WO2017148599A1 - Verfahren zur ansteuerung eines elektromagnetisch ansteuerbaren saugventils - Google Patents

Verfahren zur ansteuerung eines elektromagnetisch ansteuerbaren saugventils Download PDF

Info

Publication number
WO2017148599A1
WO2017148599A1 PCT/EP2017/050070 EP2017050070W WO2017148599A1 WO 2017148599 A1 WO2017148599 A1 WO 2017148599A1 EP 2017050070 W EP2017050070 W EP 2017050070W WO 2017148599 A1 WO2017148599 A1 WO 2017148599A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
armature
air gap
suction valve
working air
Prior art date
Application number
PCT/EP2017/050070
Other languages
English (en)
French (fr)
Inventor
Frieder Necker
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP17701034.5A priority Critical patent/EP3423702B1/de
Publication of WO2017148599A1 publication Critical patent/WO2017148599A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions

Definitions

  • the invention relates to a method for controlling a solenoid controllable suction valve with the features of the preamble of
  • a suction valve of the aforementioned type is used to fill a
  • an electromagnetically controllable suction valve for a high pressure pump of a fuel injection system which comprises an annular solenoid for acting on a liftable armature and a pole core which defines a working air gap together with the armature.
  • a magnetic field is built up whose magnetic force pulls the armature counter to the spring force of a spring in the direction of the pole core in order to close the working air gap.
  • the stroke of the armature relieves a piston-shaped valve closing element of the suction valve, which is acted upon in the closing direction by the spring force of another spring, so that the other spring is able to close the suction valve. If the energization of the solenoid is completed, the first spring returns the armature to its original position, where he am
  • Valve closing element abuts and the suction valve against the spring force of the other spring opens again. Because the spring force of the other spring is smaller chosen as the first spring.
  • the known suction valve is therefore designed as a normally open valve.
  • a suction valve can be opened via the initially open suction valve
  • High pressure pump are pushed. Only when the suction valve is energized can this close so that pressure can be built up in the fuel-filled high-pressure element space of the high-pressure pump. The time of energization of the solenoid thus controls the amount of fuel delivered to high pressure.
  • Working air gap affect the switching times of the suction valve, so that there are fluctuations in the delivery of the high-pressure pump, which adversely affect the pressure control accuracy in a high-pressure pump connected to the high-pressure pump.
  • the present invention is based on the object, the above-mentioned disadvantages in the operation of an electromagnetically controllable
  • Suction valve to eliminate or at least reduce.
  • Electromagnetically controllable suction valve with the features of
  • Proposed is a method for controlling an electromagnetically controllable suction valve for a high-pressure pump in one
  • Fuel injection system The method is used to close the
  • Suction valve energized a solenoid.
  • the energization of the magnetic coil has the consequence that a magnetic field is built up whose magnetic force acts on a coupled to a valve piston armature in such a way that it moves against the spring force of a spring in the direction of a stroke stop.
  • a relief of the valve piston is effected via the movement of the armature, which is then pulled by the spring force of a valve spring in a valve seat.
  • the magnetic coil is temporarily energized, so that the armature is decoupled from the valve piston and a free lift for venting a working air gap performs, which is formed between the armature and the stroke stop.
  • Valve piston is movable. Accordingly, there must not be a firm connection between the armature and the valve piston. For then the anchor can be raised by the valve piston via a temporary, preferably short-term energization of the solenoid coil during a "energization break", in which the spring presses the armature against the valve piston, without the valve piston immediately following the movement of the armature are hydraulic forces, which additionally act on the valve piston, so that the free lift of the armature remains without effect on the pressure in the high-pressure element space or on the
  • the temporary energization of the magnetic coil for venting the working air gap is carried out during a suction phase.
  • the suction valve is open and flows through the suction valve fuel in a Hochbuchelementraum the high-pressure pump.
  • the inflowing fuel fills the high-pressure element space only slowly, so that there is a pressure gradient which keeps the suction valve open even when the armature briefly releases itself from the valve piston of the suction valve.
