WO2017147853A1 - 高强度化学强化玻璃、玻璃强化方法 - Google Patents

高强度化学强化玻璃、玻璃强化方法 Download PDF

Info

Publication number
WO2017147853A1
WO2017147853A1 PCT/CN2016/075495 CN2016075495W WO2017147853A1 WO 2017147853 A1 WO2017147853 A1 WO 2017147853A1 CN 2016075495 W CN2016075495 W CN 2016075495W WO 2017147853 A1 WO2017147853 A1 WO 2017147853A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ion exchange
glass substrate
oxide
cerium
Prior art date
Application number
PCT/CN2016/075495
Other languages
English (en)
French (fr)
Inventor
胡伟
王钰
陈芳华
常瑞荆
Original Assignee
深圳市力沣实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市力沣实业有限公司 filed Critical 深圳市力沣实业有限公司
Priority to PCT/CN2016/075495 priority Critical patent/WO2017147853A1/zh
Publication of WO2017147853A1 publication Critical patent/WO2017147853A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • C03B27/03Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the invention belongs to the technical field of glass, and in particular relates to a high-strength chemically strengthened glass and a glass strengthening method.
  • Glass materials are increasingly used in electronics, automotive, construction and other fields. Their superior surface hardness and structural strength are typical characteristics of glass materials.
  • ion-enhanced glass in the glass industry is based on monovalent ion exchange.
  • the main soda-lime-silica glass and alumino-silica glass are all exchanged with potassium ions with a larger ionic radius to exchange sodium with smaller ionic radius in the glass.
  • the ions are exchanged to produce a compressive stress of about 550 MPa on the surface of the glass.
  • the compressive stress layer depth i.e., the ion exchange layer depth
  • the compressive stress layer depth may be approximately 8-12 ⁇ m.
  • the principle is: since the ionic radius of potassium ions is 1.38 angstroms, and the ionic radius of sodium ions is 1.02 angstroms, the ionic radius difference between the two is 0.36 angstroms, and the ionic radius increase ratio after exchange is 35.3%, and the volume increase ratio is larger. Larger ions in the salt bath are used to exchange smaller ions in the glass, creating a squeezing effect that produces compressive stress to increase strength.
  • the present invention provides a high-strength chemically strengthened glass, a glass substrate strengthening method, which aims to improve the strength of the glass and meet the requirements of the development of the glass for the strength of the industry.
  • the present invention is achieved by a high-strength chemically strengthened glass having at least one side containing an ion exchange layer containing the high-strength chemistry through an ion exchange chemical strengthening process Strengthen the divalent alkaline earth metal ions inside the glass.
  • the ion exchange layer further contains a monovalent alkali metal ion that enters the interior of the high-strength chemically strengthened glass by an ion exchange chemical strengthening process.
  • the high-strength chemically strengthened glass has a single-sided surface compressive stress of 550 MPa to 1500 MPa.
  • the ion exchange layer has a single face depth of not more than 150 ⁇ m.
  • the molar ratio of monovalent ions to divalent ions produced by the exchange in the ion exchange layer is 100:5 to 50.
  • the present invention also provides a method for strengthening a glass substrate, comprising the steps of: placing a glass substrate to be strengthened in an ion exchange salt bath to be used in a monovalent alkali metal oxide in the glass substrate.
  • the monovalent alkali metal ion undergoes monovalent ion exchange and divalent ion exchange of the divalent alkaline earth metal ion in the divalent alkaline earth metal oxide in the glass substrate to obtain the high-intensity chemistry according to claims 1 to 5. Tempered glass.
  • the temperature of the salt bath is 350 to 820 °C.
  • the salt bath includes at least one of a nitrate or a chloride salt.
  • a material for exchanging monovalent lithium ions in the glass substrate is at least one of sodium nitrate, potassium nitrate, sodium chloride, and potassium chloride;
  • the material of the sodium ion is at least one of potassium nitrate, cerium nitrate, potassium chloride and cerium chloride;
  • the material used for exchanging the divalent magnesium ion in the glass substrate is calcium nitrate, cerium nitrate, cerium nitrate, chlorination.
  • At least one of calcium, barium chloride, and barium chloride; and the material for exchanging divalent calcium ions in the glass substrate is at least one of barium nitrate, barium nitrate, barium chloride, and barium chloride.
  • the radius of ions exchanged into the glass substrate is greater than the radius of the isovalent ions exchanged from the glass substrate.
  • the monovalent ion exchange and the divalent ion exchange are performed simultaneously or stepwise.
  • the molar ratio of the monovalent alkali metal oxide to the divalent alkaline earth metal oxide in the glass substrate is 100:10 to 75.
