WO2017146184A1 - レーザ内視鏡装置 - Google Patents

レーザ内視鏡装置 Download PDF

Info

Publication number
WO2017146184A1
WO2017146184A1 PCT/JP2017/006962 JP2017006962W WO2017146184A1 WO 2017146184 A1 WO2017146184 A1 WO 2017146184A1 JP 2017006962 W JP2017006962 W JP 2017006962W WO 2017146184 A1 WO2017146184 A1 WO 2017146184A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
living body
image
laser
endoscope apparatus
Prior art date
Application number
PCT/JP2017/006962
Other languages
English (en)
French (fr)
Inventor
明 溝口
光司 田中
裕二 問山
匡介 田中
淑杰 王
愛加 垣内
煌植 崔
一志 木村
Original Assignee
国立大学法人三重大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人三重大学 filed Critical 国立大学法人三重大学
Priority to US15/999,626 priority Critical patent/US11140318B2/en
Priority to EP17756619.7A priority patent/EP3420885B1/en
Priority to JP2018501778A priority patent/JP6738100B2/ja
Priority to CN201780011640.4A priority patent/CN108697315B/zh
Priority to PCT/JP2017/018755 priority patent/WO2017200066A1/ja
Priority to US16/301,939 priority patent/US11555819B2/en
Priority to JP2018518367A priority patent/JPWO2017200066A1/ja
Priority to EP17799490.2A priority patent/EP3459424A4/en
Priority to CN201780036233.9A priority patent/CN109414151B/zh
Publication of WO2017146184A1 publication Critical patent/WO2017146184A1/ja
Priority to JP2020206243A priority patent/JP7060891B2/ja
Priority to US17/964,758 priority patent/US11852632B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00082Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00154Holding or positioning arrangements using guiding arrangements for insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0068Confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/006Biological staining of tissues in vivo, e.g. methylene blue or toluidine blue O administered in the buccal area to detect epithelial cancer cells, dyes used for delineating tissues during surgery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present invention relates to a laser endoscope apparatus that images the inside of a living body.
  • a method for confirming a lesion inside a living body for example, the digestive tract
  • a method for confirming the presence or absence of a lesion such as a cancer cell by inserting an endoscope inside the living body is known.
  • Patent Document 1 describes a method of imaging a cell form inside a living body by staining a predetermined cell group inside the living body and then applying a multiphoton laser to the stained cell group. According to this method, since the stained cell group emits fluorescence by applying a multiphoton laser, a clear image of the cell morphology inside the living body can be obtained. Thereby, the presence or absence of lesions such as cancer cells can be accurately confirmed.
  • the obtained image is an image of a local area inside the living body
  • the presence or absence of a lesion can be confirmed only within the imaged area.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a laser endoscope apparatus capable of imaging a cell form inside a living body over a wide range without omission.
  • a laser endoscope apparatus includes an imaging head that is inserted into a living body, and applies the laser to the living body via the imaging head.
  • An imaging unit that images a living body
  • a control unit that controls the imaging head to move inside the living body
  • an image processing unit that processes an image captured by the imaging unit.
  • the plurality of imaging areas to be imaged in accordance with the movement of the imaging head are imaged such that adjacent imaging areas partially overlap, and the image processing unit superimposes the overlapping areas of the plurality of imaging areas.
  • the cell morphology inside the living body can be imaged over a wide range without leakage.
  • the imaging unit images the imaging region at a predetermined depth in a depth of 10 ⁇ m or more and 1000 ⁇ m or less from the mucosal surface inside the living body, and the image processing unit is configured to capture the composite image at the predetermined depth. May be generated.
  • control unit may control the movement of the imaging head so that the imaging head scans with a certain distance from the living body.
  • the quality of a plurality of images obtained by imaging is stable, and a composite image with little unevenness can be obtained when a plurality of images are combined.
  • the imaging head includes an objective lens arranged to face the living body, and a spacer provided around a space between the objective lens and the living body, and the control unit includes the spacer
  • the fixed distance may be maintained by controlling the movement of the imaging head so as to contact the living body.
  • the distance between the living body and the objective lens is constant, and the lens can be focused with high accuracy, so that a clear image can be obtained.
  • the living body is a digestive tract
  • the control unit controls the imaging head to move along the inner periphery of the digestive tract, and the imaging unit captures an image as the imaging head moves.
  • the living body is a digestive tract
  • the control unit controls the imaging head to rotate about the axis of the digestive tract
  • the imaging unit captures an image as the imaging head rotates.
  • the image processing unit may generate a panoramic image by superimposing the overlapping areas of the plurality of imaging areas. Good.
  • control unit may control the imaging head to revolve around the axis of the digestive tract.
  • control unit may control the imaging head to move in a spiral direction around the axis of the digestive tract.
  • the inner wall of the digestive tract can be continuously imaged in a short time.
  • control unit controls the imaging head to move along the duct direction of the gastrointestinal tract, and the imaging unit captures a plurality of imaging areas to be imaged as the imaging head moves. Images may be picked up so that a part of the image pickup areas adjacent to each other in the duct direction overlap, and the image processing unit may generate the panoramic image by superimposing the overlapped areas of the plurality of image pickup areas.
  • the imaging head includes an objective lens, and a focus variable unit that can change a focal position of the objective lens in a depth direction from a cell surface of the living body, and the control unit includes the focus variable unit.
  • the focal position is changed, the imaging unit images a plurality of imaging regions having different depths according to the change of the focal position, and the image processing unit is obtained by imaging of the imaging unit.
  • the image processing unit is obtained by imaging of the imaging unit.
  • control unit changes the focus position at a first focus variable mode that changes the focus position at a first pitch, and at a second pitch that is smaller than the first pitch. And after the imaging in the first variable focus mode, there is a suspicious lesion in the image obtained by the imaging.
  • the imaging may be performed in the second variable focus mode in the vicinity of the focal position when an image of a certain part is captured.
  • control unit stores in advance an image of normal cells in the absence of a lesion, and the image obtained in the first variable focus mode and the image of normal cells are at least of shape and brightness. One may be compared to determine the suspected lesion.
  • the suspicion of the lesion can be objectively determined in a short time.
  • control unit increases the output of the laser than during imaging, and increases the output of the laser to the diseased cell.
  • the lesioned cells may be removed.
  • the diseased cells can be removed early and reliably.
  • the laser may be a multiphoton laser.
  • tissue cells having a depth of about 1 mm from the surface inside the living body can be reliably imaged.
  • the imaging device further includes a staining agent supply unit that supplies a staining agent for selectively staining cells in the living body to a chromatic color into the living body, and the imaging unit includes the staining agent supply unit.
  • the cell group dyed by may be imaged.
  • a clear image of the stained cell group can be obtained.
  • it further comprises a staining agent supply unit that supplies a staining agent for staining a cell group inside the living body into two or more chromatic colors that are different depending on the cell type, and the inside of the living body
  • the imaging unit may image the cell group stained with two or more colors by the staining agent supply unit.
  • the laser endoscope apparatus provides a staining agent for staining a cell group in a living body into two or more chromatic colors that are different depending on the type of the cell. And a imaging unit that images the cell group by applying a laser to the cell group stained by the staining agent supply unit.
  • a clear image of a cell group stained with two or more colors it is possible to obtain a clear image of a cell group stained with two or more colors. Further, for example, a plurality of tissue cells on the inner wall of the digestive tract can be simultaneously confirmed in one image.
  • the staining agent may include two staining agents including both a curcumin class and acid red, or a staining reagent including curcumin class and an acid red color staining agent. It may be a staining agent.
  • the cell group inside the living body can be surely stained in two colors, and a clear image can be obtained.
  • the staining agent is based on a staining agent containing both curcumin (Curcumin) and Fast Green FCF (FastGreen FCF), or a staining agent containing Curcumin (Curcumin) and a staining agent containing Fast Green FCF (FastGreen FCF). Two dyes may be used.
  • the cell group inside the living body can be surely stained in two colors, and a clear image can be obtained.
  • the laser endoscope apparatus specifically has a cancer cell peripheral cell group other than the cancer cells located around the cancer cell among the cell groups inside the living body.
  • a staining agent supply unit for supplying a staining agent for coloring in the living body, and a cell around the cancer cell by applying a laser to a cell group inside the living body stained by the staining agent supply unit
  • An image pickup unit for picking up an image capable of visually distinguishing the group.
  • the staining agent may be a staining agent including Rose Bengal.
  • a laser endoscope apparatus includes an imaging head that is inserted into a living body, and an imaging unit that images the living body by applying a laser to the living body via the imaging head;
  • the imaging unit images the imaging region in a predetermined range of depths from 0 ⁇ m to 1000 ⁇ m from the mucosal surface inside the living body, and associates the captured image with the depth information.
  • An image processing unit for storing and processing an image captured by the imaging unit, wherein the image processing unit arranges a plurality of images obtained by imaging of the imaging unit corresponding to the focal position; A stereoscopic image inside the living body may be generated.
  • a staining agent supply unit that supplies a staining agent for selectively staining chromatic colors of cells inside the living body to the inside of the living body, and the imaging unit is stained by the staining agent supply unit.
  • the obtained cell group may be imaged.
  • a clear image of the stained cell group can be obtained.
  • the imaging unit further includes a staining agent supply unit configured to supply a staining agent for staining a cell group inside the living body into two or more chromatic colors that are different depending on cell types, into the living body. May image the cell group stained with two or more colors by the staining agent supply unit.
  • a stain for specifically staining a chromatic color of a cancer cell peripheral cell group other than the cancer cell located in the periphery of the cancer cell among the internal cell group of the living body may image the cancer cell peripheral cell group stained by the staining agent supply unit.
  • the image processing unit generates a cross-sectional image of the stained cell group by cutting the plurality of images at a position including the stained cell group, and the control unit A suspected lesion may be determined based on the depth at which the cell group represented in the cross-sectional image is stained.
  • the suspicion of a lesion can be objectively determined.
  • a laser endoscope apparatus capable of imaging a cell form inside a living body over a wide range without leakage.
  • a minute lesion such as a very early cancer (diameter 0.2 mm to 1 mm) which is too small to be noticed by the current endoscope is not accidentally detected. It becomes possible to detect exhaustively over a wide range.
  • FIG. 1 is a schematic diagram showing the arrangement of colon cells, which is an example of the digestive tract.
  • FIG. 2 is a diagram schematically showing cancer cells that develop in the digestive tract.
  • FIG. 3 is a schematic view showing a state in which the inner wall of the digestive tract is imaged using a multiphoton laser microscope.
  • FIG. 4 shows an image when epithelial cells and glandular cells are imaged using a multiphoton laser microscope after staining epithelial cells and glandular cells with a stain containing curcumin.
  • FIG. 5 shows an image when capillaries and connective tissues are imaged using a multiphoton laser microscope after staining capillaries and connective tissues with a stain containing Acid Red.
  • FIG. 6 shows an image when the inner wall of the digestive tract is double-stained with a stain containing curcumin and a stain containing acid red, and then the inner wall of the digestive tract is imaged using a multiphoton laser microscope.
  • FIG. 7 shows an image when the inner wall of the digestive tract is imaged using a multiphoton laser microscope after staining the inner wall of the digestive tract with a stain containing rose bengal.
  • FIG. 8 is a schematic diagram showing a state in which the inner wall of the digestive tract is imaged using a multiphoton laser microscope.
  • Fig. 9 is a composite image of the inner wall of the digestive tract stained with a stain containing acid red FIG.
  • FIG. 10A is a composite image of the inner wall of the digestive tract stained with a stain containing curcumin and a stain containing acid red.
  • FIG. 10B is a diagram showing an example of a three-dimensional reconstruction of a panoramic image of the inner wall of the digestive tract.
  • FIG. 11 is a diagram showing a state after the insertion tube is inserted into the digestive tract in the laser endoscope apparatus according to the first embodiment.
  • FIG. 12 is a diagram illustrating an example of a stain supply unit for supplying a stain in the laser endoscope apparatus according to Embodiment 1.
  • FIG. 13A is a view showing a state in which the inner wall of the digestive tract is flattened using the laser endoscope apparatus according to Embodiment 1, and FIG.
  • FIG. 13B is a view of the laser endoscope apparatus. Schematic diagram showing the end on the tip side
  • FIG. 14 is a schematic diagram illustrating the entire endoscope in the laser endoscope apparatus according to the first embodiment.
  • FIG. 15 is a block diagram showing a control configuration of the laser endoscope apparatus according to the first embodiment.
  • FIG. 16 is a schematic diagram illustrating a state in which the inner wall of the digestive tract is imaged using the laser microscope according to the first embodiment.
  • FIG. 17A is a diagram for explaining the operation of the laser endoscope apparatus according to the first embodiment.
  • FIG. 17B is a diagram for explaining the operation of the laser endoscope apparatus according to Embodiment 1.
  • FIG. 17C is a diagram for explaining the operation of the laser endoscope apparatus according to Embodiment 1.
  • FIG. 17A is a diagram for explaining the operation of the laser endoscope apparatus according to the first embodiment.
  • FIG. 17B is a diagram for explaining the operation of the laser endoscope apparatus according to
  • FIG. 17D is a diagram for explaining the operation of the laser endoscope apparatus according to the first embodiment.
  • FIG. 17E is a diagram for explaining the operation of the laser endoscope apparatus according to the first embodiment.
  • FIG. 18 is a flowchart showing an example of the operation of the laser endoscope apparatus.
  • FIG. 19 is a schematic diagram for generating a panoramic image using the laser endoscope apparatus according to the first modification of the first embodiment.
  • FIG. 20 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the second modification of the first embodiment.
  • FIG. 21 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the third modification of the first embodiment.
  • FIG. 22 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the fourth modification of the first embodiment.
  • FIG. 23 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the fifth modification of the first embodiment.
  • FIG. 24 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the sixth modification of the first embodiment.
  • FIG. 25 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the seventh modification of the first embodiment.
  • FIG. 26 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the eighth modification of the first embodiment.
  • FIG. 27 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the ninth modification of the first embodiment.
  • FIG. 28 is a schematic diagram of staining the inside of a living body using the laser endoscope apparatus according to Modification 10 of Embodiment 1.
  • FIG. 29 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the eleventh modification of the first embodiment.
  • FIG. 30 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the modification 12 of the first embodiment.
  • FIG. 31 is a schematic diagram of imaging the inside of a living body using the laser endoscope apparatus according to the modification 12 of the first embodiment.
  • FIG. 32A is a schematic diagram showing a state in which the inner wall of the digestive tract is imaged using a multiphoton laser microscope.
  • FIG. 32B is a panoramic image showing the cell morphology at a position 50 ⁇ m deep from the inner wall surface (mucosal surface).
  • FIG. 33 is a diagram showing an endoscope of the laser endoscope apparatus according to the second embodiment.
  • FIG. 34A is a three-dimensional data image showing cell morphology at a depth within a predetermined range from the inner wall surface (mucosal surface), and is an image obtained by extracting a color region stained with both the curcumin dye and the acid red dye.
  • FIG. 34B is a three-dimensional data image showing the cell morphology at a depth within a predetermined range from the inner wall surface (mucosal surface), and is an image obtained by extracting a color region stained with curcumin pigment.
  • FIG. 34C is a three-dimensional data image showing cell morphology at a depth within a predetermined range from the inner wall surface (mucosal surface), and is an image obtained by extracting a color region stained with acid red pigment
  • FIG. 35 is a block diagram showing a control configuration of the laser endoscope apparatus according to the third embodiment.
  • FIG. 35 is a block diagram showing a control configuration of the laser endoscope apparatus according to the third embodiment.
  • FIG. 36A is an image showing a cell morphology at a position 50 ⁇ m deep from the inner wall surface (mucosal surface), and is an image obtained by extracting a color region stained with curcumin pigment.
  • FIG. 36B is an image showing a cell morphology at a position 50 ⁇ m deep from the inner wall surface (mucosal surface), and is an image obtained by extracting a color region stained with acid red pigment.
  • FIG. 36C is an image showing the cell morphology at a position 50 ⁇ m deep from the inner wall surface (mucosal surface), and is an image obtained by extracting color regions stained with both the curcumin dye and the acid red dye.
  • FIG. 37 shows a group of cancer cells in the stomach stained with curcumin dye.
  • FIG. 38 shows an image when a cell group inside a living body is imaged from a direction perpendicular to the inner wall surface (mucosal surface) using a confocal laser microscope.
  • FIG. 39 shows an image when a cell group inside a living body is imaged from the upper right side with respect to the inner wall surface (mucosal surface) using a confocal laser microscope.
  • FIG. 40 shows an image when a cell group inside a living body is imaged from the upper left side with respect to the inner wall surface (mucosal surface) using a confocal laser microscope.
  • FIG. 41 shows an image when a cell group inside a living body is imaged from the upper right side with respect to the inner wall surface (mucosal surface) using a confocal laser microscope.
  • FIG. 42 is an image obtained by imaging a living cell stained with a stain optimized in lysis method with a confocal laser microscope, (a) is a normal colonic mucosa, (b) is an image showing colon cancer.
  • FIG. 43 is a schematic diagram showing an end portion on the distal end side of the endoscope of the laser endoscope apparatus according to the fourth embodiment.
  • FIG. 44 is a schematic view showing the entire endoscope.
  • FIG. 45 is a block diagram showing a control configuration of the laser endoscope apparatus
  • FIG. 46 shows an image of an unstained colonic mucosa inner surface taken using a confocal laser microscope.
  • FIG. 47 shows an image of an unstained colonic mucosa inner surface taken using a multiphoton laser microscope.
  • Knowledge 1 as the basis of the present invention
  • Knowledge 2 Knowledge 3, Knowledge 4, Knowledge 5, and Knowledge 6 that are the basis of the present invention
  • Knowledge 1 that is the basis of the present invention and the main configuration of the invention related to Knowledge 1 will be described. To do.
  • the inside of a living body includes organs such as the digestive tract, respiratory organs, renal urinary organs, uterine ovarian genital organs, and cerebrospinal nerves.
  • organs such as the digestive tract, respiratory organs, renal urinary organs, uterine ovarian genital organs, and cerebrospinal nerves.
  • the digestive tract include the esophagus, stomach, small intestine, and large intestine.
  • FIG. 1 is a schematic diagram showing the arrangement of cells of the large intestine, which is an example of the digestive tract 112.
  • the inner wall of the large intestine is composed of a gland 130 that secretes mucus and an epithelium 120 that is in contact with food and absorbs water on the inner wall surface (mucosal surface) 113 side of the gland 130.
  • the epithelium 120 is composed of a plurality of epithelial cells 121 arranged along the inner wall surface 113.
  • the epithelial cell 121 has a nucleus 125 and a cytoplasm 126.
  • the gland 130 has a shape in which a part of the epithelium 120 is recessed in a pot shape.
  • the gland 130 is composed of a plurality of gland cells 131, and the gland cells 131 have a nucleus 135 and a cytoplasm 136.
  • the portion where the gland 130 is depressed is called the crypt of the gland 130.
  • a basement membrane 137, capillaries 132, and connective tissue 133 are formed inside the epithelial cells 121 and around the gland cells 131.
  • a thin mucus layer secreted from the gland 130 is formed on the surface of the epithelial cell 121, and the epithelial cell 121 is protected by this mucus layer.
  • the size of the nuclei 125 and 135 in the internal structure of the living body, the way in which the nuclei 125 and 135 are arranged, and the distance from the nucleus 135 to the basement membrane 137 are important determination factors in making a pathological diagnosis such as cancer.
  • FIG. 2 is a diagram schematically showing a cancer cell population 152 that occurs in the digestive tract 112. It is said that the early stage cancer cell population 152 occurring in the gastrointestinal tract 112 is generally generated at a position within a depth of about 1 mm from the inner wall surface (mucosal surface) 113 of the gastrointestinal tract 112. If the cancer cell population 152 in the early stage, which is a state before reaching and exceeding the mucosal muscular plate 160, can be found over a wide area without omission, it expands beyond the mucosal muscular plate 160 and causes metastasis to other organs. This can reduce the number of cases that lead to advanced cancer.
  • the inventors imaged the cell morphology inside the living body using a multiphoton laser microscope (FV1000MPE manufactured by Olympus).
  • a multiphoton laser microscope is a fluorescence microscope using a multiphoton excitation process.
  • a mouse was used as the living body.
  • FIG. 3 is a schematic diagram showing a state in which the inner wall of the digestive tract 112 is imaged using a multiphoton laser microscope.
  • the objective lens 16 of the multiphoton laser microscope is disposed to face the inner wall surface 113 of the digestive tract 112 in order to irradiate the inner wall of the digestive tract 112 that is an imaging target with the laser L.
  • the objective lens 16 When mainly imaging epithelial cells 121, the objective lens 16 is arranged so that the focal point of the objective lens 16 is tied to the inner wall surface (mucosal surface) 113. Thereby, the epithelial cells 121 and the like appear as shown in FIG. 3A, which is a schematic diagram cut along the aa line in FIG. Further, when mainly imaging the gland cells 131, the capillaries 132 and the connective tissue 133, the objective lens 16 is disposed so that the focal point of the objective lens 16 is deeper than the inner wall surface (mucosal surface) 113 by 10 ⁇ m or more. To do. As a result, the gland cells 131, the capillaries 132, and the connective tissue 133 appear as shown in FIG.
  • dye is a pigment
  • the image shown in FIG. 4 is an image when epithelial cells 121 and gland cells 131 are imaged using a multiphoton laser microscope after staining epithelial cells 121 and gland cells 131 with a stain containing curcumin.
  • the laser wavelength was 780 nm, and the magnification of the objective lens was 10 times for (a) and 25 times for (b).
  • the image shown in FIG. 5 was obtained by imaging the capillary 132 and the connective tissue 133 using a multiphoton laser microscope after staining the capillary 132 and the connective tissue 133 with a stain containing Acid Red (Red 106). It is an image of the case.
  • the laser wavelength was 840 nm, and the magnification of the objective lens was 10 times (a), 25 times (b), and 75 times (c) (25 times and 3 times zoom).
  • a curcumin solution (stock solution 5%) diluted 1/5 to 1/5000 with physiological saline can be used, and the staining time is about 2 to 5 minutes, respectively.
  • FIG. 4 is black and white but is originally a color image, and by staining, the epithelium and glands can be separated into a green fluorescent color, and the capillaries and connective tissue can be separated into a dark green color with no fluorescent color. . This fluorescent color is expressed by correcting the actual fluorescence into a color that can be easily visually judged on the image.
  • the inventors of the present invention have selected two or more chromatic colors that are different depending on the type of cells using two types of stains when staining a living body with a stain. And imaged. Specifically, the living body was stained using a stain containing curcumin and a stain containing acid red.
  • staining a cell group inside a living body with two staining agents into two or more selective chromatic colors depending on the cell type is referred to as “double staining”.
  • the image shown in FIG. 6 is obtained when the inner wall of the digestive tract 112 is double-stained with a stain containing curcumin and a stain containing acid red, and then the inner wall of the digestive tract 112 is imaged using a multiphoton laser microscope. It is an image. Among them, (a) is an image showing a normal gastrointestinal tract 112, and (b) is an image showing the gastrointestinal tract 112 in which a cancer cell population 152 of the colon at an early stage is formed. The magnification of the image shown in (a) is taken at a magnification of 1.5 times that of the image shown in (b).
  • a staining agent containing curcumin a curcumin solution (stock solution 5%) diluted 1/10 with physiological saline was used.
  • the acid red solution (stock solution 10 mg / mL) was used as it was as a stain containing Acid Red.
  • the staining time was 2 to 5 minutes each.
  • a staining agent containing curcumin a curcumin solution (stock solution 5%) diluted 1/5 to 1/5000 with physiological saline
  • acid red solution (stock solution 10 mg / mL) ) Can be dyed even at a concentration of 1 to 1/1000 diluted as it is.
  • FIG. 6 (a) a plurality of tissues such as epithelium, glands, capillaries, or connective tissues in the inner wall of the digestive tract 112 are obtained by double-staining and then imaging the cells inside the living body. It can be confirmed simultaneously in one image.
  • FIG. 6 is a black and white image, but is originally a color image. Due to the difference in staining tendency with the staining agent, the epithelium and glandular portions have a green fluorescent color, and the capillaries and connective tissue have a fluorescent color close to light red to orange. Compared with the case of staining with one staining agent, the epithelium and gland portions, capillaries and connective tissue can be separated and expressed more clearly.
  • the fluorescent color resulting from the staining of the curcumin solution is displayed in green
  • the fluorescent color resulting from the staining of the acid red solution is displayed in red
  • the actual fluorescence is expressed on the image with a color that is easy to visually determine.
  • the digestive tract 112 is in a normal state by comparing the shape and brightness of the cell groups represented in (a) and (b), or It can be confirmed whether lesions such as cancer occur.
  • a staining agent containing curcumin and a staining agent containing Fast Green FCF can also be used as a staining agent for performing double staining.
  • a staining agent containing curcumin a curcumin solution (stock solution 5%) diluted 1/10 with physiological saline was used, and as a staining agent containing fast green FCF, a fast green FCF solution (stock solution 10 mg / day) was used. mL) may be used as it is.
  • the staining time may be 2 to 5 minutes.
  • a curcumin solution (stock solution 5%) diluted 1/5 to 1/5000 with physiological saline
  • a staining agent containing Fast Green FCF (stock solution 10 mg) / ML) can be stained even at a concentration of 1 to 1/1000 diluted as it is.
  • the inventors specifically stain a cancer cell peripheral cell group other than cancer cells located around the cancer cell population 152 in a chromatic color.
  • the cell group inside the living body was selectively stained using and the imaging was performed.
  • the living body was stained with a staining agent containing Rose Bengal.
  • FIG. 7 is an image obtained by imaging fluorescence emitted only from cancer cells using GFP, which is a green fluorescent protein.
  • FIG. 7B is an image when the inner wall of the digestive tract 112 is imaged using a multiphoton laser microscope after staining the inner wall of the digestive tract 112 with a stain containing rose bengal.
  • C) in FIG. 7 is an image obtained by synthesizing (a) and (b). In an actual image, (a) is green fluorescent color and (b) is red fluorescent color. Only a group of cells can be identified.
  • fluorescence can be obtained by the cancer cell peripheral cell groups located around the cancer cell population 152 shown in (a). It is possible to confirm whether cancer has occurred in the digestive tract 112 by imaging surrounding cell groups. Use of this image is effective in determining a treatment range for preventing recurrence after cancer cell removal treatment as well as cancer cells. For example, treatment is performed by determining criteria such as removing the cell group around the cancer cell shown in FIG. 7B from the cancer cell and the cell group around the cancer cell of half length from the cancer cell side. By doing, safer treatment for the patient can be performed.
  • the inventors tried to create a composite image by imaging the cell morphology inside the living body using a multi-photon laser microscope and superimposing a plurality of captured images.
  • FIG. 8 is a schematic diagram showing a state in which the inner wall of the digestive tract 112 is imaged using the multiphoton laser microscope 102 in a full circle.
  • the imaging head 11 for irradiating the laser L is inserted into the expanded inner wall 113 of the digestive tract 112
  • the imaging head 11 is moved and imaging is performed in a plurality of imaging regions P. It can be carried out. At that time, it is possible to perform imaging so that adjacent imaging areas P1 and P2 among a plurality of imaging areas P overlap. Then, a composite image was created by superimposing areas Pa where adjacent imaging areas P1 and P2 overlap each other.
  • FIG. 9 is a composite image of the inner wall of the digestive tract 112 stained with a stain containing acid red.
  • FIG. 10A is a composite image of the inner wall of the digestive tract 112 stained with a stain containing curcumin and a stain containing acid red.
  • FIG. 10B is a diagram illustrating an example of a three-dimensional reconstruction of a panoramic image of the inner wall of the digestive tract 112.
  • a panoramic image of the inner wall of the digestive tract 112 may be created by moving the imaging head 11 along the inner periphery of the digestive tract 112 and rotating 360 ° to capture images. Conceivable.
  • FIG. 10B by reconstructing the panoramic image in a tunnel shape, it is easy to visualize and grasp at which position (coordinates) in the digestive tract 112 the lesion exists. By performing such imaging, it is possible to comprehensively detect lesions inside the living body.
  • a minute lesion such as a very early cancer (diameter 0.2 mm to 1 mm) which is too small to be noticed even by the current endoscope is not accidentally detected. It becomes possible to detect exhaustively over a wide range.
  • the laser endoscope apparatus is an apparatus that can image a lesion occurring in the digestive tract, respiratory tract, renal urinary tract, uterine ovarian genitalia, cerebrospinal nerve and the like over a wide range without leakage. In addition to imaging, it is possible to treat a lesion occurring in a living body.
  • the digestive tract 112 inside the living body will be described as an example.
  • the laser endoscope apparatus includes an insertion tube that pushes the inside of the digestive tract 112, and a stain supply unit that supplies a stain to stain a group of cells on the inner wall of the digestive tract 112. ing.
