i(t)・diag(A)・D (2)
式(2)において、diag(A)はAを対角要素とする対角行列である。
ビーム走査位相分布設定部18は、通信方向を定めるビーム走査位相分布Pを設定する(図7のステップST31)。
例えば、和パターン励振位相分布設定部12によって、通信ビームのメインローブを0度の方向に向ける励振位相分布Sが設定され、差パターン励振位相分布設定部15によって、0度の方向にアンテナパターンの零点を形成する励振位相分布Dが設定されている場合でも、例えば、通信方向を30度の方向や45度の方向などに向ける必要がある場合には、ビーム走査位相分布設定部18が、通信方向が30度の方向や45度の方向を示すビーム走査位相分布Pを設定すれば、通信方向が30度の方向や45度の方向になる。
この場合、通信ビームのメインローブが30度の方向や45度の方向に向けられ、干渉ビームについては30度の方向や45度の方向にアンテナパターンの零点を形成される。
ビーム走査位相分布PはK行1列の行列で表され、その行列の要素は複素数である。図8では、通信方向が0度の方向になるようなビーム走査位相分布Pが設定されている例を示している。
例えば、和パターン励振位相分布設定部12によって、通信ビームのメインローブを0度の方向に向ける励振位相分布Sが設定され、差パターン励振位相分布設定部15によって、0度の方向にアンテナパターンの零点を形成する励振位相分布Dが設定されている場合でも、例えば、通信方向を30度の方向や45度の方向などに向ける必要がある場合には、ビーム走査位相分布設定部18が、通信方向が30度の方向や45度の方向を示すビーム走査位相分布Pを設定すれば、通信方向が30度の方向や45度の方向になる。
この場合、通信ビームのメインローブが30度の方向や45度の方向に向けられ、干渉ビームについては30度の方向や45度の方向にアンテナパターンの零点を形成される。
ビーム走査位相分布PはK行1列の行列で表され、その行列の要素は複素数である。図8では、通信方向が0度の方向になるようなビーム走査位相分布Pが設定されている例を示している。
通信方向を適宜切り換える必要がある場合、ビーム走査位相分布設定部18を実装する必要があるが、例えば、通信方向が常にアレーアンテナ3の正面方向である場合など、通信方向が固定されている場合、ビーム走査位相分布設定部18を実装せずに、励振分布合成部20が、事前に設定されているビーム走査位相分布Pを記憶しておくようにしてもよい。
重み設定部19は、通信励振分布算出部11により算出された通信ビームの励振分布W1(t)と、干渉励振分布算出部14により算出された干渉ビームの励振分布W2(t)とに対する重みm,n(m,nは正の整数)を設定する(ステップST32)。
重みm,nは、通信ビームの励振分布W1(t)と干渉ビームの励振分布W2(t)との合成比率を定めるものであり、例えば、m<nとすれば、励振分布W1(t)と励振分布W2(t)の合成励振分布E(t)において、干渉ビームの励振分布W2(t)の寄与度を大きくすることができる。即ち、干渉ビームで送信される干渉信号i(t)を大きくして、通信可能領域を狭めることができる。
一方、m>nとすれば、励振分布W1(t)と励振分布W2(t)の合成励振分布E(t)において、干渉ビームの励振分布W2(t)の寄与度を小さくすることができる。即ち、干渉ビームで送信される干渉信号i(t)を小さくして、通信可能領域を広げることができる。
重みm,nは、通信ビームの励振分布W1(t)と干渉ビームの励振分布W2(t)との合成比率を定めるものであり、例えば、m<nとすれば、励振分布W1(t)と励振分布W2(t)の合成励振分布E(t)において、干渉ビームの励振分布W2(t)の寄与度を大きくすることができる。即ち、干渉ビームで送信される干渉信号i(t)を大きくして、通信可能領域を狭めることができる。
一方、m>nとすれば、励振分布W1(t)と励振分布W2(t)の合成励振分布E(t)において、干渉ビームの励振分布W2(t)の寄与度を小さくすることができる。即ち、干渉ビームで送信される干渉信号i(t)を小さくして、通信可能領域を広げることができる。
なお、通信ビームの励振分布W1(t)と干渉ビームの励振分布W2(t)との合成比率を変えずに、常に同じ比率で合成する場合、例えば、常にm=n=1で通信ビームの励振分布W1(t)と干渉ビームの励振分布W2(t)とを合成する場合、重み設定部19を実装せずに、励振分布合成部20が、事前に設定されている重みm,nを記憶しておくようにしてもよい。
励振分布合成部20は、ビーム走査位相分布設定部18がビーム走査位相分布Pを設定し、重み設定部19が重みm,nを設定すると、下記の式(3)に示すように、重みm,nにしたがって通信励振分布算出部11により算出された通信ビームの励振分布W1(t)と、干渉励振分布算出部14により算出された干渉ビームの励振分布W2(t)とを合成し、その合成した励振分布に対して、そのビーム走査位相分布Pの対角行列を乗算することで、合成励振分布E(t)を算出する(ステップST33)。
E(t)=diag(P)・{m・W1(t)+n・W2(t)} (3)
合成励振分布E(t)は、直交関係にある通信ビームと干渉ビームを合成することで得られるものであるが、式(3)からも分かるように、直交関係にある通信ビームと干渉ビームの合成処理では単純な計算を行うだけである。即ち、行列の足し算と掛け算を行うだけで、通信ビームと干渉ビームを合成することができる。このため、最適化手法を用いて、合成励振分布E(t)を算出する場合と比べて、計算量が数十分の1~数百分の1程度となる。
励振分布合成部20は、合成励振分布E(t)を算出すると、アレーアンテナ3の励振分布として、その合成励振分布E(t)を振幅位相制御部30に出力する。
E(t)=diag(P)・{m・W1(t)+n・W2(t)} (3)
合成励振分布E(t)は、直交関係にある通信ビームと干渉ビームを合成することで得られるものであるが、式(3)からも分かるように、直交関係にある通信ビームと干渉ビームの合成処理では単純な計算を行うだけである。即ち、行列の足し算と掛け算を行うだけで、通信ビームと干渉ビームを合成することができる。このため、最適化手法を用いて、合成励振分布E(t)を算出する場合と比べて、計算量が数十分の1~数百分の1程度となる。
励振分布合成部20は、合成励振分布E(t)を算出すると、アレーアンテナ3の励振分布として、その合成励振分布E(t)を振幅位相制御部30に出力する。
振幅位相制御部30の制御器32は、励振分布合成部20から合成励振分布E(t)を受けると、その合成励振分布E(t)にしたがって振幅位相調整器31-1~31-Kにおける振幅及び位相の調整量を示す制御信号を振幅位相調整器31-1~31-Kに出力する。
合成励振分布E(t)から振幅及び位相の調整量を特定して、その振幅及び位相の調整量を示す制御信号を出力する処理自体は公知の技術であるため詳細な説明を省略する。
合成励振分布E(t)から振幅及び位相の調整量を特定して、その振幅及び位相の調整量を示す制御信号を出力する処理自体は公知の技術であるため詳細な説明を省略する。
