WO2017143518A1 - 一种建立层间链路绑定关系的方法及装置 - Google Patents

一种建立层间链路绑定关系的方法及装置 Download PDF

Info

Publication number
WO2017143518A1
WO2017143518A1 PCT/CN2016/074338 CN2016074338W WO2017143518A1 WO 2017143518 A1 WO2017143518 A1 WO 2017143518A1 CN 2016074338 W CN2016074338 W CN 2016074338W WO 2017143518 A1 WO2017143518 A1 WO 2017143518A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
lsp
inter
node
layer
Prior art date
Application number
PCT/CN2016/074338
Other languages
English (en)
French (fr)
Inventor
冯皓宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES16890972T priority Critical patent/ES2797110T3/es
Priority to CN201680080602.XA priority patent/CN108702330B/zh
Priority to EP16890972.9A priority patent/EP3355535B1/en
Priority to PCT/CN2016/074338 priority patent/WO2017143518A1/zh
Publication of WO2017143518A1 publication Critical patent/WO2017143518A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0261Optical medium access at the optical multiplex section layer
    • H04J14/0264Multiplex identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the first node can determine the faulty single-wave link and further determine the faulty electrical layer channel when receiving the fault alarm information for the multiplexed link according to the known inter-layer link binding relationship. Improve the efficiency of fault alarms.
  • the receiving unit is further configured to receive a second LSP path setup request message, where the second LSP path is The establishment request message carries the second link information;
  • the second link information includes a link identifier of the single-wave link included in the second LSP and a channel identifier of the electrical layer channel included in the second LSP.
  • the establishing unit is further configured to establish an inter-layer link binding relationship of the second LSP;
  • the apparatus further includes:
  • a sending unit configured to: after the device establishes an inter-layer link binding relationship of the first LSP, the inter-layer link binding relationship of the first LSP
  • the controller can obtain the inter-layer link binding relationship established by each node.
  • the controller can determine the single-link link and the electrical layer channel of the fault in time to improve the fault alarm efficiency. .
  • a fault analysis unit configured to determine, after the device establishes an inter-layer link binding relationship of the first LSP, that the multiplex link on the first LSP fails, and determine a faulty merging link Link identifier
  • the fault analysis unit is further configured to establish an inter-layer chain of the second LSP in the device After the road binding relationship, each link is determined according to the inter-layer link binding relationship of the second LSP and the link identifier of the single-wave link corresponding to the link identifier of the failed multiplex link.
  • the device can determine the faulty single-wave link in time and further determine the faulty electrical layer channel according to the known inter-layer link binding relationship, when receiving the fault alarm information for the multiplex link. Fault alarm efficiency.
  • the inter-layer link binding relationship of the first LSP refers to the correspondence between the link identifier of the multiplexed link in the first LSP and the link identifier of the single-wave link in the first LSP.
  • FIG. 4 is a hierarchical model diagram of an optoelectronic transmission network defined by an OTN technology according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of establishing an inter-layer link binding relationship according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of managing a link binding relationship between layers by using a balanced binary tree tube according to an embodiment of the present invention.
  • FIG. 10A is a schematic diagram of a link relationship between nodes according to an embodiment of the present invention.
  • 10B is a schematic diagram of fault processing of a faulty link by a first node and a last node according to an embodiment of the present invention
  • FIG. 11B is a schematic diagram of a controller performing fault processing on a faulty link according to an embodiment of the present invention.
  • the embodiments of the present invention provide a method and a device for establishing an inter-layer link binding relationship, which are used to solve the problem that the line fault alarming efficiency in the prior art is low and may affect subsequent service routing.
  • the client side device in the transmission direction from the client side to the line side, the client side device needs to transmit data through OTU, optical multiplexing (OM), optical amplification unit (optical amplifier, OA). ), and the Line Interface Unit (FIU) is sent to the line side equipment Optical Distribution Frame (ODF).
  • OTU optical multiplexing
  • OA optical amplification unit
  • ODF Line Interface Unit
  • the data that the ODF needs to transmit to the client side device is transmitted to the client side device via the FIU, OA, optical demultiplexing (OD), and OTU.
  • Figure 3 combines the features of Figures 1 and 2 to combine the OTU with a combination of OTN tributary boards, cross boards, and circuit boards.
  • the existing network architecture is taken as an example, and is not limited to the application scenarios shown in the above three figures.
  • the embodiment of the present invention is mainly directed to a hierarchical model of OTN.
  • the optical transmission section manages the range from the FIU board input of the sending station to the FIU board output of the receiving station.
  • Step 510 The first node establishes an inter-layer link binding relationship of the first LSP.
  • the inter-layer link binding relationship of the first LSP refers to the correspondence between the link identifier of the multiplexed link in the first LSP and the link identifier of the single-wave link in the first LSP.
  • the inter-layer link binding relationship of the first LSP established by the first LSP may include an inter-layer link binding relationship of the first LSP on the first node, and may also include an inter-layer connection on other nodes through which the first LSP passes. Link binding relationship.
  • the first node after the first node establishes the inter-layer link binding relationship of the first LSP, the first node sends the inter-layer link binding relationship of the first LSP to the controller.
  • the figure contains three OCH LSPs, which are OCH LSP1, OCH LSP2, and OCH LSP3.
  • the link identifier of the multiplexed link included in OCH LSP1 is the link identifier of the multiplexed link between node A and node B, that is, the OTS-Link identifier is OTS-Link1, and the multiplex wave between node B and node C.
  • the link identifier of the link, that is, the OTS-Link identifier is OTS-Link2. It should be noted that the OTS-Link here can also be OMS-Link or Fiber-Link.
  • OCH LSP2 passing through node A-node B-node C.
  • the link identifier of the multiplexed link included in the OCH LSP2 is the link identifier OTS-Link1 of the multiplex link between the node A and the node B, and the link identifier OTS of the multiplex link between the node B and the node C. -Link2.
  • the link identifier of the multiplexed link included in the OCH LSP3 is the link identifier OTS-Link1 of the multiplex link between the node A and the node B.
  • the process of establishing an inter-layer link binding relationship of the first LSP is described by using OCH LSP1 as the first LSP.
  • the first LSP path setup request message carries an identifier object, where the identifier object is used to instruct the node A to establish an inter-layer link binding relationship of the first LSP path.
  • the PATH message carries a schematic diagram of an identifier object that establishes an inter-layer link binding relationship.
  • the first link information here can be at least two cases:
  • the routing information of OCH LSP1 calculated by node A is the routing information of the entire LSP, so here
  • the first link information may be the first link information in the first case. Therefore, the inter-layer link binding relationship of the first LSP established by the node A is OTS-Link1 corresponding to OCH-Link1, OCH-Link2, and OTS-Link2 corresponding to OCH-Link1, OCH-Link2.
  • the Node B receives the first LSP path setup request message sent by the node A or the controller, where the first LSP path setup request message carries the first link information.
  • the inter-layer link binding relationship of the first LSP established by the Node B is OTS-Link1 corresponding to OCH-Link1, OCH-Link2, and OTS-Link2 corresponding to OCH-Link1, OCH-Link2.
  • the node B after the node B establishes the inter-layer link binding relationship of the first LSP, the node B sends the inter-layer link binding relationship of the first LSP to the controller.
  • the first link information may include the link identifier OTS-Link2 of the multiplex link included in the OCH LSP1 and the link identifiers OCH-Link1, OCH-Link2 of the single-wave link included in the OCH LSP1.
  • the node C establishes the inter-layer link binding relationship of the first LSP to be OTS-Link2 corresponding to OCH-Link1, OCH-Link2.
  • the node C after the node C establishes the inter-layer link binding relationship of the first LSP, the node C sends the inter-layer link binding relationship of the first LSP to the controller.
  • the node on the entire first LSP completes the establishment of the inter-layer link binding relationship of the first LSP.
  • the first node and/or the last node can be used.
  • the inter-layer link binding relationship of the first LSP is established, and the intermediate node does not need to establish an inter-layer link binding relationship of the first LSP, so as to avoid unnecessary processing load on the intermediate node.
  • the second link information includes a link identifier of the single-wave link included in the second LSP and a channel identifier of the electrical layer channel included in the second LSP.
  • the second LSP path setup request message may further carry an identifier object, where the identifier object is further used to indicate that the first node establishes an inter-layer link binding relationship of the second LSP.
  • the node that establishes the inter-layer link binding relationship of the second LSP may be the first node and/or the last node. Because the second LSP is an electrical layer LSP, the intermediate node is transparently transmitted, and the inter-layer link binding relationship of the second LSP is not required to be established.
  • the first node after the first node establishes the inter-layer link binding relationship of the second LSP, the first node sends the inter-layer link binding relationship of the second LSP to the controller.
  • the inter-layer link binding relationship of the second LSP refers to the correspondence between the link identifier of the single-wave link in the second LSP and the channel identifier of the electrical layer channel in the second LSP.
  • the two LSPs are established on the basis of the first LSP, such as ODUk LSP1 and ODUk LSP2.
  • ODUk LSP1 passes through node A-Node B-Node C, and Node B transparently transmits.
  • the link identifier of the single-wave link included in the ODUk LSP1 is the link identifier OCH-Link1 of the single-wave link of the node A, and the link identifier OCH-Link2 of the single-wave link of the node C.
  • the channel identifier of the electrical layer channel included in the ODUk LSP1 is the channel identifier of the electrical layer channel of the node A, that is, the ODUk-Link identifier is ODUk-Link1-1, and the channel identifier of the electrical layer channel of the node C, that is, the ODUk-Link identifier is ODUk. -Link2-1.
  • ODUk LSP2 passes through node A-node B-node C, and node B transparently transmits.
  • the channel identifier of the electrical layer channel included in the ODUk LSP2 is the channel identifier ODUk-Link1-2 of the electrical layer channel of the node A, and the channel identifier ODUk-Link2-2 of the electrical layer channel of the node C.
  • the second LSP path setup request message here may be sent by the controller to the node A.
  • the second LSP path setup request message may be initiated by the node A, and the node A needs to determine the second link information in the second LSP path request message.
  • the first LSP path setup request information here may be a PATH message.
