WO2017143954A1 - 一种柔性复合内衬管 - Google Patents

一种柔性复合内衬管 Download PDF

Info

Publication number
WO2017143954A1
WO2017143954A1 PCT/CN2017/074104 CN2017074104W WO2017143954A1 WO 2017143954 A1 WO2017143954 A1 WO 2017143954A1 CN 2017074104 W CN2017074104 W CN 2017074104W WO 2017143954 A1 WO2017143954 A1 WO 2017143954A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
flexible composite
weight
inner liner
layer
Prior art date
Application number
PCT/CN2017/074104
Other languages
English (en)
French (fr)
Inventor
丁恺蒂
周天航
周长山
刘晓东
商海光
Original Assignee
山东柯林瑞尔管道工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东柯林瑞尔管道工程有限公司 filed Critical 山东柯林瑞尔管道工程有限公司
Publication of WO2017143954A1 publication Critical patent/WO2017143954A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/005Hoses, i.e. flexible pipes consisting completely or partially of material other than fibres, plastics or metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/22Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses with means not mentioned in the preceding groups for gripping the hose between inner and outer parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres

Definitions

  • the invention belongs to the anticorrosion field of pipelines, and is a technical measure for preventing corrosion of the inner wall of the pipeline, in particular to a flexible composite inner liner.
  • the technician invented the technology of adding the liner inside the conveying medium pipeline, so that the inner wall of the pipeline is covered by the liner of the anti-corrosion and wear-resistant material, and the conveyed medium does not directly contact the pipeline, so that the pipeline will not be corroded. And wear, which increases the service life of the pipe.
  • One of the most widely used pipe-lined composite hose technologies is currently one of them. The technology is to prepare the composite soft liner in advance, and after adding the binder (resin type) inside the composite hose, it is pulled into the pipeline by turning or pulling, and then heated by hot steam and heated by hot water.
  • the technology of compressing air and ultraviolet light machine solidifies the adhesive on the composite liner, so that the composite liner in the pipeline is rounded or closely attached to the inner wall of the pipeline to realize the pipeline lining. Since this technology has a binder as an intermediate medium, the curing time of the binder is relatively difficult to grasp, and if the temperature is too low, heating measures are taken to consume a large amount of heat energy. In addition, since the binder will flow before it is cured, if the curing time does not keep up, the inner liner will sometimes have a thick and uneven state, the inner liner is of poor quality, and the cured composite liner is connected to the pipe. It is relatively simple, so the existing composite hose lining technology lining pipe can not withstand higher pressure, can only be applied in low pressure pipe or sewage pipe, and has a problem of small use range.
  • metal pipes are buried deep underground, and are corroded by environmental conditions such as transportation media, soil, microorganisms and external atmosphere.
  • environmental conditions such as transportation media, soil, microorganisms and external atmosphere.
  • oil pipelines because of the high degree of mineralization of crude oil, contain corrosive media such as carbon dioxide and hydrogen sulfide, and corrosion perforation is particularly prominent, although various anti-corrosion measures such as corrosion inhibitor, cathodic protection and internal and external coating are used.
  • the excavation pipe repair technology can be roughly divided into three categories: one is the in-pipe coating method, the other is the hose lining method, and the third is the plastic pipe interlining method.
  • In-pipe coating method generally uses materials such as polymer, cement mortar and puree coating, and also incorporates various chemical materials, so that the lining can meet the anti-corrosion requirements of various media.
  • the hose lining method immerses the resin and the curing agent in the inverted hose, and after rolling evenly, it is placed into the old pipeline to be repaired by power such as water pressure or air pressure.
  • the water in the pipe is heated, and after the adhesive is cured, the thermosetting resin system is hardened into a "tube-in-tube".
  • HDPE tube interpenetration repair technology is to make the outer diameter larger than (O type) or slightly smaller than (U type) high density polyethylene lining of the inner diameter of the pipe to be repaired.
  • the tube is changed into an O-shape or a U-shape by a special reducing device, and the cross-section of the inner liner is reduced by 10-30%, and the liner is tightly wound by winding, shaping, pulling, and external force recovery.
  • the primary repair distance is less than 1000 meters, and can not cross the elbow;
  • HDPE also has the problem of using temperature during the process of natural gas mining and transportation. For every 100m increase in the depth of a coal mine or oil mine, the downhole temperature will increase by about 2 °C, which is a linear relationship.
  • the creep modulus of HDPE pipe decreases sharply with increasing temperature, which causes the pipe to undergo large deformation during use, resulting in instability and damage.
  • the HDPE pipe exhibit a decrease in ring stiffness and poor thermal stability, which is extremely disadvantageous for high temperature medium conveying pipes and underground construction operations.
  • the interspersed pipe is made up of three layers of pipes, which has the ability of high temperature resistance, corrosion resistance, and a penetration distance of more than 2000 meters and continuous crossing of multiple elbows.
  • Nylon (PA) is superior to HDPE in terms of mechanical strength, Vicat softening point, heat resistance and abrasion resistance.
  • the heat resistance and rigidity of the HDPE sheet can be improved by the small addition of PA.
  • the compatibility of pure PA with HDPE melt is extremely poor, which leads to a decline in the physical properties of the product.
  • Tian Li et al. added PA6 and PE-g-MAH to HDPE sheet, which increased the heat resistance temperature of the product by more than 25% from 120 °C. The tensile strength and elongation at break were also greatly improved when no compatibilizer was added.
  • Polyethylene terephthalate (PET) has high heat resistance, and He Hui et al. blend PET with HDPE. Due to the complete incompatibility between the two, ethylene-vinyl acetate (EVA) and ethylene-acrylate (EAA) were used to compatibilize the system. Although both EVA and EAA's own VSP are below 100 °C, there is some effect on the heat resistance of the blend, but the overall VSP of the blend is still 20% higher than pure HDPE.
  • HDPE-g-GMA glycidyl methacrylate
  • HDPE/PET glycidyl methacrylate
  • the method improves the tensile strength of the blend and the system compatibility becomes better.
  • the VSP is increased from 84.6 ° C to 92.8 ° C of pure HDPE.
  • HDPE glass fiber
  • GF glass fiber
  • Li Xinzhong used a two-step method to prepare HDPE masterbatch containing 30% glass fiber, and then mixed with HDPE to prepare blends with different glass fiber content. The study found that the comprehensive mechanical properties of the blends were optimal at a glass fiber content of 30%. The tensile strength is increased by 2.5 times, and the VST is increased by 6-7 °C compared with pure HDPE. Fu et al. found that fibers and polymer macromolecules were oriented in the direction of flow, which would be insufficient to enhance certain types of plastic articles.
  • Zhang Jianfu et al. designed an I-beam winding structural wall pipe made of glass fiber reinforced HDPE.
  • the tube is made of HDPE tube as the mother tube, and GF/HDPE is used as the small square tube.
  • the square tube is wrapped around the mother tube at the design interval as the intermediate layer.
  • the extruded HDPE is bonded to the wound tube as the outermost layer.
  • the finished pipe is finally obtained.
  • the pipe has a greatly improved ring stiffness and a significant improvement in temperature resistance.
  • This tube meets the requirements of downhole pipe, compared to the traditional The HDPE tube is lighter in weight under the same ring stiffness.
  • Kyung et al. prepared HDPE/MMT and HDPE/HDPE-g-MAH/MMT nanocomposites by melt blending in an extruder. Thermogravimetric analysis of the materials revealed that when the MMT content was 0.5, 1 and 2 phr, the 5% mass loss temperature was increased by 1 ° C, 8 ° C and 6 ° C compared to the pure HDPE, respectively. After the addition of 10 times HDPE-g-MAH in parts of MMT to compatibilize the system, the 5% mass loss temperature was increased by 18 ° C, 14 ° C and 10 ° C, respectively. It can be seen that MMT is beneficial to the improvement of HDPE thermal performance. Xiang Saifei et al.
  • OMMT organic montmorillonite
  • talc The theoretical unit cell formula of talc (Talcum, Talc) is 3MgO ⁇ 4SiO2 ⁇ H2O, which has low hardness and little damage to mechanical equipment. Talc is cheaper, only 10%-20% of plastic. The addition of Talc to PE improves heat resistance and rigidity, and reduces molding shrinkage and cost of the product.
  • Xu Jiannan modified the HDPE with 335 mesh and 1250 mesh Talc. It was found that the Talc of these two meshes had a significant effect on the Vicat softening point of HDPE, but the impact performance of the 1250 mesh on the HDPE was better than that of the 325 mesh Talc. It is more advantageous to improve. Zhang Xinya et al.
  • Sepiolite is a microcrystalline hydrated magnesium silicate.
  • the theoretical unit cell formula is Si12O30Mg8(OH,F)4(H2O)4 ⁇ 8H2O, which has the morphology of microfibers.
  • the average length of the particles is 2 -10 ⁇ m.
  • SEP is a structure in which the bulk and channel alternately grow along the fiber direction. The block portion is similar to the sandwich structure, and the two layers of silica tetrahedron sandwich the magnesium with oxygen and hydroxide to form an octahedral structure.
  • the sepiolite loses zeolite water at 110 ° C, loses half of the coordination water at 200-380 ° C, loses the other half of the coordination water at 400-700 ° C, dehydroxylation begins after 780 ° C, loses structural water, and the structure becomes loose. Become a stubborn pyroxene and silica. Liu Kaiping believes that due to the elimination of these three types of water, SEP can absorb a large amount of heat, so SEP can be used to increase the thermal decomposition temperature of other materials and improve heat resistance.
  • Attapulgite similar to SEP, is also a layered magnesium-containing aluminosilicate whose theoretical formula is Si8Mg5O20[Al](OH)2(OH2)4 ⁇ 4H2O.
  • PP calcium carbonate modified polypropylene
  • the middle layer is a fibrous material which can be:
  • Aramid is called "poly(p-phenylene terephthalamide)".
