WO2017142063A1 - Oxide sintered body and production method for same - Google Patents

Oxide sintered body and production method for same Download PDF

Info

Publication number
WO2017142063A1
WO2017142063A1 PCT/JP2017/005908 JP2017005908W WO2017142063A1 WO 2017142063 A1 WO2017142063 A1 WO 2017142063A1 JP 2017005908 W JP2017005908 W JP 2017005908W WO 2017142063 A1 WO2017142063 A1 WO 2017142063A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
niobium oxide
firing
oxide sintered
temperature
Prior art date
Application number
PCT/JP2017/005908
Other languages
French (fr)
Japanese (ja)
Inventor
原浩之
伊藤謙一
原慎一
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2017142063A1 publication Critical patent/WO2017142063A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to an oxide sintered body used for a sputtering target for forming a thin film such as a high refractive index film, and a method for producing the same.
  • niobium oxide and titanium oxide used for high refractive index materials have extremely slow film formation speeds, and high productivity is required from the viewpoint of productivity. Film formation is desired.
  • niobium oxide which is a typical high-refractive index material, has a problem that the strength is low when the atmospheric pressure sintering method is used, and the sputtering target breaks when a film is formed under high output. The reason for the low strength of niobium oxide is due to the following two reasons.
  • the first point is that the coefficient of thermal expansion differs in the a-axis, b-axis, and c-axis directions of the crystal orientation. Due to the anisotropy of the thermal expansion coefficient, stress is applied during the production of the sintered body (temperature lowering step), and if the sintered body has a large particle size, microcracks are generated, resulting in a decrease in strength.
  • Patent Documents 1 and 2 manufacturing is performed by a hot press (HP) method.
  • HP hot press
  • a large press mechanism is required for manufacturing a large target, which is not a realistic process. Is small and limited to a simple shape such as a flat plate type, and a complicated shape such as a large area or a cylindrical shape cannot be obtained.
  • niobium oxide is low intensity niobium oxide Nb 2 O 5 phase (density 4.542g / cm 3) is likely to be reduced, a reducing atmosphere firing NbO 2-phase (density 5.916g / cm 3) It is a point of forming different crystal phases. When different crystal phases are formed, internal stress and microcracks are inherent in the sintered body due to the difference in density, and the strength of the sintered body is reduced. In some cases, cracks are generated.
  • Japanese Unexamined Patent Publication No. 2005-256175 Japanese Laid-Open Patent Publication No. 2004-059965 Japanese Patent Laid-Open No. 2002-338354 Japanese Patent Application Laid-Open No. 2014-194072
  • An object of the present invention is to provide a high-strength oxide sintered body made of niobium oxide at low cost, and to provide a manufacturing method that can be easily obtained with inexpensive equipment regardless of the HP method. .
  • the present invention resides in the following [1] to [5].
  • the sintered body density is 95% or more, the sintered body particle size is 5.5 ⁇ m or less, niobium (IV) oxide attributed to the NbO 2 phase does not exist by X-ray diffraction, A niobium oxide sintered body having a strength of 100 MPa or more.
  • the niobium oxide sintered body according to [1] which has a cylindrical shape.
  • the niobium oxide sintered body according to [1] wherein the shape is a flat plate and the area between the targets is 1000 cm 2 or more.
  • the present invention is a sintered body made of niobium oxide, having a sintered body density of 95% or more, a sintered body particle size of 5.5 ⁇ m or less, and presence of niobium (IV) oxide by X-ray diffraction. It is an oxide sintered body characterized by not.
  • the sintered body density of the present invention is characterized by a relative density of 95% or more.
  • the strength decreases.
  • the frequency of arcing increases when used as a sputtering target, it is preferably 97% or more, more preferably 98% or more.
  • the particle size of the sintered body of the present invention is 5.5 ⁇ m or less. If it exceeds 5.5 ⁇ m, stress is applied to the grain boundary due to the anisotropy of the coefficient of thermal expansion of the crystal orientation, and microcracks are generated, so that the strength sharply decreases.
  • the particle size of the sintered body is preferably 5 ⁇ m or less, and more preferably 4.5 ⁇ m or less.
  • the crystalline phase of the present invention is characterized by the absence of a niobium (IV) oxide phase in XRD.