  • the first LSP path setup request message carries an identifier object, where the identifier object is used to instruct the node A to establish an inter-layer link binding relationship of the second LSP.
  • the second link information here can be at least two cases:
  • the second link information includes the link identifier OCH-Link1 of the single-wave link included in the ODUk LSP1, OCH-Link2, and the channel identifier ODUk-Link1-1, ODUk- of the electrical layer channel included in the ODUk LSP1.
  • Link2-1 the second link information in the first case may include the link identifier of the single-wave link and the channel identifier of the electrical layer channel included in the entire ODUk LSP1.
  • the second link information includes the link identifier OCH-Link1 of the single-wave link included in the ODUk LSP1, and the channel identifier ODUk-Link1-1 of the electrical layer channel included in the ODUk LSP1. That is, the first link information in the second case may include the link identifier of the single-wave link included in the partial ODUk LSP1 and the channel identifier of the electrical layer channel included in the partial ODUk LSP1.
  • the link identifier of the single-wave link included in the part of the ODUk LSP1 here refers to the link identifier of the single-wave link of a certain node (for example, node A) on the second LSP, where part of the ODUk LSP1 is included.
  • the channel identifier of the electrical layer channel refers to the channel identifier of the electrical layer channel of a node (for example, node A) on the second LSP.
  • the inter-layer link binding relationship of the node A to establish the second LSP is OCH-Link1 corresponding to ODUk-Link1-1, and OCH-Link2 corresponds to ODUk-Link2-1. .
  • the node A can calculate the routing information of the second LSP, determine the second link information according to the routing information of the second LSP, and then establish the inter-layer chain of the second LSP according to the second link information. Road binding relationship.
  • the first node may not establish an inter-layer link binding relationship of the second LSP. Therefore, optionally, after the node A receives the resource reservation (RESV) message sent by the node C (ie, the last node), the inter-layer link binding relationship of the second LSP is established.
  • the node C may also carry the identifier object in the RESV message. This ensures that the inter-layer link binding relationship of the second LSP established by the node A is performed after the second LSP is successfully established.
  • RESV resource reservation
  • the node C receives the second LSP path setup request message sent by the node B or the controller, and the second LSP path setup request message carries the second link information.
  • the first link information here can also include two types:
  • the node C establishes the inter-layer link binding relationship of the second LSP to be OCH-Link2 corresponding to ODUk-Link2-1.
  • the node C is the last node, and the node C can establish an inter-layer link binding relationship of the second LSP according to the information of the Record Route Object (RRO) carried in the request message of the second LSP.
  • RRO Record Route Object
  • the RRO message here may carry the second link message in the first case.
  • the node C after the node C establishes the inter-layer link binding relationship of the second LSP, the node C sends the inter-layer link binding relationship of the second LSP to the controller.
  • the first node and the last node on the entire second LSP complete the establishment of the inter-layer link binding relationship of the second LSP.
  • only the first node and the The final node completes the establishment of the inter-layer link binding relationship of the entire second LSP.
  • the first node and the last node can respectively establish the inter-layer link binding relationship of the second LSP, and then report to the controller separately, or only the first node and/or the end node.
  • the node is configured to report the inter-layer link binding relationship of the entire LSP to the controller, or the controller calculates the routing information of the second LSP, and then establishes the inter-layer link binding relationship of the second LSP, and can respectively It is sent to each node in the second LSP.
  • the link identifier of the failed multiplex link is further determined.
  • the first node directly determines the faulty multiplex link according to the inter-layer link binding relationship of the first LSP. Link ID of the single-wave link corresponding to the link identifier.
  • the inter-layer link binding relationship of the first LSP established by the node is an inter-layer link binding relationship of the entire first LSP, and the single-wave link corresponding to the link identifier of the failed multiplex link can be determined.
  • Link ID is an inter-layer link binding relationship of the entire first LSP, and the single-wave link corresponding to the link identifier of the failed multiplex link.
  • the first node is the first node and/or the last node
  • the first node only establishes the inter-layer link binding relationship of the second LSP, only the electrical layer corresponding to the link identifier of the partial single-wave link can be determined.
  • the channel ID of the channel is the first node and/or the last node
  • the node A detects the failed multiplex link, determines the link identifier of the failed multiplex link as OTS-Link1, and further According to the inter-layer link binding relationship shown in FIG. 8, it is determined that OTS-Link1 corresponds to OCH-Link1, OCH-Link2, and OCH-Link1 corresponds to ODUk-Link1-1, ODUk-Link1-2, and OCH-Link2 corresponds to ODUk. -Link2-1, ODUk-Link2-2.
  • the node B When the node B detects that the OTS-Link1 is faulty, the node sends a fault notification message to the node C, where the fault notification message carries the router ID and the link identifier, that is, the node B and the OTS-Link1.
  • the node C determines that the OTS-Link1 corresponds to OCH-Link1, OCH-Link2, and OCH-Link1 corresponds to ODUk-Link1-1, ODUk- according to the inter-layer link binding relationship shown in FIG. Link1-2, OCH-Link2 corresponds to ODUk-Link2-1 and ODUk-Link2-2.
  • OCH LSP1 transit node A-Node B
  • OCH LSP2 transit node B-node C-node D.
  • OCH LSP1 When OCH LSP1 is established, node A and node B establish an inter-layer link binding relationship of OCH LSP1, and OTS-Link1 corresponds to OCH-Link1 and OCH-Link2.
  • OTS-Link2 corresponds to OCH-Link3, OCH-Link4, and OTS-Link3 corresponds to OCH-Link3 and OCH-Link4.
  • OCH-Link3 corresponds to ODUk-Link2-1
  • OCH-Link4 corresponds to ODUk-Link3-2.
  • the controller determines that the OTS-Link3 corresponds to the OCH- when the disconnection fault alarm message is received between the node C-node D.
  • Link3, OCH-Link4, OCH-Link3 correspond to ODUk-Link2-1
  • OCH-Link4 corresponds to ODUk-Link3-1, and service failure occurs in ODUk LSP1 and ODUk LSP2.
  • an embodiment of the present invention provides an apparatus for establishing an inter-layer link binding relationship, including:
  • the receiving unit 1201 is configured to receive a first LSP path setup request message, where the first LSP path setup request message carries the first link information;
  • the establishing unit 1202 is configured to establish an inter-layer link binding relationship of the first LSP.
  • the inter-layer link binding relationship of the first LSP refers to the correspondence between the link identifier of the multiplexed link in the first LSP and the link identifier of the single-wave link in the first LSP.
  • the device further includes:
  • the determining unit 1203 is configured to determine the first link information if the device is the first node before establishing the inter-layer link binding relationship of the first LSP.
  • the second link information includes a link identifier of the single-wave link included in the second LSP and a channel identifier of the electrical layer channel included in the second LSP.
  • the establishing unit 1202 is further configured to establish an inter-layer link binding relationship of the second LSP.
  • the inter-layer link binding relationship of the second LSP refers to the correspondence between the link identifier of the single-wave link in the second LSP and the channel identifier of the electrical layer channel in the second LSP.
  • the first LSP path setup request message carries an identifier object, where the identifier object is used to indicate that the device establishes an inter-layer link binding relationship of the first LSP.
  • the device establishes an inter-layer link binding relationship of the second LSP.
  • the device further includes:
  • the sending unit 1204 is configured to: after the device establishes an inter-layer link binding relationship of the first LSP, the inter-layer link binding relationship of the first LSP
  • the device further includes:
  • FIG. 13 is an implementation of the present invention.
  • a schematic diagram of a structure of a router in the example, the device includes a transceiver 1301, a processor 1302, and a memory 1303.
  • the transceiver 1301, the processor 1302, and the memory 1303 are connected to each other.
  • the specific connecting medium between the above components is not limited in the embodiment of the present invention.
  • the embodiment of the present invention is connected in FIG. 13 between the memory 1303, the processor 1302, and the transceiver 1301 via a bus 1304.
  • the bus is indicated by a thick line in FIG. 13, and the connection manner between other components is merely illustrative. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the first link information includes a link identifier of the single-wave link included in the first LSP and a link identifier of the multiplex link included in the first LSP.
  • the processor 1302 is configured to establish an inter-layer link binding relationship of the first LSP.
  • the inter-layer link binding relationship of the first LSP refers to the correspondence between the link identifier of the multiplexed link in the first LSP and the link identifier of the single-wave link in the first LSP.
  • the processor 1302 is further configured to determine the first link information if the device is the first node before establishing the inter-layer link binding relationship of the first LSP.
  • the inter-layer link binding relationship of the second LSP refers to the correspondence between the link identifier of the single-wave link in the second LSP and the channel identifier of the electrical layer channel in the second LSP.
  • the device establishes an inter-layer link binding relationship of the second LSP.
  • the transceiver 1301 is further configured to establish an inter-layer link binding relationship of the first LSP at the device. Then, the inter-layer link binding relationship of the first LSP is
  • the processor 1302 is further configured to: after the device establishes an inter-layer link binding relationship of the first LSP, determine that the multiplex link on the first LSP is faulty, and determine a chain of the failed multiplex link.
  • Road sign
  • the processor 1302 is further configured to: after the device establishes the inter-layer link binding relationship of the second LSP, according to the inter-layer link binding relationship of the second LSP, and the chain of the failed multiplex link
  • the link identifier of the single-wave link corresponding to the path identifier, and the channel identifier of the at least one electrical layer channel corresponding to the link identifier of each single-wave link is determined.
  • the memory 1303 is configured to store the program code executed by the processor 1302, and may be a volatile memory, such as a random access memory (English: random-access memory, abbreviation: RAM);
  • the memory 1303 may also be a non-volatile memory (English: non-volatile memory), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard Disk drive, abbreviated: HDD) or solid state drive (English: solid-state drive, SSD), or memory 1303 can be used to carry or store desired program code in the form of an instruction or data structure and can be accessed by a computer. Any other medium, but not limited to this.
  • the memory 1303 may be a combination of the above memories.
  • the processor 1302 in the embodiment of the present invention may be a central processing unit (English: central processing unit, CPU for short).
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