  • English is Aramid fiber, a new type of high-tech synthetic fiber with excellent strength, high modulus and high temperature resistance, acid and alkali resistance, light weight and so on. The performance is 5-6 times of the strength of the steel wire, the modulus is 2 to 3 times that of the steel wire or the glass fiber, the toughness is twice that of the steel wire, and the weight is only about 1/5 of the steel wire, at a temperature of 560 degrees. Does not decompose, does not melt. It has good insulation and aging resistance and has a long life cycle. The discovery of aramid is considered to be a very important historical process in the material world.
  • Nylon fiber is called polyamide fiber, which was originally produced by DuPont.
  • the trade name of dihexyldiamine is generally known as Nylon 66.
  • the most outstanding advantage of polyamide fiber is that the wear resistance is superior to other fibers, followed by its good elasticity, its elastic recovery rate is comparable to that of wool, and its light weight, specific gravity is 1.14.
  • polypropylene polypropylene, specific gravity less than 1
  • polyester fiber specific gravity 1.38
  • Nylon is the Chinese name of synthetic nylon, also known as "Nylon” and "Nylon".
  • the scientific name is polyamide fibre, which is polyamide fiber. Since Jinzhou Chemical Fiber Factory is the first factory in China to synthesize polyamide fibre, it was named “Nylon”. It is the world's first synthetic fiber variety, and has been widely used due to its excellent performance and abundant raw material resources. His strengths are strong and wear-resistant, ranking first among all fibers. Its wear resistance is 10 times that of cotton fiber, 10 times that of dry viscose fiber, and 140 times that of wet fiber. Therefore, its durability is excellent. The elastic and elastic recovery of the nylon fabric is excellent, but it is easily deformed under a small external force, so the fabric is easily wrinkled during the wearing process. Poor ventilation and easy to generate static electricity.
  • nylon fabrics The hygroscopicity of nylon fabrics is a good variety in synthetic fabrics, so garments made of nylon are more comfortable to wear than polyester garments. Has good resistance to sputum and corrosion. The heat and light resistance are not good enough, and the ironing temperature should be controlled below 140 °C. Pay attention to the conditions of washing and maintenance during wearing, so as not to damage the fabric.
  • Nylon fabric is a light fabric, which is only listed after polypropylene and acrylic fabrics in synthetic fabrics. Therefore, it is suitable for mountaineering and winter clothing.
  • TPU For the outer layer of the pipe material, we generally use the pipe grade TPU. At the room temperature, the TPU can be used in pure water for several years, and its performance has no obvious change. However, at 80 ° C, even if it is only immersed in water for several weeks, its mechanical properties will be greatly affected.
  • the hydrolytic stability of TPU is related to the structure of the soft segment. When the polyester TPU is protected by carbodiimide, the hydrolysis resistance is improved. The hydrolysis resistance of polyetherester TPU and polyether TPU is better than that at high temperature. Polyester TPU. As the hardness of the TPU increases, the hydrolytic stability of the hard segment becomes better and better as the hard segment has water repellency.
  • TPU's oil resistance (such as mineral oil, diesel, lubricating oil) is excellent.
  • Non-polar solvents such as hexane, heptane, and paraffin oil have little effect on polar polyurethanes, and even under high temperature conditions, the swelling of polyurethanes in non-polar solvents is small.
  • TPU will swell heavily in chlorinated hydrocarbons and aromatic hydrocarbons, and the degree of swelling depends on the structure of the polyurethane.
  • the polyester type has a smaller swelling than the polyether type, and the hard one has a smaller swelling than the soft one.
  • Certain polar solvents such as tetrahydrofuran, ketone or N, methylformamide are capable of partially or completely dissolving the TPU.
  • a soft all-polyurethane polyurethane can be dissolved in a ketone mixed solvent and used as a binder.
  • Polyvinyl chloride is a thermoplastic general-purpose plastic that is inexpensive, has excellent performance, and is widely used. Its application is very wide, and it is widely used in building materials, industrial products, daily necessities, floor leather, floor tiles, artificial leather, pipes, wires and cables, packaging films, foam materials, sealing materials, fibers and so on. Due to the special bead structure of PVC, it has good physical and chemical properties and biological properties. The use of PVC to modify polyurethane to have better water resistance has a certain effect.
  • the flexible composite inner liner comprises a protective layer, a reinforcing fiber layer, an anti-infiltration inner film layer, a protective layer, a reinforcing fiber layer, and an anti-seepage inner film laminated sleeve which are solidified into a cylinder.
  • the protective layer is the outer layer
  • the anti-seepage inner film layer is the inner layer
  • the reinforcing fiber layer is between the two
  • the flexible composite inner liner is lined in the pipe
  • the reinforcing fiber layer is solidified with the protective layer and the anti-seepage laminated sleeve.
  • the initial state is a diamond-shaped mesh structure. After the flexible composite inner liner is lined in the pipeline, the permanent state is a vertical mesh structure.
  • the outer sleeve is connected with the pipeline.
  • a part of the connector is inserted into the flexible composite inner liner tube, and the part of the joint exposed on the flexible composite inner liner is a connection end, and the outer wall of the joint inserted into the flexible composite inner liner has a groove, and the diameter of the groove portion is smaller than
  • the front end diameter is such that the front end of the connecting head forms a card table
  • the outer sleeve has a groove inside, the inner diameter of the groove portion is larger than the inner diameter of the two ends, and the outer sleeve is provided with a filling hole corresponding to the groove on the outer hole Irrigation
  • the hole injects the solidified material, so that the flexible composite inner liner pipe between the outer sleeve and the joint head is deformed and reduced in the outer wall groove section of the joint head by the card at the front end of the joint head, so that the flexible composite inner liner tube and the flexible composite inner liner are
  • the hole injects the solidified material,
  • the reinforcing fiber layer is an aramid reinforcing fiber layer.
  • the inner layer of the pipe that is, the anti-seepage inner film layer
  • the inner layer of the pipe is made of a high-density polyethylene material
  • the high-density polyethylene material comprises the components of the following components. :
  • the inner material of the pipe is made of a high-density polyethylene material, and the high-density polyethylene material comprises the following components of the components:
  • the high density polyethylene resin has a weight average molecular weight of from 100,000 to 200,000.
  • the inorganic nanoparticles are nano zinc oxide and/or nano magnesium oxide.
  • the talc is 400 mesh.
  • the montmorillonite is 800 mesh.
  • the sepiolite is 400 mesh.
  • the high density polyethylene grafted maleic anhydride (HDPE-g-MAH) has a graft ratio of 0.8%.
  • the ethylene-octene copolymer grafted maleic anhydride (POE-g-MAH) has a graft ratio of 0.8%.
  • the flexible composite lining pipe further comprises an intermediate layer, that is, a reinforcing fiber layer, and the intermediate layer is made of a fiber material.
  • the fibrous material is aramid glass or nylon glass.
  • the flexible composite lining pipe further comprises an outer layer, that is, a protective layer, and the outer layer is made of a polyurethane polymer material.
  • the calcium-zinc stabilizer can inhibit or neutralize the released HCl gas; the purchased calcium-zinc stabilizer is synthesized by a special compounding process mainly composed of a calcium salt, a zinc salt, a lubricant, an antioxidant and the like. It can not only replace toxic stabilizers such as lead and cadmium salts and organotins, but also has good thermal stability, light stability, transparency and tinting strength, and is used in polyvinyl chloride.
  • the polyurethane polymer material is selected from the group consisting of polyurethane 3360A/pellet, polyurethane NX-60A/pellet, polyurethane TB-82AD/pellet, polyurethane ER-80A/pellet, polyurethane Bayer 60A.
  • the weight ratio of the inner layer high density polyethylene material, the intermediate layer fiber material and the outer layer polyurethane polymer material in the flexible composite lining pipe is 1:1.1. :1.2.
  • the invention also provides a method for preparing the flexible composite inner liner by melt-kneading the respective components at a temperature of 210 ° C and a pressure of 60 MPa.
  • the method comprises melt-kneading a matrix resin and other components contained in a composition for producing a material for a flexible composite inner liner of the present invention.
  • a composition for producing a material for a flexible composite inner liner of the present invention Prior to melt-kneading, it is advantageous to mix the individual components and optional other components of the compositions of the present invention in a mixer.
  • the apparatus for performing melt kneading is conventional, and there may be mentioned an open mill, an internal mixer, a single screw extruder, a twin screw extruder, and the like.
  • the temperature of the melt-kneading is also conventional as long as the respective components of the polyvinyl chloride material of the present invention can be melt-kneaded together.
  • high-density polyethylene melt-kneading is carried out at a temperature of 220-250 ° C and an injection pressure of 60 MPa for twin-screw extrusion and injection molding.
  • the injection time is 60 s, and various properties are tested after injection molding into different splines.
  • characterization polyurethane melt-kneading extrusion molding at 160-180 ° C temperature, mold temperature control at about 60 ° C, injection pressure of 50MPa, injection time of 50s, and then performance testing and characterization.
  • the present invention also provides the flexible composite liner tube for use in the manufacture of a pipe.
  • the flexible composite lining pipe is used for water, oil, and gas pipelines.
  • the flexible composite lining pipe is used for industrial transportation of crude oil, natural gas, drinking tap water, and sewage.
  • the composition for producing the flexible composite lining repairing tube material of the present invention comprises high density polyethylene (in-tube), fiber (in-tube), and polyurethane (out-of-tube) as a base resin, that is, an essential component.
  • the fundamental reason for the improvement of temperature resistance of inorganic nanoparticles is the addition of zinc oxide. Due to the semiconductor properties of zinc oxide, when the excitation photon energy is higher than the semiconductor band gap energy, the semiconductor can absorb the energy of the photon and make it temperature resistant. increase.