  • the temporary energization of the magnetic coil for venting the working air gap is carried out during a delivery phase.
  • this requires that the suction valve is open, so that a free lift of the anchor is possible. This can for example be the case at the beginning of a funding phase. Since there is no pressure build-up in the high-pressure element chamber when the suction valve is open, the suction valve remains open even when the armature briefly releases itself from the valve piston.
  • the energization of the solenoid coil for venting the working air gap can be limited to a very short period of time, because it is not absolutely necessary that the armature reaches the stroke stop. With omission of the
  • the magnetic coil is preferably controlled at intervals, so that the armature moves up and down several times in succession. In this way, a particularly effective ventilation can be effected.
  • an air accumulation in the working air gap between the armature and the stroke stop by monitoring at least one
  • the ventilation of the working air gap can then be carried out selectively. If no air has accumulated in the working air gap can be dispensed with the implementation of the method, so that the additional energy costs are kept low.
  • the pressure in a high-pressure accumulator connected to the high-pressure pump is monitored to detect an accumulation of air in the working air gap. Because the occurrence of pressure fluctuations in the high-pressure accumulator with only a small change in the operating point can be an indication of a
  • the monitoring can be carried out by means of a pressure regulator, which is connected to the high-pressure accumulator.
  • a control unit is used for evaluating the at least one monitored operating parameter, and the temporary energization of the solenoid coil for venting the working air gap is carried out in accordance with the control unit. Via the control unit can thus immediately after the detection of air accumulation in the working air gap a
  • Triggered control mode which leads to the desired ventilation of the working air gap.
  • Fig. 2 is a graph for explaining a known driving method
  • Fig. 3 is a graph for explaining the proposed driving method.
  • the electromagnetically controllable intake valve 1 shown in FIG. 1 is integrated in a cylinder head 12 of a high-pressure pump 2.
  • the cylinder head 12 forms a valve seat 9 for a valve piston 4 of the suction valve 1, which thus opens directly into a high-pressure element chamber 13 of the high-pressure pump 2.
  • the high pressure element space 13 is of a liftable
  • Limiting pump piston 14 which compresses the fuel present in the high-pressure element space 13 in the delivery stroke and via an outlet valve 15 a connected to the high pressure pump 2 high-pressure accumulator 11 supplies.
  • the suction valve 1 is opened, as a load on the armature 5 spring 6, the armature 5 presses against the valve piston 4, so that the valve piston 4 is lifted from the valve seat 9.
  • the magnetic coil 3 is energized, so that builds up a magnetic field whose
  • Magnetic force moves the armature 5 against the spring force of the spring 6 in the direction of a stroke stop 7, which is presently formed by a pole core 16 which is the armature 5 at a working air gap 10 opposite.
  • the valve piston 4 is relieved by the stroke of the armature 5, so that a valve piston 4 acting in the closing direction spring 8 is able to pull the valve piston 4 in the valve seat 9.
  • the closing process is supported by the pressure prevailing on Saugventilkolben 4 hydraulic pressure ratios. Because the suction valve 1 is usually closed when the High-pressure element space 13 is filled with fuel and the pump piston 14 has already initiated the delivery stroke.
  • FIG. 2 The graph of Fig. 2 shows the stroke Hi of the pump piston 14 during a delivery cycle. Furthermore, the stroke H2 of the valve piston 4 of the suction valve 1 is shown. The suction valve 1 accordingly closes only after the
  • Suction valve 1 also increases the pressure p in the high pressure element space 13 of the high-pressure pump 2.
  • the magnetic coil 3 is energized.
  • the current profile I is indicated by the lower curve.
  • the graph of Fig. 3 illustrates the driving method according to the invention. It can be seen from the lower curve that the magnetic coil 3 of the suction valve 1 is briefly energized several times in succession during the suction phase A. This has the consequence that the armature 5 executes several free strokes H3, and that detached from the valve piston 4. Because during the suction phase A increases the suction stroke of the pump piston 14, the volume of the Hochnikelementraums 13 so that there is a negative pressure, which opens the suction valve 1 holds. Becomes