一种建立层间链路绑定关系的方法及装置,涉及通信技术领域,用以解决现有技术中线路故障告警效率较低的问题,该方法为:第一节点接收第一标签交换路径LSP路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息;其中,第一链路信息包括第一LSP包括的单波链路的链路标识和第一LSP包括的合波链路的链路标识;第一节点建立第一LSP的层间链路绑定关系;其中,第一LSP的层间链路绑定关系是指第一LSP中合波链路的链路标识与第一LSP中单波链路的链路标识之间的对应关系。因此,当出现合波线路故障时,根据层间链路绑定关系,及时对故障线路告警,提升了故障告警效率。

Description

一种建立层间链路绑定关系的方法及装置 技术领域
本发明涉及通信技术领域,特别是涉及一种建立层间链路绑定关系的方法及装置。
背景技术
光传输网络作为基础网络设施,近年来由于移动互联和大数据的驱动,及传输网络向大容量方向的发展,网络建设需求大量增加,特别是在核心网络的数据传输上,一般都会选择使用波分复用(Wavelength Division Multiplexing,WDM)设备或者光传送网(Optical Transport Network,OTN)设备。随着WDM设备或者OTN设备的大量建网,网络结构复杂程度和网络规模也随之增加,因此对网络的可维护性、可靠性和安全性要求也相应提高,因此引入了自动交换光网络(Automatically Switched Optical Network,ASON)技术来解决以上问题。ASON技术主要将光传输网络中的传送平面和控制平面分离,利用控制平面对传送平面进行管理和控制。
OTN技术定义了光传输网络中光/电的技术体系结构,构成了基于光通道数据单元(OCH Data Unit,ODUK)和光波长的传输技术。ODUK和光波长位于两层独立的光传输调度网络,一个光波长可以承载多个ODUk。例如,单波长100G可以承载80个ODU0。在OTN基础上引入ASON技术,使得光波长和ODUK都具有网络生存性机制。
按波分系统的分层管理和组网配置,当两个节点间的合波链路发生故障时,合波链路中每个波长承载的所有ODUK都会出现故障。但由于每个波长独立对应一个光电转换单元(Optical Transform Unit,OTU)单板,因此当合波链路故障后,传送平面需要针对每个波长进行波长信号故障检测,并且还针对每个OTU单板进行ODUk信号故障检测,分别上报故障告警信息给控制平面。控制平面通过串行方式处理各个OTU单板分别上报的告警信息,因此, 需要较长时间才能完成故障告警,导致故障告警效率较低,而且还可能影响到后续业务路由的选择。
发明内容
本发明实施例提供一种建立层间链路绑定关系的方法及装置,用以解决现有技术中故障告警效率较低,且可能影响到后续业务路由选择的问题。
本发明实施例提供的具体技术方案如下:
第一方面,一种建立层间链路绑定关系的方法,包括:
第一节点接收第一标签交换路径LSP路径建立请求消息,所述第一LSP路径建立请求消息携带第一链路信息;
其中,所述第一链路信息包括所述第一LSP包括的单波链路的链路标识和所述第一LSP包括的合波链路的链路标识;
所述第一节点建立所述第一LSP的层间链路绑定关系;
其中,所述第一LSP的层间链路绑定关系是指所述第一LSP中合波链路的链路标识与所述第一LSP中单波链路的链路标识之间的对应关系。
结合第一方面,在第一种可能的实现方式中,所述第一节点建立所述第一LSP的层间链路绑定关系之前,还包括:
若所述第一节点为首节点,所述第一节点确定所述第一链路信息。
因此,当第一节点为首节点时,可以根据第一节点计算的第一LSP的路由信息,确定第一链路信息,提高了建立层间绑定关系的效率。
此外,首节点在接收到末节点发送的资源预留消息后,再建立第一LSP的层间链路绑定关系。末节点也可以在资源预留消息中携带标识对象。这样便保证了首节点建立第一LSP的层间链路绑定关系是在第一LSP建立成功之后执行的。
末节点可以根据第一LSP路径建立请求消息中携带的记录路由对象信息,建立第一LSP的层间链路绑定关系。
在没有控制器的应用场景下,可以只由首节点和/或末节点完成建立整条 第一LSP的层间链路绑定关系,中间节点不必建立第一LSP的层间链路绑定关系,以免增加中间节点不必要的处理负担。
在存在控制器的应用场景下,此时,可以选择由每个节点分别建立第一LSP的层间链路绑定关系,然后分别上报至控制器,或者只由首节点和/或末节点完成建立整条第一LSP的层间链路绑定关系上报至控制器,又或者控制器计算第一LSP的路由信息,然后建立第一LSP的层间链路绑定关系,并可分别下发给第一LSP中的各个节点。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,还包括:
所述第一节点接收第二LSP路径建立请求消息,所述第二LSP路径建立请求消息携带第二链路信息;
其中,所述第二链路信息包括所述第二LSP包括的单波链路的链路标识和所述第二LSP包括的电层通道的通道标识;
所述第一节点建立所述第二LSP的层间链路绑定关系;
其中,所述第二LSP的层间链路绑定关系是指所述第二LSP中单波链路的链路标识与所述第二LSP中电层通道的通道标识之间的对应关系。
第二LSP为电层LSP,例如,ODUK信号、分组数据报文等。
因此,第一节点通过建立第二LSP的层间链路绑定关系,将单波链路与电层通道的通道标识相关联,保证了合并链路故障时能够及时针对电层业务告警。
结合第一方面或第一方面的任一一种可能的实现方式,在第三种可能的实现方式中,所述第一LSP路径建立请求消息携带标识对象,其中,所述标识对象用于指示所述第一节点建立所述第一LSP的层间链路绑定关系
和/或所述第一节点建立所述第二LSP的层间链路绑定关系。
因此,第一节点可以对是否建立层间链路绑定关系进行判断,使本方案更加灵活高效。
结合第一方面或第一方面的任一一种可能的实现方式,在第四种可能的 实现方式中,还包括:
在所述第一节点建立所述第一LSP的层间链路绑定关系之后,所述第一节点将所述第一LSP的层间链路绑定关系
和/或所述第二LSP的层间链路绑定关系发送至所述控制器。
因此,控制器可以获得各个节点建立的层间链路绑定关系,当收到针对合波链路的故障告警信息时,能够及时确定故障的单波链路和电层通道,提高故障告警效率。
结合第一方面或第一方面的任一一种可能的实现方式,在第五种可能的实现方式中,在所述第一节点建立所述第一LSP的层间链路绑定关系之后,还包括:
所述第一节点确定所述第一LSP上合波链路发生故障,并确定发生故障的合波链路的链路标识;
所述第一节点根据所述第一LSP的层间链路绑定关系确定所述发生故障的合波链路的链路标识对应的至少一条单波链路的链路标识。
因此,第一节点根据已知的层间链路绑定关系,当收到针对合波链路的故障告警信息时,能够及时确定故障的单波链路,提高故障告警效率。
结合第一方面或第一方面的任一一种可能的实现方式,在第六种可能的实现方式中,在所述第一节点建立所述第二LSP的层间链路绑定关系之后,还包括:
所述第一节点根据所述第二LSP的层间链路绑定关系、以及所述发生故障的合波链路的链路标识对应的单波链路的链路标识,确定每个单波链路的链路标识对应的至少一个电层通道的通道标识。
因此,第一节点根据已知的层间链路绑定关系,当收到针对合波链路的故障告警信息时,能够及时确定故障的单波链路,并进一步确定故障的电层通道,提高故障告警效率。
第二方面,一种建立层间链路绑定关系的装置,包括:
接收单元,用于接收第一标签交换路径LSP路径建立请求消息,所述第 一LSP路径建立请求消息携带第一链路信息;
其中,所述第一链路信息包括所述第一LSP包括的单波链路的链路标识和所述第一LSP包括的合波链路的链路标识;
建立单元,用于建立所述第一LSP的层间链路绑定关系;
其中,所述第一LSP的层间链路绑定关系是指所述第一LSP中合波链路的链路标识与所述第一LSP中单波链路的链路标识之间的对应关系。
结合第二方面,在第一种可能的实现方式中,所述装置还包括:
确定单元,用于在建立所述第一LSP的层间链路绑定关系之前,若所述装置为首节点,确定所述第一链路信息。
因此,当该装置为首节点时,可以根据第一节点计算的第一LSP的路由信息,确定第一链路信息,提高了建立层间绑定关系的效率。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述接收单元,还用于接收第二LSP路径建立请求消息,所述第二LSP路径建立请求消息携带第二链路信息;
其中,所述第二链路信息包括所述第二LSP包括的单波链路的链路标识和所述第二LSP包括的电层通道的通道标识;
所述建立单元,还用于建立所述第二LSP的层间链路绑定关系;
其中,所述第二LSP的层间链路绑定关系是指所述第二LSP中单波链路的链路标识与所述第二LSP中电层通道的通道标识之间的对应关系。
因此,该装置通过建立第二LSP的层间链路绑定关系,将单波链路与电层通道的通道标识相关联,保证了合并链路故障时能够及时针对电层业务告警。
结合第二方面或第二方面的第一种可能的实现方式,在第三种可能的实现方式中,所述第一LSP路径建立请求消息携带标识对象,其中,所述标识对象用于指示所述装置建立所述第一LSP的层间链路绑定关系
和/或所述装置建立所述第二LSP的层间链路绑定关系。
因此,该装置可以对是否建立层间链路绑定关系进行判断,使本方案更 加灵活高效。
结合第二方面或第二方面的第一种可能的实现方式,在第四种可能的实现方式中,所述装置还包括:
发送单元,用于在所述装置建立所述第一LSP的层间链路绑定关系之后,将所述第一LSP的层间链路绑定关系
和/或所述第二LSP的层间链路绑定关系发送至所述控制器。
因此,控制器可以获得各个节点建立的层间链路绑定关系,当收到针对合波链路的故障告警信息时,能够及时确定故障的单波链路和电层通道,提高故障告警效率。
结合第二方面或第二方面的第一种可能的实现方式,在第五种可能的实现方式中,所述装置还包括:
故障分析单元,用于在所述装置建立所述第一LSP的层间链路绑定关系之后,确定所述第一LSP上合波链路发生故障,并确定发生故障的合波链路的链路标识;
以及根据所述第一LSP的层间链路绑定关系确定所述发生故障的合波链路的链路标识对应的至少一条单波链路的链路标识。
因此,该装置根据已知的层间链路绑定关系,当收到针对合波链路的故障告警信息时,能够及时确定故障的单波链路,提高故障告警效率。
结合第二方面或第二方面的第一种可能的实现方式,在第六种可能的实现方式中,所述故障分析单元,还用于在所述装置建立所述第二LSP的层间链路绑定关系之后,根据所述第二LSP的层间链路绑定关系、以及所述发生故障的合波链路的链路标识对应的单波链路的链路标识,确定每个单波链路的链路标识对应的至少一个电层通道的通道标识。