振幅位相調整器31-1~31-Kの位相制御装置31aは、制御器32から制御信号を受けると、その制御信号が示す位相の調整量にしたがって分配器2により分配された搬送波信号の位相を調整し、位相調整後の搬送波信号を振幅制御装置31bに出力する(図4のステップST3)。
振幅位相調整器31-1~31-Kの振幅制御装置31bは、制御器32から制御信号を受けると、その制御信号が示す振幅の調整量にしたがって位相制御装置31aから出力された搬送波信号の振幅を調整し、振幅調整後の搬送波信号を素子アンテナ3-1~3-Kの出力する(ステップST4)。
これにより、素子アンテナ3-1~3-Kから振幅及び位相が調整された搬送波信号が空間に放射される(ステップST5)。
振幅位相調整器31-1~31-Kの振幅制御装置31bは、制御器32から制御信号を受けると、その制御信号が示す振幅の調整量にしたがって位相制御装置31aから出力された搬送波信号の振幅を調整し、振幅調整後の搬送波信号を素子アンテナ3-1~3-Kの出力する(ステップST4)。
これにより、素子アンテナ3-1~3-Kから振幅及び位相が調整された搬送波信号が空間に放射される(ステップST5)。
素子アンテナ3-1~3-Kから放射される搬送波信号によって形成される通信ビームと干渉ビームは、例えば、図8のようになる。図8の例では、通信ビームの振幅特性はG1であるため、メインローブが0度でピークを有している。また、干渉ビームの振幅特性はG2であるため、0度の方向にアンテナパターンの零点が形成されている。このため、0度の方向に存在している受信局は、通信ビームで送信された通信信号d(t)を受信することができるが、干渉信号i(t)については送信されて来ない。したがって、干渉信号i(t)の影響を受けずに、通信信号d(t)を復調することができる。
また、この実施の形態1では、通信信号d(t)がQPSKで変調処理が施されており、位相がπ/4(=45度)のところに信号点が存在している。図9に示すように、0度の方向において、アンテナパターンの位相がπ/4(=45度)であるため、0度の方向に存在している受信局は、位相がπ/4(=45度)のところの信号点を復調することができる。
また、この実施の形態1では、通信信号d(t)がQPSKで変調処理が施されており、位相がπ/4(=45度)のところに信号点が存在している。図9に示すように、0度の方向において、アンテナパターンの位相がπ/4(=45度)であるため、0度の方向に存在している受信局は、位相がπ/4(=45度)のところの信号点を復調することができる。
通信ビームのサイドローブ方向では、通信ビームの利得より干渉ビームの利得が大きくなっている。
このため、通信ビームのサイドローブ方向に存在している受信局は、干渉ビームで送信されてくる干渉信号i(t)の影響を大きく受けるため、通信ビームで送信された通信信号d(t)を受信することができても、通信信号d(t)を復調することが困難となっている。
よって、通信方向が0度付近の角度だけで、通信信号d(t)の復調が可能であるため、通信可能領域が限定されている。
このため、通信ビームのサイドローブ方向に存在している受信局は、干渉ビームで送信されてくる干渉信号i(t)の影響を大きく受けるため、通信ビームで送信された通信信号d(t)を受信することができても、通信信号d(t)を復調することが困難となっている。
よって、通信方向が0度付近の角度だけで、通信信号d(t)の復調が可能であるため、通信可能領域が限定されている。
以上で明らかなように、この実施の形態1によれば、通信ビームのメインローブを通信方向に向ける励振位相分布Sを用いて、通信ビームの励振分布W1(t)を算出する通信励振分布算出部11と、通信方向にアンテナパターンの零点を形成する励振位相分布Dを用いて、干渉ビームの励振分布W2(t)を算出する干渉励振分布算出部14とを設け、励振分布合成部20が、通信励振分布算出部11により算出された通信ビームの励振分布W1(t)と干渉励振分布算出部14により算出された干渉ビームの励振分布W2(t)とを合成するように構成したので、通信可能領域が限定されている秘匿通信を実現するために用いるアレーアンテナ3の励振分布の計算量を低減することができる効果を奏する。
また、この実施の形態1によれば、通信励振分布算出部11により算出された通信ビームの励振分布W1(t)と、干渉励振分布算出部14により算出された干渉ビームの励振分布W2(t)とに対する重みm,nを設定する重み設定部19を備え、励振分布合成部20が、重み設定部19により設定された重みm,nにしたがって通信ビームの励振分布W1(t)と干渉ビームの励振分布W2(t)とを合成するように構成したので、通信可能領域の範囲を適宜変更することができる効果を奏する。
この実施の形態1によれば、通信方向を定めるビーム走査位相分布Pを設定するビーム走査位相分布設定部18を備え、励振分布合成部20が、通信ビームの励振分布W1(t)と干渉ビームの励振分布W2(t)とを合成し、その合成した励振分布に対して、ビーム走査位相分布設定部18により設定されたビーム走査位相分布Pの対角行列を乗算することで、合成励振分布E(t)を算出するように構成したので、通信方向を適宜変更することができる効果を奏する。
また、この実施の形態1によれば、干渉励振分布算出部14が、干渉ビームの利得のうち、通信ビームのサイドローブ方向に対応する方向の利得を高める励振振幅分布Aを設定し、その励振振幅分布Aの対角行列を干渉信号i(t)に乗算するように構成したので、干渉ビームの利得と比べて、通信ビームのサイドローブの利得を相対的に低減することができるようになる。そのため、通信ビームのサイドローブ方向に存在している受信局での通信信号d(t)の復調を困難にして、秘匿性を高めることができる効果を奏する。
この実施の形態1では、通信信号d(t)と干渉信号i(t)を生成しながら、アレーアンテナ3の励振分布として、合成励振分布E(t)を算出するものを示したが、励振分布合成部20が、通信信号d(t)及び干渉信号i(t)に対応する合成励振分布E(t)を事前に算出して、その合成励振分布E(t)をメモリ51などの記憶装置に格納しておき、通信信号d(t)と干渉信号i(t)を受けると、メモリ51から当該通信信号d(t)及び干渉信号i(t)に対応する合成励振分布E(t)を読み出して、その合成励振分布E(t)を振幅位相制御部30に出力するようにしてもよい。
この実施の形態1では、ビーム走査位相分布Pを設定するビーム走査位相分布設定部18を備え、励振分布合成部20が、通信ビームの励振分布W1(t)と干渉ビームの励振分布W2(t)とを合成した励振分布に対してビーム走査位相分布Pの対角行列を乗算するものを示したが、ビーム走査位相分布設定部18を2つ実装し、一方のビーム走査位相分布設定部18により設定されたビーム走査位相分布P1の対角行列を通信ビームの励振分布W1(t)に乗算するとともに、他方のビーム走査位相分布設定部18により設定されたビーム走査位相分布P2の対角行列を干渉ビームの励振分布W2(t)に乗算し、励振分布合成部20が、ビーム走査位相分布P1の対角行列が乗算された通信ビームの励振分布W1(t)と、ビーム走査位相分布P2の対角行列が乗算された干渉ビームの励振分布W2(t)とを合成するようにしてもよい。
実施の形態2.
