WO2017145518A1 - Device and method for inspecting a processing nozzle in a laser processing machine - Google Patents

Device and method for inspecting a processing nozzle in a laser processing machine Download PDF

Info

Publication number
WO2017145518A1
WO2017145518A1 PCT/JP2016/088812 JP2016088812W WO2017145518A1 WO 2017145518 A1 WO2017145518 A1 WO 2017145518A1 JP 2016088812 W JP2016088812 W JP 2016088812W WO 2017145518 A1 WO2017145518 A1 WO 2017145518A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
processing
imaging unit
laser
hole
Prior art date
Application number
PCT/JP2016/088812
Other languages
French (fr)
Japanese (ja)
Inventor
功明 塩地
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Priority to DE112016006470.5T priority Critical patent/DE112016006470B4/en
Publication of WO2017145518A1 publication Critical patent/WO2017145518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1494Maintenance of nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device

Definitions

  • the present disclosure relates to a processing nozzle inspection apparatus and method in a laser processing machine that inspects whether or not a processing nozzle attached to the tip of a processing head of a laser processing machine is good.
  • the laser processing machine irradiates a plate material with laser light emitted from a processing nozzle attached to the tip of a processing head. In order to process the material satisfactorily, it is necessary to adjust so that the laser beam is positioned at the center of the circular hole provided at the tip of the processing nozzle.
  • Patent Document 1 describes a processing nozzle inspection apparatus that optically inspects a processing nozzle.
  • the laser beam is emitted from the first hole formed in the emission surface on the emission surface of the machining nozzle mounted on the tip of the machining head included in the laser processing machine.
  • calculating a first evaluation value for evaluating the shape of the first hole by dividing the value indicating the variation by a value proportional to the area of the first image region.
  • a processing nozzle inspection device in a laser processing machine comprising: an image processing device that determines whether or not the processing nozzle is good based on an evaluation value of 1.
  • the imaging unit preferably includes a light that illuminates the exit surface.
  • the imaging unit preferably includes a semi-transmissive mirror that is disposed between the processing nozzle and the light and transmits a part of the laser light emitted from the first hole and reflects the remaining laser light. .
  • the imaging unit may include a screen that is disposed between the processing nozzle and the light and converts at least a part of laser light into visible light.
  • the imaging unit preferably includes a visible light transmitting / reflecting mirror that transmits visible light converted by the screen and reflects laser light that has not been converted to visible light.
  • the processing nozzle is a double nozzle in which an inner nozzle having a second hole for emitting laser light is mounted inside the outer nozzle having the emission surface, and the processing nozzle
  • the inspection device may inspect the double nozzle.
  • the imaging unit images the inner nozzle in a state in which laser light is emitted from the second hole
  • the image processing device is based on a captured image in which the imaging unit images the inner nozzle. , Calculating a value indicating a variation in radius or diameter at a plurality of positions of the second image region indicating the second hole, and dividing the value indicating the variation by a value proportional to the area of the second image region. Then, it is preferable to calculate a second evaluation value for evaluating the shape of the second hole and determine whether or not the processing nozzle is good based on the second evaluation value.
  • the processing nozzle inspection apparatus inspects the double nozzle
  • the imaging unit images the emission surface
  • the distance from the emission surface to the imaging unit is a first distance
  • the imaging unit is the inner nozzle. It is preferable that a distance from the exit surface to the imaging unit is a second distance longer than the first distance.
  • the imaging unit includes a light individually having a light source for illuminating the outer nozzle and a light source for illuminating the inner nozzle.
  • the imaging unit causes the laser beam emission surface of the machining nozzle attached to the tip of the machining head included in the laser processing machine to be from the first hole formed in the emission surface. Imaging is performed in a state where laser light is emitted, and a variation in radius or diameter at a plurality of positions of the first image region indicating the first hole is shown based on a captured image obtained by imaging the emission surface by the imaging unit. Calculate a first evaluation value for evaluating the shape of the first hole by dividing the value indicating the variation by a value proportional to the area of the first image region; There is provided a processing nozzle inspection method in a laser processing machine, wherein whether or not the processing nozzle is good is determined based on a first evaluation value.
  • the imaging unit includes a visible light camera, and the imaging unit images a spot of laser light obtained by converting at least a part of the laser light into visible light.
  • the processing nozzle is a double nozzle in which an inner nozzle having a second hole for emitting laser light is mounted inside an outer nozzle having the emission surface, and the processing nozzle inspection method inspects the double nozzle. May be.
  • the imaging unit images the inner nozzle in a state in which laser light is emitted from the second hole, and the second hole is based on a captured image in which the imaging unit images the inner nozzle.
  • a value indicating a variation in radius or diameter at a plurality of positions in the second image region indicating is calculated, the value indicating the variation is divided by a value proportional to the area of the second image region, and the second It is preferable to calculate a second evaluation value for evaluating the shape of each of the holes and determine whether or not the processing nozzle is good based on the second evaluation value.
  • the distance from the exit surface to the image capture unit is a first distance, and the image capture unit is the inner nozzle It is preferable that a distance from the exit surface to the imaging unit is a second distance longer than the first distance.
  • the imaging unit When inspecting a double nozzle by the processing nozzle inspection method, when the imaging unit images the emission surface, the outer nozzle is illuminated with light emitted from a first light source for illuminating the outer nozzle.
  • the imaging unit images the inner nozzle, it is preferable to illuminate the inner nozzle with light emitted from a second light source located farther from the processing nozzle than the first light source.
  • the processing nozzle inspection apparatus and method of the embodiment it is possible to accurately inspect whether or not the processing nozzle is good.
  • FIG. 1 is a diagram illustrating a configuration example of a laser processing machine including a processing nozzle inspection device according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of the laser oscillator 11 in FIG.
  • FIG. 3 is a sectional view showing a processing nozzle called a single nozzle.
  • FIG. 4 is a cross-sectional view showing a processing nozzle called a double nozzle.
  • FIG. 5 is a perspective view illustrating an imaging unit that constitutes a part of the processing nozzle inspection apparatus according to the embodiment.
  • FIG. 6 is a cross-sectional view and a plan view illustrating a schematic configuration of a ring light included in the imaging unit.
  • FIG. 1 is a diagram illustrating a configuration example of a laser processing machine including a processing nozzle inspection device according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of the laser oscillator 11 in FIG.
  • FIG. 3 is a sectional view showing a processing nozzle called a single
  • FIG. 7 is a schematic diagram illustrating an example of a captured image obtained by imaging the lower surface of the processing nozzle.
  • FIG. 8 is a block diagram illustrating an example of the internal configuration of an image processing apparatus that constitutes a part of the processing nozzle inspection apparatus according to the embodiment.
  • FIG. 9 is a diagram illustrating an example in which the radius is measured at a plurality of positions of the hole depending on whether the hole of the machining nozzle is good or not.
  • FIG. 10 is a diagram showing the results of selecting a plurality of machining nozzles and examining the standard deviation of the hole radius, the value obtained by dividing the standard deviation by the radius, and the value obtained by dividing the standard deviation by the area of the hole. .
  • FIG. 11 is a perspective view showing the positional relationship between the processing nozzle and the imaging unit when the imaging unit images the hole of the inner nozzle.
  • FIG. 12 is a cross-sectional view and a plan view showing a preferred configuration of a ring light included in the imaging unit when the processing nozzle inspection device inspects both the outer nozzle and the outer nozzle.
  • FIG. 13 is a perspective view illustrating a configuration example when the position or diameter of laser light is inspected by two imaging units.
  • the laser processing machine 100 includes a laser oscillator 11 that generates and emits a laser beam LB, a laser processing unit 15, and a process fiber 12 that transmits the laser beam LB to the laser processing unit 15.
  • the laser processing machine 100 cuts and processes a plate material W1 that is an example of a metal material (material to be processed) by the laser beam LB emitted from the laser oscillator 11.
  • the laser oscillator 11 is, for example, a fiber laser oscillator.
  • the laser oscillator 11 may be another laser oscillator such as a direct diode laser oscillator (DDL oscillator).
  • DDL oscillator direct diode laser oscillator
  • the process fiber 12 is mounted along X-axis and Y-axis cable ducts (not shown) arranged in the laser processing unit 15.
  • the laser processing unit 15 includes a processing table 21 on which the plate material W1 is placed, a portal X-axis carriage 22 that is movable in the X-axis direction on the processing table 21, and a Y-axis that is perpendicular to the X-axis on the X-axis carriage 22 And a Y-axis carriage 23 that is movable in the direction.
  • the laser processing unit 15 has a collimator unit 24 fixed to the Y-axis carriage 23.
  • the collimator unit 24 collimates the laser light LB emitted from the output end of the process fiber 12 into a parallel light to make a substantially parallel light beam, and the laser light LB converted into a substantially parallel light beam on the X axis and the Y axis. And a bend mirror 26 that reflects downward in the vertical Z-axis direction.
  • the collimator unit 24 includes a condenser lens 27 that condenses the laser light LB reflected by the bend mirror 26 and a processing head 28.
  • the condenser lens 27 is configured to be movable in the X-axis and Y-axis directions by a moving mechanism such as an actuator or a motor (not shown). In order to correct the focal position, the condenser lens 27 may be configured to be movable in the Z-axis direction. In order to correct the focal position, the collimating lens 25 may be configured to move in the X-axis direction.
  • a processing nozzle 29 is attached to the tip of the processing head 28.
  • the processing nozzle 29 is detachable from the processing head 28.
  • a female screw is formed on the inner peripheral surface of the tip of the processing head 28
  • a male screw is formed on the outer peripheral surface of the processing nozzle 29, and the processing nozzle 29 is screwed to the tip of the processing head 28.
  • the collimator lens 25, the bend mirror 26, the condenser lens 27, and the processing head 28 are fixed in the collimator unit 24 with the optical axis adjusted in advance.
  • the collimator unit 24 is fixed to a Y-axis carriage 23 movable in the Y-axis direction, and the Y-axis carriage 23 is provided on an X-axis carriage 22 movable in the X-axis direction. Therefore, the laser processing unit 15 can move the position of irradiating the plate material W1 with the laser beam LB emitted from the processing head 28 in the X-axis direction and the Y-axis direction.
  • the laser processing machine 100 can transmit the laser beam LB emitted from the laser oscillator 11 to the laser processing unit 15 through the process fiber 12 and irradiate the plate material W1 to cut the plate material W1. .
  • an assist gas for removing the melt is injected onto the plate material W1.
  • FIG. 1 the illustration of the configuration for injecting the assist gas is omitted.
  • FIG. 2 shows a schematic configuration when the laser oscillator 11 is constituted by a fiber laser oscillator 11F.
  • each of the plurality of laser diodes 110 emits a laser having a wavelength ⁇ .
  • the excitation combiner 111 spatially combines the laser beams emitted from the plurality of laser diodes 110.
  • the laser emitted from the excitation combiner 111 is incident on the Yb-doped fiber 113 between the two fiber Bragg gratings (FBGs) 112 and 114.
  • the Yb-doped fiber 113 is a fiber in which a rare earth Yb (ytterbium) element is added to the core.
  • the laser incident on the Yb-doped fiber 113 repeats reciprocation between the FBGs 112 and 114, and a laser having a wavelength ⁇ ′ (1 ⁇ m band) of approximately 1060 nm to 1080 nm, which is different from the wavelength ⁇ , is emitted from the FBG 114.
  • the laser emitted from the FBG 114 is incident on the process fiber 12 via the feeding fiber 115 and the beam coupler 116.
  • the beam coupler 116 includes lenses 1161 and 1162.
  • the process fiber 12 is composed of one optical fiber, and the laser transmitted through the process fiber 12 is not combined with other lasers until the plate material W1 is irradiated.
  • the laser processing machine 100 is provided with an imaging unit 30 adjacent to the end of the processing table 21.
  • the imaging unit 30 constitutes a part of the processing nozzle inspection device of one embodiment.
  • the imaging unit 30 may be provided in a nozzle changer that automatically replaces the processing nozzle 29 or may be provided independently of the nozzle changer.
  • the NC device 50 moves the X-axis carriage 22 and the Y-axis carriage 23 to position the processing head 28 on the imaging unit 30.
  • the NC device 50 controls the laser oscillator 11 to emit the laser beam LB.
  • the NC device 50 may control the imaging unit 30.
  • the imaging unit 30 images the processing nozzle 29 that emits the laser beam LB from the lower surface.
  • An image signal S30 obtained by imaging the lower surface of the processing nozzle 29 is supplied to the image processing device 40.
  • the image processing device 40 constitutes a part of the processing nozzle inspection device of one embodiment.
  • the image processing device 40 determines whether or not the processing nozzle 29 is good based on the input image signal S30.
  • the image processing apparatus 40 supplies the NC apparatus 50 with a determination signal S40 indicating whether or not the processing nozzle 29 is good. Details of the determination signal S40 will be described later.
  • the NC device 50 can display the determination result on the monitor 60 based on the determination signal S40.
  • the NC apparatus 50 can display warning information indicating that the machining nozzle 29 is defective on the monitor 60.
  • the processing nozzle 29 may be the processing nozzle 29s shown in FIG. 3 called a single nozzle or the processing nozzle 29w shown in FIG. 4 called a double nozzle.
  • a perfect hole 291 for emitting the laser beam LB is formed on the lower surface 292 of the processing nozzle 29s.
  • the lower surface 292 is an emission surface that emits the laser beam LB.
  • the laser beam LB is emitted from the hole 291 to the outside.
  • the laser beam LB is preferably emitted through the center of the hole 291.
  • the processing nozzle 29w includes an outer nozzle 29w1 and an inner nozzle 29w2 mounted inside the outer nozzle 29w1.
  • a gap for injecting the assist gas to the plate material W1 is partially formed between the inner peripheral surface of the outer nozzle 29w1 and the outer peripheral surface of the inner nozzle 29w2. .
  • a perfect hole 291 for emitting the laser beam LB is formed on the lower surface 292 of the outer nozzle 29w1.
  • a circular hole 293 for emitting the laser beam LB is formed on the lower surface 294 of the inner nozzle 29w2.
  • the laser beam LB is emitted from the hole 293 and emitted from the hole 291 to the outside.
  • the laser beam LB is preferably emitted through the centers of both holes 291 and 293.
  • the imaging unit 30 includes a semi-transmissive mirror 31, a screen 32, a ring light 33, a visible light transmission / reflection mirror 34, a beam damper 35, and a camera 36.
  • the beam damper 35 is fixed to the side plate 37, and the camera 36 is connected to the side plate 37.
  • the semi-transmissive mirror 31, the screen 32, the ring light 33, and the visible light transmitting / reflecting mirror 34 are positioned and fixed by a predetermined positioning mechanism.
  • the camera 36 may be a general visible light camera that captures visible light.
  • the camera 36 includes an image pickup element made of CCD or CMOS and a plurality of lenses.
  • the camera 36 may be adjustable in focus position.
  • FIG. 5 shows a state in which the processing nozzle 29 is located at the center of the field of view of the camera 36. Since the position of the imaging unit 30 is fixed, the NC device 50 may move the machining head 28 to a coordinate position registered in advance so that the machining nozzle 29 is located at the center of the field of view of the camera 36.
  • the laser beam LB emitted from the hole 291 of the processing nozzle 29 is partially transmitted by the semi-transmissive mirror 31 and enters the screen 32.
  • the semi-transmissive mirror 31 reflects the remaining laser light LB.
  • the screen 32 converts the laser beam LB into visible light. Since the screen 32 converts part of the laser light LB into visible light, the visible light and the unconverted laser light LB are emitted from the screen 32.
  • the screen 32 converts the laser beam LB into visible light, so that the laser beam LB can be captured by the camera 36.
  • nanocrystal-containing glass manufactured by Sumita Optical Glass Co., Ltd. can be used as the screen 32.
  • the screen 32 converts the laser light LB into visible light. There is no need to provide.
  • a quartz glass plate may be used as the screen 32, or the screen 32 may be omitted.
  • the camera 36 may be a near-infrared light camera that images near-infrared light. Also in this case, it is not necessary to provide the screen 32 for converting the laser beam LB into visible light.
  • the semi-transmissive mirror 31 is arranged to attenuate the laser beam LB so that the intensity of the laser beam LB is equal to or lower than the light resistance of the screen 32.
  • the laser beam LB may be reflected by about 95% on the upper surface of the semi-transmissive mirror 31.