  • Niobium oxide (V) density 4.542 g / cm 3
  • niobium oxide (IV) density 5.916 g / cm 3
  • Internal stresses and microcracks are inherent in the body, and particularly large sintered bodies are easily cracked, making it impossible to produce sintered bodies with good yield.
  • the bending strength of the present invention is preferably 100 MPa or more. If the strength of the sintered body is high, cracks are less likely to occur in the grinding process and bonding process, and the yield is high, so the productivity is good. Especially when the shape is cylindrical, depending on the material of the backing tube and the thickness of the solder, a stress of 50-80 MPa is applied in the bonding process, so if the bending strength is less than 100 MPa, the sintered body may crack. High nature. Furthermore, even when high power is applied during sputtering, the problem of cracking is unlikely to occur.
  • the area of the target surface can be 500 cm 2 or more.
  • the area of the target surface here refers to the area of the surface of the sintered body on the side to be sputtered.
  • the area of the surface of the sintered body on the side to be sputtered in each sintered body is the largest and the area of the target surface in the multi-divided target To do.
  • limiting in particular in the shape of a sintered compact There is no problem even if either a flat plate shape or a cylindrical shape.
  • those having a target surface area of 1000 cm 2 or more can be produced, and those having a surface of 2000 cm 2 or more can be produced.
  • the niobium oxide sintered body of the present invention can be fired using electromagnetic heating.
  • the sintered body itself is heated from the inside, and sintering proceeds uniformly from the center of the sintered body in an open pore state, and the pores are discharged out of the sintered body. Ideal sintering is possible.
  • electromagnetic heating is heated by self-heating from the inside of the sintered body itself even if heated rapidly, the temperature distribution is small even in large-sized products, it is difficult to crack during firing, and it is heated uniformly by self-heating. Therefore, it is not necessary to consider the thermal diffusion in the sintered body, the firing time can be shortened, and the grain growth of crystal grains can be suppressed.
  • electromagnetic heating is not applicable to any material and depends on the electromagnetic wave absorption characteristics of the material to be heated.
  • the electromagnetic wave absorption characteristics are better for a material having a large dielectric loss, and a material having a small dielectric loss does not absorb the electromagnetic wave and cannot heat the electromagnetic wave.
  • the dielectric loss is determined by each material, the dielectric loss is temperature-dependent, and depending on the material, the electromagnetic wave absorption characteristics vary greatly depending on the temperature, and niobium oxide is one of them.
  • Niobium oxide has an oxygen-deficient structure at a high temperature, and the oxygen vacancy tends to cause vibration, rotation, collision, and friction of the dipole inside the material, and is heated by self-heating. Further, since niobium oxide does not sinter from room temperature to 600 ° C., the above-mentioned formation of closed pores does not occur.
  • microwaves used in the present invention continuous or pulsed microwaves such as 2.45 GHz generated from magnetron or gyrotron, millimeter waves such as 28 GHz, or submillimeter waves can be used.
  • the selection of the frequency of the electromagnetic wave an appropriate one can be selected from the electromagnetic wave absorption characteristics of the object to be fired.
  • a microwave of 2.45 GHz is preferable.
  • Niobium oxide (V) powder is used as the raw material powder.
  • the purity of the raw material powder is preferably 99.9% or more, more preferably 99.99% or more. If impurities are included, it causes abnormal grain growth in the firing process.
  • the raw material powder is preferably subjected to compaction, pulverization, and granulation for improving moldability.
  • the consolidation and pulverization are not particularly limited, and examples thereof include dry and wet media stirring mills and mechanical stirring mills using balls and beads such as zirconia, alumina, and nylon resin.
  • a ball mill, a bead mill, an attritor, a vibration mill, a planetary mill, a jet mill, a biaxial planetary agitation mixer, and the like can be given.
  • a wet ball mill, bead mill, attritor, vibration mill, planetary mill, jet mill or the like it is necessary to dry the pulverized slurry.
  • this drying method is not specifically limited, For example, filtration drying, fluidized-bed drying, spray drying, etc. can be illustrated and it can granulate simultaneously with drying.
  • the niobium (V) oxide powder finally obtained preferably has a BET specific surface area of 4 to 15 m 2 / g.