上記実施の形態1では、干渉ビームの利得と比べて、通信ビームのサイドローブの利得を相対的に低減するために、干渉励振分布算出処理部17が、差パターン励振振幅分布設定部16により設定された励振振幅分布Aの対角行列を干渉信号i(t)に乗算するものを示したが、通信励振分布算出処理部13が、通信ビームのサイドローブ方向の利得を下げる励振振幅分布の対角行列を通信信号d(t)に乗算するようにしてもよい。
上記実施の形態1では、干渉ビームの利得と比べて、通信ビームのサイドローブの利得を相対的に低減するために、干渉励振分布算出処理部17が、差パターン励振振幅分布設定部16により設定された励振振幅分布Aの対角行列を干渉信号i(t)に乗算するものを示したが、通信励振分布算出処理部13が、通信ビームのサイドローブ方向の利得を下げる励振振幅分布の対角行列を通信信号d(t)に乗算するようにしてもよい。
図10はこの発明の実施の形態2によるアンテナ装置を示す構成図であり、図11はこの発明の実施の形態2によるアンテナ装置における信号処理部10のハードウェア構成図である。
図10及び図11において、図1及び図2と同一符号は同一または相当部分を示すので説明を省略する。
和パターン励振振幅分布設定部22は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている和パターン励振振幅分布設定処理回路50によって実現されるものであり、通信ビームのサイドローブ方向の利得を下げる励振振幅分布Bを設定する処理を実施する。
通信励振分布算出処理部23は通信励振分布算出処理回路42によって実現されるものであり、和パターン励振位相分布設定部12により設定された励振位相分布Sと和パターン励振振幅分布設定部22により設定された励振振幅分布Bを用いて、通信ビームの励振分布W1(t)を算出する処理を実施する。
図10及び図11において、図1及び図2と同一符号は同一または相当部分を示すので説明を省略する。
和パターン励振振幅分布設定部22は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されている和パターン励振振幅分布設定処理回路50によって実現されるものであり、通信ビームのサイドローブ方向の利得を下げる励振振幅分布Bを設定する処理を実施する。
通信励振分布算出処理部23は通信励振分布算出処理回路42によって実現されるものであり、和パターン励振位相分布設定部12により設定された励振位相分布Sと和パターン励振振幅分布設定部22により設定された励振振幅分布Bを用いて、通信ビームの励振分布W1(t)を算出する処理を実施する。
次に動作について説明する。
通信励振分布算出部11及び干渉励振分布算出部14以外の処理内容は、上記実施の形態1と同様であるため、ここでは通信励振分布算出部11及び干渉励振分布算出部14の処理内容だけを説明する。
通信励振分布算出部11及び干渉励振分布算出部14以外の処理内容は、上記実施の形態1と同様であるため、ここでは通信励振分布算出部11及び干渉励振分布算出部14の処理内容だけを説明する。
通信励振分布算出部11の和パターン励振振幅分布設定部22は、通信ビームのサイドローブ方向では通信信号d(t)の復調を困難にするために、通信ビームのサイドローブ方向の利得を下げる和パターンの励振振幅分布Bを設定する。
和パターンの励振振幅分布BはK行1列の行列で表され、例えば、その行列の各要素は正の整数である。和パターンの励振振幅分布Bとして、例えば、テイラー分布などを用いることができる。
和パターンの励振振幅分布BはK行1列の行列で表され、例えば、その行列の各要素は正の整数である。和パターンの励振振幅分布Bとして、例えば、テイラー分布などを用いることができる。
通信励振分布算出部11の通信励振分布算出処理部23は、和パターン励振位相分布設定部12が上記実施の形態1と同様に和パターンの励振位相分布Sを設定し、和パターン励振振幅分布設定部22が和パターンの励振振幅分布Bを設定すると、下記の式(4)に示すように、その励振位相分布Sと励振振幅分布Bの対角行列を通信信号生成部4から出力された通信信号d(t)に乗算することで、通信ビームの励振分布W1(t)を算出する。
W1(t)=d(t)・diag(B)・S (4)
式(4)において、diag(B)はBを対角要素とする対角行列である。
W1(t)=d(t)・diag(B)・S (4)
式(4)において、diag(B)はBを対角要素とする対角行列である。
干渉励振分布算出処理部17は、差パターン励振位相分布設定部15が上記実施の形態1と同様に励振位相分布Dを設定すると、下記の式(5)に示すように、その励振位相分布Dを干渉信号生成部5から出力された干渉信号i(t)に乗算することで、干渉ビームの励振分布W2(t)を算出する。
W2(t)=i(t)・D (5)
W2(t)=i(t)・D (5)
以上で明らかなように、この実施の形態2によれば、通信励振分布算出部11が、通信ビームのサイドローブ方向の利得を下げる和パターンの励振振幅分布Bを設定し、その励振振幅分布Bの対角行列を通信信号d(t)に乗算するように構成したので、干渉ビームの利得と比べて、通信ビームのサイドローブの利得を相対的に低減することができるようになる。そのため、通信ビームのサイドローブ方向に存在している受信局での通信信号d(t)の復調を困難にして、秘匿性を高めることができる効果を奏する。
実施の形態3.