Abstract

Die Erfindung betrifft ein Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren Saugventils (1) für eine Hochdruckpumpe (2) in einem Kraftstoffeinspritzsystem, bei dem zum Schließen des Saugventils (1) eine Magnetspule (3) bestromt wird, so dass ein Magnetfeld aufgebaut wird, dessen Magnetkraft auf einen mit einem Ventilkolben (4) gekoppelten Anker (5) in der Weise einwirkt, dass sich dieser entgegen der Federkraft einer Feder (6) in Richtung eines Hubanschlags (7) bewegt und eine Entlastung des Ventilkolbens (4) bewirkt, der daraufhin durch die Federkraft einer Ventilfeder (8) in einen Ventilsitz (9) gezogen wird. Erfindungsgemäß wird im Zeitraum zwischen zwei Bestromungsphasen zum Schließen des Saugventils (1) die Magnetspule (3) zeitweise bestromt, so dass der Anker (5) vom Ventilkolben (4) entkoppelt wird und einen Freihub zur Entlüftung eines Arbeitsluftspalts (10) ausführt, der zwischen dem Anker (5) und dem Hubanschlag (7) ausgebildet ist.

Description

Beschreibung Titel
Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren Saugventils
Die Erfindung betrifft ein Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren Saugventils mit den Merkmalen des Oberbegriffs des
Anspruchs 1.
Ein Saugventil der vorstehend genannten Art dient der Befüllung eines
Hochdruckelementraums einer Hochdruckpumpe mit Kraftstoff. Da es elektromagnetisch ansteuerbar ist, kann das Saugventil zugleich zur
Fördermengenregelung der Hochdruckpumpe eingesetzt werden, so dass eine separate Zumesseinheit entbehrlich ist.
Stand der Technik
Aus der Offenlegungsschrift DE 10 2014 200 339 AI ist beispielsweise ein elektromagnetisch ansteuerbares Saugventil für eine Hochdruckpumpe eines Kraftstoffeinspritzsystems bekannt, das eine ringförmige Magnetspule zum Einwirken auf einen hubbeweglichen Anker und einen Polkern umfasst, der gemeinsam mit dem Anker einen Arbeitsluftspalt begrenzt. Bei einer Bestromung der Magnetspule wird ein Magnetfeld aufgebaut, dessen Magnetkraft den Anker entgegen der Federkraft einer Feder in Richtung des Polkern zieht, um den Arbeitsluftspalt zu schließen. Der Hub des Ankers entlastet ein kolbenförmiges Ventilschließelement des Saugventils, das in Schließrichtung von der Federkraft einer weiteren Feder beaufschlagt ist, so dass die weitere Feder das Saugventil zu schließen vermag. Wird die Bestromung der Magnetspule beendet, stellt die erste Feder den Anker in seine Ausgangslage zurück, wobei er am
Ventilschließelement anschlägt und das Saugventil entgegen der Federkraft der weiteren Feder erneut öffnet. Denn die Federkraft der weiteren Feder ist kleiner als die der ersten Feder gewählt. Das bekannte Saugventil ist demnach als stromlos offenes Ventil ausgeführt.
Bleibt die Magnetspule eines elektromagnetisch ansteuerbaren Saugventils der vorstehend genannten Art zu Beginn der Förderphase einer Hochdruckpumpe unbestromt, kann über das zunächst noch geöffnete Saugventil eine
überschüssige Menge Kraftstoff zurück in einen Zulaufbereich der
Hochdruckpumpe geschoben werden. Erst bei Bestromung des Saugventils vermag dieses zu schließen, so dass Druck in dem mit Kraftstoff befüllten Hochdruckelementraum der Hochdruckpumpe aufgebaut werden kann. Der Zeitpunkt der Bestromung der Magnetspule regelt somit die auf Hochdruck geförderte Kraftstoffmenge.
Im Betrieb eines elektromagnetisch ansteuerbaren Saugventils kann sich im oberhalb des Ankers gelegenen Arbeitsluftspalt Luft ansammeln, die
