WO2017148213A1 - 资源分配控制方法、装置及系统 - Google Patents

资源分配控制方法、装置及系统 Download PDF

Info

Publication number
WO2017148213A1
WO2017148213A1 PCT/CN2017/000066 CN2017000066W WO2017148213A1 WO 2017148213 A1 WO2017148213 A1 WO 2017148213A1 CN 2017000066 W CN2017000066 W CN 2017000066W WO 2017148213 A1 WO2017148213 A1 WO 2017148213A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
resource
cell
primary base
indication information
Prior art date
Application number
PCT/CN2017/000066
Other languages
English (en)
French (fr)
Inventor
陈中明
张娟
吴昱民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017148213A1 publication Critical patent/WO2017148213A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a resource allocation control method, apparatus, and system.
  • the protocol architecture of the user equipment or the User Equipment (UE) user plane is shown in FIG. 1 . From the bottom up, it is divided into the following protocol layers: physical layer (physical layer, PHY for short), media access control layer (Media Access Control, MAC for short), and radio link control layer (Radio Link Control, for short RLC), Packet Data Convergence Protocol (PDCP).
  • physical layer physical layer
  • PHY physical layer
  • media access control layer Media Access Control
  • MAC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the PHY layer mainly transmits information to the MAC layer or higher layer through the transport channel; the MAC layer mainly provides data transmission and is responsible for radio resource allocation through the logical channel, and completes hybrid automatic repeat request (Hybrid ARQ, HARQ for short) and scheduling (Scheduling, Short for SCH), priority processing, and multiplexing (MUX) functions; the RLC layer mainly provides segmentation and retransmission services for users and control data; the PDCP layer mainly provides radio resource control (Radio Resource Control, Referred to as RRC) or the user layer to complete the transfer of user data.
  • RRC Radio Resource Control
  • the base station allocates a logical channel group (Logical Channel Group, LCG for short) to which the DRB belongs.
  • the LCG currently has four levels of 0, 1, 2, and 3. Grouping.
  • the buffer status report (BSR) is sent to the base station, and the index value corresponding to the buffered data size prepared on the LCG is carried.
  • the base station After receiving the received data, the base station obtains the corresponding uplink grant according to the received index value, and the terminal can send the uplink data after receiving the uplink grant.
  • the buffered data size includes buffered data that is carried by the corresponding data on the LCG and carried in the RLC layer and the PDCP layer.
  • the UE After the carrier aggregation technology (Carrier Aggregation, CA for short) is introduced, the UE enters the connection.
  • the source cell After being connected, the source cell can be communicated with the source base station by using multiple component carriers (such as CC1, CC2), and the primary cell (Primary Cell, referred to as Pcell) and the secondary cell (Scell) are introduced.
  • the number of Scells will increase due to the increase in the amount of data. If the number of Scells is increased to four, the scenario will be relaxed. For example, Remote Radio Head (RRH) and Repeater (repeat) are supported. ), a Tracking Area (TA) cannot solve the problem, so multiple TAs will be introduced.
  • RRH Remote Radio Head
  • RHR Remote Radio Head
  • repeater repeater
  • TA Tracking Area
  • the serving cells using the same TA are classified into one TA group.
  • the TA group including the Pcell is pTAG (primary TA group)
  • the TA group not including the Pcell is sTAG (secondary TA group). Since the multiple client cells are in the same base station, the protocol structure of the user plane does not change.
  • the reporting mode of the BSR is only for the data volume to become larger, so that the buffered data reported is larger, and the others are not changed.
  • a terminal that supports carrier aggregation is called CAUE.
  • the embodiments of the present invention provide a resource allocation control method, apparatus, and system method and apparatus, to at least solve the problem of low resource utilization when performing carrier aggregation between cells in the related art.
  • a resource allocation control method including: a primary base station acquiring indication information for indicating buffered data that is transmitted, where the buffered data includes uplink buffered data sent by a terminal or sent The downlink data is sent to the terminal; the primary base station acquires resource status indication information of the primary base station and resource status indication information of the secondary base station, where the terminal and the first cell and the primary base station respectively The second cell in the secondary base station is established with a communication connection; the primary base station determines, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, for processing the buffered data in the primary base station.
  • the primary base station notifies the secondary base station to reserve the second physical resource, so that the secondary base station sends a second scheduling command corresponding to the second physical resource to the terminal;
  • the first scheduling command corresponding to the first physical resource is sent to the terminal.
  • the primary base station determines, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, a first physical resource used by the primary base station to process the buffered data
  • the The second physical resource for processing the buffered data in the secondary base station includes: the primary base station separately acquiring the remaining in the first cell according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station The physical resource and the remaining physical resources in the second cell; the primary base station determines to process the buffered data according to at least the remaining physical resources in the first cell and the remaining physical resources in the second cell.
  • the acquiring the remaining physical resources includes: obtaining a sum of a physical resource size occupied by a common channel on a cell carrier and a physical resource size occupied by a non-supporting carrier aggregation terminal, and the sum value and total physical The difference between the two resource sizes, and the difference is used as the resource size corresponding to the remaining physical resources.
  • the acquiring the remaining physical resources includes: acquiring a sum of a physical resource size occupied by the carrier aggregation terminal and a free physical resource size on the cell carrier, and using the sum value as the remaining physical resource.
  • the corresponding resource size is a sum of a physical resource size occupied by the carrier aggregation terminal and a free physical resource size on the cell carrier.
  • the acquiring the remaining physical resources includes: using a resource size corresponding to a buffer status level as a resource size corresponding to the remaining physical resources, where the buffer status includes at least one of the following: a terminal buffer Zone status, data radio bearer buffer status, cell buffer status.
  • the primary base station determines, according to the remaining physical resources in the first cell and the remaining physical resources in the second cell, that the allocated buffer data is allocated on the first cell.
  • the first physical resource, and the second physical resource allocated on the second cell includes: the primary base station acquiring the remaining physical resources in the first cell a first ratio of the resource and/or a second ratio of the remaining physical resources in the second cell to the total remaining physical resources; the primary base station according to at least the first ratio and/or the second ratio Determining, to process the buffered data, the first physical resource allocated on the first cell, and the second physical resource allocated on the second cell.
  • the primary base station determines, according to the remaining physical resources in the first cell and the remaining physical resources in the second cell, that the allocated buffer data is allocated on the first cell.
  • the first physical resource, and the second physical resource allocated on the second cell includes: the primary base station determines, according to the group identifier of each logical channel group, that the processing corresponds to each logical channel group.
  • the resource status indication information of the primary base station further includes: a spectrum efficiency of the first frequency to which the first cell belongs in the primary base station; and the resource status indication information of the secondary base station includes: the secondary base station a spectrum efficiency of the second frequency to which the second cell belongs, where the primary base station acquires a first ratio of all remaining physical resources in the first cell and/or a second ratio in the second cell
  • the obtaining, by the primary base station, the indication information for indicating the buffered data that is transmitted includes: receiving, by the primary base station, a buffer status report sent by the terminal, where the buffer status report is at least carried And indication information indicating a data amount of the uplink buffered data to be transmitted by the terminal.
  • the resource status indication information of the secondary base station is obtained.
  • a resource allocation control method including: a secondary base station transmitting resource state indication information of the secondary base station to a primary base station, where the first cell and the secondary in the primary base station The second cell in the base station establishes a communication connection with the terminal, and the primary base station is configured to determine, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, a buffer for processing in the primary base station.
  • the secondary base station receives the resource indication information that is sent by the primary base station to indicate that the secondary base station reserves the second physical resource, and the secondary base station reserves the second physical resource according to the resource indication information. And sending a second scheduling command corresponding to the second physical resource to the terminal.
  • the sending, by the secondary base station, the resource status indication information of the secondary base station to the primary base station where the at least one of the following: the secondary base station periodically sends the resource status indication information of the secondary base station to the primary base station; When detecting the change of the second physical resource on the secondary base station, the secondary base station sends resource state indication information of the secondary base station to the primary base station.
  • a resource allocation control method includes: the terminal sending, to the primary base station, indication information indicating the buffered data that is transmitted, where the buffered data includes the The uplink buffer data or the downlink buffer data sent to the terminal, the primary base station is configured to acquire, by the primary base station, the resource status indication information of the primary base station and the resource status indication information of the secondary base station, and according to the primary base station
  • the resource status indication information and the resource status indication information of the secondary base station determine a first physical resource in the primary base station for processing the buffered data, and a second used in the secondary base station to process the buffered data a physical resource, wherein the terminal establishes a communication connection with a first cell of the primary base station and a second cell of the secondary base station; the terminal receives the first physical medium sent by the primary base station a first scheduling command corresponding to the resource, and/or a second scheduling command corresponding to the second physical resource sent by the secondary base station;
  • the sending, by the terminal, the indication information for indicating the buffered data that is transmitted to the primary base station includes: the terminal sending a buffer status report to the primary base station, where the buffer status report is at least carried for Indicated information indicating the amount of data of the uplink buffered data to be transmitted by the terminal.
  • a resource allocation control apparatus which is applied to a primary base station, and includes: a first acquiring module, configured to acquire indication information for indicating buffered data that is transmitted, where The buffering data includes the uplink buffer data sent by the terminal or the downlink buffer data sent to the terminal, and the second acquiring module is configured to acquire the resource status indication information of the primary base station and the resource status indication information of the secondary base station, where the The terminal establishes a communication connection with the first cell of the primary base station and the second cell of the secondary base station, and the determining module is configured to: according to the resource status indication information of the primary base station and the resource status of the secondary base station The indication information determines a first physical resource in the primary base station for processing the buffered data, and a second physical resource in the secondary base station for processing the buffered data; and a notification module, configured to notify the secondary base station Reserving the second physical resource, so that the secondary base station sends a second scheduling command corresponding to the second physical resource
  • the determining module includes: an acquiring unit, configured to acquire, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, the remaining physical resources in the first cell, and the a physical resource remaining in the second cell; the determining unit is configured to determine, according to the remaining physical resources in the first cell and the remaining physical resources in the second cell, that the buffer data is processed in the first The first physical resource allocated on the cell and the second physical resource allocated on the second cell.
  • the acquiring unit is configured to: obtain a sum of a physical resource size occupied by a common channel on a cell carrier and a physical resource size occupied by a non-supporting carrier aggregation terminal, and the sum value and a total physical resource size. The difference between the two is used as the resource size corresponding to the remaining physical resources.
  • the acquiring unit is configured to: acquire carrier aggregation terminal on the carrier carrier The sum of the physical resource size and the free physical resource size, and the sum value is used as the resource size corresponding to the remaining physical resources.
  • the acquiring unit is configured to: use a resource size corresponding to a buffer status level as a resource size corresponding to the remaining physical resources, where the buffer status includes at least one of the following: a terminal buffer status , data radio bearer buffer status, cell buffer status.
  • the determining unit is configured to: acquire a first ratio of the remaining physical resources in the first cell to all remaining physical resources, and/or a remaining physical resource in the second cell to the total remaining physical a second ratio of resources; determining, according to the first ratio and/or the second ratio, the first physical resource allocated to process the buffered data on the first cell, and at the The second physical resource allocated on the two cells.
  • the determining unit is configured to: the primary base station determines, according to the group identifier of each logical channel group, that each of the buffered data corresponding to each logical channel group is allocated on the first cell. Describe a first physical resource and the second physical resource allocated on the second cell.
  • the resource status indication information of the primary base station further includes: a spectrum efficiency of the first frequency to which the first cell belongs in the primary base station; and the resource status indication information of the secondary base station includes: the secondary base station a spectrum efficiency of the second frequency to which the second cell belongs, where the primary base station acquires a first ratio of all remaining physical resources in the first cell and/or a second ratio in the second cell
  • the first acquiring module is configured to: receive a buffer status sent by the terminal The report, wherein the buffer status report carries at least indication information indicating a data amount of uplink buffered data to be sent by the terminal.
  • the second acquiring module is configured to: acquire the resource state indication information of the secondary base station periodically; and acquire the auxiliary when the second physical resource on the secondary base station changes Resource status indication information of the base station.
  • a resource allocation control apparatus which is applied to a secondary base station, and includes: a second sending module, configured to send resource state indication information of the secondary base station to a primary base station, where The first cell in the primary base station and the second cell in the secondary base station are all connected to the terminal, and the primary base station is configured to use the resource status indication information of the primary base station and the resource status of the secondary base station.
  • the indication information determines a first physical resource in the primary base station for processing buffered data, and a second physical resource in the secondary base station for processing the buffered data, so that the primary base station sends the first physical resource a first scheduling command of the physical resource is sent to the terminal;
  • the first receiving module is configured to receive resource indication information that is sent by the primary base station to indicate that the second physical resource is reserved in the secondary base station; and a processing module, And being configured to reserve the second physical resource according to the resource indication information, and send a second scheduling command corresponding to the second physical resource to the terminal.
  • the second sending module is configured to: send the resource state indication information of the secondary base station to the primary base station periodically; and detect that the second physical resource occurs on the secondary base station When changing, the resource status indication information of the secondary base station is sent to the primary base station.
  • a resource allocation control apparatus which is applied to a terminal, and includes: a third sending module, configured to send, to the primary base station, indication information for indicating the buffered data that is transmitted, where
  • the buffer data includes uplink buffer data sent by the terminal or downlink buffer data sent to the terminal, and the primary base station is configured to acquire, by the primary base station, resource status indication information of the primary base station and resources of the secondary base station.
  • the terminal is respectively associated with the primary base station
  • the first cell in the first cell and the second cell in the secondary base station are connected to each other; the second receiving module is configured to receive a first scheduling command that is sent by the primary base station and that corresponds to the first physical resource, and Or a second scheduling command that is sent by the secondary base station and corresponding to the second physical resource; and the transmitting module is configured to transmit the buffered data according to the indication of the first scheduling command and/or the second scheduling command.
  • the third sending module is configured to: send a buffer status report to the primary base station, where the buffer status report at least carries a data amount for indicating uplink buffer data to be sent by the terminal. Instructions.
  • a resource allocation control system including: a primary base station, a secondary base station, and a terminal, where the primary base station is configured to acquire indication information for indicating the buffered data that is transmitted,
  • the buffer data includes the uplink buffer data sent by the terminal or the downlink buffer data sent to the terminal, and the resource status indication information of the primary base station and the resource status indication information of the secondary base station, where
  • the terminal establishes a communication connection with the first cell of the primary base station and the second cell of the secondary base station, and is further configured to: according to the resource status indication information of the primary base station and the resource status of the secondary base station Determining information, determining, by the primary base station, a first physical resource for processing the buffered data, and a second physical resource for processing the buffered data in the secondary base station; and notifying the secondary base station to reserve the a second physical resource, so that the secondary base station sends a second scheduling command corresponding to the second physical resource to the terminal; and sending the first The first
  • a computer storage medium is also provided, and the computer storage medium is provided.
  • the quality may store an execution instruction for executing the resource allocation control method in the above embodiment.
  • the primary base station acquires indication information for indicating the buffered data that is transmitted, where the buffered data includes uplink buffered data sent by the terminal and downlink buffered data sent to the terminal; and the primary base station acquires the resource status of the primary base station.
  • the indication information and the resource status indication information of the secondary base station wherein the terminal establishes a communication connection with the first cell in the primary base station and the second cell in the secondary base station, respectively; the primary base station according to the resource status indication information of the primary base station and the secondary base station