上記実施の形態1では、干渉ビームの利得と比べて、通信ビームのサイドローブの利得を相対的に低減するために、干渉励振分布算出処理部17が、差パターン励振振幅分布設定部16により設定された励振振幅分布Aの対角行列を干渉信号i(t)に乗算するものを示したが、さらに、通信励振分布算出処理部13が、通信ビームのサイドローブ方向の利得を下げる励振振幅分布Bの対角行列を通信信号d(t)に乗算するようにしてもよい。
上記実施の形態1では、干渉ビームの利得と比べて、通信ビームのサイドローブの利得を相対的に低減するために、干渉励振分布算出処理部17が、差パターン励振振幅分布設定部16により設定された励振振幅分布Aの対角行列を干渉信号i(t)に乗算するものを示したが、さらに、通信励振分布算出処理部13が、通信ビームのサイドローブ方向の利得を下げる励振振幅分布Bの対角行列を通信信号d(t)に乗算するようにしてもよい。
図12はこの発明の実施の形態3によるアンテナ装置を示す構成図であり、図12において、図1及び図10と同一符号は同一または相当部分を示すので説明を省略する。
この実施の形態3では、和パターン励振振幅分布設定部22が通信励振分布算出部11に実装され、差パターン励振振幅分布設定部16が干渉励振分布算出部14に実装されている。
この実施の形態3では、和パターン励振振幅分布設定部22が通信励振分布算出部11に実装され、差パターン励振振幅分布設定部16が干渉励振分布算出部14に実装されている。
このため、通信励振分布算出部11の通信励振分布算出処理部23は、和パターン励振位相分布設定部12が和パターンの励振位相分布Sを設定し、和パターン励振振幅分布設定部22が和パターンの励振振幅分布Bを設定すると、上記実施の形態2と同様に、その励振位相分布Sと励振振幅分布Bの対角行列を通信信号生成部4から出力された通信信号d(t)に乗算することで、通信ビームの励振分布W1(t)を算出する。
また、干渉励振分布算出部14の干渉励振分布算出処理部17は、差パターン励振位相分布設定部15が励振位相分布Dを設定し、差パターン励振振幅分布設定部16が励振振幅分布Aを設定すると、上記実施の形態1と同様に、その励振位相分布Dと励振振幅分布Aの対角行列を干渉信号生成部5から出力された干渉信号i(t)に乗算することで、干渉ビームの励振分布W2(t)を算出する。
また、干渉励振分布算出部14の干渉励振分布算出処理部17は、差パターン励振位相分布設定部15が励振位相分布Dを設定し、差パターン励振振幅分布設定部16が励振振幅分布Aを設定すると、上記実施の形態1と同様に、その励振位相分布Dと励振振幅分布Aの対角行列を干渉信号生成部5から出力された干渉信号i(t)に乗算することで、干渉ビームの励振分布W2(t)を算出する。
これにより、上記実施の形態1,2と同様に、干渉ビームの利得と比べて、通信ビームのサイドローブの利得を相対的に低減することができるようになる。そのため、通信ビームのサイドローブ方向に存在している受信局での通信信号d(t)の復調を困難にして、秘匿性を高めることができる効果を奏する。
この実施の形態3では、干渉ビームの利得と比べて、通信ビームのサイドローブの利得を相対的に低減するために、干渉励振分布算出処理部17が、差パターン励振振幅分布設定部16により設定された励振振幅分布Aの対角行列を干渉信号i(t)に乗算するものを示したが、通信励振分布算出処理部13が、通信ビームのサイドローブ方向の利得を干渉ビームの利得を超えない範囲内で、通信ビームのサイドローブ方向の利得を上げる励振振幅分布Cの対角行列を通信信号d(t)に乗算するようにしてもよい。
これにより、通信ビームのサイドローブ方向の利得が干渉ビームの利得を超えない範囲内で高くなるため、サイドローブ方向では、通信信号d(t)が大きくなるが、この場合でも、干渉信号i(t)が通信信号d(t)より大きいため、通信ビームのサイドローブ方向での通信信号d(t)の復調は困難である。
なお、和パターンの励振振幅分布CはK行1列の行列で表され、例えば、その行列の各要素は正の整数である。和パターンの励振振幅分布Cとして、例えば、アレーアンテナ3を構成している素子アンテナ3-1~3-Kの中で、中央に配置されている素子アンテナでの振幅分布と比べて、端部に配置されている素子アンテナでの振幅分布が高くなるような逆テーパ状の振幅分布を用いることができる。このような逆テーパ状の振幅分布Cを用いると、通信ビームのビーム幅が狭くなることから、通信領域の狭覆域化も期待することができる。
これにより、通信ビームのサイドローブ方向の利得が干渉ビームの利得を超えない範囲内で高くなるため、サイドローブ方向では、通信信号d(t)が大きくなるが、この場合でも、干渉信号i(t)が通信信号d(t)より大きいため、通信ビームのサイドローブ方向での通信信号d(t)の復調は困難である。
なお、和パターンの励振振幅分布CはK行1列の行列で表され、例えば、その行列の各要素は正の整数である。和パターンの励振振幅分布Cとして、例えば、アレーアンテナ3を構成している素子アンテナ3-1~3-Kの中で、中央に配置されている素子アンテナでの振幅分布と比べて、端部に配置されている素子アンテナでの振幅分布が高くなるような逆テーパ状の振幅分布を用いることができる。このような逆テーパ状の振幅分布Cを用いると、通信ビームのビーム幅が狭くなることから、通信領域の狭覆域化も期待することができる。
実施の形態4.