  • the BET specific surface area is less than 4 m 2 / g, the density of the sintered body is difficult to increase, and when it exceeds 15 m 2 / g, the formability is deteriorated and the handling of the powder becomes difficult due to aggregation or the like.
  • molding aids such as polyvinyl alcohol, acrylic polymer, methylcellulose, waxes, oleic acid and the like may be added to the raw material powder.
  • the molding method is not particularly limited, and a molding method capable of molding the raw material powder into a desired shape can be appropriately selected. Examples thereof include a press molding method, a casting molding method, and an injection molding method.
  • the molding pressure is not particularly limited as long as it does not cause cracks in the molded body and has a strength that can be handled, but it is preferable to increase the molding density as much as possible. Therefore, it is also possible to use a method such as cold isostatic pressing (CIP) molding.
  • CIP pressure is preferably for 1 ton / cm 2 or more to obtain a sufficient consolidation effect, more preferably 2 ton / cm 2 or more, especially preferably 2 ⁇ 3ton / cm 2.
  • the obtained molded body is put into an electromagnetic wave firing furnace and fired.
  • a firing furnace to be used various firing furnaces such as a batch type, a continuous type, and a hybrid type with an external heating type can be used.
  • the molded body In the case of firing by electromagnetic waves, the molded body is placed on a setter and surrounded by a heat insulating material.
  • an isothermal barrier can be installed inside the heat insulating material.
  • the material of the setter and the isothermal barrier may be appropriately selected in consideration of the heat resistance at the firing temperature and the electromagnetic wave absorption characteristics of each material, and examples thereof include alumina, mullite, zirconia, and SiC.
  • SiC having good electromagnetic wave absorption at a low temperature is particularly preferable.
  • the rate of temperature increase of the object to be fired there are no particular restrictions on the rate of temperature increase of the object to be fired, but in order to obtain a high-strength sintered body, 400 to 800 ° C./hour, preferably 500 to 800 ° C./hour, more preferably 600 to 800 ° C./hour. And Since firing by electromagnetic waves is heating by self-heating, the temperature distribution in the material to be fired is small, and even when a large-sized fired material is heated at a high temperature increase rate, the occurrence of cracks is very small. In the case of a molded body containing moisture and a binder, the molded body may be cracked if it is accompanied by a rapid volume expansion when the moisture and the binder component are volatilized particularly in a large molded body. For this reason, it is preferable to set the rate of temperature increase to 20 to 100 ° C./hour in a temperature range where moisture and binder components are volatilized, for example, in a temperature range of 100 to 400 ° C.
  • the firing temperature is 1320 ° C to 1400 ° C.
  • the holding time at the baking temperature is sufficient within one hour, but when the baking temperature is 1370 to 1400 ° C., the holding time is preferably about 10 to 30 minutes.
  • the temperature lowering rate is not particularly limited, and can be appropriately determined in consideration of the capacity of the sintering furnace, the size and shape of the sintered body, the ease of cracking, and the like.
  • the firing atmosphere is not particularly limited, it is preferably an air or oxygen atmosphere. Further, for the purpose of suppressing uneven color on the surface of the sintered body and lowering the specific resistance of the sintered body, it is possible to create a non-oxidizing atmosphere such as nitrogen when the temperature is lowered from the firing temperature.
  • the obtained sintered body is formed into a desired shape such as a plate shape, a circular shape, or a cylindrical shape by using a machining machine such as a surface grinder, a cylindrical grinder, a lathe, a cutting machine, or a machining center. To grind. Furthermore, a sputtering target using the sintered body of the present invention as a target material is obtained by bonding (bonding) a backing plate made of oxygen-free copper, titanium, or the like to the backing tube or backing tube using indium solder or the like as necessary. Can do.
  • a sintered body can be manufactured using a conventionally known atmospheric pressure sintering method, a large target can be manufactured.
  • a large-sized sintered body having a target surface area of 1000 cm 2 or more can be produced, and a cylindrical sputtering target having a more complicated shape can also be produced.
  • the niobium oxide sintered body of the present invention has high strength, and when used as a sputtering target, there is no cracking even under high output, and high productivity can be obtained. Furthermore, it is used for large-sized and cylindrical sputtering targets. Is possible.
  • each measurement in a present Example was performed as follows.