  • the theoretical unit cell formula of talc is 3MgO ⁇ 4SiO2 ⁇ H2O, which has low hardness and little damage to mechanical equipment. Adding Talc to PE can improve heat resistance and rigidity, and reduce the molding shrinkage and cost of the product.
  • the mechanism of action of montmorillonite and talc is similar, which increases the temperature resistance of high density polyethylene.
  • SEP can absorb a lot of heat, so SEP can be used to increase the thermal decomposition temperature of other materials and improve heat resistance.
  • nylon 6 is better than HDPE in terms of mechanical strength, Vicat softening point, heat resistance and wear resistance.
  • PET has high heat resistance and blends with high density polyethylene to increase the temperature resistance of the blend.
  • the compatibilizer is capable of bonding the incompatible two polymers together by means of the intermolecular bonding forces, resulting in a stable blend.
  • the invention is a flexible composite inner liner. It is especially useful for water and oil transportation materials in industrial applications.
  • the material can ensure that the material itself does not change under higher temperature and pressure conditions, the temperature resistance increases, the mechanical properties change little, and the thermal performance increases.
  • the inner liner has a yield strength of 23 MPa and an elongation at break of more than 500, all conforming to the ISO standard, and the environmental stress cracking is >1000H, which meets the expected requirements.
  • the beneficial effect of the invention is that the intermediate layer of the flexible composite inner liner is made of a special structure of aramid reinforcing fiber weaving, and after the pipeline lining is completed, an initial pressing process is applied to the installed flexible composite inner liner.
  • the protective layer and the anti-seepage inner layer are gradually expanded by pressure, the structure of the entire composite hose undergoes lateral expansion and longitudinal contraction under the action of pressure, and the structure of the aramid reinforcing fiber braid layer is also constantly changed.
  • the original diamond-shaped mesh structure becomes a mutually perpendicular network structure.
  • the flexible composite inner liner is formed with a rigid structural composite pipe with a strong ring stiffness under the support of the aramid reinforcing fiber layer.
  • the connecting device designed by the invention enables the two ends of the flexible composite inner liner to be fixed on the pipeline after being solidified by the pressure injection in the annular structure, and the joint on the connecting device can be reliably connected with the other pipeline. connection. Therefore, the lining of the present invention has high quality and strong pressure bearing capability, and can be lining mounted on a high-pressure pipe, and thus the present invention enables The scope of the lining technology has been further expanded with significant economic benefits.
  • Figure 1 is an assembly view of an embodiment of the present invention
  • Figure 2 is a structural view of the member 5 of Figure 1;
  • Figure 3 is an expanded view of the member 5-2 of Figure 2.
  • the embodiment of the present invention comprises a joint head 1, an outer sleeve 2, a cured product 3, a pipe 4, a flexible composite inner liner 5, and the flexible composite inner liner 5 comprises a protective layer 5-1 and an aramid reinforcing fiber.
  • the layer 5-2, the anti-seepage inner film layer 5-3, the protective layer 5-1, the aramid reinforcing fiber layer 5-2, and the anti-seepage inner film layer 5-3 are laminated and solidified to form a cylindrical structure, and are protected.
  • the layer 5-1 is an outer layer
  • the anti-seepage inner film layer 5-3 is an inner layer
  • the aramid reinforcing fiber layer 5-2 is in between
  • the flexible composite inner liner 5 is lined in the pipe 4, and the aramid is strengthened.
  • the fiber layer 5-2 is initially a diamond-shaped mesh structure, so that the tubular flexible composite inner liner can be easily changed in shape, which facilitates the installation work without damaging its internal structure.
  • the intermediate layer of the flexible composite inner liner is changed from a diamond-shaped mesh structure to a vertical structure, and a ring stiffness is formed.
  • the outer sleeve 2 is integrally connected with the pipe 4, and a part of the joint head 1 is inserted into the flexible composite inner liner tube 5.
  • the portion of the joint head 1 exposed on the flexible composite inner liner tube 5 is a connection end, and the connection portion may be a flange, It may be a thread or other connection structure, and the outer wall of the connector 1 inserted into the flexible composite inner liner 5 has a groove, and the diameter of the groove portion is smaller than the diameter of the front end, so that the front end of the connector 1 forms a card table,
  • the sleeve 2 has a groove inside, the inner diameter of the groove portion is larger than the inner diameter of the two ends, and the outer sleeve 2 is provided with a filling hole corresponding to the groove on the outer hole, and the solidified material is poured through the pouring hole to make the outer sleeve 2
  • the flexible composite inner liner tube 5 between the joint head 1 and the outer wall groove portion of the joint head 1 is deformed and reduced
  • the strength of aramid fiber is 5-6 times that of steel wire, the modulus is 2 to 3 times that of steel wire or glass fiber, the toughness is twice that of steel wire, and the weight is only about 1/5 of steel wire.
  • Aramid fiber has high temperature resistance. Excellent performance such as acid and alkali resistance, light weight, insulation, anti-aging, long life cycle, etc.
  • the protective layer 5-1 is made of modified polyethylene material which is widely used at present, and has wear resistance and scratch resistance. Yes, its function is to protect the pipe from being damaged during transportation and interweaving operations;
  • the anti-seepage inner film layer 5-3 is a medium anti-seepage inner film layer, which can use different materials according to different media to be transported.
  • the flexible composite inner liner 5 made of the protective layer 5-1, the aramid reinforcing fiber layer 5-2 and the anti-seepage inner film layer 5-3 is light in weight and high in strength, and the total thickness is not more than 6 mm. During transportation, it can be flattened into a plate and wound on a reel, reducing the volume and facilitating transportation. After lining it in the pipeline, the pipeline has the characteristics of high temperature resistance, acid and alkali resistance, insulation, anti-aging and long production cycle.
  • the inner layer raw material of the present invention may be arbitrarily preferably high density polyethylene (HDPE) grade-YGH041, Sinopec Shanghai Petrochemical Co., Ltd.; nylon 6 slice (PA6) relative viscosity 2.75, China Petroleum & Chemical Corporation Shijiazhuang Refinery Branch Nylon 66 slice (PA66) relative viscosity 2.85, China Petroleum & Chemical Corporation Shijiazhuang Refinery Branch; PET from KRW-PET of Wuxi Juwang Plastic Chemical Co., Ltd.; Langfang Keheng Glass Fiber Products Co., Ltd.
  • HDPE high density polyethylene
  • PA6 nylon 6 slice
  • PA66 nylon 66 slice
  • High-density polyethylene grafted maleic anhydride (HDPE-g-MAH), graft ratio 0.8%, Mitsui Chemicals Co., Ltd.; ethylene-octene copolymer grafted maleic anhydride (POE-g-MAH), graft ratio 0.8%, Nanjing Shuguang Chemical Group Co., Ltd.;
  • the intermediate layer raw material of the present invention can be arbitrarily selected as the aramid glass fiber produced by Langfang Tuosheng Insulation Material Co., Ltd., which is produced by Nantong Xindike Monofilament Technology Co., Ltd.
  • the quality of the outer layer of nylon fiberglass; the outer layer of the present invention may optionally be 3360A / pellets, Bayer, Germany; NX-60A / pellets, Taiwan Gaoding Co., Ltd., TB-82AD / pellets, Taiwan Gao Ding Co., Ltd.; ER-80A/Pellet, Bangtai Polymer New Material Co., Ltd.; Bayer 60A/Pellet, Bayer, Germany; Bayer 70A/Pellet, Bayer, Germany; 1085A/Pellet, Shanghai Lubrizol Co., Ltd.; Polyvinyl chloride, S-65/powder, Formosa Plastics Industry (Ningbo) Co., Ltd.
  • Tensile performance test according to GB/T 1040-2006 test sample tensile properties, tensile speed of 50mm / min, temperature of 25 ° C;
  • Elongation at break The elongation at break is tested in accordance with the test method specified in GB/T 1040.1;
  • Peel strength Test of peel strength according to GB/T16491
  • Vicat softening point test According to GB/T1633-2000 standard, the test is carried out by A120 method. The sample to be tested is 10mm ⁇ 10mm ⁇ 4mm, the load is 10N, and the heating rate is 120°C/h.
  • Heat distortion temperature test According to the standard of GB/T1634.2-2004, the test is carried out by the B method, and the flat test is performed.
  • the sample size to be tested is 80mm ⁇ 10mm ⁇ 4mm, the heating rate is 120°C/h, and the distance between the brackets is 64mm.
  • the deflection is 0.34 mm and the bending stress is 0.45 Mpa.
  • a flexible composite lining pipe comprises an inner layer of a pipe, the inner layer of the pipe is made of a high-density polyethylene material, and the high-density polyethylene material comprises the following components of the components:
  • One part of high density polyethylene grafted maleic anhydride was used as a compatibilizer and 20 parts of ethylene-octene copolymer grafted maleic anhydride as a compatibilizer.
  • a flexible composite lining pipe comprises an inner layer of a pipe, the inner layer of the pipe is made of a high-density polyethylene material, and the high-density polyethylene material comprises the following components of the components:
  • the Vicat softening point refers to a sample of a polymer in a liquid heat transfer medium, which is pressed into a depth of 1 mm by a 1 mm2 needle under a certain load and a constant constant temperature rise condition.
  • the temperature which reflects the desired softening point when a material is used in a warming device.
  • the heat distortion temperature means that a certain load is applied to a polymer material or a polymer, and the temperature is raised at a certain speed. When the predetermined deformation is reached, the temperature corresponding to the deformation is a measure of the heat resistance of the polymer or the polymer material.
  • the Vicat softening point and the heat distortion temperature reflect the temperature resistance of the pipe lining material.
  • the low temperature impact strength reflects the toughness of the material at low temperature, and the low temperature impact strength.
  • the peel strength is the maximum force required to peel the unit width from the contact surface.
  • Example 1-24 were all enhanced compared with the pure materials.
  • the heat distortion temperature and Vicat softening point temperature of Example 3 were the highest, and the product performance was the best; the shear strength of Example 30 in Table 2 was The highest peel strength and the best product performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