  • the semi-transmissive mirror 31 also has a function of maintaining a clearance between the processing nozzle 29 and the ring light 33.
  • the laser beam LB may be attenuated by other than the semi-transmissive mirror 31, and an arbitrary attenuation member may be used.
  • the translucent mirror 31 may have an action of converting the laser beam LB into visible light, and the screen 32 may be omitted.
  • the semi-transmissive mirror 31 may be omitted.
  • the distance from the tip of the processing nozzle 29 to the ring light 33 is preferably within 5 mm. In this way, both the laser beam LB converted into visible light by the screen 32 and the lower surface 292 of the processing nozzle 29 can be favorably imaged with little focus shift.
  • the semi-transmissive mirror 31 may be tilted so that the laser beam LB reflected by the semi-transmissive mirror 31 does not return to the laser oscillator 11. However, if the semi-transmissive mirror 31 is tilted greatly, the distance from the tip of the processing nozzle 29 to the ring light 33 cannot be within 5 mm. Therefore, it is preferable to make the surface of the semi-transmissive mirror 31 orthogonal to the traveling direction of the laser beam LB or to incline it at an angle of 10 degrees or less.
  • the surface of the semi-transmissive mirror 31 may be orthogonal to the traveling direction of the laser beam LB.
  • the semi-transmissive mirror 31 may be a curved surface, and the laser beam LB reflected by the semi-transmissive mirror 31 may be diffused.
  • the ring light 33 has a plurality of light sources 331 such as light emitting diodes arranged in the circumferential direction.
  • a circular opening 332 is formed on the upper surface of the ring light 33, and a circular opening 334 smaller than the opening 332 is formed on the lower surface.
  • An inclined surface 333 is formed inside the ring light 33.
  • Each light source 331 emits light toward the center of the circle.
  • the ring light 33 illuminates the lower surface of the processing nozzle 29 by irradiating the lower surface of the processing nozzle 29 with direct light from the light source 331 and reflected light from the inclined surface 333 through the opening 332.
  • the ring light 33 is configured to irradiate the lower surface 292 of the processing nozzle 29 from an oblique direction.
  • the ring light 33 is an example of a light that illuminates the lower surface of the processing nozzle 29. If the lower surface of the processing nozzle 29 can be favorably imaged without illuminating the lower surface of the processing nozzle 29, the light may be omitted. However, it is better to provide a light.
  • the visible light converted by the screen 32 and the laser light LB not converted are emitted from the opening 334 formed on the lower surface of the ring light 33 and enter the visible light transmitting / reflecting mirror 34.
  • the visible light transmitting / reflecting mirror 34 transmits visible light and reflects the laser light LB so that the traveling direction of the laser light LB is bent 90 degrees.
  • the laser beam LB reflected by the visible light transmitting / reflecting mirror 34 enters the beam damper 35.
  • the beam damper 35 converts the incident laser beam LB into heat and absorbs the laser beam LB.
  • By reflecting the laser beam LB with the visible light transmitting / reflecting mirror 34 it is possible to prevent the laser beam LB from entering the camera 36. Only the laser beam LB converted into visible light by the screen 32 enters the camera 36.
  • the imaging unit 30 images the spot of the laser beam LB converted into visible light emitted from the lower surface 292 of the processing nozzle 29 and the hole 291.
  • the camera 36 is arranged in parallel with the traveling direction of the laser beam LB, but the camera 36 may be arranged so as to be orthogonal to the traveling direction of the laser beam LB.
  • the traveling direction of visible light transmitted through the visible light transmitting / reflecting mirror 34 may be configured to be incident on the camera 36 after being bent by 90 degrees with the mirror.
  • FIG. 7 schematically illustrates an example of a captured image 36 i obtained by the camera 36 imaging the lower surface 292 of the processing nozzle 29.
  • a circular image area 291 i indicates a hole 291
  • an image area 292 i indicates a lower surface 292.
  • the image region 295i indicates a convex deformation region formed on the lower surface 292 by the spatter generated during the processing of the plate material W1 adhering to the lower surface 292.
  • the image region 296i shows a concave deformation region formed on the lower surface 292 when the sputter generated during processing of the plate material W1 hits the lower surface 292. Only one of a convex deformation region or a concave deformation region may be formed on the lower surface 292.
  • the lower surface 292 is displayed relatively dark except for the deformation areas indicated by the image areas 295i and 296i.
  • a white circle 297i around the image area 291i indicates an end of the lower surface 292 on the hole 291 side.
  • a spot image Spi indicating the spot of the laser beam LB is located at substantially the center of the image area 291i. Since the spot position of the laser beam LB may deviate from the center of the hole 291, the spot image Spi may not be positioned at the center of the image area 291 i.
  • the lower surface 292 of the processing nozzle 29 becomes relatively dark and an overall dark image region 292i is displayed, and the image region 291i is white around the image region 291i.
  • the circle 297i is easily displayed.
  • the lower surface 292 of the processing nozzle 29 becomes bright as a whole, and the white circle 297i around the image region 291i becomes difficult to distinguish. Therefore, it is preferable to apply light to the lower surface 292 of the processing nozzle 29 from an oblique direction.
  • the image processing apparatus 40 includes an A / D converter 41 that converts the image signal S30 into a digital signal, an evaluation value calculation unit 42, and a determination unit 43.
  • the image processing apparatus 40 may be configured by a personal computer or a microprocessor.
  • An A / D converter may be provided in the imaging unit 30, and the imaging unit 30 may supply a digital image signal to the image processing device 40.
  • the evaluation value calculation unit 42 calculates an evaluation value for evaluating the shape of the hole 291 of the processing nozzle 29 based on the captured image 36i as shown in FIG.
  • FIG. 9A conceptually shows a state where the hole 291 is almost a perfect circle and has a good shape
  • FIG. 9B conceptually shows a state where the hole is deformed and is not a perfect circle and the shape is not good.
  • the evaluation value calculation unit 42 measures the radii r1 to r8 of the circular image region 291i at a plurality of positions from the center 36c of the captured image 36i as shown in FIGS. 9 (a) and 9 (b). Since the processing nozzle 29 is positioned at the center of the field of view of the camera 36, the center 36c is mechanically positioned approximately at the center of the image area 291i. 9A and 9B illustrate that the radius is measured at eight locations, the number of measurement locations is not limited to eight, and the radius may be measured at an arbitrary plurality of locations.
  • the evaluation value calculation unit 42 calculates a value indicating a variation in radius measured at eight locations.
  • the evaluation value calculation unit 42 may calculate a value indicating a variation in diameter. For example, the evaluation value calculation unit 42 may obtain the standard deviation of the radii measured at eight locations.
  • the evaluation value calculation unit 42 calculates the area of the image region 291i.
  • the evaluation value calculation unit 42 may calculate the area of the image region 291i based on the average value of the radii r1 to r8, or may calculate the area of the image region 291i based on the number of pixels of the image region 291i. .
  • the evaluation value calculation unit 42 calculates an evaluation value of the image area 291i (that is, the hole 291) by dividing the value indicating the variation in radius by the area.
  • the evaluation value may be a value obtained by dividing the value indicating the variation in radius by the square of the radius of the image area 291i (the average value of the radii r1 to r8), the square of the diameter, or the square of the circumference.
  • the evaluation value calculation unit 42 may calculate an evaluation value by dividing a value indicating a variation in radius by a value proportional to the area of the image region 291i.
  • processing nozzles 29 There are a plurality of types of processing nozzles 29, and they may have holes 291 of different diameters.
  • the tolerance of deformation of the hole 291 in the machining nozzle 29 having a small diameter of the hole 291 is different from the tolerance of deformation of the hole 291 in the machining nozzle 29 having a large diameter of the hole 291. Therefore, by using an evaluation value obtained by dividing a value indicating a variation in radius or diameter by a value proportional to the area of the image region 291i, it is accurately determined whether the processing nozzle 29 is good regardless of the diameter of the hole 291. It becomes possible to judge.
  • FIG. 10A shows the standard deviation of the radius of the image area 291i when 22 machining nozzles 29 are selected at random in the range of the diameter of the hole 291 in the machining nozzle 29 from 1.2 mm to 7 mm. Yes.
  • the horizontal axis represents the machining nozzle number assigned to the machining nozzle 29 for convenience, and the vertical axis represents the standard deviation.
  • the unit of standard deviation is mm.
  • Machining nozzles 29 with nozzle numbers 1 to 10, 12, and 14 indicated by ⁇ have been used a plurality of times, and processing nozzles in which processing defects have occurred in actual cutting, and processing of nozzle numbers 11, 13, 15 to 18 indicated by ⁇
  • the nozzle 29 has been used a plurality of times and was good in actual cutting, and the processing nozzles 29 having nozzle numbers 19 to 22 indicated by ⁇ are new processing nozzles.
  • FIG. 10 (b) is obtained by changing the vertical axis in FIG. 10 (a) to the standard deviation / radius obtained by dividing the standard deviation by the radius.
  • Standard deviation / radius is unitless.
  • all the processing nozzles 29 whose standard deviation / radius value exceeds 10 have a standard deviation / radius value of 10.
  • FIG. 10C shows a case where the vertical axis in FIG. 10A is changed to standard deviation / area obtained by dividing the standard deviation by the area.
  • the unit of standard deviation / area is mm- 1 .
  • the values on the vertical axis are the same.
  • FIG. 10 (c) although some of the machining nozzles 29 in which machining defects have occurred may show the same value as the machining nozzle 29 in which machining has been good, the machining nozzles 29 in which machining defects have occurred It is easy to distinguish the processing nozzle 29 from which the processing was good.
  • a border line indicated by a bold solid line is drawn at the position of value 5 on the vertical axis.
  • the boundary between the processing nozzle 29 in which the processing failure has occurred and the processing nozzle 29 in which the processing has been good becomes clearer than in FIG. 10B, and the boundary between both becomes easy to recognize.
  • a threshold value corresponding to the boundary line shown in FIG. 10C is set in the determination unit 43, and the determination unit 43 compares the evaluation value obtained by the evaluation value calculation unit 42 with the threshold value.
  • a determination signal S40 indicating whether the processing nozzle 29 is good or bad is generated and output.
  • the NC device 50 can display the determination result on the monitor 60 based on the determination signal S40.
  • the NC device 50 may be configured to automatically replace the machining nozzle 29 by controlling the nozzle changer when the determination signal S40 indicates a failure.
  • the NC device 50 may supply the image processing device 40 with information indicating the diameter of the hole 291 of the processing nozzle 29 set in the processing conditions of the plate material W1.
  • the image processing device 40 may supply a determination signal indicating that to the NC device 50.
  • the NC device 50 may display warning information indicating that the machining nozzle 29 attached to the machining head 28 is different from the machining nozzle 29 set in the machining conditions on the monitor 60.
  • Evaluation value calculation unit 42 may use an evaluation value calculated by another calculation method. Evaluation value calculation unit 42 evaluates the quality of the shape of hole 291 as follows instead of using the value obtained by dividing the value indicating the variation in radius by the value proportional to the area of image area 291i as the evaluation value. A value may be calculated.
  • the evaluation value calculation unit 42 holds the shape data of the hole 291 having a good shape as the standard shape data, pattern-matches the standard shape data and the shape data of the image area 291i, and calculates the degree of divergence between them as the mean square. An evaluation value may be obtained by an error.
  • the shape data may be data indicating a plurality of points at a plurality of positions for specifying the shape.
  • the evaluation value calculation unit 42 divides the sum of the squares of ⁇ by (n ⁇ 1). A square root can be calculated
  • the mean square error m is expressed by equation (1)
  • the degree of deviation ⁇ is expressed by equation (2) where Xn and Yn are the positions to be compared.
  • i is 1 to n.
  • X0 and Y0 in Equation (2) are the positions of the standard shape data.
  • the method of calculating the evaluation value using pattern matching it is possible to determine whether the shape is good even if the shape of the hole 291 is a shape other than a perfect circle such as an ellipse.
  • the laser beam LB may be adjusted to be positioned at the center of the hole 291. Even if the NC device 50 displays the captured image 36 i on the monitor 60 and the operator manually moves the condenser lens 27 while looking at the monitor 60, the laser beam LB is adjusted to be positioned at the center of the hole 291. Good. The NC device 50 may automatically adjust so that the spot image Spi is positioned at the center of the image area 291i.
  • the image processing apparatus 40 may evaluate the size of the spot image Spi.
  • the NC device 50 may be configured to move the condenser lens 27 in the Z-axis direction, adjust the position in the Z-axis direction so that the spot image Spi is minimized, and adjust the focal position of the laser beam LB. Good.
  • the processing nozzle inspection device of this embodiment inspects whether the processing nozzle 29 is good by determining whether the hole 291 of the processing nozzle 29 is deformed.
  • the processing nozzle inspection device of this embodiment determines whether the processing nozzle 29 is good by determining whether or not the hole 293 of the inner nozzle 29w2 is deformed. It is also possible to inspect whether or not.
  • the processing nozzle inspection device determines whether or not the holes 291 and 293 of the processing nozzle 29 are deformed, and whether or not the processing nozzle 29 is good. It is preferable to check whether or not.
  • FIG. 11 shows the positional relationship between the processing nozzle 29 and the imaging unit 30 when the imaging unit 30 images the hole 293 of the inner nozzle 29w2.
  • the imaging unit 30 images the hole 293 of the inner nozzle 29w2
  • the distance from the tip of the processing nozzle 29 to the ring light 33 is longer than the state of FIG. Is good.
  • the distance from the lower surface 292 to the imaging unit 30 is set to a relatively short first distance.
  • the distance from the lower surface 292 to the imaging unit 30 is a second distance that is longer than the first distance.
  • the NC device 50 may control the position of the machining head 28 in the Z-axis direction so as to bring the machining nozzle 29 closer to the ring light 33 when photographing the hole 291 of the outer nozzle 29w1.
  • the NC device 50 may control the position of the machining head 28 in the Z-axis direction so as to move the machining nozzle 29 slightly away from the ring light 33 when imaging the hole 293 of the inner nozzle 29w2.
  • the imaging unit 30 may be moved up and down.
  • the imaging unit 30 includes a light source for illuminating the outer nozzle 29w1 and a light source for illuminating the inner nozzle 29w2. Is preferred.
  • FIG. 12 shows a configuration example of the ring light 33 individually including a light source for illuminating the outer nozzle 29w1 and a light source for illuminating the inner nozzle 29w2.
  • the same parts as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • the ring light 33 is arranged in the circumferential direction in the vicinity of the opening 332 and includes a plurality of light sources 331 for illuminating the outer nozzle 29w1. And a plurality of light sources 335 arranged in the circumferential direction in the vicinity of the opening 334 for illuminating the inner nozzle 29w2.
  • the light source 335 is also a light emitting diode, for example.
  • the light source 335 is disposed at a position closer to the center of the processing nozzle 29 in a direction farther from the processing nozzle 29 than the light source 331.
  • the NC device 50 controls to turn on the light source 331 when the processing nozzle inspection device inspects the outer nozzle 29w1, and controls to turn on the light source 335 when inspecting the inner nozzle 29w2.
  • the image processing apparatus 40 may determine whether or not the hole 293 of the inner nozzle 29w2 is deformed in the same manner as when determining whether or not the hole 291 of the processing nozzle 29 is deformed.
  • a threshold value for the hole 293 of the inner nozzle 29w2 may be set separately from the threshold value for the hole 291 of the outer nozzle 29w1.
  • the evaluation value calculated when the image processing device 40 inspects the hole 291 of the processing nozzle 29 (outer nozzle 29w1) is the first evaluation value
  • the evaluation value calculated when the image processing device 40 inspects the hole 293 of the inner nozzle 29w2 is the second.
  • the evaluation value of The image processing apparatus 40 determines whether or not the shape of the holes 291 and 293 is good based on the first and second evaluation values, and if either one is not good, the processing nozzle 29 is defective. Can be determined.
  • the two cameras 36 are arranged at different angles so as to be orthogonal to the emission direction of the laser beam LB, and the position of the emitted laser beam LB or the diameter of the laser beam LB is inspected. It can also be configured.
  • the two cameras 36 photograph the screen 32 that converts the laser beam LB into visible light from the side surface direction of the screen 32.
  • the image processing device 40 or the NC device 50 may inspect the position or diameter of the laser beam LB based on the images captured by the two cameras 36.
  • the distance from the tip of the processing nozzle 29 to the beam waist of the laser beam LB may be measured to obtain the focal position.
  • the present invention can be used in a laser processing machine that cuts or welds workpieces.

Abstract

According to the present invention, an imaging unit (30) captures an image of a laser beam emission surface at a processing nozzle (29) mounted to a leading end of a processing head (28) provided in a laser processing machine (100) while a laser beam is being emitted from a hole formed in the emission surface. On the basis of an image captured of the emission surface by the imaging unit (30), an image processing device (40) calculates values indicative of variations in the radius or diameter of the hole at multiple positions in an image region representing the hole. The image processing device (40) divides the values indicative of variations by a value proportional to the area of the image region so as to calculate an evaluation value for evaluating the shape of the hole. The image processing device (40) determines, according to the evaluation value, whether or not the processing nozzle (29) is in good condition.

Description

レーザ加工機における加工ノズル検査装置及び方法Processing nozzle inspection apparatus and method in laser processing machine
 本開示は、レーザ加工機の加工ヘッドの先端に装着されている加工ノズルが良好であるか否かを検査するレーザ加工機における加工ノズル検査装置及び方法に関する。 The present disclosure relates to a processing nozzle inspection apparatus and method in a laser processing machine that inspects whether or not a processing nozzle attached to the tip of a processing head of a laser processing machine is good.
 金属の材料を切断または溶接するレーザ加工機が普及している。レーザ加工機は、加工ヘッドの先端に装着されている加工ノズルから射出されるレーザ光を板材に照射する。材料を良好に加工するには、加工ノズルの先端に設けられている円形の穴の中央にレーザ光を位置させるよう調整することが必要である。 Laser processing machines that cut or weld metal materials are widespread. The laser processing machine irradiates a plate material with laser light emitted from a processing nozzle attached to the tip of a processing head. In order to process the material satisfactorily, it is necessary to adjust so that the laser beam is positioned at the center of the circular hole provided at the tip of the processing nozzle.
 レーザ加工機によって材料を加工すると、材料の加工中に発生するスパッタが加工ノズルに当たり、加工ノズルが変形することがある。すると、加工ノズル先端の真円の穴が変形し、加工を繰り返すことによって穴が劣化する。劣化した穴の中央にレーザ光を位置させるよう調整することは困難である。穴が劣化した加工ノズルを用いると、本来であれば穴の中央に位置されるべきレーザ光が中央に位置していないことから、加工不良を招きやすい。 When processing a material with a laser processing machine, spatter generated during processing of the material hits the processing nozzle, and the processing nozzle may be deformed. Then, a perfect hole at the tip of the processing nozzle is deformed, and the hole is deteriorated by repeating the processing. It is difficult to adjust the laser beam to be positioned at the center of the deteriorated hole. If a processing nozzle with a deteriorated hole is used, the laser beam that should normally be positioned at the center of the hole is not positioned at the center, which tends to cause processing defects.
 そこで、加工ノズルが良好であるか否かを検査することが必要となる。特許文献1には、加工ノズルを光学的に検査する加工ノズル検査装置が記載されている。 Therefore, it is necessary to inspect whether or not the processing nozzle is good. Patent Document 1 describes a processing nozzle inspection apparatus that optically inspects a processing nozzle.
特開2005-334922号公報JP 2005-334922 A
 特許文献1に記載されている加工ノズル検査装置よりもさらに的確に加工ノズルが良好であるか否かを検査することができる加工ノズル検査装置が求められる。本発明は、加工ノズルが良好であるか否かを的確に検査することができるレーザ加工機における加工ノズル検査装置及び方法を提供することを目的とする。 There is a need for a processing nozzle inspection device that can inspect whether or not the processing nozzle is better than the processing nozzle inspection device described in Patent Document 1. It is an object of the present invention to provide a processing nozzle inspection apparatus and method in a laser processing machine that can accurately inspect whether a processing nozzle is good or not.
 実施形態の第1の態様によれば、レーザ加工機が備える加工ヘッドの先端に装着された加工ノズルにおけるレーザ光の射出面を、前記射出面に形成された第1の穴よりレーザ光を射出した状態で撮像する撮像ユニットと、前記撮像ユニットが前記射出面を撮像した撮像画像に基づいて、前記第1の穴を示す第1の画像領域の複数の位置における半径または直径のばらつきを示す値を算出し、前記ばらつきを示す値を前記第1の画像領域の面積に比例する値で除算し、前記第1の穴の形状を評価するための第1の評価値を算出して、前記第1の評価値に基づいて前記加工ノズルが良好であるか否かを判定する画像処理装置とを備えることを特徴とするレーザ加工機における加工ノズル検査装置が提供される。 According to the first aspect of the embodiment, the laser beam is emitted from the first hole formed in the emission surface on the emission surface of the machining nozzle mounted on the tip of the machining head included in the laser processing machine. A value indicating variation in radius or diameter at a plurality of positions in the first image region indicating the first hole based on an image pickup unit that picks up an image in a state where the image pickup unit has picked up the image and the exit surface of the image pickup unit. And calculating a first evaluation value for evaluating the shape of the first hole by dividing the value indicating the variation by a value proportional to the area of the first image region. And a processing nozzle inspection device in a laser processing machine, comprising: an image processing device that determines whether or not the processing nozzle is good based on an evaluation value of 1.
 上記の加工ノズル検査装置において、撮像ユニットは、前記射出面を照明するライトを備えることが好ましい。前記撮像ユニットは、前記加工ノズルと前記ライトとの間に配置され、前記第1の穴より射出したレーザ光の一部を透過させ、残りのレーザ光を反射させる半透過ミラーを備えることが好ましい。 In the above processing nozzle inspection apparatus, the imaging unit preferably includes a light that illuminates the exit surface. The imaging unit preferably includes a semi-transmissive mirror that is disposed between the processing nozzle and the light and transmits a part of the laser light emitted from the first hole and reflects the remaining laser light. .
 上記の加工ノズル検査装置において、前記撮像ユニットは、前記加工ノズルと前記ライトとの間に配置され、レーザ光の少なくとも一部を可視光に変換するスクリーンを備えてもよい。前記撮像ユニットは、前記スクリーンによって変換された可視光を透過させ、可視光に変換されなかったレーザ光を反射させる可視光透過反射ミラーを備えることが好ましい。 In the processing nozzle inspection apparatus, the imaging unit may include a screen that is disposed between the processing nozzle and the light and converts at least a part of laser light into visible light. The imaging unit preferably includes a visible light transmitting / reflecting mirror that transmits visible light converted by the screen and reflects laser light that has not been converted to visible light.
 上記の加工ノズル検査装置において、前記加工ノズルは、前記射出面を有するアウターノズルの内部に、レーザ光を射出する第2の穴を有するインナーノズルが装着されたダブルノズルであり、上記の加工ノズル検査装置はダブルノズルを検査してもよい。 In the processing nozzle inspection apparatus, the processing nozzle is a double nozzle in which an inner nozzle having a second hole for emitting laser light is mounted inside the outer nozzle having the emission surface, and the processing nozzle The inspection device may inspect the double nozzle.
 このとき、前記撮像ユニットは、前記インナーノズルを、前記第2の穴よりレーザ光を射出した状態で撮像し、前記画像処理装置は、前記撮像ユニットが前記インナーノズルを撮像した撮像画像に基づいて、前記第2の穴を示す第2の画像領域の複数の位置における半径または直径のばらつきを示す値を算出し、前記ばらつきを示す値を前記第2の画像領域の面積に比例する値で除算し、前記第2の穴の形状を評価するための第2の評価値を算出して、前記第2の評価値に基づいて前記加工ノズルが良好であるか否かを判定することが好ましい。 At this time, the imaging unit images the inner nozzle in a state in which laser light is emitted from the second hole, and the image processing device is based on a captured image in which the imaging unit images the inner nozzle. , Calculating a value indicating a variation in radius or diameter at a plurality of positions of the second image region indicating the second hole, and dividing the value indicating the variation by a value proportional to the area of the second image region. Then, it is preferable to calculate a second evaluation value for evaluating the shape of the second hole and determine whether or not the processing nozzle is good based on the second evaluation value.
 上記の加工ノズル検査装置がダブルノズルを検査するとき、前記撮像ユニットが前記射出面を撮像するときには、前記射出面から前記撮像ユニットまでの距離を第1の距離とし、前記撮像ユニットが前記インナーノズルを撮像するときには、前記射出面から前記撮像ユニットまでの距離を前記第1の距離より長い第2の距離とすることが好ましい。 When the processing nozzle inspection apparatus inspects the double nozzle, when the imaging unit images the emission surface, the distance from the emission surface to the imaging unit is a first distance, and the imaging unit is the inner nozzle. It is preferable that a distance from the exit surface to the imaging unit is a second distance longer than the first distance.
 ダブルノズルを検査する上記の加工ノズル検査装置において、前記撮像ユニットは、前記アウターノズルを照明するための光源と、前記インナーノズルを照明するための光源とを個別に有するライトを備えることが好ましい。 In the processing nozzle inspection apparatus for inspecting a double nozzle, it is preferable that the imaging unit includes a light individually having a light source for illuminating the outer nozzle and a light source for illuminating the inner nozzle.
 実施形態の第2の態様によれば、撮像ユニットによって、レーザ加工機が備える加工ヘッドの先端に装着された加工ノズルにおけるレーザ光の射出面を、前記射出面に形成された第1の穴よりレーザ光を射出した状態で撮像し、前記撮像ユニットが前記射出面を撮像した撮像画像に基づいて、前記第1の穴を示す第1の画像領域の複数の位置における半径または直径のばらつきを示す値を算出し、前記ばらつきを示す値を前記第1の画像領域の面積に比例する値で除算して、前記第1の穴の形状を評価するための第1の評価値を算出し、前記第1の評価値に基づいて前記加工ノズルが良好であるか否かを判定することを特徴とするレーザ加工機における加工ノズル検査方法が提供される。 According to the second aspect of the embodiment, the imaging unit causes the laser beam emission surface of the machining nozzle attached to the tip of the machining head included in the laser processing machine to be from the first hole formed in the emission surface. Imaging is performed in a state where laser light is emitted, and a variation in radius or diameter at a plurality of positions of the first image region indicating the first hole is shown based on a captured image obtained by imaging the emission surface by the imaging unit. Calculate a first evaluation value for evaluating the shape of the first hole by dividing the value indicating the variation by a value proportional to the area of the first image region; There is provided a processing nozzle inspection method in a laser processing machine, wherein whether or not the processing nozzle is good is determined based on a first evaluation value.
 上記の加工ノズル検査方法において、前記撮像ユニットは可視光カメラを備え、前記撮像ユニットは、レーザ光の少なくとも一部を可視光に変換したレーザ光のスポットを撮像することが好ましい。 In the above-described processing nozzle inspection method, it is preferable that the imaging unit includes a visible light camera, and the imaging unit images a spot of laser light obtained by converting at least a part of the laser light into visible light.
 前記加工ノズルは、前記射出面を有するアウターノズルの内部に、レーザ光を射出する第2の穴を有するインナーノズルが装着されたダブルノズルであり、上記の加工ノズル検査方法はダブルノズルを検査してもよい。 The processing nozzle is a double nozzle in which an inner nozzle having a second hole for emitting laser light is mounted inside an outer nozzle having the emission surface, and the processing nozzle inspection method inspects the double nozzle. May be.
 このとき、前記撮像ユニットは、前記インナーノズルを、前記第2の穴よりレーザ光を射出した状態で撮像し、前記撮像ユニットが前記インナーノズルを撮像した撮像画像に基づいて、前記第2の穴を示す第2の画像領域の複数の位置における半径または直径のばらつきを示す値を算出し、前記ばらつきを示す値を前記第2の画像領域の面積に比例する値で除算して、前記第2の穴の形状を評価するための第2の評価値を算出し、前記第2の評価値に基づいて前記加工ノズルが良好であるか否かを判定することが好ましい。 At this time, the imaging unit images the inner nozzle in a state in which laser light is emitted from the second hole, and the second hole is based on a captured image in which the imaging unit images the inner nozzle. A value indicating a variation in radius or diameter at a plurality of positions in the second image region indicating is calculated, the value indicating the variation is divided by a value proportional to the area of the second image region, and the second It is preferable to calculate a second evaluation value for evaluating the shape of each of the holes and determine whether or not the processing nozzle is good based on the second evaluation value.
 上記の加工ノズル検査方法によってダブルノズルを検査するとき、前記撮像ユニットが前記射出面を撮像するときには、前記射出面から前記撮像ユニットまでの距離を第1の距離とし、前記撮像ユニットが前記インナーノズルを撮像するときには、前記射出面から前記撮像ユニットまでの距離を前記第1の距離より長い第2の距離とすることが好ましい。 When inspecting a double nozzle by the above processing nozzle inspection method, when the imaging unit images the exit surface, the distance from the exit surface to the image capture unit is a first distance, and the image capture unit is the inner nozzle It is preferable that a distance from the exit surface to the imaging unit is a second distance longer than the first distance.
 上記の加工ノズル検査方法によってダブルノズルを検査するとき、前記撮像ユニットが前記射出面を撮像するときには、前記アウターノズルを照明するための第1の光源より射出された光で前記アウターノズルを照明し、前記撮像ユニットが前記インナーノズルを撮像するときには、前記第1の光源よりも前記加工ノズルから離れた位置にある第2の光源より射出された光で前記インナーノズルを照明することが好ましい。 When inspecting a double nozzle by the processing nozzle inspection method, when the imaging unit images the emission surface, the outer nozzle is illuminated with light emitted from a first light source for illuminating the outer nozzle. When the imaging unit images the inner nozzle, it is preferable to illuminate the inner nozzle with light emitted from a second light source located farther from the processing nozzle than the first light source.
 実施形態の加工ノズル検査装置及び方法によれば、加工ノズルが良好であるか否かを的確に検査することができる。 According to the processing nozzle inspection apparatus and method of the embodiment, it is possible to accurately inspect whether or not the processing nozzle is good.
図1は、一実施形態の加工ノズル検査装置を備えるレーザ加工機の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a laser processing machine including a processing nozzle inspection device according to an embodiment. 図2は、図1中のレーザ発振器11の構成例を示す図である。FIG. 2 is a diagram showing a configuration example of the laser oscillator 11 in FIG. 図3は、シングルノズルと称されている加工ノズルを示す断面図である。FIG. 3 is a sectional view showing a processing nozzle called a single nozzle. 図4は、ダブルノズルと称されている加工ノズルを示す断面図である。FIG. 4 is a cross-sectional view showing a processing nozzle called a double nozzle. 図5は、一実施形態の加工ノズル検査装置の一部を構成する撮像ユニットを示す斜視図である。FIG. 5 is a perspective view illustrating an imaging unit that constitutes a part of the processing nozzle inspection apparatus according to the embodiment. 図6は、撮像ユニットが有するリングライトの概略的な構成を示す断面図及び平面図である。FIG. 6 is a cross-sectional view and a plan view illustrating a schematic configuration of a ring light included in the imaging unit. 図7は、加工ノズルの下面を撮像した撮像画像の一例を示す模式図である。FIG. 7 is a schematic diagram illustrating an example of a captured image obtained by imaging the lower surface of the processing nozzle. 図8は、一実施形態の加工ノズル検査装置の一部を構成する画像処理装置の内部構成例を示すブロック図である。FIG. 8 is a block diagram illustrating an example of the internal configuration of an image processing apparatus that constitutes a part of the processing nozzle inspection apparatus according to the embodiment. 図9は、加工ノズルの穴が良好であるときと良好でないときとで、穴の複数の位置で半径を計測する場合の例を示す図である。FIG. 9 is a diagram illustrating an example in which the radius is measured at a plurality of positions of the hole depending on whether the hole of the machining nozzle is good or not. 図10は、複数の加工ノズルを選択して、穴の半径の標準偏差と、標準偏差を半径で除算した値と、標準偏差を穴の面積で除算した値を調べた結果を示す図である。FIG. 10 is a diagram showing the results of selecting a plurality of machining nozzles and examining the standard deviation of the hole radius, the value obtained by dividing the standard deviation by the radius, and the value obtained by dividing the standard deviation by the area of the hole. . 図11は、撮像ユニットがインナーノズルの穴を撮像するときの加工ノズルと撮像ユニットとの位置関係を示す斜視図である。FIG. 11 is a perspective view showing the positional relationship between the processing nozzle and the imaging unit when the imaging unit images the hole of the inner nozzle. 図12は、加工ノズル検査装置がアウターノズル及びアウターノズルの双方を検査するとき、撮像ユニットが有するリングライトの好ましい構成を示す断面図及び平面図である。FIG. 12 is a cross-sectional view and a plan view showing a preferred configuration of a ring light included in the imaging unit when the processing nozzle inspection device inspects both the outer nozzle and the outer nozzle. 図13は、2つの撮像ユニットによってレーザ光の位置または径を検査する場合の構成例を示す斜視図である。FIG. 13 is a perspective view illustrating a configuration example when the position or diameter of laser light is inspected by two imaging units.
 以下、一実施形態の加工ノズル検査装置及び方法について、添付図面を参照して説明する。まず、図1を用いて、一実施形態の加工ノズル検査装置を備えるレーザ加工機の構成例を説明する。ここでは、レーザ加工機が金属の材料を切断加工する加工機である場合を例とする。 Hereinafter, a processing nozzle inspection apparatus and method according to an embodiment will be described with reference to the accompanying drawings. First, a configuration example of a laser processing machine including a processing nozzle inspection device according to an embodiment will be described with reference to FIG. Here, a case where the laser processing machine is a processing machine that cuts a metal material is taken as an example.
 図1において、レーザ加工機100は、レーザ光LBを生成して射出するレーザ発振器11と、レーザ加工ユニット15と、レーザ光LBをレーザ加工ユニット15へと伝送するプロセスファイバ12とを備える。レーザ加工機100は、レーザ発振器11より射出されたレーザ光LBによって、金属の材料(被加工材)の一例である板材W1を切断加工する。 1, the laser processing machine 100 includes a laser oscillator 11 that generates and emits a laser beam LB, a laser processing unit 15, and a process fiber 12 that transmits the laser beam LB to the laser processing unit 15. The laser processing machine 100 cuts and processes a plate material W1 that is an example of a metal material (material to be processed) by the laser beam LB emitted from the laser oscillator 11.
 レーザ発振器11は、例えばファイバレーザ発振器である。レーザ発振器11は、ダイレクトダイオードレーザ発振器(DDL発振器)等の他のレーザ発振器であってもよい。プロセスファイバ12は、レーザ加工ユニット15に配置されたX軸及びY軸のケーブルダクト(図示せず)に沿って装着されている。 The laser oscillator 11 is, for example, a fiber laser oscillator. The laser oscillator 11 may be another laser oscillator such as a direct diode laser oscillator (DDL oscillator). The process fiber 12 is mounted along X-axis and Y-axis cable ducts (not shown) arranged in the laser processing unit 15.
 レーザ加工ユニット15は、板材W1を載せる加工テーブル21と、加工テーブル21上でX軸方向に移動自在である門型のX軸キャリッジ22と、X軸キャリッジ22上でX軸に垂直なY軸方向に移動自在であるY軸キャリッジ23とを有する。また、レーザ加工ユニット15は、Y軸キャリッジ23に固定されたコリメータユニット24を有する。 The laser processing unit 15 includes a processing table 21 on which the plate material W1 is placed, a portal X-axis carriage 22 that is movable in the X-axis direction on the processing table 21, and a Y-axis that is perpendicular to the X-axis on the X-axis carriage 22 And a Y-axis carriage 23 that is movable in the direction. The laser processing unit 15 has a collimator unit 24 fixed to the Y-axis carriage 23.
 コリメータユニット24は、プロセスファイバ12の出力端から射出されたレーザ光LBを平行光化して略平行光束とするコリメートレンズ25と、略平行光束に変換されたレーザ光LBをX軸及びY軸に垂直なZ軸方向下方に向けて反射させるベンドミラー26とを有する。また、コリメータユニット24は、ベンドミラー26で反射したレーザ光LBを集光させる集光レンズ27と、加工ヘッド28とを有する。 The collimator unit 24 collimates the laser light LB emitted from the output end of the process fiber 12 into a parallel light to make a substantially parallel light beam, and the laser light LB converted into a substantially parallel light beam on the X axis and the Y axis. And a bend mirror 26 that reflects downward in the vertical Z-axis direction. The collimator unit 24 includes a condenser lens 27 that condenses the laser light LB reflected by the bend mirror 26 and a processing head 28.
 集光レンズ27は、図示していないアクチュエータまたはモータ等の移動機構によって、X軸及びY軸方向に移動自在に構成されている。焦点位置を補正するために、集光レンズ27がZ軸方向に移動自在に構成されていてもよい。焦点位置を補正するために、コリメートレンズ25がX軸方向に移動するように構成されていてもよい。 The condenser lens 27 is configured to be movable in the X-axis and Y-axis directions by a moving mechanism such as an actuator or a motor (not shown). In order to correct the focal position, the condenser lens 27 may be configured to be movable in the Z-axis direction. In order to correct the focal position, the collimating lens 25 may be configured to move in the X-axis direction.
 加工ヘッド28の先端には、加工ノズル29が装着されている。加工ノズル29は、加工ヘッド28に対して着脱自在である。一例として、加工ヘッド28の先端の内周面には雌ねじが形成され、加工ノズル29の外周面には雄ねじが形成され、加工ノズル29が加工ヘッド28の先端にねじ止めされている。 A processing nozzle 29 is attached to the tip of the processing head 28. The processing nozzle 29 is detachable from the processing head 28. As an example, a female screw is formed on the inner peripheral surface of the tip of the processing head 28, a male screw is formed on the outer peripheral surface of the processing nozzle 29, and the processing nozzle 29 is screwed to the tip of the processing head 28.
 コリメートレンズ25、ベンドミラー26、集光レンズ27、加工ヘッド28は、予め光軸が調整された状態でコリメータユニット24内に固定されている。 The collimator lens 25, the bend mirror 26, the condenser lens 27, and the processing head 28 are fixed in the collimator unit 24 with the optical axis adjusted in advance.
 コリメータユニット24は、Y軸方向に移動自在のY軸キャリッジ23に固定され、Y軸キャリッジ23は、X軸方向に移動自在のX軸キャリッジ22に設けられている。よって、レーザ加工ユニット15は、加工ヘッド28から射出されるレーザ光LBを板材W1に照射する位置を、X軸方向及びY軸方向に移動させることができる。 The collimator unit 24 is fixed to a Y-axis carriage 23 movable in the Y-axis direction, and the Y-axis carriage 23 is provided on an X-axis carriage 22 movable in the X-axis direction. Therefore, the laser processing unit 15 can move the position of irradiating the plate material W1 with the laser beam LB emitted from the processing head 28 in the X-axis direction and the Y-axis direction.
 以上の構成によって、レーザ加工機100は、レーザ発振器11より射出されたレーザ光LBをプロセスファイバ12によってレーザ加工ユニット15へと伝送させ、板材W1に照射して板材W1を切断加工することができる。 With the above configuration, the laser processing machine 100 can transmit the laser beam LB emitted from the laser oscillator 11 to the laser processing unit 15 through the process fiber 12 and irradiate the plate material W1 to cut the plate material W1. .
 なお、板材W1を切断加工するとき、板材W1には溶融物を除去するためのアシストガスが噴射される。図1では、アシストガスを噴射する構成については図示を省略している。 When cutting the plate material W1, an assist gas for removing the melt is injected onto the plate material W1. In FIG. 1, the illustration of the configuration for injecting the assist gas is omitted.
 図2は、レーザ発振器11をファイバレーザ発振器11Fで構成した場合の概略的な構成を示している。図2において、複数のレーザダイオード110はそれぞれ波長λのレーザを射出する。励起コンバイナ111は、複数のレーザダイオード110より射出されたレーザを空間ビーム結合させる。 FIG. 2 shows a schematic configuration when the laser oscillator 11 is constituted by a fiber laser oscillator 11F. In FIG. 2, each of the plurality of laser diodes 110 emits a laser having a wavelength λ. The excitation combiner 111 spatially combines the laser beams emitted from the plurality of laser diodes 110.
 励起コンバイナ111より射出されたレーザは、2つのファイバブラッググレーティング(FBG)112,114間のYbドープファイバ113に入射される。Ybドープファイバ113とは、コアに希土類のYb(イッテルビウム)元素が添加されたファイバである。 The laser emitted from the excitation combiner 111 is incident on the Yb-doped fiber 113 between the two fiber Bragg gratings (FBGs) 112 and 114. The Yb-doped fiber 113 is a fiber in which a rare earth Yb (ytterbium) element is added to the core.
 Ybドープファイバ113に入射されたレーザは、FBG112,114間で往復を繰り返し、FBG114からは、波長λとは異なる概ね1060nm~1080nmの波長λ’(1μm帯)のレーザが射出される。FBG114から射出されたレーザは、フィーディングファイバ115及びビームカップラ116を介してプロセスファイバ12に入射される。ビームカップラ116は、レンズ1161,1162を有する。 The laser incident on the Yb-doped fiber 113 repeats reciprocation between the FBGs 112 and 114, and a laser having a wavelength λ ′ (1 μm band) of approximately 1060 nm to 1080 nm, which is different from the wavelength λ, is emitted from the FBG 114. The laser emitted from the FBG 114 is incident on the process fiber 12 via the feeding fiber 115 and the beam coupler 116. The beam coupler 116 includes lenses 1161 and 1162.
 なお、プロセスファイバ12は1本の光ファイバで構成されており、板材W1に照射されるまで、プロセスファイバ12で伝送されるレーザが他のレーザと合成されることはない。 Note that the process fiber 12 is composed of one optical fiber, and the laser transmitted through the process fiber 12 is not combined with other lasers until the plate material W1 is irradiated.
 図1に戻り、レーザ加工機100には、加工テーブル21の端部に隣接して、撮像ユニット30が設けられている。撮像ユニット30は、一実施形態の加工ノズル検査装置の一部を構成する。撮像ユニット30は、加工ノズル29を自動的に交換するノズルチェンジャに設けられていてもよいし、ノズルチェンジャとは独立して設けられていてもよい。 1, the laser processing machine 100 is provided with an imaging unit 30 adjacent to the end of the processing table 21. The imaging unit 30 constitutes a part of the processing nozzle inspection device of one embodiment. The imaging unit 30 may be provided in a nozzle changer that automatically replaces the processing nozzle 29 or may be provided independently of the nozzle changer.
 加工ノズル29が良好であるか否かを検査する際、NC装置50は、X軸キャリッジ22及びY軸キャリッジ23を移動させて、加工ヘッド28を撮像ユニット30上に位置させる。NC装置50は、レーザ光LBを射出するようレーザ発振器11を制御する。NC装置50は、撮像ユニット30を制御することがある。 When inspecting whether or not the processing nozzle 29 is good, the NC device 50 moves the X-axis carriage 22 and the Y-axis carriage 23 to position the processing head 28 on the imaging unit 30. The NC device 50 controls the laser oscillator 11 to emit the laser beam LB. The NC device 50 may control the imaging unit 30.
 撮像ユニット30は、レーザ光LBを射出する加工ノズル29を下面より撮像する。加工ノズル29の下面を撮像した画像信号S30は、画像処理装置40に供給される。画像処理装置40は、一実施形態の加工ノズル検査装置の一部を構成する。画像処理装置40は入力された画像信号S30に基づいて、加工ノズル29が良好であるか否かを判定する。 The imaging unit 30 images the processing nozzle 29 that emits the laser beam LB from the lower surface. An image signal S30 obtained by imaging the lower surface of the processing nozzle 29 is supplied to the image processing device 40. The image processing device 40 constitutes a part of the processing nozzle inspection device of one embodiment. The image processing device 40 determines whether or not the processing nozzle 29 is good based on the input image signal S30.
 画像処理装置40は、加工ノズル29が良好であるか否かを示す判定信号S40をNC装置50に供給する。判定信号S40の詳細は後述する。NC装置50は、判定信号S40に基づいて、モニタ60に判定結果を表示することができる。画像処理装置40が、加工ノズル29が不良であると判定したとき、NC装置50がモニタ60に加工ノズル29が不良である旨を示す警告情報を表示することができる。 The image processing apparatus 40 supplies the NC apparatus 50 with a determination signal S40 indicating whether or not the processing nozzle 29 is good. Details of the determination signal S40 will be described later. The NC device 50 can display the determination result on the monitor 60 based on the determination signal S40. When the image processing apparatus 40 determines that the machining nozzle 29 is defective, the NC apparatus 50 can display warning information indicating that the machining nozzle 29 is defective on the monitor 60.
 次に、加工ノズル29の具体的な形状を説明する。加工ノズル29は、シングルノズルと称されている図3に示す加工ノズル29sであってもよいし、ダブルノズルと称されている図4に示す加工ノズル29wであってもよい。 Next, the specific shape of the processing nozzle 29 will be described. The processing nozzle 29 may be the processing nozzle 29s shown in FIG. 3 called a single nozzle or the processing nozzle 29w shown in FIG. 4 called a double nozzle.
 図3に示すように、加工ノズル29sの下面292には、レーザ光LBを射出する真円の穴291が形成されている。下面292は、レーザ光LBを射出する射出面である。レーザ光LBは、穴291より外部へと射出される。レーザ光LBは、穴291の中心を通って射出されることが好ましい。 As shown in FIG. 3, a perfect hole 291 for emitting the laser beam LB is formed on the lower surface 292 of the processing nozzle 29s. The lower surface 292 is an emission surface that emits the laser beam LB. The laser beam LB is emitted from the hole 291 to the outside. The laser beam LB is preferably emitted through the center of the hole 291.
 図4に示すように、加工ノズル29wは、アウターノズル29w1と、アウターノズル29w1の内部に装着されたインナーノズル29w2とを有する。図4では図示されていないが、アウターノズル29w1の内周面とインナーノズル29w2の外周面との間には、部分的に、アシストガスを板材W1へと噴射するための空隙が形成されている。 As shown in FIG. 4, the processing nozzle 29w includes an outer nozzle 29w1 and an inner nozzle 29w2 mounted inside the outer nozzle 29w1. Although not shown in FIG. 4, a gap for injecting the assist gas to the plate material W1 is partially formed between the inner peripheral surface of the outer nozzle 29w1 and the outer peripheral surface of the inner nozzle 29w2. .
 アウターノズル29w1の下面292には、レーザ光LBを射出する真円の穴291が形成されている。インナーノズル29w2の下面294には、レーザ光LBを射出する真円の穴293が形成されている。レーザ光LBは、穴293より射出し、穴291より外部へと射出される。レーザ光LBは、穴291及び293双方の中心を通って射出されることが好ましい。 A perfect hole 291 for emitting the laser beam LB is formed on the lower surface 292 of the outer nozzle 29w1. A circular hole 293 for emitting the laser beam LB is formed on the lower surface 294 of the inner nozzle 29w2. The laser beam LB is emitted from the hole 293 and emitted from the hole 291 to the outside. The laser beam LB is preferably emitted through the centers of both holes 291 and 293.
 図5を用いて、撮像ユニット30の具体的な構成例を説明する。撮像ユニット30は、半透過ミラー31と、スクリーン32と、リングライト33と、可視光透過反射ミラー34と、ビームダンパ35と、カメラ36とを有する。ビームダンパ35は側板37に固定されており、カメラ36は側板37に連結されている。半透過ミラー31と、スクリーン32と、リングライト33と、可視光透過反射ミラー34は、所定の位置決め機構によって位置決めされて固定されている。 A specific configuration example of the imaging unit 30 will be described with reference to FIG. The imaging unit 30 includes a semi-transmissive mirror 31, a screen 32, a ring light 33, a visible light transmission / reflection mirror 34, a beam damper 35, and a camera 36. The beam damper 35 is fixed to the side plate 37, and the camera 36 is connected to the side plate 37. The semi-transmissive mirror 31, the screen 32, the ring light 33, and the visible light transmitting / reflecting mirror 34 are positioned and fixed by a predetermined positioning mechanism.
 カメラ36は可視光を撮像する一般的な可視光カメラでよい。カメラ36は、内部に、CCDまたはCMOSよりなる撮像素子と、複数のレンズを含む。カメラ36は、焦点位置を調整可能であってもよい。 The camera 36 may be a general visible light camera that captures visible light. The camera 36 includes an image pickup element made of CCD or CMOS and a plurality of lenses. The camera 36 may be adjustable in focus position.
 図5は、カメラ36の視野の中央に加工ノズル29が位置した状態を示している。撮像ユニット30の位置は固定であるから、NC装置50は、加工ノズル29がカメラ36の視野の中央に位置するよう、予め登録した座標位置に加工ヘッド28を移動させればよい。 FIG. 5 shows a state in which the processing nozzle 29 is located at the center of the field of view of the camera 36. Since the position of the imaging unit 30 is fixed, the NC device 50 may move the machining head 28 to a coordinate position registered in advance so that the machining nozzle 29 is located at the center of the field of view of the camera 36.
 加工ノズル29の穴291より射出したレーザ光LBは、半透過ミラー31によって一部が透過して、スクリーン32に入射する。半透過ミラー31は、残りのレーザ光LBを反射させる。スクリーン32は、レーザ光LBを可視光に変換する。なお、スクリーン32はレーザ光LBの一部を可視光に変換するため、スクリーン32からは可視光及び変換されなかったレーザ光LBが射出される。スクリーン32がレーザ光LBを可視光に変換することによって、レーザ光LBをカメラ36で撮像することができる。 The laser beam LB emitted from the hole 291 of the processing nozzle 29 is partially transmitted by the semi-transmissive mirror 31 and enters the screen 32. The semi-transmissive mirror 31 reflects the remaining laser light LB. The screen 32 converts the laser beam LB into visible light. Since the screen 32 converts part of the laser light LB into visible light, the visible light and the unconverted laser light LB are emitted from the screen 32. The screen 32 converts the laser beam LB into visible light, so that the laser beam LB can be captured by the camera 36.
 一例として、株式会社住田光学ガラスのナノ結晶含有ガラス(YAGLASS-T)をスクリーン32として用いることができる。 As an example, nanocrystal-containing glass (YAGLASS-T) manufactured by Sumita Optical Glass Co., Ltd. can be used as the screen 32.
 カメラ36として、可視光及び近赤外光に感度を有して、可視光及び近赤外光双方の画像を撮像することができるカメラを用いれば、レーザ光LBを可視光に変換するスクリーン32を設ける必要はない。レーザ光LBを可視光に変換するスクリーン32の代わりに、スクリーン32として例えば石英ガラス板を用いてもよいし、スクリーン32を削除してもよい。 If a camera having sensitivity to visible light and near-infrared light and capable of capturing both visible light and near-infrared light is used as the camera 36, the screen 32 converts the laser light LB into visible light. There is no need to provide. Instead of the screen 32 that converts the laser beam LB into visible light, for example, a quartz glass plate may be used as the screen 32, or the screen 32 may be omitted.
 また、可視光カメラの代わりに、カメラ36を、近赤外光を撮像する近赤外光カメラとしてもよい。この場合も、レーザ光LBを可視光に変換するスクリーン32を設ける必要はない。 Further, instead of the visible light camera, the camera 36 may be a near-infrared light camera that images near-infrared light. Also in this case, it is not necessary to provide the screen 32 for converting the laser beam LB into visible light.
 半透過ミラー31は、レーザ光LBの強度がスクリーン32の耐光強度以下となるようレーザ光LBを減衰させるために配置されている。半透過ミラー31の上面でレーザ光LBを95%程度反射させるとよい。半透過ミラー31は、加工ノズル29とリングライト33との間のクリアランスを保つ働きも有する。 The semi-transmissive mirror 31 is arranged to attenuate the laser beam LB so that the intensity of the laser beam LB is equal to or lower than the light resistance of the screen 32. The laser beam LB may be reflected by about 95% on the upper surface of the semi-transmissive mirror 31. The semi-transmissive mirror 31 also has a function of maintaining a clearance between the processing nozzle 29 and the ring light 33.
 半透過ミラー31以外でレーザ光LBを減衰させてもよく、任意の減衰部材を用いてもよい。半透過ミラー31にレーザ光LBを可視光に変換する作用を持たせ、スクリーン32を削除してもよい。レーザ光LBを安定的に低出力で射出させる場合には、半透過ミラー31を省略してもよい。 The laser beam LB may be attenuated by other than the semi-transmissive mirror 31, and an arbitrary attenuation member may be used. The translucent mirror 31 may have an action of converting the laser beam LB into visible light, and the screen 32 may be omitted. When the laser beam LB is stably emitted at a low output, the semi-transmissive mirror 31 may be omitted.
 加工ノズル29の先端からリングライト33までの距離は5mm以内とすることが好ましい。このようにすると、スクリーン32によって可視光に変換されたレーザ光LBと、加工ノズル29の下面292との双方を焦点のずれが少なく良好に撮像することができる。 The distance from the tip of the processing nozzle 29 to the ring light 33 is preferably within 5 mm. In this way, both the laser beam LB converted into visible light by the screen 32 and the lower surface 292 of the processing nozzle 29 can be favorably imaged with little focus shift.
 半透過ミラー31で反射したレーザ光LBがレーザ発振器11へと戻らないように、半透過ミラー31を傾けてもよい。但し、半透過ミラー31を大きく傾けると、加工ノズル29の先端からリングライト33までの距離を5mm以内とすることができない。そこで、半透過ミラー31の面をレーザ光LBの進行方向に対して直交させるか、10度以内の角度で傾斜させるのがよい。 The semi-transmissive mirror 31 may be tilted so that the laser beam LB reflected by the semi-transmissive mirror 31 does not return to the laser oscillator 11. However, if the semi-transmissive mirror 31 is tilted greatly, the distance from the tip of the processing nozzle 29 to the ring light 33 cannot be within 5 mm. Therefore, it is preferable to make the surface of the semi-transmissive mirror 31 orthogonal to the traveling direction of the laser beam LB or to incline it at an angle of 10 degrees or less.
 レーザ光LBが100W程度の強度であれば、半透過ミラー31の面をレーザ光LBの進行方向に対して直交させても構わない。半透過ミラー31を曲面として、半透過ミラー31で反射したレーザ光LBを拡散させるようにしてもよい。 If the laser beam LB has an intensity of about 100 W, the surface of the semi-transmissive mirror 31 may be orthogonal to the traveling direction of the laser beam LB. The semi-transmissive mirror 31 may be a curved surface, and the laser beam LB reflected by the semi-transmissive mirror 31 may be diffused.
 図6(a)の断面図及び図6(b)の平面図に示すように、リングライト33は、周方向に並べられた複数の発光ダイオード等の光源331を有する。リングライト33の上面には円形の開口332が形成されており、下面には開口332よりも小さい円形の開口334が形成されている。リングライト33の内部には、傾斜面333が形成されている。 As shown in the cross-sectional view of FIG. 6A and the plan view of FIG. 6B, the ring light 33 has a plurality of light sources 331 such as light emitting diodes arranged in the circumferential direction. A circular opening 332 is formed on the upper surface of the ring light 33, and a circular opening 334 smaller than the opening 332 is formed on the lower surface. An inclined surface 333 is formed inside the ring light 33.
 それぞれの光源331は円の中心方向に光を射出する。リングライト33は、開口332を介して、光源331からの直接光及び傾斜面333での反射光を加工ノズル29の下面に照射して加工ノズル29の下面を照明する。このように、リングライト33は、加工ノズル29の下面292に光を斜め方向から照射するように構成されている。 Each light source 331 emits light toward the center of the circle. The ring light 33 illuminates the lower surface of the processing nozzle 29 by irradiating the lower surface of the processing nozzle 29 with direct light from the light source 331 and reflected light from the inclined surface 333 through the opening 332. As described above, the ring light 33 is configured to irradiate the lower surface 292 of the processing nozzle 29 from an oblique direction.
 リングライト33は、加工ノズル29の下面を照明するライトの一例である。加工ノズル29の下面を照明しなくても加工ノズル29の下面を良好に撮像できる場合には、ライトを省略してもよい。但し、ライトを設ける方がよい。 The ring light 33 is an example of a light that illuminates the lower surface of the processing nozzle 29. If the lower surface of the processing nozzle 29 can be favorably imaged without illuminating the lower surface of the processing nozzle 29, the light may be omitted. However, it is better to provide a light.
 スクリーン32によって変換された可視光及び変換されなかったレーザ光LBは、リングライト33の下面に形成された開口334より射出し、可視光透過反射ミラー34に入射する。可視光透過反射ミラー34は可視光を透過させ、レーザ光LBの進行方向が90度折れ曲がるようにレーザ光LBを反射させる。 The visible light converted by the screen 32 and the laser light LB not converted are emitted from the opening 334 formed on the lower surface of the ring light 33 and enter the visible light transmitting / reflecting mirror 34. The visible light transmitting / reflecting mirror 34 transmits visible light and reflects the laser light LB so that the traveling direction of the laser light LB is bent 90 degrees.
 可視光透過反射ミラー34で反射したレーザ光LBは、ビームダンパ35に入射する。ビームダンパ35は入射したレーザ光LBを熱に変換してレーザ光LBを吸収する。可視光透過反射ミラー34でレーザ光LBを反射させることによって、レーザ光LBがカメラ36に入射することを防ぐことができる。カメラ36には、スクリーン32によって可視光に変換されたレーザ光LBのみが入射する。 The laser beam LB reflected by the visible light transmitting / reflecting mirror 34 enters the beam damper 35. The beam damper 35 converts the incident laser beam LB into heat and absorbs the laser beam LB. By reflecting the laser beam LB with the visible light transmitting / reflecting mirror 34, it is possible to prevent the laser beam LB from entering the camera 36. Only the laser beam LB converted into visible light by the screen 32 enters the camera 36.
 以上のようにして、撮像ユニット30は、加工ノズル29の下面292と、穴291より射出する可視光に変換されたレーザ光LBのスポットを撮像する。 As described above, the imaging unit 30 images the spot of the laser beam LB converted into visible light emitted from the lower surface 292 of the processing nozzle 29 and the hole 291.
 図5では、カメラ36をレーザ光LBの進行方向と平行に配置しているが、カメラ36をレーザ光LBの進行方向と直交するように配置してもよい。この場合、可視光透過反射ミラー34を透過した可視光の進行方向をミラーで90度曲げて、カメラ36に入射するよう構成すればよい。 In FIG. 5, the camera 36 is arranged in parallel with the traveling direction of the laser beam LB, but the camera 36 may be arranged so as to be orthogonal to the traveling direction of the laser beam LB. In this case, the traveling direction of visible light transmitted through the visible light transmitting / reflecting mirror 34 may be configured to be incident on the camera 36 after being bent by 90 degrees with the mirror.
 図7は、カメラ36が加工ノズル29の下面292を撮像した撮像画像36iの一例を模式的に示している。図7において、円形の画像領域291iは穴291を示し、画像領域292iは下面292を示している。画像領域295iは、板材W1の加工中に発生するスパッタが下面292に付着することによって下面292に形成された凸状の変形領域を示している。画像領域296iは、板材W1の加工中に発生するスパッタが下面292に当たることによって下面292に形成された凹状の変形領域を示している。下面292に、凸状の変形領域または凹状の変形領域の一方のみが形成されることもある。 FIG. 7 schematically illustrates an example of a captured image 36 i obtained by the camera 36 imaging the lower surface 292 of the processing nozzle 29. In FIG. 7, a circular image area 291 i indicates a hole 291, and an image area 292 i indicates a lower surface 292. The image region 295i indicates a convex deformation region formed on the lower surface 292 by the spatter generated during the processing of the plate material W1 adhering to the lower surface 292. The image region 296i shows a concave deformation region formed on the lower surface 292 when the sputter generated during processing of the plate material W1 hits the lower surface 292. Only one of a convex deformation region or a concave deformation region may be formed on the lower surface 292.
 図7に示すように、下面292は画像領域295i及び296iで示される変形領域を除き比較的暗く表示されている。画像領域291iの周囲の白い円297iは、下面292の穴291側の端部を示している。画像領域291iのほぼ中心にレーザ光LBのスポットを示すスポット画像Spiが位置している。なお、レーザ光LBのスポットの位置は、穴291の中心からずれることがあるため、スポット画像Spiは画像領域291iの中心に位置しないことがある。 As shown in FIG. 7, the lower surface 292 is displayed relatively dark except for the deformation areas indicated by the image areas 295i and 296i. A white circle 297i around the image area 291i indicates an end of the lower surface 292 on the hole 291 side. A spot image Spi indicating the spot of the laser beam LB is located at substantially the center of the image area 291i. Since the spot position of the laser beam LB may deviate from the center of the hole 291, the spot image Spi may not be positioned at the center of the image area 291 i.
 上記のように、リングライト33からの光を加工ノズル29の下面292に斜め方向から当てると、下面292は比較的暗くなって全体的に暗い画像領域292iが表示され、画像領域291iの周囲に白い円297iが表示されやすくなる。加工ノズル29の下面292に光を直交する方向から当てると、下面292が全体的に明るくなって、画像領域291iの周囲の白い円297iが判別しにくくなる。よって、加工ノズル29の下面292に光を斜め方向から当てるのがよい。 As described above, when the light from the ring light 33 is applied to the lower surface 292 of the processing nozzle 29 from an oblique direction, the lower surface 292 becomes relatively dark and an overall dark image region 292i is displayed, and the image region 291i is white around the image region 291i. The circle 297i is easily displayed. When light is applied to the lower surface 292 of the processing nozzle 29 from a direction perpendicular to the processing nozzle 29, the lower surface 292 becomes bright as a whole, and the white circle 297i around the image region 291i becomes difficult to distinguish. Therefore, it is preferable to apply light to the lower surface 292 of the processing nozzle 29 from an oblique direction.
 図7に示すような撮像画像36iを示す画像信号S30は、画像処理装置40に供給される。図8に示すように、画像処理装置40は、画像信号S30をデジタル信号に変換するA/D変換器41と、評価値算出部42と、判定部43とを有する。画像処理装置40を、パーソナルコンピュータまたはマイクロプロセッサで構成してもよい。撮像ユニット30内にA/D変換器を設けて、撮像ユニット30がデジタル画像信号を画像処理装置40に供給してもよい。 7 is supplied to the image processing apparatus 40. The image signal S30 indicating the captured image 36i as shown in FIG. As illustrated in FIG. 8, the image processing apparatus 40 includes an A / D converter 41 that converts the image signal S30 into a digital signal, an evaluation value calculation unit 42, and a determination unit 43. The image processing apparatus 40 may be configured by a personal computer or a microprocessor. An A / D converter may be provided in the imaging unit 30, and the imaging unit 30 may supply a digital image signal to the image processing device 40.
 評価値算出部42は、図7に示すような撮像画像36iに基づいて、加工ノズル29の穴291の形状を評価するための評価値を算出する。図9(a)は穴291がほぼ真円で形状が良好である状態、図9(b)は穴が変形して真円ではなくなり、形状が良好でない状態を概念的に示している。 The evaluation value calculation unit 42 calculates an evaluation value for evaluating the shape of the hole 291 of the processing nozzle 29 based on the captured image 36i as shown in FIG. FIG. 9A conceptually shows a state where the hole 291 is almost a perfect circle and has a good shape, and FIG. 9B conceptually shows a state where the hole is deformed and is not a perfect circle and the shape is not good.
 評価値算出部42は、図9(a)及び(b)に示すように、撮像画像36iの中心36cから複数の位置で円形の画像領域291iの半径r1~r8を計測する。カメラ36の視野の中央に加工ノズル29を位置させるので、中心36cは機械的に画像領域291iのほぼ中央に位置する。図9(a)及び(b)は、半径を8箇所で計測するよう図示しているが、計測箇所は8箇所に限定されず、任意の複数箇所で半径を計測すればよい。 The evaluation value calculation unit 42 measures the radii r1 to r8 of the circular image region 291i at a plurality of positions from the center 36c of the captured image 36i as shown in FIGS. 9 (a) and 9 (b). Since the processing nozzle 29 is positioned at the center of the field of view of the camera 36, the center 36c is mechanically positioned approximately at the center of the image area 291i. 9A and 9B illustrate that the radius is measured at eight locations, the number of measurement locations is not limited to eight, and the radius may be measured at an arbitrary plurality of locations.
 評価値算出部42は、8箇所で計測した半径のばらつきを示す値を算出する。評価値算出部42は、直径のばらつきを示す値を算出してもよい。評価値算出部42は、一例として、8箇所で計測した半径の標準偏差を求めればよい。評価値算出部42は、画像領域291iの面積を算出する。評価値算出部42は、半径r1~r8の平均値に基づいて画像領域291iの面積を算出してもよいし、画像領域291iの画素数に基づいて画像領域291iの面積を算出してもよい。 The evaluation value calculation unit 42 calculates a value indicating a variation in radius measured at eight locations. The evaluation value calculation unit 42 may calculate a value indicating a variation in diameter. For example, the evaluation value calculation unit 42 may obtain the standard deviation of the radii measured at eight locations. The evaluation value calculation unit 42 calculates the area of the image region 291i. The evaluation value calculation unit 42 may calculate the area of the image region 291i based on the average value of the radii r1 to r8, or may calculate the area of the image region 291i based on the number of pixels of the image region 291i. .
 評価値算出部42は、半径のばらつきを示す値を面積で除算して、画像領域291i(即ち、穴291)の評価値を算出する。半径のばらつきを示す値を画像領域291iの半径(半径r1~r8の平均値)の2乗、直径の2乗、円周の2乗のいずれかで除算した値を評価値としてもよい。評価値算出部42は、半径のばらつきを示す値を画像領域291iの面積に比例する値で除算して評価値を算出すればよい。 The evaluation value calculation unit 42 calculates an evaluation value of the image area 291i (that is, the hole 291) by dividing the value indicating the variation in radius by the area. The evaluation value may be a value obtained by dividing the value indicating the variation in radius by the square of the radius of the image area 291i (the average value of the radii r1 to r8), the square of the diameter, or the square of the circumference. The evaluation value calculation unit 42 may calculate an evaluation value by dividing a value indicating a variation in radius by a value proportional to the area of the image region 291i.
 加工ノズル29には複数の種類があり、それらは異なる径の穴291を有することがある。穴291の径が小さい加工ノズル29における穴291の変形の許容度と、穴291の径が大きい加工ノズル29における穴291の変形の許容度とは異なる。よって、半径または直径のばらつきを示す値を画像領域291iの面積に比例する値で除算した評価値を用いることによって、穴291の径にかかわらず加工ノズル29が良好であるか否かを的確に判定することが可能となる。 There are a plurality of types of processing nozzles 29, and they may have holes 291 of different diameters. The tolerance of deformation of the hole 291 in the machining nozzle 29 having a small diameter of the hole 291 is different from the tolerance of deformation of the hole 291 in the machining nozzle 29 having a large diameter of the hole 291. Therefore, by using an evaluation value obtained by dividing a value indicating a variation in radius or diameter by a value proportional to the area of the image region 291i, it is accurately determined whether the processing nozzle 29 is good regardless of the diameter of the hole 291. It becomes possible to judge.
 図10(a)は、加工ノズル29における穴291の径が1.2mmから7mmの範囲で無作為に22個の加工ノズル29を選んだときの、画像領域291iの半径の標準偏差を示している。図10(a)の横軸は加工ノズル29に便宜上付した加工ノズル番号、縦軸は標準偏差である。標準偏差の単位はmmである。 FIG. 10A shows the standard deviation of the radius of the image area 291i when 22 machining nozzles 29 are selected at random in the range of the diameter of the hole 291 in the machining nozzle 29 from 1.2 mm to 7 mm. Yes. In FIG. 10A, the horizontal axis represents the machining nozzle number assigned to the machining nozzle 29 for convenience, and the vertical axis represents the standard deviation. The unit of standard deviation is mm.
 ×で示すノズル番号1~10,12,14の加工ノズル29は複数回使用済みで、実際の切断加工で加工不良が発生した加工ノズル、●で示すノズル番号11,13,15~18の加工ノズル29は複数回使用済みで、実際の切断加工で良好であった加工ノズル、〇で示すノズル番号19~22の加工ノズル29は新品の加工ノズルである。 Machining nozzles 29 with nozzle numbers 1 to 10, 12, and 14 indicated by × have been used a plurality of times, and processing nozzles in which processing defects have occurred in actual cutting, and processing of nozzle numbers 11, 13, 15 to 18 indicated by ● The nozzle 29 has been used a plurality of times and was good in actual cutting, and the processing nozzles 29 having nozzle numbers 19 to 22 indicated by ◯ are new processing nozzles.
 図10(a)では、標準偏差の値が0.4mmを超える加工ノズル29は全て標準偏差の値を0.4mmとしている。図10(a)に示すように、×で示す加工不良が発生した加工ノズル29も標準偏差が低い値を示すことが多く、加工ノズル29の良否を判定することができない。 10A, all the processing nozzles 29 having a standard deviation value exceeding 0.4 mm have a standard deviation value of 0.4 mm. As shown in FIG. 10A, the machining nozzle 29 in which the machining defect indicated by “x” occurs often has a low standard deviation, and the quality of the machining nozzle 29 cannot be determined.