  • (1) Density of Sintered Body The relative density of the sintered body was determined by measuring the bulk density by the Archimedes method in accordance with JIS R 1634 and dividing by the true density. The true density of the sintered body was 4.542 (g / cm 3 ).
  • Example 1 A niobium (V) oxide powder having a BET specific surface area of 7.56 m 2 / g was subjected to cold isostatic pressing (CIP) molding at a pressure of 3 ton / cm 2 to prepare a molded body of about 390 mm ⁇ 770 mm ⁇ 12 mmt.
  • CIP cold isostatic pressing
  • Firing furnace Microwave furnace Heating rate: 600 ° C / hour Heating atmosphere: air atmosphere
  • a sintered body having a size of 323 mm ⁇ 637 mm ⁇ 10 mmt (2057 cm 2 ) without microcracks was obtained.
  • the sintered body characteristics are shown in Table 1.
  • Example 2 A sintered body was produced in the same manner as in Example 1 except that the firing conditions were changed. Table 1 shows the sintered body characteristics of the sintered body.
  • Example 9 A sintered body was produced in the same manner as in Example 1 except that the size of the compact was changed to a cylindrical shape having an outer diameter of 180 mm, an inner diameter of 157 mm, and a length of 300 mm. Table 1 shows the sintered body characteristics of the sintered body.
  • Example 10 A sintered body was produced in the same manner as in Example 1 except that the compact size was about 400 ⁇ 1300 ⁇ 12 mmt. A sintered body having a size of 331 mm ⁇ 1076 mm ⁇ 10 mmt (3561 cm 2 ) without microcracks was obtained. Table 1 shows the sintered body characteristics of the sintered body.
  • Example 11 A sintered body was produced in the same manner as in Example 1 except that the compact size was about 250 ⁇ 600 ⁇ 12 mmt. A sintered body having a size of 207 mm ⁇ 497 mm ⁇ 10 mmt (1029 cm 2 ) having no microcracks was obtained. Table 1 shows the sintered body characteristics of the sintered body.
  • Example 1 A sintered body was produced in the same manner as in Example 1 except that the firing conditions were changed to the following. Table 1 shows the sintered body characteristics of the sintered body. (Baking conditions) Firing furnace: Electric furnace Heating rate: 100 ° C / hour Heating atmosphere: air atmosphere Firing temperature: 1400 ° C Firing time: 180 minutes.
  • Example 7 A sintered body was produced in the same manner as in Example 1 except that the firing conditions were changed. Table 1 shows the sintered body characteristics of the sintered body.
  • Comparative Example 8 A sintered body produced by the same method as in Comparative Example 1 was placed on an alumina setter, placed in a hot isostatic press (HIP) apparatus, and subjected to HIP treatment under the following conditions.
  • HIP processing conditions Temperature rising rate: 100 ° C./hour Temperature rising atmosphere: Argon atmosphere Pressure: 2000 atmospheres Heating temperature: 1200 ° C. Heating time: 3 hours Temperature decreasing rate: 100 ° C./hour Temperature decreasing atmosphere: Argon atmosphere NbO 2 phase was detected by identification by X-ray diffraction.
  • Table 1 The sintered body characteristics are shown in Table 1.
  • Comparative Example 9 A sintered body was produced in the same manner as in Comparative Example 8 except that the firing conditions were changed. Table 1 shows the sintered body characteristics of the sintered body.
  • the niobium oxide sintered body according to the present invention has high strength, and when used as a sputtering target, there is no cracking even under high output, and high productivity can be obtained. Further, it is used for a large-sized or cylindrical sputtering target. Expected to be.

Abstract

The purpose of the present invention is to inexpensively provide an oxide sintered body which is formed of a niobium oxide and which has high strength, and to provide a production method with which the oxide sintered body can be easily obtained, without employing an HP method, by use of inexpensive equipment. According to the present invention, a compact undergoes firing at a temperature elevation rate of not lower than 400ºC/hour.

Description

酸化物焼結体及びその製造方法Oxide sintered body and manufacturing method thereof
 本発明は、高屈折率膜などの薄膜形成用スパッタリングターゲットに使用される酸化物焼結体、及びその製造方法に関する。 The present invention relates to an oxide sintered body used for a sputtering target for forming a thin film such as a high refractive index film, and a method for producing the same.