一种柔性复合内衬管(5),该柔性复合内衬管(5)包括有保护层(5-1)、加强纤维层(5-2)、防渗内膜层(5-3),三层复合叠套固化成柔性复合内衬管(5),将柔性复合内衬管(5)内衬于管道(4)之中,加强纤维层(5-2)为菱形网状结构,在柔性复合内衬管(5)内衬于管道(4)内前,将连接装置的外套筒(2)与管道(4)连接成一体,连接头(1)的一部分插入柔性复合内衬管(5)内,连接头(1)露在柔性复合内衬管(5)的部分为连接端,插入柔性复合内衬管(5)内的连接头(1)的外壁上有凹槽,使连接头的前端形成卡台,外套筒(2)内部有凹槽,凹槽部位的内径大于两端内径,在外套筒(2)上设有灌注孔,此灌注孔对应其上的凹槽,经灌注孔灌注固化物(3),使处于外套筒(2)与连接头(1)之间的柔性复合内衬管(5)在连接头(1)的外壁凹槽段变形缩小直径被连接头(1)的前端的卡台卡住,使柔性复合内衬管(5)与管道(4)内衬成一体。

Description

一种柔性复合内衬管 技术领域
本发明属于管道的防腐领域,是一种防止管道内壁被腐蚀的技术措施,具体是一种柔性复合内衬管。
背景技术
为了提高管道的使用寿命技术人员发明了在输送介质管道内部加衬管的技术,使管道内壁被防腐、耐磨材料的衬管覆盖,所输送的介质不直接接触管道,使管道不会被腐蚀和磨损,从而提高管道的使用寿命。目前比较广泛采用的管道内部加衬复合软管技术就是其中一种。该技术是将复合软衬管提前制作完成后,在复合软管内部加粘结剂(树脂类)后通过翻转或经牵引拉入到管道内,然后再用热蒸汽加压、热水循环加热、压缩空气加紫外线光机等技术让复合衬管上的粘接剂固化,使管道内的复合衬管复圆或紧贴在管道的内壁上,实现管道内衬。由于这种技术有粘结剂做为中间介质,因此粘结剂的固化时间比较难以掌握,如果气温过低还要采取加温的措施为此消耗掉大量的热能。另外,由于粘结剂在没有固化前会产生流动,如果固化时间跟不上后,内衬后管道有时会出现厚薄不均匀的状态,内衬质量差,固化的复合内衬与管道的连接也比较简单,所以,现有复合软管内衬技术内衬管道不能承受较高压力,只能在低压管道或排污管道应用,存在使用范围小的问题。
金属管道作为石油、天然气、煤气、液化气等能源性介质最主要的输送媒体,常年深埋于地下,受到了来自输送介质、土壤、微生物以及外部大气等环境条件的腐蚀作用。特别是输油管道,由于输送的原油矿化度高,含有二氧化碳、硫化氢等腐蚀性介质,腐蚀穿孔情况尤为突出,尽管采用了多种防腐措施,如:加入缓蚀剂、阴极保护和内外涂层保护等,但随着时间的推移,腐蚀和腐蚀引起的强度降低、坑蚀穿孔很难避免,这些缺陷的存在将会降低金属管道运行的安全性,使其出现泄漏、被迫降压输送等现象,甚至发生爆裂,造成重大损失。目前,针对含缺陷旧金属管道的修复,已经开发出多种修复方法。不同的修复方法具有不同的特点,其中焊接补疤、套袖或更换管段等传统的修复补强方法国内外应用十分普遍,但成本较高,且会带来一系列影响管道安全运行和经济效益的问题;而新开发的一些方法,如穿插法修复方法,由于国外对其关键 工艺环节采取技术保护的原因,国内该领域面临资料信息缺乏、研究时间短、实践经验少的问题,未能在工程上大规模推广应用。我国管道修复领域所面临的形势也十分严峻。
国内在役的长输管道许多已经运行二十几年以上,逐渐达到了寿命的终点,因而需要对其进行修复或者更换成新管道。换管道存在成本高、周期长、需全线停止输送、对环境破坏大等一系列不利因素;而传统的修复技术动用大量设备,挖沟占地,既不现实又耗时费钱,不利于环保;如果管道位于道路下方,路面的挖掘会造成交通的阻塞,同时,“还土”后易产生地面沉降,铺完沥青后,与原路面不能无界限结合,痕迹醒目,道路的外观和结合受到破坏,降低了使用寿命。因此,研究既经济又有效的旧管道“不开挖修复技术”极为重要。
迄今为止,不开挖管道修复技术大致可分为三大类:一是管内涂布法,二是软管翻衬法,三是塑料管穿插法。管内涂布法一般采用聚合物、水泥砂浆及原浆涂料等材料,又掺入各种化学材料,使衬里满足多种介质的防腐要求。软管翻衬法将树脂及固化剂浸渍在翻转软管中,碾压均匀后,通过水压或气压等动力翻转置入待修复的旧管道中。将管道里的水加热,待胶黏剂固化后,使热固性树脂系统硬化成一个“管中管”。
穿插HDPE管法修复旧管道技术目前最常采用的方法。分为等径缩径(O型)和U型穿插法两种,HDPE管穿插修复技术是把外径大于(O型)或略小于(U型)待修复管道内径的高密度聚乙烯内衬管,通过专用缩径设备,将内衬管变为O型或U型,并将内衬管的横截面缩小10-30%,通过缠绕定型、牵引拉入、外力恢复等过程使衬管紧紧的与管道内壁结合在一起,从而形成对旧管道的内衬修复,最大限度地避免了对原有管道直径的缩小,避免了大管换小管,使得在原有管线输送能力不降低的情况下得以更新。然而,该项技术的缺点:其一,一次修复距离小于1000米,不能穿越弯头;其二,HDPE在天然气的开采运输过程中也有使用温度的问题。煤矿或油矿的深度每增加100m,井下温度就会提高约2℃,两者直接是一种进线性的变化关系。HDPE管材的蠕变模量又随温度的升高而急剧降低,这会导致管材在使用时发生较大的变形,以至于失稳破坏。这样使得HDPE管材表现出环刚度降低,热稳定性差,对高温介质输送管道和井下施工作业极为不利。由此可知,如何提高 一次穿插距离及穿越弯头的能力,提高HDPE管材的耐热性已成为必须。且这种穿插管材是由三层管材组合而成,具有耐高温、耐腐蚀、一次穿插距离达到2000米以上,连续穿越多个弯头的能力。
尼龙(PA)在机械强度、维卡软化点、耐热性能和耐磨损性等方面均好于HDPE。通过PA的少量加入,HDPE板材的耐热性与刚性均可得以提高。纯PA与HDPE熔体的相容性极差,这导致产品的各项物理性能下降。田丽等将PA6和PE-g-MAH加入HDPE板材,使制品的耐热温度由120℃提高25%以上,拉伸强度与断裂延伸率也较没有添加相容剂时有很大提高。
聚对苯二甲酸乙二醇酯(PET)的耐热性很高,何慧等将PET与HDPE进行共混。因二者完全不相容,采用乙烯-醋酸乙烯酯(EVA)和乙烯-丙烯酸酯(EAA)对体系增容。虽然EVA与EAA自身的VSP都在100℃以下,对共混物的耐热性有一些影响,但共混物整体的VSP还是比纯HDPE提高了20%。耐热性最好的一组配方是HDPE/PET/EAA=75/25/5,该配比下的VST为126.5℃。李海等在一次挤出的情况下将甲基丙烯酸缩水甘油酯(GMA)用过氧化二异丙苯与HDPE交联,制备了HDPE-g-GMA作为增容剂,成功的原位增容了HDPE/PET。该方法使共混物的拉伸强度提高,体系相容性变好,VSP由纯HDPE的84.6℃提高到了92.8℃。
采用填充、共混改性等方法,可以使HDPE力学性能得到较大幅度的提高。由于玻璃纤维(GF)具有价格低廉,容易获取等优点,是应用最广泛的材料之一。李新中等采用两步法,先制备了含有30%玻璃纤维的HDPE母料,后再与HDPE混合,从而制备不同玻纤含量的共混物。其研究发现,在玻纤含量为30%的情况下,共混物的综合力学性能最优。其中拉伸强度提高了2.5倍,VST与纯HDPE相比,提高了6-7℃。Fu等人发现纤维和聚合物大分子会沿着流动方向取向,故在增强某些类型的塑料制品会有不足。如用其增强塑料管材,就对管材的周向强度的改善不是很明显,不能满足塑料管材的一些使用要求。张建富等设计了以玻璃纤维增强HDPE为原料的工字钢缠绕结构壁管材。此管以HDPE管做母管,GF/HDPE做小方管,按设计间距用方管缠绕在母管外,作为中间层。把挤出的HDPE黏合在缠绕管上,作为最外层。后经定径套成型、冷却,终得成品管材。该管与普通HDPE管材相比,环刚度有很大提升,耐温性能也有明显提高。此管在符合井下用管要求的同时,比传统 HDPE管在同环刚度条件下的质量更轻。
王营营等人改变了碳纤维(CF)和GF的配比,分别来增强HDPE/PA6,经硅烷偶联剂KH570处理纤维后,纤维可在PA6/HDPE复合材料基体中分布均匀,且无明显的团聚现象出现。CF与GF两种纤维,都使PA6/HDPE复合材料的拉伸性能与冲击性能得到改善,但仍然以损失断裂伸长率为代价。其中CF增强的效果要好于GF。但CF的价格较贵,在某些领域不适合于HPDE进行改性。
Kyung等人用挤出机熔融共混的方法制备了HDPE/MMT和HDPE/HDPE-g-MAH/MMT纳米复合材料。对材料采用热重分析的方法发现,当MMT含量为0.5、1和2phr时,5%的质量损失温度为分别较纯的HDPE增加了1℃、8℃和6℃。加入份数为MMT的10倍HDPE-g-MAH对体系增容后,5%的质量损失温度分别增加了18℃、14℃和10℃。可见MMT对HDPE热性能提高有利。项赛飞等人通过挤出机制备了有机蒙脱土(OMMT)插层的HDPE/PA6体系,当OMMT的用量为3份时,使得体系的力学性能达最佳,但若继续增加OMMT时,超过7份,会发生连续相与分散相的反转。高振滨等人用自制的OMMT,通过直接注射成型的方法制备了与HDPE/LLDPE的复合材料,研究发现在OMMT的含量为6%时综合性能最好,此时该体系的拉伸模量、弯曲强度和热变形温度分别提高了60%、32.4%和11.1%。
滑石粉(Talcum,Talc)的理论晶胞分子式为3MgO·4SiO2·H2O,硬度低,对机械设备的损伤小。Talc价格较低,仅为塑料的10%-20%。在PE中加入Talc可提高耐热性和刚性,降低制品的成型收缩率和成本等。许健南采用335目和1250目的Talc对HDPE进行改性,研究发现这两种目数的Talc对HDPE的维卡软化点影响显著,但1250目较325目的Talc对HDPE的冲击性能与加共性能的提高更有利。张新亚等人研究了通过改变双螺杆挤出机的转速来提高剪切力,使得Talc在与HDPE混合过程中分散更加均匀,且因HDPE的断链产生自由基促进Talc与HDPE间的界面结合,且加入偶联剂后,断链产生的自由基又有助于偶联剂与Talc的反应。但转速有一最优值,过大转速会使HDPE因过于断链而降低其冲击强度。于建和李文莲等人的研究发现:单独使用Talc填充HDPE时,因Talc的片状的特点,使体系的拉伸强度提高但损失了冲击性能;若单独使用碳酸钙填充HDPE,因碳酸钙为近球形颗粒,使体系冲击性能提高而损失了拉伸强度。而用Talc与碳酸钙二者复配使用,则可同时提高HDPE 的韧性与拉伸强度。
海泡石(Sepiolite,SEP)是一种微晶的水合镁硅酸盐,理论晶胞分子式为Si12O30Mg8(OH,F)4(H2O)4·8H2O,具有微纤维的形态,颗粒平均长度在2-10μm。SEP沿着纤维方向是块状体和通道交替生长的结构。其中的块状部分类似三明治的结构,两层二氧化硅四面体中间夹层镁与氧和氢氧化物配位成的八面体结构。海泡石110℃失去沸石水,200-380℃失去一半的配位水,400-700℃失去另一半的配位水,780℃以后开始脱羟基化,失结构水,且结构变得松散,变成顽火辉石和二氧化硅。刘开平等人认为因SEP的这三种水的排除,可以吸收大量的热量,因此可以用SEP提高其他材料的热分解温度,提高耐热性。他们将SEP填充不饱和聚酯与玻纤填充不饱和聚酯做对比,证明与SEP制得的一组复合材料的起始热分解温度最高,比纯不饱和聚酯提高4.3%,且认为SEP添加量过少,不能起到提高耐热性的作用,用量超过11%效果才明显。
凹凸棒土(Attapulgite,AT),与SEP很相似,也是一种层状的含镁铝硅酸盐,理论晶胞的结构式为Si8Mg5O20[Al](OH)2(OH2)4·4H2O,用其改性HDPE耐热性研究也有很多。钱运华等人,分别以凹凸棒土和碳酸钙改性聚丙烯(PP),研究表明,AT可使PP的HDT提高20℃,提高幅度高于碳酸钙改性的体系。
以木粉对HDPE等塑料的耐热改性研究也很热门。聂恒凯等人用木粉对回收的PP进行耐热改性,使得PP的VST提高了13.3℃,但此时木粉的加入量较大。宋国君等人用木粉改性HDPE,并加入一定量的增容剂及润滑剂,使得HDPE的HDT提高了约40℃。
中间层是一种纤维材料,它可以是:
芳纶全称为"聚对苯二甲酰对苯二胺",英文为Aramid fiber是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。它具有良好的绝缘性和抗老化性能,具有很长的生命周期。芳纶的发现,被认为是材料界一个非常重要的历史进程。
尼龙(Nylon)纤维学名为聚酰胺(polyamide)纤维,其原为杜邦公司所生产之聚己 二酰己二胺之商品名,即一般通称为尼龙六六(Nylon 66)。聚酰胺纤维最突出的优点为耐磨性较其它纤维优越,其次为它的弹性佳,其弹性回复率可媲美羊毛,还有其质轻,比重为1.14,在已商业化之合成纤维中,其仅次于聚丙烯(丙纶,比重小于1),而较聚酯纤维(比重1.38)轻,因此聚酰胺纤维可加工成细匀柔软且平滑之丝,供织造成美观耐用之织物,另其同聚酯纤维一样具耐腐性,不怕虫蛀,不怕发霉之优点。
