WO2017142430A1 - Composition de revêtement résistant à l'usure pour la protection d'équipement pétrochimique industriel - Google Patents

Composition de revêtement résistant à l'usure pour la protection d'équipement pétrochimique industriel Download PDF

Info

Publication number
WO2017142430A1
WO2017142430A1 PCT/RU2016/000078 RU2016000078W WO2017142430A1 WO 2017142430 A1 WO2017142430 A1 WO 2017142430A1 RU 2016000078 W RU2016000078 W RU 2016000078W WO 2017142430 A1 WO2017142430 A1 WO 2017142430A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
content
media
corrosion
resistance
Prior art date
Application number
PCT/RU2016/000078
Other languages
English (en)
Russian (ru)
Inventor
Лев Христофорович БАЛДАЕВ
Раиса Дмитриевна БАКАЕВА
Динар Зуфарович ИШМУХАМЕТОВ
Максим Викторович ЕРШОВ
Вадим Сергеевич ШАРЫГИН
Александр Геннадиевич АЛЕКСАНДРОВ
Владимир Вячеславович КАМИНСКИЙ
Игнат Михайлович СТАРШОВ
Original Assignee
Общество с ограниченной ответственностью "Технологические системы защитных покрытий"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Технологические системы защитных покрытий" filed Critical Общество с ограниченной ответственностью "Технологические системы защитных покрытий"
Publication of WO2017142430A1 publication Critical patent/WO2017142430A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Definitions