 近年、携帯型ディスプレイや建材ガラスにおいて屈折率調整用として高屈折率膜が採用されつつある。高屈折率膜の作製には一般的にスパッタリング法が使用されているが、高屈折率材料に用いられる酸化ニオブや酸化チタンは成膜速度が極めて遅く、生産性の観点から高出力下での成膜が望まれている。しかし、代表的な高屈折率材料である酸化ニオブは常圧焼結法を用いると強度が低く、高出力下で成膜をするとスパッタリングターゲットが割れるという課題がある。酸化ニオブの強度が低い原因は次に示す2点の理由からである。1点目は、熱膨張率が結晶方位のa軸、b軸、c軸方向で異なる点である。この熱膨張率の異方性により焼結体作製時時(降温工程)に応力が加わり、焼結体の粒径が大きいとマイクロクラックが生じるため、強度が低下する。 In recent years, high refractive index films are being adopted for refractive index adjustment in portable displays and building glass. Sputtering is generally used for the production of high refractive index films, but niobium oxide and titanium oxide used for high refractive index materials have extremely slow film formation speeds, and high productivity is required from the viewpoint of productivity. Film formation is desired. However, niobium oxide, which is a typical high-refractive index material, has a problem that the strength is low when the atmospheric pressure sintering method is used, and the sputtering target breaks when a film is formed under high output. The reason for the low strength of niobium oxide is due to the following two reasons. The first point is that the coefficient of thermal expansion differs in the a-axis, b-axis, and c-axis directions of the crystal orientation. Due to the anisotropy of the thermal expansion coefficient, stress is applied during the production of the sintered body (temperature lowering step), and if the sintered body has a large particle size, microcracks are generated, resulting in a decrease in strength.
 そこで特許文献1、2ではホットプレス(HP)法で製造しているが、HP法を用いた場合、大型のターゲットの製造においては巨大なプレス機構が必要となり、現実的なプロセスではなく、ターゲットは小型で平板型などの単純形状に限定され、大面積や円筒型などの複雑形状を得ることができなかった。 Therefore, in Patent Documents 1 and 2, manufacturing is performed by a hot press (HP) method. However, when the HP method is used, a large press mechanism is required for manufacturing a large target, which is not a realistic process. Is small and limited to a simple shape such as a flat plate type, and a complicated shape such as a large area or a cylindrical shape cannot be obtained.
 酸化ニオブが低強度になる理由の2点目は酸化ニオブNb相(密度4.542g/cm)は還元されやすく、還元雰囲気焼成でNbO相(密度5.916g/cm)などの異なる結晶相を形成するという点である。異なる結晶相を形成すると密度差により焼結体中に内部応力やマイクロクラックが内在し、焼結体の強度が低下し、場合によってはクラックが生じる。 Secondly reason for niobium oxide is low intensity niobium oxide Nb 2 O 5 phase (density 4.542g / cm 3) is likely to be reduced, a reducing atmosphere firing NbO 2-phase (density 5.916g / cm 3) It is a point of forming different crystal phases. When different crystal phases are formed, internal stress and microcracks are inherent in the sintered body due to the difference in density, and the strength of the sintered body is reduced. In some cases, cracks are generated.
 そのため、特許文献3、4に記載されている熱間静水圧プレス(HIP法)では別の結晶相が形成することから焼結体の強度が低下し、特に大型の焼結体でクラックが生じやすいという問題があった。 Therefore, in the hot isostatic pressing (HIP method) described in Patent Documents 3 and 4, since another crystal phase is formed, the strength of the sintered body is reduced, and cracks are generated particularly in a large sintered body. There was a problem that it was easy.
日本国特開2005-256175公報Japanese Unexamined Patent Publication No. 2005-256175 日本国特開2004-059965公報Japanese Laid-Open Patent Publication No. 2004-059965 日本国特開2002-338354公報Japanese Patent Laid-Open No. 2002-338354 日本国特開2014-194072公報Japanese Patent Application Laid-Open No. 2014-194072
 本発明の目的は、酸化ニオブからなる高強度な酸化物焼結体を安価に提供することであり、HP法によらず安価な設備で容易に得ることができる製造方法を提供することである。 An object of the present invention is to provide a high-strength oxide sintered body made of niobium oxide at low cost, and to provide a manufacturing method that can be easily obtained with inexpensive equipment regardless of the HP method. .