锦纶是合成纤维nylon的中国名称,翻译名称又叫“耐纶”、“尼龙”,学名为polyamide fibre,即聚酰胺纤维。由于锦州化纤厂是我国首家合成polyamide fibre的工厂,因此把它定名为“锦纶”。它是世界上最早的合成纤维品种,由于性能优良,原料资源丰富,一直被广泛使用。他的优点有强力、耐磨性好,居所有纤维之首。它的耐磨性是棉纤维的10倍,是干态粘胶纤维的10倍,是湿态纤维的140倍。因此,其耐用性极佳。锦纶织物的弹性及弹性恢复性极好,但小外力下易变形,故其织物在穿用过程中易变皱折。通风透气性差,易产生静电。锦纶织物的吸湿性在合成纤维织物中属较好品种,因此用锦纶制作的服装比涤纶服装穿着舒适些。有良好的耐蛀、耐腐蚀性能。耐热耐光性都不够好,熨烫温度应控制在140℃以下。在穿着使用过程中须注意洗涤、保养的条件,以免损伤织物。锦纶织物属轻型织物,在合成纤维织物中仅列于丙纶、腈纶织物之后,因此,适合制作登山服、冬季服装等。
对于管用材料的外层我们一般选用管材级TPU,管材级TPU在室温下,TPU可以在纯水中使用几年,且其性能没有明显的变化。但在80℃条件下,即使仅在水中浸泡几周,其力学性能便会受到很大的影响。TPU的水解稳定性与软段的结构有关,聚酯型TPU用碳化二胺进行保护后,耐水解性有所提高,聚醚酯型TPU和聚醚型TPU在高温下的耐水解性要好于聚酯型TPU。随着TPU硬度的增加,由于硬段具有憎水性,因此其水解稳定性也变得越来越好。TPU的耐油性能(如矿物油、柴油、润滑油)优异。非极性溶剂如己烷、庚烷、石蜡油对于极性聚氨酯几乎没有任何作用,甚至在高温条件下,聚氨酯在非极性溶剂中的溶胀也很小。TPU在氯代烃、芳香烃中会严重溶胀,且溶胀程度取决于聚氨酯的结构。聚酯型的比聚醚型溶胀要小,硬质的比软质溶胀小。某些极性溶剂如四氢呋喃、酮或N,甲基甲酰胺能够部分或完全溶解TPU。例如,软质全热塑性聚氨酯可以溶解在酮混合溶剂中,作为黏合剂使用。
聚氯乙烯(PVC)是一种价廉、性能优良、用途广泛的热塑性通用塑料。其应用非常广泛,在建筑材料、工业制品、日用品、地板革、地板砖、人造革、管材、电线电缆、包装膜、发泡材料、密封材料、纤维等方面均有广泛应用。由于PVC所具有的特珠结构,决定了其具有良好的物理化学性能和生物学性能。使用PVC来改性聚氨酯使其具有更好的耐水性具有一定的效果。
发明内容
本发明的目的是提供一种柔性复合内衬管,克服现有技术存在的不足,不需要另外的加热设备,使管道之间的连接可靠。
本发明的目的是这样实现的:柔性复合内衬管包括保护层、加强纤维层、防渗内膜层,保护层、加强纤维层、防渗内膜层叠套固化成一体后成为一个圆筒,保护层为外层,防渗内膜层为内层,加强纤维层处于两者之间,柔性复合内衬管内衬于管道内,加强纤维层在与保护层、防渗层叠套固化时的初始状态为菱形网状结构,在柔性复合内衬管内衬于管道内后,其永久状态为垂直网状结构,在柔性复合内衬管内衬于管道内前,外套筒与管道连接成一体,连接头的一部分插入柔性复合内衬管内,连接头露在柔性复合内衬管的部分为连接端,插入柔性复合内衬管内的连接头的外壁上有凹槽,凹槽部位的直径小于前端直径,使连接头的前端形成卡台,外套筒内部有凹槽,凹槽部位的内径大于两端内径,在外套筒上设有灌注孔,此灌注孔对应其上的凹槽,经灌注孔灌注固化物,使处于外套筒与连接头之间的柔性复合内衬管在连接头的外壁凹槽段变形缩小直径被连接头的前端的卡台卡住,使柔性复合内衬管与管道内衬成一体。
在上述任一方案中优选的是,所述加强纤维层为芳纶加强纤维层。
在上述任一方案中优选的是,包括管材内层即防渗内膜层,所述管材内层材质为高密度聚乙烯材料,所述高密度聚乙烯材料包括重量份如下的各组份原料:
100份高密度聚乙烯树脂;
1-10份无机纳米粒子;
2-10份滑石粉、1-9份蒙脱土和1-10份海泡石中的一种或几种;
1-20份尼龙6、1-20份尼龙66、1-20份聚对苯二甲酸乙二醇酯和1-20份玻纤中的一种或几种;
1-20份高密度聚乙烯接枝马来酸酐为增容剂和/或1-20份乙烯-辛烯共聚物接枝 马来酸酐为增容剂。
在上述方案中优选的是,所述管材内层材质为高密度聚乙烯材料,所述高密度聚乙烯材料包括重量份如下的各组份原料:
100份高密度聚乙烯树脂;
5-6份所述无机纳米粒子;
3-6份所述滑石粉、4-7份所述蒙脱土和5-8份所述海泡石中的一种或几种;
5-10份所述尼龙6、5-10份所述尼龙66、5-10份所述聚对苯二甲酸乙二醇酯和5-10份所述玻纤中的一种或几种;
5-15份所述高密度聚乙烯接枝马来酸酐或5-15份所述乙烯-辛烯共聚物接枝马来酸酐。
在上述任一方案中优选的是,所述高密度聚乙烯树脂的重均分子量为10-20万。
在上述任一方案中优选的是,所述无机纳米粒子为纳米氧化锌和/或纳米氧化镁。
在上述任一方案中优选的是,所述滑石粉为400目。
在上述任一方案中优选的是,所述蒙脱土为800目。
在上述任一方案中优选的是,所述海泡石为400目。
在上述任一方案中优选的是,所述高密度聚乙烯接枝马来酸酐(HDPE-g-MAH),接枝率0.8%。
在上述任一方案中优选的是,所述乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)接枝率0.8%。
在上述任一方案中优选的是,所述柔性复合内衬管材还包括中间层即加强纤维层,所述中间层材质为纤维材料。
在上述任一方案中优选的是,所述纤维材料为芳纶玻纤或锦纶玻纤。
在上述任一方案中优选的是,所述柔性复合内衬管材还包括外层即保护层,所述外层材质为聚氨酯高分子材料。
在上述任一方案中优选的是,每100重量份聚氨酯高分子材料加入1-10重量份的聚氯乙烯。
在上述任一方案中优选的是,每100重量份聚氨酯高分子材料加入5-6重量份 的的聚氯乙烯。
在上述任一方案中优选的是,每100重量份聚氯乙烯加入15重量份环氧大豆油和1.5重量份钙锌稳定剂。
钙锌稳定剂可以抑制或中和分解所放出的HCl气体;所购买的钙锌稳定剂,由钙盐、锌盐、润滑剂、抗氧剂等为主要组分采用特殊复合工艺而合成。它不但可以取代铅镉盐类和有机锡类等有毒稳定剂,而且具有相当好的热稳定性、光稳定性和透明性及着色力,应用在聚氯乙烯当中。
在上述任一方案中优选的是,每100重量份聚氯乙烯加入15重量份环氧大豆油和1.5重量份钙锌稳定剂。
在上述任一方案中优选的是,所述聚氨酯高分子材料选自聚氨酯3360A/粒料、聚氨酯NX-60A/粒料、聚氨酯TB-82AD/粒料、聚氨酯ER-80A/粒料、聚氨酯Bayer60A/粒料、聚氨酯Bayer 70A/粒料和聚氨酯1085A/粒料中的一种或几种。
在上述任一方案中优选的是,所述柔性复合内衬管材中所述内层高密度聚乙烯材料、所述中间层纤维材料和所述外层聚氨酯高分子材料的重量比为1:1.1:1.2。
本发明还提供所述柔性复合内衬管的制备方法为将各个组分在温度210℃,压力60MPa条件下熔融捏合。
该方法包括将用于制造本发明柔性复合内衬管用材料的组合物所包含的基体树脂和其他组分的熔融捏合。在熔融捏合之前,有利的是将本发明涉及的组合物中的各个组分和任选的其他组分在混合器中混合均匀。实施熔融捏合的设备是常规的,可以提及开炼机、密炼机、单螺杆挤出机、双螺杆挤出机等。熔融捏合的温度也是常规的,只要能将本发明聚氯乙烯材料的各个组分熔融捏合在一起即可。通常而言,高密度聚乙烯熔融捏合在220-250℃温度和注塑压力为60MPa下进行双螺杆挤出和注塑,注塑时间为60s,注塑成不同的样条后对其进行各种性能的测试与表征;聚氨酯熔融捏合在160-180℃温度下进行挤出注塑,模温控制在60℃左右,注射压力为50MPa,注射时间为50s,然后进行性能测试与表征。
本发明还提供了所述柔性复合内衬管材用于制造管材。
在上述任一方案中优选的是,所述柔性复合内衬管材用于输水、输油、输气管材。
在上述任一方案中优选的是,所述柔性复合内衬管材用于工业上原油、天然气、饮用自来水及污水输送的用途。
用于制造本发明的柔性复合内衬修复管用材料的组合物包含高密度聚乙烯(管内),纤维(管中间),聚氨酯(管外)作为基础树脂,即基本组分。无机纳米粒子提高耐温性能的根本原因在于氧化锌的加入,由于氧化锌的半导体特性,使得当激发光子能量高于半导体带隙能时,半导体就能吸收该光子的能量,使其耐温性增加。滑石粉的理论晶胞分子式为3MgO·4SiO2·H2O,硬度低,对机械设备的损伤小,在PE中加入Talc可提高耐热性和刚性,降低制品的成型收缩率和成本等。蒙脱土和滑石粉作用的机理相似,使其高密度聚乙烯耐温性增加。SEP的可以吸收大量的热量,因此可以用SEP提高其他材料的热分解温度,提高耐热性。因为尼龙6在机械强度、维卡软化点、耐热性能和耐磨损性等方面均好于HDPE。PET的耐热性很高,与高密度聚乙烯共混,可以增加共混物的耐温性。增容剂能够借助于分子间的键合力,促使不相容的两种聚合物结合在一体,进而得到稳定的共混物。
本发明为柔性复合内衬管。尤其可用于是工业应用中的输水、输油材料。该材料可以保证在较高温度和较大压力条件下,材料本身没有变化,耐温性增加,力学性能变化不大,热性能增加。本发明的产品经制造出来后,其内衬管的屈服强度为23MPa,断裂伸长率大于500,均符合ISO标准,耐环境应力开裂>1000H,符合预期要求。
本发明的有益效果是:柔性复合内衬管的中间层是采用了芳纶加强纤维编织的特殊结构,在管道衬装完成后,给安装好的柔性复合内衬管一个初始的加压过程,使保护层、防渗内膜层被压力逐渐扩张后,整个复合软管的结构在压力的作用下出现横向扩张纵向收缩的现象,其间的芳纶加强纤维编织层的结构也不断的改变,由原来的菱形网状结构变成相互垂直的网状结构,压力扩张停止后,柔性复合内衬管在芳纶加强纤维层的支撑下内外层就形成了一个环刚度很强的刚性结构复合管,使其紧贴在管道的内壁上,柔性复合内衬管的内部压力消除后也不会产生塌缩。本发明设计的连接装置使柔性复合内衬管的两端经环状结构内加压注入固化物固化后就能被固定在管道上,连接装置上的连接头还能与另一根管道进行可靠连接。因此,本发明内衬质量高,承压能力强,可以在高压管道上进行内衬安装,因而本发明使 内衬技术范围进一步扩大,具有显著的经济效益。
附图说明
图1是本发明实施例的装配图;
图2是图1中件5的结构图;
图3是图2中件5-2的展开图。
具体实施例
下面结合附图对本发明的实施例进行说明。
由图可知,本发明的实施例包括连接头1、外套筒2、固化物3、管道4、柔性复合内衬管5,柔性复合内衬管5包括保护层5-1、芳纶加强纤维层5-2、防渗内膜层5-3,保护层5-1、芳纶加强纤维层5-2、防渗内膜层5-3叠套固化成一体后成为一个筒状结构,保护层5-1为外层,防渗内膜层5-3为内层,芳纶加强纤维层5-2处于两者之间,柔性复合内衬管5内衬于管道4内,芳纶加强纤维层5-2初始为菱形网状结构,使筒状柔性复合内衬管容易改变外形,利于安装作业并不会破坏其内部结构。当柔性复合内衬管5内衬于管道4内后,再加压使柔性复合内衬管中间层由菱形网状结构改变为垂直结构后,形成了环刚度。外套筒2与管道4连接成一体,连接头1的一部分插入柔性复合内衬管5内,连接头1露在柔性复合内衬管5的部分为连接端,连接部位可以是法兰,也可以是螺纹,或其它连接用的结构,插入柔性复合内衬管5内的连接头1的外壁上有凹槽,凹槽部位的直径小于前端直径,使连接头1的前端形成卡台,外套筒2内部有凹槽,凹槽部位的内径大于两端内径,在外套筒2上设有灌注孔,此灌注孔对应其上的凹槽,经灌注孔灌注固化物,使处于外套筒2与连接头1之间的柔性复合内衬管5在连接头1的外壁凹槽段变形缩小直径被连接头1的前端的卡台卡住,使柔性复合内衬管5与管道4内衬成一体。
芳纶纤维的强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,芳纶纤维具有耐高温、耐酸耐碱、重量轻、绝缘、抗老化、生命周期长等优良性能,在与保护层5-1、防渗内膜层5-3固化成一体受压时,编织的菱形网状结构就变成相互垂直的网状结构,使柔性复合内衬管5穿入管道4后恢复原状紧紧的内衬于管道4内。
保护层5-1采用目前广泛使用的改性聚乙烯材料生产,具有耐磨、耐划伤的性 能,它的作用是在运输及穿插作业过程中保护管材不被破坏;防渗内膜层5-3是介质防渗内膜层,它可以根据输送的不同介质采用不同的材料。保护层5-1、芳纶加强纤维层5-2、防渗内膜层5-3经过合成加工后制成的柔性复合内衬管5重量轻、强度高,总厚度不超过6毫米,在运输过程中可压扁成板状缠绕在卷筒上,减少体积便于运输。将其内衬于管道内后使管道具有耐高温、耐酸耐碱、绝缘、抗老化、生产周期长等特点。