beispielsweise aus dem Kraftstoff ausgegast worden ist. Ferner kann eine unzureichende Entlüftung der Hochdruckpumpe bei Inbetriebnahme zu einer Luftansammlung im Arbeitsluftspalt führen. Die im Arbeitsluftspalt vorhandene Luft reduziert die hydraulische Dämpfung des Ankers, wenn dieser sich in Richtung des Hubanschlags bewegt. Die Folge ist ein erhöhter Anschlagimpuls, der zu einer Überbelastung der jeweiligen Kontaktflächen und somit zu einem erhöhten Verschleiß führt. Ferner kann sich eine Luftansammlung im
Arbeitsluftspalt auf die Schaltzeiten des Saugventils auswirken, so dass es zu Schwankungen der Förderleistung der Hochdruckpumpe kommt, welche die Druckregelgenauigkeit in einem an die Hochdruckpumpe angeschlossenen Hochdruckspeicher negativ beeinflussen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die vorstehend genannten Nachteile im Betrieb eines elektromagnetisch ansteuerbaren
Saugventils zu beseitigen oder zumindest zu mindern.
Zur Lösung der Aufgabe wird das Verfahren zur Ansteuerung eines
elektromagnetisch ansteuerbaren Saugventils mit den Merkmalen des
Anspruchs 1 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen. Offenbarung der Erfindung
Vorgeschlagen wird ein Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren Saugventils für eine Hochdruckpumpe in einem
Kraftstoffeinspritzsystem. Bei dem Verfahren wird zum Schließen des
Saugventils eine Magnetspule bestromt. Die Bestromung der Magnetspule hat zur Folge, dass ein Magnetfeld aufgebaut wird, dessen Magnetkraft auf einen mit einem Ventilkolben gekoppelten Anker in der Weise einwirkt, dass sich dieser entgegen der Federkraft einer Feder in Richtung eines Hubanschlags bewegt.
Zugleich wird über die Bewegung des Ankers eine Entlastung des Ventilkolbens bewirkt, der daraufhin durch die Federkraft einer Ventilfeder in einen Ventilsitz gezogen wird. Erfindungsgemäß ist vorgesehen, dass im Zeitraum zwischen zwei Bestromungsphasen zum Schließen des Saugventils die Magnetspule zeitweise bestromt wird, so dass der Anker vom Ventilkolben entkoppelt wird und einen Freihub zur Entlüftung eines Arbeitsluftspalts ausführt, der zwischen dem Anker und dem Hubanschlag ausgebildet ist.
Der Freihub des Ankers setzt voraus, dass der Anker gegenüber dem
Ventilkolben beweglich ist. Es darf demnach keine feste Verbindung zwischen dem Anker und dem Ventilkolben bestehen. Denn dann kann der Anker über eine zeitweise, vorzugsweise kurzzeitige Bestromung der Magnetspule während einer„Bestromungspause", in der die Feder den Anker gegen den Ventilkolben drückt, vom Ventilkolben angehoben werden, ohne, dass der Ventilkolben der Bewegung des Ankers unmittelbar folgt. Grund hierfür sind hydraulische Kräfte, die zusätzlich auf den Ventilkolben wirken. Der Freihub des Ankers bleibt somit ohne Auswirkung auf den Druck im Hochdruckelementraum bzw. auf die
Fördermenge der Hochdruckpumpe. Während der Anker einen Freihub ausführt, wird Luft aus dem oberhalb des
Ankers gelegenen Arbeitsluftspalt in einen Bereich unterhalb des Ankers verdrängt. Von dort wird die Luft gemeinsam mit dem dort befindlichen Kraftstoff der Hochdruckpumpe zugeführt und schließlich über die Hochdruckpumpe abgeführt. Der Freihub des Pumpenkolbens führt somit zu einer Entlüftung des Arbeitsluftspalts, so dass eine ausreichende hydraulische Dämpfung des Ankers gewährleistet ist und der Verschließ im Anschlagbereich des Ankers gemindert wird. Ferner wirkt die Entlüftung des Arbeitsluftspalts einer unerwünschten Veränderung der Schaltzeiten des Saugventils entgegen, so dass die
Genauigkeit der Zumessung von Kraftstoff und in der Folge die Regelgenauigkeit des Drucks in einem angeschlossenen Hochdruckspeicher steigt.
Besonders hervorzuheben ist, dass die Durchführung des vorgeschlagenen Verfahrens keine konstruktiven Veränderungen an einem elektromagnetisch ansteuerbaren Saugventil erfordert. Die Vorteile der Erfindung lassen sich demnach durch rein applikative Maßnahmen auch bei bereits vorhandenen elektromagnetisch ansteuerbaren Saugventilen erzielen.