  • the resource status indication information determines a first physical resource for processing buffered data in the primary base station, and a second physical resource for processing buffered data in the secondary base station; the primary base station notifies the secondary base station to reserve the second physical resource, so that the secondary base station Sending a second scheduling command corresponding to the second physical resource to the terminal; the primary base station sending the first scheduling command corresponding to the first physical resource to the terminal, and the primary base station acquiring the indication information for indicating the buffered data that is transmitted, It is possible to determine buffered data for communication with the terminal, since the terminal is separately associated with the primary base station A communication connection is established between the first cell and the second cell of the secondary base station, that is, the terminal establishes a communication connection with multiple cells
  • Information and resource status indication information of the secondary base station and determining, according to the information, the physical resources used by the primary base station and the secondary base station to process the buffered data, and then notifying the secondary base station to reserve the second physical resource for processing the buffered data, and
  • the first scheduling command corresponding to the first physical resource that is used to process the buffered data is sent to the terminal, so that the terminal knows the allocation and scheduling of the buffered data, and realizes the maximum resource utilization of the physical resources on the primary base station and the secondary base station.
  • the problem of low resource utilization when performing carrier aggregation between cells in the related art is solved. Further, by performing global allocation and scheduling on the physical resources corresponding to the buffered data, the flow control between the base stations when performing carrier aggregation between the cells is realized.
  • FIG. 1 is a schematic diagram of a protocol architecture of a user plane according to the related art
  • FIG. 2 is a flow chart of an alternative resource allocation control method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a protocol architecture of a user plane according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of another alternative resource allocation control method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another optional resource allocation control method according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of an optional resource allocation control apparatus according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of another optional resource allocation control apparatus according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of another optional resource allocation control apparatus according to an embodiment of the present invention.
  • FIG. 9 is a flow chart of another alternative resource allocation control method according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of another optional resource allocation control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of an optional resource allocation control method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the primary base station acquires indication information for indicating the buffered data that is transmitted, where the buffered data includes uplink buffered data sent by the terminal or downlink buffered data that is sent to the terminal;
  • Step S204 The primary base station acquires the resource status indication information of the primary base station and the resource status indication information of the secondary base station, where the terminal establishes a communication connection with the first cell in the primary base station and the second cell in the secondary base station, respectively.
  • Step S206 the primary base station determines, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, the first physical resource used to process the buffered data in the primary base station, and the second physical resource used in the secondary base station to process the buffered data. ;
  • Step S208 the primary base station notifies the secondary base station to reserve the second physical resource, so that the secondary base station sends a second scheduling command corresponding to the second physical resource to the terminal;
  • Step S210 The primary base station sends a first scheduling command corresponding to the first physical resource to the terminal.
  • the foregoing resource allocation control method may be, but is not limited to, applied to a scenario of resource control during carrier aggregation.
  • a resource control scenario when performing carrier aggregation on cells of multiple base stations in an LTE system.
  • the primary base station acquires the indication information for indicating the buffered data that is transmitted, and can determine the buffered data for communication with the terminal, because the terminal is respectively associated with the first cell in the primary base station and the second in the secondary base station.
  • the cell establishes a communication connection, that is, the terminal establishes a communication connection with the plurality of cells, and the primary base station needs to allocate and schedule the buffered data, and the primary base station can obtain the resource status indication information of the primary base station and the resource status indication information of the secondary base station, And determining, according to the information, the physical resources used by the primary base station and the secondary base station to process the buffered data, and then notifying the secondary base station to reserve a second physical resource for processing the buffered data, and using the same for processing the buffered data.
  • a first scheduling command corresponding to a physical resource is sent to the terminal, so that the terminal knows the allocation and scheduling of the buffered data, and maximizes the resource utilization of the physical resources on the primary base station and the secondary base station, thereby solving the related technology in the inter-cell The problem of low resource utilization when performing carrier aggregation. Further, by performing global allocation and scheduling on the physical resources corresponding to the buffered data, the flow control between the base stations when performing carrier aggregation between the cells is realized.
  • the flow control between the base stations may be, but is not limited to, the allocation of the physical resources by the base station.
  • the base station may implement the flow control between the base stations by the allocation of the physical resources.
  • the primary base station may determine, but is not limited to, the physical resources allocated to the processing buffer data on the cell according to the remaining physical resources in the cell connected by the terminal. For example, the primary base station may determine, according to the remaining physical resources in the first cell, the first physical resource allocated to the processing buffer data on the first cell, and may determine, according to the remaining physical resources in the second cell, the processing buffer data. The second physical resource allocated on the two cells.
  • the primary base station may be, but is not limited to, calculating the first physical resource allocated on the first cell by using an algorithm; and acquiring the second physical resource allocated on the second cell by using the following two methods: The second physical resource allocated on the second cell; or the first physical resource is subtracted from all the required physical resources to obtain the second physical resource.
  • the primary base station may be, but is not limited to, calculating the second physical resource allocated on the second cell by using an algorithm; and acquiring the first physical resource allocated on the first cell by using the following two methods: The first physical resource allocated on a cell; or the first physical resource is obtained by subtracting the second physical resource from all required physical resources.
  • the foregoing remaining physical resources may be acquired by, for example, the following methods.
  • Manner 1 Obtain the sum of the physical resource size occupied by the common channel on the cell carrier and the physical resource size occupied by the non-supporting carrier aggregation terminal, and the difference between the sum value and the total physical resource size. This difference is used as the resource size corresponding to the remaining physical resources.
  • Manner 2 The sum of the physical resource size occupied by the carrier aggregation terminal and the idle physical resource size on the cell carrier is obtained, and the sum value is used as the resource size corresponding to the remaining physical resources.
  • the resource size corresponding to the buffer state level is used as the resource size corresponding to the remaining physical resources, where the buffer state may include, but is not limited to, at least one of the following: a terminal buffer state, a data radio bearer buffer state, Cell buffer status.
  • the remaining physical resources in the first cell may be obtained in the foregoing manner, and the remaining physical resources in the second cell may also be obtained in the foregoing manner.
  • the primary base station may be, but not limited to, based on the remaining physical resources in the cell.
  • the proportion of the remaining physical resources determines the physical resources allocated on the cell.
  • the primary base station may determine the first physical resource allocated on the first cell according to the first ratio of the remaining physical resources in the first cell to the total remaining physical resources, and may occupy all the remaining physical resources according to the second cell.
  • the second ratio of remaining physical resources determines the second physical resource allocated on the second cell.
  • the primary base station may, but is not limited to, respectively determine, according to the group identifier of each logical channel group, to process physical resources allocated on the cell by the buffered data corresponding to each logical channel group.
  • the primary base station may, but is not limited to, obtain indication information indicating the transmitted buffered data by receiving a buffer status report.
  • the buffer status may be, but is not limited to, the buffer status of the terminal, or the buffer status of each DRB, or the buffer status of each cell.
  • the manner in which the primary base station acquires the resource status indication information of the secondary base station may be, but is not limited to, at least one of the following: obtaining by using the timing, when the second physical resource of the secondary base station changes.
  • the primary base station may notify the information of the secondary base station (S-eNB) related Quality of Service (QoS), including the QoS information that the S-eNB needs to satisfy, or the QoS. Divide the ratio, such as delay, bit rate, etc.
  • QoS Quality of Service
  • the primary base station can implement resource allocation by controlling quality of service (QoS). For example, the primary base station and the secondary base station share the service quality.
  • the information of the primary base station notifying the secondary base station may be notified by the primary base station in batches; the semi-fixed state or static information, such as the SE, the total number of PRBs on the relevant carrier, etc., may be notified when the terminal configures the cell on the S-eNB.
  • the P-eNB, or the P-eNB performs the estimation according to the relevant configuration signaling. Other dynamically changing information is notified when the related information changes, or is notified periodically.
  • the data radio bearer will be in A plurality of base stations are divided, that is, data of one data radio bearer is transmitted by multiple base stations (MeNBs), and multiple base stations include one primary base station (PCell eNB, abbreviated as P-eNB), and at least one secondary base station (SCell eNB) , referred to as S-eNB).
  • the P-eNB includes at least a primary cell (PCell) of the UE carrier aggregation cell, and may include one or more secondary cells (SCells) of the UE carrier aggregation cell.
  • the S-eNB includes one or more SCells of the UE carrier aggregation cell.
  • the PDCP and the RLC may exist only on one base station, but the MAC layer exists on each base station respectively, wherein the MAC layer on the P-eNB includes all functions of the MAC including the data packet function, S- The MAC layer on the eNB contains at least the data packet function.
  • the above architecture is one of the methods for solving the above problem, and the other protocol architecture is not excluded, and is not limited in the present invention.
  • the foregoing radio resources may be allocated and used by a physical resource block (PRB), and each PRB corresponds to a resource in a specified frequency domain and time domain.
  • PRB physical resource block
  • the terminal reports the BSR to the P-eNB, and carries the size of the buffered data of the corresponding data radio bearer on each LCG on the terminal.
  • the P-eNB and the current resource status information of the P-eNB are allocated, and the size of the BSR for processing the buffered data on the P-eNB and the S-eNB is allocated, and the result is notified to the S- eNB.
  • the S-eNB performs data scheduling based on this result.
  • the above results include the resources required by each LCG, that is, data transmitted through each LCG.
  • the P-eNB allocates the size of the data processed on the P-eNB and the S-eNB according to the size of the downlink data, the resource state information notified by the S-eNB, and the current resource state information of the P-eNB, and The result is notified to the S-eNB.
  • the S-eNB performs data scheduling based on this result.
  • the resource status information notified by the S-eNB to the P-eNB includes the spectrum efficiency (SE) of each carrier on the S-eNB and the number of remaining PRBs of the relevant carrier on the S-eNB.
  • the number of remaining PRBs on the relevant carrier may include the number of remaining PRBs on the relevant carrier, or include the total number of PRBs on the associated carrier, the number of PRBs occupied by the common channel on the relevant carrier, and the number of PRBs occupied by the non-CAUE, or The number of PRBs occupied by CAUE and the number of idle PRBs on the associated carrier.
  • the primary base station may separately acquire the remaining physical resources in the first cell and the remaining physical resources in the second cell according to the resource state indication information of the primary base station and the resource state indication information of the secondary base station, and then Determining, according to at least the remaining physical resources in the first cell and the remaining physical resources in the second cell, the first physical resource allocated to the processing buffer data on the first cell, and the second physical resource allocated on the second cell Resources.
  • the primary base station may acquire the remaining physical resources in the cell corresponding to the base station in the resource status indication information of the primary base station and the secondary base station, and determine the allocated buffer data for processing on the cell according to the remaining physical resources in the cell.
  • the physical resource realizes scheduling and allocation of the remaining physical resources of the cell.
  • the manner of obtaining the remaining physical resources may be one of the following three ways:
  • Manner 1 Obtain the sum of the physical resource size occupied by the common channel on the cell carrier and the physical resource size occupied by the non-supporting carrier aggregation terminal, and the difference between the sum value and the total physical resource size.
  • the value is the resource size corresponding to the remaining physical resources.
  • Manner 2 The sum of the physical resource size occupied by the carrier aggregation terminal and the idle physical resource size on the cell carrier is obtained, and the sum value is used as the resource size corresponding to the remaining physical resources.
  • the resource size corresponding to the buffer status level is used as the resource size corresponding to the remaining physical resources, where the buffer status includes at least one of the following: a terminal buffer status, a data radio bearer buffer status, and a cell buffer status. .
  • the primary base station can acquire the remaining physical resources of the cell of the primary base station or the cell of the secondary base station in different manners, thereby implementing flexible allocation of the remaining physical resources of the cell.
  • the primary base station may acquire a first ratio of the remaining physical resources in the first cell to the total remaining physical resources and/or a second ratio of the remaining physical resources in the second cell to the total remaining physical resources, and at least A ratio and/or a second ratio is determined to process the first physical resource allocated by the buffered data on the first cell and the second physical resource allocated on the second cell.
  • the primary base station can calculate the remaining physical resources in the cell to occupy all the remaining objects. The proportion of resources is determined to determine the physical resources allocated on the cell, thereby achieving flexible allocation of physical resources.
  • the primary base station may be, but is not limited to, determining, according to the group identifiers of the respective logical channel groups (LCGs), the first physical resources allocated to process the buffered data corresponding to each logical channel group on the first cell, and The second physical resource allocated on the second cell.
  • LCGs logical channel groups
  • the resource status indication information of the primary base station may include, but is not limited to, a spectrum efficiency of the first frequency to which the first cell belongs in the primary base station; and the resource status indication information of the secondary base station may include, but is not limited to, the secondary base station.
  • R1 s1*R1/(s1*R1+s2*R2)
  • R2 s2*R2/(s1*R1+s2*R2)
  • r1 represents a first ratio
  • r2 represents a second ratio
  • s1 represents a spectral efficiency of a first frequency to which the first cell belongs
  • R1 represents a remaining physical resource in the first cell
  • s2 represents a second frequency to which the second cell belongs. Spectrum efficiency
  • R2 represents the remaining physical resources in the second cell.
  • the primary base station may obtain, by using a buffer status report sent by the receiving terminal, indication information for indicating the buffered data that is transmitted, where the buffer status report is at least carried to indicate the terminal.
  • the manner in which the primary base station acquires the resource status indication information of the secondary base station may include, but is not limited to, at least one of the following: the primary base station periodically acquires resource status indication information of the secondary base station; and the primary base station is configured on the secondary base station.
  • the resource status indication information of the secondary base station is obtained.
  • FIG. 4 is a flowchart of another optional resource allocation control method according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 an RRC connection is established between the primary base station and the terminal.
  • Step S404 the primary base station receives the information notified by the secondary base station. For example, the spectrum efficiency of the specified frequency, the number of remaining PRBs, the number of PRBs occupied by the common channel, the number of PRBs occupied by non-CAUEs, the number of PRBs occupied by CAUE, and the number of idle PRBs;
  • Step S406 the primary base station receives the BSR reported by the terminal
  • Step S408 The primary base station calculates, according to a predefined algorithm, a data size that needs to be processed on the P-eNB and the S-eNB respectively.
  • Step S410 The primary base station notifies the secondary base station of the size of the data that the secondary base station needs to process
  • Step S412 the primary base station allocates an uplink grant according to the size of the data that needs to be processed
  • Step S414 the secondary base station allocates an uplink grant according to the size of the data that it needs to process.
  • steps S412 and S414 may be performed simultaneously or sequentially, and are not limited in this example.
  • step S416 and step S418 may be performed at the same time, or may be performed sequentially, which is not limited in this example.
  • the primary base station takes the base station 1 as an example, and has one cell, which is the cell 1, the home frequency point f1, and the secondary base station (S-eNB) takes the base station 2 as an example, and has two The cells, which are cell 3 and cell 4, respectively belong to frequency point f3 and frequency point f4.
  • the first scheduling command takes the first uplink authorization as an example
  • the second scheduling command takes the second uplink authorization as an example.
  • the S-eNB directly informs the P-eNB of the SE and the remaining PRBs, and the terminal establishes a connection with the cell 1.
  • the number of the PRBs of the cell 1 is 80, and the base station 1 according to the measurement report according to the increase of the traffic volume. Adding cell 3 to the terminal, and the number of PRBs of the configured cell 3 is 100.
  • the resource allocation control method of the optional implementation manner 1 includes the following steps:
  • Step 1 The base station 2 calculates and saves the spectrum efficiency SE-3 of the frequency f3 to which the cell 3 belongs. At this time, it is 0.6, and notifies the base station 1.
  • the base station 2 can re-notify or periodically notify when there is a change later;
  • the base station 2 calculates that the number of remaining PRBs on the cell 3 is 60 at this time, and notifies the base station 1.
  • the base station 2 can re-notify or periodically notify when there is a change later.
  • Step 2 When the terminal needs to send the uplink data, the BSR is reported to the base station 1.
  • the buffer data size of the two data radio bearers is 680, and the buffer data size of the LCG0 is 680.
  • LCG1, 2, 3 have no data radio bearers, so the buffered data size is zero.
  • Step 3 The base station 1 receives the BSR reported by the terminal, and the spectrum efficiency SE-3 of the frequency f3 to which the cell 3 is learned according to the base station 2 is 0.6, and according to the number of remaining PRBs on the cell 3 learned from the base station 2
  • the time is 60
  • the spectrum efficiency SE-1 of the frequency f1 to which the terminal is located on the base station 1 is 0.7
  • the number of remaining PRBs on the cell 1 is 40 at this time, and the cell 3 needs to be calculated according to the following formula.
  • the cell 1 needs to process 298 data
  • the cell 3 needs to process 380 data
  • the LCG0 on the cell 3 needs to allocate 382 resources.
  • the base station 1 notifies the S-eNB of the resource that needs to be allocated 382 by the LCG0 on the cell 3, and may also carry other information, such as the terminal identifier.