因此,该装置根据已知的层间链路绑定关系,当收到针对合波链路的故障告警信息时,能够及时确定故障的单波链路,并进一步确定故障的电层通道,提高故障告警效率。
第三方面,本发明实施例提供一种路由器,包括:
收发器,用于接收第一LSP路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息;
其中,第一链路信息包括第一LSP包括的单波链路的链路标识和第一LSP包括的合波链路的链路标识;
处理器,用于建立第一LSP的层间链路绑定关系;
其中,第一LSP的层间链路绑定关系是指第一LSP中合波链路的链路标识与第一LSP中单波链路的链路标识之间的对应关系。
本发明实施例中第一节点接收第一标签交换路径LSP路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息;其中,第一链路信息包括第一LSP包括的单波链路的链路标识和第一LSP包括的合波链路的链路标识;第一节点建立第一LSP的层间链路绑定关系;其中,第一LSP的层间链路绑定关系是指第一LSP中合波链路的链路标识与第一LSP中单波链路的链路标识之间的对应关系。当出现合波线路故障时,第一节点查询通过层间链路绑定关系,准确定位故障单波链路,及时对故障线路告警,不依赖系统和硬件的开销,并将故障检测并行化处理,提升了故障告警效率。
附图说明
图1为本发明实施例中的网络架构示意图之一;
图2为本发明实施例中网络架构示意图之二;
图3为本发明实施例中网络架构示意图之三;
图4为本发明实施例中OTN技术定义的光电传输网络层次模型图;
图5为本发明实施例中建立层间链路绑定关系的概述流程图;
图6为本发明实施例中建立层间链路绑定关系的示意图;
图7为本发明实施例中PATH消息中携带建立层间链路绑定关系的标识对象消息对象定义示意图;
图8为本发明实施例中采用平衡二叉树管管理各层间链路绑定关系的示意图;
图9为本发明实施例中针对故障通知消息的消息对象定义示意图;
图10A为本发明实施例中节点间链路关系示意图之一;
图10B为本发明实施例中首节点和末节点针对故障链路进行故障处理的示意图;
图11A为本发明实施例中节点间链路关系示意图之二;
图11B为本发明实施例中控制器针对故障链路进行故障处理的示意图;
图12为本发明实施例中建立层间链路绑定关系的装置结构示意图;
图13为本发明实施例中一种路由器的实体结构示意图。
具体实施方式
本发明实施例提供一种建立层间链路绑定关系的方法及装置,用以解决现有技术中线路故障告警效率较低,且可能影响到后续业务路由选择的问题。
其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本发明实施例的主要应用场景,参阅图1、图2、图3所示。
参阅图1所示,图1中,在客户侧到线路侧的传输方向上,客户侧设备将需要发送的数据经OTU,光合波单元(optical Multiplexing,OM)、光放大单元(optical amplifier,OA),以及线路接口单元(Facilities Interface Unit,FIU)发送至线路侧设备光纤配线架(Optical Distribution Frame,ODF)。在线路侧到客户侧的传输方向上,ODF将需要传输至客户侧设备的数据经FIU、OA、光分波单元(optical Demultiplexing,OD)和OTU传输至客户侧设备
参阅图2所示,图2与图1的不同之处在于,将OTU替换为OTN支路板、交叉板和线路板的组合。
参阅图3所示,图3结合了图1和图2的特点,将OTU与OTN支路板、交叉板和线路板的组合相结合。
这里只是以现有的网络架构为例,并不限于以上三图所示的应用场景。
参阅图4所示,本发明实施例主要针对OTN的层次模型。
具体的,光传输段(Optical Transmission Section,OTS)管理的范围是从发送站点的FIU单板输入到接收站点的FIU单板输出之间。
光复用段(Optical Multiplex Section,OMS)管理的范围是从发送站点的合波模块输入光口到接收站点的分波模块输出光口之间。其中,波分设备中的合波模块,即合波器、光分插复用器(Optical Add/Drop Multiplexing,OADM)的上波部分,完成了从多个独立的特定波长信号转换为合波信号的过程,即OMS的复用功能。波分设备中的分波模块即分波器、OADM的下波部分完成了从主信道信号转换为多个独立的特定波长信号的过程,即OMS的解复用功能。
OCH管理的范围是从发送站点线路板的波分侧到接收站点线路板的波分侧之间。
下面结合附图对本发明优选的实施方式进行详细说明。
参阅图5所示,本发明实施例提供一种建立层间链路绑定关系的方法,具体包括:
步骤500:第一节点接收第一标签交换路径(Label Switch Path,LSP)路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息。
其中,第一链路信息包括第一LSP包括的单波链路的链路标识和第一LSP包括的合波链路的链路标识。第一LSP路径建立请求消息中携带第一链路信息可以包括第一LSP在第一节点上的第一链路信息,也可以包括第一LSP在其经过的其他节点上的第一链路信息。
此外,第一LSP路径建立请求消息还可携带标识对象,其中,标识对象还用于指示第一节点建立第一LSP的层间链路绑定关系。
步骤510:第一节点建立第一LSP的层间链路绑定关系。
其中,第一LSP的层间链路绑定关系是指第一LSP中合波链路的链路标识与第一LSP中单波链路的链路标识之间的对应关系。第一节点建立的第一LSP的层间链路绑定关系可以包括第一LSP在第一节点上的层间链路绑定关系,还可以包括第一LSP经过的其他节点的上的层间链路绑定关系。
可选的,在第一节点建立第一LSP的层间链路绑定关系之后,第一节点将第一LSP的层间链路绑定关系发送至控制器。
如图6所示,图中包含3条OCH LSP,分别为OCH LSP1、OCH LSP2、OCH LSP3。
OCH LSP1,经过节点A-节点B-节点C。
OCH LSP1包括的合波链路的链路标识为节点A与节点B之间的合波链路的链路标识,即OTS-Link标识为OTS-Link1,节点B与节点C之间的合波链路的链路标识,即OTS-Link标识为OTS-Link2。须知这里的OTS-Link也可以为OMS-Link或者Fiber-Link。
OCH LSP1包括的单波链路的链路标识为节点A的单波链路的链路标识,即OCH-Link标识为OCH-Link1,节点C的单波链路的链路标识,即OCH-Link标识为OCH-Link2。
OCH LSP2,经过节点A-节点B-节点C。
OCH LSP2包括的合波链路的链路标识为节点A与节点B之间的合波链路的链路标识OTS-Link1,节点B与节点C之间的合波链路的链路标识OTS-Link2。
OCH LSP2包括的单波链路的链路标识为节点A的单波链路的链路标识OCH-Link3,节点C的单波链路的链路标识OCH-Link4。
OCH LSP3,经过节点A-节点B。
OCH LSP3包括的合波链路的链路标识为节点A与节点B之间的合波链路的链路标识OTS-Link1。
OCH LSP3包括的单波链路的链路标识为节点A的单波链路的链路标识OCH-Link5,节点B的单波链路的链路标识OCH-Link6。
这里以OCH LSP1为第一LSP说明建立第一LSP的层间链路绑定关系的过程。
节点A接收第一LSP路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息。
这里的第一LSP路径建立请求信息可以是由控制器发送给节点A的。可选地,还可以由节点A发起第一LSP路径建立请求信息,即节点A在发起第一LSP路径建立请求信息之前,需要确定第一LSP路径建立请求信息中的第一链路信息。这里的第一LSP路径建立请求信息可以是PATH消息。
可选的,第一LSP路径建立请求消息携带标识对象,其中,标识对象用于指示节点A建立第一LSP路径的层间链路绑定关系。参阅图7所示,为PATH消息中携带建立层间链路绑定关系的标识对象的示意图。
这里的第一链路信息可以至少为以下两种情况:
第一种情况:第一链路信息包括OCH LSP1包括的合波链路的链路标识OTS-Link1、OTS-Link2以及OCH LSP1包括的单波链路的链路标识OCH-Link1、OCH-Link2,即第一链路信息中可以包括整条OCH LSP1中包括的合波链路的链路标识和单波链路的链路标识。
第二种情况:第一链路信息包括OCHLSP1包括的合波链路的链路标识OTS-Link1以及OCH LSP1包括的单波链路的链路标识OCH-Link1、OCH-Link2,即第一链路信息中可以包括部分OCH LSP1中包括的合波链路的链路标识以及单波链路的链路标识,这里的部分OCH LSP1中包括的合波链路的链路标识是指与第一LSP上的某个节点(例如,节点A)连接的合波链路的链路标识。
因此,针对第一种情况中的第一链路信息,节点A建立第一LSP的层间链路绑定关系为OTS-Link1对应OCH-Link1,OCH-Link2,以及OTS-Link2对应OCH-Link1,OCH-Link2。
针对第二种情况中的第一链路信息,节点A建立第一LSP的层间链路绑定关系为OTS-Link1对应OCH-Link1、OCH-Link2。
可选的,由于节点A为首节点,节点A可以计算第一LSP的路由信息,并根据第一LSP的路由信息确定第一链路信息,然后根据第一链路信息建立第一LSP的层间链路绑定关系。
节点A计算的OCH LSP1的路由信息是整条LSP的路由信息,因此这里 的第一链路信息可以为第一种情况中的第一链路信息。因此,节点A建立第一LSP的层间链路绑定关系为OTS-Link1对应OCH-Link1,OCH-Link2,以及OTS-Link2对应OCH-Link1,OCH-Link2。
此外,若第一LSP最终建立失败,则首节点可以不建立第一LSP的层间链路绑定关系。因此,可选的,在节点A在接收到节点C(即末节点)发送的资源预留(Reservation,RESV)消息后,再建立第一LSP的层间链路绑定关系。可选的,节点C也可以在RESV消息中携带标识对象。这样便保证了节点A建立第一LSP的层间链路绑定关系是在第一LSP建立成功之后执行的。
可选的,在节点A建立第一LSP的层间链路绑定关系之后,节点A将第一LSP的层间链路绑定关系发送至控制器。
接着,节点B接收节点A或控制器发送的第一LSP路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息。