 図10(b)は、図10(a)における縦軸を、標準偏差を半径で除算した標準偏差/半径に変更したものである。標準偏差/半径は単位なしである。図10(b)では、標準偏差/半径の値が10を超える加工ノズル29は全て標準偏差/半径の値を10としている。図10(a)よりも図10(b)の方が、加工不良が発生した加工ノズル29と加工が良好であった加工ノズル29とを区別しやすいが、両者の境界が曖昧である。 FIG. 10 (b) is obtained by changing the vertical axis in FIG. 10 (a) to the standard deviation / radius obtained by dividing the standard deviation by the radius. Standard deviation / radius is unitless. In FIG. 10B, all the processing nozzles 29 whose standard deviation / radius value exceeds 10 have a standard deviation / radius value of 10. In FIG. 10B, it is easier to distinguish between the processing nozzle 29 in which the processing defect has occurred and the processing nozzle 29 in which the processing has been good than in FIG. 10A, but the boundary between the two is ambiguous.
 図10(c)は、図10(a)における縦軸を、標準偏差を面積で除算した標準偏差/面積に変更したものである。標準偏差/面積の単位はmm-1である。図10(b)と図10(c)との比較を容易にするため、縦軸の値を同じ値としている。図10(c)によれば、加工不良が発生した一部の加工ノズル29が、加工が良好であった加工ノズル29と同様の値を示すことがあるものの、加工不良が発生した加工ノズル29と加工が良好であった加工ノズル29とを区別しやすい。 FIG. 10C shows a case where the vertical axis in FIG. 10A is changed to standard deviation / area obtained by dividing the standard deviation by the area. The unit of standard deviation / area is mm- 1 . In order to facilitate the comparison between FIG. 10B and FIG. 10C, the values on the vertical axis are the same. According to FIG. 10 (c), although some of the machining nozzles 29 in which machining defects have occurred may show the same value as the machining nozzle 29 in which machining has been good, the machining nozzles 29 in which machining defects have occurred It is easy to distinguish the processing nozzle 29 from which the processing was good.
 図10(c)において、例えば縦軸の値5の位置に太実線で示す境界線を引いている。加工不良が発生した加工ノズル29と加工が良好であった加工ノズル29との境界が図10(b)よりも明確となり、両者の境界を認識しやすくなる。 In FIG. 10C, for example, a border line indicated by a bold solid line is drawn at the position of value 5 on the vertical axis. The boundary between the processing nozzle 29 in which the processing failure has occurred and the processing nozzle 29 in which the processing has been good becomes clearer than in FIG. 10B, and the boundary between both becomes easy to recognize.
 図8に戻り、判定部43には、図10(c)に示す境界線に相当する閾値が設定されており、判定部43は評価値算出部42で求めた評価値と閾値とを比較して、加工ノズル29が良好であるか不良であるかを示す判定信号S40を生成して出力する。前述のように、NC装置50は、判定信号S40に基づいて、モニタ60に判定結果を表示することができる。 Returning to FIG. 8, a threshold value corresponding to the boundary line shown in FIG. 10C is set in the determination unit 43, and the determination unit 43 compares the evaluation value obtained by the evaluation value calculation unit 42 with the threshold value. Thus, a determination signal S40 indicating whether the processing nozzle 29 is good or bad is generated and output. As described above, the NC device 50 can display the determination result on the monitor 60 based on the determination signal S40.
 NC装置50は、判定信号S40が不良であることを示すとき、ノズルチェンジャを制御して、加工ノズル29を自動的に交換するように構成してもよい。 The NC device 50 may be configured to automatically replace the machining nozzle 29 by controlling the nozzle changer when the determination signal S40 indicates a failure.
 NC装置50は、板材W1の加工条件で設定している加工ノズル29の穴291の径を示す情報を画像処理装置40に供給してもよい。画像処理装置40は、加工条件が示す穴291の径と撮像画像36iに基づいて推定した穴291の径とが異なるとき、その旨を示す判定信号をNC装置50に供給してよい。NC装置50は、モニタ60に、加工ヘッド28に装着されている加工ノズル29が加工条件で設定されている加工ノズル29と異なる旨を示す警告情報を表示してもよい。 The NC device 50 may supply the image processing device 40 with information indicating the diameter of the hole 291 of the processing nozzle 29 set in the processing conditions of the plate material W1. When the diameter of the hole 291 indicated by the processing condition is different from the diameter of the hole 291 estimated based on the captured image 36i, the image processing device 40 may supply a determination signal indicating that to the NC device 50. The NC device 50 may display warning information indicating that the machining nozzle 29 attached to the machining head 28 is different from the machining nozzle 29 set in the machining conditions on the monitor 60.
 評価値算出部42は、他の算出方法によって算出した評価値を用いてもよい。評価値算出部42は、半径のばらつきを示す値を画像領域291iの面積に比例する値で除算した値を評価値とする代わりに、次のようにして穴291の形状の良否を判定する評価値を算出してもよい。 Evaluation value calculation unit 42 may use an evaluation value calculated by another calculation method. Evaluation value calculation unit 42 evaluates the quality of the shape of hole 291 as follows instead of using the value obtained by dividing the value indicating the variation in radius by the value proportional to the area of image area 291i as the evaluation value. A value may be calculated.
 評価値算出部42は、形状が良好な穴291の形状データを標準形状データとして保持しておき、標準形状データと画像領域291iの形状データとをパターンマッチングさせ、両者の乖離の程度を平均二乗誤差によって求めて評価値としてもよい。形状データは、形状を特定するための複数の位置における複数点を示すデータでよい。 The evaluation value calculation unit 42 holds the shape data of the hole 291 having a good shape as the standard shape data, pattern-matches the standard shape data and the shape data of the image area 291i, and calculates the degree of divergence between them as the mean square. An evaluation value may be obtained by an error. The shape data may be data indicating a plurality of points at a plurality of positions for specifying the shape.
 具体的には、比較する1つの位置における乖離の程度をδとし、比較する位置の数をnとすると、評価値算出部42は、δの二乗の総和を(n-1)で除算して平方根を求めて、評価値とすることができる。平均二乗誤差mは式(1)で表され、乖離の程度をδは比較する位置をXn及びYnとすると、式(2)で表される。式(1)におけるiは1~nである。式(2)におけるX0及びY0は、標準形状データの位置である。 Specifically, assuming that the degree of deviation at one position to be compared is δ and the number of positions to be compared is n, the evaluation value calculation unit 42 divides the sum of the squares of δ by (n−1). A square root can be calculated | required and it can be set as an evaluation value. The mean square error m is expressed by equation (1), and the degree of deviation δ is expressed by equation (2) where Xn and Yn are the positions to be compared. In the formula (1), i is 1 to n. X0 and Y0 in Equation (2) are the positions of the standard shape data.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 パターンマッチングを用いて評価値を算出する方法では、穴291の形状が楕円等の真円以外の形状であっても、形状が良好であるか否かを判定することができる。 In the method of calculating the evaluation value using pattern matching, it is possible to determine whether the shape is good even if the shape of the hole 291 is a shape other than a perfect circle such as an ellipse.
 以上のようにして、加工ノズル29が良好であることが判定されれば、穴291の中央にレーザ光LBを位置させるよう調整すればよい。NC装置50が撮像画像36iをモニタ60に表示して、オペレータがモニタ60を見ながら手動で集光レンズ27を移動させて、レーザ光LBが穴291の中央に位置するように調整してもよい。NC装置50が、画像領域291iの中心にスポット画像Spiが位置するように自動的に調整してもよい。 As described above, if it is determined that the processing nozzle 29 is good, the laser beam LB may be adjusted to be positioned at the center of the hole 291. Even if the NC device 50 displays the captured image 36 i on the monitor 60 and the operator manually moves the condenser lens 27 while looking at the monitor 60, the laser beam LB is adjusted to be positioned at the center of the hole 291. Good. The NC device 50 may automatically adjust so that the spot image Spi is positioned at the center of the image area 291i.
 画像処理装置40は、スポット画像Spiの大きさを評価してもよい。NC装置50は、集光レンズ27をZ軸方向に移動させて、スポット画像Spiが最も小さくなるようZ軸方向の位置を調整し、レーザ光LBの焦点位置を調整するように構成してもよい。 The image processing apparatus 40 may evaluate the size of the spot image Spi. The NC device 50 may be configured to move the condenser lens 27 in the Z-axis direction, adjust the position in the Z-axis direction so that the spot image Spi is minimized, and adjust the focal position of the laser beam LB. Good.
 以上のように、本実施形態の加工ノズル検査装置は、加工ノズル29の穴291が変形しているか否かを判定することによって、加工ノズル29が良好であるか否かを検査する。加工ノズル29がダブルノズルの加工ノズル29wである場合には、本実施形態の加工ノズル検査装置は、インナーノズル29w2の穴293が変形しているか否かを判定することによって、加工ノズル29が良好であるか否かを検査することも可能である。 As described above, the processing nozzle inspection device of this embodiment inspects whether the processing nozzle 29 is good by determining whether the hole 291 of the processing nozzle 29 is deformed. When the processing nozzle 29 is a double-nozzle processing nozzle 29w, the processing nozzle inspection device of this embodiment determines whether the processing nozzle 29 is good by determining whether or not the hole 293 of the inner nozzle 29w2 is deformed. It is also possible to inspect whether or not.
 加工ノズル29が図4に示す加工ノズル29wであるとき、加工ノズル検査装置は、加工ノズル29の穴291及び293が変形しているか否かを判定して、加工ノズル29が良好であるか否かを検査することが好ましい。 When the processing nozzle 29 is the processing nozzle 29w shown in FIG. 4, the processing nozzle inspection device determines whether or not the holes 291 and 293 of the processing nozzle 29 are deformed, and whether or not the processing nozzle 29 is good. It is preferable to check whether or not.
 図11は、撮像ユニット30が、インナーノズル29w2の穴293を撮像するときの加工ノズル29と撮像ユニット30との位置関係を示している。撮像ユニット30がインナーノズル29w2の穴293を撮像するときには、図11に示すように、加工ノズル29の先端からリングライト33までの距離を図5の状態よりも長くし、5mmを超える距離とするのがよい。 FIG. 11 shows the positional relationship between the processing nozzle 29 and the imaging unit 30 when the imaging unit 30 images the hole 293 of the inner nozzle 29w2. When the imaging unit 30 images the hole 293 of the inner nozzle 29w2, as shown in FIG. 11, the distance from the tip of the processing nozzle 29 to the ring light 33 is longer than the state of FIG. Is good.
 即ち、撮像ユニット30が下面292を撮像するときには、下面292から撮像ユニット30までの距離を比較的短い第1の距離とする。撮像ユニット30がインナーノズル29w2を撮像するときには、下面292から撮像ユニット30までの距離を第1の距離より長い第2の距離とする。 That is, when the imaging unit 30 images the lower surface 292, the distance from the lower surface 292 to the imaging unit 30 is set to a relatively short first distance. When the imaging unit 30 images the inner nozzle 29w2, the distance from the lower surface 292 to the imaging unit 30 is a second distance that is longer than the first distance.
 NC装置50は、アウターノズル29w1の穴291を撮影するときには、加工ノズル29をリングライト33に近付けるよう加工ヘッド28のZ軸方向の位置を制御すればよい。NC装置50は、インナーノズル29w2の穴293を撮像するときには、加工ノズル29をリングライト33からやや遠ざけるよう加工ヘッド28のZ軸方向の位置を制御すればよい。加工ノズル29を上下動させる代わりに、撮像ユニット30を上下動させてもよい。 The NC device 50 may control the position of the machining head 28 in the Z-axis direction so as to bring the machining nozzle 29 closer to the ring light 33 when photographing the hole 291 of the outer nozzle 29w1. The NC device 50 may control the position of the machining head 28 in the Z-axis direction so as to move the machining nozzle 29 slightly away from the ring light 33 when imaging the hole 293 of the inner nozzle 29w2. Instead of moving the processing nozzle 29 up and down, the imaging unit 30 may be moved up and down.
 加工ノズル検査装置がアウターノズル29w1及びインナーノズル29w2の双方を検査するとき、撮像ユニット30は、アウターノズル29w1を照明するための光源と、インナーノズル29w2を照明するための光源とを個別に備えることが好ましい。 When the processing nozzle inspection device inspects both the outer nozzle 29w1 and the inner nozzle 29w2, the imaging unit 30 includes a light source for illuminating the outer nozzle 29w1 and a light source for illuminating the inner nozzle 29w2. Is preferred.
 図12は、アウターノズル29w1を照明するための光源と、インナーノズル29w2を照明するための光源とを個別に備えるリングライト33の構成例を示している。図12において、図6と同一部分には同一符号を付し、その説明を書略する。 FIG. 12 shows a configuration example of the ring light 33 individually including a light source for illuminating the outer nozzle 29w1 and a light source for illuminating the inner nozzle 29w2. In FIG. 12, the same parts as those in FIG. 6 are denoted by the same reference numerals, and the description thereof is omitted.
 図12(a)の断面図及び図12(b)の平面図に示すように、リングライト33は、開口332の近傍に周方向に並べられ、アウターノズル29w1を照明するための複数の光源331と、開口334の近傍に周方向に並べられ、インナーノズル29w2照明するための複数の光源335とを有する。光源335も例えば発光ダイオードである。光源335は、光源331よりも、加工ノズル29から離れた方向で、加工ノズル29の中心に近い位置に配置されている。 As shown in the sectional view of FIG. 12A and the plan view of FIG. 12B, the ring light 33 is arranged in the circumferential direction in the vicinity of the opening 332 and includes a plurality of light sources 331 for illuminating the outer nozzle 29w1. And a plurality of light sources 335 arranged in the circumferential direction in the vicinity of the opening 334 for illuminating the inner nozzle 29w2. The light source 335 is also a light emitting diode, for example. The light source 335 is disposed at a position closer to the center of the processing nozzle 29 in a direction farther from the processing nozzle 29 than the light source 331.
 NC装置50は、加工ノズル検査装置がアウターノズル29w1を検査するときには光源331を点灯させるよう制御し、インナーノズル29w2を検査するときには光源335を点灯させるよう制御する。 The NC device 50 controls to turn on the light source 331 when the processing nozzle inspection device inspects the outer nozzle 29w1, and controls to turn on the light source 335 when inspecting the inner nozzle 29w2.
 図12に示すようなアウターノズル29w1用の光源331と、インナーノズル29w2用の光源335とを備えると、アウターノズル29w1の下面292とインナーノズル29w2の下面294とをそれぞれ的確に照明することができる。 When the light source 331 for the outer nozzle 29w1 and the light source 335 for the inner nozzle 29w2 are provided as shown in FIG. .
 画像処理装置40は、上述した加工ノズル29の穴291が変形しているか否かを判定するときと同様に、インナーノズル29w2の穴293が変形しているか否かを判定すればよい。判定部43には、アウターノズル29w1の穴291用の閾値とは別にインナーノズル29w2の穴293用の閾値が設定されていてもよい。 The image processing apparatus 40 may determine whether or not the hole 293 of the inner nozzle 29w2 is deformed in the same manner as when determining whether or not the hole 291 of the processing nozzle 29 is deformed. In the determination unit 43, a threshold value for the hole 293 of the inner nozzle 29w2 may be set separately from the threshold value for the hole 291 of the outer nozzle 29w1.
 画像処理装置40が加工ノズル29(アウターノズル29w1)の穴291を検査するときに算出した評価値を第1の評価値、インナーノズル29w2の穴293を検査するときに算出した評価値を第2の評価値とする。画像処理装置40は、第1及び第2の評価値に基づいて穴291及び293の形状が良好であるか否かを判定し、いずれか一方でも良好でなければ、加工ノズル29は不良であると判定すればよい。 The evaluation value calculated when the image processing device 40 inspects the hole 291 of the processing nozzle 29 (outer nozzle 29w1) is the first evaluation value, and the evaluation value calculated when the image processing device 40 inspects the hole 293 of the inner nozzle 29w2 is the second. The evaluation value of The image processing apparatus 40 determines whether or not the shape of the holes 291 and 293 is good based on the first and second evaluation values, and if either one is not good, the processing nozzle 29 is defective. Can be determined.
 図13に示すように、2つのカメラ36をレーザ光LBの射出方向と直交するように、互いに異なる角度で配置して、射出されるレーザ光LBの位置またはレーザ光LBの径を検査するように構成することもできる。2つのカメラ36は、レーザ光LBを可視光に変換するスクリーン32をスクリーン32の側面方向から撮影する。画像処理装置40またはNC装置50は、2つのカメラ36による撮像画像に基づいて、レーザ光LBの位置または径を検査すればよい。 As shown in FIG. 13, the two cameras 36 are arranged at different angles so as to be orthogonal to the emission direction of the laser beam LB, and the position of the emitted laser beam LB or the diameter of the laser beam LB is inspected. It can also be configured. The two cameras 36 photograph the screen 32 that converts the laser beam LB into visible light from the side surface direction of the screen 32. The image processing device 40 or the NC device 50 may inspect the position or diameter of the laser beam LB based on the images captured by the two cameras 36.
 図13において、加工ノズル29の先端からレーザ光LBのビームウエストまでの距離を計測し、焦点位置を求めてもよい。 In FIG. 13, the distance from the tip of the processing nozzle 29 to the beam waist of the laser beam LB may be measured to obtain the focal position.
 本発明は以上説明した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。 The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the present invention.
 本発明は、被加工材を切断または溶接するレーザ加工機で利用できる。 The present invention can be used in a laser processing machine that cuts or welds workpieces.

Claims (13)

  1.  レーザ加工機が備える加工ヘッドの先端に装着された加工ノズルにおけるレーザ光の射出面を、前記射出面に形成された第1の穴よりレーザ光を射出した状態で撮像する撮像ユニットと、
     前記撮像ユニットが前記射出面を撮像した撮像画像に基づいて、前記第1の穴を示す第1の画像領域の複数の位置における半径または直径のばらつきを示す値を算出し、前記ばらつきを示す値を前記第1の画像領域の面積に比例する値で除算し、前記第1の穴の形状を評価するための第1の評価値を算出して、前記第1の評価値に基づいて前記加工ノズルが良好であるか否かを判定する画像処理装置と、
     を備えることを特徴とするレーザ加工機における加工ノズル検査装置。
    An imaging unit that captures an image of a laser light exit surface of a processing nozzle attached to a tip of a processing head included in the laser processing machine in a state in which laser light is emitted from a first hole formed in the exit surface;
    Based on a captured image obtained by imaging the exit surface by the imaging unit, a value indicating a variation in radius or diameter at a plurality of positions of the first image region indicating the first hole is calculated, and the value indicating the variation Is divided by a value proportional to the area of the first image region, a first evaluation value for evaluating the shape of the first hole is calculated, and the processing is performed based on the first evaluation value. An image processing apparatus for determining whether or not the nozzle is good,
    A processing nozzle inspection device in a laser processing machine, comprising:
  2.  前記撮像ユニットは、前記射出面を照明するライトを備えることを特徴とする請求項1に記載のレーザ加工機における加工ノズル検査装置。 The processing nozzle inspection apparatus in a laser processing machine according to claim 1, wherein the imaging unit includes a light that illuminates the exit surface.
  3.  前記撮像ユニットは、前記加工ノズルと前記ライトとの間に配置され、前記第1の穴より射出したレーザ光の一部を透過させ、残りのレーザ光を反射させる半透過ミラーを備えることを特徴とする請求項2に記載のレーザ加工機における加工ノズル検査装置。 The imaging unit includes a semi-transmissive mirror that is disposed between the processing nozzle and the light and transmits a part of the laser light emitted from the first hole and reflects the remaining laser light. The processing nozzle inspection apparatus in the laser processing machine according to claim 2.
  4.  前記撮像ユニットは、前記加工ノズルと前記ライトとの間に配置され、レーザ光の少なくとも一部を可視光に変換するスクリーンを備えることを特徴とする請求項2または3に記載のレーザ加工機における加工ノズル検査装置。 4. The laser processing machine according to claim 2, wherein the imaging unit includes a screen that is disposed between the processing nozzle and the light and converts at least part of the laser light into visible light. 5. Processing nozzle inspection device.
  5.  前記撮像ユニットは、前記スクリーンによって変換された可視光を透過させ、可視光に変換されなかったレーザ光を反射させる可視光透過反射ミラーを備えることを特徴とする請求項4に記載のレーザ加工機における加工ノズル検査装置。 The laser processing machine according to claim 4, wherein the imaging unit includes a visible light transmitting / reflecting mirror that transmits visible light converted by the screen and reflects laser light that has not been converted to visible light. Processing nozzle inspection device.
  6.  前記加工ノズルは、前記射出面を有するアウターノズルの内部に、レーザ光を射出する第2の穴を有するインナーノズルが装着されたダブルノズルであり、
     前記撮像ユニットは、前記インナーノズルを、前記第2の穴よりレーザ光を射出した状態で撮像し、
     前記画像処理装置は、前記撮像ユニットが前記インナーノズルを撮像した撮像画像に基づいて、前記第2の穴を示す第2の画像領域の複数の位置における半径または直径のばらつきを示す値を算出し、前記ばらつきを示す値を前記第2の画像領域の面積に比例する値で除算し、前記第2の穴の形状を評価するための第2の評価値を算出して、前記第2の評価値に基づいて前記加工ノズルが良好であるか否かを判定する
     ことを特徴とする請求項1に記載のレーザ加工機における加工ノズル検査装置。
    The processing nozzle is a double nozzle in which an inner nozzle having a second hole for emitting laser light is mounted inside an outer nozzle having the emission surface,
    The imaging unit images the inner nozzle in a state where laser light is emitted from the second hole,
    The image processing device calculates a value indicating a variation in radius or diameter at a plurality of positions in a second image region indicating the second hole, based on a captured image obtained by capturing the inner nozzle by the imaging unit. The second evaluation value is calculated by dividing the value indicating the variation by a value proportional to the area of the second image region to calculate a second evaluation value for evaluating the shape of the second hole. It is determined whether the said process nozzle is favorable based on a value. The process nozzle test | inspection apparatus in the laser processing machine of Claim 1 characterized by the above-mentioned.
  7.  前記撮像ユニットが前記射出面を撮像するときには、前記射出面から前記撮像ユニットまでの距離を第1の距離とし、前記撮像ユニットが前記インナーノズルを撮像するときには、前記射出面から前記撮像ユニットまでの距離を前記第1の距離より長い第2の距離とすることを特徴とする請求項6に記載のレーザ加工機における加工ノズル検査装置。 When the imaging unit images the emission surface, the distance from the emission surface to the imaging unit is a first distance, and when the imaging unit images the inner nozzle, the distance from the emission surface to the imaging unit. The processing nozzle inspection device in the laser processing machine according to claim 6, wherein the distance is a second distance longer than the first distance.
  8.  前記撮像ユニットは、前記アウターノズルを照明するための光源と、前記インナーノズルを照明するための光源とを個別に有するライトを備えることを特徴とする請求項6または7に記載のレーザ加工機における加工ノズル検査装置。 8. The laser processing machine according to claim 6, wherein the imaging unit includes a light individually having a light source for illuminating the outer nozzle and a light source for illuminating the inner nozzle. Processing nozzle inspection device.
  9.  撮像ユニットによって、レーザ加工機が備える加工ヘッドの先端に装着された加工ノズルにおけるレーザ光の射出面を、前記射出面に形成された第1の穴よりレーザ光を射出した状態で撮像し、
     前記撮像ユニットが前記射出面を撮像した撮像画像に基づいて、前記第1の穴を示す第1の画像領域の複数の位置における半径または直径のばらつきを示す値を算出し、
     前記ばらつきを示す値を前記第1の画像領域の面積に比例する値で除算して、前記第1の穴の形状を評価するための第1の評価値を算出し、
     前記第1の評価値に基づいて前記加工ノズルが良好であるか否かを判定する
     ことを特徴とするレーザ加工機における加工ノズル検査方法。
    The imaging unit captures an image of the laser light exit surface of the processing nozzle attached to the tip of the processing head provided in the laser processing machine in a state in which the laser light is emitted from the first hole formed in the exit surface,
    Based on a captured image obtained by imaging the exit surface by the imaging unit, a value indicating a variation in radius or diameter at a plurality of positions of the first image region indicating the first hole is calculated;
    Dividing the value indicating the variation by a value proportional to the area of the first image region to calculate a first evaluation value for evaluating the shape of the first hole;
    It is determined whether the said process nozzle is favorable based on a said 1st evaluation value. The process nozzle inspection method in the laser processing machine characterized by the above-mentioned.
  10.  前記撮像ユニットは可視光カメラを備え、前記撮像ユニットは、レーザ光の少なくとも一部を可視光に変換したレーザ光のスポットを撮像することを特徴とする請求項9に記載のレーザ加工機における加工ノズル検査方法。 The processing in the laser beam machine according to claim 9, wherein the imaging unit includes a visible light camera, and the imaging unit images a spot of the laser beam obtained by converting at least a part of the laser beam into visible light. Nozzle inspection method.
  11.  前記加工ノズルは、前記射出面を有するアウターノズルの内部に、レーザ光を射出する第2の穴を有するインナーノズルが装着されたダブルノズルであり、
     前記撮像ユニットは、前記インナーノズルを、前記第2の穴よりレーザ光を射出した状態で撮像し、
     前記撮像ユニットが前記インナーノズルを撮像した撮像画像に基づいて、前記第2の穴を示す第2の画像領域の複数の位置における半径または直径のばらつきを示す値を算出し、
     前記ばらつきを示す値を前記第2の画像領域の面積に比例する値で除算して、前記第2の穴の形状を評価するための第2の評価値を算出し、
     前記第2の評価値に基づいて前記加工ノズルが良好であるか否かを判定する
     ことを特徴とする請求項9または10に記載のレーザ加工機における加工ノズル検査方法。
    The processing nozzle is a double nozzle in which an inner nozzle having a second hole for emitting laser light is mounted inside an outer nozzle having the emission surface,
    The imaging unit images the inner nozzle in a state where laser light is emitted from the second hole,
    Based on a captured image obtained by imaging the inner nozzle by the imaging unit, a value indicating a variation in radius or diameter at a plurality of positions in the second image region indicating the second hole is calculated.
    Dividing the value indicating the variation by a value proportional to the area of the second image region to calculate a second evaluation value for evaluating the shape of the second hole;
    11. The machining nozzle inspection method for a laser beam machine according to claim 9, wherein whether or not the machining nozzle is good is determined based on the second evaluation value.
  12.  前記撮像ユニットが前記射出面を撮像するときには、前記射出面から前記撮像ユニットまでの距離を第1の距離とし、前記撮像ユニットが前記インナーノズルを撮像するときには、前記射出面から前記撮像ユニットまでの距離を前記第1の距離より長い第2の距離とすることを特徴とする請求項11に記載のレーザ加工機における加工ノズル検査方法。 When the imaging unit images the emission surface, the distance from the emission surface to the imaging unit is a first distance, and when the imaging unit images the inner nozzle, the distance from the emission surface to the imaging unit. The machining nozzle inspection method for a laser beam machine according to claim 11, wherein the distance is a second distance longer than the first distance.
  13.  前記撮像ユニットが前記射出面を撮像するときには、前記アウターノズルを照明するための第1の光源より射出された光で前記アウターノズルを照明し、前記撮像ユニットが前記インナーノズルを撮像するときには、前記第1の光源よりも前記加工ノズルから離れた位置にある第2の光源より射出された光で前記インナーノズルを照明することを特徴とする請求項11または12に記載のレーザ加工機における加工ノズル検査方法。 When the imaging unit images the emission surface, the outer nozzle is illuminated with light emitted from a first light source for illuminating the outer nozzle, and when the imaging unit images the inner nozzle, 13. The processing nozzle in a laser processing machine according to claim 11 or 12, wherein the inner nozzle is illuminated with light emitted from a second light source located farther from the processing nozzle than the first light source. Inspection method.
PCT/JP2016/088812 2016-02-22 2016-12-27 Device and method for inspecting a processing nozzle in a laser processing machine WO2017145518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016006470.5T DE112016006470B4 (en) 2016-02-22 2016-12-27 PROCESSING NOZZLE TESTING DEVICE AND PROCESSING NOZZLE TESTING METHOD FOR A LASER PROCESSING MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016030773A JP6121016B1 (en) 2016-02-22 2016-02-22 Processing nozzle inspection apparatus and method in laser processing machine
JP2016-030773 2016-02-22

Publications (1)

Publication Number Publication Date
WO2017145518A1 true WO2017145518A1 (en) 2017-08-31

Family

ID=58666603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088812 WO2017145518A1 (en) 2016-02-22 2016-12-27 Device and method for inspecting a processing nozzle in a laser processing machine

Country Status (3)

Country Link
JP (1) JP6121016B1 (en)
DE (1) DE112016006470B4 (en)
WO (1) WO2017145518A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070055A1 (en) * 2017-10-06 2019-04-11 株式会社アマダホールディングス Laser processing method and device
JP2019069470A (en) * 2017-10-06 2019-05-09 株式会社アマダホールディングス Laser processing method and laser processing device
WO2022080394A1 (en) * 2020-10-14 2022-04-21 株式会社アマダ Laser processing device and nozzle inspection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895353B2 (en) * 2017-09-19 2021-06-30 株式会社アマダ Laser processing equipment
JP6592547B2 (en) * 2018-03-12 2019-10-16 株式会社アマダホールディングス Laser beam centering method and laser processing apparatus
JP6630763B2 (en) * 2018-03-12 2020-01-15 株式会社アマダホールディングス Nozzle centering device and nozzle centering method in laser processing machine
JP7394440B2 (en) 2019-09-26 2023-12-08 株式会社寺岡精工 Inspection equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168885A (en) * 1995-12-20 1997-06-30 Mitsubishi Electric Corp Laser beam machine and its machining method
JP2005334922A (en) * 2004-05-26 2005-12-08 Yamazaki Mazak Corp Nozzle checking device in laser beam machine
JP2010149159A (en) * 2008-12-25 2010-07-08 Komatsu Ntc Ltd Laser beam machining method and laser beam machining apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214174B3 (en) * 2013-07-19 2015-01-08 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for determining a state of wear of a cutting nozzle and laser processing machine for carrying out the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09168885A (en) * 1995-12-20 1997-06-30 Mitsubishi Electric Corp Laser beam machine and its machining method
JP2005334922A (en) * 2004-05-26 2005-12-08 Yamazaki Mazak Corp Nozzle checking device in laser beam machine
JP2010149159A (en) * 2008-12-25 2010-07-08 Komatsu Ntc Ltd Laser beam machining method and laser beam machining apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070055A1 (en) * 2017-10-06 2019-04-11 株式会社アマダホールディングス Laser processing method and device
JP2019069470A (en) * 2017-10-06 2019-05-09 株式会社アマダホールディングス Laser processing method and laser processing device
JP2019217552A (en) * 2017-10-06 2019-12-26 株式会社アマダホールディングス Laser processing method and laser processing device
CN111201108A (en) * 2017-10-06 2020-05-26 株式会社天田控股集团 Laser processing method and apparatus
US11052489B2 (en) 2017-10-06 2021-07-06 Amada Holdings Co., Ltd. Method for laser processing
CN111201108B (en) * 2017-10-06 2021-08-17 株式会社天田控股集团 Laser processing method and apparatus
WO2022080394A1 (en) * 2020-10-14 2022-04-21 株式会社アマダ Laser processing device and nozzle inspection method

Also Published As

Publication number Publication date
JP2017148814A (en) 2017-08-31
JP6121016B1 (en) 2017-04-26
DE112016006470B4 (en) 2020-03-12
DE112016006470T5 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6121016B1 (en) Processing nozzle inspection apparatus and method in laser processing machine
JP6253221B2 (en) OPTICAL MEASURING DEVICE FOR MONITORING JOINT JOINTS, JOINT HEAD AND LASER WELDING HEAD HAVING SAME MEASURING DEVICE
US9610729B2 (en) Device and method for performing and monitoring a plastic laser transmission welding process
JP6754439B2 (en) Methods and equipment for monitoring joint seams during laser beam junctions
US9644950B2 (en) Shape measuring apparatus and point sensor positioning unit
JP5711899B2 (en) Alignment adjustment method, alignment adjustment apparatus, and laser processing apparatus provided with alignment adjustment apparatus
US11007608B2 (en) Laser machining device warning of anomaly in external optical system before laser machining
CN113439002B (en) Laser processing system for processing a workpiece by means of a laser beam and method for controlling a laser processing system
JP6487617B2 (en) Defect inspection method and defect inspection apparatus for microlens array
JP2007278705A (en) Inner surface inspection device using slit light
US20230241710A1 (en) Method for Analyzing a Workpiece Surface for a Laser Machining Process and Analysis Device for Analyzing a Workpiece Surface
JP6547514B2 (en) Measuring device
JP6907862B2 (en) Internal surface inspection device for pipes
WO2019176786A1 (en) Laser light centering method and laser processing device
JP2006292513A (en) Refractive index distribution measuring method for refractive index distribution type lens
JP6252178B2 (en) Shape measuring device, posture control device, structure manufacturing system, and shape measuring method
JP6676910B2 (en) Inspection device
JP2009229221A (en) Optical device defect inspection method and optical device defect inspecting apparatus
JPH1183465A (en) Surface inspecting method and device therefor
JP2005345425A (en) Visual inspection device, and ultraviolet light lighting system
JP2020056620A (en) Shape measuring device, structure manufacturing system, shape measuring method, fixing unit, and structure manufacturing method
JP2009109281A (en) Illumination device and visual inspecting device
JP2015219175A (en) Shape measurement device, probe, structure manufacturing system, and manufacturing method of structure
KR102197497B1 (en) Device and method for detecting alignment of laser beam
US20200038993A1 (en) Method for identifying joining points of workpieces and laser machining head comprising a device for carrying out this method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112016006470

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891673

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891673

Country of ref document: EP

Kind code of ref document: A1