  • the invention relates to chemical, petrochemical, oil refining engineering, and in particular, to compositions for protecting the main and auxiliary equipment of these industries from aggressive corrosive environments, as well as environments that may additionally contain abrasive particles, rust, solid by-products of production, or additional hydrodynamic phenomena in the form of cavitation, water hammer.
  • low alloy steels or low carbon
  • high alloy steels and alloys or two-layer steels.
  • low alloy steels or low carbon steels
  • 20YuCH steel has satisfactory resistance to general corrosion processes (for example, when exposed to H 2 S), but low resistance to local types of corrosion (pitting, ulcers), which inhibits its use.
  • high alloy steels and alloys are relevant in cases where it is not possible to use less expensive low alloy steels, due to the aggressiveness of the environment. Moreover, the use of high alloy steels and alloys is mainly limited by their high cost and reduced bearing capacity (limited weight and size parameters).
  • double-layer steels is an alternative between expensive high alloy steels and alloys and low alloy steels, since the structural bearing capacity is provided by a layer of low alloy steel, and the corrosion properties are due to the clad layer.
  • the currently used two-layer steels have a limited ,
  • the manufacturing process of the final structure significantly affects the operational stability of the material of the cladding layer.
  • the most common damage to the cladding layer is pitting, ulcerative damage, accompanied by general corrosion processes, as well as stress cracking.
  • This analogue is its excessive porosity due to the plasma coating method, which under the influence of corrosive environments will contribute to the occurrence of electrochemical corrosion between the coating and the base material.
  • the elimination of porosity can be achieved by melting the coating material, however, this requires precise control of the process parameters (a narrow range of melting of this type of coating), and it can also contribute to the deterioration of the mechanical properties of the base material under the action of high temperatures (more than 900 degrees Celsius) required for melting the coating .
  • This analogue is the high resistance of the material due to alloying with refractory elements (Ta + Cb), as well as the state of the material in the form of a wire, which is due to the fact that the corrosion resistance of coatings obtained from wire materials (gas flame wire spraying) (high-speed flame spraying)
  • the objective of the invention is to increase the resource of the internal surfaces (volumes) of technological equipment subjected to abrasion under the influence of an aggressive environment during operation (corrosive components: chlorides, hydrogen sulfide, mercaptans, side reaction products, etc .; and also solid abrasive impurities: rust, particles of the catalyst complex, particles of deposits on the inner walls).
  • the technical result of the invention is to increase the protection of metal-intensive equipment (reactors, columns); in increasing adhesion to the base material; in increasing the corrosion and mechanical properties: wear resistance, abrasion resistance, corrosion resistance, reliability - compared with the base material.
  • Cr chromium
  • Ni nickel
  • carbon C
  • Mo molybdenum
  • W tungsten
  • B boron
  • Si silicon
  • niobium Nb
  • titanium
  • Seq. (carbon equivalent) should be in the range of 4.50 to 5.3, and the pitting resistance coefficient PREN in the range of 22.6 to 30.2; or Cr - 20-24.0%; C - 0.01-0.02%; Fe - 3.0-5.0%; Mo - 13.0-15.0%; W - 2.0-4.0%; Ni- the rest, with Seq. (carbon equivalent) should be in the range of 9.5 to 11, 2, and the pitting resistance coefficient PREN in the range of 60.25 to 76.4.
  • the composition of the coating material is selected in such a way as to provide high resistance to local types of corrosion in the form of pits and ulcers, structural stability for the temperature range of operation of technological equipment, and the rate of general corrosion of not more than 0.1 mm / year. This is achieved by choosing the ratios of such alloying elements as: chromium (Cr), nickel (Ni), carbon (C), manganese (Mn), molybdenum (Mo or tungsten (W) instead of molybdenum, boron (B) or silicon (Si ), niobium (Nb) or titanium (Ti).
  • nickel and iron are considered as the base material, which are subsequently alloyed with such elements as Cr, Ni, C, Mn, Mo, W, B, Si, Nb, Ti.
  • the ratio of elements varies based on the aggressiveness of the environment in the following form:
  • composition Ns1 an excess of carbon content of more than 0.1% contributes to a decrease in the corrosion resistance of the alloy due to an increase in carbide precipitates along grain boundaries; a decrease in carbon content increases the cost of material production technology.
  • the chromium content is due to: the upper limit - the requirements of economical alloying, and the lower limit - the requirements of corrosion resistance.
  • the molybdenum content is due to: the upper limit - the requirements of economical alloying, and the lower - resistance to pitting.
  • Nickel content is due to: the upper limit of the requirements of economical alloying, and the lower - corrosion resistance
  • the carbon content the upper limit is due to the requirements of optimal wear resistance while maintaining corrosion resistance, the lower limit due to the requirements of corrosion resistance.
  • the content of chromium and silicon the upper limit - the requirements of economical alloying, and the lower limit - the requirements of corrosion ⁇ .
  • the molybdenum content is due to: the upper limit - the requirements of economical alloying, and the lower - resistance to pitting.
  • the nickel content is due to: the upper limit of the requirements of economical alloying, and the lower limit - corrosion resistance.
  • Ni-the rest is the composition of Ns4, with Seq. (carbon equivalent) should be in the range of 9.5 to 1 1, 2, and the pitting resistance coefficient PREN in the range of 60.25 to 76.4.
  • an excess of carbon content of more than 0.1% contributes to a decrease in the corrosion resistance of the alloy due to an increase in carbide precipitates along grain boundaries; a decrease in carbon content increases the cost of material production technology.
  • the chromium content is due to: the upper limit - the requirements of economical alloying, and the lower limit - the requirements of corrosion resistance.
  • the molybdenum content is due to: the upper limit - the requirements of economical alloying, and the lower - resistance to pitting.
  • the titanium content is due to: the lower limit of the increase in the resistance of the material to intergranular corrosion, and the upper limit - the requirements of economical alloying.
  • the nickel content is due to: the upper limit of the requirements of economical alloying, and the lower limit - corrosion resistance.
  • composition Ns4 an excess of carbon content of more than 0.02% contributes to a decrease in the corrosion resistance of the alloy due to an increase in carbide precipitates along grain boundaries.
  • the chromium content is due to: the upper limit - the requirements of economical alloying, and the lower limit - the requirements of corrosion resistance.
  • the molybdenum content is due to: the upper limit - the requirements of economical alloying, and the lower - resistance to pitting.
  • the tungsten content is due to: the lower limit by increasing the yield strength of the material, and the upper an increase in the tungsten content promotes an increase in carbide precipitates along grain boundaries.
  • the desired materials are obtained by manufacturing a cast alloy by metallurgical methods, followed by the manufacture of a metal powder by spraying in an inert gas medium in the form of argon or helium (atomization).
  • the resulting metal powder material is then fractionated.
  • a fraction in the range of 15-53 microns, preferably 20-45 microns, is used.
  • compositions N ° 1 and N ° 2 can be carried out to protect the reboiler of a diesel hydrotreatment unit (for example, L-16-1) subjected to pit corrosion during operation of the lower shell shell under the action of hydrogen sulfide with steam and a solution of methyldiethanolamine (MDEA) .
  • a diesel hydrotreatment unit for example, L-16-1
  • MDEA methyldiethanolamine
  • compositions Ns1 and 2 in the form of Cr is 17.6%; C - 0.015%; Mo - 2.3%; Ni -
  • compositions N ° 3 and N ° 4 can be carried out to protect the tube sheets of the heater of the diesel hydrotreatment unit, the heat exchanger subjected to corrosion during operation, under the influence of water vapor, condensate, unstable hydrogenate.
  • compositions N ° 1-4 can be used to protect the absorber and stripper of the amine gas treatment unit subjected to general and local types of corrosion (pitting, ulcers) in the bottom zone of the equipment.
  • alloying elements such as Ni, Mn, C, Cr, can significantly increase the corrosion resistance of the material.
  • Modification with boron, silicon in combination with carbon, molybdenum improves the high-temperature structural stability of the material, promotes the formation of finely dispersed carbide and other hardening phases, which also gives the material wear and abrasion resistance.
  • the increase in carbon content is limited in view of the fact that, with its significant amount, stable carbides are released along grain boundaries with the main alloying elements Cr, Mo, Si, B, and thereby the elastic-plastic and corrosion properties of the solid solution are reduced due to depletion.
  • the technology of high-speed flame spraying is proposed, which is associated with the possibility of forming a dense (without through porosity) coating, as well as the ability to use mobile systems with high productivity of the application process.
  • the proposed solution provides an increase in the resource of internal surfaces (volumes) of technological equipment subjected to corrosion-abrasive wear under the influence of an aggressive environment during operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