第一链路信息包括OCH LSP1包括的合波链路的链路标识OTS-Link1、OTS-Link2以及OCH LSP1包括的单波链路的链路标识OCH-Link1、OCH-Link2,这里节点B与节点A、节点C连接,因此,此时第一链路信息中可以包括整条OCH LSP1中包括的合波链路的链路标识和单波链路的链路标识。
因此,针对第一链路信息,节点B建立第一LSP的层间链路绑定关系为OTS-Link1对应OCH-Link1,OCH-Link2,以及OTS-Link2对应OCH-Link1,OCH-Link2。
可选的,在节点B建立第一LSP的层间链路绑定关系之后,节点B将第一LSP的层间链路绑定关系发送至控制器。
最后,节点C接收节点B或控制器发送的第一LSP路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息。
与节点A相似,这里的第一链路信息也可以包括两种:
第一种情况:第一链路信息包括OCH LSP1包括的合波链路的链路标识OTS-Link1、OTS-Link2以及OCH LSP1包括的单波链路的链路标识 OCH-Link1、OCH-Link2。
第二种情况:第一链路信息可以包括OCH LSP1包括的合波链路的链路标识OTS-Link2以及OCH LSP1包括的单波链路的链路标识OCH-Link1、OCH-Link2。
因此,针对第一种情况中的第一链路信息,节点C建立第一LSP的层间链路绑定关系为OTS-Link1对应OCH-Link1,OCH-Link2,以及OTS-Link2对应OCH-Link1,OCH-Link2。
针对第二种情况中的第一链路信息,节点C建立第一LSP的层间链路绑定关系为OTS-Link2对应OCH-Link1、OCH-Link2。
可选的,由于节点C为末节点,节点C可以根据第一LSP路径建立请求消息中携带的记录路由对象(Record Route Object,RRO)信息,建立第一LSP的层间链路绑定关系。这里的RRO消息可以携带第一种情况中的第一链路消息。
可选的,在节点C建立第一LSP的层间链路绑定关系之后,节点C将第一LSP的层间链路绑定关系发送至控制器。
至此整条第一LSP上的节点均完成第一LSP的层间链路绑定关系的建立,在实际应用过程中,在没有控制器的应用场景下,可以只由首节点和/或末节点完成建立整条第一LSP的层间链路绑定关系,中间节点不必建立第一LSP的层间链路绑定关系,以免增加中间节点不必要的处理负担。
在存在控制器的应用场景下,此时,可以选择由每个节点分别建立第一LSP的层间链路绑定关系,然后分别上报至控制器,或者只由首节点和/或末节点完成建立整条第一LSP的层间链路绑定关系上报至控制器,又或者控制器计算第一LSP的路由信息,然后建立第一LSP的层间链路绑定关系,并可分别下发给第一LSP中的各个节点。
进一步地,在执行完步骤510之后,以及在第一LSP建立完成后,第一节点接收第二LSP路径建立请求消息,第二LSP路径建立请求消息携带第二链路信息。
这里的第二LSP可以是基于第一LSP建立的,也可以第一LSP和其他LSP的组合。其中,这里的第一LSP和其他LSP均为光层LSP,第二LSP为电层LSP,例如,ODUK信号、分组数据报文等。
其中,第二链路信息包括第二LSP包括的单波链路的链路标识和第二LSP包括的电层通道的通道标识。
此外,第二LSP路径建立请求消息还可携带标识对象,其中,标识对象还用于指示第一节点建立第二LSP的层间链路绑定关系。
在第一节点建立第二LSP的层间链路绑定关系时,需要注意建立第二LSP的层间链路绑定关系的节点可以为首节点和/或末节点。因为,在第二LSP为电层LSP,中间节点透传,不需要建立第二LSP的层间链路绑定关系。
可选的,在第一节点建立第二LSP的层间链路绑定关系之后,第一节点将第二LSP的层间链路绑定关系发送至控制器。
其中,第二LSP的层间链路绑定关系是指第二LSP中单波链路的链路标识与第二LSP中电层通道的通道标识之间的对应关系。
如图6所示,仍以OCH LSP1为第一LSP,在第一LSP基础上建立两个第二LSP,例如ODUk LSP,分别为ODUk LSP1和ODUk LSP2。
ODUk LSP1,经过节点A-节点B-节点C,节点B透传。
ODUk LSP1包括的单波链路的链路标识为节点A的单波链路的链路标识OCH-Link1,节点C的单波链路的链路标识OCH-Link2。
ODUk LSP1包括的电层通道的通道标识为节点A的电层通道的通道标识,即ODUk-Link标识为ODUk-Link1-1,节点C的电层通道的通道标识,即ODUk-Link标识为ODUk-Link2-1。
ODUk LSP2,经过节点A-节点B-节点C,节点B透传。
ODUk LSP2包括的单波链路的链路标识为节点A的单波链路的链路标识OCH-Link1,节点C的单波链路的链路标识OCH-Link2。
ODUk LSP2包括的电层通道的通道标识为节点A的电层通道的通道标识ODUk-Link1-2,节点C的电层通道的通道标识ODUk-Link2-2。
这里以ODUk LSP1为第二LSP说明建立第二LSP的层间链路绑定关系的过程。
节点A接收第二LSP路径建立请求消息,第二LSP路径建立请求消息携带第二链路信息。
这里的第二LSP路径建立请求消息可以是由控制器发送给节点A的。可选地,还可以由节点A发起第二LSP路径建立请求消息,则节点A需要确定第二LSP路径请求消息中的第二链路信息。这里的第一LSP路径建立请求信息可以是PATH消息。
可选的,第一LSP路径建立请求消息携带标识对象,其中,标识对象用于指示节点A建立第二LSP的层间链路绑定关系。
这里的第二链路信息可以至少为以下两种情况:
第一种情况:第二链路信息包括ODUk LSP1包括的单波链路的链路标识OCH-Link1,OCH-Link2,以及ODUk LSP1包括的电层通道的通道标识ODUk-Link1-1,ODUk-Link2-1。即第一种情况中的第二链路信息中可以包括整条ODUk LSP1中包括的单波链路的链路标识和电层通道的通道标识。
第二种情况:第二链路信息包括ODUk LSP1包括的单波链路的链路标识OCH-Link1,以及ODUk LSP1包括的电层通道的通道标识ODUk-Link1-1。即第二种情况中的第一链路信息中可以包括部分ODUk LSP1中包括的单波链路的链路标识以及部分ODUk LSP1中包括的电层通道的通道标识。这里的部分ODUk LSP1中包括的单波链路的链路标识是指第二LSP上的某个节点(例如,节点A)自身的单波链路的链路标识,这里的部分ODUk LSP1中包括的电层通道的通道标识是指第二LSP上的某个节点(例如,节点A)自身的电层通道的通道标识。
因此,针对第一种情况中的第二链路信息,节点A建立第二LSP的层间链路绑定关系为OCH-Link1对应ODUk-Link1-1,以及OCH-Link2对应ODUk-Link2-1。
针对第二种情况中的第二链路信息,节点A建立第二LSP的层间链路绑 定关系为OCH-Link1对应ODUk-Link1-1。
同理,由于节点A为首节点,节点A可以计算第二LSP的路由信息,并根据第二LSP的路由信息确定第二链路信息,然后根据第二链路信息建立第二LSP的层间链路绑定关系。
节点A计算的ODUk LSP1的路由信息是整条LSP的路由信息,因此这里的第二链路信息为第一种第二链路信息。因此,节点A建立第二LSP的层间链路绑定关系为OCH-Link1对应ODUk-Link1-1,以及OCH-Link2对应ODUk-Link2-1。
此外,若第二LSP最终建立失败,则首节点可以不建立的第二LSP的层间链路绑定关系。因此,可选的,在节点A在接收到节点C(即末节点)发送的资源预留(Reservation,RESV)消息后,再建立第二LSP的层间链路绑定关系。可选的,节点C也可以在RESV消息中携带标识对象。这样便保证了节点A建立第二LSP的层间链路绑定关系是在第二LSP建立成功之后执行的。
可选的,在节点A建立第二LSP的层间链路绑定关系之后,节点A将第二LSP的层间链路绑定关系发送至控制器。
节点C接收节点B或控制器发送的第二LSP路径建立请求消息,第二LSP路径建立请求消息携带第二链路信息。
与节点A相似,这里的第一链路信息也可以包括两种:
第一种情况:第二链路信息包括ODUk LSP1包括的单波链路的链路标识OCH-Link1,OCH-Link2,以及ODUk LSP1包括的电层通道的通道标识ODUk-Link1-1,ODUk-Link2-1。
第二种情况:第二链路信息包括ODUk LSP1包括的单波链路的链路标识OCH-Link2,以及ODUk LSP1包括的电层通道的通道标识ODUk-Link2-1。
因此,针对第一种情况中的第二链路信息,节点C建立第二LSP的层间链路绑定关系为OCH-Link1对应ODUk-Link1-1,以及OCH-Link2对应ODUk-Link2-1。
针对第二种情况中的第二链路信息,节点C建立第二LSP的层间链路绑定关系为OCH-Link2对应ODUk-Link2-1。
可选的,由于节点C为末节点,节点C可以根据第二LSP路径建立请求消息中携带的记录路由对象(Record Route Object,RRO)信息,建立第二LSP的层间链路绑定关系。这里的RRO消息可以携带第一种情况中的第二链路消息。
可选的,在节点C建立第二LSP的层间链路绑定关系之后,节点C将第二LSP的层间链路绑定关系发送至控制器。
至此整条第二LSP上的首节点和末节点均完成第二LSP的层间链路绑定关系的建立,在实际应用过程中,在没有控制器的应用场景下,可以只由首节点和/或末节点完成建立整条第二LSP的层间链路绑定关系。
在存在控制器的应用场景下,此时,可以选择由首节点和末节点分别建立第二LSP的层间链路绑定关系,然后分别上报至控制器,或者只由首节点和/或末节点完成建立整条第二LSP的层间链路绑定关系上报至控制器,又或者控制器计算第二LSP的路由信息,然后建立第二LSP的层间链路绑定关系,并可分别下发给第二LSP中的各个节点。
此外,在第一节点建立第一LSP的层间链路绑定关系之后,若第一节点确定第一LSP上合波链路发生故障,则进一步确定发生故障的合波链路的链路标识。
这里可能为第一LSP中第一节点与相连节点之间的合波链路发生故障,此时第一节点直接检测到发生故障的合波链路,确定发生故障的合波链路的链路标识。或者,第一节点接收到第一LSP上的其他节点发送的故障通知消息,该消息中携带有发生故障的合波链路的链路标识。
此时,若为第一LSP中第一节点与相连节点之间的合波链路发生故障,第一节点根据第一LSP的层间链路绑定关系直接确定发生故障的合波链路的链路标识对应的单波链路的链路标识。