上記実施の形態1~3では、振幅位相調整器31-1~31-Kの位相制御装置31aが、制御器32から出力された制御信号が示す位相の調整量にしたがって分配器2により分配された搬送波信号の位相を調整し、振幅位相調整器31-1~31-Kの振幅制御装置31bが、制御器32から出力された制御信号が示す振幅の調整量にしたがって位相制御装置31aから出力された搬送波信号の振幅を調整するものを示したが、デジタル信号処理で搬送波信号の振幅及び位相を調整するようにしてもよい。
上記実施の形態1~3では、振幅位相調整器31-1~31-Kの位相制御装置31aが、制御器32から出力された制御信号が示す位相の調整量にしたがって分配器2により分配された搬送波信号の位相を調整し、振幅位相調整器31-1~31-Kの振幅制御装置31bが、制御器32から出力された制御信号が示す振幅の調整量にしたがって位相制御装置31aから出力された搬送波信号の振幅を調整するものを示したが、デジタル信号処理で搬送波信号の振幅及び位相を調整するようにしてもよい。
図13はこの発明の実施の形態4によるアンテナ装置を示す構成図であり、図13において、図1、図10及び図12と同一符号は同一または相当部分を示すので説明を省略する。
搬送波信号発生部61はデジタル信号である搬送波信号を発生する信号発振器である。
振幅位相制御部70は振幅位相調整器71-1~71-K及び制御器72を備えており、励振分布合成部20から出力された合成励振分布E(t)にしたがって素子アンテナ3-1~3-Kに与える搬送波信号の振幅及び位相を制御する。
振幅位相調整器71-1~71-Kはデジタル信号処理器71a、デジタルアナログ変換器(以下、「D/A変換器」と称する)71b及び増幅器71cを備えており、制御器72から出力された制御信号が示す位相の調整量にしたがってデジタル信号処理で搬送波信号の位相を調整するとともに、制御器72から出力された制御信号が示す振幅の調整量にしたがってデジタル信号処理で搬送波信号の振幅を調整する。
制御器72は励振分布合成部20から出力された合成励振分布E(t)にしたがって振幅位相調整器71-1~71-Kにおける振幅及び位相の調整量を制御する。
搬送波信号発生部61はデジタル信号である搬送波信号を発生する信号発振器である。
振幅位相制御部70は振幅位相調整器71-1~71-K及び制御器72を備えており、励振分布合成部20から出力された合成励振分布E(t)にしたがって素子アンテナ3-1~3-Kに与える搬送波信号の振幅及び位相を制御する。
振幅位相調整器71-1~71-Kはデジタル信号処理器71a、デジタルアナログ変換器(以下、「D/A変換器」と称する)71b及び増幅器71cを備えており、制御器72から出力された制御信号が示す位相の調整量にしたがってデジタル信号処理で搬送波信号の位相を調整するとともに、制御器72から出力された制御信号が示す振幅の調整量にしたがってデジタル信号処理で搬送波信号の振幅を調整する。
制御器72は励振分布合成部20から出力された合成励振分布E(t)にしたがって振幅位相調整器71-1~71-Kにおける振幅及び位相の調整量を制御する。
振幅位相調整器71-1~71-Kのデジタル信号処理器71aは例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、デジタル信号処理で搬送波信号の振幅及び位相を調整する。
振幅位相調整器71-1~71-KのD/A変換器71bはデジタル信号処理器71aにより振幅及び位相が調整された搬送波信号をアナログ信号に変換する。
振幅位相調整器71-1~71-Kの増幅器71cはD/A変換器71bによりアナログ信号に変換された搬送波信号を増幅し、増幅後の搬送波信号を素子アンテナ3-1~3-Kに出力する。
図14は搬送波信号発生部61、振幅位相制御部70及びアレーアンテナ3の処理内容を示すフローチャートである。
振幅位相調整器71-1~71-KのD/A変換器71bはデジタル信号処理器71aにより振幅及び位相が調整された搬送波信号をアナログ信号に変換する。
振幅位相調整器71-1~71-Kの増幅器71cはD/A変換器71bによりアナログ信号に変換された搬送波信号を増幅し、増幅後の搬送波信号を素子アンテナ3-1~3-Kに出力する。
図14は搬送波信号発生部61、振幅位相制御部70及びアレーアンテナ3の処理内容を示すフローチャートである。
次に動作について説明する。
この実施の形態4では、信号処理部10の処理内容は、上記実施の形態3と同様であるため、信号処理部10以外の処理内容を説明する。なお、信号処理部10の処理内容は、上記実施の形態1,2と同様であってもよい。
搬送波信号発生部61は、デジタル信号である搬送波信号を発生し、その搬送波信号を振幅位相制御部70の振幅位相調整器71-1~71-Kに出力する(図14のステップST41)。
この実施の形態4では、信号処理部10の処理内容は、上記実施の形態3と同様であるため、信号処理部10以外の処理内容を説明する。なお、信号処理部10の処理内容は、上記実施の形態1,2と同様であってもよい。
搬送波信号発生部61は、デジタル信号である搬送波信号を発生し、その搬送波信号を振幅位相制御部70の振幅位相調整器71-1~71-Kに出力する(図14のステップST41)。
振幅位相制御部70の制御器72は、信号処理部10の励振分布合成部20が、上記実施の形態3と同様に、合成励振分布E(t)を算出すると、その合成励振分布E(t)にしたがって振幅位相調整器71-1~71-Kにおける振幅及び位相の調整量を示す制御信号を振幅位相調整器71-1~71-Kに出力する。
合成励振分布E(t)から振幅及び位相の調整量を特定して、その振幅及び位相の調整量を示す制御信号を出力する処理自体は公知の技術であるため詳細な説明を省略する。
合成励振分布E(t)から振幅及び位相の調整量を特定して、その振幅及び位相の調整量を示す制御信号を出力する処理自体は公知の技術であるため詳細な説明を省略する。
振幅位相調整器71-1~71-Kのデジタル信号処理器71aは、制御器72から制御信号を受けると、その制御信号が示す位相の調整量にしたがって、デジタル信号処理で搬送波信号発生部61から出力された搬送波信号の位相を調整するとともに、その制御信号が示す振幅の調整量にしたがって、デジタル信号処理で当該搬送波信号の振幅を調整する(ステップST42)。
振幅位相調整器71-1~71-KのD/A変換器71bは、デジタル信号処理器71aから振幅及び位相が調整された搬送波信号を受けると、その搬送波信号をアナログ信号に変換し、アナログの搬送波信号を増幅器71cに出力する(ステップST43)。
振幅位相調整器71-1~71-Kの増幅器71cは、D/A変換器71bからアナログの搬送波信号を受けると、その搬送波信号を増幅し、増幅後の搬送波信号を素子アンテナ3-1~3-Kに出力する(ステップST44)。
これにより、素子アンテナ3-1~3-Kから振幅及び位相が調整された搬送波信号が空間に放射される(ステップST45)。
振幅位相調整器71-1~71-KのD/A変換器71bは、デジタル信号処理器71aから振幅及び位相が調整された搬送波信号を受けると、その搬送波信号をアナログ信号に変換し、アナログの搬送波信号を増幅器71cに出力する(ステップST43)。
振幅位相調整器71-1~71-Kの増幅器71cは、D/A変換器71bからアナログの搬送波信号を受けると、その搬送波信号を増幅し、増幅後の搬送波信号を素子アンテナ3-1~3-Kに出力する(ステップST44)。
これにより、素子アンテナ3-1~3-Kから振幅及び位相が調整された搬送波信号が空間に放射される(ステップST45)。
素子アンテナ3-1~3-Kから放射される搬送波信号によって形成される通信ビームと干渉ビームは、例えば、図8のようになる。図8の例では、通信ビームの振幅特性はG1であるため、メインローブが0度でピークを有している。また、干渉ビームの振幅特性はG2であるため、0度の方向にアンテナパターンの零点が形成されている。このため、0度の方向に存在している受信局は、通信ビームで送信された通信信号d(t)を受信することができるが、干渉信号i(t)については送信されて来ない。したがって、干渉信号i(t)の影響を受けずに、通信信号d(t)を復調することができる。
また、この実施の形態4では、通信信号d(t)がQPSKで変調処理が施されており、位相がπ/4(=45度)のところに信号点が存在している。図9に示すように、0度の方向において、アンテナパターンの位相がπ/4(=45度)であるため、0度の方向に存在している受信局は、位相がπ/4(=45度)のところの信号点を復調することができる。
また、この実施の形態4では、通信信号d(t)がQPSKで変調処理が施されており、位相がπ/4(=45度)のところに信号点が存在している。図9に示すように、0度の方向において、アンテナパターンの位相がπ/4(=45度)であるため、0度の方向に存在している受信局は、位相がπ/4(=45度)のところの信号点を復調することができる。