  • Step 4 The base station 2 receives the notification from the base station 1, reserves the resource, and sends a second uplink grant (the authorized cell throughput (TBSize) with the authorized size being 382 or higher) to the terminal.
  • TBSize the authorized cell throughput
  • the base station 1 transmits a first uplink grant (the TBSize whose authorized size is 298 or more, which is closest to 298) to the terminal.
  • Step 5 The terminal receives the uplink authorization of the base station 1 and the base station 2, and sends the data on the two radio bearers respectively through the two authorized resources, and how to allocate the data transmission, and the terminal decides by itself.
  • the processing procedure is similar.
  • the spectrum efficiency SE-3 of the frequency f3 to which the base station 1 is informed according to the cell 3 learned from the base station 2 is 0.6 at this time, and is remaining according to the cell 3 learned from the base station 2.
  • the number of PRBs is now 60, and the spectrum efficiency SE-1 of the frequency f1 to which the terminal is located on the base station 1 is 0.7, and the number of remaining PRBs on the cell 1 is 40, according to the above formula.
  • the data to be processed by the cell 1 and the data to be processed by the cell 3 are calculated.
  • the base station 1 notifies the base station 2 of the resources to be allocated on the cell 3, and may carry other information, such as a terminal identifier.
  • the base station 2 receives the notification from the base station 1, reserves the resource, and sends a downlink scheduling (the TBSize of the nearest 382 with a size of 382 or more) to the terminal, and the terminal receives the data according to the scheduling.
  • the S-eNB notifies the P-eNB of the SE, the total number of PRBs on the carrier, the number of PRBs occupied by the common channel on the carrier, and the number of PRBs occupied by the non-CAUE on the carrier, and the terminal establishes with the cell 1.
  • the number of PRBs of the cell 1 is 80.
  • the base station 1 adds the cell 3 to the terminal according to the measurement report, and the number of PRBs of the configured cell 3 is 100.
  • the bearer 1 and the data radio bearer 2 belong to LCG0 and LCG1 respectively, and the two logical channels LCG0 have a high priority and the LCG1 has a low priority.
  • the base station 1 saves the number of PRBs of the cell 3 to 100 according to the configuration message.
  • the resource allocation control method of the optional implementation manner 2 includes the following steps:
  • Step 1 The base station 2 calculates and saves the spectrum efficiency SE-3 of the frequency f3 to which the cell 3 belongs. At this time, it is 0.6, and notifies the base station 1.
  • the base station 2 can re-notify or periodically notify when there is a change later.
  • the base station 2 calculates that the number of PRBs occupied by the common channel on the cell 3 is 10, and the number of PRBs occupied by the non-CAUEs on the carrier is 30, and notifies the base station 1.
  • the base station 2 can re-notify or periodically notify when there is a change later.
  • Step 2 When the terminal needs to send uplink data, report the BSR to the base station 1, including two numbers.
  • the buffered data size of the LCG0 is 380
  • the buffered data size of the LCG1 is 300.
  • the LCG2, 3 has no data radio bearer, so the buffered data size is 0.
  • Step 3 The base station 1 receives the BSR reported by the terminal, and the spectrum efficiency SE-3 of the frequency f3 to which the cell 3 is learned according to the base station 2 is 0.6, and according to the number of remaining PRBs on the cell 3 learned from the base station 2
  • the time is 60 (the total number of PRBs on the carrier 100 - the number of PRBs occupied by the common channel on the carrier 10 - the number of PRBs occupied by non-CAUEs on the carrier 30), and the frequency f1 of the serving cell 1 to which the terminal is located on the base station 1
  • the spectrum efficiency SE-1 is 0.7 at this time, and the number of remaining PRBs on the cell 1 is 40 at this time, and the number of PRBs corresponding to the amount of data to be processed by the cell 3 on the LCG0 is calculated according to the following formula: BSRcc-3_LCG0, and the cell 3 is The number of PRBs corresponding to the amount of data to be processed on LCG1 is BSRcc-3_LCG
  • the base station 1 needs to allocate 214 resources to the LCG0 on the cell 3.
  • the LCG1 needs to allocate 168 resources, notify the base station 2, and carry other information, such as the terminal identifier.
  • the priority is sorted, the data of LCG0 is allocated first, and the remaining resources are allocated to the data of LCG1.
  • the base station 1 transmits a first uplink grant (the TBSize whose authorized size is 298 or more, which is closest to 298) to the terminal.
  • Step 5 The terminal receives the uplink grant of the base station 1 and the base station 2, and sends the data on the two radio bearers respectively through the two authorized resources. How to allocate the data transmission is determined by the terminal.
  • the base station 1 may notify the base station 2 of the QoS information that the base station 2 needs to satisfy, wherein the QoS information that the base station 2 needs to satisfy may include a division ratio of the QoS, such as a delay, a bit rate, and the like.
  • the S-eNB notifies the SE, the number of PRBs occupied by the CAUE on the carrier, and the number of free PRBs on the carrier to the P-eNB, where the terminal establishes a connection with the cell 1, and the number of PRBs of the cell 1 is 80.
  • the base station 1 adds a cell 3 to the terminal according to the measurement report, and the number of PRBs of the configured cell 3 is 100.
  • there are two data radio bearers which are data radio bearer 1 and data radio bearer 2, respectively belonging to LCG0. With LCG1, the two logical channels have the same priority.
  • the base station 1 saves the number of PRBs of the cell 3 to 100 according to the configuration message.
  • the resource allocation control method of the optional implementation manner 3 includes the following steps:
  • Step 1 The base station 2 calculates and saves the spectrum efficiency SE-3 of the frequency f3 to which the cell 3 belongs. At this time, it is 0.6, and notifies the base station 1.
  • the base station 2 can re-notify or periodically notify when there is a change later.
  • the base station 2 calculates that the number of PRBs occupied by the CAUE on the carrier on the cell 3 is 20, and the number of free PRBs on the carrier is 40, and notifies the base station 1.
  • the base station 2 can re-notify or periodically notify when there is a change later.
  • Step 2 When the terminal needs to send uplink data, report the BSR to the base station 1 (or the base station 2), including the buffer data size of the two data radio bearers, the buffer data size of the LCG0 carrying the index value corresponding to 380, and the buffer data size of the LCG1. For the index value corresponding to 300, LCG2, 3 has no data radio bearer, so the buffered data size is 0.
  • Step 3 The base station 1 receives the BSR reported by the terminal, and the spectrum efficiency SE-3 of the frequency f3 to which the cell 3 is learned according to the base station 2 is 0.6, and according to the number of remaining PRBs on the cell 3 learned from the base station 2
  • the time is 60 (the number of PRBs occupied by CAUE on the carrier 20 + the number of idle PRBs on the carrier 40), and the frequency at which the serving cell 1 of the terminal is at the base station 1
  • the spectrum efficiency SE-1 of f1 is 0.7 at this time, and the number of remaining PRBs on the cell 1 is 40 at this time, and the number of PRBs corresponding to the amount of data to be processed by the cell 3 on the LCG0, BSRcc-3_LCG0, and the cell are calculated according to the following formula.
  • cell 1 processes 166 LCG0 data, 132 LCG1 data
  • cell 3 processes 214 LCG0 data, 168 LCG1 data
  • base station 1 needs to allocate 214 resources for LCG0 on cell 3
  • LCG1 needs to allocate 168 resource notification S.
  • the eNB may also carry other information, such as a terminal identifier.
  • the two logical channel groups have the same priority, so they are uniformly sorted together, and resources are scheduled to send the second uplink grant.
  • the base station 1 transmits a first uplink grant (the TBSize whose authorized size is 298 or more, which is closest to 298) to the terminal.
  • Step 5 The terminal receives the first uplink grant of the base station 1 and the second uplink grant of the base station 2, and sends the data on the two radio bearers respectively through the two authorized resources, how to allocate the data to be sent, and the terminal decides by itself. .
  • the base station 1 may further be based on the data buffer status of the two base stations, which may be the data buffer status of the UE, or the data buffer status of each DRB, or the data buffer status of each cell.
  • the buffer status can be several levels, such as (0, 1, 2, 3...10), 0 means currently idle, 1 means that one tenth is currently occupied, 2 means that the current occupancy is two tenths, and so on.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention in essence or the contribution to the related art can be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
  • FIG. 5 is a flowchart of another optional resource allocation control method according to an embodiment of the present invention. As shown in FIG. 5, the process includes the following steps:
  • Step S502 The secondary base station sends the resource status indication information of the secondary base station to the primary base station, where the first cell in the primary base station and the second cell in the secondary base station establish a communication connection with the terminal, and the primary base station is used according to the primary base station.
  • the resource status indication information and the resource status indication information of the secondary base station determine a first physical resource used by the primary base station to process the buffered data, and a second physical resource used by the secondary base station to process the buffered data, so that the primary base station sends the first physical resource.
  • the first scheduling command of the physical resource is sent to the terminal;
  • Step S504 The secondary base station receives the resource indication information that is sent by the primary base station to indicate that the second physical resource is reserved in the secondary base station.
  • Step S506 The secondary base station reserves a second physical resource according to the resource indication information, and sends a second scheduling command corresponding to the second physical resource to the terminal.
  • the foregoing resource allocation control method may be, but is not limited to, applied to a scenario of resource control during carrier aggregation.
  • a resource control scenario when performing carrier aggregation on cells of multiple base stations in an LTE system.
  • the secondary base station sends its own resource status indication information to the primary base station, and the primary base station allocates resources, and then notifies the secondary physical resource allocated to the secondary base station to the secondary base station, and the secondary base station receives the primary base station to send.
  • the resource indication information for indicating the second physical resource is reserved in the secondary base station, the second physical resource is reserved according to the resource indication information, and the second scheduling command corresponding to the second physical resource is sent to the terminal, and the terminal is notified.
  • the allocation of the resources on the base station side maximizes the resource utilization of the physical resources on the primary base station and the secondary base station, thereby solving the problem of low resource utilization when performing carrier aggregation between cells in the related art. Further, by performing global allocation and scheduling on the physical resources corresponding to the buffered data, the flow control between the base stations when performing carrier aggregation between the cells is realized.
  • the manner in which the secondary base station sends the resource status indication information of the secondary base station to the primary base station may include, but is not limited to, at least one of the following: the secondary base station periodically sends the resource status indication information of the secondary base station to the primary base station; When detecting the change of the second physical resource on the secondary base station, the secondary base station sends the resource status indication information of the secondary base station to the primary base station.
  • a resource allocation control device is further provided, which is applied to the primary base station, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • FIG. 6 is a structural block diagram of an optional resource allocation control apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes:
  • the first obtaining module 602 is configured to obtain indication information for indicating the buffered data that is transmitted, where the buffered data includes uplink buffered data sent by the terminal or downlink buffered data sent to the terminal;
  • the second obtaining module 604 is configured to acquire the resource status indication information of the primary base station and the resource status indication information of the secondary base station, where the terminal establishes communication with the first cell in the primary base station and the second cell in the secondary base station, respectively.
  • the determining module 606 is coupled to the first obtaining module 602 and the second obtaining module 604, and is configured to determine, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, the first used in the primary base station to process the buffered data. a physical resource, and a second physical resource in the secondary base station for processing buffered data;
  • a notification module 608, coupled to the determining module 606, configured to notify the secondary base station to reserve the second physical resource, so that the secondary base station sends a second scheduling command corresponding to the second physical resource to the terminal;
  • the first sending module 610 is coupled to the determining module 606, and configured to send a first scheduling command corresponding to the first physical resource to the terminal.
  • the foregoing resource allocation control apparatus may be, but is not limited to, applied to a scenario of resource control during carrier aggregation.
  • a resource control scenario when performing carrier aggregation on cells of multiple base stations in an LTE system.
  • the first obtaining module 602 obtains the indication information for indicating the buffered data that is transmitted, and may determine the buffered data for communication with the terminal, because the terminal is respectively associated with the first cell and the secondary base station in the primary base station.
  • the second cell establishes a communication connection, that is, the terminal establishes a communication connection with the plurality of cells, the primary base station needs to allocate and schedule the buffered data, and the second obtaining module 604 can obtain the resource status indication information of the primary base station and the secondary base station.
  • the resource status indication information the determining module 606 determines, according to the information, the physical resources used by the primary base station and the secondary base station to process the buffered data, and then the notification module 608 notifies the secondary base station to reserve the second physical resource for processing the buffered data.
  • the first sending module 610 sends the first scheduling command corresponding to the first physical resource used by the primary base station to process the buffered data to the terminal, so that the terminal knows the allocation and scheduling of the buffered data, and implements the primary base station and the secondary base station. Maximizing the resource utilization of physical resources, thereby solving the related technology in the community When carrier aggregation problem of low resource utilization. Further, by performing global allocation and scheduling on the physical resources corresponding to the buffered data, the flow control between the base stations when performing carrier aggregation between the cells is realized.
  • the flow control between the base stations may be, but is not limited to, the allocation of the physical resources by the base station.
  • the base station may implement the flow control between the base stations by the allocation of the physical resources.
  • the determining module 606 may be, but is not limited to, determining a physical resource allocated to the processing buffer data on the cell according to the remaining physical resources in the cell to which the terminal is connected. For example, the determining module 606 may determine, according to the remaining physical resources in the first cell, the first physical resource allocated to the processing buffer data on the first cell, and may determine, according to the remaining physical resources in the second cell, the processing buffer data. The second physical resource allocated on the second cell.
  • the determining module 606 can be, but is not limited to, calculating the first physical resource allocated on the first cell by using an algorithm; and acquiring the second physical resource allocated on the second cell by using the following two methods: The second physical resource allocated on the second cell; or the first physical resource is subtracted from all the required physical resources to acquire the second physical resource.
  • the determining module 606 can be, but is not limited to, calculating the second physical resource allocated on the second cell by using an algorithm; and acquiring the first physical resource allocated on the first cell by using the following two methods: The first physical resource allocated on the first cell; or the first physical resource is obtained by subtracting the second physical resource from all required physical resources.
  • the determining module 606 can be, but is not limited to, acquiring the foregoing remaining physical resources in the following manners.
  • Manner 1 Obtain the sum of the physical resource size occupied by the common channel on the cell carrier and the physical resource size occupied by the non-supporting carrier aggregation terminal, and the difference between the sum value and the total physical resource size. This difference is used as the resource size corresponding to the remaining physical resources.
  • Manner 2 The sum of the physical resource size occupied by the carrier aggregation terminal and the idle physical resource size on the cell carrier is obtained, and the sum value is used as the resource size corresponding to the remaining physical resources.
  • the resource size corresponding to the buffer state level is used as the resource size corresponding to the remaining physical resources, where the buffer state may include, but is not limited to, at least one of the following: a terminal buffer state, a data radio bearer buffer state, Cell buffer status.
  • the determining module 606 may acquire the remaining physical resources in the first cell in the foregoing manner, and may also acquire the remaining physical resources in the second cell in the foregoing manner.
  • the determining module 606 may, but is not limited to, determine a physical resource allocated on the cell according to a ratio of remaining physical resources in the cell to all remaining physical resources.
  • the primary base station may determine the first physical resource allocated on the first cell according to the first ratio of the remaining physical resources in the first cell to the total remaining physical resources, and may occupy all the remaining physical resources according to the second cell.
  • the second ratio of remaining physical resources determines the second physical resource allocated on the second cell.
  • the primary base station may, but is not limited to, respectively determine, according to the group identifier of each logical channel group, to process physical resources allocated on the cell by the buffered data corresponding to each logical channel group.
  • the first obtaining module 602 can be, but is not limited to, obtaining indication information for indicating the transmitted buffered data by receiving a buffer status report.
  • the buffer status may be, but is not limited to, the buffer status of the terminal, or the buffer status of each DRB, or the buffer status of each cell.
  • the manner in which the second acquiring module 604 obtains the resource status indication information of the secondary base station may be, but is not limited to, at least one of the following: obtaining by using the timing, when the second physical resource of the secondary base station changes.
  • FIG. 7 is a structural block diagram of another optional resource allocation control apparatus according to an embodiment of the present invention.
  • the determining module 606 includes:
  • the acquiring unit 702 is configured to acquire the remaining physical resources in the first cell and the remaining physical resources in the second cell according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station.
  • the determining unit 704 is coupled to the obtaining unit 702, and configured to determine, according to at least the remaining physical resources in the first cell and the remaining physical resources in the second cell, the first physics allocated to process the buffer data on the first cell. Resources, and second physical resources allocated on the second cell.
  • the obtaining unit 702 is configured to: obtain a sum of a physical resource size occupied by the common channel on the cell carrier and a physical resource size occupied by the non-supporting carrier aggregation terminal, and a sum value and a total physical resource size. The difference between the differences is taken as the resource size corresponding to the remaining physical resources.
  • the obtaining unit 702 is configured to: obtain a sum of the physical resource size occupied by the carrier aggregation terminal and the idle physical resource size on the cell carrier, and use the sum value as the resource size corresponding to the remaining physical resources.
  • the obtaining unit 702 is configured to: use the resource size corresponding to the buffer status level as the resource size corresponding to the remaining physical resources, where the buffer status includes at least one of the following: a terminal buffer status, a data radio bearer buffer. Zone status, cell buffer status.
  • the determining unit 704 is configured to: acquire a first ratio of the remaining physical resources in the first cell to the total remaining physical resources and/or a second ratio of the remaining physical resources in the second cell to the total remaining physical resources; Determining, according to the first ratio and/or the second ratio, a first physical resource allocated to the processing buffer data on the first cell, and a second physical resource allocated on the second cell.