若第一节点接收到第一LSP上的其他节点发送的故障通知消息,且第一 节点建立的第一LSP的层间链路绑定关系为整条第一LSP的层间链路绑定关系,则可以确定发生故障的合波链路的链路标识对应的单波链路的链路标识。
若控制器保存第一LSP的层间链路绑定关系,控制器在收到第一LSP中的节点发送的故障通知消息时,确定发生故障的合波链路的链路标识对应的单波链路的链路标识。
进一步地,在第一节点建立第二LSP的层间链路绑定关系之后,第一节点根据第二LSP的层间链路绑定关系、以及发生故障的合波链路的链路标识对应的单波链路的链路标识,确定每个单波链路的链路标识对应的电层通道的通道标识。
当第一节点为首节点和/或末节点时,若第一节点建立了整条第二LSP的层间链路绑定关系,第一节点根据第二LSP的层间链路绑定关系、以及已经确定的发生故障的合波链路的链路标识对应的单波链路的链路标识,确定每个单波链路的链路标识对应的电层通道的通道标识。
当第一节点为首节点和/或末节点时,若第一节点只建立了部分第二LSP的层间链路绑定关系,则仅能确定部分单波链路的链路标识对应的电层通道的通道标识。
若控制器保存第二LSP的层间链路绑定关系,控制器在收到第一LSP中的节点发送的故障通知消息时,确定发生故障的合波链路的链路标识对应的单波链路的链路标识,以及每个单波链路的链路标识对应的电层通道的通道标识。
例如,如图6所述,节点A和节点C均建立完整OCH LSP1、ODUk LSP1、ODUk LSP2的层间链路绑定关系。
即图8所示,OTS-Link1对应OCH-Link1,OCH-Link2,以及OTS-Link2对应OCH-Link1,OCH-Link2,OCH-Link1对应ODUk-Link1-1、ODUk-Link1-2,以及OCH-Link2对应ODUk-Link2-1、ODUk-Link2-2。
当节点A与节点B之间的OTS-Link1发生故障时,节点A监测到发生故障的合波链路,确定发生故障的合波链路的链路标识为OTS-Link1,并进一步 根据如图8所示的层间链路绑定关系,确定OTS-Link1对应OCH-Link1,OCH-Link2,以及OCH-Link1对应ODUk-Link1-1、ODUk-Link1-2,OCH-Link2对应ODUk-Link2-1、ODUk-Link2-2。
节点B检测到OTS-Link1发生故障时,将故障通知消息发送至节点C,该故障通知消息中携带路由器身份标识(Router ID)和合波链路标识(Link ID),即节点B和OTS-Link1,参阅图9所示,节点C根据如图8所示的层间链路绑定关系,确定OTS-Link1对应OCH-Link1,OCH-Link2,以及OCH-Link1对应ODUk-Link1-1、ODUk-Link1-2,OCH-Link2对应ODUk-Link2-1、ODUk-Link2-2。
又例如,参阅图10A和图10B所示,
OCH LSP1过节点A-节点B,OCH LSP2过节点B-节点C-节点D。
ODUk LSP1过节点A-节点B-节点C-节点D,ODUk LSP2过节点B-节点C-节点D。
在建立OCH LSP1时,节点A、节点B建立OCH LSP1的层间链路绑定关系,OTS-Link1对应OCH-Link1,OCH-Link2。
在建立OCH LSP2时,节点B、节点D建立OCH LSP2层间链路绑定关系,OTS-Link2对应OCH-Link3,OCH-Link4,OTS-Link3对应OCH-Link3,OCH-Link4。
在建立ODUk LSP1时,节点A、节点D建立ODUk LSP1层间链路绑定关系,OCH-Link1对应ODUk-Link1-1,OCH-Link4对应ODUk-Link3-1。
在建立ODUk LSP2时,节点B、节点D建立ODUk LSP2层间链路绑定关系OCH-Link3对应ODUk-Link2-1,OCH-Link4对应ODUk-Link3-2。
当节点C-节点D之间发生断纤故障时,节点C和节点D发送故障通告消息至OCH LSP1和OCH LSP2的首节点、末节点,即节点A、节点B、节点D。
节点D根据已建立的层间链路绑定关系,确定OTS-Link3对应OCH-Link3,OCH-Link4,OCH-Link3对应ODUk-Link2-1,OCH-Link4对应ODUk-Link3-1,上报电层业务告警,即ODUk LSP1、ODUk LSP2告警。
如图11A和图11B所示,若控制器保存上述层间链路绑定关系,则控制器在收到节点C-节点D之间发生断纤故障告警消息时,确定OTS-Link3对应OCH-Link3,OCH-Link4,OCH-Link3对应ODUk-Link2-1,OCH-Link4对应ODUk-Link3-1,得到ODUk LSP1、ODUk LSP2发生业务故障。
参阅图12所示,本发明实施例提供一种建立层间链路绑定关系的装置,包括:
接收单元1201,用于接收第一LSP路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息;
其中,第一链路信息包括第一LSP包括的单波链路的链路标识和第一LSP包括的合波链路的链路标识;
建立单元1202,用于建立第一LSP的层间链路绑定关系;
其中,第一LSP的层间链路绑定关系是指第一LSP中合波链路的链路标识与第一LSP中单波链路的链路标识之间的对应关系。
可选的,该装置还包括:
确定单元1203,用于在建立第一LSP的层间链路绑定关系之前,若装置为首节点,确定第一链路信息。
可选的,接收单元1201,还用于接收第二LSP路径建立请求消息,第二LSP路径建立请求消息携带第二链路信息;
其中,第二链路信息包括第二LSP包括的单波链路的链路标识和第二LSP包括的电层通道的通道标识;
建立单元1202,还用于建立第二LSP的层间链路绑定关系;
其中,第二LSP的层间链路绑定关系是指第二LSP中单波链路的链路标识与第二LSP中电层通道的通道标识之间的对应关系。
可选的,第一LSP路径建立请求消息携带标识对象,其中,标识对象用于指示装置建立第一LSP的层间链路绑定关系
和/或装置建立第二LSP的层间链路绑定关系。
可选的,该装置还包括:
发送单元1204,用于在装置建立第一LSP的层间链路绑定关系之后,将第一LSP的层间链路绑定关系
和/或第二LSP的层间链路绑定关系发送至控制器。
可选的,该装置还包括:
故障分析单元1205,用于在装置建立第一LSP的层间链路绑定关系之后,确定第一LSP上合波链路发生故障,并确定发生故障的合波链路的链路标识;
以及根据第一LSP的层间链路绑定关系确定发生故障的合波链路的链路标识对应的至少一条单波链路的链路标识。
可选的,故障分析单元1205,还用于在装置建立第二LSP的层间链路绑定关系之后,根据第二LSP的层间链路绑定关系、以及发生故障的合波链路的链路标识对应的单波链路的链路标识,确定每个单波链路的链路标识对应的至少一个电层通道的通道标识。
需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例还提供了一种路由器。如图13所示,图13为本发明实施 例中路由器的结构示意图,该设备包括收发器1301、处理器1302、存储器1303。收发器1301、处理器1302以及存储器1303相互连接。本发明实施例中不限定上述部件之间的具体连接介质。本发明实施例在图13中以存储器1303、处理器1302以及收发器1301之间通过总线1304连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
收发器1301,用于接收第一LSP路径建立请求消息,第一LSP路径建立请求消息携带第一链路信息;
其中,第一链路信息包括第一LSP包括的单波链路的链路标识和第一LSP包括的合波链路的链路标识;
处理器1302,用于建立第一LSP的层间链路绑定关系;
其中,第一LSP的层间链路绑定关系是指第一LSP中合波链路的链路标识与第一LSP中单波链路的链路标识之间的对应关系。
可选的,处理器1302,还用于在建立第一LSP的层间链路绑定关系之前,若装置为首节点,确定第一链路信息。
可选的,收发器1301,还用于接收第二LSP路径建立请求消息,第二LSP路径建立请求消息携带第二链路信息;
其中,第二链路信息包括第二LSP包括的单波链路的链路标识和第二LSP包括的电层通道的通道标识;
处理器1302,还用于建立第二LSP的层间链路绑定关系;
其中,第二LSP的层间链路绑定关系是指第二LSP中单波链路的链路标识与第二LSP中电层通道的通道标识之间的对应关系。
可选的,第一LSP路径建立请求消息携带标识对象,其中,标识对象用于指示装置建立第一LSP的层间链路绑定关系
和/或装置建立第二LSP的层间链路绑定关系。
可选的,收发器1301,还用于在装置建立第一LSP的层间链路绑定关系 之后,将第一LSP的层间链路绑定关系
和/或第二LSP的层间链路绑定关系发送至控制器。
可选的,处理器1302,还用于在装置建立第一LSP的层间链路绑定关系之后,确定第一LSP上合波链路发生故障,并确定发生故障的合波链路的链路标识;
以及根据第一LSP的层间链路绑定关系确定发生故障的合波链路的链路标识对应的至少一条单波链路的链路标识。
可选的,处理器1302,还用于在装置建立第二LSP的层间链路绑定关系之后,根据第二LSP的层间链路绑定关系、以及发生故障的合波链路的链路标识对应的单波链路的链路标识,确定每个单波链路的链路标识对应的至少一个电层通道的通道标识。
本发明实施例中存储器1303,用于存储处理器1302执行的程序代码,可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器1303也可以是非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)、或者存储器1303是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1303可以是上述存储器的组合。
本发明实施例中处理器1302,可以是一个中央处理单元(英文:central processing unit,简称CPU)。
综上所述,本发明实施例提供的方法,第一节点通过建立层间链路绑定关系,当出现合波线路故障时,第一节点查询通过层间链路绑定关系,准确定位故障单波链路,并进一步定位故障的电层通道,及时对故障线路告警,不依赖系统和硬件的开销,并将电层故障检测并行化处理,提升了故障告警效率。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些 改动和变型在内。