通信ビームのサイドローブ方向では、通信ビームの利得より干渉ビームの利得が大きくなっている。
このため、通信ビームのサイドローブ方向に存在している受信局は、干渉ビームで送信されてくる干渉信号i(t)の影響を大きく受けるため、通信ビームで送信された通信信号d(t)を受信することができても、通信信号d(t)を復調することが困難となっている。
よって、通信方向が0度付近の角度だけで、通信信号d(t)の復調が可能であるため、通信可能領域が限定されている。
このため、通信ビームのサイドローブ方向に存在している受信局は、干渉ビームで送信されてくる干渉信号i(t)の影響を大きく受けるため、通信ビームで送信された通信信号d(t)を受信することができても、通信信号d(t)を復調することが困難となっている。
よって、通信方向が0度付近の角度だけで、通信信号d(t)の復調が可能であるため、通信可能領域が限定されている。
以上で明らかなように、この実施の形態4によれば、通信ビームのメインローブを通信方向に向ける励振位相分布Sを用いて、通信ビームの励振分布W1(t)を算出する通信励振分布算出部11と、通信方向にアンテナパターンの零点を形成する励振位相分布Dを用いて、干渉ビームの励振分布W2(t)を算出する干渉励振分布算出部14とを設け、励振分布合成部20が、通信励振分布算出部11により算出された通信ビームの励振分布W1(t)と干渉励振分布算出部14により算出された干渉ビームの励振分布W2(t)とを合成するように構成したので、通信可能領域が限定されている秘匿通信を実現するために用いるアレーアンテナの励振分布の計算量を低減することができる効果を奏する。
また、この実施の形態4によれば、振幅位相調整器71-1~71-Kが、制御器72から出力された制御信号が示す位相の調整量にしたがってデジタル信号処理で搬送波信号の位相を調整するとともに、制御器72から出力された制御信号が示す振幅の調整量にしたがってデジタル信号処理で搬送波信号の振幅を調整するように構成したので、上記実施の形態1~3と比べて、アンテナパターンの形成精度を高めることができる効果を奏する。
上記実施の形態1~4における図1、図10、図12及び図13のアンテナ装置では、アレーアンテナ3の素子アンテナ3-1~3-Kが直線的に並んでいるリニアアレーアンテナを想定しているが、アレーアンテナ3がリニアアレーアンテナに限るものではなく、例えば、アレーアンテナ3の素子アンテナ3-1~3-Kが同一平面上に2次元配置されている平面アレーアンテナや、アレーアンテナ3の素子アンテナ3-1~3-Kが曲面に沿って配置されているコンフォーマルアレーアンテナなどであってもよい。
図15はアレーアンテナ3の一例を示す説明図である。
図15Aはリニアアレーアンテナの例を示し、図15Bは平面アレーアンテナの例を示し、図15Cはコンフォーマルアレーアンテナの例を示している。
図15はアレーアンテナ3の一例を示す説明図である。
図15Aはリニアアレーアンテナの例を示し、図15Bは平面アレーアンテナの例を示し、図15Cはコンフォーマルアレーアンテナの例を示している。
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
この発明に係るアンテナ装置及びアンテナ励振方法は、少ない計算量で、通信可能領域が限定されている秘匿通信を実現するものに適している。
1 搬送波信号発生部、2 分配器、3 アレーアンテナ、3-1~3-K 素子アンテナ、4 通信信号生成部、5 干渉信号生成部、6 表示器、10 信号処理部、11 通信励振分布算出部、12 和パターン励振位相分布設定部、13,23 通信励振分布算出処理部、14 干渉励振分布算出部、15 差パターン励振位相分布設定部、16 差パターン励振振幅分布設定部、17 干渉励振分布算出処理部、18 ビーム走査位相分布設定部、19 重み設定部、20 励振分布合成部、21 アンテナパターン表示部、22 和パターン励振振幅分布設定部、30 振幅位相制御部、31-1~31-K 振幅位相調整器、31a 位相制御装置、31b 振幅制御装置、32 制御器、41 和パターン励振位相分布設定処理回路、42 通信励振分布算出処理回路、43 差パターン励振位相分布設定処理回路、44 差パターン励振振幅分布設定処理回路、45 干渉励振分布算出処理回路、46 ビーム走査位相分布設定処理回路、47 重み設定処理回路、48 励振分布合成処理回路、49 アンテナパターン表示処理回路、50 和パターン励振振幅分布設定処理回路、51 メモリ、52 プロセッサ、53 入力インタフェース機器、54 出力インタフェース機器、55 表示インタフェース機器、61 搬送波信号発生部、70 振幅位相制御部、71-1~71-K 振幅位相調整器、71a デジタル信号処理器、71b D/A変換器、71c 増幅器、72 制御器。
Claims (12)
- 搬送波信号を放射する複数の素子アンテナからなるアレーアンテナと、
通信対象の信号である通信信号を生成する通信信号生成部と、
前記通信信号の妨害波となる干渉信号を生成する干渉信号生成部と、
前記通信信号を送信する電波である通信ビームのメインローブを通信方向に向ける励振位相分布を用いて、前記通信ビームの励振分布を算出する通信励振分布算出部と、
前記通信方向にアンテナパターンの零点を形成する励振位相分布を用いて、前記干渉信号を送信する電波である干渉ビームの励振分布を算出する干渉励振分布算出部と、
前記通信励振分布算出部により算出された通信ビームの励振分布と前記干渉励振分布算出部により算出された干渉ビームの励振分布とを合成する励振分布合成部と、
前記励振分布合成部による合成後の励振分布にしたがって前記複数の素子アンテナに与える搬送波信号の振幅及び位相を制御する振幅位相制御部と
を備えたアンテナ装置。 - 搬送波信号を発生する搬送波信号発生部と、
前記搬送波信号発生部により発生された搬送波信号を分配する分配器とを備え、
前記振幅位相制御部は、
前記分配器により分配された搬送波信号の振幅及び位相を調整し、振幅及び位相を調整した搬送波信号を前記素子アンテナに出力する複数の振幅位相調整器と、
前記励振分布合成部による合成後の励振分布にしたがって前記複数の振幅位相調整器における振幅及び位相の調整量を制御する制御器とを含むことを特徴とする請求項1記載のアンテナ装置。 - デジタル信号である搬送波信号を発生する搬送波信号発生部を備え、
前記振幅位相制御部は、
前記搬送波信号発生部により発生された搬送波信号の振幅及び位相を調整する複数のデジタル信号処理器と、
前記デジタル信号処理器により振幅及び位相が調整された搬送波信号をアナログ信号に変換して、前記アナログ信号を前記素子アンテナに出力する複数のデジタルアナログ変換器と、
前記励振分布合成部による合成後の励振分布にしたがって前記複数のデジタル信号処理器における振幅及び位相の調整量を制御する制御器とを含むことを特徴とする請求項1記載のアンテナ装置。 - 前記通信励振分布算出部により算出された通信ビームの励振分布と、前記干渉励振分布算出部により算出された干渉ビームの励振分布とに対する重みを設定する重み設定部を備え、
前記励振分布合成部は、前記重み設定部により設定された重みにしたがって前記通信ビームの励振分布と前記干渉ビームの励振分布とを合成することを特徴とする請求項1記載のアンテナ装置。 - 前記通信方向を定めるビーム走査位相分布を設定するビーム走査位相分布設定部を備え、
前記励振分布合成部は、前記通信励振分布算出部により算出された通信ビームの励振分布と前記干渉励振分布算出部により算出された干渉ビームの励振分布とを合成し、その合成した励振分布に対して、前記ビーム走査位相分布設定部により設定されたビーム走査位相分布を乗算し、前記ビーム走査位相分布を乗算した励振分布を合成後の励振分布として前記振幅位相制御部に出力することを特徴とする請求項1記載のアンテナ装置。 - 前記干渉励振分布算出部は、前記干渉ビームの利得のうち、前記通信ビームのサイドローブ方向に対応する方向の利得を高める励振振幅分布を設定して、前記励振振幅分布を前記干渉ビームの励振分布に乗算し、前記励振振幅分布を乗算した前記干渉ビームの励振分布を前記励振分布合成部に出力することを特徴とする請求項1記載のアンテナ装置。
- 前記通信励振分布算出部は、前記通信ビームのサイドローブ方向の利得を下げる励振振幅分布を設定して、前記励振振幅分布を前記通信ビームの励振分布に乗算し、前記励振振幅分布を乗算した前記通信ビームの励振分布を前記励振分布合成部に出力することを特徴とする請求項1記載のアンテナ装置。
- 前記通信励振分布算出部は、前記通信ビームのサイドローブ方向の利得を上げる励振振幅分布を設定して、前記励振振幅分布を前記通信ビームの励振分布に乗算し、前記励振振幅分布を乗算した前記通信ビームの励振分布を前記励振分布合成部に出力することを特徴とする請求項1記載のアンテナ装置。