本发明内层原料可以任意优选为高密度聚乙烯(HDPE)牌号-YGH041,中国石化上海石油化工股份有限公司;尼龙6切片(PA6)相对粘度2.75,中国石油化工股份有限公司石家庄炼化分公司;尼龙66切片(PA66)相对粘度2.85,中国石油化工股份有限公司石家庄炼化分公司;来自无锡巨旺塑化材料有限公司的牌号为KJD-PET的PET;廊坊科亨玻璃纤维制品有限公司生产的科亨牌玻纤;海泡石(SEP)400目,河南省内乡县东风海泡石有限责任公司;滑石粉(Talc)800目QY-5800A,辽宁海城世京旗扬实业有限公司;蒙脱土400目河南省内乡县东风海泡石有限责任公司;纳米粒子为山东东营大王生产的氧化锌、氧化镁。高密度聚乙烯接枝马来酸酐(HDPE-g-MAH),接枝率0.8%,三井化学株式会社;乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH),接枝率0.8%,南京曙光化工集团有限公司;本发明中间层原料可以任意优选为廊坊拓盛保温材料有限公司生产的牌号为拓盛的芳纶玻纤;南通新帝克单丝科技股份有限公司生产的品质为优级的锦纶玻纤;本发明外层原料可以任意优选为3360A/粒料,德国拜耳公司;NX-60A/粒料,台湾高鼎有限公司,TB-82AD/粒料,台湾高鼎有限公司;ER-80A/粒料,邦泰高分子新材料有限公司;Bayer 60A/粒料,德国拜耳公司;Bayer 70A/粒料,德国拜耳公司;1085A/粒料,上海路博润有限公司;聚氯乙烯,S-65/粉料,台塑工业(宁波)有限公司。
在以下各实施例中,采用以下方法对所得管内和外混合材料进行如下性能测试:
拉伸性能测试:按GB/T 1040-2006测试样品的拉伸性能,拉伸速度为50mm/min,温度为25℃;
断裂伸长率:拉断伸长率按照GB/T 1040.1规定的试验方法进行试验;
剪切强度:依据标准编号为:GB/T 15598-1995进行测试
剥离强度:根据GB/T16491的标准进行剥离强度的测试
维卡软化点测试:按照GB/T1633—2000标准,采用A120法进行测试,待测样条大小为10mm×10mm×4mm,载荷10N,升温速率120℃/h。
热变形温度测试:按GB/T1634.2-2004的标准,采用B法进行测试,平放试验,待测样条大小为80mm×10mm×4mm,升温速率120℃/h,支架间距离为64mm,挠度0.34mm,弯曲应力0.45Mpa。
对比例1
将100重量份高密度聚乙烯经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例1
将100重量份高密度聚乙烯与5重量份纳米氧化锌,3重量份滑石粉,15重量份尼龙6,5重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例2
将100重量份高密度聚乙烯与5重量份纳米氧化锌,4重量份蒙脱土,10重量份尼龙6,8重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例3
将100重量份高密度聚乙烯与5重量份纳米氧化锌,5重量份海泡石,5重量份尼龙6,10重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例4
将100重量份高密度聚乙烯与5重量份纳米氧化锌,4重量份滑石粉,5重量份尼龙66,5重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例5
将100重量份高密度聚乙烯与5重量份纳米氧化锌,5重量份蒙脱土,10重量份尼龙66,8重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例6
将100重量份高密度聚乙烯与5重量份纳米氧化锌,6重量份海泡石,15重量份尼龙66,10重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例7
将100重量份高密度聚乙烯与5重量份纳米氧化锌,5重量份滑石粉,10重量份PET,6重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例8
将100重量份高密度聚乙烯与5重量份纳米氧化锌,6重量份蒙脱土,5重量份PET,7重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例9
将100重量份高密度聚乙烯与5重量份纳米氧化锌,7重量份海泡石,15重量份PET,9重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例10
将100重量份高密度聚乙烯与6重量份纳米氧化锌,6重量份滑石粉,5重量份玻纤,11重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1
实施例11
将100重量份高密度聚乙烯与6重量份纳米氧化锌,7重量份蒙脱土,10重量份玻纤,12重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例12
将100重量份高密度聚乙烯与6重量份纳米氧化锌,8重量份海泡石,15重量份玻纤,15重量份高密度聚乙烯接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例13
将100重量份高密度聚乙烯与5重量份纳米氧化锌,3重量份滑石粉,15重量份尼龙6,5重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例14
将100重量份高密度聚乙烯与5重量份纳米氧化锌,4重量份蒙脱土,10重量份尼龙6,8重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例15
将100重量份高密度聚乙烯与5重量份纳米氧化锌,5重量份海泡石,5重量份尼龙6,10重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例16
将100重量份高密度聚乙烯与5重量份纳米氧化锌,4重量份滑石粉,5重量份尼龙66,5重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例17
将100重量份高密度聚乙烯与5重量份纳米氧化锌,5重量份蒙脱土,10重量份尼龙66,8重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例18
将100重量份高密度聚乙烯与5重量份纳米氧化锌,6重量份海泡石,15重量份尼龙66,10重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出, 注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例19
将100重量份高密度聚乙烯与5重量份纳米氧化镁,5重量份滑石粉,10重量份PET,6重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例20
将100重量份高密度聚乙烯与6重量份纳米氧化镁,6重量份蒙脱土,5重量份PET,7重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例21
将100重量份高密度聚乙烯与5重量份纳米氧化锌,7重量份海泡石,15重量份PET,9重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例22
将100重量份高密度聚乙烯与6重量份纳米氧化锌,6重量份滑石粉,5重量份玻纤,11重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例23
将100重量份高密度聚乙烯与6重量份纳米氧化锌,7重量份蒙脱土,10重量份玻纤,12重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例24
将100重量份高密度聚乙烯与6重量份纳米氧化锌,8重量份海泡石,15重量份玻纤,15重量份乙烯-辛烯共聚物接枝马来酸酐共混,经挤出机进行熔融挤出,注塑机进行注塑成试样,对试样进行性能测试,实验测试结果见表1。
实施例25
将100重量的聚氨酯NX-60A与5重量份PVC(已添加15重量份环氧大豆油和1.5 重量份钙锌稳定剂)进行共混,经挤出机熔融挤出,注塑机进行注塑后,对其力学性能进行直接测试,实验结果见表2。
实施例26
将100重量的聚氨酯3360A与5重量份PVC(已添加15重量份环氧大豆油和1.5重量份钙锌稳定剂)进行共混,经挤出机熔融挤出,注塑机进行注塑后,对其力学性能进行直接测试,实验结果见表2。
实施例27
将100重量的聚氨酯TB-82AD与5重量份PVC(已添加15重量份环氧大豆油和1.5重量份钙锌稳定剂)进行共混,经挤出机熔融挤出,注塑机进行注塑后,对其力学性能进行直接测试,实验结果见表2。
实施例28
将100重量的聚氨酯ER-80A与5重量份PVC(已添加15重量份环氧大豆油和1.5重量份钙锌稳定剂)进行共混,经挤出机熔融挤出,注塑机进行注塑后,对其力学性能进行直接测试,实验结果见表2。
实施例29
将100重量的聚氨酯Bayer60A与5重量份PVC(已添加15重量份环氧大豆油和1.5重量份钙锌稳定剂)进行共混,经挤出机熔融挤出,注塑机进行注塑后,对其力学性能进行直接测试,实验结果见表2。
实施例30
将100重量的聚氨酯1085A与5重量份PVC(已添加15重量份环氧大豆油和1.5重量份钙锌稳定剂)进行共混,经挤出机熔融挤出,注塑机进行注塑后,对其力学性能进行直接测试,实验结果见表2。
实施例31
将100重量的聚氨酯Bayer70A与5重量份PVC(已添加15重量份环氧大豆油和1.5重量份钙锌稳定剂)进行共混,经挤出机熔融挤出,注塑机进行注塑后,对其力学性能进行直接测试,实验结果见表2。
实施例32
一种柔性复合内衬管材,包括管材内层,所述管材内层材质为高密度聚乙烯材料,所述高密度聚乙烯材料包括重量份如下的各组份原料:
100份高密度聚乙烯树脂;
1份无机纳米粒子氧化锌;
2份滑石粉、1份蒙脱土和10份海泡石;
1份尼龙6、20份尼龙66、1份聚对苯二甲酸乙二醇酯和20份玻纤;
1份高密度聚乙烯接枝马来酸酐为增容剂和20份乙烯-辛烯共聚物接枝马来酸酐为增容剂。
实施例33
一种柔性复合内衬管材,包括管材内层,所述管材内层材质为高密度聚乙烯材料,所述高密度聚乙烯材料包括重量份如下的各组份原料:
100份高密度聚乙烯树脂;
10份无机纳米粒子氧化锌;
10份滑石粉、9份蒙脱土和1份海泡石;
20份尼龙6、1份尼龙66、20份聚对苯二甲酸乙二醇酯和10份玻纤;
20份高密度聚乙烯接枝马来酸酐为增容剂和1份乙烯-辛烯共聚物接枝马来酸酐为增容剂。
表1
Figure PCTCN2017074104-appb-000001
Figure PCTCN2017074104-appb-000002
表2
Figure PCTCN2017074104-appb-000003
Figure PCTCN2017074104-appb-000004
表1,表2中,维卡软化点是指聚合物的试样于液体传热介质中,在一定的载荷、一定的等速升温条件下,被1m㎡的压针压入1mm深度时的温度,该温度反映了当一种材料在升温装置中使用时期望的软化点。热变形温度是指对高分子材料或聚合物施加一定的负荷,以一定的速度升温,当达到规定形变时所对应的温度是衡量聚合物或高分子材料耐热性优劣的一种量度。维卡软化点和热变形温度均反映的是管材内衬材料的耐温性,其数值越大,材料的耐温性越好;低温冲击强度反映的是材料在低温下的韧性,低温冲击强度越大,脆化温度越低,材料的耐寒性越好;剥离强度是从接触面进行单位宽度剥离时所需要的最大力,剥离强度越大,材料的粘结强度越好,与金属材料的粘附性越紧密;剪切强度是指材料承受剪切力的能力,剪切强度越大,材料所能够承受的剪切应力越大,粘接越发的牢固,拉伸强度是指材料产生最大均匀塑性变形的应力,拉伸强度越大,材料越硬越脆。表1中,实施例1-24的性能均比纯料有所增强,实施例3的热变形温度和维卡软化点温度最高,产品性能最好;表2中实施例30的剪切强度和剥离强度最高,产品性能最好。

Claims (16)

  1. 一种柔性复合内衬管,包括:柔性复合内衬管(5)其中包括有保护层(5-1)、加强纤维层(5-2)、防渗内膜层(5-3),保护层(5-1)、加强纤维层(5-2)、防渗内膜层(5-3)叠套固化成一体后成为一个圆筒,保护层(5-1)为外层,防渗内膜层(5-3)为内层,加强纤维层(5-2)处于两者之间,柔性复合内衬管(5)被用于内衬于管道(4)中,其特征在于:加强纤维层(5-2)在与保护层(5-1)防渗层(5-3)叠套固化时的初始状态为菱形网状结构,在柔性复合内衬管(5)内衬于管道(4)内后,其永久状态为垂直网状结构,外套筒(2)与管道(4)连接成一体,连接头(1)的一部分插入柔性复合内衬管(5)内,连接头(1)露在柔性复合内衬管(5)的部分为连接端,插入柔性复合内衬管(5)内的连接头(1)的外壁上有凹槽,凹槽部位的直径小于前端直径,使连接头(1)的前端形成卡台,外套筒(2)内部有凹槽,凹槽部位的内径大于两端内径,在外套筒(2)上设有灌注孔,此灌注孔对应其上的凹槽,经灌注孔灌注固化物(3),使处于外套筒(2)与连接头(1)之间的柔性复合内衬管(5)在连接头(1)的外壁凹槽段变形缩小直径被连接头(1)的前端的卡台卡住,使柔性复合内衬管(5)与管道(4)内衬成一体。
  2. 根据权利要求1所述的柔性复合内衬管,其特征在于:包括管材内层即防渗内膜层,所述管材内层材质为高密度聚乙烯材料,所述高密度聚乙烯材料包括重量份如下的各组份原料:
    100份高密度聚乙烯树脂;
    1-10份无机纳米粒子;
    2-10份滑石粉、1-9份蒙脱土和1-10份海泡石中的一种或几种;
    1-20份尼龙6、1-20份尼龙66、1-20份聚对苯二甲酸乙二醇酯和1-20份玻纤中的一种或几种;
    1-20份高密度聚乙烯接枝马来酸酐为增容剂和/或1-20份乙烯-辛烯共聚物接枝马来酸酐为增容剂。
  3. 根据权利要求2所述的柔性复合内衬管,其特征在于:所述管材内层材质为高密度聚乙烯材料,所述高密度聚乙烯材料包括重量份如下的各组份原料:
    100份高密度聚乙烯树脂;
    5-6份所述无机纳米粒子;
    3-6份所述滑石粉、4-7份所述蒙脱土和5-8份所述海泡石中的一种或几种;
    5-10份所述尼龙6、5-10份所述尼龙66、5-10份所述聚对苯二甲酸乙二醇酯和5-10份所述玻纤中的一种或几种;
    5-15份所述高密度聚乙烯接枝马来酸酐或5-15份所述乙烯-辛烯共聚物接枝马来酸酐。
  4. 根据权利要求2或3所述的柔性复合内衬管,其特征在于:所述高密度聚乙烯树脂的重均分子量为10-20万;
    所述无机纳米粒子为纳米氧化锌或纳米氧化镁;
    所述滑石粉为400目;
    所述蒙脱土为800目;
    所述海泡石为400目;
    所述高密度聚乙烯接枝马来酸酐,接枝率0.8%;
    所述乙烯-辛烯共聚物接枝马来酸酐接枝率0.8%.
  5. 根据权利要求1或2所述的柔性复合内衬管,其特征在于:所述柔性复合内衬管还包括中间层即加强纤维层,所述中间层材质为纤维材料。
  6. 根据权利要求5所述的柔性复合内衬管,其特征在于:所述纤维材料为芳纶玻纤或锦纶玻纤。
  7. 根据权利要求5所述的柔性复合内衬管,其特征在于:所述柔性复合内衬管材还包括外层即保护层,所述外层材质为聚氨酯高分子材料。
  8. 根据权利要求7所述的柔性复合内衬管,其特征在于:每100重量份聚氨酯高分子材料加入1-10重量份的聚氯乙烯。
  9. 根据权利要求8所述的柔性复合内衬管,其特征在于:每100重量份聚氨酯高分子材料加入5-6重量份的聚氯乙烯。
  10. 根据权利要求8或9所述的柔性复合内衬管,其特征在于:每100重量份聚氯乙烯加入5-15重量份环氧大豆油和0.5-2.0重量份钙锌稳定剂。
  11. 根据权利要求10所述的柔性复合内衬管,其特征在于:每100重量份聚氯乙烯加入15重量份环氧大豆油和1.5重量份钙锌稳定剂。
  12. 根据权利要求7或8所述的柔性复合内衬管,其特征在于:所述聚氨酯高分子材料选自聚氨酯3360A/粒料、聚氨酯NX-60A/粒料、聚氨酯TB-82AD/粒料、聚氨酯ER-80A/粒料、聚氨酯Bayer 60A/粒料、聚氨酯Bayer 70A/粒料和聚氨酯1085A/粒料中的一种或几种。
  13. 根据权利要求7或8所述的柔性复合内衬管,其特征在于:所述柔性复合内衬管材中所述内层高密度聚乙烯材料、所述中间层纤维材料和所述外层聚氨酯高分子材料的重量比为1:1.1:1.2。
  14. 根据权利要求1至13中任一项所述的柔性复合内衬管材的制备方法,其特征在于:所述柔性复合内衬管的制备方法为将各个组分在温度210℃,压力60MPa条件下熔融捏合。
  15. 根据权利要求1至13中任一项所述的柔性复合内衬管材用于制造管材。
  16. 根据权利要求15所述的柔性复合内衬管材用于输水、输油、输气管材。
PCT/CN2017/074104 2016-02-22 2017-02-20 一种柔性复合内衬管 WO2017143954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610095072.8A CN105605338B (zh) 2016-02-22 2016-02-22 一种柔性复合内衬管连接装置
CN201610095072.8 2016-02-22