Bevorzugt wird die zeitweise Bestromung der Magnetspule zur Entlüftung des Arbeitsluftspalts während einer Saugphase durchgeführt. Das heißt, dass während des Freihubs des Ankers das Saugventil geöffnet ist und über das Saugventil Kraftstoff in einen Hochdruckelementraum der Hochdruckpumpe einströmt. Der einströmende Kraftstoff füllt den Hochdruckelementraum erst langsam, so dass ein Druckgefälle herrscht, welches das Saugventil selbst dann geöffnet hält, wenn sich der Anker kurzzeitig vom Ventilkolben des Saugventils löst.
Alternativ oder ergänzend wird vorgeschlagen, dass die zeitweise Bestromung der Magnetspule zur Entlüftung des Arbeitsluftspalts während einer Förderphase durchgeführt wird. Dies setzt jedoch voraus, dass das Saugventil geöffnet ist, so dass ein Freihub des Ankers möglich ist. Dies kann beispielsweise zu Beginn einer Förderphase der Fall sein. Da bei geöffnetem Saugventil kein Druckaufbau im Hochdruckelementraum erfolgt, bleibt das Saugventil selbst dann geöffnet, wenn der Anker sich kurzzeitig vom Ventilkolben löst.
Die Bestromung der Magnetspule zur Entlüftung des Arbeitsluftspalts kann auf einen sehr kurzen Zeitraum beschränkt werden, denn es ist nicht zwingend erforderlich, dass der Anker den Hubanschlag erreicht. Mit Wegfall der
Magnetkraft stellt die den Anker belastende Feder sicher, dass der Anker zurückgestellt wird. Die zur Entlüftung des Arbeitsluftspalts erforderlichen Ankerbewegungen sind demnach bevorzugt kurz und schnell. In Weiterbildung der Erfindung wird vorgeschlagen, dass die zeitweise
Bestromung der Magnetspule zur Entlüftung des Arbeitsluftspalts im Zeitraum zwischen zwei Bestromungsphasen zum Schließen des Saugventils mehrfach durchgeführt wird. Hierzu wird die Magnetspule bevorzugt intervallartig angesteuert, so dass sich der Anker mehrfach hintereinander auf- und ab bewegt. Auf diese Weise kann eine besonders effektive Entlüftung bewirkt werden.
Vorteilhafterweise wird eine Luftansammlung im Arbeitsluftspalt zwischen dem Anker und dem Hubanschlag durch Überwachung mindestens eines
Betriebsparameters detektiert. Die Entlüftung des Arbeitsluftspalts kann dann gezielt durchgeführt werden. Hat sich keine Luft im Arbeitsluftspalt angesammelt kann auf die Durchführung des Verfahrens verzichtet werden, so dass die zusätzlichen Energiekosten gering gehalten werden.
Vorzugsweise wird zur Detektion einer Luftansammlung im Arbeitsluftspalt der Druck in einem an die Hochdruckpumpe angeschlossenen Hochdruckspeicher überwacht. Denn das Auftreten von Druckschwankungen im Hochdruckspeicher bei nur geringer Änderung des Betriebspunkts kann als Indiz für eine
problematische Luftansammlung im Arbeitsluftspalt herangezogen werden. Die Überwachung kann mittels eines Druckreglers durchgeführt werden, der an den Hochdruckspeicher angeschlossen ist.
Ferner wird vorgeschlagen, dass eine Steuereinheit zur Auswertung des mindestens einen überwachten Betriebsparameters eingesetzt wird und die zeitweise Bestromung der Magnetspule zur Entlüftung des Arbeitsluftspalts nach Maßgabe der Steuereinheit erfolgt. Über die Steuereinheit kann somit nach der Detektion einer Luftansammlung im Arbeitsluftspalt umgehend ein
Ansteuermodus ausgelöst werden, der zu der gewünschten Entlüftung des Arbeitsluftspalts führt.
Eine bevorzugte Ausführungsform der Erfindung wird nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen: Fig. 1 einen schematischen Längsschnitt durch ein aus dem Stand der Technik bekanntes elektromagnetisch ansteuerbares Saugventil,
Fig. 2 eine Graphik zur Erläuterung eines bekannten Ansteuerverfahrens und
Fig. 3 eine Graphik zur Erläuterung des vorgeschlagenen Ansteuerverfahrens.
Ausführliche Beschreibung der Zeichnungen
Das in der Fig. 1 dargestellte elektromagnetisch ansteuerbare Saugventil 1 ist in einen Zylinderkopf 12 einer Hochdruckpumpe 2 integriert. Der Zylinderkopf 12 bildet einen Ventilsitz 9 für einen Ventilkolben 4 des Saugventils 1 aus, der somit unmittelbar in einen Hochdruckelementraum 13 der Hochdruckpumpe 2 öffnet. Der Hochdruckelementraum 13 wird von einem hubbeweglichen
Pumpenkolben 14 begrenzt, der im Förderhub den im Hochdruckelementraum 13 vorhandenen Kraftstoff komprimiert und über ein Auslassventil 15 einem an die Hochdruckpumpe 2 angeschlossenen Hochdruckspeicher 11 zuführt. Im
Saughub des Pumpenkolbens 14 wird der Hochdruckelementraum 13 über das Saugventil 1 mit frischem Kraftstoff befüllt.
Zur Betätigung des Ventilkolbens 4 weist das Saugventil 1 der Fig. 1 eine ringförmige Magnetspule 3 sowie einen mit der Magnetspule 3
zusammenwirkenden hubbeweglichen Anker 5 auf. Bei unbestromter
Magnetspule 3 ist das Saugventil 1 geöffnet, da eine auf den Anker 5 lastende Feder 6 den Anker 5 gegen den Ventilkolben 4 drückt, so dass der Ventilkolben 4 aus dem Ventilsitz 9 gehoben wird. Zum Schließen des Saugventils 1 wird die Magnetspule 3 bestromt, so dass sich ein Magnetfeld aufbaut, dessen
Magnetkraft den Anker 5 entgegen der Federkraft der Feder 6 in Richtung eines Hubanschlags 7 bewegt, der vorliegend durch einen Polkern 16 ausgebildet wird, der dem Anker 5 an einem Arbeitsluftspalt 10 gegenüber liegt. Der Ventilkolben 4 wird durch den Hub des Ankers 5 entlastet, so dass eine den Ventilkolben 4 in Schließrichtung beaufschlagende Feder 8 den Ventilkolben 4 in den Ventilsitz 9 zu ziehen vermag. Der Schließvorgang wird dabei unterstützt von den am Saugventilkolben 4 herrschenden hydraulischen Druckverhältnissen. Denn das Saugventil 1 wird in der Regel erst geschlossen, wenn der Hochdruckelementraum 13 mit Kraftstoff gefüllt ist und der Pumpenkolben 14 bereits den Förderhub eingeleitet hat.
Zur Erläuterung dieser Zusammenhänge wird auf die Fig. 2 verwiesen. Die Graphik der Fig. 2 zeigt den Hub Hi des Pumpenkolbens 14 während eines Förderzykluses. Ferner ist der Hub H2 des Ventilkolbens 4 des Saugventils 1 dargestellt. Das Saugventil 1 schließt demnach erst, nachdem der
Pumpenkolben 14 seinen Förderhub eingeleitet hat. Mit Schließen des
Saugventils 1 steigt auch der Druck p im Hochdruckelementraum 13 der Hochdruckpumpe 2 an. Um das Schließen des Saugventils 1 zu bewirken, wird die Magnetspule 3 bestromt. Der Stromverlauf I ist durch die untere Kurve angegeben.
Die Graphik der Fig. 3 erläutert das erfindungsgemäße Ansteuerverfahren. Aus der unteren Kurve ist ersichtlich, dass die Magnetspule 3 des Saugventils 1 während der Saugphase A mehrfach hintereinander kurz bestromt wird. Dies hat zur Folge, dass der Anker 5 mehrere Freihübe H3 ausführt, und zwar losgelöst vom Ventilkolben 4. Denn während der Saugphase A vergrößert der Saughub des Pumpenkolbens 14 das Volumen des Hochdruckelementraums 13, so dass dort ein Unterdruck herrscht, der das Saugventil 1 geöffnet hält. Wird
anschließend die Magnetspule 3 während der Förderphase B erneut bestromt, folgt der Ventilkolben 4 der Bewegung des Ankers 5 und das Saugventil 1 schließt.
Durch die Freihübe H3 des Ankers 5 kann in einfacher Weise eine Entlüftung des Arbeitsluftspalts 10 zwischen dem Anker 5 und dem Hubanschlag 7 bewirkt werden, ohne dass die Bewegungen des Ankers 5 Einfluss auf den Druck p im Hochdruckelementraum 13 der Hochdruckpumpe 2 haben. Denn zumindest während der Saugphase A bewirken die herrschenden hydraulischen
Druckverhältnisse, dass der Ventilkolben 4 des Saugventils 1 den Bewegungen des Ankers 5 nicht folgen kann.