Claims (14)

  1. 一种建立层间链路绑定关系的方法,其特征在于,包括:
    第一节点接收第一标签交换路径LSP路径建立请求消息,所述第一LSP路径建立请求消息携带第一链路信息;
    其中,所述第一链路信息包括所述第一LSP包括的单波链路的链路标识和所述第一LSP包括的合波链路的链路标识;
    所述第一节点建立所述第一LSP的层间链路绑定关系;
    其中,所述第一LSP的层间链路绑定关系是指所述第一LSP中合波链路的链路标识与所述第一LSP中单波链路的链路标识之间的对应关系。
  2. 如权利要求1所述的方法,其特征在于,所述第一节点建立所述第一LSP的层间链路绑定关系之前,还包括:
    若所述第一节点为首节点,所述第一节点确定所述第一链路信息。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    所述第一节点接收第二LSP路径建立请求消息,所述第二LSP路径建立请求消息携带第二链路信息;
    其中,所述第二链路信息包括所述第二LSP包括的单波链路的链路标识和所述第二LSP包括的电层通道的通道标识;
    所述第一节点建立所述第二LSP的层间链路绑定关系;
    其中,所述第二LSP的层间链路绑定关系是指所述第二LSP中单波链路的链路标识与所述第二LSP中电层通道的通道标识之间的对应关系。
  4. 如权利要求1或3所述的方法,其特征在于,所述第一LSP路径建立请求消息携带标识对象,其中,所述标识对象用于指示所述第一节点建立所述第一LSP的层间链路绑定关系
    和/或所述第一节点建立所述第二LSP的层间链路绑定关系。
  5. 如权利要求1-4任一项所述的方法,其特征在于,还包括:
    在所述第一节点建立所述第一LSP的层间链路绑定关系之后,所述第一 节点将所述第一LSP的层间链路绑定关系
    和/或所述第二LSP的层间链路绑定关系发送至所述控制器。
  6. 如权利要求1或2所述的方法,其特征在于,在所述第一节点建立所述第一LSP的层间链路绑定关系之后,还包括:
    所述第一节点确定所述第一LSP上合波链路发生故障,并确定发生故障的合波链路的链路标识;
    所述第一节点根据所述第一LSP的层间链路绑定关系确定所述发生故障的合波链路的链路标识对应的至少一条单波链路的链路标识。
  7. 如权利要求6所述的方法,其特征在于,在所述第一节点建立所述第二LSP的层间链路绑定关系之后,还包括:
    所述第一节点根据所述第二LSP的层间链路绑定关系、以及所述发生故障的合波链路的链路标识对应的单波链路的链路标识,确定每个单波链路的链路标识对应的至少一个电层通道的通道标识。
  8. 一种建立层间链路绑定关系的装置,其特征在于,包括:
    接收单元,用于接收第一标签交换路径LSP路径建立请求消息,所述第一LSP路径建立请求消息携带第一链路信息;
    其中,所述第一链路信息包括所述第一LSP包括的单波链路的链路标识和所述第一LSP包括的合波链路的链路标识;
    建立单元,用于建立所述第一LSP的层间链路绑定关系;
    其中,所述第一LSP的层间链路绑定关系是指所述第一LSP中合波链路的链路标识与所述第一LSP中单波链路的链路标识之间的对应关系。
  9. 如权利要求8所述的装置,其特征在于,所述装置还包括:
    确定单元,用于在建立所述第一LSP的层间链路绑定关系之前,若所述装置为首节点,确定所述第一链路信息。
  10. 如权利要求8或9所述的装置,其特征在于,所述接收单元,还用于接收第二LSP路径建立请求消息,所述第二LSP路径建立请求消息携带第二链路信息;
    其中,所述第二链路信息包括所述第二LSP包括的单波链路的链路标识和所述第二LSP包括的电层通道的通道标识;
    所述建立单元,还用于建立所述第二LSP的层间链路绑定关系;
    其中,所述第二LSP的层间链路绑定关系是指所述第二LSP中单波链路的链路标识与所述第二LSP中电层通道的通道标识之间的对应关系。
  11. 如权利要求8或10所述的装置,其特征在于,所述第一LSP路径建立请求消息携带标识对象,其中,所述标识对象用于指示所述装置建立所述第一LSP的层间链路绑定关系
    和/或所述装置建立所述第二LSP的层间链路绑定关系。
  12. 如权利要求8-11任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于在所述装置建立所述第一LSP的层间链路绑定关系之后,将所述第一LSP的层间链路绑定关系
    和/或所述第二LSP的层间链路绑定关系发送至所述控制器。
  13. 如权利要求8或9所述的装置,其特征在于,所述装置还包括:
    故障分析单元,用于在所述装置建立所述第一LSP的层间链路绑定关系之后,确定所述第一LSP上合波链路发生故障,并确定发生故障的合波链路的链路标识;
    以及根据所述第一LSP的层间链路绑定关系确定所述发生故障的合波链路的链路标识对应的至少一条单波链路的链路标识。
  14. 如权利要求13所述的装置,其特征在于,所述故障分析单元,还用于在所述装置建立所述第二LSP的层间链路绑定关系之后,根据所述第二LSP的层间链路绑定关系、以及所述发生故障的合波链路的链路标识对应的单波链路的链路标识,确定每个单波链路的链路标识对应的至少一个电层通道的通道标识。
PCT/CN2016/074338 2016-02-23 2016-02-23 一种建立层间链路绑定关系的方法及装置 WO2017143518A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES16890972T ES2797110T3 (es) 2016-02-23 2016-02-23 Método y aparato para establecer una relación de vinculación de enlace entre capas
CN201680080602.XA CN108702330B (zh) 2016-02-23 2016-02-23 一种建立层间链路绑定关系的方法及装置
EP16890972.9A EP3355535B1 (en) 2016-02-23 2016-02-23 Method and apparatus for establishing interlayer link binding relationship
PCT/CN2016/074338 WO2017143518A1 (zh) 2016-02-23 2016-02-23 一种建立层间链路绑定关系的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074338 WO2017143518A1 (zh) 2016-02-23 2016-02-23 一种建立层间链路绑定关系的方法及装置