 本発明者らは、化学量論組成において酸化ニオブ(V)からなる焼結体の製造プロセスについて鋭意検討を行った結果、常圧焼結法の手法を用いて高強度な焼結体を得られることを見出し、本発明を完成するに至った。 As a result of intensive studies on the manufacturing process of a sintered body made of niobium (V) oxide in the stoichiometric composition, the present inventors have obtained a high-strength sintered body using the atmospheric pressure sintering method. As a result, the present invention has been completed.
 すなわち、本発明は以下の[1]乃至[5]に存する。
[1]焼結体密度が95%以上であり、焼結体粒径が5.5μm以下であり、X線回折でNbO相に帰属される酸化ニオブ(IV)が存在せず、抗折強度が100MPa以上であることを特徴とする酸化ニオブ焼結体。
[2]形状が円筒形であることを特徴とする[1]に記載の酸化ニオブ焼結体。
[3]形状が平板形であり、ターゲット間の面積が1000cm以上であることを特徴とする[1]に記載の酸化ニオブ焼結体。
[4]400℃/時間以上の昇温速度で焼成することを特徴とする[1]~[3]に記載の酸化ニオブ焼結体の製造方法。
[5]電磁波加熱を用いて焼成することを特徴とする[4]に記載の酸化ニオブ焼結体の製造方法。
That is, the present invention resides in the following [1] to [5].
[1] The sintered body density is 95% or more, the sintered body particle size is 5.5 μm or less, niobium (IV) oxide attributed to the NbO 2 phase does not exist by X-ray diffraction, A niobium oxide sintered body having a strength of 100 MPa or more.
[2] The niobium oxide sintered body according to [1], which has a cylindrical shape.
[3] The niobium oxide sintered body according to [1], wherein the shape is a flat plate and the area between the targets is 1000 cm 2 or more.
[4] The method for producing a niobium oxide sintered body according to [1] to [3], wherein firing is performed at a temperature rising rate of 400 ° C./hour or more.
[5] The method for producing a niobium oxide sintered body according to [4], wherein firing is performed using electromagnetic heating.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、酸化ニオブからなる焼結体であって、焼結体密度が95%以上であり、焼結体粒径が5.5μm以下であり、X線回折で酸化ニオブ(IV)が存在しないことを特徴とする酸化物焼結体である。 The present invention is a sintered body made of niobium oxide, having a sintered body density of 95% or more, a sintered body particle size of 5.5 μm or less, and presence of niobium (IV) oxide by X-ray diffraction. It is an oxide sintered body characterized by not.
 本発明の焼結体密度は、相対密度で95%以上であることを特徴とする。焼結体密度が95%より低いと、強度が減少する。さらに、スパッタリングターゲットとして用いた場合にアーキング発生の頻度が高くなるため、好ましくは97%以上、より好ましくは98%以上である。 The sintered body density of the present invention is characterized by a relative density of 95% or more. When the sintered body density is lower than 95%, the strength decreases. Furthermore, since the frequency of arcing increases when used as a sputtering target, it is preferably 97% or more, more preferably 98% or more.
 また、本発明の焼結体粒径は、5.5μm以下であることを特徴とする。5.5μmより大きくなると、結晶方位の熱膨張率の異方性から粒界に応力が加わりマイクロクラックが入るため、強度が急激に減少する。安定的に高い強度を得るためには、焼結体粒径は5μm以下が好ましく、4.5μm以下がより好ましい。 Further, the particle size of the sintered body of the present invention is 5.5 μm or less. If it exceeds 5.5 μm, stress is applied to the grain boundary due to the anisotropy of the coefficient of thermal expansion of the crystal orientation, and microcracks are generated, so that the strength sharply decreases. In order to stably obtain high strength, the particle size of the sintered body is preferably 5 μm or less, and more preferably 4.5 μm or less.