  • FIG. 11 (A) of FIG. 11 is a figure which shows the state after inserting the insertion tube 20 in the digestive tract 112.
  • FIG. 11 (A) of FIG. 11 is a figure which shows the state after inserting the insertion tube 20 in the digestive tract 112.
  • the insertion tube 20 is provided with a supply port 42 for supplying fluid and a recovery port 43 for recovering the supplied fluid.
  • the insertion tube 20 is provided with a first balloon 21 and a second balloon 22.
  • the first balloon 21 and the second balloon 22 are expanded and contracted when fluid (gas or liquid) is taken in and out of the balloons 21 and 22.
  • the first balloon 21 is provided on the distal end side of the insertion tube 20 with respect to the supply port 42
  • the second balloon 22 is provided on the rear side (opposite side of the distal end) with respect to the recovery port 43.
  • FIG. 11B and FIG. 12 are diagrams illustrating an example of a staining agent supply unit 40 for supplying the staining agent 45.
  • the staining agent 45 is supplied into the space S from the staining agent supply unit 40 in which the staining agent 45 is stored through the insertion tube 20 and the supply port 42.
  • the staining agent 45 may be, for example, a staining agent containing curcumin or one acid red staining agent, but two types of staining agents including a staining agent containing curcumin and a staining agent containing acid red are used. Is desirable.
  • Curcumins include not only curcumin but also curcuminoids (a mixture of several types of curcumin derivatives) with high water solubility.
  • the stain 45 may be one stain containing both curcumin and acid red.
  • the stain 45 may be one stain containing both curcumin and fast green FCF, or two kinds of stains including a stain containing curcumin and a stain containing fast green FCF. There may be.
  • the staining agent 45 is not limited to two types, and may be one type of single color.
  • the staining agent 45 may be a staining agent including Rose Bengal.
  • gas is supplied from the supply port 42 to swell the inside of the digestive tract 112, whereby the inner wall of the digestive tract 112 is extended and flattened.
  • the unevenness of the inner wall surface 113 when flattened is desirably such that the height difference between the concave and convex is within 0.2 mm, for example.
  • the inner wall of the digestive tract 112 By flattening the inner wall of the digestive tract 112, it is possible to accurately grasp the state of the inner wall surface 113 and the cell group located at a predetermined depth from the inner wall surface 113.
  • the inside of the digestive tract 112 is not inflated with a bag and imaged through the bag, but the laser L is directly applied to the inner wall of the digestive tract 112, so that the inner wall surface 113 and the like can be accurately grasped. it can.
  • the medium that swells in the digestive tract 112 is not limited to gas, and liquids such as distilled water and physiological saline can also be used. However, when a liquid is used, the liquid needs to transmit the wavelength of the laser to be used. When the medium is a liquid, it is desirable that the concentration of the staining agent be higher than that of a gas.
  • a pressure sensor may be provided between the first balloon 21 and the second balloon. It is preferable to provide a plurality of pressure sensors at equal intervals.
  • FIG. 13B is a schematic diagram showing an end portion on the distal end side of the endoscope 2 of the laser endoscope apparatus 1 in FIG.
  • FIG. 14 is a schematic diagram showing the entire endoscope 2.
  • FIG. 15 is a block diagram showing a control configuration of the laser endoscope apparatus 1.
  • the laser endoscope apparatus 1 includes an imaging unit 10 having an endoscope 2, a control unit 50, and an image processing unit 70. Further, the laser endoscope apparatus 1 includes a laser oscillator 60 and an optical component 65.
  • the laser L oscillated from the laser oscillator 60 is reflected by the dichroic mirror 66 that is the optical component 65, and further reflected by the mirror 19 in the endoscope 2 to irradiate the living body.
  • the living cells irradiated with the laser L generate fluorescence, and the light due to the fluorescence is reflected by the mirror 19, passes through the dichroic mirror 66, and is detected by the photodetector 35.
  • the light detected by the photodetector 35 is converted into an electrical signal, and an image is formed by the image processing unit 70. Since the fluorescence color varies depending on the staining agent, a plurality of photodetectors 35 are provided, and an optical filter for separating the colors can be placed in front of the photodetectors 35 to separate them.
  • the laser oscillator 60 one having a pulse width of tens to hundreds of femtoseconds and a pulse frequency of tens to hundreds of MHz is used.
  • the laser L in the present embodiment is a two-photon laser that is a kind of multi-photon laser, and the laser oscillator 60 uses, for example, a pulse laser having a wavelength of 800 nm and an output of up to 3.2 W. The laser output during imaging of this laser is emitted in the range of 0.16 to 0.32 W.
  • the wavelength By setting the wavelength to 800 nm or more, it is possible to prevent generation of photons in the ultraviolet region (wavelength of less than 400 nm) in half-wavelength light generated by the multiphoton excitation process.
  • the intensity of the laser L can be adjusted.
  • the dichroic mirror 66 that is the optical component 65 reflects the same wavelength as the laser L and transmits light of other wavelengths. Therefore, the laser L oscillated from the laser oscillator 60 is reflected toward the mirror 19 by the dichroic mirror 66. On the other hand, the fluorescence generated in the living cell is reflected by the mirror 19, passes through the dichroic mirror 66, and reaches the photodetector 35.
  • the optical component 65 can also be configured by a prism, a 4 / ⁇ plate, or the like.
  • the imaging unit 10 includes the endoscope 2 and the photodetector 35, and images the cell morphology inside the living body by applying a laser L to the inside of the living body.
  • the photodetector 35 detects the fluorescence generated by applying the laser L, and converts the fluorescence into an electrical signal corresponding to the fluorescence intensity.
  • a photomultiplier tube, a CCD semiconductor image sensor, or the like can be used as the photodetector 35.
  • the endoscope 2 includes an inner cylinder 12 and an outer cylinder 13 that surrounds a part of the inner cylinder 12 as shown in FIG. A part of the inner cylinder 12 and the outer cylinder 13 are inserted into the living body.
  • the length of the inner cylinder 12 is, for example, 50 mm, and the outer diameter of the inner cylinder 12 is, for example, 3 to 10 mm.
  • a linear actuator is attached to the inner cylinder 12, and the inner cylinder 12 can move about 25 mm in the axial direction X with respect to the outer cylinder 13.
  • the inner cylinder 12 is equipped with an ultrasonic motor, and the inner cylinder 12 can rotate 360 ° with respect to the outer cylinder 13.
  • the operation of the inner cylinder 12 in the axial direction X or the operation in the rotation direction R is controlled by the control unit 50.
  • An imaging head 11 is provided at the end of the endoscope 2 on the distal end side of the inner cylinder 12. As shown in FIG. 13B, the imaging head 11 passes through the side of the insertion tube 20 and is inserted into the living body together with the inner cylinder 12. The imaging head 11 is controlled to move inside the living body by operations in the axial direction X and the rotation direction R of the inner cylinder 12.
  • the imaging head 11 has an objective lens 16, a focus variable unit 18, a spacer 17, and a mirror 19.
  • the mirror 19 changes the direction of the laser L output from the laser oscillator 60 toward the objective lens 16 or changes the direction of the light fluorescent by the living cells toward the photodetector 35. It is.
  • the objective lens 16 is provided to face the inner wall surface 113 of the living body.
  • the objective lens 16 has, for example, a diameter of 10 mm, a magnification of 10 times, a resolution of 5 ⁇ m, and an imaging field of view of 3 mm ⁇ 3 mm.
  • the objective lens 16 has a diameter of 12 mm, a magnification of 40 times, a resolution of 10 ⁇ m, and a visual field of 7.5 mm ⁇ 7.5 mm. The wider the field of view, the better.
  • the objective lens 16 may be a lens having a diameter of 3 mm to 5 mm that can be easily inserted into a living body by cutting a part of the lens having the diameter described on the left or an objective lens that can obtain the same resolution.
  • the focus variable unit 18 is, for example, a piezoelectric actuator or an electromagnetic actuator, and changes the focus position of the objective lens 16 by moving the objective lens 16 in the direction of the optical axis.
  • the focus variable unit 18 is controlled in operation by the control unit 50 so that the focus can be adjusted from the inner wall surface (mucosal surface) 113 within a depth range of 0 to 1000 ⁇ m.
  • the focal position By changing the focal position, the state of the living body at a predetermined depth from the cell surface of the digestive tract 112 can be imaged.
  • the depth of the focal point from the inner wall surface (mucosal surface) 113 may be adjusted in the range of 0 to 75 ⁇ m.
  • the spacer 17 has, for example, a ring shape and is provided around the space between the objective lens 16 and the inner wall surface 113.
  • the spacer 17 is a component for preventing the objective lens 16 from touching the inner wall of the living body and for maintaining the distance between the objective lens 16 and the inner wall surface 113 constant.
  • the distance between the objective lens 16 and the inner wall surface (mucosal surface) 113 can be appropriately set within a range of, for example, 1 mm or more and 10 mm or less by replacing the spacer 17 before starting imaging or adding a mechanism that can be changed by an actuator or the like. Set to a value.
  • the control unit 50 controls the movement of the imaging head 11 (inner cylinder 12) while bringing the spacer 17 into contact with the inner wall surface 113, and maintains the distance of the objective lens 16 with respect to the inner wall surface 113 constant.
  • the control unit 50 includes a CPU, a ROM, a RAM, and the like.
  • the control unit 50 controls the operation of the imaging head 11 via the inner cylinder 12. Specifically, the control unit 50 controls the imaging head 11 to move in the circumferential direction along the inner circumference of the inner wall of the digestive tract 112, and in the duct direction (digestive tract axis) of the digestive tract 112. Move control along.
  • the control unit 50 controls the operation of the focus changing unit 18 to change the position of the objective lens 16 in the optical axis direction and to control the focal position connected to the inside of the living body.
  • the control unit 50 can also adjust the laser output by controlling the laser oscillator 60.
  • the image processing unit 70 stores the electrical signal (fluorescence intensity) converted by the photodetector 35 and the coordinate position of the imaging unit 10 sent from the control unit 50 in association with each other, and processes these data to perform digital processing. Generate an image.
  • the generated digital image is displayed on a monitor, printed out, or recorded in a storage device, for example.
  • a distance from a location (for example, throat or anus) serving as a reference for the patient, a rotation angle of the imaging head 11, and the like can be used.
  • the control unit 50 controls the movement of the imaging head 11 so that the imaging head 11 scans with a constant distance from the inner wall surface 113 of the living body. . Then, as illustrated in FIG. 16, the imaging unit 10 captures a plurality of imaging regions P that are imaged with the movement of the imaging head 11 such that adjacent imaging regions P1 and P2 partially overlap each other.
  • the image processing unit 70 generates a composite image by superimposing areas Pa where adjacent imaging areas P1 and P2 overlap each other. Thereby, the cell form inside the living body can be imaged over a wide range without leakage.
  • a panoramic image can be generated by using the laser endoscope apparatus 1.
  • the control unit 50 controls the imaging head 11 to move 360 ° along the inner periphery of the digestive tract 112 (or to revolve around the axis of the digestive tract 112).
  • the imaging part 10 images the some imaging area P imaged with the movement of the imaging head 11 so that a part of adjacent imaging area P1 and P2 may overlap in the circumferential direction.
  • the image processing unit 70 generates a panoramic image by superimposing areas Pa where adjacent imaging areas P1 and P2 overlap each other. Thereby, the state of the inner wall of the digestive tract 112 can be comprehensively grasped.
  • an image along the duct direction of the digestive tract 112 can be generated.
  • the control unit 50 moves the imaging head 11 by a predetermined distance along the duct direction of the digestive tract 112,
  • the imaging unit 10 images the moved imaging area P11 so as to partially overlap the imaging area P1 adjacent in the duct direction.
  • the image processing unit 70 superimposes the region Pb where the two imaging regions P1 and P11 overlap each other.
  • the imaging unit 10 again performs imaging at the inner circumference 360 ° of the digestive tract 112, and the image processing unit 70 superimposes the overlapping areas in the circumferential direction and the pipeline direction and extends in the pipeline direction. Generate a panoramic image. According to this, it is possible to comprehensively grasp the state of the inner wall of the digestive tract 112 also in the duct direction.
  • a stereoscopic image of a living body can be generated.
  • the control unit 50 controls the focus variable unit 18 of the imaging head 11 to change the focal position of the objective lens 16, and the imaging unit 10 performs a plurality of imaging operations with different depths as the focal position changes. Image the area.
  • the image processing part 70 produces
  • the insertion tube 20 is inserted into the digestive tract 112.
  • the first balloon 21 is expanded and brought into contact with the inner wall surface 113 of the digestive tract 112 at the distal end of the insertion tube 20.
  • the 1st balloon 21 is comprised by three balloons.
  • the second balloon 22 located behind the insertion tube 20 is expanded and brought into contact with the inner wall surface 113 of the digestive tract 112.
  • the second balloon 22 is also composed of three balloons.
  • a closed space S is formed between the first balloon 21 and the second balloon 22.
  • air is blown out from the supply port 42 into the closed space S, and the inside of the digestive tract 112 is expanded.
  • the wrinkles etc. which exist in the inner wall of the digestive tract 112 are extended and planarized.
  • the cleaning liquid is supplied from the supply port 42 to the closed space S. Thereby, the inner wall surface 113 of the digestive tract 112 is washed. Thereafter, the cleaning liquid is sucked from the recovery port 43 and recovered.
  • the pronase solution is supplied from the supply port 42 to the closed space S. Thereby, excess mucus attached to the inner wall surface 113 of the digestive tract 112 is removed. Thereafter, the pronase solution is sucked through the collection port 43 and collected.
  • a stain A for example, a stain containing curcumin
  • a stain A is supplied from the supply port 42 to the closed space S and filled.
  • wash with a cleaning solution After standing for 2 to 5 minutes, wash with a cleaning solution.
  • a predetermined cell group on the inner wall of the digestive tract 112 is stained with the stain A.
  • the predetermined cell group indicates a plurality of cells included in the epithelial cells 121, the gland cells 131, the capillaries 132, the connective tissue 133, and the like.
  • a stain B for example, a stain containing acid red
  • a stain B for example, a stain containing acid red
  • wash with a cleaning solution After standing for 2 to 5 minutes, wash with a cleaning solution. Thereby, a predetermined cell group on the inner wall of the digestive tract 112 is stained with the stain B, and the inner wall of the digestive tract 112 is double-stained.
  • the inner wall of the digestive tract 112 can be double-stained with little unevenness.
  • the endoscope 2 is inserted into the closed space S.
  • the imaging head 11 provided on the distal end side of the endoscope 2 keeps the distance between the inner wall surface 113 and the objective lens 16 constant, and makes the focal position of the objective lens 16 deep from the inner wall surface (mucosal surface) 113. Imaging is performed in accordance with 0 ⁇ m, 30 ⁇ m, 60 ⁇ m, 90 ⁇ m, 120 ⁇ m, and 150 ⁇ m. Note that the position at a depth of 0 ⁇ m can be determined by the autofocus function of the endoscope 2.
  • imaging is performed by adjusting the focal position of the objective lens 16 to positions of 0 ⁇ m, 25 ⁇ m, 50 ⁇ m, and 75 ⁇ m deep from the inner wall surface (mucosal surface) 113.
  • the depth changing pitch is an example, and may be a finer pitch or a coarse pitch.
  • imaging is performed while the imaging head 11 is rotated 360 ° along the inner wall surface 113. At this time, imaging is performed so that a part of the imaging regions P1 and P2 adjacent in the circumferential direction overlap each other.
  • a first panoramic image is acquired by this partially overlapping imaging.
  • the imaging head 11 is moved a predetermined distance along the duct direction of the digestive tract 112. Then, again, the imaging head 11 is rotated 360 ° to obtain a second panoramic image.
  • the first panorama image and the second panorama image are captured after setting the imaging regions P1 and P11 adjacent to each other in the duct direction of the insertion tube 20 to overlap each other.
  • the pattern of overlapping portions in the circumferential direction and the straight line direction of the digestive tract is accurately combined by image processing to be combined into a seamless image. These operations are repeated a plurality of times (in this embodiment, 5 times).
  • the endoscope 2 including the imaging head 11 is moved rearward from the second balloon 22 as shown in (k) of FIG. 17C.
  • the first balloon 21 is deflated as shown in (l) of FIG.
  • the insertion tube 20 is pulled backward while the position of the second balloon 22 is maintained.
  • the first balloon 21 is expanded.
  • the second balloon 22 is deflated as shown in (o) of FIG. 17E
  • the insertion tube 20 is moved backward while maintaining the position of the first balloon 21 as shown in (p) of FIG. 17E. Pull.
  • the second balloon 22 is expanded.
  • another closed space S1 adjacent to the previously formed closed space S in the pipe line direction is formed.
  • the operation shown in (d) of FIG. 17A to (k) of FIG. 17C is performed again in the closed space S1.
  • imaging with a length of 300 mm in the pipe line direction can be performed. If the digestive tract 112 is the large intestine, the entire length of the large intestine may be divided into four images.
  • the state of the inner wall can be comprehensively and efficiently imaged in the inner circumferential direction and the duct direction of the digestive tract 112.
  • the laser endoscope apparatus 1 is configured to perform an operation for efficiently detecting a lesion such as a cancer cell in the depth direction.
  • the controller 50 has the following two variable focus modes (see FIG. 15). Specifically, the control unit 50 changes the focus position at the first focus variable mode 51 that changes the focus position at the first pitch, and at the second pitch that is smaller than the first pitch. 2 focus variable modes 52.
  • the first variable focus mode 51 is a mode in which, for example, the focal point is changed from the inner wall surface (mucosal surface) 113 of the living body to focus at depths of 0 ⁇ m, 30 ⁇ m, 60 ⁇ m, 90 ⁇ m, and 120 ⁇ m.
  • the second variable focus mode 52 is a mode in which the focus position is changed at a finer pitch, for example, a pitch of 5 ⁇ m. These variable pitches can be changed by changing the program.
  • control unit 50 stores in advance a reference image of normal cells in a state where there is no lesion for each corresponding internal organ in order to quickly determine the presence or absence of the lesion.
  • the reference image of normal cells differs depending on the type of laser to be irradiated (multiphoton laser or confocal laser) and the depth from the cell membrane surface of the organ, and if a stain is used, it also depends on the type of stain It is preferable to prepare a reference image corresponding to the imaging conditions in advance.
  • FIG. 18 is a flowchart showing an example of the operation of the laser endoscope apparatus 1.
  • the control unit 50 causes the first variable focus mode 51 having a rough pitch to perform one-way imaging in the depth direction (S11).
  • the magnification is set to a low value (for example, 10 times or less), and it is determined based on the image at the time of trial shooting. good.
  • control unit 50 compares the image obtained in the first variable focus mode 51 with the reference image of the normal cell stored in advance with respect to at least one of shape and brightness, and determines the suspected lesion. (S12). If there is no suspicion of the lesion, the examination is terminated (S13).
  • the control unit 50 determines that a portion suspected of having a lesion exists in the image obtained by imaging
  • the second focus is in the vicinity of the focus position when the image of the portion suspected of having a lesion is captured.
  • Imaging is performed in the variable mode 52 (S14).
  • the magnification is set high (for example, 40 times), and it is only necessary to pick up an image that can be diagnosed by imaging only at a certain depth without changing the depth or imaging of the surface.
  • control unit 50 compares the image obtained in the first variable focus mode 51 with the reference image of the normal cell stored in advance with respect to at least one of shape and brightness, and determines the suspected lesion. (S15). If there is no suspicion of a lesion, the examination is terminated (S16).
  • the control unit 50 increases the output of the laser L compared to the time of imaging, and increases the output to the diseased cell.
  • the lesioned cells are removed (transpiration) (S17).
  • S17 transpiration
  • the laser output at the time of cell removal is 10 to 20 times that at the time of imaging and is 2 to 3 W.
  • the above determination may be made automatically by comparing the shape, brightness, etc. using a computer.
  • diagnosis and removal may be performed before moving in the imaging space S described with reference to FIGS. 17A to 17E, or image coordinates may be taken at another opportunity after imaging of the target organ is completed. May be used to form a series of imaging spaces S to remove the lesion. These can be determined by the patient's physical strength, the symptoms of the affected area, the performance of the laser endoscope apparatus 1, and the like.
  • FIG. 19 is a schematic diagram illustrating an example of generating a panoramic image using the laser endoscope apparatus 1 according to the first modification of the first embodiment.
  • the control unit 50 controls the imaging head 11 attached to the arm 15 so as to rotate spirally around the axis of the digestive tract 112.
  • the imaging unit 10 images a plurality of imaging regions P to be imaged with the rotation of the imaging head 11 so that adjacent imaging regions P1 and P2 partially overlap in the rotation direction R.
  • the image processing unit 70 generates a panoramic image by superimposing areas Pa where adjacent imaging areas P1 and P2 overlap each other. Thereby, the state of the inner wall of the digestive tract 112 can be comprehensively imaged.
  • FIG. 20 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the second modification of the first embodiment.
  • a pair of wheels 17a is attached to the arm 15 on the distal end side of the endoscope 2 in place of the spacer 17 in order to keep the distance between the inner wall surface 113 of the digestive tract 112 and the objective lens 16 constant. ing.
  • the imaging head 11 is moved in the inner circumferential direction, the objective lens 16 is kept at a certain distance from the inner wall surface 113 by rolling while the pair of wheels 17a are in contact with the inner wall surface 113. It can be moved. According to this, it is possible to accurately focus on the imaging target such as the epithelial cell 121, the gland cell 131, the capillary vessel 132, or the connective tissue 133.
  • FIG. 21 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the third modification of the first embodiment.
  • a pressing member 23 is provided on the back of the imaging head 11 (on the side opposite to the laser L irradiation side). Then, the spacer 17 is brought into contact with the inner wall on the imaging region side by pressing the inner wall on the opposite side of the imaging region with the pressing member 23 by inflating the fluid into the pressing member 23. As a result, the distance between the objective lens 16 and the inner wall surface 113 can be maintained constant, and focusing with respect to the imaging target can be accurately performed.
  • FIG. 22 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the fourth modification of the first embodiment.
  • FIG. 23 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the fifth modification of the first embodiment.
  • FIG. 24 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the sixth modification of the first embodiment.
  • the imaging head 11 is supported by a joint mechanism 27 that moves flexibly. Further, another joint mechanism 28 is provided on the back of the imaging head 11 to support the imaging head 11. According to this structure, as shown in FIG. 24 (b), it is also possible to image an uneven portion 113a such as a half-moon fold of the large intestine existing in the digestive tract 112. Further, by using the autofocus function, the distance between the objective lens 16 and the inner wall surface 113 can be kept constant.
  • FIG. 25 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the seventh modification of the first embodiment.
  • the distal end of the endoscope 2 is inserted into the first balloon 21, and the imaging head 11 is provided in the middle of the inner tube 12 of the endoscope 2 (between the first balloon 21 and the second balloon 22).
  • the joint mechanism 27 is supported. According to this, the joint mechanism 28 shown in the modification 6 is not necessary, and the structure of the endoscope 2 can be simplified as compared with the modification 6.
  • FIG. 26 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the eighth modification of the first embodiment.
  • a gyro sensor 29 is provided in the imaging head 11. Thereby, the information regarding the position and orientation of the imaging head 11 at the time of imaging can be acquired. It is also possible to display the captured image data in 3D.
  • Imaging can be performed in the two variable focus modes 52.
  • a GPS function may be added instead of the gyro sensor 29.
  • the pressure sensor 30 is provided in the inner tube 12 of the endoscope 2. By measuring and feeding back the pressure in the closed space S using the pressure sensor 30, the pressure in the space S can be adjusted appropriately.
  • FIG. 27 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the modification 9 of the first embodiment.
  • the imaging head 11 is provided with an extendable spacer 31 for adjusting the distance between the objective lens 16 and the inner wall surface 113.
  • FIG. 27A shows a state where the expandable spacer 31 is expanded
  • FIG. 27B shows a state where the expandable spacer 31 is contracted.
  • the distance between the objective lens 16 and the inner wall surface 113 can be accurately adjusted by the expansion / contraction of the expansion / contraction spacer 31.
  • the telescopic spacer 31 can be configured by an actuator or the like.
  • FIG. 28 is a schematic diagram illustrating an example of staining the inside of a living body using the laser endoscope apparatus 1 according to the tenth modification of the first embodiment.
  • the insertion tube 20 is provided with a plurality of discharge ports 42a. Then, the inner wall is dyed by spraying a staining agent from the discharge port 42a toward the inner wall. According to this, compared with the method of filling the space S with the stain, the amount of the stain used can be reduced. Therefore, even a staining agent using a dye having a small allowable amount can be used with confidence.
  • FIG. 29 is a schematic diagram illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the eleventh modification of the first embodiment.
  • the distance between the pair of wheels 17a of the imaging head 11 shown in the modification 2 is widened so that the mirror 19 and the objective lens 16 can be moved in the axial direction X of the endoscope 2 by an actuator or the like (not shown). It is configured. According to this, the inside of the living body can be imaged without moving the inner cylinder 12 of the endoscope 2 more than necessary.
  • Modification 12 30 and 31 are schematic diagrams illustrating an example of imaging the inside of a living body using the laser endoscope apparatus 1 according to the first modification of the first embodiment.
  • the interval between the pair of wheels 17a of the imaging head 11 shown in the modified example 2 is widened, and a plurality of mirrors 19 and objective lenses 16 (five sets in this modified example) are provided between the pair of wheels 17a.
  • the imaging head 11 is comprised so that the area
  • the endoscope 2, the insertion tube 20, the inner cylinder 12, the outer cylinder 13 and the like are shown in a linear form, but in order to smoothly insert along the shape of the large intestine or the like.
  • the endoscope 2, the insertion tube 20, the inner cylinder 12, the outer cylinder 13 and the like are preferably flexible, and an optical fiber or the like is preferably used as a laser waveguide.
  • an optical fiber or the like is preferably used as a laser waveguide.
  • it is fixed to an L-shape or the like with an appropriate joint structure and a wire or the like in the imaging head 11 or the like. This is possible by having a structure.
  • the endoscope 2, insertion tube 20, arm 15, spacer 17, balloons 21 and 22, etc. are made of metal, resin, rubber, etc., but directly touch a living organ such as the large intestine and stomach. For this reason, careful attention is paid to the surface processing, and the finishing is extremely accurate.
  • Knowledge 2 describes an example in which a multi-photon laser microscope (FV1000MPE manufactured by Olympus Corporation) is used to capture an internal cell form of a living body, and a panoramic image is created by superimposing a plurality of captured images. A mouse was used as the living body.
  • FV1000MPE multi-photon laser microscope manufactured by Olympus Corporation
  • FIG. 32A is a schematic diagram showing a state in which the inner wall of the digestive tract 112 is imaged using the multiphoton laser microscope 102 in a full circle.
  • the method for creating a panoramic image is almost the same as the method for creating FIG. 10A of Knowledge 1, and the imaging head 11 is moved along the inner periphery of the digestive tract 112 and rotated 360 ° for imaging. A panoramic image was obtained by combining the images.
  • FIG. 32B is a panoramic image showing the cell morphology at a depth of 50 ⁇ m from the inner wall surface (mucosal surface) 113.
  • a staining agent for staining a cell group both a staining agent containing curcumin and a staining agent containing Acid Red (Red No. 106) were used. From FIG. 32B, it can be seen that a plurality of crypts 138 (or glands 130) are arranged at approximately regular intervals.
  • the imaging regions P are arranged corresponding to the direction of the short hand of the watch shown in FIG. 32A, but an isolated lymph nodule in which a plurality of lymphocytes are gathered is formed in the direction of 8 o'clock. .
  • the isolated lymph nodule is not currently worthy of a lesion such as cancer, but it can be seen that the crypt 138 of the gland 130 disappears in the region where the isolated lymph nodule is formed. Therefore, the inventors considered that the position of a lesion can be specified when a lesion is found by using the region where the isolated lymph nodule is formed as a marker of coordinates in the panoramic image. Moreover, even if there was no isolated lymph nodule, we considered that the position where the lesion exists can be clearly identified by using the predetermined position in the panoramic image as a reference.
  • an embodiment based on Knowledge 2 will be described.
  • FIG. 33 is a diagram showing the endoscope 2 of the laser endoscope apparatus 1A.
  • the endoscope 2 of the laser endoscope apparatus 1 ⁇ / b> A has substantially the same configuration as the endoscope 2 shown in the first embodiment, and includes an inner cylinder 12 and an outer cylinder 13 that surrounds a part of the inner cylinder 12. And.
  • a linear actuator is attached to the inner cylinder 12, and the inner cylinder 12 is movable in the axial direction X with respect to the outer cylinder 13.
  • the inner cylinder 12 is equipped with an ultrasonic motor, and the inner cylinder 12 can rotate 360 ° with respect to the outer cylinder 13.
  • the operation of the inner cylinder 12 in the axial direction X or the operation in the rotation direction R is controlled by the control unit 50.
  • the endoscope of the laser endoscope apparatus 1A detects an angle detector 81 that detects an angle of the inner cylinder 12 in the rotation direction R, and a position of the inner cylinder 12 in the axial direction X.
  • a linear scale 82 is provided. Since the endoscope 2 includes the angle detector 81 and the linear scale 82, for example, the distance in the axial direction X from the isolated lymph nodule to the lesion and the angle in the rotation direction R are determined with reference to the position of the isolated lymph nodule. And know the location of the lesion. Further, even if there is no isolated lymph nodule, it is possible to characterize a position where a lesion exists by using a predetermined position as a reference, such as an anus for the large intestine and a mouth for the stomach.