L'invention se rapporte au domaine du génie chimique, pétrochimique et de transformation du pétrole, et concerne notamment des compositions de protection d'équipements principaux et auxiliaires utilisés dans ces domaines de production contre l'action de milieux corrosifs agressifs. La composition de revêtement résistant à l'usure pour la protection d'équipement pétrochimique industriel comprend un matériau de base sous forme de nickel (Ni) ou de fer (Fe) avec le dopage suivant, en fonction du milieu de travail, par les éléments suivants:chrome (Cr), nickel (Ni), carbone (C), manganèse (Mn), molybdène (Mo) ou du tungstène (W) à la place du molybdène), bore (B) u du silicium (Si), niobium (Nb) ou titane (Ti). Pour les milieux ayant un contenu en H2S allant jusqu'à 20%, la composition des est la suivante en % en poids: Cr - 13-22%; С - 0,01-0,1%; Мо - 1,0-3,0%; Ni - 10,0-14,0%; Fe - étant le reste; ou, Cr - 20-28,5%; С - 0,1-1,5%; Si - 1,0-2,0%; Mn - 0,5-1,1%; Мо - 3,0-5,0%; Ni - 14,5-17,0%; Fe - étant le reste; pour les milieux ayant un contenu en H2S de plus de 20%, la composition des est la suivante en % en poids: Cr - 16,0-18,0%; С - 0,01-0,1%; Мо - 1,0-3,0%; Ti - 0,5-1,2%; Ni - 12,0-14,0%; Fe - étant le reste, sachant que Сéqu. (équivalent en carbone) doit être dans une plage de 4,50 à 5,3, et que le coefficient de résistance au pitting PREN se situe dans une plage de 22,6 à 30,2; ou Cr - 20-24,0%; С - 0,01-0,02%; Fe - 3,0-5,0%; Мо - 13,0-15,0%; W - 2,0-4,0%; Ni - étant le reste, sachant que Сéqu. (équivalent en carbone) doit être dans une plage de 9,5 à 11,2, et que le coefficient de résistance au pitting PREN se situe dans une plage de 60,25 до 76,4. L'invention permet d'améliorer la protection d'équipements métalliques (réacteurs, colonnes) d'augmenter l'adhérence avec le matériau de la base, d'améliorer les propriétés de corrosion des métaux, ainsi que la résistance à l'usure, la résistance à l'abrasion, la résistance à la corrosion et la fiabilité par rapport au matériau de base du substrat.
PCT/RU2016/000078 2016-02-15 2016-02-16 Composition de revêtement résistant à l'usure pour la protection d'équipement pétrochimique industriel WO2017142430A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2016104928A RU2636210C2 (ru) 2016-02-15 2016-02-15 Состав коррозионно-стойкого покрытия для защиты технологического нефтехимического оборудования
RU2016104928 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017142430A1 true WO2017142430A1 (fr) 2017-08-24

Family

ID=59626187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000078 WO2017142430A1 (fr) 2016-02-15 2016-02-16 Composition de revêtement résistant à l'usure pour la protection d'équipement pétrochimique industriel

Country Status (2)

Country Link
RU (1) RU2636210C2 (fr)
WO (1) WO2017142430A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108929938A (zh) * 2018-08-07 2018-12-04 湖北威能达传动有限责任公司 一种20CrMnMoA钢锥齿轮的耐腐蚀金属涂层
CN108950396A (zh) * 2018-08-07 2018-12-07 湖北威能达传动有限责任公司 一种差速器20CrMnTi钢被动斜齿轮的耐腐蚀金属涂层
CN108950397A (zh) * 2018-08-07 2018-12-07 湖北威能达传动有限责任公司 一种20CrMnMoA钢锥齿轮轴的耐腐蚀金属涂层
CN109023144A (zh) * 2018-08-07 2018-12-18 湖北威能达传动有限责任公司 一种30CrMnTi钢大型螺旋伞齿轮的耐腐蚀金属涂层
CN108642394B (zh) * 2018-08-07 2021-03-02 湖北威能达传动有限责任公司 一种20CrMnTi钢被动斜齿轮轴的耐腐蚀金属涂层

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072268A1 (en) * 2001-05-07 2005-04-07 Sjodin Per Erik Material for coating and product coated with the material
US20110300016A1 (en) * 2009-02-17 2011-12-08 Mec Holding Gmbh Wear resistant alloy
US20130295375A1 (en) * 2012-04-11 2013-11-07 Sulzer Metco Ag Spray powder with a superferritic iron-based compound as well as a substrate, in particular a brake disk with a thermal spray layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513728B1 (en) * 2000-11-13 2003-02-04 Concept Alloys, L.L.C. Thermal spray apparatus and method having a wire electrode with core of multiplex composite powder its method of manufacture and use
US6503290B1 (en) * 2002-03-01 2003-01-07 Praxair S.T. Technology, Inc. Corrosion resistant powder and coating
US6749894B2 (en) * 2002-06-28 2004-06-15 Surface Engineered Products Corporation Corrosion-resistant coatings for steel tubes
RU65942U1 (ru) * 2007-03-28 2007-08-27 Лев Христофорович Балдаев Корпус узла установки погружных центробежных насосов для добычи нефти
RU69139U1 (ru) * 2007-08-09 2007-12-10 Лев Христофорович Балдаев Корпус узла установки погружных центробежных насосов для добычи нефти