- 前記干渉励振分布算出部は、前記干渉ビームの利得のうち、前記通信ビームのサイドローブ方向に対応する方向の利得を高める励振振幅分布を設定して、当該励振振幅分布を前記干渉ビームの励振分布に乗算し、当該励振振幅分布を乗算した前記干渉ビームの励振分布を前記励振分布合成部に出力し、
前記通信励振分布算出部は、前記通信ビームのサイドローブ方向の利得を下げる励振振幅分布を設定して、当該励振振幅分布を前記通信ビームの励振分布に乗算し、当該励振振幅分布を乗算した前記通信ビームの励振分布を前記励振分布合成部に出力することを特徴とする請求項1記載のアンテナ装置。 - 前記通信励振分布算出部は、前記通信ビームのメインローブを通信方向に向ける励振位相分布として、前記アレーアンテナにおける和パターンの励振位相分布を前記通信信号に乗算することで、前記通信ビームの励振分布を算出し、
前記干渉励振分布算出部は、前記通信方向にアンテナパターンの零点を形成する励振位相分布として、前記アレーアンテナにおける差パターンの励振位相分布を前記干渉信号に乗算することで、前記干渉ビームの励振分布を算出することを特徴とする請求項1記載のアンテナ装置。 - 前記アレーアンテナは、リニアアレーアンテナ、平面アレーアンテナ又はコンフォーマルアレーアンテナであることを特徴とする請求項1記載のアンテナ装置。
- 通信信号生成部が、通信対象の信号である通信信号を生成し、
干渉信号生成部が、前記通信信号の妨害波となる干渉信号を生成し、
通信励振分布算出部が、前記通信信号を送信する電波である通信ビームのメインローブを通信方向に向ける励振位相分布を用いて、前記通信ビームの励振分布を算出し、
干渉励振分布算出部が、前記通信方向にアンテナパターンの零点を形成する励振位相分布を用いて、前記干渉信号を送信する電波である干渉ビームの励振分布を算出し、
励振分布合成部が、前記通信励振分布算出部により算出された通信ビームの励振分布と前記干渉励振分布算出部により算出された干渉ビームの励振分布とを合成し、
振幅位相制御部が、前記励振分布合成部による合成後の励振分布にしたがって、アレーアンテナにおける複数の素子アンテナに与える搬送波信号の振幅及び位相を制御する
アンテナ励振方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016553667A JP6042045B1 (ja) | 2016-03-02 | 2016-03-02 | アンテナ装置及びアンテナ励振方法 |
PCT/JP2016/056425 WO2017149697A1 (ja) | 2016-03-02 | 2016-03-02 | アンテナ装置及びアンテナ励振方法 |
US16/078,595 US10326201B2 (en) | 2016-03-02 | 2017-01-27 | Antenna apparatus and antenna excitation method |
JP2017551723A JP6279173B2 (ja) | 2016-03-02 | 2017-01-27 | アンテナ装置及びアンテナ励振方法 |
PCT/JP2017/002961 WO2017150031A1 (ja) | 2016-03-02 | 2017-01-27 | アンテナ装置及びアンテナ励振方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/056425 WO2017149697A1 (ja) | 2016-03-02 | 2016-03-02 | アンテナ装置及びアンテナ励振方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017149697A1 true WO2017149697A1 (ja) | 2017-09-08 |
Family
ID=57543793
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056425 WO2017149697A1 (ja) | 2016-03-02 | 2016-03-02 | アンテナ装置及びアンテナ励振方法 |
PCT/JP2017/002961 WO2017150031A1 (ja) | 2016-03-02 | 2017-01-27 | アンテナ装置及びアンテナ励振方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002961 WO2017150031A1 (ja) | 2016-03-02 | 2017-01-27 | アンテナ装置及びアンテナ励振方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10326201B2 (ja) |
JP (2) | JP6042045B1 (ja) |
WO (2) | WO2017149697A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018134877A1 (ja) * | 2017-01-17 | 2018-07-26 | 三菱電機株式会社 | アンテナ装置及びアンテナ励振方法 |
US10756936B2 (en) | 2017-05-18 | 2020-08-25 | Mitsubishi Electric Corporation | Signal transmitting apparatus |
CN113141547B (zh) * | 2020-01-20 | 2023-08-01 | 上海诺基亚贝尔股份有限公司 | 干扰设备的实时检测 |
CN112235222A (zh) * | 2020-01-21 | 2021-01-15 | 南京新频点电子科技有限公司 | 一种基于ofdm干扰信号调制装置及调制方法 |
CN111525285B (zh) * | 2020-05-20 | 2021-04-02 | 西安黄河机电有限公司 | 一种稀布阵天线及其设计方法 |
US20220329345A1 (en) * | 2021-04-08 | 2022-10-13 | Infinidome Ltd. | Adjustable null steering in a stationary network |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3887922A (en) * | 1974-01-23 | 1975-06-03 | Int Standard Electric Corp | Instrument landing system with microwave course pattern transmission |
US3895385A (en) * | 1956-06-29 | 1975-07-15 | Us Navy | Delay type probe antenna noise cancellation system |
US3916411A (en) * | 1972-08-01 | 1975-10-28 | Guenter Fiedler | Electronic direction finding apparatus |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3569976A (en) * | 1968-08-29 | 1971-03-09 | William Korvin | Antenna array at focal plane of reflector with coupling network for beam switching |
JPH0720015B2 (ja) * | 1987-12-26 | 1995-03-06 | 株式会社日本自動車部品総合研究所 | 平面アレイアンテナ |
JPH0316717U (ja) | 1989-07-03 | 1991-02-19 | ||
PT1964212E (pt) * | 2005-12-23 | 2012-02-07 | Ericsson Telefon Ab L M | Agrupamento de antenas com varrimento reforçado |
US8509335B2 (en) * | 2009-03-10 | 2013-08-13 | Kabushiki Kaisha Toshiba | Array antenna apparatus and micro wave transceiver module |