  • a coordinate reference can be provided in the panoramic image, and it is possible to visualize and grasp at which position in the digestive tract 112 the lesion exists.
  • a coordinate reference it is possible to show evidence captured by rotating 360 °, and to present to the patient that the acquired image is a non-leakage image having a full circumference.
  • a cell shape inside a living body is imaged by changing the depth of focus using a multiphoton laser microscope (Olympus FV1000MPE), and a plurality of captured images are cut at predetermined positions to obtain a cross-sectional image.
  • An example of creating (tomographic image) will be described.
  • a mouse was used as the living body.
  • 34A, 34B, and 34C are images showing cell morphology at a depth within a predetermined range from the inner wall surface (mucosal surface), from the mucosal surface (depth 0) to a depth of 150 ⁇ m at a depth of 2 ⁇ m. This is a three-dimensional data image obtained by capturing and combining a total of 75 images.
  • (a) is an image obtained by planarly viewing a cell group from a direction perpendicular to the inner wall surface 113
  • (b) is a cross-sectional image when (a) is cut along the line bb.
  • (C) is a cross-sectional image when (a) is cut along the line cc.
  • staining agent for staining the cell group both staining agents including curcumin and staining agent including acid red (red No. 106) were used.
  • the staining time was 5 minutes.
  • the staining time is a period of time when the staining agent is brought into contact with the cell group and the staining dye is permeated between the cells themselves or each cell.
  • FIGS. 34A to 34C are images in which the same cell group is simultaneously imaged and different colors (wavelengths) are extracted by filtering.
  • FIG. 34A is an image obtained by extracting color regions stained with both the curcumin dye and the acid red dye.
  • FIG. 34B is an image obtained by extracting a color region stained with a curcumin pigment.
  • FIG. 34C is an image obtained by extracting the color region stained with the acid red dye.
  • FIGS. 34A to 34C are black and white, but are originally color images. Due to the difference in dyeing tendency due to the staining agent, the area stained with curcumin dye is green fluorescent color, and the area stained with acid red dye is light red. It is represented by a fluorescent color close to orange, and the color difference is more clearly represented.
  • 34A to 34C show cancer tissue and normal mucosal tissue, and it can be seen that there is a difference in permeability depending on the respective pigments.
  • the curcumin pigment shows higher permeability in cancer tissues than in normal mucosal tissues. Specifically, in the case of curcumin pigment, the depth of staining is about 40 ⁇ m inside the cancer tissue, whereas it is about 20 ⁇ m inside the normal mucosal tissue.
  • Acid Red pigment shows lower permeability in cancer tissue than normal mucosal tissue. Specifically, in the case of Acid Red dye, the depth of staining is about 40 ⁇ m inside the cancer tissue, while it is about 70 ⁇ m inside the normal mucosal tissue.
  • FIG. 35 is a block diagram showing a control configuration of the laser endoscope apparatus 1B.
  • the laser endoscope apparatus 1B has substantially the same configuration as the laser endoscope apparatus 1 described in the first embodiment, and includes an imaging unit 10 having the endoscope 2, a control unit 50, an image processing unit 70, and a laser oscillator. 60 and an optical component 65.
  • the laser endoscope apparatus 1B includes a stain supply unit 40 that supplies the stain to the inside of the living body (see FIG. 12).
  • double staining is used in which a group of cells inside a living body is dyed into two or more selective chromatic colors that differ depending on the cell type.
  • the imaging unit 10 applies a laser to the stained cell group, changes the focal position (for example, 0 to 1000 ⁇ m), and images a plurality of imaging regions P having different depths.
  • the image processing unit 70 creates a stereoscopic image by arranging a plurality of images obtained by imaging by the imaging unit 10 in correspondence with the focal position. Then, the stereoscopic image is cut at a predetermined position on the image including the stained cell group, thereby generating a cross-sectional image of the stained cell group.
  • the control unit 50 determines a suspicious lesion based on the depth at which the cell group represented in the cross-sectional image is stained. For example, if the depth at which the cell group is stained with the curcumin dye is larger than that of normal mucosal tissue (for example, 1.5 times or more), it is determined that cancer cells are generated, and if they are equivalent (for example, 1 (Less than 5 times) Judge that no cancer cells have developed. Further, if the depth at which the cell group is stained with the acid red dye is smaller than that of normal mucosal tissue (for example, less than 0.6 times), it is determined that cancer cells are generated, and if they are equivalent (for example, (0.6 times or more) Judge that cancer cells have not developed. In addition, after determining the presence or absence of cancer cells by single color or double staining or the like, the above-described cross-sectional image determination can be further improved.
  • the laser endoscope apparatus 1B includes an imaging head 11 that is inserted into a living body, an imaging unit 10 that captures an image of the living body by applying a laser to the living body via the imaging head 11, and imaging.
  • a control unit 50 that controls the operation of the head 11 and an image processing unit 70 that processes an image captured by the imaging unit 10 are provided.
  • the imaging head 11 includes an objective lens 16 and a focus variable unit 18 that can change the focal position of the objective lens 16 in the depth direction of the living body.
  • the control unit 50 operates the focus varying unit 18 to change the focal position, and the imaging unit 10 images a plurality of imaging regions P having different depths as the focal position is changed.
  • the image processing unit 70 generates a cross-sectional image inside the living body by cutting a plurality of images obtained by imaging by the imaging unit 10 at a predetermined position.
  • the image processing unit only needs to display an image that is currently captured, and by leaving other devices to generate panoramic images and stereoscopic images, The burden can be reduced.
  • a living cell is placed on a tray and imaged using a multiphoton laser microscope (Olympus FV1000MPE) will be described.
  • a living cell a living tissue picked up from the inside of a human body was used.
  • 36A, 36B and 36C are images showing the cell morphology at a position 50 ⁇ m deep from the inner wall surface (mucosal surface) 113.
  • FIG. 1 is a diagram showing the cell morphology at a position 50 ⁇ m deep from the inner wall surface (mucosal surface) 113.
  • staining agent for staining the cell group both staining agents including curcumin and staining agent including acid red (red No. 106) were used.
  • the staining time was 5 minutes.
  • living cells were imaged at a temperature (37 ° C.) substantially the same as the body temperature.
  • FIGS. 36A to 36C are images obtained by simultaneously capturing the same cell group and extracting different colors (wavelengths) by applying a filter.
  • FIG. 36A is an image obtained by extracting a color region stained with a curcumin pigment.
  • FIG. 36B is an image obtained by extracting a color region stained with an acid red dye.
  • FIG. 36C is an image obtained by extracting a color region stained with both the curcumin dye and the acid red dye.
  • FIGS. 36A to 36C are black and white, but are originally color images. Due to the difference in dyeing tendency due to the staining agent, the area stained with curcumin dye is green fluorescent color, and the area stained with acid red dye is light red. It is represented by a fluorescent color close to orange, and the color difference is more clearly represented.
  • the region indicated by the arrow I is a region in which the nuclei 135 of the gland cells 131 are arranged in a line along the basement membrane 137 and become normal cells.
  • the region indicated by the arrow II two nuclei 135 exist between the center (lumen) of the gland 130 and the basement membrane 137.
  • the region indicated by arrow II is not a malignant tumor, but is a region where canceration is about to begin.
  • FIG. 37 is a diagram showing a group of cancer cells in the stomach stained with curcumin dye. As shown in FIG. 37, the cancer cell group has a form in which the gland 130 and the nucleus 135 of the gland cell 131 cannot be identified.
  • the gland 130, the basement membrane 137, the gland cells 131, and the nucleus 135 at a depth of 10 ⁇ m or more and 1000 ⁇ m or less from the inner wall surface (mucosal surface) 113 are detected.
  • the form can be clearly understood.
  • grasping the arrangement of the nuclei 135 in the gland cells 131, the distance between the basement membrane 137 and the nuclei 135, the shape and size of the nuclei 135, etc. pathological diagnosis of whether canceration has progressed can be accurately performed. Can be done.
  • a stain containing curcumin was used as a stain for staining a cell group.
  • the staining time was 5 minutes, which is longer than before.
  • the dyeing time is preferably 3 minutes or more and 20 minutes or less. This is because if the staining time is shorter than 3 minutes, the staining agent does not penetrate into the cell tissue. Also, if the staining time exceeds 20 minutes, all cells are stained, making it difficult to distinguish between cancer cell groups and normal cell groups.
  • FIG. 38 is an image obtained by imaging a cell group inside the living body when viewed from a direction perpendicular to the inner wall surface (mucosal surface) 113 using a confocal laser microscope.
  • the depth of the imaging region P from the inner wall surface (mucosal surface) 113 is about 5 ⁇ m in the region indicated by the arrow III and about 10 ⁇ m in the region indicated by the arrow IV.
  • the cytoplasm 126 of the epithelial cell 121 is dyed with a curcumin dye (green in an actual color image).
  • the cytoplasm 126 is dyed with curcumin pigment, and the nucleus 125 of the epithelial cell 121 is represented in black.
  • the shape of the nucleus 125 is almost the same size as the nucleus 125 of other regions and is not deformed, it can be seen that the region indicated by the arrow IV is a normal cell.
  • FIG. 39 is an image when a cell group inside the living body is imaged from the upper right side of the inner wall surface (mucosal surface) 113 using a confocal laser microscope.
  • the depth of the imaging region P is about 5 ⁇ m in the region indicated by the arrow V, about 10 ⁇ m in the region indicated by the arrow VI, and about 50 ⁇ m in the region indicated by the arrow VII.
  • the cytoplasm 126 of the epithelial cell 121 is dyed with a curcumin dye (green in an actual color image).
  • the cytoplasm 126 is dyed with curcumin pigment, and the nucleus 125 of the epithelial cell 121 is represented in black.
  • the region indicated by the arrow VI is a normal cell.
  • the gland cells 131 are dyed with curcumin dye so that the gland cells 131 can be visually recognized.
  • FIG. 40 is an image when a cell group inside a living body is imaged from the upper left side with respect to the inner wall surface (mucosal surface) 113 using a confocal laser microscope.
  • the depth of the imaging region P is about 5 ⁇ m in the region indicated by the arrow VIII and about 30 ⁇ m in the region indicated by the arrow IX.
  • the cytoplasm 136 of the gland cell 131 is dyed with curcumin dye (green in the actual color image), and the outer periphery of the gland 130 and the position of the basement membrane 137 can be visually recognized. Further, the nucleus 135 of the gland cell 131 is shown in black.
  • the plurality of nuclei 135 are arranged along the outer periphery while maintaining a substantially constant distance from the outer periphery of the basement membrane 137.
  • the nuclei 135 are regularly arranged in the gland 130, it can be seen that the region indicated by the arrow IX is a normal cell.
  • FIG. 41 is an image when a cell group inside a living body is imaged from the upper right side with respect to the inner wall surface (mucosal surface) 113 using a confocal laser microscope.
  • the depth of the imaging region P is about 5 ⁇ m in the region indicated by the arrow X, about 30 ⁇ m in the region indicated by the arrow XI, and about 60 ⁇ m in the region indicated by the arrow XII.
  • the cytoplasm 126 of the gland cells 131 is dyed with curcumin dye (green in the actual color image), and the outer periphery of the gland 130 and the position of the basement membrane 137 can be visually recognized.
  • nuclei 135 are arranged along the outer periphery while maintaining a substantially constant distance from the outer periphery of the basement membrane 137.
  • the region indicated by the arrow XI is a normal cell.
  • the capillary 132 is darkly dyed with curcumin dye.
  • the size of the nuclei 125 and 135, the arrangement state of the nuclei 125 and 135, the nuclei 135 and the basement membrane 137 can be adjusted by appropriately adjusting the focal position and the staining time.
  • the suspicion of the lesion can be discriminated depending on whether the distance between the two is uniform.
  • a staining agent for staining a cell group a staining agent containing curcumin with an optimized lysis method was used.
  • curcumin is easy to melt
  • curcumin is dissolved in 100% glycerol or 50% glycerol / 50% ethanol mixed solution in an amount of about 5%, so this was diluted and used for vital staining.
  • a 5% solution was used as a stock solution, and immediately before actual use, the stock solution was stained with a liquid diluted 10 to 1000 times with physiological saline.
  • FIG. 42 is an image obtained by imaging a living cell stained with a stain optimized in lysis method with a confocal laser microscope, (a) is a normal colonic mucosa, (b) is an image showing colon cancer. It is. The depth of the imaging region is about 50 ⁇ m from the mucosal surface.
  • the shape, size, and arrangement of the nuclei 135 are almost uniform, and the distance between the nuclei 135 and the basement membrane 137 is almost constant as indicated by the arrow XIII. Yes.
  • the nucleus is represented by a dark portion of sesame grains.
  • the distribution pattern of the structure (crypts) of the gland 130 is substantially uniform.
  • the crypt is represented by a dark portion near the center of the dashed circle.
  • the capillaries 132 show a regular running pattern around the crypts.
  • the shape, size and arrangement of glandular nuclei are non-uniform, and the distance between the glandular nuclei and the basement membrane is non-uniform, as in the region indicated by arrow XV. It has become.
  • the structure of the gland (crypts) is not observed, and the capillaries have no regular crypts because they have no crypts.
  • the pathological diagnosis accuracy and diagnosis speed of cancer can be significantly improved.
  • the disorder of regularity can be detected by obtaining the approximate center of the nucleus or crypt from the image, connecting the centers with line segments, and comparing the lengths of the line segments.
  • the disorder of regularity can be similarly detected.
  • a crypt having a shape close to a line segment can be obtained on a bitmap with the midpoint of the line segment as the center. It is also possible to calculate by reducing the area of the image treated as a nucleus by utilizing the fact that the nucleus is regularly arranged around the crypt. The length of the line segment connecting these adjacent centers can be obtained on the bitmap. Although the figure is black and white, an actual image can obtain a dark part using color information by using fluorescence of staining.
  • the disorder of regularity can be obtained digitally by utilizing the disorder of the regularity of the line segment connecting the centers of the glands. This calculation of irregularity of the regularity results in processing a huge amount of data, but the irregularity of regularity can be detected in a short time by using a computer.
  • FIG. 43 is a schematic diagram showing an end portion on the distal end side of the endoscope 2 of the laser endoscope apparatus 1C in FIG.
  • FIG. 44 is a schematic diagram showing the entire endoscope 2.
  • FIG. 45 is a block diagram showing a control configuration of the laser endoscope apparatus 1C.
  • the laser endoscope apparatus 1 ⁇ / b> C includes an imaging unit 10 having an endoscope 2, a control unit 50, and an image processing unit 70.
  • the laser endoscope apparatus 1 ⁇ / b> C includes a laser oscillator 60 and an optical component 65.
  • the laser endoscope apparatus 1C includes a staining agent supply unit 40 that supplies the staining agent to the inside of the living body (see FIG. 12).
  • the stain shown in Knowledge 5 or Knowledge 6 is used.
  • the laser L1 oscillated from the laser oscillator 60C is reflected by the dichroic mirror 66C, which is the optical component 65C, and further reflected by the mirror 19C in the endoscope 2 to irradiate the living body.
  • the living cells irradiated with the laser L1 generate fluorescence, and the light due to the fluorescence is reflected by the mirror 19C, passes through the dichroic mirror 66C, and is detected by the photodetector 35C.
  • the light detected by the photodetector 35C is converted into an electrical signal, and an image is formed by the image processing unit 70.
  • the laser oscillator 60C includes a plurality of types of lasers that can be stepwise varied in the wavelength range of 405 to 980 nm, and the wavelength is selected according to the characteristics of the fluorescence reaction to be measured. It may be pulse drive or continuous oscillation drive. In the case of pulse driving, a range in which a clear image can be obtained is selected in relation to the sweep frequency of imaging with a duty of 5% to 50% or more and several tens of kHz.
  • the laser L1 in the present embodiment is a confocal laser, and the laser oscillator 60C uses, for example, a laser having a wavelength of 405 nm and an output of up to 30 mW.
  • the laser output during imaging of this laser is emitted in the range of 5 to 10 mW, but is not limited to this.
  • the intensity of the laser L1 can be adjusted according to the degree of staining and the degree of fluorescence.
  • the dichroic mirror 66C which is the optical component 65, reflects the same wavelength as the laser L1 and transmits light of other wavelengths. Therefore, the laser L1 oscillated from the laser oscillator 60C is reflected toward the mirror 19C by the dichroic mirror 66C. On the other hand, the fluorescence generated in the living cells is reflected by the mirror 19C, passes through the dichroic mirror 66C, and reaches the photodetector 35C.
  • the optical component 65C can also be configured by a prism, a 4 / ⁇ plate, or the like.
  • the imaging unit 10 includes the endoscope 2 and the photodetector 35C, and images the cell morphology inside the living body by applying the laser L1 to the inside of the living body.
  • the photodetector 35C detects the fluorescence generated by applying the laser L1, and converts the fluorescence into an electrical signal corresponding to the fluorescence intensity.
  • a photomultiplier tube, a CCD semiconductor image sensor, or the like can be used as the photodetector 35C.
  • a pinhole is provided as a confocal laser function.
  • the endoscope 2 includes an inner cylinder 12 and an outer cylinder 13 that surrounds a part of the inner cylinder 12. A part of the inner cylinder 12 and the outer cylinder 13 are inserted into the living body.
  • the length of the inner cylinder 12 is, for example, 50 mm, and the outer diameter of the inner cylinder 12 is, for example, 3 to 10 mm.
  • a linear actuator is attached to the inner cylinder 12, and the inner cylinder 12 can move about 25 mm in the axial direction X with respect to the outer cylinder 13.
  • the inner cylinder 12 is equipped with an ultrasonic motor, and the inner cylinder 12 can rotate 360 ° with respect to the outer cylinder 13.
  • the operation of the inner cylinder 12 in the axial direction X or the operation in the rotation direction R is controlled by the control unit 50.
  • An imaging head 11 is provided at the end of the endoscope 2 on the distal end side of the inner cylinder 12. As shown in FIG. 43, the imaging head 11 passes through the insertion tube 20 and is inserted into the living body together with the inner cylinder 12. The imaging head 11 is controlled to move inside the living body by operations in the axial direction X and the rotation direction R of the inner cylinder 12.
  • the imaging head 11 has an objective lens 16C, a focal point changing unit 18, a spacer 17, and a mirror 19C.
  • the mirror 19C changes the direction of the laser L1 output from the laser oscillator 60C toward the objective lens 16C, or changes the direction of the light fluorescent by the living cells toward the photodetector 35C. It is.
  • the objective lens 16C is provided to face the inner wall surface 113 of the living body.
  • the objective lens 16 has, for example, a diameter of 10 mm, a magnification of 10 times, a resolution of 5 ⁇ m, and an imaging field of view of 3 mm ⁇ 3 mm.
  • the objective lens 16 has a diameter of 12 mm, a magnification of 40 times, a resolution of 10 ⁇ m, and a visual field of 7.5 mm ⁇ 7.5 mm. The wider the field of view, the better.
  • a lens having a diameter of 3 mm to 5 mm that can be easily inserted into a living body can be used as an objective lens that cuts a part of the lens having the diameter described on the left or obtains the same resolution.
  • the objective lens 16C may be arranged to be inclined with respect to the inner wall surface 113. By capturing an image with the objective lens 16C tilted, it is possible to simultaneously observe the cell morphology of both the epithelium 120 and the gland 130.
  • the focus variable unit 18 is, for example, a piezoelectric actuator or an electromagnetic actuator, and changes the focus position of the objective lens 16C by moving the objective lens 16C in the direction of the optical axis.
  • the focus variable section 18 is controlled in operation by the control section 50 so that the focus can be adjusted from the inner wall surface (mucosal surface) 113 within a depth range of 0 to 75 ⁇ m. By changing the focal position, it is possible to image the state of the living body at a predetermined depth from the inner wall surface 113 of the digestive tract 112.
  • the spacer 17 is, for example, annular, and is provided around the space between the objective lens 16C and the inner wall surface 113.
  • the spacer 17 is a component for preventing the objective lens 16C from touching the inner wall of the living body and for maintaining a constant distance between the objective lens 16C and the inner wall surface 113.
  • the distance between the objective lens 16C and the inner wall surface (mucosal surface) 113 can be appropriately set within a range of, for example, 1 mm or more and 10 mm or less by replacing the spacer 17 before starting imaging or adding a mechanism that can be changed by an actuator or the like. Set to a value.
  • the controller 50 controls the movement of the imaging head 11 (inner cylinder 12) while bringing the spacer 17 into contact with the inner wall surface 113, and maintains the distance of the objective lens 16C relative to the inner wall surface 113 constant.
  • the control unit 50 includes a CPU, a ROM, a RAM, and the like.
  • the control unit 50 controls the operation of the imaging head 11 via the inner cylinder 12. Specifically, the control unit 50 controls the imaging head 11 to move in the circumferential direction along the inner circumference of the inner wall of the digestive tract 112, and in the duct direction (digestive tract axis) of the digestive tract 112. Move control along. Further, the control unit 50 controls the operation of the focus changing unit 18 to change the position of the objective lens 16C in the optical axis direction and control the focus position connected to the inside of the living body.
  • the controller 50 can also adjust the laser output by controlling the laser oscillator 60C.
  • the image processing unit 70 stores the electrical signal (fluorescence intensity) converted by the photodetector 35C and the coordinate position of the imaging unit 10 sent from the control unit 50 in association with each other, and processes these data to perform digital processing. Generate an image.
  • the generated digital image is displayed on a monitor, printed out, or recorded in a storage device, for example.
  • a distance from a location (for example, throat or anus) serving as a reference for the patient, a rotation angle of the imaging head 11, and the like can be used.
  • the confocal laser endoscope apparatus 1C includes an imaging head 11 that is inserted into a living body, and captures an image of the living body by applying a laser to the living body via the imaging head 11. And a control unit 50 that controls the operation of the imaging head 11.
  • the imaging head 10 includes an objective lens 16C, and a focus variable unit 18 that can change the focal position of the objective lens 16C in the depth direction of the living body, and the control unit 50 has a focal position in the mucous membrane inside the living body.
  • the focus varying unit 18 is operated so as to have a predetermined depth within a depth of 10 ⁇ m or more and 100 ⁇ m or less (preferably 10 ⁇ m or more and 70 ⁇ m or less) from the surface, and the imaging unit 10 selectively has a cell group inside the living body.
  • a laser is applied to the stained cell group in contact with the staining agent to be stained for at least 2 minutes, preferably 5 minutes or more, and the stained cell group at a predetermined depth is imaged.
  • a method for controlling the focus while keeping the positions of the objective lens 16C and the mucosal surface constant will be described.
  • the optical path L2 is indicated by a broken line slightly shifted in position.
  • the reference light L 2 follows substantially the same path as the inspection laser light L 1, but the optical path is changed by the beam splitter 173 and enters the focus control optical unit 174.
  • the optical lens configuration is such that when the focal position of the objective lens 16C is changed by a cylindrical lens and a beam splitter, the amount of change can be detected.
  • the endoscope apparatus preferably has different wavelengths so that the imaging laser beam L1 and the reference beam L2 can be easily separated. By separating the wavelength by 100 nm or more, it is possible to obtain the optical characteristics of the imaging system and the focus control system with good separation characteristics. Further, when the focus control system as described above is provided, the focus position can be finely adjusted by applying a bias voltage in the control system. By changing this bias voltage stepwise, the focal position of the laser beam L1 can be automatically controlled in the depth direction.
  • optical parts 11C, 35C, 65C, 66C, 172, 173, and 174 are greatly affected by the transmittance and reflectance depending on the L1 and L2 laser wavelengths. By preparing, even when the laser wavelength is changed depending on the staining agent to be used or the site to be inspected, it can be easily handled.
  • an image at a depth of 10 ⁇ m or more and 70 ⁇ m or less can be acquired from the inner wall surface (mucosal surface) 113 of the living body by taking sufficient staining time. It is possible. Thereby, a lesion can be easily found, and an image can be acquired without applying a laser load to the patient by selecting a wavelength and a laser intensity.
  • the case of staining with a staining agent such as curcumin has been described.
  • a staining agent such as curcumin
  • the cell morphology includes the cytoplasm of each cell, the shape of the nucleus, the arrangement pattern of the crypts of the gland, the capillary running pattern, and the like.
  • the above-described detection is possible because a certain amount of fluorescence is emitted by laser excitation of intracellular chemical substances FAD (flavin adenine dinucleotide), NAD (nicotinamide adenine dinucleotide) and the like. This is the same whether observed with a confocal laser microscope or a multiphoton laser microscope.
  • FAD far adenine dinucleotide
  • NAD nicotinamide adenine dinucleotide
  • the problem is that it is necessary to irradiate a large amount of excitation laser light. It is about 20 times or more the amount of light necessary for imaging after living body staining using curcumin etc., and there is a possibility that damage to living cells may increase, but it can be improved by increasing the sensitivity of the detection system It is.
  • FIG. 46 shows a case of observation with a confocal laser microscope.
  • FIG. 46 is a photograph taken on the inner surface of an unstained mouse large intestine mucosa using a confocal laser microscope.
  • an image (a) of a surface at an arbitrary location and an image (b) inside 10 ⁇ m from the surface of the location are shown in the upper and lower left columns.
  • an image (c) of the surface at a location displaced by about 100 ⁇ m from the above location and an image (d) inside 10 ⁇ m from the surface of the location are shown.
  • an image (d) obtained by combining and joining the image (b) and the image (d) inside 10 ⁇ m using the crypt arrangement pattern as a mark is shown.
  • the scale bar is 100 ⁇ m.
  • FIG. 47 shows the case of observation with a multiphoton laser microscope.
  • FIG. 47 is an image taken using a multiphoton laser microscope on the unstained mouse large intestine mucosa inner surface.
  • the image (a) of the surface at an arbitrary place and the image (b) inside 25 ⁇ m from the surface of the place are shown in the left column.
  • the right column shows an image (c) of the surface at a position shifted by about 400 ⁇ m from the above-mentioned place and an image (d) inside 25 ⁇ m from the surface of the place.
  • an image (e) obtained by joining the image (b) and the image (d) inside 25 ⁇ m using the arrangement pattern of the crypts as a mark is shown. By performing this continuously, panorama can be realized.
  • An arrow e1 in the image (b) and a star e2 in the image (d) correspond to the arrow e1 and the star e2 in the synthesized image (e).
  • the scale bar in the figure is 100 ⁇ m.
  • the image (f) obtained by photographing the image (e) at a zoom magnification of 2 times the cytoplasm of epithelial cells and glandular cells appears bright. Further, the portion of the nucleus 135 indicated by the arrow looks dark.
  • the scale bar of the image (f) is 100 ⁇ m.
  • the cancer detection method shown in the embodiment in which cells are stained with curcumin or the like can be used. is there. It may be a comparison of cell shape and brightness, or a line segment using a nucleus or crypt on the image or a comparison of areas surrounded by the line segment.
  • dyeing when performing double dyeing, dyeing is performed sequentially using one type of dyeing agent.
  • the present invention is not limited thereto, and a plurality of dyes are mixed in advance to create a mixed dyeing agent containing both, You may dye
  • the living body is stained and imaged by double staining using two color stains, but the present invention is not limited thereto, and the living body is stained and imaged by multiple staining using two or more colorants. It is also possible.
  • dyeing agent A is collected after dyeing with dyeing agent A containing dye A1. Then, after dyeing
  • a multiphoton laser is used as the laser of the laser endoscope apparatus 1, but the present invention is not limited to this, and a confocal laser 1C can also be used.
  • the spacer 17 of the imaging head 11 in the present embodiment is not limited to an annular shape, and may be a plurality of members provided so as to surround a space between the objective lens 16 and the inner wall surface 113, or an objective. A pair of members that sandwich a space between the lens 16 and the inner wall surface 113 may be used.
  • the focus variable unit 18 is focus-controlled using the above-described reference laser light or the like using the control unit 50, and the image is captured while being focused. Also good. Further, the control unit 50 may process the wobble signal for driving the objective lens in a sine wave shape or a staircase wave shape at a constant period and the image to process the image while matching the imaging position.
  • imaging is performed while specifying the depth position from the inner wall surface (mucosal surface) 113 of the digestive tract 112, the depth information and the image information are stored in correspondence with each other, and the same depth position is stored.
  • the synthesized image is generated by synthesizing the captured images.
  • the present invention is not limited to this. For example, without recognizing the depth position, a plurality of images having different depth positions and imaging regions P are acquired, and a similar image or a connected image is extracted from the plurality of images and combined to generate a composite image May be.
  • cells inside the living body are stained with a staining agent and then imaged using the laser endoscope apparatus 1.
  • a multiphoton laser can be used without staining with a staining agent.
  • the laser endoscope apparatus it is possible to take an image of the cell morphology inside the living body.
  • a compound such as NAD: nicotinamide adenine dinucleotide
  • NAD nicotinamide adenine dinucleotide
  • duct direction (axial direction) of the digestive tract is not limited to a straight line, and the present invention can be applied to a curved line.
  • the laser endoscope apparatuses 1 to 1C in the present embodiment can be applied to luminal organs (bronchi, bladder, ureter, etc.) other than the digestive tract, and within 1 mm from the surface.
  • luminal organs bronchi, bladder, ureter, etc.
  • cell structures such as kidney, liver, brain, and retina can be visualized.
  • the laser microscope and the laser endoscope are described.
  • the microscope function is used for imaging and diagnosis of the epidermis
  • the microscope function is used for imaging and diagnosis of the internal organs such as the digestive tract. It is handled as an endoscope having.
  • the laser endoscope apparatus is used for imaging and treating a wide range of lesions occurring in the digestive tract, respiratory tract, renal urinary tract, uterine ovarian genitalia, and cerebrospinal nerve without leakage. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Laser Surgery Devices (AREA)