Publications (1)

Publication Number Publication Date
WO2017143954A1 true WO2017143954A1 (zh) 2017-08-31

Family

ID=55985514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074104 WO2017143954A1 (zh) 2016-02-22 2017-02-20 一种柔性复合内衬管

Country Status (2)

Country Link
CN (1) CN105605338B (zh)
WO (1) WO2017143954A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825360A4 (en) * 2019-05-25 2021-11-10 China Merchants Marine and Offshore Research Institute Co., Ltd. CLADDING MATERIAL FOR NON-METALLIC SOFT COMPOSITE PIPE AND PROCESS FOR PREPARATION
EP4122692A1 (de) * 2021-07-21 2023-01-25 Fibron Pipe GesmbH Kunststoffzusammensetzung, kunststoffrohr, verwendung und herstellungsverfahren
CN115850975A (zh) * 2022-11-08 2023-03-28 常州威斯双联科技有限公司 一种电池填充用导热凝胶及其制备工艺
CN115962353A (zh) * 2022-12-15 2023-04-14 中建五局第二建设有限公司 一种高强度柔性好的金属软管
CN116180327A (zh) * 2023-01-07 2023-05-30 浙江盛纺纳米材料科技有限公司 一种抗拉无纺布及其生产工艺
CN116355399A (zh) * 2023-05-19 2023-06-30 山东祥龙新材料股份有限公司 一种柔性挤出尼龙材料、其制备方法及其应用
CN116622129A (zh) * 2023-07-24 2023-08-22 山东和瑞新材料科技有限公司 一种pvc用钙锌稳定剂

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605338B (zh) * 2016-02-22 2017-10-20 山东柯林瑞尔管道工程有限公司 一种柔性复合内衬管连接装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156540A (en) * 1977-08-30 1979-05-29 Parker-Hannifin Corporation Sealant for hose fittings
DE3904996A1 (de) * 1989-02-18 1990-08-23 Freudenberg Carl Fa Schlauchverbindung
CN2099891U (zh) * 1991-07-10 1992-03-25 周广先 填料式薄壁塑料管接头
CN1163996A (zh) * 1997-04-07 1997-11-05 许道滋 多层塑料管及其管接头
JP2000161565A (ja) * 1998-11-25 2000-06-16 Sakura Gomme Kk ホース結合金具及びホースと結合金具との結合方法
CN1304958A (zh) * 2000-10-26 2001-07-25 招远市海星塑料厂 一种改性upvc塑料管材及其制备工艺
CN1560499A (zh) * 2004-03-10 2005-01-05 孟庆义 柔性复合高压输送管
CN105605338A (zh) * 2016-02-22 2016-05-25 山东柯林瑞尔管道工程有限公司 一种柔性复合内衬管及连接装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203336144U (zh) * 2013-06-19 2013-12-11 广东华捷钢管实业有限公司 一种端头带有衬套的管材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156540A (en) * 1977-08-30 1979-05-29 Parker-Hannifin Corporation Sealant for hose fittings
DE3904996A1 (de) * 1989-02-18 1990-08-23 Freudenberg Carl Fa Schlauchverbindung
CN2099891U (zh) * 1991-07-10 1992-03-25 周广先 填料式薄壁塑料管接头
CN1163996A (zh) * 1997-04-07 1997-11-05 许道滋 多层塑料管及其管接头
JP2000161565A (ja) * 1998-11-25 2000-06-16 Sakura Gomme Kk ホース結合金具及びホースと結合金具との結合方法
CN1304958A (zh) * 2000-10-26 2001-07-25 招远市海星塑料厂 一种改性upvc塑料管材及其制备工艺
CN1560499A (zh) * 2004-03-10 2005-01-05 孟庆义 柔性复合高压输送管
CN105605338A (zh) * 2016-02-22 2016-05-25 山东柯林瑞尔管道工程有限公司 一种柔性复合内衬管及连接装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825360A4 (en) * 2019-05-25 2021-11-10 China Merchants Marine and Offshore Research Institute Co., Ltd. CLADDING MATERIAL FOR NON-METALLIC SOFT COMPOSITE PIPE AND PROCESS FOR PREPARATION
EP4122692A1 (de) * 2021-07-21 2023-01-25 Fibron Pipe GesmbH Kunststoffzusammensetzung, kunststoffrohr, verwendung und herstellungsverfahren
CN115850975A (zh) * 2022-11-08 2023-03-28 常州威斯双联科技有限公司 一种电池填充用导热凝胶及其制备工艺
CN115962353A (zh) * 2022-12-15 2023-04-14 中建五局第二建设有限公司 一种高强度柔性好的金属软管
CN116180327A (zh) * 2023-01-07 2023-05-30 浙江盛纺纳米材料科技有限公司 一种抗拉无纺布及其生产工艺
CN116355399A (zh) * 2023-05-19 2023-06-30 山东祥龙新材料股份有限公司 一种柔性挤出尼龙材料、其制备方法及其应用
CN116355399B (zh) * 2023-05-19 2023-08-04 山东祥龙新材料股份有限公司 一种柔性挤出尼龙材料、其制备方法及其应用
CN116622129A (zh) * 2023-07-24 2023-08-22 山东和瑞新材料科技有限公司 一种pvc用钙锌稳定剂
CN116622129B (zh) * 2023-07-24 2023-09-12 山东和瑞新材料科技有限公司 一种pvc用钙锌稳定剂

Also Published As

Publication number Publication date
CN105605338A (zh) 2016-05-25
CN105605338B (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2017143954A1 (zh) 一种柔性复合内衬管
WO2018127031A1 (zh) 一种新型混合复合管材及制备方法和应用
CN102449369B (zh) 低渗透的挠性燃料软管
CN101307856A (zh) 一种钢质管道的防腐蚀加固方法
CN101885898B (zh) 含缺陷管道修补的复合材料
CN104212046B (zh) 多孔梅花管及其制备方法
CN102786729A (zh) Pe160级管材用复合材料及其制备方法
CN109897363A (zh) 用于管材的生物质基聚氨酯材料,聚氨酯软管及其制备方法
CN111763372A (zh) 一种增强改性聚丙烯电力管及其制备方法
CN106832524A (zh) 一种柔性复合内衬管材
CN102917868A (zh) 低渗透的挠性燃料软管
CN205504233U (zh) 一种三层共挤聚乙烯碳纤维复合管材
CN202708352U (zh) Pe160级纤维增强聚乙烯管材
CN105038036A (zh) 一种给水用抗冲抗压双轴取向聚氯乙烯管材
CN209067975U (zh) 高耐磨矿用大口径电液控远程供液超高压柔性管
CN1285851C (zh) 多层结构纤维增强弹性体管道补偿器及其成型方法
CN108591636A (zh) 高耐磨矿用大口径电液控远程供液超高压柔性管及其制备方法
CN103741340A (zh) 一种高强度非开挖管道修复材料及其制造方法
KR20040050392A (ko) 다층 복합형 방수시트 및 그의 제조방법
CN112409639A (zh) 一种结构性生物质基硅炭管材材料的制备方法
CN112696535A (zh) 一种预制保温连续玻璃纤维预浸带增强管材
CN209164790U (zh) 一种防压抗冲击的pe管材
WO2022095309A1 (zh) 一种复合材料熔焊管材
CN115703273A (zh) 一种一体化柔性复合管及其制备方法
CN114008369A (zh) 用于密封管路的系统和方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17755783

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17755783

Country of ref document: EP

Kind code of ref document: A1