Claims

Ansprüche
1. Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren
Saugventils (1) für eine Hochdruckpumpe (2) in einem
Kraftstoffeinspritzsystem, bei dem zum Schließen des Saugventils (1) eine Magnetspule (3) bestromt wird, so dass ein Magnetfeld aufgebaut wird, dessen Magnetkraft auf einen mit einem Ventilkolben (4) gekoppelten Anker (5) in der Weise einwirkt, dass sich dieser entgegen der Federkraft einer Feder (6) in Richtung eines Hubanschlags (7) bewegt und eine
Entlastung des Ventilkolbens (4) bewirkt, der daraufhin durch die Federkraft einer Ventilfeder (8) in einen Ventilsitz (9) gezogen wird,
dadurch gekennzeichnet, dass im Zeitraum zwischen zwei
Bestromungsphasen zum Schließen des Saugventils (1) die Magnetspule (3) zeitweise bestromt wird, so dass der Anker (5) vom Ventilkolben (4) entkoppelt wird und einen Freihub zur Entlüftung eines Arbeitsluftspalts (10) ausführt, der zwischen dem Anker (5) und dem Hubanschlag (7) ausgebildet ist.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die zeitweise Bestromung der
Magnetspule (3) zur Entlüftung des Arbeitsluftspalts (10) während einer Saugphase durchgeführt wird.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die zeitweise Bestromung der
Magnetspule (3) zur Entlüftung des Arbeitsluftspalts (10) während einer Förderphase durchgeführt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zeitweise Bestromung der
Magnetspule (3) zur Entlüftung des Arbeitsluftspalts (10) im Zeitraum zwischen zwei Bestromungsphasen zum Schließen des Saugventils (1) mehrfach durchgeführt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass eine Luftansammlung im
Arbeitsluftspalt (10) zwischen dem Anker (5) und dem Hubanschlag (7) durch Überwachung mindestens eines Betriebsparameters detektiert wird.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass zur Detektion einer Luftansammlung im Arbeitsluftspalt (10) der Druck in einem an die Hochdruckpumpe (2) angeschlossenen Hochdruckspeicher (11) überwacht wird.
7. Verfahren nach Anspruch 5 oder 6,
dadurch gekennzeichnet, dass eine Steuereinheit zur Auswertung des mindestens einen überwachten Betriebsparameters eingesetzt wird und die zeitweise Bestromung der Magnetspule (3) zur Entlüftung des
Arbeitsluftspalts (10) nach Maßgabe der Steuereinheit erfolgt.
PCT/EP2017/050070 2016-03-03 2017-01-03 Verfahren zur ansteuerung eines elektromagnetisch ansteuerbaren saugventils WO2017148599A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17701034.5A EP3423702B1 (de) 2016-03-03 2017-01-03 Verfahren zur ansteuerung eines elektromagnetisch ansteuerbaren saugventils

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203499.5 2016-03-03
DE102016203499.5A DE102016203499A1 (de) 2016-03-03 2016-03-03 Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren Saugventils

Publications (1)

Publication Number Publication Date
WO2017148599A1 true WO2017148599A1 (de) 2017-09-08

Family

ID=57868209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/050070 WO2017148599A1 (de) 2016-03-03 2017-01-03 Verfahren zur ansteuerung eines elektromagnetisch ansteuerbaren saugventils

Country Status (3)