  • the determining unit 704 is configured to: determine, according to the group identifier of each logical channel group, a first physical resource allocated to process the buffered data corresponding to each logical channel group on the first cell, and in the second cell. The second physical resource allocated on it.
  • the resource status indication information of the primary base station further includes: a spectrum efficiency of the first frequency to which the first cell belongs in the primary base station; and the resource status indication information of the secondary base station includes: the second frequency of the secondary base station to which the second cell belongs
  • R1 s1*R1/(s1*R1+s2*R2)
  • R2 s2*R2/(s1*R1+s2*R2)
  • r1 represents a first ratio
  • r2 represents a second ratio
  • s1 represents a spectral efficiency of a first frequency to which the first cell belongs
  • R1 represents a remaining physical resource in the first cell
  • s2 represents a second frequency to which the second cell belongs. Spectrum efficiency
  • R2 represents the remaining physical resources in the second cell.
  • the first obtaining module 602 is configured to: receive a buffer status report sent by the terminal, where the buffer status report at least carries indication information for indicating the amount of data of the uplink buffer data to be sent by the terminal.
  • the second obtaining module 604 is configured to: at least one of: periodically acquiring the secondary base station The resource status indication information is obtained when the second physical resource on the secondary base station changes, and the resource status indication information of the secondary base station is obtained.
  • a resource allocation control device is also provided, which is applied to the secondary base station, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 8 is a structural block diagram of another optional resource allocation control apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes:
  • the second sending module 802 is configured to send the resource status indication information of the secondary base station to the primary base station, where the first cell in the primary base station and the second cell in the secondary base station establish a communication connection with the terminal, and the primary base station uses Determining, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, a first physical resource for processing buffered data in the primary base station, and a second physical resource for processing buffered data in the secondary base station, so that the primary Sending, by the base station, a first scheduling command with the first physical resource to the terminal;
  • the first receiving module 804 is coupled to the second sending module 802, and configured to receive resource indication information sent by the primary base station to indicate that the second physical resource is reserved at the secondary base station;
  • the processing module 806 is coupled to the first receiving module 804, configured to reserve a second physical resource according to the resource indication information, and send a second scheduling command corresponding to the second physical resource to the terminal.
  • the second sending module 802 sends the resource status indication information of the secondary base station to the primary base station, and the primary base station allocates the resource, and the primary base station notifies the secondary base station of the second physical resource to the secondary base station.
  • a receiving module 804 receives the resource indication information that is sent by the primary base station to indicate that the second physical resource is reserved in the secondary base station, and the processing module 806 reserves the second physical resource according to the resource indication information, and sends the second physical resource.
  • the corresponding second scheduling command is sent to the terminal, and the resource allocation of the secondary base station side is notified to the terminal, and the resource utilization of the physical resources on the primary base station and the secondary base station is maximized, thereby solving the problem of carrier aggregation between the cells in the related art.
  • the problem of lower utilization Further, by the physical resources corresponding to the buffered data Global allocation and scheduling are performed, thereby realizing flow control between base stations when carrier aggregation is performed between cells.
  • the second sending module 802 is configured to: send the resource status indication information of the secondary base station to the primary base station at a timing; and send the secondary base station to the primary base station when detecting that the second physical resource on the secondary base station changes. Resource status indication information.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • FIG. 9 is a flowchart of another optional resource allocation control method according to an embodiment of the present invention. As shown in FIG. 9, the process includes the following steps:
  • Step S902 the terminal sends indication information for indicating the buffered data to be transmitted to the primary base station, where the buffered data includes uplink buffered data sent by the terminal or downlink buffered data sent to the terminal, and the primary base station is configured to acquire the primary base station to obtain the primary base station.
  • the resource status indication information and the resource status indication information of the secondary base station and determining, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, the first physical resource used for processing the buffered data in the primary base station, and the secondary base station a second physical resource for processing the buffered data, wherein the terminal establishes a communication connection with the first cell of the primary base station and the second cell of the secondary base station, respectively;
  • Step S904 the terminal receives a first scheduling command corresponding to the first physical resource sent by the primary base station, and/or a second scheduling command corresponding to the second physical resource sent by the secondary base station;
  • Step S906 the terminal transmits the buffered data according to the indication of the first scheduling command and/or the second scheduling command.
  • the foregoing resource allocation control method may be, but is not limited to, applied to a scenario of resource control during carrier aggregation. For example, when performing carrier aggregation on cells of multiple base stations in an LTE system Resource control scenario.
  • the terminal sends the indication information to the primary base station to indicate the buffered data that is transmitted, and the primary base station allocates and schedules the buffered data, and the terminal receives the first scheduling command corresponding to the first physical resource that is sent by the primary base station, and And the second scheduling command corresponding to the second physical resource sent by the secondary base station, the buffer data is allocated and scheduled, and the primary base station and the secondary base station are implemented according to the scheduling and allocation of the buffer data by the primary base station.
  • the resource utilization of physical resources is maximized, thereby solving the problem of low resource utilization when performing carrier aggregation between cells in the related art. Further, by performing global allocation and scheduling on the physical resources corresponding to the buffered data, the flow control between the base stations when performing carrier aggregation between the cells is realized.
  • the flow control between the base stations may be, but is not limited to, the allocation of the physical resources by the base station, and the terminal may implement the transmission of the buffered data according to the allocation of the physical resources.
  • the terminal may send, to the primary base station, a buffer status report that carries at least indication information indicating the amount of data of the uplink buffered data to be sent by the terminal.
  • the buffer status may be, but is not limited to, the buffer status of the terminal, or the buffer status of each DRB, or the buffer status of each cell.
  • a resource allocation control device is also provided, which is applied to a terminal, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 10 is a structural block diagram of another optional resource allocation control apparatus according to an embodiment of the present invention. As shown in FIG. 10, the apparatus includes:
  • the third sending module 1002 is configured to send to the primary base station to indicate the buffer to be transmitted.
  • the indication information of the data wherein the buffer data includes the uplink buffer data sent by the terminal or the downlink buffer data sent to the terminal, and the primary base station is configured to acquire the resource status indication information of the primary base station and the resource status indication information of the secondary base station, and Determining, by the resource status indication information of the primary base station and the resource status indication information of the secondary base station, the first physical resource used for processing the buffered data in the primary base station, and the second physical resource used by the secondary base station to process the buffered data, where the terminal separately Establishing a communication connection with the first cell in the primary base station and the second cell in the secondary base station;
  • the second receiving module 1004 is coupled to the third sending module 1002, configured to receive a first scheduling command corresponding to the first physical resource sent by the primary base station, and/or a second corresponding to the second physical resource sent by the secondary base station Second scheduling command;
  • the transmission module 1006, coupled to the second receiving module 1004, is configured to transmit buffered data in accordance with an indication of the first scheduling command and/or the second scheduling command.
  • the foregoing resource allocation control apparatus may be, but is not limited to, applied to a scenario of resource control during carrier aggregation.
  • a resource control scenario when performing carrier aggregation on cells of multiple base stations in an LTE system.
  • the third sending module 1002 sends the indication information to the primary base station to indicate the buffered data that is transmitted, and the primary base station allocates and schedules the buffered data, and the primary base station receives the first physical
  • the first scheduling command corresponding to the resource, and/or the second scheduling command corresponding to the second physical resource sent by the secondary base station knowing the allocation and scheduling of the buffered data, and scheduling and allocating the buffered data according to the primary base station by the transmission module 1006 transmits the buffered data to maximize the resource utilization of the physical resources on the primary base station and the secondary base station, thereby solving the problem of low resource utilization when performing carrier aggregation between cells in the related art. Further, by performing global allocation and scheduling on the physical resources corresponding to the buffered data, the flow control between the base stations when performing carrier aggregation between the cells is realized.
  • the flow control between the base stations may be, but is not limited to, the allocation of the physical resources by the base station, and the terminal may implement the transmission of the buffered data according to the allocation of the physical resources.
  • the third sending module is configured to: send a buffer status report to the primary base station, where The buffer status report carries at least indication information indicating the amount of data of the uplink buffered data to be transmitted by the terminal.
  • the buffer status may be, but is not limited to, the buffer status of the terminal, or the buffer status of each DRB, or the buffer status of each cell.
  • a resource allocation control system is further provided, where the system includes: a primary base station, a secondary base station, and a terminal, where
  • the primary base station is configured to obtain indication information for indicating the buffered data that is transmitted, where the buffered data includes uplink buffered data sent by the terminal or downlink buffered data sent to the terminal; and the resource status indication information of the primary base station is acquired.
  • a resource status indication information of the base station where the terminal establishes a communication connection with the first cell of the primary base station and the second cell of the secondary base station, and is further configured to: according to the resource status indication information of the primary base station and the resource status indication of the secondary base station Determining, by the primary base station, a first physical resource for processing buffered data, and a second physical resource for processing buffered data in the secondary base station; and notifying the secondary base station to reserve the second physical resource, so that the secondary base station sends the second physical resource a second scheduling command corresponding to the physical resource is sent to the terminal; and a first scheduling command corresponding to the first physical resource is sent to the terminal;
  • the secondary base station is configured to send the resource status indication information of the secondary base station to the primary base station, and is further configured to receive the resource indication information that is sent by the primary base station to indicate that the secondary physical resource is reserved in the secondary base station; and is reserved according to the resource indication information. a second physical resource, and sending a second scheduling command corresponding to the second physical resource to the terminal;
  • the terminal is configured to send, to the primary base station, indication information for indicating the buffered data that is transmitted, and is further configured to receive a first scheduling command that is sent by the primary base station and that is corresponding to the first physical resource, and/or that is sent by the secondary base station a second scheduling command corresponding to the second physical resource; and transmitting the buffered data according to the indication of the first scheduling command and/or the second scheduling command.
  • the foregoing resource allocation control system may be, but is not limited to, applied to a scenario of resource control during carrier aggregation.
  • a resource control scenario when performing carrier aggregation on cells of multiple base stations in an LTE system.
  • the primary base station may obtain indication information for indicating the buffered data to be transmitted, thereby determining buffered data for communication with the terminal; and the secondary base station may send the resource status indication information of the secondary base station to the primary base station;
  • the primary base station receives the resource status indication information of the secondary base station sent by the secondary base station, and obtains the resource status indication information of the primary base station;
  • the primary base station determines, according to the resource status indication information, the first physical resource used by the primary base station to process the buffered data.
  • the buffered data is transmitted to achieve the allocation of resources.
  • the resource utilization of the physical resources on the primary base station and the secondary base station is maximized, thereby solving the problem of low resource utilization when performing carrier aggregation between cells in the related art. Further, by performing global allocation and scheduling on the physical resources corresponding to the buffered data, the flow control between the base stations when performing carrier aggregation between the cells is realized.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the primary base station acquires indication information for indicating the buffered data that is transmitted, where the buffered data includes uplink buffered data sent by the terminal or downlink buffered data that is sent to the terminal.
  • the primary base station acquires the resource status indication information of the primary base station and the resource status indication information of the secondary base station, where the terminal establishes a communication connection with the first cell in the primary base station and the second cell in the secondary base station respectively;
  • the primary base station determines, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, a first physical resource used by the primary base station to process the buffered data, and a second physical resource used by the secondary base station to process the buffered data.
  • the primary base station notifies the secondary base station to reserve the second physical resource, so that the secondary base station sends a second scheduling command corresponding to the second physical resource to the terminal;
  • the primary base station sends a first scheduling command corresponding to the first physical resource to the terminal.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the secondary base station sends the resource status indication information of the secondary base station to the primary base station, where the first cell in the primary base station and the second cell in the secondary base station establish a communication connection with the terminal, and the primary base station is configured to use the resource according to the primary base station.
  • the status indication information and the resource status indication information of the secondary base station determine a first physical resource for processing buffered data in the primary base station, and a second physical resource for processing buffered data in the secondary base station, so that the primary base station sends the first physical medium
  • the first scheduling command of the resource is given to the terminal;
  • the secondary base station receives the second physical resource sent by the primary base station.
  • the secondary base station reserves the second physical resource, and sends a second scheduling command corresponding to the second physical resource to the terminal.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the terminal sends, to the primary base station, indication information for indicating the buffered data that is transmitted, where the buffered data includes uplink buffered data sent by the terminal or downlink buffered data sent to the terminal, and the primary base station is configured to acquire the primary base station to obtain the primary base station.
  • the resource status indication information and the resource status indication information of the secondary base station and determining, according to the resource status indication information of the primary base station and the resource status indication information of the secondary base station, the first physical resource used for processing the buffered data in the primary base station, and the secondary physical resource used in the secondary base station a second physical resource that processes the buffered data, wherein the terminal establishes a communication connection with the first cell in the primary base station and the second cell in the secondary base station, respectively;
  • the terminal receives a first scheduling command that is sent by the primary base station and that is corresponding to the first physical resource, and/or a second scheduling command that is sent by the secondary base station and that is corresponding to the second physical resource.
  • the terminal transmits the buffered data according to the indication of the first scheduling command and/or the second scheduling command.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the primary base station acquires indication information for indicating the buffered data that is transmitted, where the buffered data includes uplink buffered data sent by the terminal and downlink buffered data that is sent to the terminal; and the primary base station acquires the resource status of the primary base station.
  • the indication information and the resource status indication information of the secondary base station wherein the terminal establishes a communication connection with the first cell in the primary base station and the second cell in the secondary base station, respectively; the primary base station according to the resource status indication information of the primary base station and the secondary base station
  • the resource status indication information determines a first physical resource for processing buffered data in the primary base station, and a second physical resource for processing buffered data in the secondary base station; the primary base station notifies the secondary base station to reserve the second physical resource, so that the secondary base station Sending a second scheduling command corresponding to the second physical resource to the terminal; the primary base station sending the first scheduling command corresponding to the first physical resource to the terminal, and the primary base station acquiring the indication information for indicating the buffered data that is transmitted, It is possible to determine buffered data for communication with the terminal, since the terminal is respectively associated with the primary base station Establishing a second cell and a secondary cell of the base station through- The connection is established, that is, the terminal establishes a communication connection
  • the corresponding first scheduling command is sent to the terminal, so that the terminal is informed of the allocation and scheduling of the buffered data, and the resource utilization of the physical resources on the primary base station and the secondary base station is maximized, thereby solving the carrier aggregation between the cells in the related art.
  • the problem of low resource utilization Further, by performing global allocation and scheduling on the physical resources corresponding to the buffered data, the flow control between the base stations when performing carrier aggregation between the cells is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种资源分配控制方法、装置及系统。其中,该方法包括:主基站获取用于指示所传输的缓冲数据的指示信息;主基站获取主基站的资源状态指示信息及辅基站的资源状态指示信息;主基站根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源;主基站通知辅基站预留第二物理资源,以使辅基站发送与第二物理资源对应的第二调度命令给终端;主基站发送与第一物理资源对应的第一调度命令给终端。通过本发明实施例,解决了相关技术中在小区间进行载波聚合时资源利用率较低的问题,提高了在小区间进行载波聚合时的资源利用率。

Description

资源分配控制方法、装置及系统 技术领域
本发明实施例涉及通信领域,具体而言,涉及一种资源分配控制方法、装置及系统。
背景技术
长期演进系统(Long Term Evolution,简称为LTE)中,根据相关技术的用户设备或称为终端(User Equipment,简称为UE)侧用户面的协议架构如图1所示。从下往上分为以下几个协议层:物理层(Physical layer,简称为PHY)、媒体接入控制层(Media Access Control,简称为MAC)、无线链路控制层(Radio Link Control,简称为RLC)、分组数据汇聚层(Packet Data Convergence Protocol,简称为PDCP)。其中,PHY层主要通过传输信道向MAC层或更高层传送信息;MAC层主要通过逻辑信道提供数据传输和负责无线资源分配,完成混合自动重传请求(Hybrid ARQ,简称HARQ)、调度(Scheduling,简称SCH)、优先级处理和复用解复用(Multiplexing,简称MUX)等功能;RLC层主要提供用户和控制数据的分段和重传服务;PDCP层主要给无线资源控制(Radio Resource Control,简称为RRC)或用户面上层完成用户数据的传递。终端建立数据无线承载(Data Radio Bearer,简称为DRB)时,基站会分配该DRB归属于的逻辑信道组(Logical Channel Group,简称为LCG),LCG目前有0,1,2,3共四个分组。处于连接态的终端需要发送上行数据时,如果没有上行资源或授权,会先给基站发送缓冲状态报告(Buffer Status Report,简称为BSR),携带LCG上准备好的缓冲数据大小对应的索引值,基站收到后根据收到的索引值获知缓冲数据大小给终端配置相应的上行授权,终端收到上行授权就可以发送上行数据。缓存数据大小包含LCG上对应的数据无线承载在RLC层和PDCP层的缓冲数据。
引入载波聚合技术(Carrier Aggregation,简称为CA)后,UE进入连 接态后可以同时通过多个分量载波(如CC1,CC2)与源基站进行通信,并引入主服务小区(Primary Cell,简称为Pcell),和辅服务小区(Secondary Cell,简称为Scell)。载波聚合后续阶段,由于数据量的提升,Scell的个数会增多,如增加到4个,场景也会放宽如支持上行射频拉远头(Remote Radio Head,简称为RRH)和中继器(repeater),一个跟踪区(Tracking Area,简称为TA)不能解决问题,因此会引入多个TA。为了管理方便,使用相同的TA的服务小区归入一个TA组。这时候,包含Pcell的TA组是pTAG(primary TA group),没有包含Pcell的TA组,是sTAG(secondary TA group)。由于多个服务小区处于同一个基站,用户面的协议架构并没有发生改变,BSR的上报方式仅仅是针对数据量变大而使得上报的缓冲数据变大,其他没有改变。支持载波聚合的终端称为CAUE。
由于网络部署的需要,多个基站可能会部署在附近,基站间的时延非常短,使得基站间的小区进行载波聚合成为可能。但是由于是多个基站的小区进行载波聚合,因此传统的载波聚合技术并不能完全重用。
针对相关技术中在小区间进行载波聚合时资源利用率较低的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种资源分配控制方法、装置及系统方法及装置,以至少解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。
根据本发明实施例的一个方面,提供了一种资源分配控制方法,包括:主基站获取用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据;所述主基站获取所述主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;所述主基站根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源; 所述主基站通知所述辅基站预留所述第二物理资源,以使所述辅基站发送与所述第二物理资源对应的第二调度命令给所述终端;所述主基站发送与所述第一物理资源对应的第一调度命令给所述终端。
可选地,所述主基站根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源包括:所述主基站根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息分别获取所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源;所述主基站至少根据所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源,确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
可选地,获取所述剩余的物理资源包括:获取小区载波上公共信道占用的物理资源大小与非支持载波聚合终端占用的物理资源大小两者的和值,及所述和值与总的物理资源大小两者之间的差值,将所述差值作为所述剩余的物理资源对应的资源大小。
可选地,获取所述剩余的物理资源包括:获取小区载波上支持载波聚合终端占用的物理资源大小与空闲的物理资源大小两者的和值,将所述和值作为所述剩余的物理资源对应的资源大小。
可选地,获取所述剩余的物理资源包括:将与缓冲区状态等级对应的资源大小作为所述剩余的物理资源对应的资源大小,其中,所述缓冲区状态包括以下至少之一:终端缓冲区状态、数据无线承载缓冲区状态、小区缓冲区状态。
可选地,所述主基站至少根据所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源,确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源包括:所述主基站获取所述第一小区中剩余的物理资源占全部剩余物 理资源的第一比例和/或所述第二小区中剩余的物理资源占所述全部剩余物理资源的第二比例;所述主基站至少根据所述第一比例和/或所述第二比例确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
可选地,所述主基站至少根据所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源,确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源包括:所述主基站按照各个逻辑信道组的组标识分别确定为处理与每一个逻辑信道组对应的所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
可选地,所述主基站的资源状态指示信息还包括:所述主基站中所述第一小区归属的第一频率的频谱效率;所述辅基站的资源状态指示信息包括:所述辅基站中所述第二小区归属的第二频率的频谱效率,其中,所述主基站获取所述第一小区中剩余的物理资源占全部剩余物理资源的第一比例和/或所述第二小区中剩余的物理资源占所述全部剩余物理资源的第二比例包括:通过以下公式获取所述第一比例,及所述第二比例:r1=s1*R1/(s1*R1+s2*R2),r2=s2*R2/(s1*R1+s2*R2),其中,所述r1表示所述第一比例,所述r2表示所述第二比例,所述s1表示所述第一小区归属的第一频率的频谱效率,所述R1表示所述第一小区中剩余的物理资源,所述s2表示所述第二小区归属的第二频率的频谱效率,所述R2表示所述第二小区中剩余的物理资源。
可选地,所述主基站获取所述用于指示所传输的缓冲数据的指示信息包括:所述主基站接收所述终端发送的缓冲区状态报告,其中,所述缓冲区状态报告至少携带用于指示所述终端所要发送的上行缓冲数据的数据量的指示信息。
可选地,所述主基站获取所述辅基站的资源状态指示信息包括以下至少之一:所述主基站定时获取所述辅基站的资源状态指示信息;所述主基 站在所述辅基站上的所述第二物理资源发生变化时,获取所述辅基站的资源状态指示信息。
根据本发明的另一方面,提供了一种资源分配控制方法,包括:辅基站向主基站发送所述辅基站的资源状态指示信息,其中,所述主基站中的第一小区及所述辅基站中的第二小区均与终端建立有通信连接,所述主基站用于根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源,以使所述主基站发送与所述第一物理资源的第一调度命令给所述终端;所述辅基站接收所述主基站发送的用于指示在所述辅基站预留所述第二物理资源的资源指示信息;所述辅基站根据所述资源指示信息预留所述第二物理资源,并发送与所述第二物理资源对应的第二调度命令给所述终端。
可选地,所述辅基站向所述主基站发送所述辅基站的资源状态指示信息包括以下至少之一:所述辅基站定时向所述主基站发送所述辅基站的资源状态指示信息;所述辅基站在检测到所述辅基站上的所述第二物理资源发生变化时,向所述主基站发送所述辅基站的资源状态指示信息。
根据本发明实施例的另一方面,提供了一种资源分配控制方法,包括:终端向主基站发送用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括所述终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据,所述主基站用于获取所述主基站获取所述主基站的资源状态指示信息及辅基站的资源状态指示信息,并根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;所述终端接收所述主基站发送的与所述第一物理资源对应的第一调度命令,和/或所述辅基站发送的与所述第二物理资源对应的第二调度命令;所述终端根据所述第一调度命令和/或所述第二调度命令的指示传输所述缓冲数据。
可选地,所述终端向主基站发送用于指示所传输的缓冲数据的指示信息包括:所述终端向所述主基站发送缓冲区状态报告,其中,所述缓冲区状态报告至少携带用于指示所述终端所要发送的上行缓冲数据的数据量的指示信息。
根据本发明实施例的另一方面,提供了一种资源分配控制装置,应用于主基站,包括:第一获取模块,设置为获取用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据;第二获取模块,设置为获取所述主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;确定模块,设置为根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源;通知模块,设置为通知所述辅基站预留所述第二物理资源,以使所述辅基站发送与所述第二物理资源对应的第二调度命令给所述终端;第一发送模块,设置为发送与所述第一物理资源对应的第一调度命令给所述终端。
可选地,所述确定模块包括:获取单元,设置为根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息分别获取所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源;确定单元,设置为至少根据所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源,确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
可选地,所述获取单元设置为:获取小区载波上公共信道占用的物理资源大小与非支持载波聚合终端占用的物理资源大小两者的和值,及所述和值与总的物理资源大小两者之间的差值,将所述差值作为所述剩余的物理资源对应的资源大小。
可选地,所述获取单元设置为:获取小区载波上支持载波聚合终端占 用的物理资源大小与空闲的物理资源大小两者的和值,将所述和值作为所述剩余的物理资源对应的资源大小。
可选地,所述获取单元设置为:将与缓冲区状态等级对应的资源大小作为所述剩余的物理资源对应的资源大小,其中,所述缓冲区状态包括以下至少之一:终端缓冲区状态、数据无线承载缓冲区状态、小区缓冲区状态。
可选地,所述确定单元设置为:获取所述第一小区中剩余的物理资源占全部剩余物理资源的第一比例和/或所述第二小区中剩余的物理资源占所述全部剩余物理资源的第二比例;至少根据所述第一比例和/或所述第二比例确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
可选地,所述确定单元设置为:所述主基站按照各个逻辑信道组的组标识分别确定为处理与每一个逻辑信道组对应的所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
可选地,所述主基站的资源状态指示信息还包括:所述主基站中所述第一小区归属的第一频率的频谱效率;所述辅基站的资源状态指示信息包括:所述辅基站中所述第二小区归属的第二频率的频谱效率,其中,所述主基站获取所述第一小区中剩余的物理资源占全部剩余物理资源的第一比例和/或所述第二小区中剩余的物理资源占所述全部剩余物理资源的第二比例包括:通过以下公式获取所述第一比例,及所述第二比例:r1=s1*R1/(s1*R1+s2*R2),r2=s2*R2/(s1*R1+s2*R2),其中,所述r1表示所述第一比例,所述r2表示所述第二比例,所述s1表示所述第一小区归属的第一频率的频谱效率,所述R1表示所述第一小区中剩余的物理资源,所述s2表示所述第二小区归属的第二频率的频谱效率,所述R2表示所述第二小区中剩余的物理资源。
可选地,所述第一获取模块设置为:接收所述终端发送的缓冲区状态 报告,其中,所述缓冲区状态报告至少携带用于指示所述终端所要发送的上行缓冲数据的数据量的指示信息。
可选地,所述第二获取模块设置为以下至少之一:定时获取所述辅基站的资源状态指示信息;在所述辅基站上的所述第二物理资源发生变化时,获取所述辅基站的资源状态指示信息。
根据本发明实施例的另一方面,提供了一种资源分配控制装置,应用于辅基站,包括:第二发送模块,设置为向主基站发送所述辅基站的资源状态指示信息,其中,所述主基站中的第一小区及所述辅基站中的第二小区均与终端建立有通信连接,所述主基站用于根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源,以使所述主基站发送与所述第一物理资源的第一调度命令给所述终端;第一接收模块,设置为接收所述主基站发送的用于指示在所述辅基站预留所述第二物理资源的资源指示信息;处理模块,设置为根据所述资源指示信息预留所述第二物理资源,并发送与所述第二物理资源对应的第二调度命令给所述终端。
可选地,所述第二发送模块设置为以下至少之一:定时向所述主基站发送所述辅基站的资源状态指示信息;在检测到所述辅基站上的所述第二物理资源发生变化时,向所述主基站发送所述辅基站的资源状态指示信息。
根据本发明实施例的另一方面,提供了一种资源分配控制装置,应用于终端,包括:第三发送模块,设置为向主基站发送用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括所述终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据,所述主基站用于获取所述主基站获取所述主基站的资源状态指示信息及辅基站的资源状态指示信息,并根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源,其中,所述终端分别与所述主基站 中的第一小区及所述辅基站中的第二小区建立有通信连接;第二接收模块,设置为接收所述主基站发送的与所述第一物理资源对应的第一调度命令,和/或所述辅基站发送的与所述第二物理资源对应的第二调度命令;传输模块,设置为根据所述第一调度命令和/或所述第二调度命令的指示传输所述缓冲数据。
可选地,所述第三发送模块设置为:向所述主基站发送缓冲区状态报告,其中,所述缓冲区状态报告至少携带用于指示所述终端所要发送的上行缓冲数据的数据量的指示信息。
根据本发明实施例的另一方面,提供了一种资源分配控制系统,包括:主基站,辅基站和终端,其中,所述主基站设置为获取用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括所述终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据;并获取所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;还用于根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源;并通知所述辅基站预留所述第二物理资源,以使所述辅基站发送与所述第二物理资源对应的第二调度命令给所述终端;以及发送与所述第一物理资源对应的第一调度命令给所述终端;所述辅基站设置为向所述主基站发送所述辅基站的资源状态指示信息;还用于接收所述主基站发送的用于指示在所述辅基站预留所述第二物理资源的资源指示信息;并根据所述资源指示信息预留所述第二物理资源,并发送与所述第二物理资源对应的第二调度命令给所述终端;所述终端设置为向所述主基站发送用于指示所传输的缓冲数据的指示信息;还用于接收所述主基站发送的与所述第一物理资源对应的第一调度命令,和/或所述辅基站发送的与所述第二物理资源对应的第二调度命令;并根据所述第一调度命令和/或所述第二调度命令的指示传输所述缓冲数据。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介 质可以存储有执行指令,该执行指令用于执行上述实施例中的资源分配控制方法。
通过本发明实施例,采用主基站获取用于指示所传输的缓冲数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据及发送给终端的下行缓冲数据;主基站获取主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;主基站根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源;主基站通知辅基站预留第二物理资源,以使辅基站发送与第二物理资源对应的第二调度命令给终端;主基站发送与第一物理资源对应的第一调度命令给终端的方式,主基站获取到用于指示所传输的缓冲数据的指示信息,可以确定与终端之间进行通信的缓冲数据,由于终端分别与主基站中的第一小区和辅基站中的第二小区建立有通信连接,即终端与多个小区建立有通信连接,主基站需要对上述缓冲数据进行分配和调度,主基站可以获取到主基站的资源状态指示信息及辅基站的资源状态指示信息,再根据这些信息确定主基站和辅基站用于处理上述缓冲数据的物理资源,然后通知辅基站预留出用于处理上述缓冲数据的第二物理资源,并将自身用于处理上述缓冲数据的第一物理资源对应的第一调度命令发送给终端,使终端获知缓冲数据的分配和调度情况,实现主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术的用户面的协议架构的示意图;
图2是根据本发明实施例的一种可选的资源分配控制方法的流程图;
图3是根据本发明实施例的用户面的协议架构的示意图;
图4是根据本发明实施例的另一种可选的资源分配控制方法的流程图;
图5是根据本发明实施例的另一种可选的资源分配控制方法的流程图;
图6是根据本发明实施例的一种可选的资源分配控制装置的结构框图;
图7是根据本发明实施例的另一种可选的资源分配控制装置的结构框图;
图8是根据本发明实施例的另一种可选的资源分配控制装置的结构框图;
图9是根据本发明实施例的另一种可选的资源分配控制方法的流程图;
图10是根据本发明实施例的另一种可选的资源分配控制装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例一
在本实施例中提供了一种资源分配控制方法,图2是根据本发明实施例的一种可选的资源分配控制方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,主基站获取用于指示所传输的缓冲数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据或发送给终端的下行缓冲数据;
步骤S204,主基站获取主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;
步骤S206,主基站根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源;
步骤S208,主基站通知辅基站预留第二物理资源,以使辅基站发送与第二物理资源对应的第二调度命令给终端;
步骤S210,主基站发送与第一物理资源对应的第一调度命令给终端。
可选地,上述资源分配控制方法可以但不限于应用于载波聚合时资源控制的场景中。例如:在LTE系统中对多个基站的小区进行载波聚合时的资源控制场景。
通过上述步骤,主基站获取到用于指示所传输的缓冲数据的指示信息,可以确定与终端之间进行通信的缓冲数据,由于终端分别与主基站中的第一小区和辅基站中的第二小区建立有通信连接,即终端与多个小区建立有通信连接,主基站需要对上述缓冲数据进行分配和调度,主基站可以获取到主基站的资源状态指示信息及辅基站的资源状态指示信息,再根据这些信息确定主基站和辅基站用于处理上述缓冲数据的物理资源,然后通知辅基站预留出用于处理上述缓冲数据的第二物理资源,并将自身用于处理上述缓冲数据的第一物理资源对应的第一调度命令发送给终端,使终端获知缓冲数据的分配和调度情况,实现主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。
在本实施例中,在小区间进行载波聚合时基站间的流量控制可以但不限于以基站对物理资源的分配为例,基站可以通过物理资源的分配实现基站间的流量控制。
在本实施例中,主基站可以但不限于根据终端连接的小区中剩余的物理资源确定为处理缓冲数据在小区上分配的物理资源。例如:主基站可以根据第一小区中剩余的物理资源确定为处理缓冲数据在第一小区上所分配的第一物理资源,以及可以根据第二小区中剩余的物理资源确定为处理缓冲数据在第二小区上所分配的第二物理资源。
在本实施例中,主基站可以但不限于通过算法计算第一小区上所分配的第一物理资源;再通过以下两种方式获取第二小区上所分配的第二物理资源:通过算法计算第二小区上所分配的第二物理资源;或者用所需的全部物理资源减去第一物理资源来获取第二物理资源。
在本实施例中,主基站可以但不限于通过算法计算第二小区上所分配的第二物理资源;再通过以下两种方式获取第一小区上所分配的第一物理资源:通过算法计算第一小区上所分配的第一物理资源;或者用所需的全部物理资源减去第二物理资源来获取第一物理资源。
在本实施例中,可以但不限于通过以下几种方式获取上述剩余的物理资源。
方式一:获取小区载波上公共信道占用的物理资源大小与非支持载波聚合终端占用的物理资源大小两者的和值,及该和值与总的物理资源大小两者之间的差值,将这个差值作为剩余的物理资源对应的资源大小。
方式二:获取小区载波上支持载波聚合终端占用的物理资源大小与空闲的物理资源大小两者的和值,将该和值作为剩余的物理资源对应的资源大小。
方式三:将与缓冲区状态等级对应的资源大小作为剩余的物理资源对应的资源大小,其中,缓冲区状态可以但不限于包括以下至少之一:终端缓冲区状态、数据无线承载缓冲区状态、小区缓冲区状态。
也就是说,在本实施例中,可以通过上述方式获取第一小区中剩余的物理资源,也可以通过上述方式获取第二小区中剩余的物理资源。
在本实施例中,主基站可以但不限于根据小区中剩余的物理资源占全 部剩余物理资源的比例确定在小区上分配的物理资源。例如:主基站可以根据第一小区中剩余的物理资源占全部剩余物理资源的第一比例确定在第一小区上所分配的第一物理资源,以及可以根据第二小区中剩余的物理资源占全部剩余物理资源的第二比例确定在第二小区上所分配的第二物理资源。可选地,主基站可以但不限于按照各个逻辑信道组的组标识分别确定为处理与每一个逻辑信道组对应的缓冲数据在小区上所分配的物理资源。
在本实施例中,主基站可以但不限于通过接收缓冲区状态报告来获取用于指示所传输的缓冲数据的指示信息。
在本实施例中,缓冲区状态可以但不限于是终端的缓冲区状态,或者每个DRB的缓冲区状态,或者每个小区的缓冲区状态。
在本实施例中,主基站获取辅基站的资源状态指示信息的方式可以但不限于是以下至少之一:通过定时获取,在辅基站的第二物理资源发生变化时获取。
在本实施例中,主基站(P-eNB)可以通知辅基站(S-eNB)相关服务质量(Qoailty of Service,简称为QoS)的信息,包括S-eNB需要满足的QoS信息,或者QoS的划分比例,如时延,比特率等。主基站可以通过对服务质量(QoS)的控制实现对资源的分配。如由主基站和辅基站来共同分担业务质量。
以上主基站通知辅基站的信息,可以由主基站分批通知;半固定的状态或静态的信息,比如SE,相关载波上总的PRB数量等,可以在终端配置S-eNB上小区的时候通知P-eNB,或者P-eNB根据相关配置信令进行推算。其他动态变化的信息,则在相关信息发生变化的时候通知,或者定时通知。
下面以一个示例说明本实施例中资源分配控制的过程。
为了解决在小区间进行载波聚合时无法实现基站间流量控制的问题,本示例提出了一种新的用户面协议架构,如图3所示,数据无线承载会在 多个基站之间进行分割,即一个数据无线承载的数据会通过多个基站(MeNB)发送,多个基站包含一个主基站(PCell eNB,简称为P-eNB),至少一个辅基站(SCell eNB,简称为S-eNB)。其中,P-eNB至少包括UE载波聚合小区的主小区(PCell),并可包括UE载波聚合小区的一个或多个辅小区(SCell)。S-eNB包含UE载波聚合小区的一个或多个SCell。如图3所示,PDCP、RLC可以只存在于一个基站上,但是MAC层分别存在于每个基站上,其中P-eNB上的MAC层包含了MAC的所有功能包括数据组包功能,S-eNB上的MAC层至少包含了数据组包功能。需要说明的是,上述架构是解决上述问题的方法之一,不排除采用其他协议架构,在本发明中不做限定。
上述无线资源可以通过物理资源块(Physical Resource Block,简称为PRB)来进行分配和使用,每个PRB对应的是指定频域和时域上的资源。
对于上行数据,终端上报BSR给P-eNB,携带终端上各个LCG上对应的数据无线承载的缓冲数据的大小。P-eNB收到后,根据S-eNB通知的资源状态信息,和P-eNB当前的资源状态信息,分配P-eNB和S-eNB上处理缓冲数据的BSR的大小,并将结果通知S-eNB。S-eNB根据这个结果进行数据调度。上述结果包括各个LCG需要的资源,即通过各个LCG发送的数据。
对于下行数据,P-eNB根据下行数据的大小,以及S-eNB通知的资源状态信息,和P-eNB当前的资源状态信息,分配P-eNB和S-eNB上处理的数据的大小,并将结果通知S-eNB。S-eNB根据这个结果进行数据调度。
S-eNB通知给P-eNB的资源状态信息,包括S-eNB上的各个载波的频谱效率(SE),S-eNB上相关载波剩余的PRB的数量。相关载波上剩余的PRB的数量,可以包括相关载波上剩余的PRB的数量,或者包括相关载波上总的PRB数量除去相关载波上公共信道占用的PRB数量,以及非CAUE占用的PRB数量,或者包括相关载波上CAUE占用的PRB数量和空闲的PRB数量。
可选地,在上述步骤S206中,主基站可以根据主基站的资源状态指示信息及辅基站的资源状态指示信息分别获取第一小区中剩余的物理资源及第二小区中剩余的物理资源,再至少根据第一小区中剩余的物理资源及第二小区中剩余的物理资源,确定为处理缓冲数据在第一小区上所分配的第一物理资源,及在第二小区上所分配的第二物理资源。通过上述步骤,主基站可以在主基站和辅基站的资源状态指示信息中获取到基站对应的小区中剩余的物理资源,再根据小区中剩余的物理资源确定小区上分配的用于处理缓冲数据的物理资源,实现了对小区剩余的物理资源的调度和分配。
可选地,获取剩余的物理资源的方式可以是以下三种方式之一:
方式一:获取小区载波上公共信道占用的物理资源大小与非支持载波聚合终端占用的物理资源大小两者的和值,及和值与总的物理资源大小两者之间的差值,将差值作为剩余的物理资源对应的资源大小。
方式二:获取小区载波上支持载波聚合终端占用的物理资源大小与空闲的物理资源大小两者的和值,将和值作为剩余的物理资源对应的资源大小。
方式三:将与缓冲区状态等级对应的资源大小作为剩余的物理资源对应的资源大小,其中,缓冲区状态包括以下至少之一:终端缓冲区状态、数据无线承载缓冲区状态、小区缓冲区状态。
通过上述步骤,主基站可以通过不同的方式获取主基站的小区或者辅基站的小区的剩余的物理资源,从而实现对小区剩余的物理资源的灵活分配。
可选地,主基站可以获取第一小区中剩余的物理资源占全部剩余物理资源的第一比例和/或第二小区中剩余的物理资源占全部剩余物理资源的第二比例,再至少根据第一比例和/或第二比例确定为处理缓冲数据在第一小区上所分配的第一物理资源,及在第二小区上所分配的第二物理资源。通过上述步骤,主基站可以通过计算小区中剩余的物理资源占全部剩余物 理资源的比例,确定在小区上分配的物理资源,从而实现对物理资源的灵活分配。
可选地,主基站可以但不限于按照各个逻辑信道组(LCG)的组标识分别确定为处理与每一个逻辑信道组对应的缓冲数据在第一小区上所分配的第一物理资源,及在第二小区上所分配的第二物理资源。
可选地,主基站的资源状态指示信息还可以但不限于包括:主基站中第一小区归属的第一频率的频谱效率;辅基站的资源状态指示信息可以但不限于包括:辅基站中第二小区归属的第二频率的频谱效率,其中,主基站可以但不限于通过以下公式获取上述第一比例,及上述第二比例:
r1=s1*R1/(s1*R1+s2*R2),
r2=s2*R2/(s1*R1+s2*R2),
其中,r1表示第一比例,r2表示第二比例,s1表示第一小区归属的第一频率的频谱效率,R1表示第一小区中剩余的物理资源,s2表示第二小区归属的第二频率的频谱效率,R2表示第二小区中剩余的物理资源。
可选地,在上述步骤S202中,主基站可以但不限于通过接收终端发送的缓冲区状态报告获取用于指示所传输的缓冲数据的指示信息,其中,缓冲区状态报告至少携带用于指示终端所要发送的上行缓冲数据的数据量的指示信息。
可选地,在上述步骤S204中,主基站获取辅基站的资源状态指示信息的方式可以但不限于包括以下至少之一:主基站定时获取辅基站的资源状态指示信息;主基站在辅基站上的第二物理资源发生变化时,获取辅基站的资源状态指示信息。
在一个示例中,主基站与终端之间建立了RRC连接,主基站可以根据终端和辅基站上报的信息对主基站和终端以及辅基站和终端之间传输的数据进行控制。图4是根据本发明实施例的另一种可选的资源分配控制方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,主基站与终端之间建立RRC连接;
步骤S404,主基站接收辅基站通知的信息。例如:指定频率的频谱效率、剩余的PRB的数量、公共信道占用的PRB数量、非CAUE占用的PRB数量、CAUE占用的PRB数量、空闲的PRB数量等信息;
步骤S406,主基站接收终端上报的BSR;
步骤S408,主基站按照预定义算法计算P-eNB和S-eNB上分别需要处理的数据大小;
步骤S410,主基站将辅基站需要处理的数据大小通知给辅基站;
步骤S412,主基站根据其需要处理的数据大小来分配上行授权;
步骤S414,辅基站根据其需要处理的数据大小来分配上行授权
需要说明的是,上述步骤S412和步骤S414可以同时执行,也可以先后执行,在本示例中不做限定。
步骤S416,终端根据接收到的上行授权发送数据到主基站;
步骤S418,终端根据接收到的上行授权发送数据到辅基站。
需要说明的是,上述步骤S416和步骤S418可以同时执行,也可以先后执行,在本示例中不做限定。
下面根据可选实施方式对本实施例的资源分配控制方法进行说明和描述。
在以下可选实施方式中,主基站(P-eNB)以基站1为例,有1个小区,是小区1,归属频点f1,辅基站(S-eNB)以基站2为例,有两个小区,分别是小区3和小区4,分别归属频点f3和频点f4。第一调度命令以第一上行授权为例,第二调度命令以第二上行授权为例。
需要说明的是,以下可选实施方式都是针对数据无线承载来描述,对于信令无线承载同样有效,在此不再赘述。
在可选实施方式一中,S-eNB直接将SE和剩余PRB通知给P-eNB,终端与小区1建立了连接,小区1的PRB数量为80,由于业务量增加,基站1根据测量报告,给终端增加小区3,配置的小区3的PRB数量为 100,当前有两个数据无线承载,分别为数据无线承载1和数据无线承载2,都归属LCG0。可选实施方式一的资源分配控制方法包括如下步骤:
步骤一:基站2计算并保存小区3归属的频率f3的频谱效率SE-3此时为0.6,并通知基站1。基站2可以在后续有变化的时候再重新通知,或者定时通知;
基站2计算小区3上剩余的PRB的数量此时为60,并通知基站1。基站2可以在后续有变化的时候再重新通知,或者定时通知。
步骤二:终端需要发送上行数据时,上报BSR给基站1,包括两个数据无线承载的缓冲数据大小此时为680,携带LCG0的缓冲数据大小为680对应的索引值。LCG1,2,3没有数据无线承载,因此缓冲数据大小为0。
步骤三:基站1收到终端上报的BSR,根据从基站2获知的小区3归属的频率f3的频谱效率SE-3此时为0.6,以及根据从基站2获知的小区3上剩余PRB的数量此时为60,以及,终端在基站1上的服务小区1归属的频率f1的频谱效率SE-1此时为0.7,以及小区1上剩余PRB的数量此时为40,按照以下公式计算小区3需要处理的数据量对应的PRB的数量BSRcc-3:
BSRcc-3=UE上报的BSR(680)*(SE-3(0.6)*载波3上剩余的PRB数量(60)/(载波1上剩余的PRB(40)*SE-1(0.7)+SE-3(0.6)*载波3上剩余的PRB数量(60)))=382
从而得出:小区1需要处理298的数据,小区3需要处理380的数据,小区3上LCG0需要分配382的资源。
基站1将小区3上LCG0需要分配382的资源通知S-eNB,还可以携带其他信息,如终端标识等。
步骤四:基站2收到基站1的通知,预留资源,发送第二上行授权(授权大小为大于等于382的最接近382的小区吞吐量(TBSize))给终端。
基站1发送第一上行授权(授权大小为大于等于298的最接近298的TBSize)给终端。
步骤五:终端收到基站1和基站2的上行授权,将两个无线承载上的数据,分别通过这两个授权的资源发送,如何分配数据发送,终端自行决定。
此外,基站1发送下行数据的时候,处理过程类似,基站1根据从基站2获知的小区3归属的频率f3的频谱效率SE-3此时为0.6,以及根据从基站2获知的小区3上剩余PRB的数量此时为60,以及,终端在基站1上的服务小区1归属的频率f1的频谱效率SE-1此时为0.7,以及小区1上剩余PRB的数量此时为40,按照上述公式计算出,小区1需要处理的数据,小区3需要处理的数据,基站1将小区3上需要分配的资源通知基站2,还可以携带其他信息,如终端标识等。基站2收到基站1的通知,预留资源,发送下行调度(大小为大于等于382的最接近382的TBSize)给终端,终端根据调度接收数据。
在可选实施方式二中,S-eNB将SE,载波上的总的PRB数量,载波上公共信道占用的PRB数量,载波上非CAUE占用的PRB数量通知给P-eNB,终端与小区1建立了连接,小区1的PRB数量为80,由于业务量增加,基站1根据测量报告,给终端增加小区3,配置的小区3的PRB数量为100,当前有两个数据无线承载,分别为数据无线承载1和数据无线承载2,分别归属LCG0和LCG1,两个逻辑信道LCG0优先级高,LCG1优先级低。基站1根据配置消息,保存小区3的PRB数量为100。可选实施方式二的资源分配控制方法包括如下步骤:
步骤一:基站2计算并保存小区3归属的频率f3的频谱效率SE-3此时为0.6,并通知基站1。基站2可以在后续有变化的时候再重新通知,或者定时通知。
基站2计算小区3上公共信道占用的PRB数量为10,载波上非CAUE占用的PRB数量为30,并通知基站1。基站2可以在后续有变化的时候再重新通知,或者定时通知。
步骤二:终端需要发送上行数据时,上报BSR给基站1,包括两个数 据无线承载的缓冲数据大小,携带LCG0的缓冲数据大小为380对应的索引值,LCG1的缓冲数据大小为300对应的索引值,LCG2,3没有数据无线承载,因此缓冲数据大小为0。
步骤三:基站1收到终端上报的BSR,根据从基站2获知的小区3归属的频率f3的频谱效率SE-3此时为0.6,以及根据从基站2获知的小区3上剩余PRB的数量此时为60(载波上的总的PRB数量100-载波上公共信道占用的PRB数量10-载波上非CAUE占用的PRB数量30),以及,终端在基站1上的服务小区1归属的频率f1的频谱效率SE-1此时为0.7,以及小区1上剩余PRB的数量此时为40,按照以下公式计算小区3在LCG0上需要处理的数据量对应的PRB的数量BSRcc-3_LCG0,以及小区3在LCG1上需要处理的数据量对应的PRB的数量BSRcc-3_LCG1:
BSRcc-3_LCG0=UE上报的BSR(380)*(SE-3(0.6)*载波3上剩余的PRB数量(60)/(载波1上剩余的PRB(40)*SE-1(0.7)+SE-3(0.6)*载波3上剩余的PRB数量(60)))=214
BSRcc-3_LCG1=UE上报的BSR(300)*(SE-3(0.6)*载波3上剩余的PRB数量(60)/(载波1上剩余的PRB(40)*SE-1(0.7)+SE-3(0.6)*载波3上剩余的PRB数量(60)))=168
得出:小区1处理166(=380-214)的LCG0数据,132(=300-168)的LCG1数据;小区3处理214的LCG0数据,168的LCG1数据。
基站1将小区3上LCG0需要分配214的资源,LCG1需要分配168的资源,通知基站2,还可以携带其他信息,如终端标识等。
步骤四:基站2收到基站1的通知,预留资源,发送第二上行授权(授权大小为大于等于382(=214+168)的最接近382的TBSize)给终端,基站2按照逻辑信道组优先级进行排序,先分配LCG0的数据,有剩余资源再分配LCG1的数据。
基站1发送第一上行授权(授权大小为大于等于298的最接近298的TBSize)给终端。
步骤五:终端收到基站1和基站2的上行授权,将两个无线承载上的数据,分别通过这两个授权的资源发送,如何分配数据发送,由终端自行决定。
在本可选实施方式中,基站1可以将基站2需要满足的QoS的信息通知给基站2,其中,基站2需要满足的QoS信息可以包括QoS的划分比例,如时延,比特率等。
在可选实施方式三中,S-eNB将SE,载波上CAUE占用的PRB数量,载波上空闲的PRB数量通知给P-eNB,终端与小区1建立了连接,小区1的PRB数量为80,由于业务量增加,基站1根据测量报告,给终端增加小区3,配置的小区3的PRB数量为100,当前有两个数据无线承载,分别为数据无线承载1和数据无线承载2,分别归属LCG0和LCG1,两个逻辑信道优先级相同。基站1根据配置消息,保存小区3的PRB数量为100。可选实施方式三的资源分配控制方法包括如下步骤:
步骤一:基站2计算并保存小区3归属的频率f3的频谱效率SE-3此时为0.6,并通知基站1。基站2可以在后续有变化的时候再重新通知,或者定时通知。
基站2计算小区3上载波上CAUE占用的PRB数量为20,载波上空闲的PRB数量为40,并通知基站1。基站2可以在后续有变化的时候再重新通知,或者定时通知。
步骤二:终端需要发送上行数据时,上报BSR给基站1(或基站2),包括两个数据无线承载的缓冲数据大小,携带LCG0的缓冲数据大小为380对应的索引值,LCG1的缓冲数据大小为300对应的索引值,LCG2,3没有数据无线承载,因此缓冲数据大小为0。
步骤三:基站1收到终端上报的BSR,根据从基站2获知的小区3归属的频率f3的频谱效率SE-3此时为0.6,以及根据从基站2获知的小区3上剩余PRB的数量此时为60(载波上CAUE占用的PRB数量20+载波上空闲的PRB数量40),以及,终端在基站1上的服务小区1归属的频率 f1的频谱效率SE-1此时为0.7,以及小区1上剩余PRB的数量此时为40,按照以下公式计算小区3在LCG0上需要处理的数据量对应的PRB的数量BSRcc-3_LCG0,以及小区3在LCG1上需要处理的数据量对应的PRB的数量BSRcc-3_LCG1:
BSRcc-3_LCG0=UE上报的BSR(380)*(SE-3(0.6)*载波3上剩余的PRB数量(60)/(载波1上剩余的PRB(40)*SE-1(0.7)+SE-3(0.6)*载波3上剩余的PRB数量(60)))=214
BSRcc-3_LCG1=UE上报的BSR(300)*(SE-3(0.6)*载波3上剩余的PRB数量(60)/(载波1上剩余的PRB(40)*SE-1(0.7)+SE-3(0.6)*载波3上剩余的PRB数量(60)))=168
得出:小区1处理166的LCG0数据,132的LCG1数据;小区3处理214的LCG0数据,168的LCG1数据,基站1将小区3上LCG0需要分配214的资源,LCG1需要分配168的资源通知S-eNB,还可以携带其他信息,如终端标识等。
步骤四:基站2收到基站1的通知,预留资源,发送第二上行授权(授权大小为大于等于382(=214+168)的最接近382的TBSize)给终端。两个逻辑信道组优先级相同,那么统一一起排序,有资源则进行调度,发送第二上行授权。
基站1发送第一上行授权(授权大小为大于等于298的最接近298的TBSize)给终端。
步骤五:终端收到基站1的第一上行授权和基站2的第二上行授权,将两个无线承载上的数据,分别通过这两个授权的资源发送,如何分配数据发送,由终端自行决定。
在上述可选实施方式中,基站1还可以根据两个基站上数据缓冲区状态,可以是UE的数据缓冲区状态,或者每个DRB的数据缓冲区状态,或者每个小区的数据缓冲区状态,来分配两个基站上需要处理的数据。缓冲区状态可以是几个等级,比如(0,1,2,3……10),0表示当前空闲, 1表示当前占用十分之一,2表示当前占用十分之二,依次类推。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例二
在本实施例中提供了一种资源分配控制方法,图5是根据本发明实施例的另一种可选的资源分配控制方法的流程图,如图5所示,该流程包括如下步骤:
步骤S502,辅基站向主基站发送辅基站的资源状态指示信息,其中,主基站中的第一小区及辅基站中的第二小区均与终端建立有通信连接,主基站用于根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源,以使主基站发送与第一物理资源的第一调度命令给终端;
步骤S504,辅基站接收主基站发送的用于指示在辅基站预留第二物理资源的资源指示信息;
步骤S506,辅基站根据资源指示信息预留第二物理资源,并发送与第二物理资源对应的第二调度命令给终端。
可选地,上述资源分配控制方法可以但不限于应用于载波聚合时资源控制的场景中。例如:在LTE系统中对多个基站的小区进行载波聚合时的资源控制场景。
通过上述步骤,辅基站将其自身的资源状态指示信息发送给主基站,由主基站对资源进行分配,再将为辅基站分配的第二物理资源通知给辅基站,辅基站接收到主基站发送的用于指示在辅基站预留第二物理资源的资源指示信息,根据资源指示信息将第二物理资源预留出来,并发送与第二物理资源对应的第二调度命令给终端,通知终端辅基站侧资源的分配情况,实现主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。
可选地,在上述步骤S502中,辅基站向主基站发送辅基站的资源状态指示信息的方式可以但不限于包括以下至少之一:辅基站定时向主基站发送辅基站的资源状态指示信息;辅基站在检测到辅基站上的第二物理资源发生变化时,向主基站发送辅基站的资源状态指示信息。
实施例三
在本实施例中还提供了一种资源分配控制装置,应用于主基站,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的一种可选的资源分配控制装置的结构框图,如图6所示,该装置包括:
1)第一获取模块602,设置为获取用于指示所传输的缓冲数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据或发送给终端的下行缓冲数据;
2)第二获取模块604,设置为获取主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;
3)确定模块606,耦合至第一获取模块602和第二获取模块604,设置为根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源;
4)通知模块608,耦合至确定模块606,设置为通知辅基站预留第二物理资源,以使辅基站发送与第二物理资源对应的第二调度命令给终端;
5)第一发送模块610,耦合至确定模块606,设置为发送与第一物理资源对应的第一调度命令给终端。
可选地,上述资源分配控制装置可以但不限于应用于载波聚合时资源控制的场景中。例如:在LTE系统中对多个基站的小区进行载波聚合时的资源控制场景。
通过上述装置,第一获取模块602获取到用于指示所传输的缓冲数据的指示信息,可以确定与终端之间进行通信的缓冲数据,由于终端分别与主基站中的第一小区和辅基站中的第二小区建立有通信连接,即终端与多个小区建立有通信连接,主基站需要对上述缓冲数据进行分配和调度,第二获取模块604可以获取到主基站的资源状态指示信息及辅基站的资源状态指示信息,确定模块606根据这些信息确定主基站和辅基站用于处理上述缓冲数据的物理资源,然后由通知模块608通知辅基站预留出用于处理上述缓冲数据的第二物理资源,并由第一发送模块610将主基站用于处理上述缓冲数据的第一物理资源对应的第一调度命令发送给终端,使终端获知缓冲数据的分配和调度情况,实现主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。
在本实施例中,在小区间进行载波聚合时基站间的流量控制可以但不限于以基站对物理资源的分配为例,基站可以通过物理资源的分配实现基站间的流量控制。
在本实施例中,确定模块606可以但不限于根据终端连接的小区中剩余的物理资源确定为处理缓冲数据在小区上分配的物理资源。例如:确定模块606可以根据第一小区中剩余的物理资源确定为处理缓冲数据在第一小区上所分配的第一物理资源,以及可以根据第二小区中剩余的物理资源确定为处理缓冲数据在第二小区上所分配的第二物理资源。
在本实施例中,确定模块606可以但不限于通过算法计算第一小区上所分配的第一物理资源;再通过以下两种方式获取第二小区上所分配的第二物理资源:通过算法计算第二小区上所分配的第二物理资源;或者用所需的全部物理资源减去第一物理资源来获取第二物理资源。
在本实施例中,确定模块606可以但不限于通过算法计算第二小区上所分配的第二物理资源;再通过以下两种方式获取第一小区上所分配的第一物理资源:通过算法计算第一小区上所分配的第一物理资源;或者用所需的全部物理资源减去第二物理资源来获取第一物理资源。
在本实施例中,确定模块606可以但不限于通过以下几种方式获取上述剩余的物理资源。
方式一:获取小区载波上公共信道占用的物理资源大小与非支持载波聚合终端占用的物理资源大小两者的和值,及该和值与总的物理资源大小两者之间的差值,将这个差值作为剩余的物理资源对应的资源大小。
方式二:获取小区载波上支持载波聚合终端占用的物理资源大小与空闲的物理资源大小两者的和值,将该和值作为剩余的物理资源对应的资源大小。
方式三:将与缓冲区状态等级对应的资源大小作为剩余的物理资源对应的资源大小,其中,缓冲区状态可以但不限于包括以下至少之一:终端缓冲区状态、数据无线承载缓冲区状态、小区缓冲区状态。
也就是说,在本实施例中,确定模块606可以通过上述方式获取第一小区中剩余的物理资源,也可以通过上述方式获取第二小区中剩余的物理资源。
在本实施例中,确定模块606可以但不限于根据小区中剩余的物理资源占全部剩余物理资源的比例确定在小区上分配的物理资源。例如:主基站可以根据第一小区中剩余的物理资源占全部剩余物理资源的第一比例确定在第一小区上所分配的第一物理资源,以及可以根据第二小区中剩余的物理资源占全部剩余物理资源的第二比例确定在第二小区上所分配的第二物理资源。可选地,主基站可以但不限于按照各个逻辑信道组的组标识分别确定为处理与每一个逻辑信道组对应的缓冲数据在小区上所分配的物理资源。
在本实施例中,第一获取模块602可以但不限于通过接收缓冲区状态报告来获取用于指示所传输的缓冲数据的指示信息。
在本实施例中,缓冲区状态可以但不限于是终端的缓冲区状态,或者每个DRB的缓冲区状态,或者每个小区的缓冲区状态。
在本实施例中,第二获取模块604获取辅基站的资源状态指示信息的方式可以但不限于是以下至少之一:通过定时获取,在辅基站的第二物理资源发生变化时获取。
图7是根据本发明实施例的另一种可选的资源分配控制装置的结构框图,如图7所示,可选地,确定模块606包括:
1)获取单元702,设置为根据主基站的资源状态指示信息及辅基站的资源状态指示信息分别获取第一小区中剩余的物理资源及第二小区中剩余的物理资源;
2)确定单元704,耦合至获取单元702,设置为至少根据第一小区中剩余的物理资源及第二小区中剩余的物理资源,确定为处理缓冲数据在第一小区上所分配的第一物理资源,及在第二小区上所分配的第二物理资源。
可选地,获取单元702设置为:获取小区载波上公共信道占用的物理资源大小与非支持载波聚合终端占用的物理资源大小两者的和值,及和值与总的物理资源大小两者之间的差值,将差值作为剩余的物理资源对应的资源大小。
可选地,获取单元702设置为:获取小区载波上支持载波聚合终端占用的物理资源大小与空闲的物理资源大小两者的和值,将和值作为剩余的物理资源对应的资源大小。
可选地,获取单元702设置为:将与缓冲区状态等级对应的资源大小作为剩余的物理资源对应的资源大小,其中,缓冲区状态包括以下至少之一:终端缓冲区状态、数据无线承载缓冲区状态、小区缓冲区状态。
可选地,确定单元704设置为:获取第一小区中剩余的物理资源占全部剩余物理资源的第一比例和/或第二小区中剩余的物理资源占全部剩余物理资源的第二比例;至少根据第一比例和/或第二比例确定为处理缓冲数据在第一小区上所分配的第一物理资源,及在第二小区上所分配的第二物理资源。
可选地,确定单元704设置为:按照各个逻辑信道组的组标识分别确定为处理与每一个逻辑信道组对应的缓冲数据在第一小区上所分配的第一物理资源,及在第二小区上所分配的第二物理资源。
可选地,主基站的资源状态指示信息还包括:主基站中第一小区归属的第一频率的频谱效率;辅基站的资源状态指示信息包括:辅基站中第二小区归属的第二频率的频谱效率,其中,确定单元704可以通过以下公式获取第一比例,及第二比例:
r1=s1*R1/(s1*R1+s2*R2),
r2=s2*R2/(s1*R1+s2*R2),
其中,r1表示第一比例,r2表示第二比例,s1表示第一小区归属的第一频率的频谱效率,R1表示第一小区中剩余的物理资源,s2表示第二小区归属的第二频率的频谱效率,R2表示第二小区中剩余的物理资源。
可选地,第一获取模块602设置为:接收终端发送的缓冲区状态报告,其中,缓冲区状态报告至少携带用于指示终端所要发送的上行缓冲数据的数据量的指示信息。
可选地,第二获取模块604设置为以下至少之一:定时获取辅基站的 资源状态指示信息;在辅基站上的第二物理资源发生变化时,获取辅基站的资源状态指示信息。
在本实施例中还提供了一种资源分配控制装置,应用于辅基站,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本发明实施例的另一种可选的资源分配控制装置的结构框图,如图8所示,该装置包括:
1)第二发送模块802,设置为向主基站发送辅基站的资源状态指示信息,其中,主基站中的第一小区及辅基站中的第二小区均与终端建立有通信连接,主基站用于根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源,以使主基站发送与第一物理资源的第一调度命令给终端;
2)第一接收模块804,耦合至第二发送模块802,设置为接收主基站发送的用于指示在辅基站预留第二物理资源的资源指示信息;
3)处理模块806,耦合至第一接收模块804,设置为根据资源指示信息预留第二物理资源,并发送与第二物理资源对应的第二调度命令给终端。
通过上述装置,第二发送模块802将其辅基站的资源状态指示信息发送给主基站,由主基站对资源进行分配,主基站再将为辅基站分配的第二物理资源通知给辅基站,第一接收模块804接收到主基站发送的用于指示在辅基站预留第二物理资源的资源指示信息,处理模块806根据资源指示信息将第二物理资源预留出来,并发送与第二物理资源对应的第二调度命令给终端,通知终端辅基站侧资源的分配情况,实现主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源 进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。
可选地,第二发送模块802设置为以下至少之一:定时向主基站发送辅基站的资源状态指示信息;在检测到辅基站上的第二物理资源发生变化时,向主基站发送辅基站的资源状态指示信息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
实施例四
在本实施例中提供了一种资源分配控制方法,图9是根据本发明实施例的另一种可选的资源分配控制方法的流程图,如图9所示,该流程包括如下步骤:
步骤S902,终端向主基站发送用于指示所传输的缓冲数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据或发送给终端的下行缓冲数据,主基站用于获取主基站获取主基站的资源状态指示信息及辅基站的资源状态指示信息,并根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;
步骤S904,终端接收主基站发送的与第一物理资源对应的第一调度命令,和/或辅基站发送的与第二物理资源对应的第二调度命令;
步骤S906,终端根据第一调度命令和/或第二调度命令的指示传输缓冲数据。
可选地,上述资源分配控制方法可以但不限于应用于载波聚合时资源控制的场景中。例如:在LTE系统中对多个基站的小区进行载波聚合时的 资源控制场景。
通过上述步骤,终端向主基站发送指示信息来指示所传输的缓冲数据,主基站对上述缓冲数据进行分配和调度,终端通过接收主基站发送的与第一物理资源对应的第一调度命令,和/或辅基站发送的与第二物理资源对应的第二调度命令,获知缓冲数据的分配和调度情况,并根据主基站对缓冲数据的调度和分配传输缓冲数据,实现主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。
在本实施例中,在小区间进行载波聚合时基站间的流量控制可以但不限于以基站对物理资源的分配为例,终端可以根据物理资源的分配实现缓冲数据的传输。
可选地,在上述步骤S902中,终端可以向主基站发送至少携带用于指示终端所要发送的上行缓冲数据的数据量的指示信息的缓冲区状态报告。
在本实施例中,缓冲区状态可以但不限于是终端的缓冲区状态,或者每个DRB的缓冲区状态,或者每个小区的缓冲区状态。
实施例五
在本实施例中还提供了一种资源分配控制装置,应用于终端,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本发明实施例的另一种可选的资源分配控制装置的结构框图,如图10所示,该装置包括:
1)第三发送模块1002,设置为向主基站发送用于指示所传输的缓冲 数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据或发送给终端的下行缓冲数据,主基站用于获取主基站获取主基站的资源状态指示信息及辅基站的资源状态指示信息,并根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;
2)第二接收模块1004,耦合至第三发送模块1002,设置为接收主基站发送的与第一物理资源对应的第一调度命令,和/或辅基站发送的与第二物理资源对应的第二调度命令;
3)传输模块1006,耦合至第二接收模块1004,设置为根据第一调度命令和/或第二调度命令的指示传输缓冲数据。
可选地,上述资源分配控制装置可以但不限于应用于载波聚合时资源控制的场景中。例如:在LTE系统中对多个基站的小区进行载波聚合时的资源控制场景。
通过上述装置,第三发送模块1002向主基站发送指示信息来指示所传输的缓冲数据,主基站对上述缓冲数据进行分配和调度,通过第二接收模块1004接收的主基站发送的与第一物理资源对应的第一调度命令,和/或辅基站发送的与第二物理资源对应的第二调度命令,获知缓冲数据的分配和调度情况,并根据主基站对缓冲数据的调度和分配由传输模块1006传输缓冲数据,实现主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。
在本实施例中,在小区间进行载波聚合时基站间的流量控制可以但不限于以基站对物理资源的分配为例,终端可以根据物理资源的分配实现缓冲数据的传输。
可选地,第三发送模块设置为:向主基站发送缓冲区状态报告,其中, 缓冲区状态报告至少携带用于指示终端所要发送的上行缓冲数据的数据量的指示信息。
在本实施例中,缓冲区状态可以但不限于是终端的缓冲区状态,或者每个DRB的缓冲区状态,或者每个小区的缓冲区状态。
实施例六
在本实施例中还提供了一种资源分配控制系统,该系统包括:主基站,辅基站和终端,其中,
1)主基站设置为获取用于指示所传输的缓冲数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据或发送给终端的下行缓冲数据;并获取主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;还用于根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源;并通知辅基站预留第二物理资源,以使辅基站发送与第二物理资源对应的第二调度命令给终端;以及发送与第一物理资源对应的第一调度命令给终端;
2)辅基站设置为向主基站发送辅基站的资源状态指示信息;还用于接收主基站发送的用于指示在辅基站预留第二物理资源的资源指示信息;并根据资源指示信息预留第二物理资源,并发送与第二物理资源对应的第二调度命令给终端;
3)终端设置为向主基站发送用于指示所传输的缓冲数据的指示信息;还用于接收主基站发送的与第一物理资源对应的第一调度命令,和/或辅基站发送的与第二物理资源对应的第二调度命令;并根据第一调度命令和/或第二调度命令的指示传输缓冲数据。
可选地,上述资源分配控制系统可以但不限于应用于载波聚合时资源控制的场景中。例如:在LTE系统中对多个基站的小区进行载波聚合时的资源控制场景。
在本实施例中,主基站可以获取到用于指示所传输的缓冲数据的指示信息,从而确定用于与终端间通信的缓冲数据;辅基站可以向主基站发送辅基站的资源状态指示信息;主基站接收到辅基站发送的辅基站的资源状态指示信息,并获取到主基站的资源状态指示信息;主基站根据这些资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源,然后通知辅基站预留第二物理资源并且发送与第一物理资源对应的第一调度命令给终端;辅基站接收到主基站发送的用于指示在所述辅基站预留所述第二物理资源的资源指示信息,将第二物理资源预留并且发送与第二物理资源对应的第二调度命令给终端,终端根据收到的调度信息传输缓冲数据,从而实现对资源的分配。
可见,通过上述系统,实现了主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。
实施例七
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,主基站获取用于指示所传输的缓冲数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据或发送给终端的下行缓冲数据;
S2,主基站获取主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;
S3,主基站根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源;
S4,主基站通知辅基站预留第二物理资源,以使辅基站发送与第二物理资源对应的第二调度命令给终端;
S5,主基站发送与第一物理资源对应的第一调度命令给终端。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,辅基站向主基站发送辅基站的资源状态指示信息,其中,主基站中的第一小区及辅基站中的第二小区均与终端建立有通信连接,主基站用于根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源,以使主基站发送与第一物理资源的第一调度命令给终端;
S2,辅基站接收主基站发送的第二物理资源;
S3,辅基站预留第二物理资源,并发送与第二物理资源对应的第二调度命令给终端。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S1,终端向主基站发送用于指示所传输的缓冲数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据或发送给终端的下行缓冲数据,主基站用于获取主基站获取主基站的资源状态指示信息及辅基站的资源状态指示信息,并根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;
S2,终端接收主基站发送的与第一物理资源对应的第一调度命令,和/或辅基站发送的与第二物理资源对应的第二调度命令;
S3,终端根据第一调度命令和/或第二调度命令的指示传输缓冲数据。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介 质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本实施例中,采用主基站获取用于指示所传输的缓冲数据的指示信息,其中,缓冲数据包括终端发送的上行缓冲数据及发送给终端的下行缓冲数据;主基站获取主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,终端分别与主基站中的第一小区及辅基站中的第二小区建立有通信连接;主基站根据主基站的资源状态指示信息及辅基站的资源状态指示信息确定主基站中用于处理缓冲数据的第一物理资源,及辅基站中用于处理缓冲数据的第二物理资源;主基站通知辅基站预留第二物理资源,以使辅基站发送与第二物理资源对应的第二调度命令给终端;主基站发送与第一物理资源对应的第一调度命令给终端的方式,主基站获取到用于指示所传输的缓冲数据的指示信息,可以确定与终端之间进行通信的缓冲数据,由于终端分别与主基站中的第一小区和辅基站中的第二小区建立有通 信连接,即终端与多个小区建立有通信连接,主基站需要对上述缓冲数据进行分配和调度,主基站可以获取到主基站的资源状态指示信息及辅基站的资源状态指示信息,再根据这些信息确定主基站和辅基站用于处理上述缓冲数据的物理资源,然后通知辅基站预留出用于处理上述缓冲数据的第二物理资源,并将自身用于处理上述缓冲数据的第一物理资源对应的第一调度命令发送给终端,使终端获知缓冲数据的分配和调度情况,实现主基站及辅基站上的物理资源的资源利用率的最大化,从而解决相关技术中在小区间进行载波聚合时资源利用率较低的问题。进一步,通过对缓冲数据对应的物理资源进行全局的分配和调度,从而实现了在小区间进行载波聚合时基站间的流量控制。

Claims (29)

  1. 一种资源分配控制方法,包括:
    主基站获取用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据;
    所述主基站获取所述主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;
    所述主基站根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源;
    所述主基站通知所述辅基站预留所述第二物理资源,以使所述辅基站发送与所述第二物理资源对应的第二调度命令给所述终端;
    所述主基站发送与所述第一物理资源对应的第一调度命令给所述终端。
  2. 根据权利要求1所述的方法,其中,所述主基站根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源包括:
    所述主基站根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息分别获取所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源;
    所述主基站至少根据所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源,确定为处理所述缓冲数据在所述第一小区 上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
  3. 根据权利要求2所述的方法,其中,获取所述剩余的物理资源包括:获取小区载波上公共信道占用的物理资源大小与非支持载波聚合终端占用的物理资源大小两者的和值,及所述和值与总的物理资源大小两者之间的差值,将所述差值作为所述剩余的物理资源对应的资源大小。
  4. 根据权利要求2所述的方法,其中,获取所述剩余的物理资源包括:获取小区载波上支持载波聚合终端占用的物理资源大小与空闲的物理资源大小两者的和值,将所述和值作为所述剩余的物理资源对应的资源大小。
  5. 根据权利要求2所述的方法,其中,获取所述剩余的物理资源包括:将与缓冲区状态等级对应的资源大小作为所述剩余的物理资源对应的资源大小,其中,所述缓冲区状态包括以下至少之一:终端缓冲区状态、数据无线承载缓冲区状态、小区缓冲区状态。
  6. 根据权利要求2所述的方法,其中,所述主基站至少根据所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源,确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源包括:
    所述主基站获取所述第一小区中剩余的物理资源占全部剩余物理资源的第一比例和/或所述第二小区中剩余的物理资源占所述全部剩余物理资源的第二比例;
    所述主基站至少根据所述第一比例和/或所述第二比例确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
  7. 根据权利要求2所述的方法,其中,所述主基站至少根据所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源,确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源包括:
    所述主基站按照各个逻辑信道组的组标识分别确定为处理与每一个逻辑信道组对应的所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
  8. 根据权利要求6所述的方法,其中,所述主基站的资源状态指示信息还包括:所述主基站中所述第一小区归属的第一频率的频谱效率;所述辅基站的资源状态指示信息包括:所述辅基站中所述第二小区归属的第二频率的频谱效率,其中,所述主基站获取所述第一小区中剩余的物理资源占全部剩余物理资源的第一比例和/或所述第二小区中剩余的物理资源占所述全部剩余物理资源的第二比例包括:
    通过以下公式获取所述第一比例,及所述第二比例:
    r1=s1*R1/(s1*R1+s2*R2),
    r2=s2*R2/(s1*R1+s2*R2),
    其中,所述r1表示所述第一比例,所述r2表示所述第二比例,所述s1表示所述第一小区归属的第一频率的频谱效率,所述R1表示所述第一小区中剩余的物理资源,所述s2表示所述第二小区归属的第二频率的频谱效率,所述R2表示所述第二小区中剩余的物理资源。
  9. 根据权利要求1所述的方法,其中,所述主基站获取所述用于指示所传输的缓冲数据的指示信息包括:
    所述主基站接收所述终端发送的缓冲区状态报告,其中,所述缓冲区状态报告至少携带用于指示所述终端所要发送的上行缓冲数据 的数据量的指示信息。
  10. 根据权利要求1所述的方法,其中,所述主基站获取所述辅基站的资源状态指示信息包括以下至少之一:
    所述主基站定时获取所述辅基站的资源状态指示信息;
    所述主基站在所述辅基站上的所述第二物理资源发生变化时,获取所述辅基站的资源状态指示信息。
  11. 一种资源分配控制方法,包括:
    辅基站向主基站发送所述辅基站的资源状态指示信息,其中,所述主基站中的第一小区及所述辅基站中的第二小区均与终端建立有通信连接,所述主基站用于根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源,以使所述主基站发送与所述第一物理资源的第一调度命令给所述终端;
    所述辅基站接收所述主基站发送的用于指示在所述辅基站预留所述第二物理资源的资源指示信息;
    所述辅基站根据所述资源指示信息预留所述第二物理资源,并发送与所述第二物理资源对应的第二调度命令给所述终端。
  12. 根据权利要求11所述的方法,其中,所述辅基站向所述主基站发送所述辅基站的资源状态指示信息包括以下至少之一:
    所述辅基站定时向所述主基站发送所述辅基站的资源状态指示信息;
    所述辅基站在检测到所述辅基站上的所述第二物理资源发生变 化时,向所述主基站发送所述辅基站的资源状态指示信息。
  13. 一种资源分配控制方法,包括:
    终端向主基站发送用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括所述终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据,所述主基站用于获取所述主基站获取所述主基站的资源状态指示信息及辅基站的资源状态指示信息,并根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;
    所述终端接收所述主基站发送的与所述第一物理资源对应的第一调度命令,和/或所述辅基站发送的与所述第二物理资源对应的第二调度命令;
    所述终端根据所述第一调度命令和/或所述第二调度命令的指示传输所述缓冲数据。
  14. 根据权利要求13所述的方法,其中,所述终端向主基站发送用于指示所传输的缓冲数据的指示信息包括:
    所述终端向所述主基站发送缓冲区状态报告,其中,所述缓冲区状态报告至少携带用于指示所述终端所要发送的上行缓冲数据的数据量的指示信息。
  15. 一种资源分配控制装置,应用于主基站,包括:
    第一获取模块,设置为获取用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据;
    第二获取模块,设置为获取所述主基站的资源状态指示信息及辅基站的资源状态指示信息,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;
    确定模块,设置为根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源;
    通知模块,设置为通知所述辅基站预留所述第二物理资源,以使所述辅基站发送与所述第二物理资源对应的第二调度命令给所述终端;
    第一发送模块,设置为发送与所述第一物理资源对应的第一调度命令给所述终端。
  16. 根据权利要求15所述的装置,其中,所述确定模块包括:
    获取单元,设置为根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息分别获取所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源;
    确定单元,设置为至少根据所述第一小区中剩余的物理资源及所述第二小区中剩余的物理资源,确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
  17. 根据权利要求16所述的装置,其中,所述获取单元设置为:获取小区载波上公共信道占用的物理资源大小与非支持载波聚合终端占用的物理资源大小两者的和值,及所述和值与总的物理资源大小两者之间的差值,将所述差值作为所述剩余的物理资源对应的资源大 小。
  18. 根据权利要求16所述的装置,其中,所述获取单元设置为:获取小区载波上支持载波聚合终端占用的物理资源大小与空闲的物理资源大小两者的和值,将所述和值作为所述剩余的物理资源对应的资源大小。
  19. 根据权利要求16所述的装置,其中,所述获取单元设置为:将与缓冲区状态等级对应的资源大小作为所述剩余的物理资源对应的资源大小,其中,所述缓冲区状态包括以下至少之一:终端缓冲区状态、数据无线承载缓冲区状态、小区缓冲区状态。
  20. 根据权利要求16所述的装置,其中,所述确定单元设置为:
    获取所述第一小区中剩余的物理资源占全部剩余物理资源的第一比例和/或所述第二小区中剩余的物理资源占所述全部剩余物理资源的第二比例;
    至少根据所述第一比例和/或所述第二比例确定为处理所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
  21. 根据权利要求16所述的装置,其中,所述确定单元设置为:
    所述主基站按照各个逻辑信道组的组标识分别确定为处理与每一个逻辑信道组对应的所述缓冲数据在所述第一小区上所分配的所述第一物理资源,及在所述第二小区上所分配的所述第二物理资源。
  22. 根据权利要求17所述的装置,其中,所述主基站的资源状态指示信息还包括:所述主基站中所述第一小区归属的第一频率的频谱效率;所述辅基站的资源状态指示信息包括:所述辅基站中所述第二小区归属的第二频率的频谱效率,其中,所述主基站获取所述第一 小区中剩余的物理资源占全部剩余物理资源的第一比例和/或所述第二小区中剩余的物理资源占所述全部剩余物理资源的第二比例包括:
    通过以下公式获取所述第一比例,及所述第二比例:
    r1=s1*R1/(s1*R1+s2*R2),
    r2=s2*R2/(s1*R1+s2*R2),
    其中,所述r1表示所述第一比例,所述r2表示所述第二比例,所述s1表示所述第一小区归属的第一频率的频谱效率,所述R1表示所述第一小区中剩余的物理资源,所述s2表示所述第二小区归属的第二频率的频谱效率,所述R2表示所述第二小区中剩余的物理资源。
  23. 根据权利要求15所述的装置,其中,所述第一获取模块设置为:
    接收所述终端发送的缓冲区状态报告,其中,所述缓冲区状态报告至少携带用于指示所述终端所要发送的上行缓冲数据的数据量的指示信息。
  24. 根据权利要求15所述的装置,其中,所述第二获取模块设置为以下至少之一:
    定时获取所述辅基站的资源状态指示信息;
    在所述辅基站上的所述第二物理资源发生变化时,获取所述辅基站的资源状态指示信息。
  25. 一种资源分配控制装置,应用于辅基站,包括:
    第二发送模块,设置为向主基站发送所述辅基站的资源状态指示信息,其中,所述主基站中的第一小区及所述辅基站中的第二小区均 与终端建立有通信连接,所述主基站用于根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源,以使所述主基站发送与所述第一物理资源的第一调度命令给所述终端;
    第一接收模块,设置为接收所述主基站发送的用于指示在所述辅基站预留所述第二物理资源的资源指示信息;
    处理模块,设置为根据所述资源指示信息预留所述第二物理资源,并发送与所述第二物理资源对应的第二调度命令给所述终端。
  26. 根据权利要求25所述的装置,其中,所述第二发送模块设置为以下至少之一:
    定时向所述主基站发送所述辅基站的资源状态指示信息;
    在检测到所述辅基站上的所述第二物理资源发生变化时,向所述主基站发送所述辅基站的资源状态指示信息。
  27. 一种资源分配控制装置,应用于终端,包括:
    第三发送模块,设置为向主基站发送用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括所述终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据,所述主基站用于获取所述主基站获取所述主基站的资源状态指示信息及辅基站的资源状态指示信息,并根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;
    第二接收模块,设置为接收所述主基站发送的与所述第一物理资源对应的第一调度命令,和/或所述辅基站发送的与所述第二物理资源对应的第二调度命令;
    传输模块,设置为根据所述第一调度命令和/或所述第二调度命令的指示传输所述缓冲数据。
  28. 根据权利要求27所述的装置,其中,所述第三发送模块设置为:
    向所述主基站发送缓冲区状态报告,其中,所述缓冲区状态报告至少携带用于指示所述终端所要发送的上行缓冲数据的数据量的指示信息。
  29. 一种资源分配控制系统,包括:主基站,辅基站和终端,其中,
    所述主基站设置为获取用于指示所传输的缓冲数据的指示信息,其中,所述缓冲数据包括所述终端发送的上行缓冲数据或发送给所述终端的下行缓冲数据;并获取所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息,其中,所述终端分别与所述主基站中的第一小区及所述辅基站中的第二小区建立有通信连接;还用于根据所述主基站的资源状态指示信息及所述辅基站的资源状态指示信息确定所述主基站中用于处理所述缓冲数据的第一物理资源,及所述辅基站中用于处理所述缓冲数据的第二物理资源;并通知所述辅基站预留所述第二物理资源,以使所述辅基站发送与所述第二物理资源对应的第二调度命令给所述终端;以及发送与所述第一物理资源对应的第一调度命令给所述终端;
    所述辅基站设置为向所述主基站发送所述辅基站的资源状态指示信息;还用于接收所述主基站发送的用于指示在所述辅基站预留所 述第二物理资源的资源指示信息;并根据所述资源指示信息预留所述第二物理资源,并发送与所述第二物理资源对应的第二调度命令给所述终端;
    所述终端设置为向所述主基站发送用于指示所传输的缓冲数据的指示信息;还用于接收所述主基站发送的与所述第一物理资源对应的第一调度命令,和/或所述辅基站发送的与所述第二物理资源对应的第二调度命令;并根据所述第一调度命令和/或所述第二调度命令的指示传输所述缓冲数据。
PCT/CN2017/000066 2016-03-03 2017-01-03 资源分配控制方法、装置及系统 WO2017148213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610121825.8 2016-03-03
CN201610121825.8A CN107154840B (zh) 2016-03-03 2016-03-03 资源分配控制方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017148213A1 true WO2017148213A1 (zh) 2017-09-08

Family

ID=59743543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000066 WO2017148213A1 (zh) 2016-03-03 2017-01-03 资源分配控制方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107154840B (zh)
WO (1) WO2017148213A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133705A (zh) * 2017-09-27 2020-05-08 瑞典爱立信有限公司 管理下行链路数据传送状态的方法
US10873986B1 (en) * 2019-06-04 2020-12-22 Sprint Spectrum L.P. Use of buffer occupancy as a basis to control configuration of dual-connectivity service

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3689028A4 (en) 2017-09-28 2020-10-14 ZTE Corporation MOBILITY MANAGEMENT IN WIRELESS NETWORKS
CN111294141B (zh) * 2018-12-10 2021-09-07 华为技术有限公司 无线通信方法及装置
WO2021062689A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种上行传输的方法及装置
WO2023141826A1 (en) * 2022-01-26 2023-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for scheduling terminal device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083184A (zh) * 2009-11-27 2011-06-01 中兴通讯股份有限公司 一种载波聚合中多载波多信道功率分配的方法及系统
US20110237288A1 (en) * 2010-03-25 2011-09-29 Motorola, Inc. Uplink power control for channel aggregation in a communication network
CN103687037A (zh) * 2012-09-12 2014-03-26 华为技术有限公司 一种资源调度的方法、设备及通信系统
CN104519555A (zh) * 2013-09-27 2015-04-15 电信科学技术研究院 一种信息传输方法及设备
CN104618883A (zh) * 2013-11-01 2015-05-13 上海贝尔股份有限公司 在双连接系统的承载分离场景中传输调度请求的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823507B (zh) * 2013-03-06 2018-09-07 华为技术有限公司 通讯方法和设备
EP2997784B1 (en) * 2013-05-15 2019-12-04 LG Electronics Inc. Method for allocating uplink resources in a wireless communication system and a device therefor
CN104349461B (zh) * 2013-07-26 2019-02-22 电信科学技术研究院 一种上行资源分配方法及其设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083184A (zh) * 2009-11-27 2011-06-01 中兴通讯股份有限公司 一种载波聚合中多载波多信道功率分配的方法及系统
US20110237288A1 (en) * 2010-03-25 2011-09-29 Motorola, Inc. Uplink power control for channel aggregation in a communication network
CN103687037A (zh) * 2012-09-12 2014-03-26 华为技术有限公司 一种资源调度的方法、设备及通信系统
CN104519555A (zh) * 2013-09-27 2015-04-15 电信科学技术研究院 一种信息传输方法及设备
CN104618883A (zh) * 2013-11-01 2015-05-13 上海贝尔股份有限公司 在双连接系统的承载分离场景中传输调度请求的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133705A (zh) * 2017-09-27 2020-05-08 瑞典爱立信有限公司 管理下行链路数据传送状态的方法
CN111133705B (zh) * 2017-09-27 2022-07-01 瑞典爱立信有限公司 管理下行链路数据传送状态的方法
US10873986B1 (en) * 2019-06-04 2020-12-22 Sprint Spectrum L.P. Use of buffer occupancy as a basis to control configuration of dual-connectivity service

Also Published As

Publication number Publication date
CN107154840B (zh) 2021-10-26
CN107154840A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
US20220239402A1 (en) Method for transmitting downlink control information in wireless communication system and device using same
US10805776B2 (en) Method for allocating V2X resource pool to subframe remaining after excluding specific subframe in wireless communication system, and terminal using same
US10757550B2 (en) Method for performing sensing during terminal-specific sensing period in wireless communication system, and terminal using same
US10448425B2 (en) Systems and methods for traffic-aware medium access selection
US11051304B2 (en) Method and apparatus for selecting carrier for sidelink transmission in wireless communication system
TWI661741B (zh) 通訊系統,通訊裝置及方法
WO2017148213A1 (zh) 资源分配控制方法、装置及系统
EP3554172A1 (en) V2x communication method executed by v2x terminal in wireless communication system, and terminal using same
US10805952B2 (en) Infrastructure equipment, wireless communications network and method
RU2693014C1 (ru) Терминал, способ и система
EP2536234B1 (en) Data transmission method and device in multi-carrier system
JP6386046B2 (ja) 通信端末および方法
US11115981B2 (en) Method and apparatus for allocating resource based on anchor carrier in wireless communication system
US11310810B2 (en) Method and apparatus for performing scheduling request to support plurality of services efficiently
EP3602904B1 (en) Extended scheduling request (sr) for enhanced scheduling information indication
EP3448100A1 (en) Uplink information transmission method, base station, and user equipment
JP6101486B2 (ja) バッファ状態報告の送信制御方法、ユーザ装置、および無線通信システム
KR20110082462A (ko) 이동 통신 시스템 및 그 이동 통신 시스템에서 rach 액세스 방법
WO2015109703A1 (zh) 一种终端设备及其发送上行数据的方法
JP2022544351A (ja) 解放されたリソースを利用する通信装置および通信方法
CN115104342B (zh) 缓冲器状态报告的连续性
US20220141848A1 (en) Communications device, infrastructure equipment and methods
US20240098772A1 (en) Uplink Latency Enhancements

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759064

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759064

Country of ref document: EP

Kind code of ref document: A1