US8880059B2 (en) * | 2009-08-06 | 2014-11-04 | Truepath Technologies, Llc | System and methods for media access control optimization for long range wireless communication |
DK2589108T3 (en) * | 2010-07-01 | 2018-06-14 | Blue Danube Systems Inc | COSTLOW, ACTIVE ANTENNA SYSTEMS |
WO2013191514A1 (en) * | 2012-06-21 | 2013-12-27 | Samsung Electronics Co., Ltd. | Communication device and orientation control method |
JP2015065565A (ja) | 2013-09-25 | 2015-04-09 | 三菱電機株式会社 | 信号送信装置及び信号送信方法 |
KR20160148701A (ko) * | 2014-05-02 | 2016-12-26 | 파커비전, 인크. | 통신 시스템용 안테나 어레이 |
-
2016
- 2016-03-02 WO PCT/JP2016/056425 patent/WO2017149697A1/ja active Application Filing
- 2016-03-02 JP JP2016553667A patent/JP6042045B1/ja active Active
-
2017
- 2017-01-27 JP JP2017551723A patent/JP6279173B2/ja active Active
- 2017-01-27 WO PCT/JP2017/002961 patent/WO2017150031A1/ja active Application Filing
- 2017-01-27 US US16/078,595 patent/US10326201B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3895385A (en) * | 1956-06-29 | 1975-07-15 | Us Navy | Delay type probe antenna noise cancellation system |
US3916411A (en) * | 1972-08-01 | 1975-10-28 | Guenter Fiedler | Electronic direction finding apparatus |
US3887922A (en) * | 1974-01-23 | 1975-06-03 | Int Standard Electric Corp | Instrument landing system with microwave course pattern transmission |
Non-Patent Citations (3)
Title |
---|
MICHAEL P. DALY ET AL.: "Directional modulation and coding in arrays", 2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION PROCEEDINGS, 2011, pages 1984 - 1987, XP032191602, DOI: doi:10.1109/APS.2011.5996894 * |
MICHAEL P. DALY ET AL.: "Directional Modulation Technique for Phased Arrays", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 57, no. 9, 2009, pages 2633 - 2639, XP011270166, DOI: doi:10.1109/TAP.2009.2027047 * |
QUANJIANG ZHU ET AL.: "A directional modulation technique for secure communication based on 4D antenna arrays", 2013 7TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP) PROCEEDINGS, 2013, pages 125 - 127, XP032429995 * |
Also Published As
Publication number | Publication date |
---|---|
WO2017150031A1 (ja) | 2017-09-08 |
JPWO2017150031A1 (ja) | 2018-03-15 |
JP6042045B1 (ja) | 2016-12-14 |
JPWO2017149697A1 (ja) | 2018-03-08 |
US10326201B2 (en) | 2019-06-18 |
US20190051984A1 (en) | 2019-02-14 |
JP6279173B2 (ja) | 2018-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6042045B1 (ja) | アンテナ装置及びアンテナ励振方法 | |
US20220069477A1 (en) | Antenna device and radar apparatus | |
TWI634759B (zh) | 在相位天線陣列中用以產生具有較寬波束寬度之波束場型的方法和裝置 | |
JP4835670B2 (ja) | アンテナ装置 | |
JP5253422B2 (ja) | デジタルビームフォーミングアーキテクチャにおける衛星ビーム指向誤差補正 | |
CN107817392B (zh) | 用于表征多元天线的特性的系统和方法 | |
JP2006503465A (ja) | 移動無線基地局 | |
JPWO2016166851A1 (ja) | アンテナ装置 | |
KR20120036748A (ko) | 광대역 무선통신 시스템에서의 하이브리드 빔 형성 장치 | |
JP6509463B2 (ja) | アンテナ装置及びアンテナ励振方法 | |
US20230275623A1 (en) | Radio transmission or reception apparatus and beam forming method thereof | |
JP5735863B2 (ja) | 無線通信装置、送信方法、及びプログラム | |
JPH1168443A (ja) | ディジタルビームフォーミングアンテナ装置 | |
CN114928384B (zh) | 交错子阵混合波束形成系统及两独立波束同时形成方法 | |
US10008773B2 (en) | Wireless communication apparatus, antenna directionality control method, and power supply circuit | |
KR101007213B1 (ko) | 레이더 시스템에서 다수의 복사패턴 형성이 가능한 안테나 결합기 | |
Cabrera-Hernández et al. | Multichannel dynamic directional modulation with software defined radio | |
JPWO2008152800A1 (ja) | 無線装置およびそれを用いた測定システム | |
JP2016148638A (ja) | レーダ装置 | |
KR102593249B1 (ko) | 무선 송수신 장치 및 그의 빔 형성 방법 | |
JP3567102B2 (ja) | 給電方法およびフェーズドアレーアンテナ | |
JP2014099755A (ja) | 地球局装置および地球局装置制御方法 | |
JP2015065565A (ja) | 信号送信装置及び信号送信方法 | |
JP2014155050A (ja) | 信号送信装置及び信号送信方法 | |
JP2019012874A (ja) | 無線通信装置、及び通信制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016553667 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16892539 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16892539 Country of ref document: EP Kind code of ref document: A1 |