Abstract

消化管(112)の内部に挿入される撮像ヘッド(11)を有し、撮像ヘッド(11)を介して消化管(112)にレーザを当てることで生体を撮像する撮像部(10)と、撮像ヘッド(11)を消化管(112)の内部にて移動するように制御する制御部(50)と、撮像部(10)により撮像した画像を処理する画像処理部(70)とを備え、撮像部(10)は、撮像ヘッド(11)の移動に伴って撮像する複数の撮像領域(P)を、隣り合う撮像領域(P1、P2)の一部が重なるように撮像し、画像処理部(70)は、複数の撮像領域(P1、P2)の重なった領域(Pa)を互いに重ね合わせて合成画像を生成する。

Description

レーザ内視鏡装置
 本発明は、生体内部を撮像するレーザ内視鏡装置に関する。
 近年、生体内部(例えば消化管)の病変を確認する方法として、生体内部に内視鏡を挿入し、がん細胞などの病変の有無を確認する方法が知られている。
 その一例として、特許文献1には、生体内部にある所定の細胞群を染色した後、染色した細胞群に多光子レーザを当て、生体内部の細胞形態を撮像する方法が記載されている。この方法によれば、染色された細胞群が多光子レーザを当てることで蛍光を発生するので、生体内部の細胞形態の鮮明な画像を得ることができる。これにより、がん細胞などの病変の有無を的確に確認することができる。
国際公開第2014/157703号
 しかしながら、特許文献1に記載されている方法では、得られた画像が生体内部の局所的な領域を撮像したものなので、撮像した領域内でしか病変の有無を確認することができない。また、検査を受ける者の立場からすれば、撮像した領域以外における病変の有無を把握することができず不安が残る。
 本発明は、上述した課題を解決するものであり、生体の内部の細胞形態を広範囲に漏れなく撮像することができるレーザ内視鏡装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係るレーザ内視鏡装置は、生体の内部に挿入される撮像ヘッドを有し、前記撮像ヘッドを介して前記生体にレーザを当てることで前記生体を撮像する撮像部と、前記撮像ヘッドを前記生体の内部にて移動するように制御する制御部と、前記撮像部により撮像した画像を処理する画像処理部とを備え、前記撮像部は、前記撮像ヘッドの移動に伴って撮像する複数の撮像領域を、隣り合う撮像領域の一部が重なるように撮像し、前記画像処理部は、前記複数の撮像領域の重なった領域を互いに重ね合わせて合成画像を生成する。
 本態様によれば、生体の内部の細胞形態を広範囲で漏れなく撮像することができる。
 例えば、前記撮像部は、前記生体の内部の粘膜表面から10μm以上1000μm以下の深さのうち、所定深さにおける前記撮像領域を撮像し、前記画像処理部は、前記所定深さにおける前記合成画像を生成してもよい。
 本態様によれば、粘膜表面から10μm以上1000μm以下の所定深さにおける生体の内部の細胞形態を広範囲で漏れなく撮像することができる。
 例えば、前記制御部は、前記撮像ヘッドが前記生体に対して一定距離を保った状態で走査するように、前記撮像ヘッドを移動制御してもよい。
 本態様によれば、撮像で得られる複数の画像の品質が安定し、複数の画像を合成した場合にムラの少ない合成画像を得ることができる。
 例えば、前記撮像ヘッドは、前記生体に対向して配置される対物レンズと、前記対物レンズと前記生体との間の空間の周囲に設けられるスペーサとを有し、前記制御部は、前記スペーサが前記生体に当接するように前記撮像ヘッドを移動制御することで、前記一定距離を維持してもよい。
 本態様によれば、生体と対物レンズとの距離が一定になり、レンズのピント合わせを高精度に行うことができるので、鮮明な画像を得ることができる。
 例えば、前記生体は、消化管であり、前記制御部は、前記撮像ヘッドを前記消化管の内周に沿って移動するように制御し、前記撮像部は、前記撮像ヘッドの移動に伴って撮像する複数の撮像領域を、周方向に隣り合う撮像領域の一部が重なるように撮像し、前記画像処理部は、前記複数の撮像領域の重なった領域を互いに重ね合わせてパノラマ画像を生成してもよい。
 本態様によれば、パノラマ画像により、消化管の内壁の状態を網羅的に把握することができる。
 例えば、前記生体は、消化管であり、前記制御部は、前記撮像ヘッドを前記消化管の軸を中心に回転するように制御し、前記撮像部は、前記撮像ヘッドの回転に伴って撮像する複数の撮像領域を、回転方向に隣り合う撮像領域の一部が重なるように撮像し、前記画像処理部は、前記複数の撮像領域の重なった領域を互いに重ね合わせてパノラマ画像を生成してもよい。
 本態様によれば、パノラマ画像により、消化管の内壁の状態を網羅的に把握することができる。
 例えば、前記制御部は、前記撮像ヘッドを前記消化管の軸を中心に公転するように制御してもよい。
 本態様によれば、撮像領域と消化管内壁の位置とを対応づけしながら、漏れなく撮像することができる。
 例えば、前記制御部は、前記撮像ヘッドを前記消化管の軸を中心に螺旋方向に移動するように制御してもよい。
 本態様によれば、消化管の内壁を連続的に短時間で撮像することができる。
 例えば、前記制御部は、前記撮像ヘッドを前記消化管の管路方向に沿って移動するように制御し、前記撮像部は、前記撮像ヘッドの移動に伴って撮像する複数の撮像領域を、前記管路方向に隣り合う撮像領域の一部が重なるように撮像し、前記画像処理部は、前記複数の撮像領域の重なった領域を互いに重ね合わせて前記パノラマ画像を生成してもよい。
 本態様によれば、消化管の管路方向における病変の存在する位置(座標)を把握することができる。
 例えば、前記撮像ヘッドは、対物レンズと、前記対物レンズの焦点位置を前記生体の細胞表面より深さ方向に変えることのできる焦点可変部とを有し、前記制御部は、前記焦点可変部を作動させることで、前記焦点位置を変え、前記撮像部は、前記焦点位置の変更に伴って深さの異なる複数の撮像領域を撮像し、前記画像処理部は、前記撮像部の撮像により得られた複数の画像を前記焦点位置に対応させて配置することで、前記生体の内部の立体画像を得る。
 本態様によれば、所定深さにおける生体内部の細胞形態を把握することができる。
 例えば、前記制御部は、前記焦点位置を第1のピッチで変更させる第1の焦点可変モードと、前記第1のピッチよりも小さいピッチである第2のピッチで前記焦点位置を変更させる第2の焦点可変モードとを有し、前記第1の焦点可変モードにおいて前記撮像を行った後、前記撮像により得た画像の中に病変の疑いがある部分が存在する場合に、前記病変の疑いがある部分の画像を撮像した際の焦点位置の近辺において、前記第2の焦点可変モードで前記撮像を行ってもよい。
 本態様によれば、撮像時間を短縮しつつ網羅的な撮像を行うことができる。
 例えば、前記制御部は、病変がない状態にある正常細胞の画像を予め記憶し、前記第1の焦点可変モードで得た画像と前記正常細胞の画像とを、形状および明るさのうちの少なくとも一方について比較し、前記病変の疑いを判断してもよい。
 本態様によれば、病変の疑いを短時間で客観的に判断することができる。
 例えば、前記制御部は、前記撮像部により得られた画像の中に病変した細胞が存在する場合に、撮像時よりも前記レーザの出力を上げ、前記病変した細胞に前記出力を上げたレーザを当て、前記病変した細胞を除去してもよい。
 本態様によれば、病変した細胞を早期にかつ確実に除去することができる。
 例えば、前記レーザは、多光子レーザであってもよい。
 本態様によれば、生体内部における表面から深さ約1mmまでの組織細胞を確実に撮像することができる。
 例えば、さらに、前記生体の内部の細胞群を選択的に有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、前記撮像部は、前記染色剤供給部により染色された前記細胞群を撮像してもよい。
 本態様によれば、染色された細胞群の鮮明な画像を得ることができる。
 例えば、さらに、前記生体の内部の細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、前記撮像部は、前記染色剤供給部により2色以上に染色された前記細胞群を撮像してもよい。
 本態様によれば、2色以上に染色された細胞群の鮮明な画像を得ることができる。また、例えば、消化管の内壁における複数の組織を一つの画像内で同時に確認することができる。
 また、本発明の一態様に係るレーザ内視鏡装置は、生体の内部の細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部と、前記染色剤供給部により染色された前記細胞群にレーザを当てることで前記細胞群を撮像する撮像部とを備える。
 本態様によれば、2色以上に染色された細胞群の鮮明な画像を得ることができる。また、例えば、消化管の内壁における複数の組織細胞を一つの画像内で同時に確認することができる。
 例えば、前記染色剤は、クルクミン(Curcumin)類およびアシッドレッド(AcidRed)の両方を含む染色剤、または、クルクミン(Curcumin)類を含む染色剤とアシッドレッド(AcidRed)を含む染色剤とによる2つの染色剤であってもよい。
 本態様によれば、生体内部の細胞群を確実に2色に染色することができ、鮮明な画像を得ることができる。
 例えば、前記染色剤は、クルクミン(Curcumin)類およびファストグリーンFCF(FastGreenFCF)の両方を含む染色剤、または、クルクミン(Curcumin)類を含む染色剤とファストグリーンFCF(FastGreenFCF)を含む染色剤とによる2つの染色剤であってもよい。
 本態様によれば、生体内部の細胞群を確実に2色に染色することができ、鮮明な画像を得ることができる。
 また、本発明の一態様に係るレーザ内視鏡装置は、生体の内部の細胞群のうち、がん細胞の周辺に位置する前記がん細胞以外のがん細胞周辺細胞群を特異的に有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部と、前記染色剤供給部により染色された前記生体内部の細胞群にレーザを当てることで前記がん細胞周辺細胞群を視覚的に判別できる画像を撮像する撮像部とを備える。
 本態様によれば、がん細胞の周辺に位置するがん細胞周辺細胞群の鮮明な画像を得ることができる。
 例えば、前記染色剤は、ローズベンガル(RoseBengal)を含む染色剤であってもよい。
 本態様によれば、がん細胞の周辺に位置するがん細胞周辺細胞群の鮮明な画像を確実に得ることができる。
 本発明の一態様に係るレーザ内視鏡装置は、生体の内部に挿入される撮像ヘッドを有し、前記撮像ヘッドを介して前記生体にレーザを当てることで前記生体を撮像する撮像部と、前記撮像ヘッドの作動を制御する制御部とを備え、前記撮像ヘッドは、対物レンズと、前記対物レンズの焦点位置を前記生体の細胞表面より深さ方向に変えることのできる焦点可変部とを有し、前記制御部は、前記焦点可変部を作動させることで、前記焦点位置を変え、前記撮像部は、前記焦点位置の変更に伴って生体の内部の粘膜表面から深さの異なる複数の撮像領域を撮像する。
 本態様によれば、所定深さにおける生体内部の細胞形態を把握することができる。
 例えば、前記撮像部は、前記生体の内部の粘膜表面から0μm以上1000μm以下の深さのうち、所定範囲の深さにおける前記撮像領域を撮像し、撮像した画像と前記深さ情報を対応させて記憶し、前記撮像部により撮像した画像を処理する画像処理部を備え、前記画像処理部は、前記撮像部の撮像により得られた複数の画像を前記焦点位置に対応させて配置することで、前記生体の内部の立体画像を生成してもよい。
 本態様によれば、粘膜表面から0μm以上1000μm以下の深さにおける生体内部の細胞形態を把握することができる。
 さらに、前記生体の内部の細胞群を選択的に有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、前記撮像部は、前記染色剤供給部により染色された前記細胞群を撮像してもよい。
 本態様によれば、染色された細胞群の鮮明な画像を得ることができる。
 さらに、前記生体の内部の細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、前記撮像部は、前記染色剤供給部により2色以上に染色された前記細胞群を撮像してもよい。
 本態様によれば、2色以上に染色された細胞群の鮮明な画像を得ることができる。また、例えば、消化管の内壁における複数の組織を一つの画像内で同時に確認することができる。
 さらに、生体の内部の細胞群のうち、がん細胞の周辺に位置する前記がん細胞以外のがん細胞周辺細胞群を特異的に有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、前記撮像部は、前記染色剤供給部により染色された前記がん細胞周辺細胞群を撮像してもよい。
 本態様によれば、がん細胞の周辺に位置するがん細胞周辺細胞群の鮮明な画像を得ることができる。
 例えば、前記画像処理部は、前記複数の画像を、前記染色された前記細胞群を含む位置で切断することで、前記染色された前記細胞群の断面画像を生成し、前記制御部は、前記断面画像に表わされた前記細胞群が染色されている深さに基づいて、病変の疑いを判断してもよい。
 本態様によれば、病変の疑いを客観的に判断することができる。
 本発明によれば、生体の内部の細胞形態を広範囲に漏れなく撮像することができるレーザ内視鏡装置を提供することができる。
 また、本発明の主要構成によれば、病変が小さすぎて現行内視鏡ではその存在にさえ気づかない超早期がん(直径0.2mm~1mm)のような微細病変を、偶然にではなく、広範囲にわたって網羅的に検出することが可能となる。
図1は、消化管の一例である大腸の細胞の配列を示す模式図 図2は、消化管に発生するがん細胞を模式的に示す図 図3は、多光子レーザ顕微鏡を用いて消化管の内壁を撮像する様子を示す模式図 図4は、クルクミンを含む染色剤で上皮細胞および腺細胞を染色した後、多光子レーザ顕微鏡を用いて上皮細胞および腺細胞等を撮像した場合の画像 図5は、アシッドレッドを含む染色剤で毛細血管および結合組織を染色した後、多光子レーザ顕微鏡を用いて毛細血管および結合組織等を撮像した場合の画像 図6は、クルクミンを含む染色剤とアシッドレッドを含む染色剤とで消化管の内壁を二重染色した後、多光子レーザ顕微鏡を用いて消化管の内壁を撮像した場合の画像 図7は、ローズベンガルを含む染色剤で消化管の内壁を染色した後、多光子レーザ顕微鏡を用いて消化管の内壁を撮像した場合の画像 図8は、多光子レーザ顕微鏡を用いて消化管の内壁を全周性に撮像する様子を示す模式図 図9は、アシッドレッドを含む染色剤で染色した消化管の内壁の合成画像 図10Aは、クルクミンを含む染色剤とアシッドレッドを含む染色剤で染色した消化管の内壁の合成画像 図10Bは、消化管内壁のパノラマ画像を立体再構築した一例を示す図 図11は、実施の形態1に係るレーザ内視鏡装置において、消化管内に挿入管を挿入した後の状態を示す図 図12は、実施の形態1に係るレーザ内視鏡装置において、染色剤を供給するための染色剤供給部の一例を示す図 図13の(a)は、実施の形態1に係るレーザ内視鏡装置を用いて消化管の内壁を平坦化する様子を示す図であり、図13の(b)はレーザ内視鏡装置の先端側の端部を示す模式図 図14は、実施の形態1に係るレーザ内視鏡装置における内視鏡の全体を示す概略図 図15は、実施の形態1に係るレーザ内視鏡装置の制御構成を示すブロック図 図16は、実施の形態1に係るレーザ顕微鏡を用いて消化管の内壁を撮像する様子を示す模式図 図17Aは、実施の形態1に係るレーザ内視鏡装置の動作を説明する図 図17Bは、実施の形態1に係るレーザ内視鏡装置の動作を説明する図 図17Cは、実施の形態1に係るレーザ内視鏡装置の動作を説明する図 図17Dは、実施の形態1に係るレーザ内視鏡装置の動作を説明する図 図17Eは、実施の形態1に係るレーザ内視鏡装置の動作を説明する図 図18は、レーザ内視鏡装置の動作の一例を示すフローチャート 図19は、実施の形態1の変形例1におけるレーザ内視鏡装置を用いてパノラマ画像を生成する模式図 図20は、実施の形態1の変形例2におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図21は、実施の形態1の変形例3におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図22は、実施の形態1の変形例4におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図23は、実施の形態1の変形例5におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図24は、実施の形態1の変形例6におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図25は、実施の形態1の変形例7におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図26は、実施の形態1の変形例8におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図27は、実施の形態1の変形例9におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図28は、実施の形態1の変形例10におけるレーザ内視鏡装置を用いて生体内部を染色する模式図 図29は、実施の形態1の変形例11におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図30は、実施の形態1の変形例12におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図31は、実施の形態1の変形例12におけるレーザ内視鏡装置を用いて生体内部を撮像する模式図 図32Aは、多光子レーザ顕微鏡を用いて消化管の内壁を全周性に撮像する様子を示す模式図 図32Bは、内壁面(粘膜表面)から深さ50μmの位置における細胞形態を示すパノラマ画像 図33は、実施の形態2に係るレーザ内視鏡装置の内視鏡を示す図 図34Aは、内壁面(粘膜表面)から所定範囲の深さにおける細胞形態を示す3次元データ画像であって、クルクミン色素およびアシッドレッド色素の両方の色素によって染色された色領域を抽出した画像 図34Bは、内壁面(粘膜表面)から所定範囲の深さにおける細胞形態を示す3次元データ画像であって、クルクミン色素によって染色された色領域を抽出した画像 図34Cは、内壁面(粘膜表面)から所定範囲の深さにおける細胞形態を示す3次元データ画像であって、アシッドレッド色素によって染色された色領域を抽出した画像 図35は、実施の形態3に係るレーザ内視鏡装置の制御構成を示すブロック図 図36Aは、内壁面(粘膜表面)から深さ50μmの位置における細胞形態を示す画像であって、クルクミン色素によって染色された色領域を抽出した画像 図36Bは、内壁面(粘膜表面)から深さ50μmの位置における細胞形態を示す画像であって、アシッドレッド色素によって染色された色領域を抽出した画像 図36Cは、内壁面(粘膜表面)から深さ50μmの位置における細胞形態を示す画像であって、クルクミン色素およびアシッドレッド色素の両方の色素によって染色された色領域を抽出した画像 図37は、クルクミン色素で染色した、胃のがん細胞群を示す図 図38は、共焦点レーザ顕微鏡を用いて、生体内部の細胞群を内壁面(粘膜表面)に垂直な方向から見て撮像した場合の画像 図39は、共焦点レーザ顕微鏡を用いて、生体内部の細胞群を内壁面(粘膜表面)に対して右斜め上側から撮像した場合の画像 図40は、共焦点レーザ顕微鏡を用いて、生体内部の細胞群を内壁面(粘膜表面)に対して左斜め上側から撮像した場合の画像 図41は、共焦点レーザ顕微鏡を用いて、生体内部の細胞群を内壁面(粘膜表面)に対して右斜め上側から撮像した場合の画像 図42は、溶解方法を至適化した染色剤にて染色された生体細胞を共焦点レーザ顕微鏡で撮像した画像であり、(a)は正常大腸粘膜、(b)は大腸がんを示す画像 図43は、実施の形態4に係るレーザ内視鏡装置の内視鏡の先端側の端部を示す概略図 図44は、内視鏡の全体を示す概略図 図45は、レーザ内視鏡装置の制御構成を示すブロック図 図46は、無染色の状態の大腸粘膜内面を、共焦点レーザ顕微鏡を用いて撮影した画像 図47は、無染色の状態の大腸粘膜内面を、多光子レーザ顕微鏡を用いて撮影した画像
 (本発明の基礎となった知見1)
 本発明の基礎となった知見1、知見2、知見3、知見4、知見5および知見6のうち、まず、本発明の基礎となった知見1、および、知見1に関する発明の主要構成について説明する。
 まず、生体の内部構造とがん細胞との関係について説明する。
 生体の内部には、消化管、呼吸器、腎泌尿器、子宮卵巣生殖器などの臓器や、脳脊髄神経などが含まれている。消化管としては、食道、胃、小腸、大腸などが挙げられる。
 図1は、消化管112の一例である大腸の細胞の配列を示す模式図である。例えば、大腸の内壁は、粘液を分泌する腺130と、腺130よりも内壁面(粘膜表面)113側で食物に接して水分を吸収する上皮120とにより構成されている。上皮120は、内壁面113に沿って並んだ複数の上皮細胞121により構成されている。上皮細胞121は、核125と細胞質126を有している。腺130は、上皮120の一部がつぼ状に窪んだ形状をしている。腺130は、複数の腺細胞131により構成され、腺細胞131は、核135と細胞質136を有している。腺130が窪んだ部分は、腺130の陰窩(いんか)と呼ばれる。上皮細胞121の内側および腺細胞131の周囲には、基底膜137、毛細血管132および結合組織133が形成されている。上皮細胞121の表面には、腺130から分泌された薄い粘液層が形成されており、上皮細胞121はこの粘液層により保護されている。
 生体の内部構造における核125、135の大きさ、核125、135のそれぞれの並び方、核135から基底膜137までの距離は、がんなどの病理診断をする上で重要な判断要素となる。
 図2は、消化管112に発生するがん細胞集団152を模式的に示す図である。消化管112に発生する早期段階のがん細胞集団152は、一般的に、消化管112の内壁面(粘膜表面)113から深さ約1mm以内の位置にて発生すると言われている。粘膜筋板160に到達して超える前の状態である早期段階のがん細胞集団152を、広範囲にわたり漏れなく発見することができれば、粘膜筋板160を超えて拡大し他の臓器に転移を発生する状態である進行がんにつながるケースを少なくすることができる。
 今回、がん細胞集団152をはじめとする生体の内部の病変を把握する試みとして、発明者らは、多光子レーザ顕微鏡(オリンパス社製FV1000MPE)を用いて生体の内部の細胞形態を撮像した。多光子レーザ顕微鏡とは、多光子励起過程を利用した蛍光顕微鏡である。なお、生体としてはマウスを用いた。
 図3は、多光子レーザ顕微鏡を用いて消化管112の内壁を撮像する様子を示す模式図である。図3に示すように、多光子レーザ顕微鏡の対物レンズ16は、撮像対象である消化管112の内壁にレーザLを照射するため、消化管112の内壁面113に対向して配置される。
 主に上皮細胞121を撮像する場合は、対物レンズ16の焦点が内壁面(粘膜表面)113に結ばれるように、対物レンズ16を配置する。これにより、上皮細胞121等は、図3のa-aラインで切断した模式図である図3の(a)のように表れる。また、主に腺細胞131、毛細血管132および結合組織133を撮像する場合は、対物レンズ16の焦点が内壁面(粘膜表面)113よりも10μm以上深い位置に結ばれるように、対物レンズ16を配置する。これにより、腺細胞131、毛細血管132および結合組織133は、図3のb-bラインで切断した模式図である図3の(b)のように表れる。このように、多光子レーザ顕微鏡の対物レンズ16の焦点位置を変えることで、消化管112における上皮細胞121、腺細胞131、毛細血管132および結合組織133を撮像することができる。
 また、発明者らは、多光子レーザ顕微鏡を用いて生体内部の細胞形態を撮像するにあたり、可食性の色素を含む染色剤を用いて生体(マウス)を有彩色に染色して撮像を行った。染色剤を用いることで、消化管112の上皮細胞121、腺細胞131、毛細血管132および結合組織133を選択的に染色することができる。なお、可食性の色素とは、自然色素または人工合成色素のうち、人への投与が許可されている色素(例えば食品着色用の色素)である。
 図4に示す画像は、クルクミン(Curcumin)を含む染色剤で上皮細胞121および腺細胞131を染色した後、多光子レーザ顕微鏡を用いて上皮細胞121および腺細胞131等を撮像した場合の画像である。なお、レーザの波長は780nmとし、対物レンズの倍率は(a)が10倍、(b)が25倍とした。図5示す画像は、アシッドレッド(AcidRed:赤色106号)を含む染色剤で毛細血管132および結合組織133を染色した後、多光子レーザ顕微鏡を用いて毛細血管132および結合組織133等を撮像した場合の画像である。なお、レーザの波長は840nmとし、対物レンズの倍率は、(a)が10倍、(b)が25倍、(c)が75倍(25倍でズーム3倍)とした。なお、クルクミンを含む染色剤としては、クルクミン溶液(原液5%)を生理食塩水で1/5~1/5000希釈したものを用いることができ、染色時間はそれぞれ2~5分間程度である。図4は白黒であるが本来カラー画像であり、染色剤により、上皮および腺部分は緑の蛍光色に、毛細血管および結合組織は、蛍光色がなく暗い緑色に分離して表現することができる。この蛍光色は、実際の蛍光を視覚的に判断しやすい色に画像上で補正を行って表現している。
 図4および図5に示すように、染色剤を用いて生体の内部の細胞群を染色して撮像すると、鮮明な細胞群の画像を得ることができる。
 また、発明者らは、今回新たな試みとして、染色剤を用いて生体を染色するにあたり、2種類の染色剤を用いて各細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色し、撮像を行った。具体的には、クルクミンを含む染色剤、および、アシッドレッドを含む染色剤を用いて生体を染色した。以下、2つの染色剤を用いて生体の内部の細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色することを「二重染色」と呼ぶ。
 図6に示す画像は、クルクミンを含む染色剤とアシッドレッドを含む染色剤とで消化管112の内壁を二重染色した後、多光子レーザ顕微鏡を用いて消化管112の内壁を撮像した場合の画像である。そのうち、(a)は正常な消化管112を示す画像であり、(b)は、早期段階の大腸のがん細胞集団152が形成された消化管112を示す画像である。なお、(a)に示す画像の倍率は、(b)に示す画像の1.5倍の倍率で撮像したものである。
 なお、クルクミンを含む染色剤としては、クルクミン溶液(原液5%)を生理食塩水で1/10希釈したものを用いた。アシッドレッドを含む染色剤としては、アシッドレッド溶液(原液10mg/mL)をそのまま用いた。染色時間はそれぞれ2~5分間とした。ここでクルクミンを含む染色剤としては、クルクミン溶液(原液5%)を生理食塩水で1/5~1/5000希釈したもの、アシッドレッドを含む染色剤としては、アシッドレッド溶液(原液10mg/mL)をそのままの濃度1~1/1000希釈した濃度でも染色をすることができる。
 図6の(a)に示すように、生体の内部の細胞群を二重染色した後、撮像することで、消化管112の内壁における上皮、腺、毛細血管または結合組織などの複数の組織を一つの画像内で同時に確認することができる。図6は白黒であるが本来カラー画像であり、染色剤による染色傾向の違いにより、上皮および腺部分は緑の蛍光色に、毛細血管および結合組織は薄い赤色からオレンジ色に近い蛍光色であり、1つの染色剤による染色の場合に比べて、より鮮明に上皮および腺部分と、毛細血管および結合組織を分離して表現することができる。このクルクミン溶液の染色による蛍光色は緑色に、アシッドレッド溶液の染色による蛍光色は赤色に表示して、実際の蛍光を視覚的に判断しやすい色に画像上で補正を行って表現している。また、図6の(b)に示すように、(a)と(b)に表された細胞群の形状や明るさを比べることで、消化管112が正常な状態にあるか、または、がんなどの病変が発生しているかを確認することができる。
 なお、二重染色を行うための染色剤としては、上記に示した他に、クルクミンを含む染色剤とファストグリーンFCF(FastGreenFCF)を含む染色剤とを用いることもできる。その場合、クルクミンを含む染色剤としては、クルクミン溶液(原液5%)を生理食塩水で1/10希釈したものを用い、ファストグリーンFCFを含む染色剤としては、ファストグリーンFCF溶液(原液10mg/mL)をそのまま用いればよい。染色時間はそれぞれ2~5分間とすればよい。ここでクルクミンを含む染色剤としては、クルクミン溶液(原液5%)を生理食塩水で1/5~1/5000希釈したもの、ファストグリーンFCFを含む染色剤としては、ファストグリーンFCF溶液(原液10mg/mL)をそのままの濃度1~1/1000希釈した濃度でも染色をすることができる。
 また、発明者らは、染色剤を用いて生体を染色するにあたり、がん細胞集団152の周辺に位置するがん細胞以外のがん細胞周辺細胞群を特異的に有彩色に染色する染色剤を用いて生体の内部の細胞群を選択的に染色し、撮像を行った。具体的には、ローズベンガル(RoseBengal)を含む染色剤を用いて生体を染色した。
 図7の(a)は、緑色蛍光タンパク質であるGFPを利用してがん細胞だけから発する蛍光を撮像した画像である。図7の(b)は、ローズベンガルを含む染色剤で消化管112の内壁を染色した後、多光子レーザ顕微鏡を用いて消化管112の内壁を撮像した場合の画像である。図7の(c)は、(a)と(b)を合成した画像であり、実際の画像では(a)は緑色蛍光色、(b)は赤色蛍光色であり、はっきりとがん細胞周辺細胞群だけを識別することができるものである。
 図7の(b)に示すように、生体の内部の細胞群のうち、(a)に示すがん細胞集団152の周囲に位置するがん細胞周辺細胞群による蛍光を得られることから、その周辺の細胞群を撮像することで、消化管112にがんが発生しているかを確認することができる。この画像を利用することにより、がん細胞だけでなくがん細胞除去処置後の再発防止のための処置範囲を決める際に有効となる。例えば、図7の(b)に示すがん細胞周辺の細胞群をがん細胞およびがん細胞側から半分の長さのがん細胞周辺の細胞群までを除去するなどの基準を決めて処置をすることで、患者にとってより安全な処置をすることができる。
 またさらに、発明者らは、多光子レーザ顕微鏡を用いて生体の内部の細胞形態を撮像し、撮像した複数の画像を重ね合わせて合成画像を作成することを試みた。
 図8は、多光子レーザ顕微鏡102を用いて消化管112の内壁を全周性に撮像する様子を示す模式図である。図8に示すように、広げられた消化管112の内壁面113に、レーザLを照射するための撮像ヘッド11を挿入した後、撮像ヘッド11を移動させ、複数の撮像領域Pにて撮像を行うことができる。その際、複数の撮像領域Pのうち、隣り合う撮像領域P1、P2の一部が重なるように撮像を行うことができる。そして、隣り合う撮像領域P1、P2の重なった領域Paを互いに重ね合わせて合成画像を作成した。
 図9は、アシッドレッドを含む染色剤で染色した消化管112の内壁の合成画像である。図10Aは、クルクミンを含む染色剤とアシッドレッドを含む染色剤で染色した消化管112の内壁の合成画像である。また、図10Bは、消化管112の内壁のパノラマ画像を立体再構築した一例を示す図である。
 図9および図10Aに示すように、複数の画像を重ねあわせた合成画像を作成することで、生体の内部の細胞形態を広範囲に、かつ、漏れなく把握することができる。また、さらに、図8に示すように、撮像ヘッド11を消化管112の内周に沿って移動させ、360°回転させながら撮像することで、消化管112の内壁のパノラマ画像を作成することも考えられる。また、図10Bに示すように、パノラマ画像をトンネル状に立体再構築することで、消化管112のどの位置(座標)に病変が存在するかを可視化して把握しやすくなる。このような撮像を行えば、生体の内部における病変を網羅的に検出することが可能となる。
 すなわち、本発明の主要構成によれば、病変が小さすぎて現行内視鏡ではその存在にさえ気づかない超早期がん(直径0.2mm~1mm)のような微細病変を、偶然にではなく、広範囲にわたって網羅的に検出することが可能となる。
 (実施の形態1)
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。
 なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲によって特定される。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は、省略または簡略化する。
 [1.レーザ内視鏡装置の構成]
 本実施の形態に係るレーザ内視鏡装置は、消化管、呼吸器、腎泌尿器、子宮卵巣生殖器および脳脊髄神経などにおいて発生した病変を、広範囲に漏れなく撮像することのできる装置である。また、撮像にとどまらず、生体に発生している病変に対して治療を施すことができる。本実施の形態では、生体の内部にある消化管112を例に挙げて説明する。
 [1.1撮像準備のための構成]
 まず、撮像準備を行うためのレーザ内視鏡装置の構成について説明する。
 消化管112の内壁は、実際には凹凸があるので、レーザ内視鏡装置を用いて撮像する前に、消化管112内を押し広げ、撮像できる状態にすることが望ましい。また、レーザ内視鏡装置を用いて、鮮明な画像を得るため、消化管112の内壁の細胞群を染色剤で染色することが望ましい。そのため、本実施の形態に係るレーザ内視鏡装置は、消化管112内を押し広げる挿入管と、消化管112の内壁の細胞群を染色するために染色剤を供給する染色剤供給部を備えている。
 図11の(a)は、消化管112内に挿入管20を挿入した後の状態を示す図である。
 図11の(a)に示すように、挿入管20には、流体を供給する供給口42と、供給した流体を回収する回収口43が形成されている。また、挿入管20には、第1バルーン21と第2バルーン22とが設けられている。第1バルーン21および第2バルーン22は、バルーン21、22内に流体(気体または液体)が出し入れされることで、膨らんだり縮んだりする。第1バルーン21は、供給口42よりも挿入管20の先端側に設けられ、第2バルーン22は、回収口43よりも後ろ側(先端とは反対側)に設けられている。消化管112内にて、第1バルーン21および第2バルーン22を膨らますことで、第1バルーン21と第2バルーン22とに挟まれた消化管112内の空間が、閉じた空間Sとなる。
 図11の(b)および図12は、染色剤45を供給するための染色剤供給部40の一例を示す図である。図12に示すように、例えば、染色剤45が貯留された染色剤供給部40から、挿入管20および供給口42を介して染色剤45を空間S内に供給する。染色剤45としては、例えば、クルクミン類を含む染色剤またはアシッドレッドの1染色剤であっても良いが、クルクミン類を含む染色剤およびアシッドレッドを含む染色剤の2種類の染色剤を用いることが望ましい。2種類の染色剤45を用いて生体の内部の細胞群を2色に分けて染色することで、より鮮明な撮像画像を得ることができる。なお、クルクミン類には、クルクミンはもちろん、水溶性の高いクルクミノイド(数種類のクルクミン誘導体の混合物)が含まれる。
 染色剤45は、クルクミン類およびアシッドレッドの両方を含む1つの染色剤であってもよい。また、染色剤45は、クルクミン類およびファストグリーンFCFの両方を含む1つの染色剤であってもよいし、クルクミン類を含む染色剤とファストグリーンFCFを含む染色剤とによる2種類の染色剤であってもよい。また、染色剤45は、2種類に限られず、1種類の単色であってもよい。例えば、染色剤45は、ローズベンガル(RoseBengal)を含む染色剤であってもよい。また、染色する前に、供給口42および回収口43を用いて消化管112の内部を洗浄したり、粘液を除去したりしてもよい。
 その後、図13の(a)に示すように、供給口42から、例えば、気体を供給し消化管112内を膨らますことで、消化管112の内壁が伸びて平坦化される。平坦化された場合の内壁面113の凹凸は、凹と凸の高低差が、例えば0.2mm以内であることが望ましい。これにより、レーザ内視鏡装置を用いて生体を撮像する準備が整う。
 消化管112の内壁を平坦化することで、内壁面113、および、内壁面113から所定深さの位置にある細胞群の状態を的確に把握することができる。また、消化管112内を袋体で膨らまして袋体を介して撮像するのではなく、消化管112の内壁にレーザLを直接当てて撮像するので、内壁面113等を的確に把握することができる。
 なお、消化管112内を膨らます媒体は気体に限られず、蒸留水や生理食塩水等の液体を用いることもできる。ただし、液体を用いる場合は、使用するレーザの波長を透過する液体である必要があり、媒体が液体の場合は気体の場合より染色剤の濃度を濃くすることが望ましい。また、消化管112の内圧を調整するために、第1バルーン21と第2バルーンとの間に圧力センサを備えていてもよい。圧力センサは等間隔で複数設けることが好ましい。
 [1.2レーザ内視鏡装置の基本構成]
 次に、図13の(b)、図14および図15を参照しながら、実施の形態1に係るレーザ内視鏡装置1の基本構成について説明する。
 図13の(b)は、図15におけるレーザ内視鏡装置1の内視鏡2の先端側の端部を示す概略図である。図14は、内視鏡2の全体を示す概略図である。図15は、レーザ内視鏡装置1の制御構成を示すブロック図である。
 図15に示すように、レーザ内視鏡装置1は、内視鏡2を有する撮像部10、制御部50および画像処理部70を備えている。また、レーザ内視鏡装置1は、レーザ発振器60、光学部品65を有している。
 レーザ発振器60から発振されたレーザLは、光学部品65であるダイクロイックミラー66により反射され、さらに、内視鏡2内のミラー19により反射されて生体に照射される。レーザLが照射された生体細胞は蛍光を発生し、その蛍光による光がミラー19で反射され、ダイクロイックミラー66を透過して光検出器35で検出される。光検出器35で検出された光は電気信号に変換され、画像処理部70にて画像形成される。蛍光の色は染色剤によって変わるため、光検出器35を複数備え、光検出器35の前に色を分離する光学フィルタを置いて分離することができる。
 レーザ発振器60としては、パルス幅が数十~数百フェムト秒、パルス周波数が数十~数百MHzのものが用いられる。本実施の形態におけるレーザLは、多光子レーザの一種である二光子レーザであり、レーザ発振器60は、例えば、波長が800nmで、出力が3.2Wまで出せるパルスレーザを用いている。このレーザの撮像時のレーザ出力は0.16~0.32Wの範囲で出射している。波長を800nm以上とすることで、多光子励起過程によって発生する1/2波長の光において、紫外線域(波長400nm未満)の光子が生じることを防ぐことができる。なお、レーザ発振器60では、レーザLの強度を調整することも可能である。
 光学部品65であるダイクロイックミラー66は、レーザLと同一の波長については反射し、その他の波長の光を透過させる。したがって、レーザ発振器60から発振されたレーザLは、ダイクロイックミラー66によってミラー19に向かって反射される。一方、生体細胞において発生した蛍光は、ミラー19を反射した後、ダイクロイックミラー66を通過し、光検出器35に到達する。なお、光学部品65は、プリズムや4/λ板などで構成することもできる。
 撮像部10は、内視鏡2および光検出器35を備えており、生体の内部にレーザLを当てることで生体の内部の細胞形態を撮像する。
 光検出器35は、レーザLを当てることで発生した蛍光を検出し、その蛍光を蛍光強度に応じた電気信号に変換する。光検出器35としては、例えば、光電子増倍管、CCD半導体イメージセンサなどを用いることができる。
 内視鏡2は、図14に示すように、内筒12と、内筒12の一部の外側を囲む外筒13とを備えている。内筒12、および、外筒13の一部は、生体の内部に挿入される。内筒12の長さは、例えば50mmであり、内筒12の外径は、例えば3~10mmである。内筒12には直動アクチュエータが取付けられており、内筒12は、外筒13に対して軸方向Xに25mmほど移動可能となっている。また、内筒12には超音波モータが取りけられており、内筒12は、外筒13に対して360°回転可能となっている。内筒12の軸方向Xの動作、または、回転方向Rの動作は制御部50により制御される。
 内視鏡2の内筒12の先端側の端部には撮像ヘッド11が設けられている。撮像ヘッド11は、図13の(b)に示すように、挿入管20の脇を通って、内筒12とともに生体の内部に挿入される。撮像ヘッド11は、内筒12の軸方向Xおよび回転方向Rの動作により、生体の内部を移動するように制御される。
 撮像ヘッド11は、対物レンズ16、焦点可変部18、スペーサ17およびミラー19を有している。
 ミラー19は、前述したように、レーザ発振器60から出力されたレーザLを対物レンズ16に向けて方向転換し、または、生体細胞により蛍光された光を光検出器35に向けて方向転換する部品である。
 対物レンズ16は、生体の内壁面113に対向して設けられる。対物レンズ16は、例えば、直径が10mm、倍率が10倍、解像度が5μm、撮像視野が3mm×3mmである。または、対物レンズ16は、直径が12mm、倍率が40倍、解像度が10μm、視野が7.5mm×7.5mmmである。撮像視野は広いほどよい。また、対物レンズ16は左記した直径のレンズの一部をカットするか、同様の解像度を得られる対物レンズとして生体内に挿入しやすい3mm~5mmの直径としたものを用いることができる。
 焦点可変部18は、例えば圧電アクチュエータまたは電磁アクチュエータであり、対物レンズ16を光軸の方向に移動させることで、対物レンズ16の焦点位置を変える。焦点可変部18は、制御部50により動作制御され、焦点を内壁面(粘膜表面)113から深さ0~1000μmの範囲で調整できるようになっている。焦点位置を変えることで、消化管112の細胞表面から所定の深さにおける生体の状態を撮像することができる。なお、多光子レーザの代わりに共焦点レーザを用いる場合は、焦点の内壁面(粘膜表面)113からの深さを0~75μmの範囲で調整すればよい。
 スペーサ17は、例えば環状であり、対物レンズ16と内壁面113との間の空間の周囲に設けられる。スペーサ17は、対物レンズ16が生体の内壁に触れないようにするため、また、対物レンズ16と内壁面113との距離を一定に維持するための部品である。対物レンズ16と内壁面(粘膜表面)113との距離は、撮像開始前にスペーサ17を取り替えるか、アクチュエータなどで可変とする機構を付加することにより、例えば、1mm以上10mm以下の範囲の適切な値に設定される。制御部50は、スペーサ17を内壁面113に当接させながら撮像ヘッド11(内筒12)を移動制御し、内壁面113に対する対物レンズ16の距離を一定に維持する。
 制御部50は、CPU、ROM、RAMなどにより構成される。制御部50は、内筒12を介して撮像ヘッド11の動作を制御する。具体的には、制御部50は、撮像ヘッド11を、消化管112の内壁の内周を沿うように周方向に移動制御し、また、消化管112の管路方向(消化管の軸)に沿うように移動制御する。また、制御部50は、焦点可変部18の動作を制御することで、対物レンズ16の光軸方向の位置を変え、生体の内部に結ばれる焦点位置を制御する。また、制御部50は、レーザ発振器60を制御することで、レーザ出力を調整することもできる。
 画像処理部70は、光検出器35により変換された電気信号(蛍光強度)と、制御部50から送られる撮像部10の座標位置とを対応づけて記憶し、これらのデータを処理してデジタル画像を生成する。生成されたデジタル画像は、例えば、モニタに表示されたり、プリントアウトされたり、記憶装置に記録されたりする。撮像部10の座標位置の例としては、患者の基準となる箇所(例えば喉や肛門など)からの距離と、撮像ヘッド11の回転角度などを用いることができる。
 本実施の形態に係るレーザ内視鏡装置1では、制御部50は、撮像ヘッド11が生体の内壁面113に対して一定距離を保った状態で走査するように、撮像ヘッド11を移動制御する。そして、撮像部10は、図16に示すように、撮像ヘッド11の移動に伴って撮像する複数の撮像領域Pを、隣り合う撮像領域P1、P2の一部が重なるように撮像する。画像処理部70は、隣り合う撮像領域P1、P2の重なった領域Paを互いに重ね合わせて合成画像を生成する。これにより、生体の内部の細胞形態を広範囲に、かつ、漏れなく撮像することができる。
 また、このレーザ内視鏡装置1を用いることで、パノラマ画像を生成することもできる。例えば、図16に示すように、制御部50が、撮像ヘッド11を消化管112の内周に沿って360°移動(または、消化管112の軸を中心に公転)するように制御する。そして、撮像部10は、撮像ヘッド11の移動に伴って撮像する複数の撮像領域Pを、隣り合う撮像領域P1、P2の一部が周方向に重なるように撮像する。画像処理部70は、隣り合う撮像領域P1、P2の重なった領域Paを互いに重ね合わせてパノラマ画像を生成する。これにより、消化管112の内壁の状態を網羅的に把握することができる。
 また、このレーザ内視鏡装置1を用いることで、消化管112の管路方向に沿った画像を生成することもできる。例えば、図16に示すように、消化管112内の内周360°における撮像が終わった後、制御部50は、撮像ヘッド11を消化管112の管路方向に沿って所定距離だけ移動させ、撮像部10は、移動後の撮像領域P11を、管路方向に隣り合う撮像領域P1と一部が重なるように撮像する。そして、画像処理部70は、2つの撮像領域P1、P11の重なった領域Pbを互いに重ね合わせる。次に、再び撮像部10にて、消化管112の内周360°における撮像を行い、画像処理部70にて、周方向および管路方向に重なる領域を互いに重ね合わせ、管路方向に延びたパノラマ画像を生成する。これによれば、管路方向においても、消化管112の内壁の状態を網羅的に把握することができる。
 また、このレーザ内視鏡装置1を用いることで、生体の立体画像を生成することもできる。例えば、制御部50が、撮像ヘッド11の焦点可変部18を作動制御することで、対物レンズ16の焦点位置を変え、撮像部10は、焦点位置の変更に伴って深さの異なる複数の撮像領域を撮像する。そして、画像処理部70が、撮像により得られた複数の画像を焦点位置に対応させて配置することで、生体の内部の細胞形態の立体画像を生成する。これにより、生体の内壁面113だけでなく、所定範囲の深さの生体内部の細胞形態を撮像することができる。
 [2.1 レーザ内視鏡装置の動作1]
 次に、消化管112の内部の細胞形態を撮像する場合におけるレーザ内視鏡装置1の動作について説明する。
 図17Aの(a)に示すように、通常は、消化管112の内壁が凹凸状態にあるので、消化管112の内壁を平坦化するための動作を行う。
 まず、図17Aの(b)に示すように、消化管112内に挿入管20を入れる。
 次に、図17Aの(c)に示すように、挿入管20の先端において、第1バルーン21を拡張させ、消化管112の内壁面113に当接させる。なお、気密性を向上させるため、第1バルーン21は3つのバルーンにより構成されている。
 次に、図17Aの(d)に示すように、挿入管20の後方に位置する第2バルーン22を拡張させ、消化管112の内壁面113に当接させる。第2バルーン22も3つのバルーンにより構成されている。この動作により、第1バルーン21と第2バルーン22との間に、閉じた空間Sが形成される。そして、閉じた空間Sに供給口42から空気を吹き出し、消化管112の内部を膨らませる。これにより、消化管112の内壁に存在するしわ等を伸ばして平坦化する。なお、内壁を平坦化させる工程は、後述する染色の後に実行してもよい。
 次に、図17Bの(e)に示すように、洗浄液を供給口42から閉じた空間Sに供給する。これにより消化管112の内壁面113を洗う。その後、洗浄液を回収口43から吸い込んで回収する。
 次に、図17Bの(f)に示すように、プロナーゼ液を供給口42から閉じた空間Sに供給する。これにより、消化管112の内壁面113についた余分な粘液を除去する。その後、プロナーゼ液を回収口43から吸い込んで回収する。
 次に、図17Bの(g)に示すように、染色剤A(例えば、クルクミン類を含む染色剤)を供給口42から閉じた空間Sに供給し充填する。そして、2~5分間静置した後、洗浄液で洗う。これにより、消化管112の内壁の所定の細胞群が染色剤Aにより染色される。なお、所定の細胞群とは、上皮細胞121、腺細胞131、毛細血管132または結合組織133などに含まれる複数の細胞を示す。
 次に、図17Bの(h)に示すように、染色剤B(例えば、アシッドレッドを含む染色剤)を供給口か42ら閉じた空間Sに供給し充填する。そして、2~5分間静置した後、洗浄液で洗う。これにより、消化管112の内壁の所定の細胞群が染色剤Bにより染色され、消化管112の内壁が二重染色される。このように、空間S内に染色剤AまたはBで満たす方法をとれば、消化管112の内壁をむらの少ない状態で二重染色することができる。
 次に、図17Cの(i)に示すように、閉じた空間S内に内視鏡2を挿入する。内視鏡2の先端側に設けられた撮像ヘッド11は、内壁面113と対物レンズ16との距離を一定に保ちつつ、対物レンズ16の焦点位置を、内壁面(粘膜表面)113から深さ0μm、30μm、60μm、90μm、120μm、150μmに合わせて撮像を行う。なお、深さ0μmの位置は、内視鏡2が有するオートフォーカス機能により決めることもできる。また、多光子レーザでなく、共焦点レーザを用いる場合は、対物レンズ16の焦点位置を、内壁面(粘膜表面)113から深さ0μm、25μm、50μm、75μmの位置に合わせて撮像を行う。上記の深さ変更ピッチは1例であって、更に細かいピッチであっても、粗いピッチであっても良い。
 そして、図17Cの(j)に示すように、撮像ヘッド11を内壁面113に沿って360°回転させながら撮像を行う。このとき、周方向に隣り合う撮像領域P1、P2の一部が重なるように撮像する。この一部重複した撮像により1つ目のパノラマ画像を取得する。内周360°の撮像が終われば、撮像ヘッド11を消化管112の管路方向に沿って所定距離移動させる。そして、再び、撮像ヘッド11を360°回転させ、2つ目のパノラマ画像を取得する。なお、1つ目のパノラマ画像と2つ目のパノラマ画像は、挿入管20の管路方向に隣り合う撮像領域P1、P11の一部が重なるように設定された上で撮像されたものであり、消化管の円周方向、直線方向における重複部分のパターンを、画像処理により正確に合わせることで継ぎ目のない画像となって合成される。これらの動作を複数回(本実施の形態では5回)繰り返す。
 これらの撮像が一旦終われば、図17Cの(k)に示すように、撮像ヘッド11を含む内視鏡2を第2バルーン22よりも後方へ移動させる。
 次に、撮像領域をさらに変えて撮像するため、図17Dの(l)に示すように、第1バルーン21を収縮させる。そして、図17Dの(m)に示すように、第2バルーン22の位置を維持したまま、挿入管20を後方に引く。その後、図17Dの(n)に示すように、第1バルーン21を拡張させる。そして、図17Eの(o)に示すように、第2バルーン22を収縮させた後、図17Eの(p)に示すように、第1バルーン21の位置を維持したま挿入管20を後方に引く。その後、図17Eの(q)に示すように、第2バルーン22を拡張させる。これにより、先に形成した閉じた空間Sに対し管路方向に隣り合う、別の閉じた空間S1を形成する。そして、この閉じた空間S1にて、図17Aの(d)~図17Cの(k)に示す動作を再び行う。
 これらの動作を繰り返すことで、例えば、管路方向で300mmの長さの撮像を行うことができる。消化管112が大腸の場合だと、大腸の全長を4回に分けて撮像すればよい。
 このような、レーザ内視鏡装置1の動作によれば、消化管112の内周方向および管路方向において、内壁の状態を網羅的に、また、効率的に撮像することができる。
 [2.2 レーザ内視鏡装置の動作2]
 また、レーザ内視鏡装置1は、深さ方向において、がん細胞などの病変を効率的に検出するための動作を行えるように構成されている。
 そのため、制御部50は、次に示す2つの焦点可変モードを備えている(図15参照)。具体的には、制御部50は、焦点位置を第1のピッチで変更させる第1の焦点可変モード51と、第1のピッチよりも小さいピッチである第2のピッチで焦点位置を変更させる第2の焦点可変モード52とを備えている。第1の焦点可変モード51は、例えば、生体の内壁面(粘膜表面)113から深さ0μm、30μm、60μm、90μm、120μmの位置で焦点を結ぶように変更させるモードである。第2の焦点可変モード52は、それよりも細かい、例えば、5μmのピッチで焦点位置を変更させるモードである。またこれらの可変ピッチはプログラムを書き換えることで可変量を変更することもできる。
 また、制御部50は、病変の有無をすばやく判断するため、対応する内臓器官毎に病変がない状態にある正常細胞の参照画像をあらかじめ記憶している。正常細胞の参照画像は、照射するレーザの種類(多光子レーザまたは共焦点レーザ)や、器官の細胞膜表面からの深度に応じて異なり、また染色剤を用いる場合は染色剤の種類によっても異なるため、予め撮像条件に応じた参照画像を準備しておくことが好ましい。
 図18は、レーザ内視鏡装置1の動作の一例を示すフローチャートである。制御部50は、まず、粗いピッチである第1の焦点可変モード51にて、深さ方向の一通りの撮像を行わせる(S11)。このときは倍率を低く設定し(例えば10倍以下)、試し撮りをした際の画像によって判断し、深さを変えない一定深さのみの撮像であっても、粘膜表面の撮像であっても良い。
 次に、制御部50は、第1の焦点可変モード51で得た画像と、予め記憶した正常細胞の参照画像とを、形状および明るさのうちの少なくとも一方について比較し、病変の疑いを判断する(S12)。病変の疑いがなければ、検査を終了する(S13)。
 制御部50は、撮像により得た画像の中に病変の疑いがある部分が存在すると判断した場合に、病変の疑いがある部分の画像を撮像した際の焦点位置の近辺において、第2の焦点可変モード52で撮像を行う(S14)。このときは倍率を高く設定し(例えば40倍)、ここでも、深さを変えない一定深さのみの撮像であっても、表面の撮像であっても診断が可能な画像が撮像できれば良い。
 次に、制御部50は、第1の焦点可変モード51で得た画像と予め記憶した正常細胞の参照画像とを、形状および明るさのうちの少なくとも一方について比較し、病変の疑いを判断する(S15)。病変の疑いがなければ、検査を終了する(S16)。
 そして、制御部50は、撮像部10により得られた画像の中に病変した細胞が存在する場合に、撮像時よりもレーザLの出力をあげて、病変した細胞に、出力を上げたレーザLを当て、病変した細胞を除去(蒸散)させる(S17)。なお、図示はしないが、病変した細胞を除去した後は、同じ場所を再度撮像し、病変した細胞の有無を再確認することが好ましい。細胞除去時のレーザ出力は撮像時の10~20倍で、2~3Wである。
 上記判断はコンピュータを用いて形状、明るさ等の比較を自動的に行っても良い。また、コンピュータによる判断後に病変の疑いのある場所については、医師の判断を行うことが好ましい。
 このような断層撮像を行うことで、撮像時間を短縮しつつ網羅的な撮像を行うことができる。また、病変した細胞を早期にかつ確実に除去することができる。上記除去処置は、図17A~図17Eを用いて説明した撮像空間Sを移動する前に診断、除去を行っても良いし、対象器官の撮像が終了してから、別の機会に画像の座標を用いて一連の撮像空間Sを形成して病変部分の除去を行っても良い。これらは患者の体力、患部の症状、レーザ内視鏡装置1の性能などによって決めることができる。
 (変形例1)
 図19は、実施の形態1の変形例1におけるレーザ内視鏡装置1を用いて、パノラマ画像を生成する一例を示す模式図である。
 変形例1における制御部50は、アーム15に取り付けられた撮像ヘッド11を消化管112の軸を中心に螺旋状に回転するように制御する。撮像部10は、撮像ヘッド11の回転に伴って撮像する複数の撮像領域Pを、隣り合う撮像領域P1、P2の一部が回転方向Rに重なるように撮像する。画像処理部70は、隣り合う撮像領域P1、P2の重なった領域Paを互いに重ね合わせてパノラマ画像を生成する。これにより、消化管112の内壁の状態を網羅的に撮像することができる。
 (変形例2)
 図20は、実施の形態1の変形例2におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例2では、消化管112の内壁面113と対物レンズ16との距離を一定に維持するため、スペーサ17の代わりに一対のホイール17aが、内視鏡2の先端側のアーム15に取り付けられている。撮像ヘッド11を内周方向に移動させる場合に、一対のホイール17aを内壁面113に当接させながら転動させることで、対物レンズ16は内壁面113に対して一定の距離を保った状態で移動できるようになっている。これによれば、上皮細胞121、腺細胞131、毛細血管132または結合組織133などの撮像対象に対するピント合わせを的確に行うことができる。
 (変形例3)
 図21は、実施の形態1の変形例3におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例3では、撮像ヘッド11の背部(レーザLの照射側と反対側)に押付け部材23が設けられている。そして、押付け部材23に流体を入れて膨らませ、押付け部材23で撮像領域の反対側の内壁を押圧することで、スペーサ17を撮像領域側の内壁に当接させている。これにより、対物レンズ16と内壁面113との距離を一定に維持することができ、撮像対象に対するピント合わせを的確に行うことができる。
 (変形例4)
 図22は、実施の形態1の変形例4におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例4では、変形例3に示す押付け部材23の代わりに、撮像ヘッド11の背部に支えローラ24が設けられている。そして、拡張機構25を用いて、支えローラ24を撮像領域の反対側の内壁に押し付けることで、スペーサ17を撮像領域側の内壁に当接させている。これにより、対物レンズ16と内壁面113との距離を一定に維持することができ、撮像対象に対するピント合わせを的確に行うことができる。
 (変形例5)
 図23は、実施の形態1の変形例5におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例5では、変形例4に示す支えローラ24の代わりに、撮像ヘッド11の背部に摺動部材26が設けられている。そして、拡張機構25を用いて、摺動部材26を撮像領域の反対側の内壁に押し付けることで、スペーサ17を撮像領域側の内壁に当接させている。これにより、対物レンズ16と内壁面113との距離を一定に維持することができ、撮像対象に対するピント合わせを的確に行うことができる。
 (変形例6)
 図24は、実施の形態1の変形例6におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例6では、図24の(a)に示すように、撮像ヘッド11が、フレキシブルに動く関節機構27に支持されている。また、撮像ヘッド11の背部には別の関節機構28が設けられ、撮像ヘッド11を支えている。この構造によれば、図24の(b)に示すように、消化管112に存在する大腸の半月ヒダなどの凹凸部位113aも撮像することができる。また、オートフォーカス機能を用いることで、対物レンズ16と内壁面113との距離を一定に維持することができる。
 (変形例7)
 図25は、実施の形態1の変形例7におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例7では、内視鏡2の先端が第1バルーン21に挿入され、撮像ヘッド11が、内視鏡2の内筒12の途中(第1バルーン21と第2バルーン22の間)に設けられた関節機構27に支持されている。これによれば、変形例6に示した関節機構28が不要となり、変形例6に比べて内視鏡2の構造を簡略化することができる。
 (変形例8)
 図26は、実施の形態1の変形例8におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例8では、撮像ヘッド11にジャイロセンサ29が設けられている。これにより、撮像時の撮像ヘッド11の位置と姿勢に関する情報を取得することができる。また、取り込んだ画像データを3D表示することも可能になる。また、この構造によれば、前述した第1の焦点可変モード51を用いて粗いピッチでの撮像を行った後に、病変が存在すると疑われる部分に、迅速および正確に戻り、細かいピッチでの第2の焦点可変モード52で撮像を行うことができる。なお、ジャイロセンサ29の代わりにGPS機能を付加してもよい。
 また、変形例8では、内視鏡2の内筒12に圧力センサ30が設けられている。閉じた空間S内の圧力を、圧力センサ30を用いて計測しフィードバックすることで、空間S内の圧力を適切に調整することが可能になる。
 (変形例9)
 図27は、実施の形態1の変形例9におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例9では、撮像ヘッド11に、対物レンズ16と内壁面113との距離を調整するための伸縮スペーサ31が設けられている。図27の(a)は伸縮スペーサ31が膨張した状態で、図27の(b)は伸縮スペーサ31が収縮した状態である。この伸縮スペーサ31の伸縮により、対物レンズ16と内壁面113との距離を的確に調整することができる。伸縮スペーサ31はアクチュエータなどによって構成することができる。
 (変形例10)
 図28は、実施の形態1の変形例10におけるレーザ内視鏡装置1を用いて、生体内部を染色する一例を示す模式図である。
 変形例10では、挿入管20に複数の吐出口42aが設けられている。そして、吐出口42aから内壁に向かって染色剤をスプレー塗布することで、内壁を染色している。これによれば、空間S内に染色剤を充填する方法に比べて、染色剤の使用量を少なくすることができる。そのため、許容量の少ない色素を用いた染色剤であっても、安心して使用することができる。
 (変形例11)
 図29は、実施の形態1の変形例11におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例11では、変形例2に示す撮像ヘッド11の一対のホイール17aの間隔を広くし、ミラー19および対物レンズ16が、図示しないアクチュエータ等により内視鏡2の軸方向Xに移動できるように構成されている。これによれば、内視鏡2の内筒12を必要以上に動かさずに、生体内部を撮像することができる。
 (変形例12)
 図30および図31は、実施の形態1の変形例1におけるレーザ内視鏡装置1を用いて、生体内部を撮像する一例を示す模式図である。
 変形例12では、変形例2に示す撮像ヘッド11の一対のホイール17aの間隔を広くし、一対のホイール17a間に複数のミラー19および対物レンズ16(本変形例では5組)が設けられている。そして、図31の(a)および(b)に示すように、撮像ヘッド11は、第1バルーン21および第2バルーン22間の領域を1回の360°回転動作により撮像できるように構成されている。これによれば、生体内部の撮像を効率よく行うことができる。
 なお、上記した実施の形態では、内視鏡2、挿入管20、内筒12、外筒13等を直線状の形態で示しているが、大腸などの形状に沿って円滑に挿入するために、内視鏡2、挿入管20、内筒12、外筒13等には可撓性を持たせること、レーザの導波路として光ファイバーなどを用いることが好ましい。また、撮像ヘッド11のアーム15等を、L型構造にしたり、内筒12に収めて直線状にしたりするには、撮像ヘッド11等に適切な関節構造とワイヤーなどによりL字形などに固定する構造を持たせることで可能となる。
 また、内視鏡2、挿入管20、アーム15、スペーサ17、バルーン21、22等は、材質として金属、樹脂、ゴムなどが使われるが、大腸や胃などの生体臓器に直接触れるものであるため、その表面加工には細心の注意が払われ極めて精度良く仕上げられる。
 (本発明の基礎となった知見2)
 次に、本発明の基礎となった知見2、および、知見2に関する発明の主要構成について説明する。
 知見2では、多光子レーザ顕微鏡(オリンパス社製FV1000MPE)を用いて生体の内部の細胞形態を撮像し、撮像した複数の画像を重ね合わせてパノラマ画像を作成した例について説明する。生体としてはマウスを用いた。
 図32Aは、多光子レーザ顕微鏡102を用いて消化管112の内壁を全周性に撮像する様子を示す模式図である。パノラマ画像を作成する方法としては、知見1の図10Aを作成した方法とほぼ同様であり、撮像ヘッド11を消化管112の内周に沿って移動させ、かつ、360°回転させて撮像し、画像を合成することでパノラマ画像を得た。
 図32Bは、内壁面(粘膜表面)113から深さ50μmの位置における細胞形態を示すパノラマ画像である。細胞群を染色するための染色剤としては、クルクミンを含む染色剤およびアシッドレッド(赤色106号)を含む染色剤の両方を用いた。図32Bから、複数の陰窩138(または腺130)が、ほぼ規則的な間隔で並んでいることが見てとれる。
 また、図32Bでは、図32Aに示す時計の短針方角に対応して各撮像領域Pが並べられているが、8時の方角に、複数のリンパ球が集まった孤立リンパ小節が形成されている。孤立リンパ小節は、現在のところ、がんなどの病変に値するものではないが、この孤立リンパ小節が形成された領域では、腺130の陰窩138が消えていることがわかる。そこで、発明者らは、孤立リンパ小節が形成された領域をパノラマ画像における座標の目印とすることで、病変を発見した場合に、その病変の位置を特定することができると考えた。また、孤立リンパ小節が無くても、パノラマ画像において所定の位置を基準にすることで、病変が存在する位置を明確に特定できると考えた。以下、知見2に基づく実施の形態について説明する。
 (実施の形態2)
 図33を参照しながら、実施の形態2に係るレーザ内視鏡装置1Aの構成について説明する。図33は、レーザ内視鏡装置1Aの内視鏡2を示す図である。
 レーザ内視鏡装置1Aの内視鏡2は、実施の形態1で示した内視鏡2とほぼ同じ構成を有し、内筒12と、内筒12の一部の外側を囲む外筒13とを備えている。内筒12には直動アクチュエータが取付けられており、内筒12は、外筒13に対して軸方向Xに移動可能となっている。また、内筒12には超音波モータが取りけられており、内筒12は、外筒13に対して360°回転可能となっている。内筒12の軸方向Xの動作、または、回転方向Rの動作は制御部50により制御される。
 さらに、本実施の形態のレーザ内視鏡装置1Aの内視鏡は、内筒12の回転方向Rの角度を検出する角度検出器81、および、内筒12の軸方向Xの位置を検出するリニアスケール82を有している。内視鏡2が、角度検出器81およびリニアスケール82を有しているので、例えば孤立リンパ小節の位置を基準として、孤立リンパ小節から病変までの軸方向Xの距離、回転方向Rの角度を知ることができ、病変の位置を特定することができる。また、孤立リンパ小節が無くても、例えば大腸であれば肛門、胃であれば口など、所定の位置を基準とすることで、病変が存在する位置を特性することが可能となる。
 このように、レーザ内視鏡装置1Aによれば、パノラマ画像において座標基準を設けることができ、消化管112のどの位置に病変が存在するかを可視化して把握することができる。また、座標基準を設けることで、360°回転させて撮像した証拠を示すことができ、取得した画像が全周性を有する漏れの無い画像であることを患者に提示することができる。
 (本発明の基礎となった知見3)
 次に、本発明の基礎となった知見3、および、知見3に関する発明の主要構成について説明する。
 知見3では、生体の内部の細胞形態を、多光子レーザ顕微鏡(オリンパス社製FV1000MPE)を用いて焦点の深さを変えて撮像し、撮像した複数の画像を所定の位置で切断して断面画像(断層画像)を作成した例について説明する。生体としてはマウスを用いた。
 図34A、図34Bおよび図34Cは、内壁面(粘膜表面)から所定範囲の深さにおける細胞形態を示す画像であって、粘膜表面(深さ0)から深さ150μmまでを深さ2μmピッチで撮像し、合計75枚の画像を積み重ねて合成した3次元データ画像である。図34A~34Cのそれぞれにおいて、(a)は、細胞群を内壁面113に垂直な方向から平面視した画像であり、(b)は(a)をb-b線で切断した場合の断面画像であり、(c)は(a)をc-c線で切断した場合の断面画像である。
 細胞群を染色するための染色剤としては、クルクミンを含む染色剤およびアシッドレッド(赤色106号)を含む染色剤の両方の染色剤を用いた。染色時間は、5分間とした。染色時間は、細胞群に染色剤を接触させて、細胞自体または各細胞の間に染色剤の色素を浸透させる時間である。
 図34A~図34Cは、同じ細胞群を同時に撮像し、フィルタをかけて異なる色(波長)を抽出した画像である。図34Aは、クルクミン色素およびアシッドレッド色素の両方の色素によって染色された色領域を抽出した画像である。図34Bは、クルクミン色素によって染色された色領域を抽出した画像である。図34Cは、アシッドレッド色素で染色された色領域を抽出した画像である。図34A~図34Cは白黒であるが本来カラー画像であり、染色剤による染色傾向の違いにより、クルクミン色素で染色した領域は緑の蛍光色に、アシッドレッド色素で染色された領域は、薄い赤色からオレンジ色に近い蛍光色で表わされ、より鮮明に色の違いが表わされている。
 図34A~図34Cでは、がん組織および正常粘膜組織が示されているが、それぞれの色素によって浸透性に差があることがわかる。
 図34Bに示すように、クルクミン色素は、がん組織において正常粘膜組織よりも高い浸透性を示している。具体的にはクルクミン色素の場合、染色されている深さが、がん組織内部では約40μmであるのに対し、正常粘膜組織内部では約20μmである。
 図34Cに示すように、アシッドレッド色素は、がん組織において正常粘膜組織よりも低い浸透性を示している。具体的にはアシッドレッド色素の場合、染色されている深さが、がん組織内部では約40μmであるのに対し、正常粘膜組織内部では約70μmである。
 このように、細胞形態が、がん組織か正常粘膜組織かによって色素の浸透性に違いがある。この性質を利用し、断面画像に表わされた細胞群が染色されている深さを計測することで、その細胞群が正常細胞群か、がん細胞群かを判別することができると考えられる。以下、知見3に基づく実施の形態3について説明する。
 (実施の形態3)
 図35を参照しながら、実施の形態3に係るレーザ内視鏡装置1Bの構成について説明する。図35は、レーザ内視鏡装置1Bの制御構成を示すブロック図である。
 レーザ内視鏡装置1Bは、実施の形態1で示したレーザ内視鏡装置1とほぼ同じ構成を有し、内視鏡2を有する撮像部10、制御部50、画像処理部70、レーザ発振器60、および、光学部品65を有している。
 また、レーザ内視鏡装置1Bは、染色剤を、生体の内部に供給する染色剤供給部40を備えている(図12参照)。本実施の形態では、生体の内部の細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色する二重染色を採用する。
 撮像部10は、染色された細胞群にレーザを当てるとともに、焦点位置(例えば0~1000μm)を変え、深さの異なる複数の撮像領域Pを撮像する。画像処理部70は、撮像部10の撮像によって得られた複数の画像を、焦点位置に対応させて配置することで立体画像を作成する。そしてこの立体画像を、染色された細胞群を含む画像上の所定位置で切断することで、染色された細胞群の断面画像を生成する。
 制御部50は、断面画像に表わされた細胞群が染色されている深さに基づいて、病変の疑いを判断する。例えば、クルクミン色素によって細胞群が染色されている深さが、正常粘膜組織よりも大きいと(例えば1.5倍以上)がん細胞が発生していると判断し、同等であると(例えば1.5倍未満)がん細胞が発生していないと判断する。また、アシッドレッド色素によって細胞群が染色されている深さが、正常粘膜組織よりも小さいと(例えば0.6倍未満)がん細胞が発生していると判断し、同等であると(例えば0.6倍以上)がん細胞が発生していないと判断する。なお、単色または二重染色等によってがん細胞の有無を判断後に、上記の断面画像判断をすることで、より信頼性を高めることができる。
 本実施の形態のレーザ内視鏡装置1Bは、生体の内部に挿入される撮像ヘッド11を有し、撮像ヘッド11を介して生体にレーザを当てることで生体を撮像する撮像部10と、撮像ヘッド11の作動を制御する制御部50と、撮像部10により撮像した画像を処理する画像処理部70とを備えている。撮像ヘッド11は、対物レンズ16と、対物レンズ16の焦点位置を生体の深さ方向に変えることのできる焦点可変部18とを有している。制御部50は、焦点可変部18を作動させることで、焦点位置を変え、撮像部10は、焦点位置の変更に伴って深さの異なる複数の撮像領域Pを撮像する。そして、画像処理部70は、撮像部10の撮像により得られた複数の画像を所定の位置で切断することで、生体の内部の断面画像を生成する。
 レーザ内視鏡装置1Bにて断面画像を生成することで、生体内部の深さ方向においてもがん化の有無を判断することが可能となる。なお、検査と診断を別の機会に行う場合は、画像処理部は現在撮像している画像の表示のみで良く、パノラマ画像や立体画像の生成を他の装置に任せることで内視鏡装置の負担を軽くすることもできる。
 (本発明の基礎となった知見4、5、6)
 次に、本発明の基礎となった知見4、5、6および、知見4、5、6に関する発明の主要構成について説明する。
 まず、知見4として、生体細胞をトレーに載置し、多光子レーザ顕微鏡(オリンパス社製FV1000MPE)を用いて撮像した例について説明する。生体細胞としては、人体内部からつまみ出した生体組織を用いた。
 図36A、図36Bおよび図36Cは、内壁面(粘膜表面)113から深さ50μmの位置における細胞形態を示す画像である。
 細胞群を染色するための染色剤としては、クルクミンを含む染色剤およびアシッドレッド(赤色106号)を含む染色剤の両方の染色剤を用いた。染色時間は5分間とした。また、撮像するにあたり、生体細胞を体温とほぼ同じ温度(37℃)にして撮像した。
 図36A~図36Cは、同じ細胞群を同時に撮像し、フィルタをかけて異なる色(波長)を抽出した画像である。図36Aは、クルクミン色素によって染色された色領域を抽出した画像である。図36Bは、アシッドレッド色素で染色された色領域を抽出した画像である。図36Cは、クルクミン色素およびアシッドレッド色素の両方の色素によって染色された色領域を抽出した画像である。図36A~図36Cは白黒であるが本来カラー画像であり、染色剤による染色傾向の違いにより、クルクミン色素で染色した領域は緑の蛍光色に、アシッドレッド色素で染色された領域は、薄い赤色からオレンジ色に近い蛍光色で表わされ、より鮮明に色の違いが表わされている。
 図36A~図36Cにおいて、矢印Iで示す領域は、腺細胞131の核135が基底膜137に沿って一列に並んだ状態にあり、正常細胞となっている領域である。それに対し、矢印IIで示す領域は、腺130の中央(ルーメン)と基底膜137との間に2つの核135が存在する。矢印IIで示す領域は、悪性の腫瘍ではないが、これからがん化が始まろうとする領域である。
 図37は、クルクミン色素で染色した、胃のがん細胞群を示す図である。図37に示すように、がん細胞群では、腺130や腺細胞131の核135を識別できない形態となっている。
 このように、多光子レーザ顕微鏡を用いて染色された細胞群を撮像することで、内壁面(粘膜表面)113から深さ10μm以上1000μm以下における腺130、基底膜137、腺細胞131および核135の形態を明確に把握することができる。そして、腺細胞131における核135の並び方、また、基底膜137と核135との距離、核135の形状、大きさなどを把握することで、がん化が進んでいるか否かの病理診断を正確に行うことができる。
 一方、多光子レーザ顕微鏡は一般的に高価であり、患者にとってはもっと手ごろに病理診断ができる方法が望まれる。そこで、発明者らは、共焦点型のレーザ顕微鏡にて、これらの細胞形態を把握することを試みた。なお、粘膜表面へ生体色素の塗布による生体染色では、共焦点レーザ顕微鏡を用いて、内壁面(粘膜表面)そのものの組織を撮像した例は報告されているが、内壁面113から深さ20μm以上の深さ位置における細胞群を撮像可能とした例は、過去に見つかっていない。
 次に、知見5として、共焦点レーザ顕微鏡(オリンパス社製FV1000)を用いて生体の内部の細胞形態を撮像した例について説明する。生体としては、マウスを用いた。
 細胞群を染色するための染色剤としては、クルクミンを含む染色剤を用いた。染色時間は、従来よりも長い時間である、5分間とした。なお、染色時間は、3分以上20分以内であることが望ましい。染色時間が3分よりも短ければ、染色剤が細胞組織内に浸透しないからである。また、染色時間が20分を超えると全ての細胞が染色し、がん細胞群と正常細胞群とを見分けにくくなるからである。
 図38は、共焦点レーザ顕微鏡を用いて、生体内部の細胞群を内壁面(粘膜表面)113に垂直な方向から見て撮像した場合の画像である。撮像領域Pの内壁面(粘膜表面)113からの深さは、矢印IIIに示す領域で約5μm、矢印IVに示す領域で約10μmである。矢印IIIで示す領域は、上皮細胞121の細胞質126がクルクミン色素で染められている(実際のカラー画像では緑色)。また、矢印IVで示す領域は、細胞質126がクルクミン色素で染められ、上皮細胞121の核125が黒色で表わされている。このように、核125の形状が、他の領域の核125とほぼ同じ大きさで、異形になっていないことから、矢印IVで示す領域は正常細胞となっていることがわかる。
 図39は、共焦点レーザ顕微鏡を用いて、生体内部の細胞群を内壁面(粘膜表面)113に対して右斜め上側から撮像した場合の画像である。撮像領域Pの深さは、矢印Vに示す領域で約5μm、矢印VIに示す領域で約10μm、矢印VIIに示す領域で約50μmである。矢印Vに示す領域では、上皮細胞121の細胞質126がクルクミン色素で染められている(実際のカラー画像では緑色)。矢印VIに示す領域では、細胞質126がクルクミン色素で染められ、上皮細胞121の核125が黒色で表わされている。核125の形状が、他の領域の核125とほぼ同じ大きさで、異形になっていないことから、矢印VIで示す領域は正常細胞となっていることがわかる。なお、矢印VIIに示す領域では、腺細胞131がクルクミン色素で染められ、腺細胞131を視認することができる。
 図40は、共焦点レーザ顕微鏡を用いて、生体内部の細胞群を内壁面(粘膜表面)113に対して左斜め上側から撮像した場合の画像である。撮像領域Pの深さは、矢印VIIIに示す領域で約5μm、矢印IXに示す領域で約30μmである。矢印IXに示す領域では、腺細胞131の細胞質136がクルクミン色素で染められ(実際のカラー画像では緑色)、腺130の外周および基底膜137の位置を視認することができる。また、腺細胞131の核135は黒色で表わされている。複数の核135は、基底膜137の外周に対してほぼ一定の距離を保ちながら、外周に沿って並んでいる。このように、腺130において、核135が規則正しく並んでいることから、矢印IXに示す領域は正常細胞となっていることがわかる。
 図41は、共焦点レーザ顕微鏡を用いて、生体内部の細胞群を内壁面(粘膜表面)113に対して右斜め上側から撮像した場合の画像である。撮像領域Pの深さは、矢印Xに示す領域で約5μm、矢印XIに示す領域で約30μm、矢印XIIに示す領域で約60μmである。矢印XIに示す領域では、腺細胞131の細胞質126がクルクミン色素で染められ(実際のカラー画像では緑色)、腺130の外周および基底膜137の位置を視認することができる。矢印複数の核135は、基底膜137の外周に対してほぼ一定の距離を保ちながら、外周に沿って並んでいる。このように、腺130において、核135が規則正しく並んでいることから、矢印XIに示す領域は正常細胞となっていることがわかる。また、矢印XIIに示す領域では、毛細血管132がクルクミン色素で濃く染められている。
 このように、共焦点レーザ顕微鏡であっても、焦点位置の調整および染色時間を適宜設定することで、核125、135の大きさ、核125、135の並び状態、核135と基底膜137との距離が均一化どうかによって、病変の疑いを判別することができる。
 また、知見6として、共焦点レーザ顕微鏡(オリンパス社製FV1000)を用いて生体の内部の細胞形態を撮像した他の例について説明する。生体としては、マウスを用いた。染色剤による生体細胞の染色時間は5分間とした。
 さらに、細胞群を染色するための染色剤として、溶解方法を至適化したクルクミンを含む染色剤用いた。
 まず、染色できたとしても染色ムラが生じ、均質な生体染色画像を取得しにくい点がある。そこで、水に代わる溶媒を検討したところ、クルクミンは、3級アルコールであるグリセロールや1級アルコールであるエタノールに溶解しやすいことが判明した。特にクルクミンは、100%グリセロールまたは50%グリセロール、50%エタノール混合液には、5%程度溶解するので、これを希釈して生体染色に用いることとした。具体的には、5%溶液をストック液とし、実際の使用直前に、このストック液を生理的食塩水で10~1000倍希釈した液体で生体染色した。この溶解方法の至適化により、以下に示すような高精細な細胞画像を得ることができた。
 図42は、溶解方法を至適化した染色剤にて染色された生体細胞を共焦点レーザ顕微鏡で撮像した画像であり、(a)は正常大腸粘膜、(b)は大腸がんを示す画像である。撮像領域の深さは、粘膜表面から約50μmである。
 図42の(a)の正常大腸粘膜では、矢印XIIIで示す領域のように、核135の形、大きさ、配列がほぼ均一で、核135と基底膜137との距離もほぼ一定となっている。ここで核はごま粒形状の暗部で表されている。また、矢印XIVで示す領域のように、腺130の構造(陰窩)の分布パターンがほぼ均一となっている。ここで陰窩は破線の円の中心付近の暗部で表されている。また、毛細血管132は、陰窩の周囲に規則的な走行パターンを示している。
 一方、図42の(b)の大腸がんでは、矢印XVで示す領域のように、腺細胞の核の形、大きさ、配列が不均一で、腺細胞の核と基底膜との距離も不均一となっている。また、腺の構造(陰窩)は認められず、毛細血管は、陰窩がないので走行の規則性が乏しい。このような核や陰窩の規則性を画像上で分析することで、がんの病理診断精度や診断速度が格段に向上できる。例えば核または陰窩の略中心を画像上から求め、中心同士を線分で結び、その線分の長さを比較することで、規則性の乱れを検出することができる。また線分で結ばれた領域の面積を求めても同様に規則性の乱れを検出することができる。検出された規則性の乱れを、グループ分けしたり分布図を作成したりして、一定の範囲から外れているグループを、がん化が疑わしいものとして、医師の最終診断に役立てることが短時間で準備できるようになる。
 このようにクルクミンを用いた生体染色にて溶解方法を最適化することで、細胞への取り込みや組織への浸透性を増加させ、細胞をムラなく染色し、共焦点レーザ顕微鏡を用いても、細胞構造を明瞭に可視化することができた。
 上記した核や陰窩で一定面積を持つものの画像から中心を求めるには、ビットマップ上で、長径、短径を求めた後、長径と短径を線分で結び、交点を中心として扱うことができる。また線分に近い形状の陰窩は、その線分の中点を中心としてビットマップ上で求めることができる。また核は陰窩の周囲に規則的に並ぶことも利用して、核として扱う画像面積を減らして計算することも可能である。これらの中心を隣り合うもの同士を結んだ線分の長さをビットマップ上で求めることができる。図は白黒であるが、実際の画像は染色の蛍光を利用することで色情報も利用して暗部を求めることができる。さらに図10Aで示した腺は正常細胞ではほぼ円形の画像として扱えるため、腺の中心を結ぶ線分の規則性の乱れを利用して規則性の乱れをデジタル的に求めることができる。この規則性の乱れの計算は、膨大なデータの処理になるが、コンピュータを利用することで短時間に規則性の乱れを検出することができる。
 以下、知見4、5および6に基づく実施の形態について説明する。
 (実施の形態4)
 次に、図43、図44および図45を参照しながら、実施の形態4に係るレーザ内視鏡装置1Cの基本構成について説明する。
 図43は、図45におけるレーザ内視鏡装置1Cの内視鏡2の先端側の端部を示す概略図である。図44は、内視鏡2の全体を示す概略図である。図45は、レーザ内視鏡装置1Cの制御構成を示すブロック図である。
 図45に示すように、レーザ内視鏡装置1Cは、内視鏡2を有する撮像部10、制御部50および画像処理部70を備えている。また、レーザ内視鏡装置1Cは、レーザ発振器60、光学部品65を有している。
 また、レーザ内視鏡装置1Cは、染色剤を、生体の内部に供給する染色剤供給部40を備えている(図12参照)。本実施の形態では、上記知見5または知見6にて示した染色剤を用いる。
 レーザ発振器60Cから発振されたレーザL1は、光学部品65Cであるダイクロイックミラー66Cにより反射され、さらに、内視鏡2内のミラー19Cにより反射されて生体に照射される。レーザL1が照射された生体細胞は蛍光を発生し、その蛍光による光がミラー19Cで反射され、ダイクロイックミラー66Cを透過して光検出器35Cで検出される。光検出器35Cで検出された光は電気信号に変換され、画像処理部70にて画像形成される。蛍光の色は染色剤によって変わるため、光検出器35Cを複数備え、光検出器35Cの前に色を分離する光学フィルタを置いて分離することができる。これらの動作や各部品の機能、役割は図15のものとほぼ同一であるが、共焦点レーザ装置が多光子レーザ装置とは原理的に異なるため、それぞれの構成番号に「C」を付けて区別している。
 レーザ発振器60Cとしては、波長405~980nmの範囲で段階的可変できるレーザを複数種類備え、測定対象の蛍光反応の特性に応じて波長が選ばれる。パルス駆動であっても連続発振駆動であってもよい。パルス駆動の場合は数十キロHz以上、デューティが5%~50%で撮像の掃引周波数との関係で、鮮明な画像が得られる範囲が選択される。本実施の形態におけるレーザL1は、共焦点レーザであり、レーザ発振器60Cは、例えば、波長が405nmで、出力が30mWまで出せるレーザを用いている。このレーザの撮像時のレーザ出力は5~10mWの範囲で出射しているがこれに限定されない。なお、レーザ発振器60Cでは、レーザL1の強度を染色度合い、蛍光の度合いに応じて調整することも可能である。
 光学部品65であるダイクロイックミラー66Cは、レーザL1と同一の波長については反射し、その他の波長の光を透過させる。したがって、レーザ発振器60Cから発振されたレーザL1は、ダイクロイックミラー66Cによってミラー19Cに向かって反射される。一方、生体細胞において発生した蛍光は、ミラー19Cを反射した後、ダイクロイックミラー66Cを通過し、光検出器35Cに到達する。なお、光学部品65Cは、プリズムや4/λ板などで構成することもできる。
 撮像部10は、内視鏡2および光検出器35Cを備えており、生体の内部にレーザL1を当てることで生体の内部の細胞形態を撮像する。
 光検出器35Cは、レーザL1を当てることで発生した蛍光を検出し、その蛍光を蛍光強度に応じた電気信号に変換する。光検出器35Cとしては、例えば、光電子増倍管、CCD半導体イメージセンサなどを用いることができる。共焦点レーザ機能としてピンホールなどを備えている。
 内視鏡2は、図44に示すように、内筒12と、内筒12の一部の外側を囲む外筒13とを備えている。内筒12、および、外筒13の一部は、生体の内部に挿入される。内筒12の長さは、例えば50mmであり、内筒12の外径は、例えば3~10mmである。内筒12には直動アクチュエータが取付けられており、内筒12は、外筒13に対して軸方向Xに25mmほど移動可能となっている。また、内筒12には超音波モータが取りけられており、内筒12は、外筒13に対して360°回転可能となっている。内筒12の軸方向Xの動作、または、回転方向Rの動作は制御部50により制御される。
 内視鏡2の内筒12の先端側の端部には撮像ヘッド11が設けられている。撮像ヘッド11は、図43に示すように、挿入管20の脇を通って、内筒12とともに生体の内部に挿入される。撮像ヘッド11は、内筒12の軸方向Xおよび回転方向Rの動作により、生体の内部を移動するように制御される。
 撮像ヘッド11は、対物レンズ16C、焦点可変部18、スペーサ17およびミラー19Cを有している。
 ミラー19Cは、前述したように、レーザ発振器60Cから出力されたレーザL1を対物レンズ16Cに向けて方向転換し、または、生体細胞により蛍光された光を光検出器35Cに向けて方向転換する部品である。
 対物レンズ16Cは、生体の内壁面113に対向して設けられる。対物レンズ16は、例えば、直径が10mm、倍率が10倍、解像度が5μm、撮像視野が3mm×3mmである。または、対物レンズ16は、直径が12mm、倍率が40倍、解像度が10μm、視野が7.5mm×7.5mmmである。撮像視野は広いほどよい。また、対物レンズ16Cは左記した直径のレンズの一部をカットするか、同様の解像度を得られる対物レンズとして生体内に挿入しやすい3mm~5mmの直径としたものを用いることができる。
 なお、対物レンズ16Cを内壁面113に対して傾けて配置してもよい。対物レンズ16Cを傾けた状態で撮像することで、上皮120および腺130の両方の細胞形態を同時に観察することが可能となる。
 焦点可変部18は、例えば圧電アクチュエータ、または電磁アクチュエータであり、対物レンズ16Cを光軸の方向に移動させることで、対物レンズ16Cの焦点位置を変える。焦点可変部18は、制御部50により動作制御され、焦点を内壁面(粘膜表面)113から深さ0~75μmの範囲で調整できるようになっている。焦点位置を変えることで、消化管112の内壁面113から所定の深さにおける生体の状態を撮像することができる。
 スペーサ17は、例えば環状であり、対物レンズ16Cと内壁面113との間の空間の周囲に設けられる。スペーサ17は、対物レンズ16Cが生体の内壁に触れないようにするため、また、対物レンズ16Cと内壁面113との距離を一定に維持するための部品である。対物レンズ16Cと内壁面(粘膜表面)113との距離は、撮像開始前にスペーサ17を取り替えるか、アクチュエータなどで可変とする機構を付加することにより、例えば、1mm以上10mm以下の範囲の適切な値に設定される。制御部50は、スペーサ17を内壁面113に当接させながら撮像ヘッド11(内筒12)を移動制御し、内壁面113に対する対物レンズ16Cの距離を一定に維持する。
 制御部50は、CPU、ROM、RAMなどにより構成される。制御部50は、内筒12を介して撮像ヘッド11の動作を制御する。具体的には、制御部50は、撮像ヘッド11を、消化管112の内壁の内周を沿うように周方向に移動制御し、また、消化管112の管路方向(消化管の軸)に沿うように移動制御する。また、制御部50は、焦点可変部18の動作を制御することで、対物レンズ16Cの光軸方向の位置を変え、生体の内部に結ばれる焦点位置を制御する。また、制御部50は、レーザ発振器60Cを制御することで、レーザ出力を調整することもできる。
 画像処理部70は、光検出器35Cにより変換された電気信号(蛍光強度)と、制御部50から送られる撮像部10の座標位置とを対応づけて記憶し、これらのデータを処理してデジタル画像を生成する。生成されたデジタル画像は、例えば、モニタに表示されたり、プリントアウトされたり、記憶装置に記録されたりする。撮像部10の座標位置の例としては、患者の基準となる箇所(例えば喉や肛門など)からの距離と、撮像ヘッド11の回転角度などを用いることができる。
 本実施の形態に係る共焦点型のレーザ内視鏡装置1Cは、生体の内部に挿入される撮像ヘッド11を有し、撮像ヘッド11を介して生体にレーザを当てることで生体を撮像する撮像部10と、撮像ヘッド11の作動を制御する制御部50とを備えている。撮像ヘッドは10、対物レンズ16Cと、対物レンズ16Cの焦点位置を生体の深さ方向に変えることのできる焦点可変部18とを有し、制御部50は、焦点位置が、生体の内部の粘膜表面から10μm以上100μm以下(望ましくは10μm以上70μm以下)の深さのうち、所定深さとなるように焦点可変部18を作動し、撮像部10は、生体の内部の細胞群を選択的に有彩色に染色する染色剤に少なくとも2分間、好ましくは5分以上接触して染色された細胞群にレーザを当てるとともに、所定深さにおける染色された細胞群を撮像する。ここで対物レンズ16Cと粘膜表面の位置を一定に保ち焦点を制御する方法について説明する。図45の171は第2のレーザ発信器であり、例えば波長680nm、出力5mW程度の参照光として連続平行光を発振している。ビームスプリッターまたハーフミラー等で、レーザ発振器60Cと同じ光路に挿入される。図45では理解しやすくするために少し位置をずらした破線でその光路L2を示している。前記参照光L2は検査用のレーザ光L1とほぼ同じ経路をたどるが、ビームスプリッター173で光路を変え、焦点制御光学部174に入る。ここでは円柱レンズとビームスプリッター等で、対物レンズ16Cの焦点位置が変動した場合、その変動量が検出できるような光学部品構成になっている。175は光検出器であり通常2または4個のブロックに分かれた光検出器で検出された光は、差動アンプなどで対物レンズ16Cと粘膜表面相対位置変動に比例した電気信号に変換される。このような対物レンズの位置制御は光ディスク装置等で用いられており、内視鏡装置への応用は十分に可能である。ここで、内視鏡装置として注意すべきことは、撮像用のレーザ光L1と参照光L2が、分離しやすいようになるべく波長を違えておくことが好ましい。波長を100nm以上離すことで分離特性の良い、撮像系、焦点制御系の光特性を得ることができる。また上記のような焦点制御系を有する場合は、その制御系内にバイアス電圧を加えることで、焦点位置を微調整することができる。このバイアス電圧を段階的に変えることにより自動的にレーザ光L1の焦点位置を深さ方向に制御する事ができる。
 また光学部品である11C、35C、65C、66C、172、173、174は、L1、L2のレーザ波長によって透過率や反射率が大きく左右されるため、レーザ波長に合わせたモジュール化を行い複数種類準備することで、使用する染色剤や被検査部位によってレーザ波長を変えた場合でも、容易に対応する事ができる。
 このように共焦点型のレーザ内視鏡装置1Cであっても、染色時間を十分取ることによって、生体の内壁面(粘膜表面)113から10μm以上70μm以下の深さにおける画像を取得することが可能となっている。これにより、容易に、病変を見つけることが可能であり、また、波長やレーザ強度を選ぶことで患者に対してレーザの負荷を与えずに画像を取得することができる。
 (その他の例)
 以上、本発明の実施の形態に係るレーザ内視鏡装置1~1Cについて説明したが、本発明は、上記実施の形態およびその変形例には限定されない。例えば、上記実施の形態およびその変形例に次のような変形を施した態様も、本発明に含まれ得る。
 上記した実施の形態ではクルクミン等の染色剤により染色した場合について説明した。一方、粘膜表面から深さ10μm~1000μm内部の細胞の形態を可視化すること、および画像の消化管の全周性パノラマ画像化による、がんを見逃し無く検出することは、無染色の消化管粘膜からも可能である。ここで、細胞の形態とは個々の細胞の細胞質や、核の形や腺の陰窩の配列パターン、毛細血管走行パターン等が上げられる。上記した検出を可能としているのは、細胞内の化学物質FAD(flavin adenine dinucleotide)、NAD(nicotinamide adenine dinucleotide)などのレーザ励起により、一定量の蛍光を発するからである。これは共焦点レーザ顕微鏡でも、多光子レーザ顕微鏡で観察した場合でも同様である。ただし課題としては、励起レーザ光を大量に照射する必要があることである。クルクミンなどを用いた生体染色後の画像化に必要な光の量の20倍程度以上であり、生体細胞へのダメージが大きくなる恐れがあるが、検出系の感度を上げることで改善されるものである。
 他の実施の形態として、図46に共焦点レーザ顕微鏡で観察した場合を示す。
 図46は無染色のマウス大腸粘膜内面において、共焦点レーザ顕微鏡を用いて撮影したものである。まず任意の場所の表面の画像(a)と、その場所の表面から10μm内部の画像(b)を左列上下で示している。また上記の場所から約100μmずれた場所の表面の画像(c)と、その場所の表面から10μm内部の画像(d)を示す。さらに、陰窩の配列パターンを目印として、10μm内部の画像(b)と画像(d)とを合成してつなぎ合わせた画像(d)を示す。ここでスケールバーは、100μmである。
 次に図47では多光子レーザ顕微鏡で観察した場合を示す。
 図47は、無染色のマウス大腸粘膜内面において、多光子レーザ顕微鏡を用いて撮影した画像である。まず左列に任意場所の表面の画像(a)と、その場所の表面から25μm内部の画像(b)を示す。また、右列に上記の場所から約400μmずれた場所の表面の画像(c)とその場所の表面から25μm内部の画像(d)を示す。さらに、陰窩の配列パターンを目印として、25μm内部の画像(b)と画像(d)をつなぎ合わせた画像(e)を示す。このことを連続して行うことでパノラマ化が実現できる。画像(b)の矢印e1と画像(d)の星印e2は、合成した画像(e)の矢印e1と星印e2に対応している。同図におけるスケールバーは、100μmである。また、画像(e)をズーム倍率2倍で撮影した画像(f)では、上皮細胞や腺細胞の細胞質が明るく見える。また、矢印で示す核135の部分は暗く見える。画像(f)のスケールバーは100μmである。
 ここで示したように、染色しない場合においても、核や陰窩が画像的に把握できれば、細胞をクルクミンなどで染色した実施の形態で示したがんの検出方法を利用することができものである。それは細胞の形状および明るさの比較であってもよく、画像上の核や陰窩を利用した線分や線分で囲まれる面積の比較であってもよい。
 例えば、本実施の形態では、二重染色を行う場合、染色剤を1種類ずつ用いて順に染色したが、それに限られず、複数の色素を予め混合して両方を含む混合染色剤を作り、この混合染色剤を用いて同時に染色してもよい。
 また、本実施の形態では、2色の染色剤を用いる二重染色で生体を染色して撮像したが、それに限られず、2色以上の染色剤を用いる多重染色で生体を染色して撮像することも可能である。
 例えば、生体の細胞群に対し3色以上の多重染色を行う場合は、次の方法が挙げられる。まず、色素A1を含む染色剤Aを用いて染色したのち染色剤Aを回収する。その後、色素B1を含む染色剤Bを用いて染色した後、染色剤Bを回収する。その後、色素C1を含む染色剤C1を用いて染色した後、染色剤C1を回収する。これにより多重染色を行うことができる。この場合、1色ずつが細胞群に確実に触れることになるので、各細胞の染色性を向上させることができる。
 また、多重染色を行うその他の方法としては、複数の色素A1、B1、C1を予め混合した混合液ABCを作製し、この混合液ABCを用いて染色する方法が挙げられる。これによれば、短時間での染色が可能になる。
 さらに、レーザ内視鏡装置を用いて検査する前に、処置される経口の洗浄液に粘膜洗浄剤や染色剤などを含ませることで簡易的に染色することも、本発明の範囲である。
 例えば、本実施の形態では、レーザ内視鏡装置1のレーザとして多光子レーザを用いたが、これに限られず、共焦点レーザ1Cを用いることも可能である。
 また、本実施の形態における撮像ヘッド11のスペーサ17は、環状に限られず、対物レンズ16と内壁面113との間の空間を囲うように設けられた複数の部材であってもよいし、対物レンズ16と内壁面113との間の空間を挟む一対の部材であってもよい。
 また、生体内部を撮像する際に生体が動いてしまう場合は、制御部50を用いて焦点可変部18を前記した参照レーザ光などを用いてフォーカス制御することで、ピント合わせしながら撮像してもよい。また、制御部50にて対物レンズを正弦波状または階段波状に一定周期で駆動するウォブル信号と画像を対応づけて処理することで、撮像位置を合わせながら撮像してもよい。
 また、本実施の形態では、消化管112の内壁面(粘膜表面)113からの深さ位置を特定しながら撮像を行い、深さ情報と画像情報を対応させて記憶し、同じ深さ位置にて撮像した画像を合成することで合成画像を生成しているが、それに限られない。例えば、深さ位置を認識せずに、深さ位置および撮像領域Pが異なる複数の画像を取得し、これら複数の画像から類似画像や繋がりのある画像を抽出し合成することで合成画像を生成してもよい。
 また、本実施の形態では、生体内部の細胞を染色剤により染色させた後、レーザ内視鏡装置1を用いて撮像したが、それに限られず、染色剤による染色を行わなくても多光子レーザによるレーザ内視鏡装置を用いれば、生体内部の細胞形態の撮像を行うことが可能である。例えば、多光子レーザを照射すると、細胞内に普遍的に存在する化合物(例えばNAD:nicotinamide adenine dinucleotide)などにより、多光子レーザの半分の波長の光が細胞内で発生し、発生した光がNADなどの化合物に当たって自家蛍光するので、外来性の染色を行わなくても、生体内部の細胞形態の画像を取得することができる。
 また、消化管の管路方向(軸方向)は直線状に限られず、曲線状であっても本発明を適用することができる。
 また、本実施の形態におけるレーザ内視鏡装置1~1Cは、消化管以外の管腔臓器(気管支、膀胱・尿管など)にも適応可能であり、さらに、表面から深さ1ミリ以内という制約はあるが、腎臓、肝臓、脳、網膜などの細胞構造も可視化できる。
 上記した実施の形態では、レーザ顕微鏡、レーザ内視鏡と記載しているが、表皮などの撮像、診断を行う場合は顕微鏡機能、消化管などの内臓の撮像,診断を行う場合は顕微鏡機能を有する内視鏡として扱われるものである。
 本発明に係るレーザ内視鏡装置は、消化管、呼吸器、腎泌尿器、子宮卵巣生殖器および脳脊髄神経などにおいて発生した病変を、広範囲に漏れなく撮像し、また、治療する場合に使用される。
1、1A、1B、1C レーザ内視鏡装置
2   内視鏡
10  撮像部
11  撮像ヘッド
12  内筒
13  外筒
15  アーム
16、16C 対物レンズ
17  スペーサ
17a ホイール
18  焦点可変部
19、19C ミラー
20  挿入管
21  第1バルーン
22  第2バルーン
23  押付け部材
24  支えローラ
25  拡張機構
26  摺動部材
27、28 関節機構
29  ジャイロセンサ
30  圧力センサ
31  伸縮スペーサ
35、35C 光検出器
40  染色剤供給部
42  供給口
42a 吐出口
43  回収口
45  染色剤
50  制御部
51  第1の焦点可変モード
52  第2の焦点可変モード
60、60C レーザ発振器
65、65C 光学部品
66、66C ダイクロイックミラー
70  画像処理部
81  角度検出器
82  リニアスケール
102 多光子レーザ顕微鏡
112 消化管
113 消化管の内壁面(粘膜表面)
113a 凹凸部位
114 消化管の軸
120 上皮
121 上皮細胞
125 上皮細胞の核
126 上皮細胞の細胞質
130 腺
131 腺細胞
132 毛細血管
133 結合組織
135 腺細胞の核
136 腺細胞の細胞質
137 基底膜
138 陰窩(いんか)
152 がん細胞集団
160 粘膜筋板
A、B 染色剤
P、P1、P2、P3 撮像領域
Pa、Pb 撮像領域の重なった領域
L   レーザ
R   周方向(回転方向)
S   閉じた空間
X   軸方向

Claims (27)

  1.  生体の内部に挿入される撮像ヘッドを有し、前記撮像ヘッドを介して前記生体にレーザを当てることで前記生体を撮像する撮像部と、
     前記撮像ヘッドを前記生体の内部にて移動するように制御する制御部と、
     前記撮像部により撮像した画像を処理する画像処理部と
     を備え、
     前記撮像部は、前記撮像ヘッドの移動に伴って撮像する複数の撮像領域を、隣り合う撮像領域の一部が重なるように撮像し、
     前記画像処理部は、前記複数の撮像領域の重なった領域を互いに重ね合わせて合成画像を生成する
     レーザ内視鏡装置。
  2.  前記撮像部は、前記生体の内部の粘膜表面から10μm以上1000μm以下の深さのうち、所定深さにおける前記撮像領域を撮像し、
     前記画像処理部は、前記所定深さにおける前記合成画像を生成する
     請求項1に記載のレーザ内視鏡装置。
  3.  前記制御部は、前記撮像ヘッドが前記生体に対して一定距離を保った状態で走査するように、前記撮像ヘッドを移動制御する
     請求項1または2に記載のレーザ内視鏡装置。
  4.  前記撮像ヘッドは、前記生体に対向して配置される対物レンズと、前記対物レンズと前記生体との間の空間の周囲に設けられるスペーサとを有し、
     前記制御部は、前記スペーサが前記生体に当接するように前記撮像ヘッドを移動制御することで、前記一定距離を維持する
     請求項3に記載のレーザ内視鏡装置。
  5.  前記生体は、消化管であり、
     前記制御部は、前記撮像ヘッドを前記消化管の内周に沿って移動するように制御し、
     前記撮像部は、前記撮像ヘッドの移動に伴って撮像する複数の撮像領域を、周方向に隣り合う撮像領域の一部が重なるように撮像し、
     前記画像処理部は、前記複数の撮像領域の重なった領域を互いに重ね合わせてパノラマ画像を生成する
     請求項1~4のいずれか1項に記載のレーザ内視鏡装置。
  6.  前記生体は、消化管であり、
     前記制御部は、前記撮像ヘッドを前記消化管の軸を中心に回転するように制御し、
     前記撮像部は、前記撮像ヘッドの回転に伴って撮像する複数の撮像領域を、回転方向に隣り合う撮像領域の一部が重なるように撮像し、
     前記画像処理部は、前記複数の撮像領域の重なった領域を互いに重ね合わせてパノラマ画像を生成する
     請求項1~4のいずれか1項に記載のレーザ内視鏡装置。
  7.  前記制御部は、前記撮像ヘッドを前記消化管の軸を中心に公転するように制御する
     請求項6に記載のレーザ内視鏡装置。
  8.  前記制御部は、前記撮像ヘッドを前記消化管の軸を中心に螺旋方向に移動するように制御する
     請求項7に記載のレーザ内視鏡装置。
  9.  前記制御部は、前記撮像ヘッドを前記消化管の管路方向に沿って移動するように制御し、
     前記撮像部は、前記撮像ヘッドの移動に伴って撮像する複数の撮像領域を、前記管路方向に隣り合う撮像領域の一部が重なるように撮像し、
     前記画像処理部は、前記複数の撮像領域の重なった領域を互いに重ね合わせて前記パノラマ画像を生成する
     請求項5~8のいずれか1項に記載のレーザ内視鏡装置。
  10.  前記撮像ヘッドは、対物レンズと、前記対物レンズの焦点位置を前記生体の細胞表面より深さ方向に変えることのできる焦点可変部とを有し、
     前記制御部は、前記焦点可変部を作動させることで、前記焦点位置を変え、
     前記撮像部は、前記焦点位置の変更に伴って深さの異なる複数の撮像領域を撮像し、
     前記画像処理部は、前記撮像部の撮像により得られた複数の画像を前記焦点位置に対応させて配置することで、前記生体の内部の立体画像を得る
     請求項1~9のいずれか1項に記載のレーザ内視鏡装置。
  11.  前記制御部は、前記焦点位置を第1のピッチで変更させる第1の焦点可変モードと、前記第1のピッチよりも小さいピッチである第2のピッチで前記焦点位置を変更させる第2の焦点可変モードとを有し、前記第1の焦点可変モードにおいて前記撮像を行った後、前記撮像により得た画像の中に病変の疑いがある部分が存在する場合に、前記病変の疑いがある部分の画像を撮像した際の焦点位置の近辺において、前記第2の焦点可変モードで前記撮像を行う
     請求項10に記載のレーザ内視鏡装置。
  12.  前記制御部は、病変がない状態にある正常細胞の画像を予め記憶し、前記第1の焦点可変モードで得た画像と前記正常細胞の画像とを、形状および明るさのうちの少なくとも一方について比較し、前記病変の疑いを判断する
     請求項11に記載のレーザ内視鏡装置。
  13.  前記制御部は、前記撮像部により得られた画像の中に病変した細胞が存在する場合に、撮像時よりも前記レーザの出力を上げ、前記病変した細胞に前記出力を上げたレーザを当て、前記病変した細胞を除去する
     請求項1~12のいずれか1項に記載のレーザ内視鏡装置。
  14.  前記レーザは、多光子レーザである
     請求項1~13のいずれか1項に記載のレーザ内視鏡装置。
  15.  さらに、
     前記生体の内部の細胞群を選択的に有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、
     前記撮像部は、前記染色剤供給部により染色された前記細胞群を撮像する
     請求項1~14のいずれか1項に記載のレーザ内視鏡装置。
  16.  さらに、
     前記生体の内部の細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、
     前記撮像部は、前記染色剤供給部により2色以上に染色された前記細胞群を撮像する
     請求項1~14のいずれか1項に記載のレーザ内視鏡装置。
  17.  生体の内部の細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部と、
     前記染色剤供給部により染色された前記細胞群にレーザを当てることで前記細胞群を撮像する撮像部と
     を備えるレーザ内視鏡装置。
  18.  前記染色剤は、クルクミン(Curcumin)類およびアシッドレッド(AcidRed)の両方を含む染色剤、または、クルクミン(Curcumin)類を含む染色剤とアシッドレッド(AcidRed)を含む染色剤とによる2つの染色剤である
     請求項17に記載のレーザ内視鏡装置。
  19.  前記染色剤は、クルクミン(Curcumin)類およびファストグリーンFCF(FastGreenFCF)の両方を含む染色剤、または、クルクミン(Curcumin)類を含む染色剤とファストグリーンFCF(FastGreenFCF)を含む染色剤とによる2つの染色剤である
     請求項17に記載のレーザ内視鏡装置。
  20.  生体の内部の細胞群のうち、がん細胞の周辺に位置する前記がん細胞以外のがん細胞周辺細胞群を特異的に有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部と、
     前記染色剤供給部により染色された前記生体内部の細胞群にレーザを当てることで前記がん細胞周辺細胞群を視覚的に判別できる画像を撮像する撮像部と
     を備えるレーザ内視鏡装置。
  21.  前記染色剤は、ローズベンガル(RoseBengal)を含む染色剤である
     請求項20に記載のレーザ内視鏡装置。
  22.  生体の内部に挿入される撮像ヘッドを有し、前記撮像ヘッドを介して前記生体にレーザを当てることで前記生体を撮像する撮像部と、
     前記撮像ヘッドの作動を制御する制御部と
     を備え、
     前記撮像ヘッドは、対物レンズと、前記対物レンズの焦点位置を前記生体の細胞表面より深さ方向に変えることのできる焦点可変部とを有し、
     前記制御部は、前記焦点可変部を作動させることで、前記焦点位置を変え、
     前記撮像部は、前記焦点位置の変更に伴って生体の内部の粘膜表面から深さの異なる複数の撮像領域を撮像する
     レーザ内視鏡装置。
  23.  前記撮像部は、前記生体の内部の粘膜表面から0μm以上1000μm以下の深さのうち、所定範囲の深さにおける前記撮像領域を撮像し、撮像した画像と前記深さ情報を対応させて記憶し、
     前記撮像部により撮像した画像を処理する画像処理部を備え、
     前記画像処理部は、前記撮像部の撮像により得られた複数の画像を前記焦点位置に対応させて配置することで、前記生体の内部の立体画像を生成する
     請求項22に記載のレーザ内視鏡装置。
  24.  さらに、
     前記生体の内部の細胞群を選択的に有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、
     前記撮像部は、前記染色剤供給部により染色された前記細胞群を撮像する
     請求項23に記載のレーザ内視鏡装置。
  25.  さらに、
     前記生体の内部の細胞群を細胞の種類によって異なる選択的な2色以上の有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、
     前記撮像部は、前記染色剤供給部により2色以上に染色された前記細胞群を撮像する
     請求項23に記載のレーザ内視鏡装置。
  26.  さらに、
     生体の内部の細胞群のうち、がん細胞の周辺に位置する前記がん細胞以外のがん細胞周辺細胞群を特異的に有彩色に染色するための染色剤を、前記生体の内部に供給する染色剤供給部を備え、
     前記撮像部は、前記染色剤供給部により染色された前記がん細胞周辺細胞群を撮像する
     請求項23に記載のレーザ内視鏡装置。
  27.  前記画像処理部は、前記複数の画像を、前記染色された前記細胞群を含む位置で切断することで、前記染色された前記細胞群の断面画像を生成し、
     前記制御部は、前記断面画像に表わされた前記細胞群が染色されている深さに基づいて、病変の疑いを判断する
     請求項24~26のいずれか1項に記載のレーザ内視鏡装置。
PCT/JP2017/006962 2016-02-23 2017-02-23 レーザ内視鏡装置 WO2017146184A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US15/999,626 US11140318B2 (en) 2016-02-23 2017-02-23 Laser endoscope device
EP17756619.7A EP3420885B1 (en) 2016-02-23 2017-02-23 Laser endoscope device
JP2018501778A JP6738100B2 (ja) 2016-02-23 2017-02-23 レーザ内視鏡装置
CN201780011640.4A CN108697315B (zh) 2016-02-23 2017-02-23 激光内窥镜装置
US16/301,939 US11555819B2 (en) 2016-05-18 2017-05-18 Cancer test device, cancer test method, and staining agent for use in cancer test
PCT/JP2017/018755 WO2017200066A1 (ja) 2016-05-18 2017-05-18 がん検査装置、がん検査方法、および、がん検査用の染色剤
JP2018518367A JPWO2017200066A1 (ja) 2016-05-18 2017-05-18 がん検査装置、がん検査方法、および、がん検査用の染色剤
EP17799490.2A EP3459424A4 (en) 2016-05-18 2017-05-18 CANCER TEST DEVICE, CANCER TEST METHOD AND COLORING AGENT FOR USE IN CANCER TESTING
CN201780036233.9A CN109414151B (zh) 2016-05-18 2017-05-18 癌症检测装置、癌症检测方法和用于癌症检测的染色剂
JP2020206243A JP7060891B2 (ja) 2016-05-18 2020-12-11 がん検査装置、がん検査方法、および、がん検査用の染色剤
US17/964,758 US11852632B2 (en) 2016-05-18 2022-10-12 Cancer test device, cancer test method, and staining agent for use in cancer test

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-032520 2016-02-23
JP2016032520 2016-02-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/018755 Continuation WO2017200066A1 (ja) 2016-05-18 2017-05-18 がん検査装置、がん検査方法、および、がん検査用の染色剤
US16/301,939 Continuation US11555819B2 (en) 2016-05-18 2017-05-18 Cancer test device, cancer test method, and staining agent for use in cancer test

Publications (1)

Publication Number Publication Date
WO2017146184A1 true WO2017146184A1 (ja) 2017-08-31

Family

ID=59685570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006962 WO2017146184A1 (ja) 2016-02-23 2017-02-23 レーザ内視鏡装置

Country Status (5)

Country Link
US (1) US11140318B2 (ja)
EP (1) EP3420885B1 (ja)
JP (1) JP6738100B2 (ja)
CN (1) CN108697315B (ja)
WO (1) WO2017146184A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241633A1 (ja) * 2019-05-27 2020-12-03 国立大学法人三重大学 病変の検出方法
WO2021038729A1 (ja) * 2019-08-27 2021-03-04 株式会社島津製作所 治療支援装置および治療支援方法
US20220292671A1 (en) * 2019-07-10 2022-09-15 Cybernet Systems Co., Ltd. Image analyzing device and image analyzing method
KR102516406B1 (ko) * 2022-10-14 2023-04-03 (주) 브이픽스메디칼 내시현미경에 의해 획득되는 이미지를 스티칭하기 위해 위치 정보를 캘리브레이션하는 방법 및 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019004863T5 (de) * 2018-09-27 2021-06-10 Hoya Corporation Elektronisches endoskopsystem und datenverarbeitungsvorrichtung
CN109744983B (zh) * 2019-01-31 2024-05-10 北京超维景生物科技有限公司 变焦式腔体内窥镜探测装置及激光扫描腔体内窥镜
CN110710951B (zh) * 2019-11-01 2020-11-10 东南大学苏州医疗器械研究院 内窥镜插管辅助插入系统及方法、内窥镜系统
US11943539B2 (en) * 2019-12-30 2024-03-26 Matterport, Inc. Systems and methods for capturing and generating panoramic three-dimensional models and images

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187386A (ja) * 2005-01-04 2006-07-20 Olympus Corp 内視鏡装置、動体検出方法、及びそのプログラム
JP2009545737A (ja) * 2006-08-04 2009-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 蛍光ベースのDNAイメージサイメトリーを用いたinvivoでの癌の検出及び/又は診断方法
WO2014157645A1 (ja) * 2013-03-29 2014-10-02 ソニー株式会社 レーザ走査型観察装置及びレーザ走査方法
WO2014157703A1 (ja) * 2013-03-29 2014-10-02 国立大学法人三重大学 生体染色剤

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135694A1 (en) * 1992-09-11 2002-09-26 Williams Ronald R. Dental video camera
US20030107652A1 (en) * 1992-09-11 2003-06-12 Williams Ronald R. Dental video camera
GB0130862D0 (en) * 2001-12-22 2002-02-06 P W Allen & Company Ltd Method of examining potential cellular abnormalities
US7084899B2 (en) * 2002-01-28 2006-08-01 Williams Ronald R Cable with built in-frame grabber for a dental video camera
JP2010042182A (ja) * 2008-08-18 2010-02-25 Fujifilm Corp レーザ治療装置
US20120101372A1 (en) * 2010-10-25 2012-04-26 Fujifilm Corporation Diagnosis support apparatus, diagnosis support method, lesioned part detection apparatus, and lesioned part detection method
US9205234B2 (en) * 2012-03-27 2015-12-08 Terry D. Hardin Device for a biological treatment
US9107578B2 (en) * 2013-03-31 2015-08-18 Gyrus Acmi, Inc. Panoramic organ imaging
CN103393392B (zh) * 2013-06-19 2015-08-26 西安电子科技大学 深度与强度可调式的探头激光共聚焦显微内窥镜系统
US10537226B2 (en) * 2013-12-23 2020-01-21 California Institute Of Technology Rotational scanning endoscope
US10080484B2 (en) * 2014-01-31 2018-09-25 University Of Washington Multispectral wide-field endoscopic imaging of fluorescence
US10390718B2 (en) * 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
CN105013073B (zh) * 2015-08-10 2018-09-25 重庆天如生物科技有限公司 黏膜染色系统
EP3459424A4 (en) * 2016-05-18 2020-01-22 Mie University CANCER TEST DEVICE, CANCER TEST METHOD AND COLORING AGENT FOR USE IN CANCER TESTING
WO2018217951A1 (en) * 2017-05-24 2018-11-29 Camplex, Inc. Surgical visualization systems and displays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187386A (ja) * 2005-01-04 2006-07-20 Olympus Corp 内視鏡装置、動体検出方法、及びそのプログラム
JP2009545737A (ja) * 2006-08-04 2009-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 蛍光ベースのDNAイメージサイメトリーを用いたinvivoでの癌の検出及び/又は診断方法
WO2014157645A1 (ja) * 2013-03-29 2014-10-02 ソニー株式会社 レーザ走査型観察装置及びレーザ走査方法
WO2014157703A1 (ja) * 2013-03-29 2014-10-02 国立大学法人三重大学 生体染色剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3420885A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241633A1 (ja) * 2019-05-27 2020-12-03 国立大学法人三重大学 病変の検出方法
JP7553114B2 (ja) 2019-05-27 2024-09-18 国立大学法人三重大学 病変の検出方法
US20220292671A1 (en) * 2019-07-10 2022-09-15 Cybernet Systems Co., Ltd. Image analyzing device and image analyzing method
WO2021038729A1 (ja) * 2019-08-27 2021-03-04 株式会社島津製作所 治療支援装置および治療支援方法
JPWO2021038729A1 (ja) * 2019-08-27 2021-03-04
KR102516406B1 (ko) * 2022-10-14 2023-04-03 (주) 브이픽스메디칼 내시현미경에 의해 획득되는 이미지를 스티칭하기 위해 위치 정보를 캘리브레이션하는 방법 및 장치

Also Published As

Publication number Publication date
JPWO2017146184A1 (ja) 2018-12-13
EP3420885A1 (en) 2019-01-02
US11140318B2 (en) 2021-10-05
US20210227133A1 (en) 2021-07-22
EP3420885B1 (en) 2022-12-21
EP3420885A4 (en) 2020-02-19
CN108697315A (zh) 2018-10-23
CN108697315B (zh) 2021-09-03
JP6738100B2 (ja) 2020-08-12

Similar Documents

Publication Publication Date Title
JP6738100B2 (ja) レーザ内視鏡装置
JP7060891B2 (ja) がん検査装置、がん検査方法、および、がん検査用の染色剤
Suter et al. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study
US10080484B2 (en) Multispectral wide-field endoscopic imaging of fluorescence
Wang et al. Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology
US20100210937A1 (en) Endoscopic biopsy apparatus, system and method
EP1670348A1 (en) Automated endoscopy device, diagnostic method and uses
JP2008521453A (ja) エンドスコープ
JP2006340796A (ja) センチネルリンパ節検出システム
US20220108461A1 (en) Multi-Modal System for Visualization and Analysis of Surgical Specimens
CN113891673A (zh) 病变的检测方法
Kwon et al. Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms
JP5242078B2 (ja) 蛍光内視鏡装置
CN109744983B (zh) 变焦式腔体内窥镜探测装置及激光扫描腔体内窥镜
JP2003126017A (ja) 手術用顕微鏡システム
Seibel et al. Image-guided intervention in the human bile duct using scanning fiber endoscope system
EP3870027A1 (en) Process for visual determination of tissue biology
Elson Interventional imaging: Biophotonics
Bronchoscopy Diagnostic of Lung Cancer
DAUL et al. Multimodal and Multispectral Endoscopic Imaging with Extended Field of View
Tanaka et al. Evaluation of microvessels in colorectal tumors by narrow band imaging (NBI) magnification colonoscopy
Coda An investigation of the diagnostic potential of autofluorescence lifetime spectroscopy and imaging for label-free contrast of disease
Basil et al. Confocal Endomicroscopy
Sikka et al. High Contrast Imaging Improves the Visualization and Detection of Gastrointestinal Vascular Ectasias
Kano et al. Microendoscopes for imaging of the pancreas

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018501778

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756619

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756619

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756619

Country of ref document: EP

Kind code of ref document: A1