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072268A1 (en) * 2001-05-07 2005-04-07 Sjodin Per Erik Material for coating and product coated with the material
EP1385667B1 (fr) * 2001-05-07 2006-08-09 Alfa Laval Corporate AB Materiau de revetement et produit revetu dudit materiau
US20110300016A1 (en) * 2009-02-17 2011-12-08 Mec Holding Gmbh Wear resistant alloy
US20130295375A1 (en) * 2012-04-11 2013-11-07 Sulzer Metco Ag Spray powder with a superferritic iron-based compound as well as a substrate, in particular a brake disk with a thermal spray layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108929938A (zh) * 2018-08-07 2018-12-04 湖北威能达传动有限责任公司 一种20CrMnMoA钢锥齿轮的耐腐蚀金属涂层
CN108950396A (zh) * 2018-08-07 2018-12-07 湖北威能达传动有限责任公司 一种差速器20CrMnTi钢被动斜齿轮的耐腐蚀金属涂层
CN108950397A (zh) * 2018-08-07 2018-12-07 湖北威能达传动有限责任公司 一种20CrMnMoA钢锥齿轮轴的耐腐蚀金属涂层
CN109023144A (zh) * 2018-08-07 2018-12-18 湖北威能达传动有限责任公司 一种30CrMnTi钢大型螺旋伞齿轮的耐腐蚀金属涂层
CN109023144B (zh) * 2018-08-07 2021-03-02 湖北威能达传动有限责任公司 一种30CrMnTi钢大型螺旋伞齿轮的耐腐蚀金属涂层
CN108929938B (zh) * 2018-08-07 2021-03-02 湖北威能达传动有限责任公司 一种20CrMnMoA钢锥齿轮的耐腐蚀金属涂层
CN108950396B (zh) * 2018-08-07 2021-03-02 湖北威能达传动有限责任公司 一种差速器20CrMnTi钢被动斜齿轮的耐腐蚀金属涂层
CN108642394B (zh) * 2018-08-07 2021-03-02 湖北威能达传动有限责任公司 一种20CrMnTi钢被动斜齿轮轴的耐腐蚀金属涂层
CN108950397B (zh) * 2018-08-07 2021-03-02 湖北威能达传动有限责任公司 一种20CrMnMoA钢锥齿轮轴的耐腐蚀金属涂层

Also Published As

Publication number Publication date
RU2016104928A (ru) 2017-08-21
RU2636210C2 (ru) 2017-11-21

Similar Documents

Publication Publication Date Title
JP7268091B2 (ja) 酸化抑制ツインワイヤーアークスプレー材料
RU2636210C2 (ru) Состав коррозионно-стойкого покрытия для защиты технологического нефтехимического оборудования
JP4329883B1 (ja) 耐浸炭性金属材料
JP5177330B1 (ja) 耐浸炭性金属材料
Onoro Martensite microstructure of 9–12% Cr steels weld metals
US8419868B2 (en) Process and method to increase the hardness of Fe-Cr-C weld overlay alloy
AU2004269286A1 (en) Metal dusting resistant product
US10207242B2 (en) Alumina forming refinery process tubes with mixing element
WO2013055405A1 (fr) Tube bimétallique formé à partir d'un alliage alumino-formeur pour fours de raffinerie et procédé de fabrication et d'utilisation de ce dernier
KR20220035407A (ko) 내마모성 및 내부식성을 위해 설계된 철 기반 합금
JP4687467B2 (ja) 加工性及び耐メタルダスティング性に優れた金属材料
WO2013155367A1 (fr) Tube bimétallique de formation d'alumine pour fours à processus de raffinerie et procédé de fabrication et utilisation
CN102839333B (zh) 一种钢材、包括其的抽油杆、及钢材的应用
Eremin et al. The properties of chromium steel overlaying used as a hardening coating for stop valve sealing surface
Alves et al. Evolution of Nickel Base Alloys–Modification to Traditional Alloys for Specific Applications
WO2019030971A1 (fr) Espaceur utilisé dans un dispositif à disque magnétique
Sagara et al. Development of High-strength Ni Alloy OCTG Material for Sour Environment
Menon et al. The development of hardfacing alloys for wear and corrosion resistance
RU2804361C2 (ru) Коррозионностойкая двухфазная нержавеющая сталь
JPS5915975B2 (ja) 石油、石炭化学プラント用クロムモリブデン鋼
Vannasing et al. Erosion Resistance of Tungsten-Carbide Coatings for Steel Pipes in Fluid Catalytic Cracking Units
KR100894679B1 (ko) 오스테나이트 내침식 철계 합금
Seto et al. Effect of alloying elements on naphthenic acid corrosion resistance of 18Cr austenitic stainless steels
Wu et al. Wear and Corrosion Resistant Alloys for Oil Drilling and Refineries
JP5233168B2 (ja) 耐食性に優れるステンレス鋼材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890789

Country of ref document: EP

Kind code of ref document: A1