  • the monovalent alkali metal oxide has a mass content of 5% to 25% in the glass substrate; the monovalent alkali metal oxide includes lithium oxide, sodium oxide, potassium oxide, cerium oxide, and oxidation. At least one of cerium and cerium oxide.
  • the divalent alkaline earth metal oxide has a mass content of 1% to 18% in the glass substrate; the divalent alkaline earth metal oxide includes cerium oxide, magnesium oxide, calcium oxide, cerium oxide, and oxidation. At least one of cerium and oxidized radium.
  • the glass substrate further comprises 40 to 65% by mass of silica. And other oxides in an amount of 10 to 35% by mass.
  • the present invention has the beneficial effects that the glass substrate provided by the invention simultaneously contains a monovalent alkali metal ion and a divalent alkaline earth metal ion which can participate in an ion exchange chemical strengthening process, and the glass base is used.
  • the divalent ion is used to replace or supplement the monovalent ion exchange.
  • the ratio of ionic radius increase after exchange is significantly higher than that of the prior art monovalent ion exchange, and the volume increase ratio of divalent ion exchange is larger than that of monovalent ion exchange.
  • the high-strength chemically strengthened glass obtained by the method of divalent ion exchange tempered glass has greater surface compressive stress and ion exchange depth, thereby having higher strength and impact resistance.
  • the glass substrate strengthening method provided by the invention has simple operation and is convenient for industrial production.
  • 1 is a schematic view showing the mass content of each raw material provided by an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the composition of the specific salt bath, the number of ion exchanges, the process parameter conditions, and the performance test results of the strengthened glass sample according to an embodiment of the present invention
  • the specific gravity of the glass component is wt%; the test glass size is: 110*60*0.8mm; the 3-point bending parameters are: span 40mm, tool diameter 6mm, loading speed 10mm/min; surface compressive stress value and surface compressive stress depth Adopting Japanese Orihara FSM6000 surface stress meter measurement obtained;
  • FIG 3 is a schematic view showing the mass content of a glass substrate and a glass component after strengthening according to an embodiment of the present invention.
  • Glass strengthening is a glass secondary processing process, generally refers to increasing the strength of the glass by changing the chemical composition of the glass surface, which is generally enhanced by ion exchange.
  • the principle of ion exchange strengthening is to increase the strength of the glass by forming a compressive stress layer on the surface of the glass by ion exchange.
  • a surface compressive stress layer is formed.
  • the quantity of ion exchange and the depth of the exchange layer are the key indicators of the enhancement effect.
  • the strength of the glass is also affected by the surface quality and the quality of the edge processing.
  • a glass substrate suitable for chemical ion exchange strengthening is prepared, the components of which contain a divalent alkaline earth metal oxide which can participate in an ion exchange chemical strengthening process.
  • the glass substrate may further comprise a monovalent alkali metal oxide which may participate in an ion exchange chemical strengthening process, wherein the molar ratio of the monovalent alkali metal oxide to the divalent alkaline earth metal oxide is 100:10 to 75; It is 100:15 ⁇ 60.
  • the content of the monovalent alkali metal oxide in the glass substrate is from 5% to 25%; preferably from 12% to 20%.
  • the monovalent alkali metal oxide includes at least one of lithium oxide, sodium oxide, potassium oxide, cerium oxide, cerium oxide, and cerium oxide.
  • the content of the divalent alkaline earth metal oxide in the glass substrate is from 1% to 18%; preferably from 3% to 15%.
  • the divalent alkaline earth metal oxide includes at least one of cerium oxide, magnesium oxide, calcium oxide, cerium oxide, cerium oxide, and radium oxide.
  • the composition of the glass substrate further comprises 50 to 70% by mass of silica. And other oxides in an amount of 10 to 35% by mass.
  • the method for strengthening the glass substrate comprises the steps of: placing the glass substrate in an ion exchange salt bath to perform a monovalent alkali metal ion in the monovalent alkali metal oxide in the glass substrate.
  • the high-strength chemically strengthened glass of the present invention is obtained by valence ion exchange strengthening and divalent ion exchange strengthening of divalent alkaline earth metal ions in the divalent alkaline earth metal oxide.
  • the salt bath includes at least one of a nitrate or a chloride salt.
  • the salt material for exchanging monovalent lithium ions in the glass is at least one of sodium nitrate, potassium nitrate, sodium chloride and potassium chloride; and the material for exchanging monovalent sodium ions in the glass is potassium nitrate and nitric acid.
  • At least one of cerium, potassium chloride and cerium chloride; the material for exchanging divalent magnesium ions in the glass is at least one of calcium nitrate, cerium nitrate, cerium nitrate, calcium chloride, cerium chloride and cerium chloride.
  • a material for exchanging divalent calcium ions in the glass is at least one of cerium nitrate, cerium nitrate, cerium chloride, and cerium chloride.
  • the radius of ions exchanged into the glass substrate is greater than the isovalent ions exchanged from the glass; wherein monovalent ion exchange and divalent ion exchange can be performed simultaneously, or according to The demand is carried out step by step.
  • the temperature of the salt bath is 350 to 820 ° C; preferably 400 to 600 ° C.
  • the ion exchange strengthening time is from 3 min to 15 h, and the glass substrates of different thicknesses have different strengthening times.
  • the strengthening time of 0.2 mm thick ultra-thin glass is 3 min; the strengthening time of 3 mm thick glass is 15 h; this strengthening time can be adjusted according to the thickness and demand of the glass.
  • the high-strength chemically strengthened glass obtained has a single-sided surface compressive stress of 550 MPa to 1500 MPa, preferably 550 MPa to 1200 MPa; and the ion exchange strengthened single-sided ion exchange layer has a depth of not more than 150 ⁇ m, preferably 8 to 150 ⁇ m, more It is preferably 35-150 ⁇ m.
  • the molar ratio of monovalent ions to divalent ions produced by the exchange in the ion exchange layer is from 100:5 to 50; preferably from 100:5 to 30.
  • the high-strength chemically strengthened glass of the invention has the characteristics of high strength, uniform stress, no self-explosion phenomenon; no deformation, good surface flatness, no optical distortion; strong thermal shock resistance; can be cut, coated, laminated Re-processing; not limited by the thickness of the glass, the shape of the product, especially suitable for the reinforcement of thin glass and shaped glass products.
  • the invention replaces or supplements monovalent ion exchange with divalent ions, and can generate greater surface compressive stress to further increase the strength of the glass.
  • the underlying principle is that the ionic radius of the divalent ions is: 0.45: 0.45 angstroms, magnesium: 0.72 angstroms, calcium: 1.00 angstroms, lanthanum: 1.18 angstroms, lanthanum: 1.35 angstroms, radium: 1.48 angstroms.
  • the strontium in the salt bath is used to exchange magnesium in the glass, and the difference in radius between the two is 0.63 angstroms, and the ionic radius increase ratio after exchange is 87.5%, which is much higher than the ratio of monovalent ion exchange, divalent ions.
  • the ion volume increase produced by the exchange is greater than the monovalent ion exchange. Therefore, the method of divalent ion exchange tempered glass brings greater surface compressive stress and ion exchange depth to the glass substrate, thereby greatly improving the strength and impact resistance of the glass.
  • the following raw material powders are weighed; after mixing all the above raw materials, they are placed in platinum ruthenium and melted at a temperature of 1600-1800 ° C, and then cold-cast and cast-formed at 550-
  • the glass substrate of the present invention can be produced by annealing at 650 °C.
  • the glass substrate of the present embodiment and the glass after ion exchange strengthening were respectively subjected to X-ray fluorescence qualitative analysis, and the mass content (%) of the components was measured, and the result after compensation according to the measured value is shown in FIG. 3:
  • the alkali metal ion oxide Na2O and the alkaline earth metal oxide MgO are contained in the glass substrate before strengthening, and do not contain the alkali metal ion K+ and the alkaline earth metal ion Ba2+, but after ion exchange, ion exchange Both the metal ion K+ and the alkaline earth metal ion Ba2+ in the salt bath participate in ion exchange into the glass substrate.
  • the K+ ion radius is 1.38 angstroms, and the Na+ ion radius is 1.02 angstroms.
  • the ionic radius difference between the two is 0.36 angstroms, the ionic radius increase ratio after exchange is 35.3%; the Ba2+ ionic radius is 1.35 angstroms, and the Mg2+ ionic radius is 0.72 angstroms.
  • the difference in radius is 0.63 angstroms, and the ionic radius increase ratio after exchange is 87.5%; the exchange volume ratio of divalent alkaline earth metal ions is larger than that produced by monovalent ion exchange, which brings the glass substrate
  • the greater surface compressive stress and ion exchange depth significantly increase the strength and impact resistance of the glass substrate, resulting in high strength chemically strengthened glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种高强度化学强化玻璃,所述高强度化学强化玻璃的至少一面含有离子交换层,所述离子交换层中含有通过离子交换式化学强化工艺进入所述高强度化学强化玻璃内部的二价碱土金属离子;所述离子交换层中还含有通过离子交换式化学强化工艺进入所述高强度化学强化玻璃内部的一价碱金属离子。一种玻璃基材的强化方法,包括以下步骤:将待强化玻璃基材置于离子交换盐浴中,进行离子交换强化,获得所述的高强度化学强化玻璃。上述玻璃基材强化方法,操作简单,便于工业化生产。高强度化学强化玻璃具有更大的表面压应力和离子交换深度,从而具有更高的强度和抗冲击性能。

Description

高强度化学强化玻璃、玻璃强化方法 技术领域
本发明属于玻璃技术领域,尤其涉及高强度化学强化玻璃、玻璃强化方法。
背景技术
玻璃材料越来越多的应用于电子、汽车、建筑等领域,其优越的表面硬度以及结构强度是玻璃材料的典型特征。目前玻璃行业中的离子强化玻璃都是基于一价离子交换进行的,主要的钠钙硅玻璃和铝硅玻璃,均是采用离子半径较大的钾离子来交换玻璃中的离子半径较小的钠离子进行交换,在玻璃表面产生550Mpa左右的压应力。压应力层深度(也就是离子交换层深度)可以大约为8-12μm。其原理是:由于钾离子的离子半径为1.38埃,而钠离子的离子半径1.02埃,两者的离子半径差为0.36埃,交换之后的离子半径增加比例为35.3%,体积增加比例则更大,采用盐浴中较大的离子来交换玻璃中较小的离子,产生挤压效应,从而产生压应力来增加强度。
但是随着社会的发展,行业对玻璃强度的要求也越来越高;单位厚度上的玻璃强度提高,可以降低玻璃的厚度,从而减轻玻璃的质量,对于电动汽车等对于能耗要求高的产品来说是具备极其重要意义的。现有的这种离子交换强化产生的玻璃越来越难以满足行业发展对玻璃强度的要求,目前行业内急需一种强度更高的玻璃。
技术问题
为解决上述技术问题,本发明提供了一种高强度化学强化玻璃、一种玻璃基材的强化方法,旨在提升玻璃强度,满足行业发展对玻璃强度的要求。
技术解决方案
本发明是这样实现的,一种高强度化学强化玻璃,所述高强度化学强化玻璃的至少一面含有离子交换层,所述离子交换层中含有通过离子交换式化学强化工艺进入所述高强度化学强化玻璃内部的二价碱土金属离子。
进一步地,所述离子交换层中还含有通过离子交换式化学强化工艺进入所述高强度化学强化玻璃内部的一价碱金属离子。
进一步地,所述高强度化学强化玻璃的单面表面压应力为550Mpa~1500Mpa。
进一步地,所述离子交换层的单面深度不大于150μm。
进一步地,所述离子交换层中交换产生的一价离子和二价离子的摩尔比为100:5~50。
本发明还提供了一种玻璃基材的强化方法,包括以下步骤:将待强化的玻璃基材置于离子交换盐浴中,以对所述玻璃基材中的一价碱金属氧化物中的一价碱金属离子进行一价离子交换和对所述玻璃基材中的二价碱土金属氧化物中的二价碱土金属离子进行二价离子交换,得到权利要求1~5所述的高强度化学强化玻璃。
进一步地,所述盐浴的温度为350~820℃。
进一步地,所述盐浴包括硝酸盐或氯化盐中的至少一种。
进一步地,所述盐浴中,用于交换玻璃基材中一价锂离子的材料为硝酸钠、硝酸钾、氯化钠、氯化钾中的至少一种;用于交换玻璃基材中一价钠离子的材料为硝酸钾、硝酸铷、氯化钾、氯化铷中的至少一种;用于交换玻璃基材中二价镁离子的材料为硝酸钙、硝酸锶、硝酸钡、氯化钙、氯化锶、氯化钡中的至少一种;用于交换玻璃基材中二价钙离子的材料为硝酸锶、硝酸钡、氯化锶、氯化钡中的至少一种。
进一步地,所述离子交换过程中,交换进入玻璃基材中的离子的半径大于从玻璃基材中被交换出来的同价位离子的半径。
进一步地,所述一价离子交换和二价离子交换为同时进行或分步进行。
进一步地,所述玻璃基材中一价碱金属氧化物和二价碱土金属氧化物的摩尔比为100:10~75。
进一步地,所述一价碱金属氧化物在所述玻璃基材中的质量含量为5%~25%;所述一价碱金属氧化物包括氧化锂、氧化钠、氧化钾、氧化铷、氧化铯和氧化钫中的至少一种。
进一步地,所述二价碱土金属氧化物在所述玻璃基材中的质量含量为1%~18%;所述二价碱土金属氧化物包括氧化铍、氧化镁、氧化钙、氧化锶、氧化钡和氧化镭中的至少一种。
进一步地,所述玻璃基材中还包括40~65%质量含量的二氧化硅, 以及10~35%质量含量的其他氧化物。
有益效果
本发明与现有技术相比,有益效果在于:本发明提供的玻璃基材中同时含有可参与进行离子交换式化学强化工艺的一价碱金属离子和二价碱土金属离子,将这种玻璃基材进行离子交换强化时,采用二价离子取代或补充一价离子交换。交换之后的离子半径增加比例显著高于现有技术中一价离子交换的比例,二价离子交换产生的离子体积增加比例则要比一价离子交换的更大。因此由二价离子交换强化玻璃的方法获得的高强度化学强化玻璃具有更大的表面压应力和离子交换深度,从而具有更高的强度和抗冲击性能。本发明提供的玻璃基材强化方法,操作简单,便于工业化生产。
附图说明
图1是本发明实施例提供的各原料质量含量示意图;
图2是本发明实施例提供的具体的盐浴的成分、离子交换的次数和工艺参数条件和强化后的玻璃样品的性能测试结果的示意图;
其中:玻璃成分比重为wt%;测试玻璃尺寸为:110*60*0.8mm;3点弯曲参数为:跨距40mm、刀具直径6mm、加载速度10mm/min;表面压应力值以及表面压应力深度采用日本Orihara FSM6000型表面应力仪测量获得;
图3是本发明实施例提供的玻璃基材以及强化之后的玻璃组分的质量含量示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
玻璃强化是一种玻璃二次加工工艺,一般是指通过改变玻璃表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行强化。离子交换强化的原理是通过离子交换在玻璃表面形成压应力层而提高玻璃强度,玻璃内部的小半径碱金属离子与熔盐中的大半径碱金属离子发生交换,在玻璃表面产生挤塞现象,形成表面压应力层。这对玻璃中碱金属的含量有一定的要求,其中离子交换的数量和交换层的深度是增强效果的关键指标,玻璃的强度还受表面质量和边部加工质量的影响。
按照本发明的技术方案制备高强度化学强化玻璃:
首先制备一种适用于化学离子交换法强化的玻璃基材,其组分含有可参与进行离子交换式化学强化工艺的二价碱土金属氧化物。所述玻璃基材还可含有可参与进行离子交换式化学强化工艺的一价碱金属氧化物,其中一价碱金属氧化物和二价碱土金属氧化物的摩尔比为100:10~75;优选为100:15~60。
具体地,一价碱金属氧化物在玻璃基材中的含量为5%~25%;优选为12%~20%。一价碱金属氧化物包括氧化锂、氧化钠、氧化钾、氧化铷、氧化铯和氧化钫中的至少一种。二价碱土金属氧化物在玻璃基材中的含量为1%~18%;优选为3%~15%。二价碱土金属氧化物包括氧化铍、氧化镁、氧化钙、氧化锶、氧化钡和氧化镭中的至少一种。此外,玻璃基材的组分还包括50~70%质量含量的二氧化硅, 以及10~35%质量含量的其他氧化物。
制备本发明提供的玻璃基材的强化方法,步骤为:将上述玻璃基材置于离子交换盐浴中,以对玻璃基材中的一价碱金属氧化物中的一价碱金属离子进行一价离子交换强化和对二价碱土金属氧化物中的二价碱土金属离子进行二价离子交换强化,制得本发明的高强度化学强化玻璃。
具体地,所述盐浴包括硝酸盐或氯化盐中的至少一种。其中,用于交换玻璃中一价锂离子的盐材料为硝酸钠、硝酸钾、氯化钠、氯化钾中的至少一种;用于交换玻璃中一价钠离子的材料为硝酸钾、硝酸铷、氯化钾、氯化铷中的至少一种;用于交换玻璃中二价镁离子的材料为硝酸钙、硝酸锶、硝酸钡、氯化钙、氯化锶、氯化钡中的至少一种;用于交换玻璃中二价钙离子的材料为硝酸锶、硝酸钡、氯化锶、氯化钡中的至少一种。