Country Link
EP (1) EP3423702B1 (de)
DE (1) DE102016203499A1 (de)
WO (1) WO2017148599A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613392A (en) * 2021-12-02 2023-06-07 Delphi Tech Ip Ltd Fuel pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859175A1 (de) * 1998-12-21 2000-06-29 Siemens Ag Verfahren zum Entlüften eines Kraftstoffversorgungssystems
DE102010001254A1 (de) * 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Entlüftung für eine Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine
DE102011002979A1 (de) * 2011-01-21 2012-07-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung des hydraulischen Drucks in einem Zulaufpfad einer Hochdruckpumpe sowie Zumesseinheit für eine solche Vorrichtung
DE102013211173A1 (de) * 2013-06-14 2014-12-18 Robert Bosch Gmbh Elektromagnetisch ansteuerbares Saugventil
DE102014200339A1 (de) 2014-01-10 2015-07-16 Robert Bosch Gmbh Elektromagnetisch ansteuerbares Saugventil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859175A1 (de) * 1998-12-21 2000-06-29 Siemens Ag Verfahren zum Entlüften eines Kraftstoffversorgungssystems
DE102010001254A1 (de) * 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Entlüftung für eine Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine
DE102011002979A1 (de) * 2011-01-21 2012-07-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung des hydraulischen Drucks in einem Zulaufpfad einer Hochdruckpumpe sowie Zumesseinheit für eine solche Vorrichtung
DE102013211173A1 (de) * 2013-06-14 2014-12-18 Robert Bosch Gmbh Elektromagnetisch ansteuerbares Saugventil
DE102014200339A1 (de) 2014-01-10 2015-07-16 Robert Bosch Gmbh Elektromagnetisch ansteuerbares Saugventil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613392A (en) * 2021-12-02 2023-06-07 Delphi Tech Ip Ltd Fuel pump
GB2613392B (en) * 2021-12-02 2024-04-03 Phinia Delphi Luxembourg Sarl Fuel pump

Also Published As

Publication number Publication date
EP3423702A1 (de) 2019-01-09
EP3423702B1 (de) 2021-04-21
DE102016203499A1 (de) 2017-09-07

Similar Documents

Publication Publication Date Title
DE3541938C2 (de) Magnet-Überströmventil
DE102007028960A1 (de) Hochdruckpumpe für ein Kraftstoffsystem einer Brennkraftmaschine
EP1203151B1 (de) Zweistufiges magnetventil für einen injektor von brennkarftmaschinen
EP2724011B1 (de) Verfahren und vorrichtung zum betreiben einer kraftstofffördereinrichtung einer brennkraftmaschine
DE102009046088B4 (de) Mengensteuerventil, insbesondere in einer Kraftstoff-Hochdruckpumpe, zur Zumessung eines fluiden Mediums
WO2010072201A1 (de) Vorgesteuertes ventil und ventilgesteuerte hydromaschine
EP3423702B1 (de) Verfahren zur ansteuerung eines elektromagnetisch ansteuerbaren saugventils
WO2013174604A1 (de) Verfahren zum betreiben eines kraftstoffsystems für eine brennkraftmaschine
WO2000011339A1 (de) Steuereinheit zur steuerung des druckaufbaus in einer pumpeneinheit
DE102016211679A1 (de) Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil
EP1920155A1 (de) Kraftstoff-einspritzsystem für eine brennkraftmaschine
DE19801169C1 (de) Kraftstoffeinspritzsystem für Brennkraftmaschinen
WO2018010897A1 (de) Ansteuerverfahren zum ansteuern eines einlassventils einer kraftstoffhochdruckpumpe und kraftstoffeinspritzsystem
EP3655643B1 (de) Vorrichtung zum steuern eines injektors
EP2392815A1 (de) Magnetbaugruppe sowie Einspritzventil mit einer Magnetbaugruppe
DE102008064409A1 (de) Vorgesteuertes Ventil und ventilgesteuerte Hydromaschine
WO2004092591A1 (de) Stetig verstellbares wegeventil
DE10334616A1 (de) Druckregelventil für Speicherkraftstoffeinspritzsystem
EP1259728B1 (de) Einspritzeinrichtung und verfahren zum einspritzen von fluid
WO2018001549A1 (de) Einrichtung zur strömungskraft-kompensation
WO2017137119A1 (de) Verfahren zur steuerung einer elektromagnetischen stelleinheit
EP2880297B1 (de) Hochdruckpumpe für brennkraftmaschinen
DE102014221660A1 (de) Verfahren zur Regelung der Fördermenge einer Hochdruckpumpe sowie Hochdruckpumpe
DE102019211915A1 (de) Verfahren zum Betreiben eines Kraftstoffsystems, Kraftstoffsystem
DE102019215787A1 (de) Verfahren und Steuervorrichtung zur Ermittlung des unteren Totpunkts eines Kolbens einer Kraftstoffhochdruckpumpe

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017701034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017701034

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17701034

Country of ref document: EP

Kind code of ref document: A1