Publications (1)

Publication Number Publication Date
WO2017143518A1 true WO2017143518A1 (zh) 2017-08-31

Family

ID=59685812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074338 WO2017143518A1 (zh) 2016-02-23 2016-02-23 一种建立层间链路绑定关系的方法及装置

Country Status (4)

Country Link
EP (1) EP3355535B1 (zh)
CN (1) CN108702330B (zh)
ES (1) ES2797110T3 (zh)
WO (1) WO2017143518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001540A1 (zh) * 2020-06-29 2022-01-06 中兴通讯股份有限公司 配置方法、绑定方法、装置、设备、发送节点、接收节点及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3857368A1 (en) 2018-09-28 2021-08-04 Convida Wireless, Llc Advanced resource link binding management

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949690A (zh) * 2006-10-09 2007-04-18 华为技术有限公司 一种光通信系统中激光安全保护方法和装置
CN101043271A (zh) * 2007-04-26 2007-09-26 华为技术有限公司 一种光业务信号保护倒换方法、设备及系统
WO2012095046A2 (zh) * 2012-02-22 2012-07-19 华为技术有限公司 一种波长通道性能监测方法、系统和节点设备
US20140293798A1 (en) * 2013-03-27 2014-10-02 Electronics And Telecommunications Research Institute Mpls-tp network and link trace method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109879A1 (en) * 2000-08-23 2002-08-15 Wing So John Ling Co-channel modulation
CN100413255C (zh) * 2005-12-01 2008-08-20 中讯邮电咨询设计院 用于光传输通信网络的网络分层模型及层间映射方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1949690A (zh) * 2006-10-09 2007-04-18 华为技术有限公司 一种光通信系统中激光安全保护方法和装置
CN101043271A (zh) * 2007-04-26 2007-09-26 华为技术有限公司 一种光业务信号保护倒换方法、设备及系统
WO2012095046A2 (zh) * 2012-02-22 2012-07-19 华为技术有限公司 一种波长通道性能监测方法、系统和节点设备
US20140293798A1 (en) * 2013-03-27 2014-10-02 Electronics And Telecommunications Research Institute Mpls-tp network and link trace method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001540A1 (zh) * 2020-06-29 2022-01-06 中兴通讯股份有限公司 配置方法、绑定方法、装置、设备、发送节点、接收节点及介质

Also Published As

Publication number Publication date
CN108702330B (zh) 2020-09-08
ES2797110T3 (es) 2020-12-01
CN108702330A (zh) 2018-10-23
EP3355535B1 (en) 2020-04-15
EP3355535A1 (en) 2018-08-01
EP3355535A4 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
US9236972B2 (en) Optical impairment aware path computation architecture in PCE based network
US7852752B2 (en) Method and apparatus for designing backup communication path, and computer product
US8433190B2 (en) Hot-swapping in-line optical amplifiers in an optical network
EP2774301B1 (en) Wson restoration
JP5586597B2 (ja) デジタルおよび光エキスプレススルーノードを横断するリンクダイバーシティおよび負荷バランス
US10735333B2 (en) Methods and apparatus for detecting a signal degradation using the pre-forward error correction bit error rate at an optical transponder
JP5863565B2 (ja) 光伝送ノードおよび経路切替方法
US20100128611A1 (en) Transmitting apparatus, alarm control method, and computer product
US8861402B2 (en) Optical transport switching node with framer
JP6136497B2 (ja) シェアードメッシュリストレーションのための方法および装置
JP2008244823A (ja) 光通信システム、光通信装置、およびパス区間迂回における障害アラーム監視方法
US9680564B2 (en) Protection in metro optical networks
US20140161437A1 (en) Apparatus and method for switching a communication path
US20170093705A1 (en) Systems and methods for latency based routing
WO2017143518A1 (zh) 一种建立层间链路绑定关系的方法及装置
US8615006B2 (en) Systems and methods for reconfiguration of a circuit switched ring to a packet switched ring
Xu et al. Emergent optical network integration and control of multi-vendor optical networks for quick disaster recovery
Nishioka et al. Experimental demonstrations of dynamic wavelength path control and highly resilient recovery in heterogeneous optical WDM networks
Kim et al. Restoration of all-optical mesh networks with path-based flooding
JP4966947B2 (ja) 導通確認方法、導通確認プログラム、通信装置および導通確認システム
JP2010130575A (ja) トランスペアレント光ネットワーク及びノード装置及びトランスペアレント光ネットワーク故障監視方法
CN113169939B (zh) 一种业务路径建立的方法、网络设备和系统
US9426059B2 (en) Systems and methods for utilizing protection paths
US20130121696A1 (en) Apparatus and method for photonic networks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016890972

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE