WO2017146467A1 - Construction apparatus for u-shaped nuclear reactor module pipe - Google Patents

Construction apparatus for u-shaped nuclear reactor module pipe Download PDF

Info

Publication number
WO2017146467A1
WO2017146467A1 PCT/KR2017/001959 KR2017001959W WO2017146467A1 WO 2017146467 A1 WO2017146467 A1 WO 2017146467A1 KR 2017001959 W KR2017001959 W KR 2017001959W WO 2017146467 A1 WO2017146467 A1 WO 2017146467A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
reactor
tube
steam generator
shaped module
Prior art date
Application number
PCT/KR2017/001959
Other languages
French (fr)
Korean (ko)
Inventor
문인득
문선재
Original Assignee
문인득
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문인득 filed Critical 문인득
Publication of WO2017146467A1 publication Critical patent/WO2017146467A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/053Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work aligning cylindrical work; Clamping devices therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a construction device for the reactor coolant piping provided in the reactor coolant system facilities, and more specifically to the final connection section (Closure loop) of the core section of the CE type 2 LOOP reactor coolant piping by using a U-type piping module
  • the shrinkage stress due to welding does not extend in the lateral (horizontal) direction, but acts only in the longitudinal (vertical) direction, and by applying a tie strap to the weld connection, the hot pipe and the low temperature of the reactor coolant piping
  • By minimizing the residual load due to the welding shrinkage deformation which exists after the connection welding between the final connection section of the pipe and the intermediate pipe it is possible to prevent various vibrations generated during operation of the reactor coolant facility and contact wear between the various parts.
  • the present invention relates to a reactor U-shaped module pipe construction device.
  • nuclear power plants have been developed in Korea, for example, System Plus 80 (Hanbit 3, 4) of Conbustion Engineering (CE), Korean standard nuclear power plants (Hanul 3, 4, 5, 6 and Hanbit 5, 6), OPR1000 (Shin-Gori 1,2), APR1400 (Shin-Gori 3,4, Shin-Uljin 1,2, UAE Nuclear Power Plants 1-4), 2-loop Pressurized Water Reactor.
  • a reactor power plant (hereinafter referred to simply as a "nuclear reactor”) is a reactor coolant system (RCS) in a containment building, as described in Korean Patent Publication No. 10-1473665, "Pipe support device for replacing parts of a nuclear power plant.” ) Is provided.
  • RCS reactor coolant system
  • FIG. 1 the basic structure of such a nuclear power plant (hereinafter referred to simply as “nuclear reactor”) is shown.
  • a reactor coolant system (RCS) in a containment building.
  • RCS reactor coolant system
  • This reactor coolant system has a reactor 5 containing a reactor at the center and at least one heat transfer circuit 7 connected thereto.
  • FIG. 1 two heat transfer circuits are shown connected in parallel to the reactor 5.
  • Each circuit 7 comprises two steam generators 9 and at least one, usually four coolant pumps 11 for circulating coolant between the reactor 5 and the steam generator 9.
  • Each circuit 7 includes three main pipes, the main pipe having a large diameter, connected to the main parts of the circuit.
  • the circuit 7 includes a pressurizer (not shown) to keep the temperature and pressure of the coolant constant.
  • the first large diameter pipe or hot leg 13 is a large diameter pipe of approximately 42 inches in diameter and is connected to one side of the reactor 5 and one suction side of the coolant chamber of the steam generator 9 so as to supply the reactor 5.
  • the heated coolant in contact with the core in () is sent to the steam generator (9).
  • the circulation pipe 15 called a cross-over leg connects one side of the discharge part of the coolant chamber of the steam generator 9 and one side of the vortex chamber suction part of the coolant pump 11.
  • the cold leg 17 connects between the vortex chamber of the coolant pump 11 and the reactor 5.
  • each steam generator 9 has its lower side fixedly supported by a number of stud anchors (not shown) on a sliding base (not shown), which sliding base is placed on a forged anchor plate. It is supported on a number of, for example, four hemispherical sliders provided to accommodate the minute left and right movements occurring during operation of the reactor.
  • the conventional construction process of the reactor coolant piping provided in such a reactor coolant system equipment is as follows. That is, as shown in FIG.
  • the installation guideline of the CE type reactor recommends the use of temporary supports instead of permanent supports when welding the reactor piping to the inlet and inlet sides of the coolant pump (11). The reason is to allow movement due to weld shrinkage and to leave no restraint on the pump support. This method was applied in Hanvit Units 3 and 4. However, the choice of installation method is specified in the installation manual by the contractor, and since then, it is common practice in the industry to apply the installation method using a permanent support.
  • Such a low temperature pipe is welded while the casing of the reactor coolant pump 11 and the vertical column support are permanently installed before the welding, so that the inclination of the flange surface of the reactor coolant pump 11 to a certain degree of horizontal elevation is allowed.
  • the center line of the four pumps 11 performs welding by compensating for the amount of welding shrinkage in advance.
  • the longitudinal welding shrinkage is mostly 7 ⁇ 9mm, and when the welding technician recognizes the displacement and the displacement occurs, the welding work is instructed in the opposite direction and the construction method corresponding to the rotational shrinkage is applied. Welding is possible while compensating for.
  • elbows P004, P008, P013, and P017 are attached to the lower end of the casing inlet of each coolant pump 11 to be welded to each other. At this time, the elbows P004, P008, P013, and P017 are welded on only one side, so there is no restraint. On the other hand, the elbows (P0 02, P006, P011, P015) on one side of the outlet tube of the steam generator (9) is first welded in an independent process, even when there is no restraint.
  • the final connection L-shaped spools (P003, P007, P012, P016) is processed after the alignment work.
  • the empirical value of the processing amount on the outlet pipe side of the steam generator 9 is about 9 mm maximum for manual welding.
  • a maximum of about 50 mm is required for the welding, and the slope of the flange of the pump container is manual. More automatic welding occurs.
  • This process is the pipe construction of the conventional coolant piping system that has been applied to the CE type 2-LOOP reactor.
  • the welding shrinkage since the final contracted L-shaped spools (P003, P007, P012, P016) after the completion of the processing, the welding shrinkage must occur in a state that is completely constrained in the direction of the cold tube, this process, Excessive shrinkage stress occurred at, resulting in low temperature cracking during manual welding.
  • coolant pump vertical column support since the coolant pump vertical column support is permanently installed, it does not exist only in the pipe welded part when welding shrinkage occurs, and because the vertical column support is fixed to the anchor bolt and constrained, it tries to cope with the shrinkage. The anchor bolt and the pump vertical support will remain. That is, in the conventional construction method, as shown in FIG.
  • the final connecting L-shaped spools (P003, P007, P012, P016) are formed by welding lines in the horizontal direction of the outlet pipe side elbows P002, P006, P011, and P015 of the steam generator 9).
  • Weld shrinkage occurs in the vertical direction (longitudinal) of.
  • another phenomenon to cope with the welding shrinkage affects the sliding base of the steam generator.
  • a reaction force is applied to the sliding base of the steam generator 9 to cope with the welding shrinkage 5 mm generated during the connection between the nozzle side of the steam generator 9 and the intermediate tube, and the horizontal altitude of the sliding base skirt before and after welding is about 1 mm. Settles.
  • the steam generator (9) nozzle of the stress relief heat treatment and the pump (11) still has residual stress. That is, the settlement of the sliding base and the preload remaining in the pump vertical column support remain in the pump vertical column support even though the stress relief heat treatment is performed on the welded portion. This residual load is one cause of pipe movement during reactor operation.
  • Vectel Engineering which performed the replacement work of the steam generator 9 of the US Milestone Point 2, failed to control the load remaining in the reactor coolant pump.
  • the typical replacement period was around 80 days, but this milestone point 2 took 185 days, and the radiation exposure remained more than three times that of the conventional replacement project.
  • the residual load remains in the support of the reactor coolant pump 11 and the sliding base of the steam generator 9, it affects the thermal expansion behavior of the reactor coolant system during the high temperature functional test, and thus the upper support of the steam generator 9 Affects the high temperature clearance requirement to be maintained between the key / keyway (not shown), and also the pin-to-pin distance between the room temperature (before heat-up and after cool-own) of the SNUBBER.
  • the problems caused by the conventional reactor coolant piping construction include longitudinal contraction and lateral contraction at the welds of the final connection L-shaped spools (P003, P007, P012, P016), and in the process, the lower support structure of the steam generator (9). And a spring back force remains in the vertical column of the coolant pump 11. That is, in the conventional process, since the welding is performed to the inlet pipe and the outlet pipe of the reactor coolant pump 11 using the permanent support, the restraining force remains.
  • the conventional process affects the horizontal altitude of the pump casing due to the action of the restraint force, and if a defect occurs in the welded part, local shrinkage occurs due to repair welding, resulting in the horizontal altitude of the pump casing being out of the design standard value. .
  • welding the final connecting L-shaped spools (P003, P007, P012, P016) generates a compressive load due to shrinkage on the sliding base, causing settlement.
  • This settlement increases the friction between the slider and the base plate. This settlement can be seen as the load remaining on the sliding base.
  • This residual load increases the frictional force of the slider in the initial stage of the reactor, thereby significantly inhibiting the lateral sliding operation.
  • the sliding base is a design requirement that must meet the installation tolerance (within level tolerance + /-0.889mm).
  • the welding contraction force in the vertical direction acts as a compressive force on the sliding base because two welding is performed at the same time.
  • the welding shrinkage causes a welding displacement of about 0.9 to 1.1 mm in the negative direction (-) in the vertical direction (longitudinal direction) due to the welding shrinkage, which remains as a compressive force on the sliding base.
  • This compressive force has the characteristic of suppressing slippage in the lateral direction (horizontal direction) by increasing the frictional force at the initial stage of starting.
  • the conventional reactor coolant pipe welding weld is provided with a permanent support (vertical column support) of the reactor coolant pump 11, the low temperature pipe is welded, and the final connection L-shaped spools (P003, P007, P012, P016) are removed.
  • the phenomenon that residual load exists in the lower support of the steam generator 9 and the vertical column support of the reactor coolant pump 11 cannot be avoided.
  • the welding construction of the reactor coolant pipe is a welding joint with shrinkage and deformation, rather than simply viewed as a weld, there is a need to manage it at a precise mechanical joint level.
  • the importance of construction technology to realize the design purpose cannot be said in words, but the guidelines recommended by the original designer's installation guideline correspond to the manual welding guidelines.
  • the Construction Manual recommends that two people carry out balance welding at the same time in opposite locations only when welding hot tubes. However, in automatic welding, the welding head is rotated in one direction, and almost all of them are applied, resulting in a problem caused by the failure of lateral contraction (circumferential) control.
  • An object of the present invention is to solve the conventional problems as described above, when the new reactor piping construction, sliding of the steam generator support structure generated by the welding shrinkage of the high-temperature pipe, low-temperature pipe, intermediate pipe closure loop (closure loop) It provides a reactor U-shaped module factory that can prevent the settlement of the base, prevent the operation mismatch of the slider, and prevent structural vibration of the reactor coolant pump and wear of the steam generator tubing.
  • another object of the present invention is that when the plant or field processing of the U-shaped module tube is completed, the operator can make a final alignment very easily between the lower end of the casing inlet of the coolant pump and the outlet pipe elbow of the steam generator, U Tie straps are attached to the weld connection between the type module tube and the lower end of the casing inlet of the coolant pump and the outlet pipe elbow of the steam generator to suppress welding shrinkage during welding operation.
  • Welded connection through orbital automatic welding provides a reactor U-shaped modular tube factory that prevents transverse shrinkage and torsional distorsion of the welded portion, enabling precise weld construction. Is in.
  • the present invention is an apparatus for constructing a reactor coolant pipe provided in the reactor coolant system, comprising: a lower support configured to move up and down with respect to the floor by a plurality of hydraulic devices; An upper support positioned on an upper side of the lower support, the upper support having a saddle for mounting a U-shaped module tube; And a rotation mechanism configured to rotate the upper support relative to the lower support, wherein the U-shaped module tube is disposed between the lower end of the casing inlet of the coolant pump of the reactor and the outlet tube elbow of the steam generator, and It provides reactor U-shaped module tubular factory used to raise and align and weld connections.
  • the rotating mechanism includes a circular rail fixed to the upper surface of the lower support, and a plurality of wheels fixed to the lower surface of the upper support, the wheels are disposed on the circular rail is circular By moving along the rail, it allows 360 degree rotation of the upper support with respect to the lower support, and rotates the U-shaped module pipe of the upper support under the casing inlet of the coolant pump of the reactor and under the outlet pipe elbow of the steam generator. It is configured to.
  • the present invention is preferably, the upper support is configured to surround the U-shaped module tube with a plurality of turn buckle and rubber plate on the saddle to fix the U-shaped module tube, the upper, lower support for the side hook A number of lifting lugs are formed to move the upper and lower supports.
  • the present invention preferably, one side of the U-shaped module pipe, the lower end of the casing inlet welding connection of the coolant pump of the reactor, the other side of the U-shaped module pipe, the welding connection of the outlet pipe elbow of the steam generator
  • the site includes a plurality of tie straps that are fixed to prevent weld shrinkage during welding.
  • the present invention preferably, the plurality of tie straps, one side of the U-shaped module tube, the inside of the casing inlet lower welding connection portion of the coolant pump of the reactor, the other side of the U-shaped module tube, the steam Inside the welding connection part of the outlet pipe elbow of the generator, the tie strap is fixed to the welding groove at the circumferentially equal intervals so as to be restrained from shrinking by screwing, and after the external welding of the welding connection part is completed, the U-shaped module It is removed from the weld connection between the tube and the lower end of the casing inlet of the coolant pump of the reactor and the outlet tube elbow of the steam generator.
  • the present invention preferably, the plurality of tie straps, each of the inside of the welding connection portion, the one side of the U-shaped module tube, and the lower end of the casing inlet of the coolant pump of the reactor, or the U-shaped module
  • the other side of the pipe and the outlet pipe elbow of the steam generator is welded and connected, each middle of the tie strap between the one side of the U-shaped module pipe and the improved groove between the lower end of the casing inlet of the coolant pump of the reactor, the U
  • a wedge-shaped step which is respectively inserted into the improvement groove between the other side of the type module tube and the outlet tube elbow of the steam generator, it is configured to minimize the welding shrinkage during the welding operation.
  • the present invention preferably, one side of the U-shaped module tube, the lower end of the casing inlet welding connection of the coolant pump of the reactor, the other side of the U-shaped module tube, the welding connection of the outlet pipe elbow of the steam generator
  • the site is welded and completed at the same time by using a tie strap to suppress the welding shrinkage of the narrowing GTAW, which is rotated and welded along the orbital track, respectively.
  • the reactor U-shaped module tube construction device when the plant or field processing of the U-shaped module tube is completed, it is mounted on the saddle of the upper support, and in this state, the lower end of the casing inlet of the coolant pump of the reactor, It may be used to rotate and elevate between the outlet tube elbows of the steam generator for final alignment and to weld weld.
  • a plurality of tie straps are attached to the welding connection portion between the U-shaped module tube, the lower end of the casing inlet of the coolant pump, and the outlet tube elbow of the steam generator, thereby effectively suppressing the welding shrinkage occurring during the welding operation.
  • the present invention prevents the settlement of the sliding base, which is a steam generator support structure, caused by welding shrinkage of the hot pipe, the cold pipe, and the intermediate pipe closure loop during the reactor pipe construction, and prevents the operation mismatch of the slider.
  • the structural vibration of the reactor coolant pump and the steam generator customs wear, and to prevent the contact wear between the various parts, to ensure the stable operation of the reactor, to prevent equipment failure, and to increase the endurance life of the reactor The effect can be obtained.
  • FIG. 1 is an external perspective view showing a reactor coolant system (RCS) including a reactor of a reactor, a steam generator, and coolant pumps.
  • RCS reactor coolant system
  • FIG. 2 is a plan sectional view showing a reactor coolant system (RCS) including a reactor of a reactor, a steam generator and coolant pumps.
  • RCS reactor coolant system
  • FIG 3 is an explanatory view of connecting the final connecting L-shaped spool between the elbow of the suction side of the coolant pump and the outlet elbow of the steam generator according to the conventional art.
  • Figure 4 is a side view as a whole showing a reactor U-type module tube factory in accordance with the present invention.
  • FIG. 5 is a longitudinal sectional view showing a reactor U-shaped module tube factory of the present invention, and is a cross-sectional view along the line A-A of FIG.
  • Figure 6a is a plan view showing the position where the wheel is disposed on the circular rail of the lower support in the reactor U-shaped module tube construction apparatus according to the present invention.
  • Figure 6b is a side cross-sectional view showing the position of the wheel on the circular rail in the reactor U-shaped module tube construction apparatus according to the present invention.
  • Figure 7 is a cross-sectional view showing the mounting structure of the tie strap installed in the reactor U-shaped module tube construction apparatus according to the present invention.
  • FIG. 8 is a cross-sectional view for explaining the arrangement structure and two simultaneous welding of tie straps installed in the weld connection portion in the reactor U-shaped module tube construction device according to the present invention.
  • 9A and 9B are explanatory diagrams and result graphs of the test pieces used in the tie strap modeling experiment of the reactor U-shaped module tube construction device according to the present invention.
  • Reactor U-shaped module tube construction apparatus 100 as shown in Figure 4 as a whole, the lower end of the casing inlet of the coolant pump 11 of the reactor, the outlet pipe elbow (P002, of the steam generator 9) Between P006, P011 and P015, place U-shaped modular pipes (P003 + P00 4), (P007 + P008), (P012 + P013), and (P016 + P017), rotate and raise them to align, and weld Is the device used to.
  • the U-shaped module tube is welded at the same time between four coolant pumps 11 and two steam generators 9, as indicated in relation to FIG.
  • the U-shaped module tube has four U-shaped module tubes (P003 + P004), (P007 + P008), (P012 + P013), and (P016), as shown in FIG. 2, in order to maintain the balance of welding. Weld + P017) at the same time.
  • the welding heads are rotated in opposite directions to be balanced in a loop symmetrical with each other about the reactor 5 in a symmetrical loop, thereby preventing rotational shrinkage.
  • Reactor U-shaped modular tube construction apparatus 100 has a lower support 110 configured to be able to move up and down with respect to the floor 108 by a plurality of hydraulic devices 106.
  • the lower support 110 is made of, for example, a steel structure, the hydraulic device 106, for example, six are mounted below the lower support 110, through which the lower support 110 of the win , The descent takes place.
  • this lower support 110 may be used as a hooking means when a plurality of lifting lugs 114 are formed on the side thereof to move the lower support 110.
  • an upper support 130 is provided at an upper side of the lower support 110.
  • the upper support 130 is provided with saddles 140 for mounting U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017), respectively.
  • the lower support 110 for example, it is made of a steel structure, a plurality of lifting lugs 134 are formed on the side thereof can be used as a hook means when moving the upper support 130.
  • the saddle 140 located on the upper portion of the upper support 130, as shown in Figure 5, to form an arc-shaped inclined surface on the upper surface of the U-shaped module tube (P003 + P004), (P007 + P008 ), (P012 + P013) and (P016 + P017) are seated.
  • these saddles 140 are upper and both sides thereof, as shown in Figs.
  • a plurality of turn buckle 144 is fixed, the turn buckle 144 is a wire rope 146 is U-shaped modular pipe (P003 + P0 04), (P007 + P008), (P012 + P013), (P016 + P017) is configured to enclose U-shaped modular pipe (P003 + P004), (P00 7 + P008) Fix (P012 + P013) and (P016 + P017).
  • This rubber plate 148 not only prevents the wire rope 146 from scratching the U-shaped modular pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017). It prevents slipping between metal materials to ensure perfect fixing.
  • a rotating mechanism configured to rotate the upper support 130 with respect to the lower support 110 between the upper and lower support (110, 130) ( 170 is disposed. As shown in FIGS. 6A and 6B, the rotating mechanism 170 includes a circular rail 172 fixed to the upper surface of the lower support 110 and a plurality of fixed to the lower surface of the upper support 130. Wheels 174.
  • Such a rotation mechanism 170 is disposed on the circular rail 172 at equal intervals in the circumferential direction along the circular rail 172, as shown in FIG. 6A, preferably on the circular rail 172. And is configured to roll along the circular rail 172.
  • the rail 172 forms a "curve" groove in which its upper surface is concave, and the wheels 174 roll along the concave "curve” groove of the rail 172.
  • These wheels 174 may be equipped with a needle bearing (not shown) to facilitate their rotation.
  • a rotary sphere 170 allows the 360 degree rotation of the upper support 130 with respect to the lower support 110, and consequently the U-shaped module tube (P003 + P004) to the saddle 140 on the upper support 130.
  • the reactor U-shaped module tube construction apparatus 100 according to the present invention, one side of the U-type module tube, the casing inlet bottom welding connection portion of the coolant pump 11 of the reactor, and the other side of the U-type module tube And, the welding connection of the outlet pipe elbow (P002, P006, P011, P015) of the steam generator (9), a plurality of tie straps 190 for preventing welding shrinkage during the welding operation.
  • the mounting structure of this tie strap 190 is shown in FIG.
  • each of the tie wraps 190 is provided at one side of the U-shaped module tube and at the lower end of the casing inlet of the coolant pump 11 of the reactor. For example, welding is performed at eight places at equal intervals of 45 degrees in the circumferential direction, respectively.
  • the other side of the U-shaped module pipe and the inside of the outlet pipe elbows P002, P006, P011, and P015 of the steam generator 9, for example, are welded at eight locations at equal intervals of 45 degrees in the circumferential direction, for example. do.
  • the tie strap 190 is connected to a structure different from the tack welding of the temporary fixing jig used in a typical large diameter welding operation. That is, the tie strap 190 used in the present invention has a stepped portion corresponding to the improvement groove 192 between one side of the U-shaped module tube and a lower end of the casing inlet of the coolant pump 11 of the reactor, respectively. 194 to be precision machined.
  • the tie strap 190 is inserted into the improvement groove 192 between the other side of the U-shaped module tube and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9, respectively. It has a wedge-shaped step 194.
  • the tie strap 190 is connected to the complete total welding along the entire length of both sides, unlike the temporary welding (Tack-welding) of the temporary fixing jig.
  • the temporary welding jig of the temporary fixing jig (Tack-welding) operation U-shaped module pipe (P003 + P004), (P007 + P008), (P012 + P013), (P016 +) to which the present invention is applied
  • the tie strap 190 is connected in a complete overall welding manner since it cannot withstand its welding shrinkage.
  • the improved groove between one side of the U-shaped module tube and the lower end of the casing inlet of the coolant pump 11 of the reactor ( 192, and in contact with the other side of the U-shaped module tube and the improvement groove 192 between the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9, respectively.
  • the U-shaped module tube (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017) is configured to minimize the welding shrinkage during the welding connection operation.
  • Reactor U-shaped module tube construction apparatus 100 configured as described above, the installation of the U-shaped module tube (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017) What should be done beforehand is that the reactor must be completely fixed in advance so that it will not move under any conditions.
  • the U-shaped modular tubes can each be prefabricated at the factory or in the field.
  • the U-shaped module tube is precisely field- or factory-processed while comparing the final loop section with values measured at four locations.
  • the welding while monitoring the longitudinal shrinkage and rotational shrinkage during welding to match the measured spool length.
  • each U-shaped module tube (P003 + P004), the saddle 140 of the upper support 130, (P007 + P008), (P012 + P013), and (P016 + P017), the lower end of the casing inlet of the coolant pump 11 of the reactor and the outlet pipe elbows of the steam generator 9 (P002, P006, P011, P015) respectively.
  • the height of the U-shaped module tube is lower than the height of the casing inlet of the coolant pump 11 of the reactor and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9, U Both ends of the modular module tube are not aligned with the lower end of the casing inlet of the coolant pump 11 of the reactor and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9.
  • it is a state arrange
  • the operator uses the rotary mechanism 170 to operate the reactor at both ends of the U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P0 16 + P 0 17).
  • Rotate the U-shaped module tube to align the lower end of the casing inlet of the coolant pump 11 with the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9.
  • the rotation mechanism 170 is a wheel 174 of the upper support 130 is rotated along the circular rail 172 of the lower support 110, U-shaped module pipe (P003 + P004), (P007 + P008), The rotation of (P012 + P013) and (P016 + P017) is as described above. Then, U-shaped module pipes (P 003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017) are lifted up using the hydraulic device 106 provided on the lower support 110. Let's do it. At this time, the hydraulic device 106, as well as raising and lowering both the upper and lower support (110, 130) and the U-shaped module tube thereon.
  • the U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017) are raised to lower the casing inlet of the coolant pump 11 of the reactor and the outlet of the steam generator 9 When it is finally aligned with the tube elbows (P002, P006, P011, P015), a tie wrap inside the U-shaped module tubes (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017) Mounting of 190 is made.
  • tie strap 190 specially configured in the present invention, as shown in Figures 7 and 8, one side of the U-shaped module tube and the lower end of the casing inlet of the coolant pump 11 of the reactor
  • the inner side is welded 8 places at equal intervals of 45 degree circumference, respectively.
  • the other side of the U-shaped module tube and the inside of the outlet pipe elbows P002, P006, P011, and P015 of the steam generator 9 are welded at eight locations at equal intervals of 45 degrees in the circumferential direction, respectively.
  • the tie straps 190 are respectively U-shaped module pipe (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017), the lower end of the casing inlet of the coolant pump 11 of the reactor, and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9 are removed.
  • the welding connection part of the tie strap 190 is ground by grinding and blown with a hammer to blow the U-shaped module tube, the lower end of the casing inlet of the coolant pump 11 of the reactor, and the steam generator 9. It is separated from the outlet pipe elbows (P002, P006, P011, P015).
  • the improvement groove 192 between one side of the U-shaped module tube and the lower end of the casing inlet of the coolant pump 11 of the reactor is exposed, and the other side of the U-shaped module tube, Improvement grooves 192 between the outlet pipe elbows P002, P006, P011, and P015 of the steam generator 9 are exposed, respectively.
  • the improvement grooves 192 are simultaneously subjected to orbital automatic welding. Through the inner welding connection is made. Then, after the inner welding of the improvement grooves 192 is made, U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017), and the coolant pump of the reactor ( The stainless clad layer 196 formed on the lower end of the casing inlet of 11) and the inner surface of the outlet pipe elbows P002, P006, P011, and P015 of the steam generator 9 is welded with the same stainless steel material to complete welding.
  • This stainless clad layer 196 is used to enhance the corrosion resistance of the U-shaped module tube, the bottom of the casing inlet of the coolant pump 11 of the reactor, and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9. It is a double coated part on the inner side.
  • Experimental Examples In the following, a series of experiments were conducted to demonstrate the effect of the tie strap 190 used in the present invention. First, the tie strap 190 is to minimize the welding shrinkage, conventionally, the tie strap 190 is not used in actual reactor pipe welding.
  • a plurality of tie straps 190 are introduced at the welded connections of the respective U-shaped tube tubes P003 + P004, P007 + P008, P012 + P013, and P016 + P017.
  • Table 1 shows the inner shrinkage result using the tie strap 190. Table 1 compares the two, when the tie strap 190 is removed after 1/3 pass welding (19 pass) of each weld connection, and the tie strap 190 is removed after 100% welding (108 pass). Weld shrinkage of each reactor pipe is shown.
  • Table 1 ⁇ b>( ⁇ /b> Table 1) Weight and Weld Shrinkage by Reactor Piping Position (Measurement and Modeling)
  • the welding crack, the vibration after the final construction, the positional accuracy, etc. are greatly influenced by the welding shrinkage, and the welding shrinkage depends on the constraint condition.
  • the reactor coolant using a Leggatt Model that can be applied to large diameter pipes, such as reactor pipes, among the various modeling equations for weld shrinkage mentioned in the Predictive formula for weld distortion-a critical review (G VERBAEGHE).
  • the conventional construction method and the improvement method of this invention were compared with respect to the distortion by welding position of the piping.
  • the Leggatt Model is represented by Equation (1) below with respect to FIG. 9A showing the structure of the welded portion.
  • tc thickness of unfused plate material (See Fig. 2)
  • the actual measurement of the conventional unrestrained condition was the same as the graph shown in FIG. 9B. That is, according to the conventional construction method, the welding shrinkage ( ⁇ ) in the 18 pass state of the weld site was approximately 5.7 mm.
  • the transverse shrinkage of the welded portion and the angular distors ion are calculated using the Leggatt model equation (Equation 1) for the conventional unrestrained condition. And measurements showed good agreement with each other.
  • Equation 1 Leggatt model equation
  • Equation (2) can fully calculate the transverse shrinkage without computer analysis, provided that there is no angular distorsion, and only the heat input and the welding thickness are accurately controlled. Importantly, it is important to derive a variable that can precisely control the welded part and apply it without changing the variable.
  • the equation (2) was calculated by applying the procedure (Procedure Qualification) record of the new nuclear power plant (APR 1400), and it was found that the model and the actual measured value is almost the same.
  • the contraction data for each welding pass with the tie strap 190 applied to the APR 1400 are shown in Table 2 below. (Table 2) Shrinkage value by the improved modeling formula of Equation 2 (1 ⁇ 19 pass same heat input, welding thickness applied)
  • the weld shrinkage ⁇ of the prior art unrestrained condition without using the tie strap 190 is 5.7 mm, but the constraint of the present invention using the tie strap 190 is
  • the weld shrinkage ( ⁇ ) of the stressed condition was 2.4 mm, and the difference of 1-18 pass shrinkage was 5.7 mm / 2.4 mm.
  • the present invention has an effect of preventing weld shrinkage by more than 50% compared to the prior art.
  • tie straps can be used to suppress welding shrinkage by applying the same to high and low temperature pipes that do not use U-shaped modular pipes.
  • the tie straps are reconnected to the steam generator after cutting 2, 3, and 4 cuts of the weld. It can be used on the inner surface of pipe to suppress welding shrinkage in welding.
  • the reactor U-shaped module pipe factory 100 according to the present invention as described above, it is possible to achieve precise welding construction by completely preventing the transverse shrinkage, and torsional distorsion of the welded portion. have. Accordingly, the present invention prevents the settlement of the sliding base, which is the support structure of the steam generator 9, generated due to welding shrinkage of the hot pipe, the low temperature pipe, and the intermediate pipe closure loop during the reactor pipe construction.
  • the rotating mechanism 170 may be a circular rail 172 and any 360-degree rotating shaft structure of the deformation structure other than the plurality of wheels 174, that is, the upper support 130 with respect to the lower support 110. It could also be done.
  • tie straps 190 may not be mounted at eight locations in the welding connection portion, but may be mounted in any other numbered intervals and in any equidistant arrangement. Nevertheless, it is intended that such simple design modification structures clearly fall within the scope of the present invention.
  • tie strap 192 improved home

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention provides a construction apparatus, for a U-shaped nuclear reactor module pipe, for the construction of a nuclear reactor coolant pipe provided in a nuclear reactor coolant system. The apparatus comprises: a lower support which can ascend and descend vertically with respect to the floor by means of a plurality of hydraulic apparatuses; an upper support which is positioned on the lower support and has thereon a saddle for mounting a U-shaped module pipe; and a rotating tool which is for rotating the upper support with respect to the lower support, wherein the U-shaped module pipe is disposed between the lower end of a casing inlet port of a coolant pump of a nuclear reactor and an outlet pipe elbow of a steam generator, is aligned by means of rotation and ascent, and is connected by means of welding. Moreover, the present invention effectively inhibits welding shrinkage, which occurs during welding, by means of mounting a plurality of tie straps on the parts to be welded between the U-shaped module pipe, the lower end of the casing inlet port of the coolant pump and the outlet pipe elbow of the steam generator. And the welding is performed simultaneously on both the lower end of the casing inlet port of the coolant pump of the nuclear reactor and the outlet pipe elbow of the steam generator. Therefore, transverse shrinkage and angular distortion of the parts to be welded are completely prevented and thus precise welding can be performed.

Description

원자로 U형 모듈 관 시공장치Reactor U type modular pipe construction device
본 발명은 원자로 냉각재 계통설비에 구비된 원자로 냉각재 배관용 시공 장치에 관한 것으로, 보다 상세히는 CE형 2 LOOP 원자로 냉각재 배관의 가장 핵심 구간인 최종 연결구간(Closure loop)을 U형 배관 모듈을 활용하여 현장에서 용접 연결시켜서, 용접으로 인한 수축응력이 횡(수평)방향으로 미치치 않고, 종(수직)방향으로만 작용하도록 하고, 용접 연결부위에는 타이 스트랩을 적용함으로써, 원자로 냉각재 배관의 고온관, 저온관, 중간관 최종 연결구간의 연결용접 후에 존재하는 용접 수축 변형에 의한 잔류 하중을 최소화하여 원자로 냉각재 설비의 운전중에 발생하는 각종 진동 발생, 및 각종 부품들 간의 접촉 마모 현상을 방지할 수 있고, 그에 따른 원자로의 안정적인 가동, 세관 마모에 따른 설비 고장 방지, 및 원자로 내구 수명을 증대시키도록 개선된 원자로 U형 모듈 관 시공장치에 관한 것이다.The present invention relates to a construction device for the reactor coolant piping provided in the reactor coolant system facilities, and more specifically to the final connection section (Closure loop) of the core section of the CE type 2 LOOP reactor coolant piping by using a U-type piping module By welding in the field, the shrinkage stress due to welding does not extend in the lateral (horizontal) direction, but acts only in the longitudinal (vertical) direction, and by applying a tie strap to the weld connection, the hot pipe and the low temperature of the reactor coolant piping By minimizing the residual load due to the welding shrinkage deformation which exists after the connection welding between the final connection section of the pipe and the intermediate pipe, it is possible to prevent various vibrations generated during operation of the reactor coolant facility and contact wear between the various parts. To ensure stable operation of the reactor, to prevent equipment failure due to customs wear, and to increase the durability of the reactor The present invention relates to a reactor U-shaped module pipe construction device.
일반적으로, 원자로 발전소는 국내의 예를 들면, 컨버스천 엔지니어링(Combustion Engineering :CE)의 시스템플러스 80(한빛 3,4호기), 한국 표준형 원전(한울3,4,5 ,6호기 및 한빛 5,6호기), OPR1000(신고리 1,2호기), APR1400(신고리 3,4호기, 신울진 1,2호기, UAE 원전 1~4호기), 2-루프 가압경수로(Pressurized Water Reactor)등이 있다. 원자로 발전소(이하, 간략히 "원자로"라 한다)는 대한민국 등록특허공보 제10-1473665호의 "원자력 발전소의 부품 교체용 배관 지지 장치"에도 기재된 바와 같이, 격납 건물 내에 원자로 냉각재 계통(RCS:Reactor Coolant System)이 구비된다. 도 1을 참조하면, 이러한 원자로 발전소(이하, 간략히 "원자로"라 한다)의 기본 구조가 도시되어 있다.이와 같은 원자로(1)는 격납 건물 내에 원자로 냉각재 계통(RCS:Reactor Coolant System)이 구비된다. 이와 같은 원자로 냉각재 계통은, 중앙에 원자로를 담고 있는 반응기(5)와, 이에 연결된 적어도 하나의 열전달 회로 (7)를 가진다. 도 1에서는 두 개의 열전달 회로가 반응기(5)에 병렬로 연결된 것이 도시되어 있다. 각 회로(7)는 2대의 증기 발생기(9)와, 반응기(5) 및 증기 발생기(9) 사이에서 냉각재를 순환시키는 적어도 하나의, 보통 4대의 냉각재 펌프(11)를 포함한다. 각 회로(7)는 3개의 메인 배관을 포함하고, 메인 배관은 대구경으로 마련되며, 회로의 주요 부품과 연결된다. 이에 더하여 회로(7)는 냉각재의 온도 및 압력을 일정하게 유지하도록 하는 가압기(미 도시)를 포함한다. 첫 번째 대구경 배관 또는 고온관(hot leg)(13)은 대략 42인치 직경의 대경관으로서, 반응기(5)의 일측과, 증기 발생기(9)의 냉각재 챔버의 흡입부 일측에 연결되어 반응기(5) 내의 노심(core)과 접촉되어 가열된 냉각재를 증기 발생기(9)로 전송한다. 크로스 오버 레그(cross-over leg)로 불리는 순환관(15)은 증기 발생기(9)의 냉각재 챔버의 토출부 일측 및 냉각재 펌프(11)의 와류실 흡입부 일측을 연결한다. 그리고, 저온관(Cold leg)(17)은 냉각재 펌프(11)의 와류실과 반응기(5) 사이를 연결한다. 또한, 증기 발생기(9)에서 냉각되고 냉각재 펌프(11)에 의해 인출된 냉각재는 순환관(15), 저온관(17)을 통하여 반응기(5)로 전송되어 노심을 냉각한다. 이와 같은 원자로에서, 각각의 증기 발생기(9)는, 그 하부측이 슬라이딩 베이스(미 도시 ) 상에 다수의 스터드 앵커(미 도시)에 의해서 고정 지지되며, 이와 같은 슬라이딩 베이스는 포지드 앵커 플레이트 상에 마련된 다수의, 예를 들면 4개의 반구형 슬라이더 상에서 지지되어 원자로의 운전중에 발생하는 미세한 좌우 움직임을 수용하도록 되어 있다. 이와 같은 원자로 냉각재 계통설비에 구비된 원자로 냉각재 배관의 종래의 시공 공정은 아래와 같다. 즉, 도 2에 도시된 바와 같이, 반응기(5), 2대의 증기 발생기(9) 및 4대의 냉각재 펌프(11)의 배치 후에, 반응기(5)의 출구와 증기 발생기(9)를 연결하는 고온관(hot leg)(P001,P010)을 먼저 용접 연결한다. 이때에는 반응기(5) 측을 먼저 용접후, 증기발생기(9) 측을 후에 용접하며, 내면용접 & 응력 제거 열처리 작업(PWHT)을 실시한다. 그리고 다음으로는, 반응기(5)와 냉각재 펌프(11)를 연결시키는 제1 세트의 저온관(P005, P014)을 정렬시키고, 용접 연결한다. 또한 다음으로는, 반응기(5)와 냉각재 펌프(11)를 연결시키는 제2 세트의 저온관(P009, P018)을 정렬시키고, 용접 연결한다. 이때는 냉각재 펌프(11)의 케이싱, 수직 지지대와 크레비스 서포트가 슬라이딩 베이스에 연결된 상태서 용접이 이루어지게 된다. CE형 원자로의 설치지침서(Installation Guideline)에는 냉각재 펌프 (11)의 출입측과 입구측에 원자로배관 연결 용접시는 할 때에는 영구지지대 대신 임시지지대 사용을 권장한다. 그 이유는 용접 수축으로 인한 움직임을 허용하며 펌프 지지대에 구속력이 남지 않게 하는 목적이다. 이 방법은 한빛 3,4호기에서 적용되었다. 그러나 설치 방법의 선택은 시공계약자의 역무로 설치지침서에 명시되어 있어, 그 후 부터는 영구지지대를 사용하여 설치하는 방식을 적용하는 것이 업계의 통상적인 시공법이다. 이러한 저온관은 그 용접전에 원자로 냉각재 펌프(11)의 케이싱과 수직 컬럼 서포트를 영구적으로 설치 완료한 상태서 용접되어 원자로 냉각재 펌프(11)의 플랜지면의 수평고도의 어느 정도 기울어짐은 허용된다. 4개 펌프 (11)의 중심선은 용접 수축량을 미리 보상하여 용접을 하게 된다. 수동용접의 경우 종방향 용접 수축 7~9mm이 대부분이고, 용접기사가 변위를 인식하면서 변위가 발생되면 반대방향으로 용접 작업을 지시하여 회전 수축에 대응하는 시공방법을 적용하여만 회전 수축에 대한 변위를 보상하면서 용접이 가능하다. 오비털 자동용 접(Orb ital automatic welding)은 수축은 5~6mm 범위이지만, 용접헤드가 한 방향으로 회전하며 계속 용접을 하므로 종방향 수축 이후에 횡(회전) 수축이 연이어 발생하는 특성이 있다. 이로 인해 원자로 냉각재 펌프는 수평고도는 최초 설치 상태의 수평을 유지하지 못하고 기울어지는 특성이 있다.다음으로는, 반응기(5)와 냉각재 펌프(11)를 연결시키는 제1 세트의 저온관(P005, P014)과, 제2 세트의 저온관 (P009, P018)의 응력 제거 열처리 작업(PWHT)을 실시한다. 그리고, 다음으로는 냉각재 펌프(11)의 케이싱 흡입구에 각각 엘보우(P004, P008, P013, P017)를 취부하여 용접을 하게 된다. 이와 같은 상세 구조가 도 3에 기재되어 있다. 즉, 각각의 냉각재 펌프(11)의 케이싱 흡입구 하단에 각각 엘보우(P004, P008, P013, P017)를 취부하여 용접연결한다. 이때는 엘보우(P004, P008, P013, P017)는 한쪽만 용접이 되므로 구속이 없는 상태이다. 한편 증기발생기(9)의 출구관 일측에 엘보우(P0 02, P006, P011, P015)는 독립공정으로 먼저 용접이 되어 이때도 구속이 없는 상태다. 이와 같은 엘보우 용접공정이 완료되면, 나머지 최종연결 구관의 순환관 L 자형 스풀을 설치하기 위해 연결구간을 측량으로 실측하여 가공치수를 산출하고, 순환관 L 자형 스풀(P003, P007, P012, P016)를 공장 가공하여 현장 맞춤을 하게 된다. 이와 같은 종래의 최종 연결 L 자형 스풀(P003, P007, P012, P016)을 가공하기 위해 현장 측량을 해보면, 펌프용기가 기울어진 만큼 최종 연결 L 자형 스풀(P003, P007, P012, P016)의 반대편(증기발생기의 출구노즐)이 올라오는 현상이 발견되며, 이는 저온관 용접으로 발생된 펌프용기의 플랜지면의 경사와 관련되어 있다. 따라서, 증기발생기(9)의 출구노즐에 연결하려면 정상장인 정렬작업을 할 수가 없어 현장 실측하여 최종 연결 L 자형 스풀(P003, P007, P012, P016)을 가공후 정렬 작업을 하게 된다. 이러한 경우, 증기발생기(9)의 출구관 측의 가공량의 경험치는 수동용접을 적용한 경험치는 최대 9mm정도 이며, 자동용접의 경우는 최대 50mm 정도 가공이 요구되어 펌프용기 플랜지면의 경사가 수동용접보다 자동용접이 더 많이 발생한다.이러한 최종 연결 L 자형 스풀(P003, P007, P012, P016)의 정렬(FIT-UP)이 끝나면, 최종 연결 L 자형 스풀(P003, P007)의 용접작업을 실시하고, 최종 연결 L 자형 스풀(P012, P016)의 용접작업을 실시한다. 이와 같은 용접 단계에서는, 각각 최종 연결 L 자형 스풀(P003, P007, P012, P016)와, 펌프(11)의 흡입측의 엘보우와 가용접을 하여 종방향 수축 5mm가 용착되면, 증기발생기(9)의 출구측과 가용접을 하게 된다. 그리고, 다음으로는, 최종 연결 L 자형 스풀(P003, P007, P012, P016)을 전용접하고, 응력 제거 열처리 작업(PWHT)을 실시한다. 또한 다음으로는, 이러한 최종 용접 완료 후에 최종 측량을 하며, 원자로 냉각재 펌프 수평 지지대의 설치 단계가 실행된다. 이 과정 까지가 CE형 2-LOOP 원자로에 적용되어온 통상적인 냉각재 배관 계통의 배관 시공 방식이다. 그러나, 이와 같은 종래의 시공방법은 최종 연결 L 자형 스풀(P003, P007, P012, P016)를 가공완료 후, 용접을 할 경우 저온관 방향으로 완전히 구속된 상태에서 용접 수축이 발생되어야 하므로, 이 과정에서 과대한 수축응력이 발생하여 용접중 저온균열이 수동용접에서 발생된 사례가 있었다. 용접부에서, 용접구속이 많은 경우, 용접부에 예열온도를 기술기준보다 높여 용접시공을 하면 저온균열은 방지할 수 있는 것이 일반적인 용접기술이다. 그러나, 냉각재 펌프 수직 컬럼 서포트(Vertical column support)가 영구적으로 설치되어 있으므로, 용접 수축이 발생시 배관 용접부에만 존재하는 것이 아니고, 수직컬럼 서포트가 앵커볼트에 고정되어 구속되어 있기 때문에, 수축에 대응하려는 힘이 앵커볼트(anchor bolt)와 펌프 수직지지대에 잔류하게 된다. 즉, 종래의 시공방법은 도 5에 도시된 바와 같이, 최종 연결 L 자형 스풀(P003, P007, P012, P016)을 시공하는 경우, 냉각재 펌프(11)의 케이싱 흡입구 하단에 설치된 엘보우(P004, P008, P013, P017)에서는, 수직방향으로 용접선이 형성되어 용접이 이루어지고, 증기발생기(9)의 출구관 측 엘보우(P002, P006, P011, P015)에서는 수평방향으로 용접선이 형성되어 용접이 이루어진다. 따라서, 냉각재 펌프(11)의 케이싱 흡입구 하단에 설치된 엘보우 (P004, P008, P013, P017)의 수직방향으로 용접선에 의해서는 최종 연결 L 자형 스풀(P003, P007, P012, P016)의 길이방향(횡방향)으로 용접 수축이 발생되고, 증기발생기(9)의 출구관 측 엘보우(P002, P006, P011, P015)의 수평방향으로 용접선에 의해서는 최종 연결 L 자형 스풀(P003, P007, P012, P016)의 수직방 향(종방향)으로 용접 수축이 발생된다. 그리고, 이와 같은 용접 수축에 대응하려는 또 다른 현상은 증기발생기의 슬라이딩 베이스에도 영향을 미친다. 즉, 증기발생기(9)의 노즐측과 중간관 연결용접시 발생하는 용접 수축 5mm에 대응하려는 반력이 증기발생기 (9)의 슬라이딩 베이스에 가해져서 용접전과 용접후의 슬라이딩 베이스 스커트의 수평고도가 1mm 정도 침하된다. 뿐만 아니라, 최종 연결 L 자형 스풀(P003, P007, P012, P016)의 용접부에서 이루어지는 응력제거 열처리 작업에 의해서 응력은 제거되지만, 응력제거 열처리가 끝난 증기발생기(9) 노즐과, 펌프(11)의 노즐에는 여전히 잔류 응력이 생기게 된다. 즉 슬라이딩 베이스의 침하와, 펌프 수직컬럼 서포트 (Vertical column support)에 잔류한 하중(Preload)은 용접부에 대한 응력제거 열처리를 하더라도 펌프 수직컬럼 서포트에는 잔류 하중이 남게 된다. 이러한 잔류하중은 원자로 작동시 배관 움직임을 발생시키는 한 원인이다.In general, nuclear power plants have been developed in Korea, for example, System Plus 80 (Hanbit 3, 4) of Conbustion Engineering (CE), Korean standard nuclear power plants (Hanul 3, 4, 5, 6 and Hanbit 5, 6), OPR1000 (Shin-Gori 1,2), APR1400 (Shin-Gori 3,4, Shin-Uljin 1,2, UAE Nuclear Power Plants 1-4), 2-loop Pressurized Water Reactor. A reactor power plant (hereinafter referred to simply as a "nuclear reactor") is a reactor coolant system (RCS) in a containment building, as described in Korean Patent Publication No. 10-1473665, "Pipe support device for replacing parts of a nuclear power plant." ) Is provided. Referring to Figure 1, the basic structure of such a nuclear power plant (hereinafter referred to simply as "nuclear reactor") is shown. Such a reactor 1 is equipped with a reactor coolant system (RCS) in a containment building. . This reactor coolant system has a reactor 5 containing a reactor at the center and at least one heat transfer circuit 7 connected thereto. In FIG. 1, two heat transfer circuits are shown connected in parallel to the reactor 5. Each circuit 7 comprises two steam generators 9 and at least one, usually four coolant pumps 11 for circulating coolant between the reactor 5 and the steam generator 9. Each circuit 7 includes three main pipes, the main pipe having a large diameter, connected to the main parts of the circuit. In addition, the circuit 7 includes a pressurizer (not shown) to keep the temperature and pressure of the coolant constant. The first large diameter pipe or hot leg 13 is a large diameter pipe of approximately 42 inches in diameter and is connected to one side of the reactor 5 and one suction side of the coolant chamber of the steam generator 9 so as to supply the reactor 5. The heated coolant in contact with the core in () is sent to the steam generator (9). The circulation pipe 15 called a cross-over leg connects one side of the discharge part of the coolant chamber of the steam generator 9 and one side of the vortex chamber suction part of the coolant pump 11. The cold leg 17 connects between the vortex chamber of the coolant pump 11 and the reactor 5. In addition, the coolant cooled in the steam generator 9 and drawn out by the coolant pump 11 is transmitted to the reactor 5 through the circulation pipe 15 and the low temperature pipe 17 to cool the core. In such a reactor, each steam generator 9 has its lower side fixedly supported by a number of stud anchors (not shown) on a sliding base (not shown), which sliding base is placed on a forged anchor plate. It is supported on a number of, for example, four hemispherical sliders provided to accommodate the minute left and right movements occurring during operation of the reactor. The conventional construction process of the reactor coolant piping provided in such a reactor coolant system equipment is as follows. That is, as shown in FIG. 2, after the arrangement of the reactor 5, two steam generators 9 and four coolant pumps 11, the high temperature connecting the outlet of the reactor 5 and the steam generator 9. First, connect the hot leg (P001, P010) by welding. In this case, the reactor 5 side is welded first, and the steam generator 9 side is welded later, and inner surface welding & stress relief heat treatment work (PWHT) is performed. Then, the first set of low temperature pipes P005 and P014 connecting the reactor 5 and the coolant pump 11 are aligned and welded together. Next, the 2nd set of low temperature pipes P009 and P018 which connect the reactor 5 and the coolant pump 11 are aligned, and welded. At this time, the casing, the vertical support and the crevis support of the coolant pump 11 are connected to the sliding base, and welding is performed. The installation guideline of the CE type reactor recommends the use of temporary supports instead of permanent supports when welding the reactor piping to the inlet and inlet sides of the coolant pump (11). The reason is to allow movement due to weld shrinkage and to leave no restraint on the pump support. This method was applied in Hanvit Units 3 and 4. However, the choice of installation method is specified in the installation manual by the contractor, and since then, it is common practice in the industry to apply the installation method using a permanent support. Such a low temperature pipe is welded while the casing of the reactor coolant pump 11 and the vertical column support are permanently installed before the welding, so that the inclination of the flange surface of the reactor coolant pump 11 to a certain degree of horizontal elevation is allowed. The center line of the four pumps 11 performs welding by compensating for the amount of welding shrinkage in advance. In case of manual welding, the longitudinal welding shrinkage is mostly 7 ~ 9mm, and when the welding technician recognizes the displacement and the displacement occurs, the welding work is instructed in the opposite direction and the construction method corresponding to the rotational shrinkage is applied. Welding is possible while compensating for. Orb ital automatic welding has a shrinkage range of 5 ~ 6mm, but the welding head rotates in one direction and continues welding, so the lateral (rotational) shrinkage occurs after the longitudinal shrinkage. As a result, the reactor coolant pump has an inclination characteristic that the horizontal altitude does not maintain the horizontal level of the initial installation state. Next, a first set of low temperature pipes P005 connecting the reactor 5 and the coolant pump 11 P014) and the stress relief heat treatment operation (PWHT) of the second set of low temperature pipes (P009, P018). Next, the elbows P004, P008, P013, and P017 are attached to the casing inlets of the coolant pump 11 for welding. Such a detailed structure is described in FIG. 3. That is, elbows P004, P008, P013, and P017 are attached to the lower end of the casing inlet of each coolant pump 11 to be welded to each other. At this time, the elbows P004, P008, P013, and P017 are welded on only one side, so there is no restraint. On the other hand, the elbows (P0 02, P006, P011, P015) on one side of the outlet tube of the steam generator (9) is first welded in an independent process, even when there is no restraint. When the elbow welding process is completed, in order to install the circulation pipe L-shaped spool of the remaining final connection pipe, measurement of the machining dimension is performed by surveying the connecting section by measurement, and the circulation pipe L-shaped spool (P003, P007, P012, P016) Is factory processed to fit the site. When field surveying is performed to process such conventional final connection L-shaped spools (P003, P007, P012, P016), the opposite side of the final connection L-shaped spools (P003, P007, P012, P016) as the pump container is tilted The rise of the outlet nozzle of the steam generator is found to be related to the inclination of the flange face of the pump vessel generated by cold tube welding. Therefore, to connect to the outlet nozzle of the steam generator (9) can not be the normal work alignment can be carried out in the field measurement and the final connection L-shaped spools (P003, P007, P012, P016) is processed after the alignment work. In this case, the empirical value of the processing amount on the outlet pipe side of the steam generator 9 is about 9 mm maximum for manual welding. In the case of automatic welding, a maximum of about 50 mm is required for the welding, and the slope of the flange of the pump container is manual. More automatic welding occurs. After finishing the alignment (FIT-UP) of these final connection L-shaped spools (P003, P007, P012, P016), weld the final connection L-shaped spools (P003, P007). Then, weld the final connection L-shaped spools (P012, P016). In this welding step, when the final connection L-shaped spools (P003, P007, P012, P016) and the elbows on the suction side of the pump 11 are welded to each other and the longitudinal shrinkage of 5 mm is welded, the steam generator 9 Weld welding with the exit side. Next, the final connection L-shaped spools (P003, P007, P012, P016) are welded exclusively and a stress relief heat treatment operation (PWHT) is performed. Next, a final survey is made after this final welding is completed, and the installation step of the reactor coolant pump horizontal support is performed. This process is the pipe construction of the conventional coolant piping system that has been applied to the CE type 2-LOOP reactor. However, such a conventional construction method, since the final contracted L-shaped spools (P003, P007, P012, P016) after the completion of the processing, the welding shrinkage must occur in a state that is completely constrained in the direction of the cold tube, this process, Excessive shrinkage stress occurred at, resulting in low temperature cracking during manual welding. In the welding part, if there are many welding constraints, it is common welding technology to prevent the low temperature cracking when the welding preheating temperature is higher than the technical standard in the welding part. However, since the coolant pump vertical column support is permanently installed, it does not exist only in the pipe welded part when welding shrinkage occurs, and because the vertical column support is fixed to the anchor bolt and constrained, it tries to cope with the shrinkage. The anchor bolt and the pump vertical support will remain. That is, in the conventional construction method, as shown in FIG. 5, when constructing the final connection L-shaped spools (P003, P007, P012, P016), elbows (P004, P008) installed on the lower end of the casing inlet of the coolant pump 11 , P013, P017, the welding line is formed in the vertical direction, the welding is performed, the welding line is formed in the horizontal direction in the elbow (P002, P006, P011, P015) of the outlet pipe side of the steam generator (9). Therefore, the longitudinal direction of the final connecting L-shaped spools (P003, P007, P012, P016) by the welding line in the vertical direction of the elbows (P004, P008, P013, P017) provided at the lower end of the casing inlet of the coolant pump (11). Direction), and the final connecting L-shaped spools (P003, P007, P012, P016) are formed by welding lines in the horizontal direction of the outlet pipe side elbows P002, P006, P011, and P015 of the steam generator 9). Weld shrinkage occurs in the vertical direction (longitudinal) of. In addition, another phenomenon to cope with the welding shrinkage affects the sliding base of the steam generator. In other words, a reaction force is applied to the sliding base of the steam generator 9 to cope with the welding shrinkage 5 mm generated during the connection between the nozzle side of the steam generator 9 and the intermediate tube, and the horizontal altitude of the sliding base skirt before and after welding is about 1 mm. Settles. In addition, although the stress is removed by the stress relief heat treatment work performed in the welded portion of the final connection L-shaped spool (P003, P007, P012, P016), the steam generator (9) nozzle of the stress relief heat treatment and the pump (11) The nozzle still has residual stress. That is, the settlement of the sliding base and the preload remaining in the pump vertical column support remain in the pump vertical column support even though the stress relief heat treatment is performed on the welded portion. This residual load is one cause of pipe movement during reactor operation.
실제로, 미국 Milestone point 2호기의 증기발생기(9)의 교체공사를 수행한 벡텔엔지니어링이 원자로 냉각재 펌프에 잔류한 하중제어에 실패한 사유로 교체 공사기간이 대폭 연장된 사례가 발생되었다. 통상적인 교체공사 기간은 80일 전후였으나, 이 Milestone point 2호기에서는 185일 소요되었고, 방사선 피폭량도 통상적인 교체사업에 비해 3배 이상 피폭 기록으로 남아 있다. 또한, 원자로 냉각재 펌프(11)의 서포트와 증기발생기(9)의 슬라이딩 베이스에 잔류하중이 남아 있으면, 고온 기능 시험중에 원자로 냉각재 계통의 열팽창 거동에 영향을 미쳐 증기발 생기(9)의 상부지지대에 있는 키이/키웨이(미 도시)간에 유지되어야 할 고온간극 요건에 영향을 미치고, 또한 방진기(SNUBBER)의 상온(heat-up전/cool-o wn후) 핀과 핀간 거리 (Pin-to-pin)가 설계기준을 초과하는 문제가 있다. 그리고, 원자로의 정상운전 중에 진동(vibration)이 발생하여 증기발생기(9)의 세관 마모가 상업운전 초기 부터 발생되게 된다. 그리고 심한 경우는 원자로 냉각재 펌프(11)에 고진동을 초래하게 된다. 이와 같이 종래의 원자로 냉각재 배관 시공에 따른 문제점들은 최종 연결 L 자형 스풀(P003, P007, P012, P016)의 용접부에서 종 수축과 횡 수축이 발생되고, 그 과정에서 증기발생기(9)의 하부지지구조와 냉각재 펌프(11)의 수직 컬럼에 잔류하중(spring back force)이 남게 된다. 즉, 종래의 공정은 영구지지대를 사용하여 원자로 냉각재 펌프(11)의 입구관, 출구관에 용접을 하게 되므로 구속력이 남게 된다. 따라서, 종래의 공정은 구속력의 작용으로 인해 펌프케이싱의 수평고도에 영향을 미쳐 용접부에 결함이 발생되면, 보수용접으로 인해 국부적인 수축이 발생되어 펌프 케이싱의 수평고도가 설계 기준치를 벗어나는 문제가 있다. 이러한 잔류하중의 결과로서, 최종 연결 L 자형 스풀(P003, P007, P012, P016)를 용접하면 슬라이딩 베이스에 수축으로 인한 압축하중이 발생되어 침하가 생긴다. 이 침하는 슬라이더와 베이스 플레이트간에 마찰력을 증가시킨다. 이러한 침하량이 슬라이딩 베이스에 잔류하는 하중으로 볼 수 있다. 이러한 잔류하중은 원자로의 기동초기에 슬라이더의 마찰력을 증가시켜서 횡방향 미끌림 작동을 크게 저해하는 특성이 있다. 즉, 상기 슬라이딩 베이스는 설치공차(레벨공차 +/- 0.889mm 이내)를 만족해야 하는 것이 설계요건이다. 그러나 최종 연결 L 자형 스풀(P003, P007, P012, P016)의 연결 용접시에는 2개소 용접을 동시에 수행하는 관계로 수직 방향(종방향)의 용접 수축력이 슬라이딩 베이스에 압축력으로 작용하게 된다. 이러한 용접 공정은 용접 수축으로 인해 수직 방향(종방향)으로 설계 허용치보다 약 0.9~1.1mm 마이너스(-) 방향의 용접변위가 발생되며, 이는 슬라이딩 베이스에 압축력으로 잔류하게 된다. 이 압축력은 기동초기에 마찰력을 증가시켜 횡방향(수평 방향)의 미끌음을 억제하는 특성이 있다. 결과적으로, 종래의 원자로 냉각재 배관 용접공접은, 원자로 냉각재 펌프(11)의 영구지지대(수직컬럼 서포트)를 설치하고 저온관을 용접완료하고, 최종 연결 L 자형 스풀(P003, P007, P012, P016)을 용접할 경우에 증기발생기(9)의 하부 지지대와, 원자로 냉각재 펌프(11)의 수직컬럼 지지대에 잔류하중이 존재하는 현상은 회피할 수 없게 된다. 따라서, 슬라이딩 베이스가 변형되어 수평을 유지 못하고 기울어지면, 결과적으로 원자로 냉각재 펌프(11)와 증기발생기 (9)의 관련지지 구조물의 변형과 간섭으로 인해 진동응력(vibration stress)을 더욱 가중시키게 된다. 이러한 진동응력은 증기발생기(9)의 세관 마모의 원인이 될 뿐 아니라, 마모는 튜브(세관) 표면을 응력을 증가시켜서 세관의 응력부식균열을 야기시키게 된다. 또한 RCS 계통에 연결된 배관에 피로를 가중시키게 된다. 이러한 상태로 장주기 운전되면, 원자로 냉각재 펌프의 내장품 마모, 원자로 냉각재 펌프의 메카니컬 실(mechnical seal)과 소구경 배관의 누설로 이어진다. 한편, 원자로 냉각재 배관의 용접시공은 단순히 용접부로 보기보다는 비록 수축, 변형을 동반하는 용접 이음부이지만 이를 정밀한 기계적 이음 수준으로 관리해야 할 필요성이 있다. 즉, 설계 목적을 구현하기 위한 시공기술의 중요성은 말로 다할 수 없지만, 원설계자 시공지침서(Installation guideline)에서 권고하는 지침은 수동용접 지침에 해당되어 신고리 1,2호기부터 자동용접을 적용하는 경우는 고려되지 않아 일부 공정이나 시공기술의 보완이 필요한 부분이 있다. 시공지침서에는 고온관 용접시에만 두 사람이 서로 반대 위치에서 동시에 벨런스 용접하도록 권하고 있다. 그러나 자동용접에서는 용접헤드가 한 방향으로 회전하는 방식을 거의 대부분 적용하여 횡 수축(원주방향) 제어에 실패한 결과로 야기된 문제점이 들어난다. 즉, 용접부에 대한 비파괴 품질에 너무 치우친 나머지 용접 수축 및 변형으로 인한 RCS 계통의 기구학적인 운전 특성이 간과되어 온 관계로 자동용접이 적용된 이후부터 증기발생 기(9), 냉각재 펌프(11)의 정위치(True position)를 벗어나는 문제점이 많이 발생되고, 기기 진동 문제도 자주 발생되어 자동용접 적용에 따른 보다 정밀한 용접 시공기술의 개발이 절실한 실정이다. 따라서, 당업계에서는 원자로의 구조적 진동을 최소화하여 증기 발생기의 세관 마모와, 원자로 냉각재 계통 설비의 마모(wear)를 방지할 수 있는 기술 개발이 절실하게 요구된다.In fact, Vectel Engineering, which performed the replacement work of the steam generator 9 of the US Milestone Point 2, failed to control the load remaining in the reactor coolant pump. The typical replacement period was around 80 days, but this milestone point 2 took 185 days, and the radiation exposure remained more than three times that of the conventional replacement project. In addition, if the residual load remains in the support of the reactor coolant pump 11 and the sliding base of the steam generator 9, it affects the thermal expansion behavior of the reactor coolant system during the high temperature functional test, and thus the upper support of the steam generator 9 Affects the high temperature clearance requirement to be maintained between the key / keyway (not shown), and also the pin-to-pin distance between the room temperature (before heat-up and after cool-own) of the SNUBBER. pin) exceeds the design criteria. In addition, vibration occurs during normal operation of the reactor, so that the customs wear of the steam generator 9 occurs from the beginning of commercial operation. And severe cases will cause high vibration in the reactor coolant pump (11). As described above, the problems caused by the conventional reactor coolant piping construction include longitudinal contraction and lateral contraction at the welds of the final connection L-shaped spools (P003, P007, P012, P016), and in the process, the lower support structure of the steam generator (9). And a spring back force remains in the vertical column of the coolant pump 11. That is, in the conventional process, since the welding is performed to the inlet pipe and the outlet pipe of the reactor coolant pump 11 using the permanent support, the restraining force remains. Therefore, the conventional process affects the horizontal altitude of the pump casing due to the action of the restraint force, and if a defect occurs in the welded part, local shrinkage occurs due to repair welding, resulting in the horizontal altitude of the pump casing being out of the design standard value. . As a result of these residual loads, welding the final connecting L-shaped spools (P003, P007, P012, P016) generates a compressive load due to shrinkage on the sliding base, causing settlement. This settlement increases the friction between the slider and the base plate. This settlement can be seen as the load remaining on the sliding base. This residual load increases the frictional force of the slider in the initial stage of the reactor, thereby significantly inhibiting the lateral sliding operation. That is, the sliding base is a design requirement that must meet the installation tolerance (within level tolerance + /-0.889mm). However, in the connecting welding of the final connecting L-shaped spools (P003, P007, P012, P016), the welding contraction force in the vertical direction (longitudinal direction) acts as a compressive force on the sliding base because two welding is performed at the same time. In this welding process, the welding shrinkage causes a welding displacement of about 0.9 to 1.1 mm in the negative direction (-) in the vertical direction (longitudinal direction) due to the welding shrinkage, which remains as a compressive force on the sliding base. This compressive force has the characteristic of suppressing slippage in the lateral direction (horizontal direction) by increasing the frictional force at the initial stage of starting. As a result, the conventional reactor coolant pipe welding weld is provided with a permanent support (vertical column support) of the reactor coolant pump 11, the low temperature pipe is welded, and the final connection L-shaped spools (P003, P007, P012, P016) are removed. In the case of welding, the phenomenon that residual load exists in the lower support of the steam generator 9 and the vertical column support of the reactor coolant pump 11 cannot be avoided. Therefore, if the sliding base is deformed and tilted, it is not possible to keep the level, resulting in an additional stress of vibration due to the deformation and interference of the associated support structure of the reactor coolant pump 11 and the steam generator 9. This vibration stress not only causes the tubular wear of the steam generator 9, but also causes the stress corrosion cracking of the tubules by increasing the stress on the tube (tubule) surface. It also adds fatigue to piping connected to the RCS system. Long periods of operation in this state lead to internal wear of the reactor coolant pump and leakage of the mechanical seal and small diameter piping of the reactor coolant pump. On the other hand, the welding construction of the reactor coolant pipe is a welding joint with shrinkage and deformation, rather than simply viewed as a weld, there is a need to manage it at a precise mechanical joint level. In other words, the importance of construction technology to realize the design purpose cannot be said in words, but the guidelines recommended by the original designer's installation guideline correspond to the manual welding guidelines. There is a part that needs to be supplemented by some process or construction technology because it is not considered. The Construction Manual recommends that two people carry out balance welding at the same time in opposite locations only when welding hot tubes. However, in automatic welding, the welding head is rotated in one direction, and almost all of them are applied, resulting in a problem caused by the failure of lateral contraction (circumferential) control. That is, since the kinematic operation characteristics of the RCS system due to the non-destructive quality of the welded parts are so biased, the automatic operation of the steam generator 9 and the coolant pump 11 is applied since the automatic welding is applied. There are many problems that deviate from the true position, and device vibration problems often occur, so the development of more precise welding construction technology according to the automatic welding application is urgently needed. Therefore, there is an urgent need in the art to develop a technology capable of minimizing the structural vibration of the reactor to prevent the tubular wear of the steam generator and the wear of the reactor coolant system equipment.
본 발명의 목적은 상기와 같은 종래의 문제점을 해소시키기 위한 것으로서, 신규 원자로 배관 시공시, 고온관, 저온관, 중간관 최종 연결(closure loop)의 용접 수축으로 인해 발생하는 증기발생기 지지구조인 슬라이딩 베이스의 침하를 방지하고, 슬라이더의 작동 불일치를 방지할 수 있으며, 원자로 냉각재 펌프의 구조적 진동과 증기발생기 세관 마모를 방지할 수 있는 원자로 U형 모듈 관 시공장치를 제공함에 있다. 또한, 본 발명의 다른 목적은 U형 모듈 관의 공장 또는 현장 가공이 완료되면, 이를 냉각재 펌프의 케이싱 흡입구 하단과, 증기발생기의 출구관 엘보우 사이에서 작업자가 매우 쉽게 최종 정렬을 할 수 있고, U형 모듈 관과 냉각재 펌프의 케이싱 흡입구 하단과, 증기발생기의 출구관 엘보우 사이의 용접 연결 부분에는 타이 스트랩을 장착하여 용접 작업중에 발생하는 용접 수축을 억제하며, 용접 부위의 2개소에서 동시에 오비털 자동용접(Orbital automatic welding)을 통해 용접 연결함으로써, 용접 부분의 횡방향 수축(Transverse shrinkage), 및 비틀림 변형(An gular distorsion)을 방지하여 정밀한 용접 시공을 가능하게 하는 원자로 U형 모듈 관 시공장치를 제공함에 있다.An object of the present invention is to solve the conventional problems as described above, when the new reactor piping construction, sliding of the steam generator support structure generated by the welding shrinkage of the high-temperature pipe, low-temperature pipe, intermediate pipe closure loop (closure loop) It provides a reactor U-shaped module factory that can prevent the settlement of the base, prevent the operation mismatch of the slider, and prevent structural vibration of the reactor coolant pump and wear of the steam generator tubing. In addition, another object of the present invention is that when the plant or field processing of the U-shaped module tube is completed, the operator can make a final alignment very easily between the lower end of the casing inlet of the coolant pump and the outlet pipe elbow of the steam generator, U Tie straps are attached to the weld connection between the type module tube and the lower end of the casing inlet of the coolant pump and the outlet pipe elbow of the steam generator to suppress welding shrinkage during welding operation. Welded connection through orbital automatic welding provides a reactor U-shaped modular tube factory that prevents transverse shrinkage and torsional distorsion of the welded portion, enabling precise weld construction. Is in.
상기와 같은 목적을 달성하기 위하여 본 발명은, 원자로 냉각재 계통설비에 구비된 원자로 냉각재 배관을 시공하기 위한 장치에 있어서, 다수의 유압 장치에 의해서 바닥에 대해 상하로 승,하강가능하도록 구성된 하부 지지대; 상기 하부 지지대의 상부 측에 위치되고, 상부에는 U형 모듈 관을 장착하기 위한 새들을 구비한 상부 지지대; 및 상기 하부 지지대에 대해서 상기 상부 지지대를 회전시키도록 구성된 회전기구;를 포함하고, 상기 U형 모듈 관을 원자로의 냉각재 펌프의 케이싱 흡입구 하단과, 증기발생기의 출구관 엘보우 사이에 배치하고, 회전 및 상승시켜 정렬하 며, 용접 연결하도록 사용되는 원자로 U형 모듈 관 시공장치를 제공한다. 또한 본 발명은 바람직하게는, 상기 회전기구는 하부 지지대의 상부면에 고정된 원형 레일과, 상부 지지대의 하부면에 고정된 다수의 휠들을 포함하며, 상기 휠들은 상기 원형 레일 상에 배치되어 원형 레일을 따라서 이동함으로써, 하부 지지대에 대하여 상부 지지대의 360도 회전을 허용하고, 상기 상부 지지대상의 U형 모듈 관을 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단과, 증기발생기의 출구관 엘보우 하부에서 회전시키도록 구성된 것이다. 그리고 본 발명은 바람직하게는, 상기 상부 지지대는 새들 상에 다수의 턴 버클과 고무판이 U형 모듈 관을 에워싸도록 구성되어 U형 모듈 관을 고정시키고, 상기 상,하부 지지대의 측면에는 줄걸이용 다수의 리프팅 러그들이 형성되어 상,하부 지지대를 이동시킬 수 있도록 구성된 것이다. 또한 본 발명은 바람직하게는, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단 용접 연결부위와, 상기 U형 모듈 관의 타측과, 상기 증기발생기의 출구관 엘보우의 용접 연결부위는, 용접작업시 용접수축을 방지하기 위해 고정되는 다수의 타이 스트랩을 포함하는 것이다. 그리고 본 발명은 바람직하게는, 상기 다수의 타이 스트랩은, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단 용접 연결부위 내부와, 상기 U형 모듈 관의 타측과, 상기 증기발생기의 출구관 엘보우의 용접 연결부위 내부에서, 각각 원주방향 등 간격으로 tie strap 을 용접홈에 끼워 나사식으로 수축에 억제하도록 고정되며, 상기 용접 연결부위의 외부 용접이 완료된 다음에는 상기 U형 모듈 관과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단, 및 증기발생기의 출구관 엘보우 사이의 용접 연결 부위로부터 제거되는 것이다. 또한 본 발명은 바람직하게는, 상기 다수의 타이 스트랩은, 각각 용접 연결부위 내부에서, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단을 용접연결하거나, 또는 상기 U형 모듈 관의 타측과, 상기 증기발생기의 출구관 엘보우를 용접연결하며, 상기 타이 스트랩 각각의 중간에는 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단 사이의 개선 홈과, 상기 U형 모듈 관의 타측과, 상기 증기발생기의 출구관 엘보우 사이의 개선 홈에 각각 일치하여 삽입되는 쐐기형의 단턱을 형성하여 면 접촉함으로써, 용접 작업시 용접 수축을 최소화하도록 구성된 것이다.In order to achieve the above object, the present invention is an apparatus for constructing a reactor coolant pipe provided in the reactor coolant system, comprising: a lower support configured to move up and down with respect to the floor by a plurality of hydraulic devices; An upper support positioned on an upper side of the lower support, the upper support having a saddle for mounting a U-shaped module tube; And a rotation mechanism configured to rotate the upper support relative to the lower support, wherein the U-shaped module tube is disposed between the lower end of the casing inlet of the coolant pump of the reactor and the outlet tube elbow of the steam generator, and It provides reactor U-shaped module tubular factory used to raise and align and weld connections. In addition, the present invention preferably, the rotating mechanism includes a circular rail fixed to the upper surface of the lower support, and a plurality of wheels fixed to the lower surface of the upper support, the wheels are disposed on the circular rail is circular By moving along the rail, it allows 360 degree rotation of the upper support with respect to the lower support, and rotates the U-shaped module pipe of the upper support under the casing inlet of the coolant pump of the reactor and under the outlet pipe elbow of the steam generator. It is configured to. And the present invention is preferably, the upper support is configured to surround the U-shaped module tube with a plurality of turn buckle and rubber plate on the saddle to fix the U-shaped module tube, the upper, lower support for the side hook A number of lifting lugs are formed to move the upper and lower supports. In addition, the present invention preferably, one side of the U-shaped module pipe, the lower end of the casing inlet welding connection of the coolant pump of the reactor, the other side of the U-shaped module pipe, the welding connection of the outlet pipe elbow of the steam generator The site includes a plurality of tie straps that are fixed to prevent weld shrinkage during welding. And the present invention preferably, the plurality of tie straps, one side of the U-shaped module tube, the inside of the casing inlet lower welding connection portion of the coolant pump of the reactor, the other side of the U-shaped module tube, the steam Inside the welding connection part of the outlet pipe elbow of the generator, the tie strap is fixed to the welding groove at the circumferentially equal intervals so as to be restrained from shrinking by screwing, and after the external welding of the welding connection part is completed, the U-shaped module It is removed from the weld connection between the tube and the lower end of the casing inlet of the coolant pump of the reactor and the outlet tube elbow of the steam generator. In addition, the present invention preferably, the plurality of tie straps, each of the inside of the welding connection portion, the one side of the U-shaped module tube, and the lower end of the casing inlet of the coolant pump of the reactor, or the U-shaped module The other side of the pipe and the outlet pipe elbow of the steam generator is welded and connected, each middle of the tie strap between the one side of the U-shaped module pipe and the improved groove between the lower end of the casing inlet of the coolant pump of the reactor, the U By forming a wedge-shaped step which is respectively inserted into the improvement groove between the other side of the type module tube and the outlet tube elbow of the steam generator, it is configured to minimize the welding shrinkage during the welding operation.
그리고 본 발명은 바람직하게는, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단 용접 연결부위와, 상기 U형 모듈 관의 타측과, 상기 증기발생기의 출구관 엘보우의 용접 연결부위는, 각각 오비털 트랙(orbital track)을 따라 회전 용접되는 협개선 GTAW의 용접수축을 억제하기 위해 tie strap을 사용하여 동시에 용접작업이 이루어지고, 완료되는 것이다.And the present invention preferably, one side of the U-shaped module tube, the lower end of the casing inlet welding connection of the coolant pump of the reactor, the other side of the U-shaped module tube, the welding connection of the outlet pipe elbow of the steam generator The site is welded and completed at the same time by using a tie strap to suppress the welding shrinkage of the narrowing GTAW, which is rotated and welded along the orbital track, respectively.
본 발명에 따른 원자로 U형 모듈 관 시공장치에 의하면, U형 모듈 관의 공장 또는 현장 가공이 완료되면, 이를 상부 지지대의 새들에 장착하고, 이와 같은 상태에서 원자로의 냉각재 펌프의 케이싱 흡입구 하단과, 증기발생기의 출구관 엘보우 사이에서 회전 및 상승시켜 최종 정렬하며, 용접 연결하도록 사용될 수 있다. 또한, 본 발명에 의하면, U형 모듈 관과 냉각재 펌프의 케이싱 흡입구 하단, 및 증기발생기의 출구관 엘보우 사이의 용접 연결 부분에는 다수의 타이 스트랩을 장착하여 용접 작업중에 발생하는 용접 수축을 효과적으로 억제하며, 용접 작업은 원자로의 냉각재 펌프의 케이싱 흡입구 하단 측과, 증기발생기의 출구관 엘보우 측, 2개소에서 동시에 이루어짐으로써, 용접 부분의 횡방향 수축(Transverse shrinkage), 및 비틀림 변형(Angular distorsion)을 완벽하게 방지하여 정밀한 용접 시공을 이룰 수 있다. 따라서, 본 발명에 의하면 원자로 배관 시공시, 고온관, 저온관, 중간관 최종 연결(closure loop)의 용접 수축으로 인해 발생하는 증기발생기 지지구조인 슬라이딩 베이스의 침하를 방지하고, 슬라이더의 작동 불일치를 방지할 수 있으며, 원자로 냉각재 펌프의 구조적 진동과 증기발생기 세관 마모를 방지하고, 각종 부품들 간의 접촉 마모 현상을 방지할 수 있어서 원자로의 안정적인 가동, 설비 고장 방지, 및 원자로 내구 수명을 증대시키는 개선된 효과를 얻을 수 있다.According to the reactor U-shaped module tube construction device according to the present invention, when the plant or field processing of the U-shaped module tube is completed, it is mounted on the saddle of the upper support, and in this state, the lower end of the casing inlet of the coolant pump of the reactor, It may be used to rotate and elevate between the outlet tube elbows of the steam generator for final alignment and to weld weld. In addition, according to the present invention, a plurality of tie straps are attached to the welding connection portion between the U-shaped module tube, the lower end of the casing inlet of the coolant pump, and the outlet tube elbow of the steam generator, thereby effectively suppressing the welding shrinkage occurring during the welding operation. The welding work takes place simultaneously at the bottom of the casing inlet of the coolant pump of the reactor and at the elbow side of the outlet pipe of the steam generator. It can be prevented to achieve precise welding construction. Therefore, the present invention prevents the settlement of the sliding base, which is a steam generator support structure, caused by welding shrinkage of the hot pipe, the cold pipe, and the intermediate pipe closure loop during the reactor pipe construction, and prevents the operation mismatch of the slider. Improved to prevent the structural vibration of the reactor coolant pump and the steam generator customs wear, and to prevent the contact wear between the various parts, to ensure the stable operation of the reactor, to prevent equipment failure, and to increase the endurance life of the reactor The effect can be obtained.
도 1은 원자로의 반응로, 증기발생기 및 냉각재 펌프들을 포함하는 냉각재 계통(RCS:Reactor Coolant System)을 도시한 외관 사시도이다.FIG. 1 is an external perspective view showing a reactor coolant system (RCS) including a reactor of a reactor, a steam generator, and coolant pumps.
도 2는 원자로의 반응로, 증기발생기 및 냉각재 펌프들을 포함하는 냉각재 계통(RCS:Reactor Coolant System)을 도시한 평단면도이다.FIG. 2 is a plan sectional view showing a reactor coolant system (RCS) including a reactor of a reactor, a steam generator and coolant pumps.
도 3은 종래의 기술에 따라서, 최종 연결 L 자형 스풀을, 냉각재 펌프의 흡입측의 엘보우와 증기발생기의 출구측 엘보우 사이에서 연결시키는 설명도이다.3 is an explanatory view of connecting the final connecting L-shaped spool between the elbow of the suction side of the coolant pump and the outlet elbow of the steam generator according to the conventional art.
도 4는 본 발명에 따른 원자로 U형 모듈 관 시공장치를 전체적으로 도시한 측면도이다. Figure 4 is a side view as a whole showing a reactor U-type module tube factory in accordance with the present invention.
도 5는 본 발명의 원자로 U형 모듈 관 시공장치를 도시한 종단면도로서, 도 4의 A-A선을 따른 단면도이다. 5 is a longitudinal sectional view showing a reactor U-shaped module tube factory of the present invention, and is a cross-sectional view along the line A-A of FIG.
도 6a는 본 발명에 따른 원자로 U형 모듈 관 시공장치에서 하부 지지대의 원형 레일 상에 휠이 배치된 위치를 도시한 평면도이다. Figure 6a is a plan view showing the position where the wheel is disposed on the circular rail of the lower support in the reactor U-shaped module tube construction apparatus according to the present invention.
도 6b는 본 발명에 따른 원자로 U형 모듈 관 시공장치에서 원형 레일 상의 휠이 배치된 위치를 도시한 측 단면도이다. Figure 6b is a side cross-sectional view showing the position of the wheel on the circular rail in the reactor U-shaped module tube construction apparatus according to the present invention.
도 7은 본 발명에 따른 원자로 U형 모듈 관 시공장치에서, 용접 연결부부분에 설치되는 타이 스트랩의 장착구조를 도시한 단면도이다.Figure 7 is a cross-sectional view showing the mounting structure of the tie strap installed in the reactor U-shaped module tube construction apparatus according to the present invention.
도 8은 본 발명에 따른 원자로 U형 모듈 관 시공장치에서, 용접 연결부부분에 설치되는 타이 스트랩의 배치구조와 2개소 동시 용접을 설명하기 위한 평 단면도이다.8 is a cross-sectional view for explaining the arrangement structure and two simultaneous welding of tie straps installed in the weld connection portion in the reactor U-shaped module tube construction device according to the present invention.
도 9a, b는 본 발명에 따른 원자로 U형 모듈 관 시공장치의 타이 스트랩 모델링 실험에 사용된, 시험편 설명도 및 결과 그래프도이다.9A and 9B are explanatory diagrams and result graphs of the test pieces used in the tie strap modeling experiment of the reactor U-shaped module tube construction device according to the present invention.
이하, 본 발명의 바람직한 실시 예를 도면을 참조하여 보다 상세히 설명한다. 본 발명에 따른 원자로 U형 모듈 관 시공장치(100)는, 도 4에 전체적으로 도시된 바와 같이, 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단과, 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015) 사이에, 각각 U형 모듈관(P003+P00 4),(P007+ P008),(P012+P013),(P016+P017)을 배치하고, 회전 및 상승시켜 정렬하며, 용접 연결하도록 사용되는 장치이다. 상기 U형 모듈관은 도 2에 관련하여 표기된 바와 같이, 4개소의 냉각재 펌프(11)와 2개소의 증기발생기(9) 사이에서 동시에 용접 연결된다. 즉, 상기 U형 모듈관은 용접의 벨런스를 유지하기 위해서, 도 2에 도시된 바와 같은, 4개 U형 모듈관(P003+P004),(P007+P008),(P012+P013),(P016+P017)을 동시 용접한다. 이와 같이, 4개소 용접이 동시에 이루어질 때 반응로(5)를 중심으로 서로 대각방향으로 대칭된 루프에서 밸런스 용접이 되도록 용접 헤드는 서로 반대방향으로 회전하게 하여 회전 수축을 방지하게 된다. 본 발명에 따른 원자로 U형 모듈 관 시공장치(100)는, 다수의 유압 장치(106)에 의해서 바닥(108)에 대해 상하로 승,하강가능하도록 구성된 하부 지지대(110)를 갖는다. 이와 같은 하부 지지대 (110)는, 예를 들면 철 구조물로 제작되고, 상기 유압 장치(106)는 예를 들면 6개가 하부 지지대(110)의 아래에 장착되며, 이를 통하여 하부 지지대(110)의 승,하강이 이루어진다. 또한, 이러한 하부 지지대(110)는 그 측면에, 다수의 리프팅 러그(114)들이 형성되어 하부 지지대(110)를 이동시키는 경우, 줄걸이 수단으로서 사용될 수 있다. 그리고, 상기 하부 지지대(110)의 상부 측에는 상부 지지대(130)가 구비된다. 이와 같은 상부 지지대(130)는 그 상부에 각각 U형 모듈 관 (P003+P004),(P007+P008),(P012+P013),(P016+P017)을 장착하기 위한 새들(140) 을 구비한 것으로서, 하부 지지대(110)와 마찬가지로, 예를 들면 철 구조물로 제작되고, 그 측면에는 다수의 리프팅 러그(134)들이 형성되어 상부 지지대(130)를 이동시키는 경우, 줄걸이 수단으로서 사용될 수 있다. 또한, 상부 지지대(130)의 상부에 위치된 새들(140)은 도 5에 도시된 바와 같이, 그 상부 면에 원호형 경사면을 형성하여 상기 U형 모듈관(P003+P004),(P007+P008),(P012+P013),(P016+P017)이 안착되는 구조이다. 또한, 이와 같은 새들(140) 은 그 상부 양측으로, 도 4 및 도 5에 도시된 바와 같이, 각각 다수의 턴 버클(144)들이 고정되며, 이러한 턴 버클 (144)은 와이어 로프(146)가 U형 모듈관(P003+P0 04),(P007+P008),(P012+P013), (P016+P017)을 에워싸도록 구성되어 U형 모듈관(P003+P004),(P00 7+P008),(P012+ P013),(P016+P017)을 고정시킨다. 이때, 상기 턴 버클(144)의 와이어 로프(146)가 U형 모듈관(P003+P004),(P007+P008),(P012+P013),(P016+P017)을 에워싸는 경우, U형 모듈관(P003+P004),(P007+P008),(P012+P013),(P016+P017)의 표면 손상을 방지하기 위해서, 와이어 로프(146)와 U형 모듈 관 사이에는 고무판(148)이 삽입된다.이와 같은 고무판(148)은 와이어 로프(146)가 U형 모듈관(P003+P004),(P007+P008), (P012+P013),(P016+P017)을 스크래치 손상시키지 않도록 할 뿐만 아니라, 금속 재료 간의 미끄러짐을 방지하여 완벽한 고정이 이루어지도록 한다. 또한, 본 발명에 따른 원자로 U형 모듈 관 시공장치(100)는, 상,하부 지지대(110, 130)의 사이에 하부 지지대(110)에 대해서 상부 지지대(130)를 회전시키도록 구성된 회전기구(170)가 배치된다. 이와 같은 회전기구(170)는, 도 6a 및 도 6b에 도시된 바와 같이, 하부 지지대(110)의 상부 면에 고정된 원형 레일(172)과, 상부 지지대(130)의 하부 면에 고정된 다수의 휠(174)들을 포함한다. 이와 같은 회전기구(170)는 상기 휠(174)들이 상기 원형 레일(172) 상에서, 도 6a에 도시된 바와 같이, 바람직하게는 원형 레일(172)을 따르는 원주방향으로 6개소에 등 간격으로 배치되어 원형 레일(172)을 따라서 굴러 이동하도록 구성된다. 이와 같은 구조에서, 상기 레일(172)은 그 상부 면이 오목한 "∪"형 홈을 형성하고, 상기 휠(174)들은 레일(172)의 오목한 "∪"형 홈을 따라서 굴러 이동한다. 이러한 휠(174)들은 그 회전을 원활하게 하기 위하여 니들 베어링(미 도시)이 내장될 수 있다. 따라서, 이와 같은 회전기 구(170)는 하부 지지대(110)에 대하여 상부 지지대(130)의 360도 회전을 허용하고, 결과적으로 상부 지지대(130)상의 새들(140)에 U형 모듈 관(P003+ P004),(P007+P0 08),(P012+P013),(P016+P017)이 고정되면, 상기 U형 모듈 관(P003+P004),(P007+ P0 08),(P012+P013),(P016+P017)이 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단 과, 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015) 하부에서 360도 회전될 수 있도록 한다. 또한, 본 발명에 따른 원자로 U형 모듈 관 시공장치(100)는, U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단 용접 연결부위 및, 상기 U형 모듈 관의 타측과, 상기 증기발생기(9)의 출구관 엘보우 (P002, P006, P011, P015)의 용접 연결부위에, 용접작업시 용접수축을 방지하기 위한 다수의 타이 스트랩(190)을 포함한다. 이러한 타이 스트랩(190)의 장착 구조가 도 7에 도시되어 있다. 즉, 상기 타이 스트랩(190)은, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단 용접 연결부위 내부와, 상기 U형 모듈 관의 타측과, 상기 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)의 용접 연결부위 내부에서 각각 용접고정된다. 이와 같은 타이스트 랩(190)은, 도 8에 도시된 바와 같이, 각각 용접 연결부위 내부에서, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단의 내측에서, 예를 들면 각각 원주방향 45도의 등 간격으로, 8개소 용접 연결한다. 또한, 상기 U형 모듈 관의 타측과, 상기 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)의 내측에서, 예를 들면 각각 원주방향 45도의 등 간격으로, 8개소 용접 연결한다. 이와 같은 타이 스트랩(190)은 통상적인 대구경 용접작업에서 사용하는 임시고정 지그의 가 용접(Tack-welding)과는 다른 구조로 연결된다. 즉, 본 발명에서 사용되는 타이 스트랩(190)은 그 중간에 각각 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단 사이의 개선 홈(192)에 일치하는 단턱(194)을 구비하도록 정밀 가공된다. 마찬가지로, 상기 타이 스트랩(190)은 상기 U형 모듈 관의 타측과, 상기 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015) 사이의 개선 홈(192)에 각각 일치하여 삽입되는 쐐기형의 단턱(194)을 구비한다. 또한, 상기 타이 스트랩(190)은 임시고정 지그의 가 용접(Tack-welding)과는 다르게 그 양 측면의 전체길이를 따른 완전한 전체 용접으로 연결된다. 즉, 일반적인 사용되는 임시고정 지그의 가 용접(Tack-welding) 작업으로는, 본 발명이 적용되는 U형 모듈 관(P003+P004),(P007+P008),(P012+P013),(P016+P017)의 용접 연결시, 그 용접 수축을 견딜 수 없기 때문에, 상기 타이 스트랩(190)은 완전한 전체 용접방식으로 연결된다. 이러한 타이 스트랩(190)의 연결과정에서, 타이스트랩(19 0)의 중간 단턱(194)은, U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단 사이의 개선 홈(192)에 일치하고, U형 모듈 관의 타측과, 상기 증기발생기 (9)의 출구관 엘보우(P002, P006, P011, P015) 사이의 개선 홈(192)에 각각 일치하여 면 접촉하는 구조를 갖춤으로써, 상기 U형 모듈 관(P003+P004),(P007+P008), (P012+P013),(P016+P017)의 용접 연결 작업 시 그 용접 수축을 최소화하도록 구성된 것이다. 상기와 같이 구성된 본 발명에 따른 원자로 U형 모듈 관 시공장치(100)는, 상기 U형 모듈 관(P003+P004),(P007+P008),(P012+P013),(P016+P017)의 설치 전에 선행적으로 조치되어야 할 것이, 원자로는 어떠한 조건에서도 움직임이 없도록 사전에 완전히 고정되어야 한다. 상기 U형 모듈 관은 각각 공장에서, 또는 현장에서 사전 제작될 수 있다. 상기 U형 모듈관은 최종 연결구간(CLOSE LOOP)을 4개소에서 본뜨기 측정한 값과 비교하면서 정밀하게 현장 또는 공장 가공하게 된다. 또한, 상기 U형 모듈관의 제작 시, 사전 측정된 스풀 길이에 일치하도록 용접시 종 수축과 회전 수축을 모니터링 하면서 용접한다. 이때에는 각각의 배관 내면에 정렬 러그(Alignment lug)를 부착하고 용접한 후에 응력 제거 열처리 작업(PWHT)을 실시한다. 이렇게 U형 모듈 관을 준비함으로써, 종전의 최종 연결 L 자형 스풀(P003, P007, P012, P016)의 가공 치수가 설계 치수와 상이하여 공장 가공하여 재반입하여 지연되는 공정을 없앨 수 있다. 한편, 이와 같은 U형 모듈관은 용접의 벨런스를 유지하기 위해서, 도 2에 관련하여 표기된 바와 같이, 4개소의 냉각재 펌프(11)와 2개소의 증기발생기(9) 사이에서 4개형 모듈관(P003+P004),(P007+P008),(P012+P013) ,(P016+P017)을 동시 용접한다. 이때, 본 발명에 따른 원자로 U형 모듈 관 시공장치(100)는, 도 4에 전체적으로 도시된 바와 같이, 상부 지지대(130)의 새들(140)에 각각의 U형 모듈 관(P003+P004),(P007+P008),(P012+P013),(P016+P017)을 고정한 상태에서 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단과, 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015) 사이에 각각 배치된다. 이때에는, 상기 U형 모듈 관의 높이는 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단과, 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015) 보다는 그 높이가 낮은 상태이며, U형 모듈 관은 그 양 측단이, 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단과, 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)에 정렬되지 않은 상태이다., 예를 들면, 대략 90도 어긋나서 배치된 상태이다. 이와 같은 상태에서, 작업자는 회전기구(170)를 이용하여 U형 모듈관(P003+P004),(P007+P008),(P012+P013),(P0 16+P 0 17)의 양 측단이 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단과, 증기발생 기(9)의 출구관 엘보우(P002, P006, P011, P015)에 정렬하도록 U형 모듈 관을 회전시킨다. 이때, 상기 회전기구(170)는 상부 지지대(130)의 휠(174)들이 하부지지대 (110)의 원형 레일(172)을 따라서 회전하여 U형 모듈 관(P003+P004),(P007+ P008),(P012+P013),(P016+P017)이 회전됨은 상기에서 설명한 바와 같다. 그리고, 다음으로는 하부 지지대(110)에 마련된 유압 장치(106)를 이용하여 U형 모듈관(P 003+P004),(P007+P008),(P012+P013),(P016+P017)을 상승시킨다. 이때, 상기 유압 장치(106)는 상,하부 지지대(110, 130) 및 그 위의 U형 모듈 관 모두를 승,하강시킴은 물론이다. 이와 같이 U형 모듈 관(P003+ P004),(P007+ P008),(P012+P013), (P016+P017)이 상승되어 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단과, 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)에 최종 정렬되면, 상기 U형 모듈 관(P003+P004),(P007+P008),(P012+P013),(P016+P017)의 내부에서 타이스트 랩(190)의 장착이 이루어진다. 즉, 본 발명에서 특별하게 구성된 타이 스트랩(190)을 이용하여, 도 7 및 도 8에 도시된 바와 같이, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단의 내측을 각각 원주방향 45도의 등 간격으로, 8개소 용접 연결한다. 또한, 상기 U형 모듈 관의 타측과, 상기 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)의 내측을 각각 원주방향 45도의 등 간격으로, 8개소 용접 연결한다. 그리고, 이와 같이 타이 스트랩(190)에 의한 고정이 이루어진 다음, 도 8에 도시된 바와 같이, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단 용접 연결부위와, 상기 U형 모듈 관의 타측과, 상기 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)의 용접 연결부위가, 각각 TIG 자동용접장치에 의해서 동시에 용접작업이 이루어진다. 이와 같이, 도 8의 용접 부위(W1, W2) 2개소에서, 동시에 오비털 자동용접(Orb ital automatic welding)을 통해 용접 연결이 이루어지면, 용접 부분의 횡방향 수축(Transverse shrinkage), 및 각 비틀림 변형(Angular distorsion)을 완벽하게 방지하여 정밀한 용접 시공을 이룰 수 있다. 상기 오비털 자동용접(Orbitalautoma tic welding)은, 예를 들면 TIG 자동용접장치로 이루어질 수 있다. 그리고, 이와 같이 용접 작업에서, 용접 연결부위의 용접 7~8 패스(pass) 작업이 이루어지면, U형 모듈관을 고정한 턴 버클(144)을 제거하고, 그 후의 용접 패스에서 일어나는 용접 수축은 타이 스트랩(190)이 완벽하게 방지하여 용접 수축이 일어나지 않게 된 다. 또한, 이와 같은 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단 용접 연결부위의 외측 용접과, 상기 U형 모듈 관의 타측과, 상기 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)의 용접 연결부위의 외측 용접이 동시에 완료되면, 상기 타이 스트랩(190)들이 각각 U형 모듈 관 (P003+P004),(P007+P008),(P012+P013),(P016+P017)과, 상기 원자로의 냉각재 펌프 (11)의 케이싱 흡입구 하단, 및 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)로부터 제거된다. 이때에는, 타이 스트랩(190)의 용접 연결부분을 그라인딩으로 연삭 제거하고, 망치로 타격하여 각각 U형 모듈 관과, 상기 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단, 및 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)로부터 분리시키게 된다. 이와 같이 타이 스트랩(190)을 분리시키게 되면, U형 모듈 관의 일측과, 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단 사이의 개선 홈(192)이 노출되고, U형 모듈 관의 타측과, 상기 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015) 사이의 개선 홈(192)이 각각 노출되며, 이와 같은 개선 홈(192)들을 동시에 오비털 자동용접(Orbital automatic welding)을 통해서 내측 용접 연결이 이루어진다. 그리고, 이와 같이 개선 홈(192)들에 대한 내측 용접이 이루어진 다음에는 U형 모듈 관(P003+ P004),(P007+P008),(P012+P013), (P016+P017), 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단, 및 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)의 내측면에 형성된 스테인레스 클래드 층(196)을 동일한 스테인레스 강 재료로 용접하여 용접완료한다. 이러한 스테인레스 클래드 층(196)은 U형 모듈 관, 원자로의 냉각재 펌프(11)의 케이싱 흡입구 하단, 및 증기발생기(9)의 출구관 엘보우(P002, P006, P011, P015)의 내식성을 강화시키기 위하여 내 측면에 이중으로 형성된 피복부분이다. 실험 예 이하에서는 본 발명에서 사용된 타이 스트랩(190)의 효과를 입증하기 위한 일련의 실험을 시행하였다. 먼저, 타이 스트랩(190)은 용접수축을 최대한 적게 하기 위한 것으로서, 종래에는 타이 스트랩(190)을 실제 원자로 배관 용접시에는 사용하지를 않는다. 그러나, 본 발명에서는 다수의 타이 스트랩(190)들이 각각의 U형 모듈 관(P003+P004), (P007+P008),(P012+P013),(P016+P017)의 용접 연결부분에서 도입된다. 아래의 (표 1)은 타이 스트랩(190)을 이용한 내면 수축결과이다. 표 1에서는 두 가지를 비교한 것으로서, 각각의 용접 연결부분의 1/3 pass 용착(19pass) 후 타이 스트랩(190)의 제거, 및 100% 용접(108pass) 후 타이 스트랩(190)을 제거하였을 때, 각각의 원자로 배관별 용접 수축량(Weld shrinkage)을 도시한 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Reactor U-shaped module tube construction apparatus 100 according to the present invention, as shown in Figure 4 as a whole, the lower end of the casing inlet of the coolant pump 11 of the reactor, the outlet pipe elbow (P002, of the steam generator 9) Between P006, P011 and P015, place U-shaped modular pipes (P003 + P00 4), (P007 + P008), (P012 + P013), and (P016 + P017), rotate and raise them to align, and weld Is the device used to. The U-shaped module tube is welded at the same time between four coolant pumps 11 and two steam generators 9, as indicated in relation to FIG. That is, the U-shaped module tube has four U-shaped module tubes (P003 + P004), (P007 + P008), (P012 + P013), and (P016), as shown in FIG. 2, in order to maintain the balance of welding. Weld + P017) at the same time. As such, when four welding is performed at the same time, the welding heads are rotated in opposite directions to be balanced in a loop symmetrical with each other about the reactor 5 in a symmetrical loop, thereby preventing rotational shrinkage. Reactor U-shaped modular tube construction apparatus 100 according to the present invention has a lower support 110 configured to be able to move up and down with respect to the floor 108 by a plurality of hydraulic devices 106. The lower support 110 is made of, for example, a steel structure, the hydraulic device 106, for example, six are mounted below the lower support 110, through which the lower support 110 of the win , The descent takes place. In addition, this lower support 110 may be used as a hooking means when a plurality of lifting lugs 114 are formed on the side thereof to move the lower support 110. In addition, an upper support 130 is provided at an upper side of the lower support 110. The upper support 130 is provided with saddles 140 for mounting U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017), respectively. As the lower support 110, for example, it is made of a steel structure, a plurality of lifting lugs 134 are formed on the side thereof can be used as a hook means when moving the upper support 130. In addition, the saddle 140 located on the upper portion of the upper support 130, as shown in Figure 5, to form an arc-shaped inclined surface on the upper surface of the U-shaped module tube (P003 + P004), (P007 + P008 ), (P012 + P013) and (P016 + P017) are seated. In addition, these saddles 140 are upper and both sides thereof, as shown in Figs. 4 and 5, respectively, a plurality of turn buckle 144 is fixed, the turn buckle 144 is a wire rope 146 is U-shaped modular pipe (P003 + P0 04), (P007 + P008), (P012 + P013), (P016 + P017) is configured to enclose U-shaped modular pipe (P003 + P004), (P00 7 + P008) Fix (P012 + P013) and (P016 + P017). At this time, when the wire rope 146 of the turn buckle 144 surrounds the U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017), the U-shaped module pipes In order to prevent surface damage of (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017), a rubber plate 148 is inserted between the wire rope 146 and the U-shaped module tube. This rubber plate 148 not only prevents the wire rope 146 from scratching the U-shaped modular pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017). It prevents slipping between metal materials to ensure perfect fixing. In addition, the reactor U-shaped module tube construction apparatus 100 according to the present invention, a rotating mechanism configured to rotate the upper support 130 with respect to the lower support 110 between the upper and lower support (110, 130) ( 170 is disposed. As shown in FIGS. 6A and 6B, the rotating mechanism 170 includes a circular rail 172 fixed to the upper surface of the lower support 110 and a plurality of fixed to the lower surface of the upper support 130. Wheels 174. Such a rotation mechanism 170 is disposed on the circular rail 172 at equal intervals in the circumferential direction along the circular rail 172, as shown in FIG. 6A, preferably on the circular rail 172. And is configured to roll along the circular rail 172. In such a structure, the rail 172 forms a "curve" groove in which its upper surface is concave, and the wheels 174 roll along the concave "curve" groove of the rail 172. These wheels 174 may be equipped with a needle bearing (not shown) to facilitate their rotation. Thus, such a rotary sphere 170 allows the 360 degree rotation of the upper support 130 with respect to the lower support 110, and consequently the U-shaped module tube (P003 + P004) to the saddle 140 on the upper support 130. ), (P007 + P0 08), (P012 + P013), (P016 + P017) is fixed, the U-shaped module tube (P003 + P004), (P007 + P0 08), (P012 + P013), (P016 + P017) can be rotated 360 degrees below the casing inlet of the coolant pump 11 of the reactor and below the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9. In addition, the reactor U-shaped module tube construction apparatus 100 according to the present invention, one side of the U-type module tube, the casing inlet bottom welding connection portion of the coolant pump 11 of the reactor, and the other side of the U-type module tube And, the welding connection of the outlet pipe elbow (P002, P006, P011, P015) of the steam generator (9), a plurality of tie straps 190 for preventing welding shrinkage during the welding operation. The mounting structure of this tie strap 190 is shown in FIG. That is, the tie strap 190, the one side of the U-shaped module tube, the inside of the casing inlet lower welding connection portion of the coolant pump 11 of the reactor, the other side of the U-shaped module tube, the steam generator ( The welding is fixed inside the welding connection of the outlet pipe elbow (P002, P006, P011, P015) of 9). As shown in FIG. 8, each of the tie wraps 190 is provided at one side of the U-shaped module tube and at the lower end of the casing inlet of the coolant pump 11 of the reactor. For example, welding is performed at eight places at equal intervals of 45 degrees in the circumferential direction, respectively. The other side of the U-shaped module pipe and the inside of the outlet pipe elbows P002, P006, P011, and P015 of the steam generator 9, for example, are welded at eight locations at equal intervals of 45 degrees in the circumferential direction, for example. do. The tie strap 190 is connected to a structure different from the tack welding of the temporary fixing jig used in a typical large diameter welding operation. That is, the tie strap 190 used in the present invention has a stepped portion corresponding to the improvement groove 192 between one side of the U-shaped module tube and a lower end of the casing inlet of the coolant pump 11 of the reactor, respectively. 194 to be precision machined. Similarly, the tie strap 190 is inserted into the improvement groove 192 between the other side of the U-shaped module tube and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9, respectively. It has a wedge-shaped step 194. In addition, the tie strap 190 is connected to the complete total welding along the entire length of both sides, unlike the temporary welding (Tack-welding) of the temporary fixing jig. That is, in general, the temporary welding jig of the temporary fixing jig (Tack-welding) operation, U-shaped module pipe (P003 + P004), (P007 + P008), (P012 + P013), (P016 +) to which the present invention is applied In the welding connection of P017, the tie strap 190 is connected in a complete overall welding manner since it cannot withstand its welding shrinkage. In the process of connecting the tie strap 190, the middle step 194 of the tie straps 19 0, the improved groove (between one side of the U-shaped module tube and the lower end of the casing inlet of the coolant pump 11 of the reactor ( 192, and in contact with the other side of the U-shaped module tube and the improvement groove 192 between the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9, respectively. As such, the U-shaped module tube (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017) is configured to minimize the welding shrinkage during the welding connection operation. Reactor U-shaped module tube construction apparatus 100 according to the present invention configured as described above, the installation of the U-shaped module tube (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017) What should be done beforehand is that the reactor must be completely fixed in advance so that it will not move under any conditions. The U-shaped modular tubes can each be prefabricated at the factory or in the field. The U-shaped module tube is precisely field- or factory-processed while comparing the final loop section with values measured at four locations. In addition, during the manufacturing of the U-shaped module tube, the welding while monitoring the longitudinal shrinkage and rotational shrinkage during welding to match the measured spool length. At this time, alignment lugs are attached to each inner surface of the pipe and welded, and then stress relief heat treatment (PWHT) is performed. By preparing the U-shaped module tube in this way, it is possible to eliminate the process of reprocessing and reloading the factory processing process of the final connected L-shaped spools (P003, P007, P012, P016) different from the design dimensions. On the other hand, in order to maintain the balance of welding, such a U-shaped module tube, as shown in relation to Figure 2, between the four coolant pump 11 and the two steam generators (9) P003 + P004), (P007 + P008), (P012 + P013) and (P016 + P017) are welded simultaneously. At this time, the reactor U-shaped module tube construction apparatus 100 according to the present invention, as shown in Figure 4 as a whole, each U-shaped module tube (P003 + P004), the saddle 140 of the upper support 130, (P007 + P008), (P012 + P013), and (P016 + P017), the lower end of the casing inlet of the coolant pump 11 of the reactor and the outlet pipe elbows of the steam generator 9 (P002, P006, P011, P015) respectively. At this time, the height of the U-shaped module tube is lower than the height of the casing inlet of the coolant pump 11 of the reactor and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9, U Both ends of the modular module tube are not aligned with the lower end of the casing inlet of the coolant pump 11 of the reactor and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9. For example, it is a state arrange | positioned at about 90 degree shift. In this state, the operator uses the rotary mechanism 170 to operate the reactor at both ends of the U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P0 16 + P 0 17). Rotate the U-shaped module tube to align the lower end of the casing inlet of the coolant pump 11 with the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9. At this time, the rotation mechanism 170 is a wheel 174 of the upper support 130 is rotated along the circular rail 172 of the lower support 110, U-shaped module pipe (P003 + P004), (P007 + P008), The rotation of (P012 + P013) and (P016 + P017) is as described above. Then, U-shaped module pipes (P 003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017) are lifted up using the hydraulic device 106 provided on the lower support 110. Let's do it. At this time, the hydraulic device 106, as well as raising and lowering both the upper and lower support (110, 130) and the U-shaped module tube thereon. Thus, the U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), and (P016 + P017) are raised to lower the casing inlet of the coolant pump 11 of the reactor and the outlet of the steam generator 9 When it is finally aligned with the tube elbows (P002, P006, P011, P015), a tie wrap inside the U-shaped module tubes (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017) Mounting of 190 is made. That is, by using a tie strap 190 specially configured in the present invention, as shown in Figures 7 and 8, one side of the U-shaped module tube and the lower end of the casing inlet of the coolant pump 11 of the reactor The inner side is welded 8 places at equal intervals of 45 degree circumference, respectively. The other side of the U-shaped module tube and the inside of the outlet pipe elbows P002, P006, P011, and P015 of the steam generator 9 are welded at eight locations at equal intervals of 45 degrees in the circumferential direction, respectively. Then, after the fixing by the tie strap 190 is made, as shown in Figure 8, one side of the U-shaped module tube, the casing inlet bottom welding connection of the coolant pump 11 of the reactor, The welding side of the other side of the U-shaped module tube and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9 are simultaneously welded by a TIG automatic welding device. In this way, in the two welding sites W1 and W2 of FIG. 8, when a welding connection is made through orbital automatic welding at the same time, the transverse shrinkage of the welding portion, and the angular distortion Precision welding construction can be achieved by completely preventing the deformation (Angular distorsion). The orbital automatic welding may be made of, for example, a TIG automatic welding device. Then, in the welding operation, when the welding 7 to 8 pass of the welding connection is made, the turn buckle 144 fixing the U-shaped module tube is removed, and the welding shrinkage occurring in the subsequent welding pass is tied. Strap 190 completely prevents the welding shrinkage does not occur. In addition, one side of the U-shaped module tube, the outer welding of the lower casing inlet welding connection portion of the coolant pump 11 of the reactor, the other side of the U-shaped module tube, and the outlet of the steam generator 9 When the outer welding of the weld connection of the pipe elbows (P002, P006, P011, P015) is completed at the same time, the tie straps 190 are respectively U-shaped module pipe (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017), the lower end of the casing inlet of the coolant pump 11 of the reactor, and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9 are removed. At this time, the welding connection part of the tie strap 190 is ground by grinding and blown with a hammer to blow the U-shaped module tube, the lower end of the casing inlet of the coolant pump 11 of the reactor, and the steam generator 9. It is separated from the outlet pipe elbows (P002, P006, P011, P015). When the tie strap 190 is separated in this way, the improvement groove 192 between one side of the U-shaped module tube and the lower end of the casing inlet of the coolant pump 11 of the reactor is exposed, and the other side of the U-shaped module tube, Improvement grooves 192 between the outlet pipe elbows P002, P006, P011, and P015 of the steam generator 9 are exposed, respectively. The improvement grooves 192 are simultaneously subjected to orbital automatic welding. Through the inner welding connection is made. Then, after the inner welding of the improvement grooves 192 is made, U-shaped module pipes (P003 + P004), (P007 + P008), (P012 + P013), (P016 + P017), and the coolant pump of the reactor ( The stainless clad layer 196 formed on the lower end of the casing inlet of 11) and the inner surface of the outlet pipe elbows P002, P006, P011, and P015 of the steam generator 9 is welded with the same stainless steel material to complete welding. This stainless clad layer 196 is used to enhance the corrosion resistance of the U-shaped module tube, the bottom of the casing inlet of the coolant pump 11 of the reactor, and the outlet pipe elbows P002, P006, P011, P015 of the steam generator 9. It is a double coated part on the inner side. Experimental Examples In the following, a series of experiments were conducted to demonstrate the effect of the tie strap 190 used in the present invention. First, the tie strap 190 is to minimize the welding shrinkage, conventionally, the tie strap 190 is not used in actual reactor pipe welding. However, in the present invention, a plurality of tie straps 190 are introduced at the welded connections of the respective U-shaped tube tubes P003 + P004, P007 + P008, P012 + P013, and P016 + P017. Table 1 below shows the inner shrinkage result using the tie strap 190. Table 1 compares the two, when the tie strap 190 is removed after 1/3 pass welding (19 pass) of each weld connection, and the tie strap 190 is removed after 100% welding (108 pass). Weld shrinkage of each reactor pipe is shown.
표 1 (표 1) 원자로배관 위치별 중량 및 용접 수축량(실측 및 모델링)
고온관 중간관
Vertical horizontal X,Z 방향 Vertical
Dead weight(lbs) 20,000 10,000 10,000 25,000
19 PASS 용접시 타이 스트랩(190) 부착한 내,외면의 Weld shrinkage(mm) * 내면 - 평균 1.5mm(실측), 1.9mm(모델링 계산값) * 외면 - 평균 3.0mm(실측), 2.6mm(모델링 계산값)
108 PASS 용접 완료 후 타이 스트랩(190) 부착한 내,외면의 Weld shrinkage(mm) * 내면 - 평균 2,2 mm (실측) 2.23mm(모델링 계산값)* 외면외면 수축은 yielding 현상으로 인해 최종 용접완료 단계에서는 함몰 현상으로 큰 의미가 없는 수축량으로 배관 내면 수축만 반영함.
Table 1 <b>(</b> Table 1) Weight and Weld Shrinkage by Reactor Piping Position (Measurement and Modeling)
A hot tube Middle tube
Vertical horizontal X, Z direction Vertical
Dead weight (lbs) 20,000 10,000 10,000 25,000
19 Weld shrinkage (mm) of inner and outer surfaces with tie straps (190) attached during PASS welding * Inside-average 1.5mm (measured), 1.9mm (modeling calculated) * Outside-average 3.0mm (measured), 2.6mm (modeling calculated)
108 Weld shrinkage (mm) of inner and outer surfaces with tie straps (190) attached after completing PASS welding * Inner surface- Average 2,2 mm (measured) 2.23mm (modeling calculated value) * Outer surface shrinkage is a sinking phenomenon in final welding completion stage due to yielding phenomenon.
상기 용접 수축량의 실측 및 모델링 실험에서 알 수 있는 바와 같이, 타이 스트랩(190)은 용접 부위의 100% 용접 후 제거하는 것이 보다 효과적이었다. As can be seen from the measurement and modeling experiment of the weld shrinkage, it was more effective to remove the tie strap 190 after 100% welding of the welded portion.
다음으로는, 타이 스트랩(190)을 사용하지 않은 종래 기술의 비구속 조건 (unrestrained condition)과, 타이 스트랩(190)을 사용한 본 발명의 구속 조건 (restrained condition)에 대하여 비교하였다. 원자로 배관과 같은 후육, 대구경 맞대기 이음은 용접시의 구속(restraint) 상태, 모재 두께, 입열량, 개선형상, 비드 용착 방법, 예열 등이 용접 수축(weld shrinkage)에 영향을 미친다. 경험에 의하면 수동용접을 적용한 원자로 배관 시공중 저온균열 사례가 있었고, 임시 부착물 부착위치에서 용접 직후에는 나타나지 않다가 현장에서 상온 수업 시험 후에 시행하는 가동전 검사에서 결함으로 검출되는 사례가 있다. 이러한 현상은 용접 입열, 구속특성에 따른 용접수축으로 잔류한 응력에 의해 주로 발생된다. 원자로 배관 용접작업에서는, 용접균열, 최종 시공 후의 진동, 위치 정밀도 등이, 용접 수축에 의해서 지대한 영향을 받고, 이러한 용접 수축은 구속 조건의 여부에 의존하므로, 타이 스트랩(190)을 사용한 구속조건(restrained condition)(본 발명)과, 타이 스트랩(190)을 사용하지 않는 비구속 조건(unrestrained condition)(종래 기술)으로 구분하여 실험할 필요성이 있다. 본 실험에서는, 문헌(Predictive formula for weld distortion-a critical review : G VERBAEGHE)에 언급된 용접 수축에 관한 다양한 모델링식 중에서, 원자로 배관과 같은 대구경 배관에 적용할 수 있는 Leggatt Model을 이용하여, 원자로 냉각재 배관의 용접 위치별 변형(distortion)에 대해 종래의 시공법과, 본 발명의 개선공법을 비교하였다. 상기 Leggatt Model은 용접 부위의 구조를 나타낸 도 9a에 관련하여, 아래의 식(1)로 표시된다.Next, an unrestrained condition of the prior art without using the tie strap 190 and a restrained condition of the present invention using the tie strap 190 were compared. For thick and large diameter butt joints, such as reactor piping, restraint during welding, base material thickness, heat input, improved shape, bead welding method, and preheating affect weld shrinkage. Experience has shown that there are cases of low temperature cracking during the construction of reactor piping with manual welding, and that they do not appear immediately after welding at the temporary attachment site, but are detected as defects in the pre-operation inspection conducted after the room temperature test in the field. This phenomenon is mainly caused by the residual stress due to welding shrinkage due to welding heat input and restraint characteristics. In the reactor pipe welding operation, the welding crack, the vibration after the final construction, the positional accuracy, etc. are greatly influenced by the welding shrinkage, and the welding shrinkage depends on the constraint condition. There is a need to experiment by dividing into a restrained condition (invention) and an unrestrained condition (prior art) in which the tie strap 190 is not used. In this experiment, the reactor coolant, using a Leggatt Model that can be applied to large diameter pipes, such as reactor pipes, among the various modeling equations for weld shrinkage mentioned in the Predictive formula for weld distortion-a critical review (G VERBAEGHE). The conventional construction method and the improvement method of this invention were compared with respect to the distortion by welding position of the piping. The Leggatt Model is represented by Equation (1) below with respect to FIG. 9A showing the structure of the welded portion.
Figure PCTKR2017001959-appb-I000001
(식 1)
Figure PCTKR2017001959-appb-I000001
(Equation 1)
여기서: δt ; transverse shrinkage (mm) Where: δt; transverse shrinkage (mm)
q/v: heating Input (J/mm)q / v: heating Input (J / mm)
Figure PCTKR2017001959-appb-I000002
tc: thickness of unfused plate material (See Fig.2)
Figure PCTKR2017001959-appb-I000002
tc: thickness of unfused plate material (See Fig. 2)
β; restrained angular distortion(°)       β; restrained angular distortion (°)
d : distance between centre of welded area and the center of the plate(mm)이다. 이러한 고온관 용접부의 Leggatt (식 1)에서 종래의 비 구속 조건(unrestrained condition), 즉 타이 스트랩(190)을 사용하지 않은 모델링 결과가 아래와 같이 얻어졌다.       d: distance between center of welded area and the center of the plate (mm). In Leggatt (Equation 1) of the hot tube welded part, a modeling result without using the conventional unrestrained condition, that is, the tie strap 190, was obtained as follows.
그리고, 종래의 비구속 조건(unrestrained condition)에 대한 실측정은 도 9b에 도시된 그래프와 같았다. 즉, 종래의 시공방식에 따르면, 용접부위의 18pass 상태에서 용접 수축(δ)은 대략 5.7mm이었다. 또한, 도 9b의 그래프에서는, 종래의 비구속 조건(unrestrained condition)에 대해 용접 부분의 횡방향 수축(Transverse shrinkage), 및 각 비틀림 변형(Angular distors ion)이 Leggatt 모델식(식 1)을 적용한 계산식과 측정값이 서로 잘 일치함을 보여주었다. 다음으로, 본 실험에서는 타이 스트랩(190)을 적용한 본 발명의 구속조건(restrained condition)에 대해 모델링 결과를 얻었다. 본 발명의 원자로 U형 모듈 관 시공장치(100)는 타이 스트랩 (190)을 부착하여 횡방향 수축(Transverse shrinkage), 및 각 비틀림 변형(Angular dist orsion)을 상당량 줄일 수 있는 특성이 있고, 용접 수축이 수직방향으로만 이루어지는 특징과 내부 타이 스트랩(190)을 부착하면, 각 비틀림 변형(Angular distors ion)을 없앨 수 있기 때문에, (식 1)에서 β = 0°로 가정하고, 상기 (식 1)을 아래의 (식 2)와 같이 단순화시킬 수 있다.In addition, the actual measurement of the conventional unrestrained condition was the same as the graph shown in FIG. 9B. That is, according to the conventional construction method, the welding shrinkage (δ) in the 18 pass state of the weld site was approximately 5.7 mm. In addition, in the graph of FIG. 9B, the transverse shrinkage of the welded portion and the angular distors ion are calculated using the Leggatt model equation (Equation 1) for the conventional unrestrained condition. And measurements showed good agreement with each other. In the present experiment, modeling results were obtained for the restrained condition of the present invention to which the tie strap 190 was applied. Reactor U-shaped module tube construction apparatus 100 of the present invention has a characteristic that can significantly reduce the transverse shrinkage, and angular distant by attaching a tie strap 190, weld shrinkage By attaching this vertical only feature and the inner tie strap 190, it is possible to eliminate the angular distors ion, so it is assumed that β = 0 ° in (Equation 1), and (Equation 1) Can be simplified as (Equation 2) below.
Figure PCTKR2017001959-appb-I000003
(식-2)
Figure PCTKR2017001959-appb-I000003
(Equation-2)
상기 (식 2)는 각 비틀림 변형(Angular distorsion)이 없다는 가정하에, 입열량과 용착 두께만 정확하게 제어하면, 횡방향 수축(Transverse shrinkage)을 컴퓨터 해석을 하지 않고도 충분히 계산할 수 있었다. 중요한 것은 용접부를 정밀하게 제어할 수 있는 변수를 도출하여 변수의 변경없이 적용하는 것이 관건이다. 상기 (식 2)에는 신형원전(APR 1400)의 시방(Procedure Qualification) 기록을 적용하여 계산하고, 모델과 실제 측정값을 비교한 결과 거의 일치함을 알 수 있었다. APR 1400에 적용한 타이 스트랩(190) 부착 용접 pass별 수축 데이터는 아래의 (표 2)와 같다. (표 2) 식 2의 개량 모델링 계산식에 의한 수축값(1~19 pass 동일한 입열량, 용착두께 적용) Equation (2) can fully calculate the transverse shrinkage without computer analysis, provided that there is no angular distorsion, and only the heat input and the welding thickness are accurately controlled. Importantly, it is important to derive a variable that can precisely control the welded part and apply it without changing the variable. The equation (2) was calculated by applying the procedure (Procedure Qualification) record of the new nuclear power plant (APR 1400), and it was found that the model and the actual measured value is almost the same. The contraction data for each welding pass with the tie strap 190 applied to the APR 1400 are shown in Table 2 below. (Table 2) Shrinkage value by the improved modeling formula of Equation 2 (1 ~ 19 pass same heat input, welding thickness applied)
----------------------------------------------------------------------------------------------------------------------- -------------------
Modeling Transverse shrinkage     Modeling Transverse shrinkage
----------------------------------------------------------------------------------------------------------------------- -------------------
1pass
Figure PCTKR2017001959-appb-I000004
= 0.138 mm
1pass
Figure PCTKR2017001959-appb-I000004
= 0.138 mm
2pass
Figure PCTKR2017001959-appb-I000005
= 0.138 mm
2pass
Figure PCTKR2017001959-appb-I000005
= 0.138 mm
3pass
Figure PCTKR2017001959-appb-I000006
= 0.138 mm
3pass
Figure PCTKR2017001959-appb-I000006
= 0.138 mm
4pass
Figure PCTKR2017001959-appb-I000007
= 0.138 mm
4pass
Figure PCTKR2017001959-appb-I000007
= 0.138 mm
5pass
Figure PCTKR2017001959-appb-I000008
= 0.138 mm
5pass
Figure PCTKR2017001959-appb-I000008
= 0.138 mm
6pass
Figure PCTKR2017001959-appb-I000009
= 0.138 mm
6pass
Figure PCTKR2017001959-appb-I000009
= 0.138 mm
7pass
Figure PCTKR2017001959-appb-I000010
= 0.138 mm
7pass
Figure PCTKR2017001959-appb-I000010
= 0.138 mm
8pass
Figure PCTKR2017001959-appb-I000011
= 0.138 mm
8pass
Figure PCTKR2017001959-appb-I000011
= 0.138 mm
9pass
Figure PCTKR2017001959-appb-I000012
= 0.138 mm
9pass
Figure PCTKR2017001959-appb-I000012
= 0.138 mm
10pass
Figure PCTKR2017001959-appb-I000013
= 0.138 mm
10pass
Figure PCTKR2017001959-appb-I000013
= 0.138 mm
11pass
Figure PCTKR2017001959-appb-I000014
= 0.138 mm
11pass
Figure PCTKR2017001959-appb-I000014
= 0.138 mm
12pass
Figure PCTKR2017001959-appb-I000015
= 0.138 mm
12pass
Figure PCTKR2017001959-appb-I000015
= 0.138 mm
13pass
Figure PCTKR2017001959-appb-I000016
= 0.138 mm
13pass
Figure PCTKR2017001959-appb-I000016
= 0.138 mm
14pass
Figure PCTKR2017001959-appb-I000017
= 0.138 mm
14pass
Figure PCTKR2017001959-appb-I000017
= 0.138 mm
15pass
Figure PCTKR2017001959-appb-I000018
= 0.138 mm
15pass
Figure PCTKR2017001959-appb-I000018
= 0.138 mm
16pass
Figure PCTKR2017001959-appb-I000019
= 0.138 mm
16pass
Figure PCTKR2017001959-appb-I000019
= 0.138 mm
17pass
Figure PCTKR2017001959-appb-I000020
= 0.138 mm
17pass
Figure PCTKR2017001959-appb-I000020
= 0.138 mm
18pass
Figure PCTKR2017001959-appb-I000021
= 0.138 mm 18pass 수축 누계 2.4 mm
18pass
Figure PCTKR2017001959-appb-I000021
= 0.138 mm 18 pass shrinkage 2.4 mm
19pass
Figure PCTKR2017001959-appb-I000022
= 0.138 mm
19pass
Figure PCTKR2017001959-appb-I000022
= 0.138 mm
개량 LIGGATT Model = 2.62mm        Improved LIGGATT Model = 2.62mm
상기 식 2의 개량 모델링 계산식에 의한 수축값은, 용접 부위의 18pass 이후에 용접 수축(δ) = 2.4mm이었다. 상기의 비교 실험에서와 같이, 타이 스트랩(190)을 사용하지 않은 종래 기술의 비구속 조건(unrestrained condition)의 용접 수축(δ)은 5.7mm 이지만, 타이 스트랩(190)을 사용한 본 발명의 구속조건(restrained condition)의 용접 수축(δ)은 2.4mm이었으며, 1~18pass 수축 차이는 5.7mm/2.4mm로 본 발명은 종래 기술에 비하여 50% 이상 용접 수축을 방지하는 효과가 얻어졌다 . 또한 Tie strap은 U형 모듈관을 사용하지 않는 고온관, 저온관에도 동일하게적용하여 용접수축의 억제에도 사용될 수 있으며, 증기발생기 교체사업에서 용접부 2cut, 3cut, 4cut 절단 후에 증기발생기에 재연결하는 용접에 있어서 용접수축을 억제하기위해 배관 내면에 사용될 수 있다. 상기와 같이 본 발명에 따른 원자로 U형 모듈 관 시공장 치(100)에 의하면, 용접 부분의 횡방향 수축(Transverse shrinkage), 및 비틀림 변형(Angular distorsion)을 완벽하게 방지하여 정밀한 용접 시공을 이룰 수 있다. 따라서, 본 발명에 의하면 원자로 배관 시공시, 고온관, 저온관, 중간관 최종 연결(closure loop)의 용접 수축으로 인해 발생하는 증기발생기(9)의 지지구조인 슬라이딩 베이스의 침하를 방지하고, 슬라이더의 작동 불일치를 방지할 수 있으며, 원자로 냉각재 펌프(11)의 구조적 진동과 증기발생기(9) 세관 마모를 방지하고, 각종 부품들 간의 접촉 마모 현상을 방지할 수 있어서 원자로의 안정적인 가동, 설비 고장 방지, 및 원자로 내구 수명을 증대시키는 개선된 효과를 얻을 수 있다. 본 발명은 상기에서 도면을 참조하여 특정 실시 예에 관련하여 상세히 설명하였지만 본 발명은 이와 같은 특정 구조에 한정되는 것은 아니다. 당 업계의 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 본 발명의 기술 사상 및 권리범위를 벗어나지 않고서도 본 발명을 다양하게 수정 또는 변경시킬 수 있을 것이다. 예를 들면, 상기 회전기구(170)는 원형 레일(172)과, 다수의 휠(174)들이 아닌 변형 구조, 즉 하부 지지대(110)에 대한 상부 지지대(130)의 임의의 360도 회전축 구조로도 이루어질 수도 있을 것이다. 또한 상기 타이 스트랩(190)은 용접 연결부위에서 각각 8 개소에 장착되지 않고, 임의 다른 갯수로서, 임의 등 간격 배열로도 장착가능할 것이다. 그렇지만 그와 같은 단순한 설계적인 수정 구조들은 모두 명백하게 본 발명의 권리범위 내에 속하게 됨을 미리 밝혀 두고자한다.Shrinkage value by the improved modeling formula of the said Formula 2 was weld shrinkage (delta) = 2.4mm after 18 pass of a weld site | part. As in the comparative experiment above, the weld shrinkage δ of the prior art unrestrained condition without using the tie strap 190 is 5.7 mm, but the constraint of the present invention using the tie strap 190 is The weld shrinkage (δ) of the stressed condition was 2.4 mm, and the difference of 1-18 pass shrinkage was 5.7 mm / 2.4 mm. Thus, the present invention has an effect of preventing weld shrinkage by more than 50% compared to the prior art. In addition, tie straps can be used to suppress welding shrinkage by applying the same to high and low temperature pipes that do not use U-shaped modular pipes.In the steam generator replacement business, the tie straps are reconnected to the steam generator after cutting 2, 3, and 4 cuts of the weld. It can be used on the inner surface of pipe to suppress welding shrinkage in welding. According to the reactor U-shaped module pipe factory 100 according to the present invention as described above, it is possible to achieve precise welding construction by completely preventing the transverse shrinkage, and torsional distorsion of the welded portion. have. Accordingly, the present invention prevents the settlement of the sliding base, which is the support structure of the steam generator 9, generated due to welding shrinkage of the hot pipe, the low temperature pipe, and the intermediate pipe closure loop during the reactor pipe construction. It is possible to prevent misoperation of the reactor, to prevent structural vibration of the reactor coolant pump (11) and to prevent abrasion of the steam generator (9), and to prevent contact abrasion between various components. And improved effects of increasing the reactor and lifetime of the reactor can be obtained. Although the present invention has been described in detail with reference to the accompanying drawings, the present invention is not limited to such a specific structure. Those skilled in the art may variously modify or change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. For example, the rotating mechanism 170 may be a circular rail 172 and any 360-degree rotating shaft structure of the deformation structure other than the plurality of wheels 174, that is, the upper support 130 with respect to the lower support 110. It could also be done. In addition, the tie straps 190 may not be mounted at eight locations in the welding connection portion, but may be mounted in any other numbered intervals and in any equidistant arrangement. Nevertheless, it is intended that such simple design modification structures clearly fall within the scope of the present invention.
[부호의 설명][Description of the code]
1: 원자로 5: 반응기1: reactor 5: reactor
7: 열전달 회로 9: 증기 발생기7: heat transfer circuit 9: steam generator
11: 냉각재 펌프 13: 고온관(hot leg)11: coolant pump 13: hot leg
15: 순환관 17: 저온관(Cold leg)15: circulation tube 17: cold leg
100: 본 발명에 따른 원자로 U형 모듈 관 시공장치100: reactor U-shaped module tube construction apparatus according to the present invention
106: 유압 장치 108: 바닥106: hydraulic system 108: bottom
110: 하부 지지대 114, 134: 리프팅 러그110: lower support 114, 134: lifting lugs
130: 상부 지지대 140: 새들130: upper support 140: saddle
144: 턴 버클 146: 와이어 로프144: turn buckle 146: wire rope
148: 고무판 170: 회전기구148: rubber plate 170: rotating mechanism
172: 원형 레일 174: 휠172: round rail 174: wheel
190: 타이 스트랩 192: 개선 홈190: tie strap 192: improved home
194: 단턱 W1, W2: 용접 부위194: stepped W1, W2: welded portion
P001,P010: 고온관P001, P010: High temperature tube
P005, P009, P014, P018: 저온관P005, P009, P014, P018: low temperature pipe
P002, P004, P006, P008, P011, P013, P015, P017: 엘보우P002, P004, P006, P008, P011, P013, P015, P017: Elbow
P003, P007, P012, P016: L 자형 스풀P003, P007, P012, P016: L shaped spool
P003+P004, P007+P008, P012+P013, P016+P017: U형 모듈관P003 + P004, P007 + P008, P012 + P013, P016 + P017: U type module tube

Claims (7)

  1. 원자로 냉각재 계통설비에 구비된 원자로 냉각재 배관을 시공하기 위한 장치에 있어서,In the apparatus for constructing the reactor coolant piping provided in the reactor coolant system equipment,
    다수의 유압 장치에 의해서 바닥에 대해 상하로 승,하강가능하도록 구성된 하부 지지대;A lower support configured to be liftable up and down relative to the floor by a plurality of hydraulic devices;
    상기 하부 지지대의 상부 측에 위치되고, 상부에는 U형 모듈 관을 장착하기 위한 새들을 구비한 상부 지지대; 및An upper support positioned on an upper side of the lower support, the upper support having a saddle for mounting a U-shaped module tube; And
    상기 U형 모듈 관의 일측과 원자로의 냉각재 펌프의 케이싱 흡입구 하단 용접 연결부위와, 상기 U형 모듈 관의 타측과 증기발생기의 출구관 엘보우의 용접 연결부위 내부에, 용접작업시 용접수축을 방지하기 위해 고정되는 다수의 타이 스트랩; 및 To prevent welding shrinkage during the welding operation in one side of the U-shaped module tube and the lower end of the casing inlet welding connection of the coolant pump of the reactor, and the other side of the U-shaped module tube and the weld connection of the outlet pipe elbow of the steam generator. A plurality of tie straps secured for; And
    상기 하부 지지대에 대해서 상기 상부 지지대를 회전시키도록 구성된 회전기구;를 포함하고, And a rotating mechanism configured to rotate the upper support relative to the lower support.
    상기 U형 모듈 관을 원자로의 냉각재 펌프의 케이싱 흡입구 하단과, 증기발생기의 출구관 엘보우 사이에 배치하고, 회전 및 상승시켜 정렬하며, 용접 연결하도록 사용되고, 상기 타이 스트랩 각각의 중간에는 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단 사이의 개선 홈과, 상기 U형 모듈 관의 타측과, 상기 증기발생기의 출구관 엘보우 사이의 개선 홈에 각각 일치하여 삽입되는 쐐기형의 단턱을 형성하여 면 접촉함으로써, 용접 작업시 용접 수축을 최소화하도록 구성된 것임을 특징으로 하는 원자로 U형 모듈 관 시공장치.The U-shaped module tube is disposed between the lower end of the casing inlet of the coolant pump of the reactor and the outlet tube elbow of the steam generator, rotated and raised to align, and welded to each other. A wedge-shaped step that is inserted in correspondence with an improvement groove between one side of the tube and a lower end of the casing inlet of the coolant pump of the reactor, and the improvement groove between the other side of the U-shaped module tube and the outlet pipe elbow of the steam generator. Reactor U-shaped tube construction apparatus, characterized in that configured to minimize the welding shrinkage during welding operation by forming a surface.
  2. 제1항에 있어서, 상기 회전기구는 하부 지지대의 상부면에 고정된 원형 레일과, 상부 지지대의 하부면에 고정된 다수의 휠들을 포함하며, 상기 휠들은 상기 원형 레일 상에 배치되어 원형 레일을 따라서 이동함으로써, 하부 지지대에 대하여 상부 지지대의 360도 회전을 허용하고, 상기 상부 지지대상의 U형 모듈 관을 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단과, 증기발생기의 출구관 엘보우 하부에서 회전시키도록 구성된 것임을 특징으로 하는 원자로 U형 모듈 관 시공장치.According to claim 1, The rotating mechanism includes a circular rail fixed to the upper surface of the lower support, and a plurality of wheels fixed to the lower surface of the upper support, the wheels are disposed on the circular rail to form a circular rail Thus, by moving, allowing 360 degree rotation of the upper support relative to the lower support and rotating the U-shaped module pipe of the upper support to the lower end of the casing inlet of the coolant pump of the reactor and the lower part of the outlet pipe elbow of the steam generator. Reactor U-shaped modular tube construction apparatus, characterized in that consisting of.
  3. 제2항에 있어서, 상기 상부 지지대는 새들 상에 다수의 턴 버클과 고무판이 U형 모듈 관을 에워싸도록 구성되어 U형 모듈 관을 고정시키고, 상기 상,하부 지지대의 측면에는 줄걸이용 다수의 리프팅 러그들이 형성되어 상,하부 지지대를 이동시킬 수 있도록 구성된 것임을 특징으로 하는 원자로 U형 모듈 관 시공장치.According to claim 2, wherein the upper support is configured to surround the U-shaped module tube with a plurality of turn buckle and rubber plate on the saddle to fix the U-shaped module tube, a plurality of strings for the side of the upper and lower support Reactor U-shaped modular tube construction apparatus characterized in that the lifting lugs are formed to be configured to move the upper and lower supports.
  4. 제1항에 있어서, 상기 다수의 타이 스트랩은, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단 용접 연결부위 내부와, 상기 U형 모듈 관의 타측과, 상기 증기발생기의 출구관 엘보우의 용접 연결부위 내부에서, 각각 원주방향 등 간격으로 tie strap을 용접홈에 끼워 용접 또는 나사식으로 수축에 억제하도록 고정되며, 상기 용접 연결부위의 외부 용접이 완료된 다음에는 상기 U형 모듈 관과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단, 및 증기발생기의 출구관 엘보우 사이의 용접 연결 부위로부터 제거되는 것임을 특징으로 하는 원자로 U형 모듈 관 시공장치.The method of claim 1, wherein the plurality of tie straps, one side of the U-shaped module tube, the inside of the casing inlet bottom weld connection of the coolant pump of the reactor, the other side of the U-shaped module tube, the steam generator Inside the welding joint of the outlet elbow, the tie straps are fixed to the welding grooves at intervals such as circumferential directions, respectively, so as to be restrained from shrinkage by welding or screwing, and after the external welding of the welding joint is completed, the U-shaped module Reactor U-shaped modular tube construction apparatus characterized in that it is removed from the welding connection between the tube, the lower end of the casing inlet of the coolant pump of the reactor, and the outlet tube elbow of the steam generator.
  5. 제1항에 있어서, 상기 U형 모듈 관의 일측과, 상기 원자로의 냉각재 펌프의 케이싱 흡입구 하단 용접 연결부위와, 상기 U형 모듈 관의 타측과, 상기 증기발생기의 출구관 엘보우의 용접 연결부위는, 각각 오비털 트랙(orbital track)을 따라 회전 용접되는 협개선 GTAW의 용접수축을 억제하기 위해 tie strap을 사용하여 동시에 용접작업이 이루어지고, 완료되는 것임을 특징으로 하는 원자로 U형 모듈 관 시공장치According to claim 1, wherein one side of the U-shaped module tube, the lower end of the casing inlet welding connection of the coolant pump of the reactor, the other side of the U-shaped module tube, the welding connection of the outlet pipe elbow of the steam generator Reactor U-shaped modular pipe construction device, characterized in that welding work is done and completed at the same time by using tie straps to suppress welding contraction of the narrow-gap GTAW, which is rotated and welded along the orbital track, respectively.
  6. 청구항 4항에 있어서, U형 모듈관을 사용하지 않는 고온관(Hot leg), 저온관(Cold leg)에도 동일하게 적용하여 용접수축으로 억제하는 Tie strap을 사용하는 시공법.The construction method according to claim 4, wherein a tie strap that is similarly applied to a hot leg and a cold leg that does not use a U-shaped module tube and is suppressed by welding shrinkage.
  7. 청구항 4항, 6항에 있어서 2루프, 3루프, 4루프 가압경수로형 증기발생기 교체사업에서 용접부 2cut, 3cut, 4cut 절단후에 증기발생기에 재연결하는 용접에 있어서 용접수축을 억제하기 위해 연결 배관 내면에 Tie strap을 사용하는 시공법.The inner surface of the connecting pipe to prevent welding shrinkage in the welding of reconnecting the steam generator after cutting 2, 3, and 4 cuts in the 2-loop, 3-loop, and 4-loop pressurized water reactor steam generator replacement projects. Construction method using tie straps.
PCT/KR2017/001959 2016-02-26 2017-02-22 Construction apparatus for u-shaped nuclear reactor module pipe WO2017146467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160022989A KR101626270B1 (en) 2016-02-26 2016-02-26 Apparatus for installing u-shaped module pipe on the closure loop of reactor coolant system
KR10-2016-0022989 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017146467A1 true WO2017146467A1 (en) 2017-08-31

Family

ID=56099356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001959 WO2017146467A1 (en) 2016-02-26 2017-02-22 Construction apparatus for u-shaped nuclear reactor module pipe

Country Status (2)

Country Link
KR (1) KR101626270B1 (en)
WO (1) WO2017146467A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187864A (en) * 2018-09-06 2019-01-11 苏州热工研究院有限公司 Used in nuclear power station forges main pipeline manufacturing process assessment method
CN112139687A (en) * 2020-09-17 2020-12-29 中国航空制造技术研究院 Clamping device and method for laser drilling of flame tube

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960638B1 (en) * 2018-08-17 2019-03-20 박현희 Lifting device for sliding-base
CN108839295A (en) * 2018-08-21 2018-11-20 福建海源新材料科技有限公司 A kind of cooling shaping fixture for air-conditioner housing
CN116586837A (en) * 2023-06-01 2023-08-15 湖北迪峰换热器股份有限公司 Heat exchange pipeline machining device for ultrathin aluminum strip heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659092A (en) * 1992-06-24 1994-03-04 Westinghouse Electric Corp <We> Inspection and maintenance apparatus for inverted pump located beneach steam generator of power plant
KR20120108241A (en) * 2011-03-23 2012-10-05 주식회사 프로맥스 Circular rail for auto welding machine
KR20140014198A (en) * 2011-03-01 2014-02-05 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Nuclear steam generator support and alignment structure
US20150110236A1 (en) * 2012-04-25 2015-04-23 Smr Inventec, Llc Nuclear steam supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659092A (en) * 1992-06-24 1994-03-04 Westinghouse Electric Corp <We> Inspection and maintenance apparatus for inverted pump located beneach steam generator of power plant
KR20140014198A (en) * 2011-03-01 2014-02-05 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Nuclear steam generator support and alignment structure
KR20120108241A (en) * 2011-03-23 2012-10-05 주식회사 프로맥스 Circular rail for auto welding machine
US20150110236A1 (en) * 2012-04-25 2015-04-23 Smr Inventec, Llc Nuclear steam supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187864A (en) * 2018-09-06 2019-01-11 苏州热工研究院有限公司 Used in nuclear power station forges main pipeline manufacturing process assessment method
CN109187864B (en) * 2018-09-06 2021-02-26 苏州热工研究院有限公司 Method for evaluating manufacturing process of forged main pipeline for nuclear power station
CN112139687A (en) * 2020-09-17 2020-12-29 中国航空制造技术研究院 Clamping device and method for laser drilling of flame tube

Also Published As

Publication number Publication date
KR101626270B1 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2017146467A1 (en) Construction apparatus for u-shaped nuclear reactor module pipe
US8111802B2 (en) Inspection, maintenance, repair, and operating methods for nuclear reactors
US5675619A (en) Reactor core shroud repair using splice plate to bridge weld seam
US5586155A (en) Narrow access scanning positioner for inspecting core shroud in boiling water reactor
WO2017099457A1 (en) Construction method for steam generator of two-loop type pressurized light water reactor and reverse displacement system therefor for construction of reactor pipe
US5737380A (en) Core spray line assembly
EP0152207A2 (en) Retaining pin for nuclear reactor guide tube mounts
US6067338A (en) Reactor core shroud repair using thermally tensioned links to apply compression across shroud vertical seam weld
KR101626252B1 (en) Method for constructing the closure loop of reactor coolant system
US5646969A (en) Apparatus for installing tie rod assembly in space between jet pump assemblies with limited vertical access
JP4221177B2 (en) How to handle the equipment
CN115056209B (en) Multi-joint mechanical arm for sealing and overhauling main pump shaft of nuclear power plant
Kaye Remaining Life Enhancement Technology: Lifting and Tilting Tall Vessels—A Coke Drum Case-Study (Without Cranes)
Yang et al. Construction, assembly and commissioning of KSTAR main structures
JP2011085394A (en) Facility module for plant construction and modular construction method using the same
Czimczik et al. Development of a helium/helium intermediate heat exchanger with helical coil tube bundle
JP3412868B2 (en) Circulating water piping construction equipment
CN115359937A (en) Containment shell construction method and containment construction method
Ketchen Design and construction of the fuel handling machine at Fort St. Vrain
Puhn et al. Assembly of the ITER tokamak
RU2342240C2 (en) Process equipment system for heat exchanging structures production for air-cooled gas apparatus, slip ways for heat exchanging structures production, slip ways for gas intake header or cooled gas outlet header assembling and installation and production slipways for central support element under fan motor
JPH0656430B2 (en) Steam dryer
Ales et al. Equipment for removal of the TMI-2 plenum assembly
Blumberg et al. MSRE DESIGN AND OPERATIONS REPORT. PART X. MAINTENANCE EQUIPMENT AND PROCEDURES.
Vowles Experience and techniques in the repair of reactor components in CEGB nuclear power stations

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756805

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756805

Country of ref document: EP

Kind code of ref document: A1