具体地,在离子交换强化过程中,交换进入玻璃基材中的离子的半径大于从玻璃中被交换出来的同价位离子;其中的一价离子交换和二价离子交换可同时进行,也可根据需求分步进行。
具体地,盐浴的温度为350~820℃;优选为400~600℃。离子交换强化的时间为3min~15h,不同厚度的玻璃基材,强化的时间不同。0.2mm厚的超薄玻璃的强化时间为3min;3mm厚的玻璃的强化时间为15h;这一强化时间可根据玻璃厚度和需求不同而进行调整。
具体地,制得的高强度化学强化玻璃的单面表面压应力为550Mpa~1500Mpa,优选550Mpa~1200Mpa;进行离子交换强化的单面离子交换层的深度不大于150μm,优选为8-150μm,更优选为35-150μm。离子交换层中交换产生的一价离子和二价离子的摩尔比值为100:5~50;优选为100:5~30。
本发明的高强度化学强化玻璃的特点:强度高,应力均匀,无自爆现象;不存在变形,表面平整度好,不产生光畸变;抗热冲击能力强;可作切裁、镀膜、夹胶等再加工;不受玻璃厚度、产品形状的限制,特别适合薄玻璃、异型玻璃制品的增强。
本发明采用二价离子取代或补充一价离子交换,能够产生更大的表面压应力从而更进一步提高玻璃的强度。根本原理在于:二价离子的离子半径为,铍:0.45埃、镁:0.72埃、钙:1.00埃、锶:1.18埃、钡:1.35埃、镭:1.48埃。例如,采用盐浴中的钡来交换玻璃中的镁,两者的半径差为0.63埃,交换之后的离子半径增加比例为87.5%,要大大的高于一价离子交换的比例,二价离子交换产生的离子体积增加比例则要比一价离子交换更大。因此二价离子交换强化玻璃的方法为玻璃基材带来更大的表面压应力和离子交换深度,从而大大的提高了玻璃的强度和抗冲击性能。
下面结合具体实施例对本发明的技术方案做进一步说明。
实施例
按图1中的质量含量比数据(%),称取下列各原料粉末;将以上所有原料混合之后,放入铂金坩埚在1600-1800℃的温度下熔化,徐冷后浇注成型,在550-650℃退火即可制成本发明的玻璃基材。
取以上制备的玻璃基材,通过以下冷加工步骤:切片、细磨、磨边、倒角、抛光;清洗后插入不锈钢架内,分别放入盐浴内进行一次或多次离子交换,然后放入密闭容器内缓冷至室温;取出强化后的玻璃样品,清洗后进行表面应力值、离子交换深度的测量,再进行抗弯强度测试。具体的盐浴的成分、离子交换的次数和工艺参数条件和以上实施例的测试结果如图2:
将本实施例的玻璃基材以及进行离子交换强化之后的玻璃分别做X荧光定性分析,测量其组分的质量含量(%),根据测量值补偿后的结果如图3:
从图3中可以看出:在强化之前的玻璃基材中含有碱金属离子氧化物Na2O和碱土金属氧化物MgO,不含有碱金属离子K+和碱土金属离子Ba2+,但在离子交换之后,离子交换盐浴中的金属离子K+和碱土金属离子Ba2+都参与了离子交换进入到玻璃基材中。
K+离子半径为1.38埃,而Na+离子半径1.02埃,两者的离子半径差为0.36埃,交换之后的离子半径增加比例为35.3%;Ba2+离子半径为1.35埃,Mg2+离子半径为0.72埃,两者的半径差为0.63埃,交换之后的离子半径增加比例为87.5%;二价碱土金属离子的交换产生的离子体积增加比例则要比一价离子交换产生的更大,为玻璃基材带来更大的表面压应力和离子交换深度,从而显著提高了玻璃基材的强度和抗冲击性能,获得了高强度化学强化玻璃。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种高强度化学强化玻璃,其特征在于,所述高强度化学强化玻璃的至少一面含有离子交换层,所述离子交换层中含有通过离子交换式化学强化工艺进入所述高强度化学强化玻璃内部的二价碱土金属离子。
  2. 如权利要求1所述的高强度化学强化玻璃,其特征在于,所述离子交换层中还含有通过离子交换式化学强化工艺进入所述高强度化学强化玻璃内部的一价碱金属离子。
  3. 如权利要求1或2所述的高强度化学强化玻璃,其特征在于,所述高强度化学强化玻璃的单面表面压应力为550Mpa~1500Mpa。
  4. 如权利要求1或2所述的高强度化学强化玻璃,其特征在于,所述离子交换层的单面深度不大于150μm。
  5. 如权利要求2所述的高强度化学强化玻璃,其特征在于,所述离子交换层中交换产生的一价离子和二价离子的摩尔比为100:5~50。
  6. 一种玻璃基材的强化方法,其特征在于,包括以下步骤:将待强化的玻璃基材置于离子交换盐浴中,以对所述玻璃基材中的一价碱金属氧化物中的一价碱金属离子进行一价离子交换和对所述玻璃基材中的二价碱土金属氧化物中的二价碱土金属离子进行二价离子交换,得到权利要求1~5所述的高强度化学强化玻璃。
  7. 如权利要求6所述的强化方法,其特征在于,所述盐浴的温度为350~820℃。
  8. 如权利要求6所述的强化方法,其特征在于,所述盐浴包括硝酸盐或氯化盐中的至少一种。
  9. 如权利要求6所述的强化方法,其特征在于,所述盐浴中,用于交换玻璃基材中一价锂离子的材料为硝酸钠、硝酸钾、氯化钠、氯化钾中的至少一种;用于交换玻璃基材中一价钠离子的材料为硝酸钾、硝酸铷、氯化钾、氯化铷中的至少一种;用于交换玻璃基材中二价镁离子的材料为硝酸钙、硝酸锶、硝酸钡、氯化钙、氯化锶、氯化钡中的至少一种;用于交换玻璃基材中二价钙离子的材料为硝酸锶、硝酸钡、氯化锶、氯化钡中的至少一种。
  10. 如权利要求6所述的强化方法,其特征在于,所述离子交换过程中,交换进入玻璃基材中的离子的半径大于从玻璃基材中被交换出来的同价位离子的半径。
  11. 如权利要求6所述的强化方法,其特征在于,所述一价离子交换和二价离子交换为同时进行或分步进行。
  12. 如权利要求6所述的强化方法,其特征在于,所述玻璃基材中一价碱金属氧化物和二价碱土金属氧化物的摩尔比为100:10~75。
  13. 如权利要求6所述的强化方法,其特征在于,所述一价碱金属氧化物在所述玻璃基材中的质量含量为5%~25%;所述一价碱金属氧化物包括氧化锂、氧化钠、氧化钾、氧化铷、氧化铯和氧化钫中的至少一种。
  14. 如权利要求6所述的强化方法,其特征在于,所述二价碱土金属氧化物在所述玻璃基材中的质量含量为1%~18%;所述二价碱土金属氧化物包括氧化铍、氧化镁、氧化钙、氧化锶、氧化钡和氧化镭中的至少一种。
  15. 如权利要求6所述的强化方法,其特征在于,所述玻璃基材中还包括40~65%质量含量的二氧化硅。
PCT/CN2016/075495 2016-03-03 2016-03-03 高强度化学强化玻璃、玻璃强化方法 WO2017147853A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075495 WO2017147853A1 (zh) 2016-03-03 2016-03-03 高强度化学强化玻璃、玻璃强化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075495 WO2017147853A1 (zh) 2016-03-03 2016-03-03 高强度化学强化玻璃、玻璃强化方法

Publications (1)

Publication Number Publication Date
WO2017147853A1 true WO2017147853A1 (zh) 2017-09-08

Family

ID=59743041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075495 WO2017147853A1 (zh) 2016-03-03 2016-03-03 高强度化学强化玻璃、玻璃强化方法

Country Status (1)

Country Link
WO (1) WO2017147853A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019084645A1 (pt) * 2017-10-30 2019-05-09 Dantas Junior Luzo Produto e processo para geração de frequências extremamente baixas para equalização química
CN114133147A (zh) * 2022-01-06 2022-03-04 深圳市悦目光学器件有限公司 一种通过两次盐浴离子置换强化玻璃的方法及强化玻璃

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424271A (zh) * 2002-12-26 2003-06-18 上海莹力科技有限公司 一种磁记录盘玻璃基片离子交换表面增强方法
CN102815860A (zh) * 2011-06-10 2012-12-12 肖特玻璃科技(苏州)有限公司 形成具有多个表面应力层钢化玻璃的方法及钢化玻璃制品
CN103068759A (zh) * 2010-08-26 2013-04-24 康宁股份有限公司 强化玻璃的二步法
JP2013100195A (ja) * 2011-11-08 2013-05-23 Luminous Optical Technology Co Ltd ガラス基板の表面に支圧応力層パターンを形成する方法及び該方法で製造されたガラス基板
CN104661977A (zh) * 2012-09-18 2015-05-27 旭硝子株式会社 玻璃强化用熔融盐、强化玻璃的制造方法及玻璃强化用熔融盐的寿命延长方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424271A (zh) * 2002-12-26 2003-06-18 上海莹力科技有限公司 一种磁记录盘玻璃基片离子交换表面增强方法
CN103068759A (zh) * 2010-08-26 2013-04-24 康宁股份有限公司 强化玻璃的二步法
CN102815860A (zh) * 2011-06-10 2012-12-12 肖特玻璃科技(苏州)有限公司 形成具有多个表面应力层钢化玻璃的方法及钢化玻璃制品
JP2013100195A (ja) * 2011-11-08 2013-05-23 Luminous Optical Technology Co Ltd ガラス基板の表面に支圧応力層パターンを形成する方法及び該方法で製造されたガラス基板
CN104661977A (zh) * 2012-09-18 2015-05-27 旭硝子株式会社 玻璃强化用熔融盐、强化玻璃的制造方法及玻璃强化用熔融盐的寿命延长方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019084645A1 (pt) * 2017-10-30 2019-05-09 Dantas Junior Luzo Produto e processo para geração de frequências extremamente baixas para equalização química
CN114133147A (zh) * 2022-01-06 2022-03-04 深圳市悦目光学器件有限公司 一种通过两次盐浴离子置换强化玻璃的方法及强化玻璃

Similar Documents

Publication Publication Date Title
CN105837031B (zh) 高强度化学强化玻璃、玻璃强化方法
JP7399198B2 (ja) 高い損傷耐性を備えた、ジルコン適合性を有するイオン交換可能なガラス
JP7198560B2 (ja) イオン交換可能な混合アルカリアルミノケイ酸塩ガラス
US11485674B2 (en) Glasses having high fracture toughness
KR102325873B1 (ko) 고강도 초박형 유리 및 이의 제조 방법
JP7262461B2 (ja) 黒色ケイ酸リチウムガラスセラミック
EP3313795B1 (en) Glass with high surface strength
TW201742841A (zh) 在後離子交換熱處理之後保留高壓縮應力的玻璃組成物
EP2576468B1 (en) Ion exchangeable glasses
WO2019108751A1 (en) Glasses with low excess modifier content
JP2018104284A (ja) ガラスを強化する二段階法
KR20210030375A (ko) 개선된 응력 프로파일을 갖는 유리-계 물품
TW201602038A (zh) 化學強化鹼鋁矽酸鹽玻璃用玻璃組成物及其製造方法
CN113248159A (zh) 提高具有多个厚度的玻璃制品上的iox加工性的方法
WO2018166139A1 (zh) 一种化学强化用玻璃以及由其制备的抗断裂玻璃板
US20230056119A1 (en) Glasses having high fracture toughness
KR20220108071A (ko) 높은 파괴 인성을 갖는 알루미노실리케이트 유리
WO2017147853A1 (zh) 高强度化学强化玻璃、玻璃强化方法
CN105481247A (zh) 一种铝硅酸盐玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
WO2022037334A1 (zh) 具有高压应力和高安全性的强化玻璃及其加工方法
CN109020192A (zh) 一种具有高应变点、可快速离子交换和耐弱酸性的锌磷铝硅酸盐玻璃
JP6593227B2 (ja) 化学強化ガラスの製造方法
CN116783150A (zh) 具有高泊松比的玻璃组合物
CN109650718B (zh) 浮法玻璃及其制备方法和应用
WO2022037333A1 (zh) 一种具有安全应力状态的强化玻璃及其加工方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892044

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.02.19)

122 Ep: pct application non-entry in european phase

Ref document number: 16892044

Country of ref document: EP

Kind code of ref document: A1