 さらに、本発明の結晶相は、XRDで酸化ニオブ(IV)相が存在しないことを特徴とする。酸化ニオブ(V)(密度4.542g/cm)と酸化ニオブ(IV)(密度5.916g/cm)は密度差が大きく、酸化ニオブ(IV)が生成されると体積変化で焼結体中に内部応力やマイクロクラックが内在し、特に大型の焼結体では割れ易く、歩留りよく焼結体を製造することができない。また、このような焼結体を用いて、スパッタリングで高パワーを投入した場合、放電中に割れが発生し易く、成膜工程の生産性を低下させる原因となるため、好ましくない。 Furthermore, the crystalline phase of the present invention is characterized by the absence of a niobium (IV) oxide phase in XRD. Niobium oxide (V) (density 4.542 g / cm 3 ) and niobium oxide (IV) (density 5.916 g / cm 3 ) have a large density difference. Internal stresses and microcracks are inherent in the body, and particularly large sintered bodies are easily cracked, making it impossible to produce sintered bodies with good yield. In addition, when such a sintered body is used and high power is applied by sputtering, it is not preferable because cracks are likely to occur during discharge and cause the productivity of the film forming process to be reduced.
 本発明の抗折強度は100MPa以上であることが好ましい。焼結体の強度が高ければ研削加工、ボンディング工程においても割れが発生しにくく、歩留りが高いために生産性が良い。特に形状が円筒形の場合、バッキングチューブの材質やハンダの厚みにもよるが、ボンディング工程で50~80MPaの応力が加わるため、抗折強度が100MPa未満であると焼結体にクラックが入る可能性が高い。更に、スパッタリング中に高いパワーが投入した場合においても、割れの問題が発生しにくい。 The bending strength of the present invention is preferably 100 MPa or more. If the strength of the sintered body is high, cracks are less likely to occur in the grinding process and bonding process, and the yield is high, so the productivity is good. Especially when the shape is cylindrical, depending on the material of the backing tube and the thickness of the solder, a stress of 50-80 MPa is applied in the bonding process, so if the bending strength is less than 100 MPa, the sintered body may crack. High nature. Furthermore, even when high power is applied during sputtering, the problem of cracking is unlikely to occur.
 また、本発明の酸化物焼結体は、HP法を使用しないために、そのターゲット面の面積が500cm以上とすることが可能である。ここで言うターゲット面の面積とは、スパッタリングされる側の焼結体表面の面積を言う。なお、複数の焼結体から構成される多分割ターゲットの場合、それぞれの焼結体の中でスパッタリングされる側の焼結体表面の面積が最大のものを多分割ターゲットにおけるターゲット面の面積とする。焼結体の形状は特に制限はなく、平板形状、円筒形状のいずれであっても問題ない。平板形状の焼結体であれば、ターゲット面の面積が1000cm以上のものも製造可能であり、2000cm以上のものも製造可能である。 Further, since the oxide sintered body of the present invention does not use the HP method, the area of the target surface can be 500 cm 2 or more. The area of the target surface here refers to the area of the surface of the sintered body on the side to be sputtered. In the case of a multi-divided target composed of a plurality of sintered bodies, the area of the surface of the sintered body on the side to be sputtered in each sintered body is the largest and the area of the target surface in the multi-divided target To do. There is no restriction | limiting in particular in the shape of a sintered compact, There is no problem even if either a flat plate shape or a cylindrical shape. In the case of a flat plate-shaped sintered body, those having a target surface area of 1000 cm 2 or more can be produced, and those having a surface of 2000 cm 2 or more can be produced.
 本発明の酸化ニオブ焼結体は、電磁波加熱を用いて焼成することが可能である。 The niobium oxide sintered body of the present invention can be fired using electromagnetic heating.
 電気炉のような外部加熱の場合、焼結体の外表面から焼結が進行するために、焼結体の中心部でクローズドポアとなりポアが残り易く、特に酸化ニオブのように単一組成の材料では、結晶粒子同士の焼結が早く粒成長しやすいため、高密度で微細な組織を持つ焼結体が得られ難い。 In the case of external heating such as in an electric furnace, since sintering proceeds from the outer surface of the sintered body, closed pores tend to remain at the center of the sintered body, and in particular, a single composition such as niobium oxide remains. In the case of materials, since sintering between crystal grains is fast and grain growth is easy, it is difficult to obtain a sintered body having a high density and a fine structure.
 一方、電磁波加熱による自己発熱の場合、焼結体自身が内部から加熱され、オープンポアの状態で焼結体の中心部から均一に焼結が進行し、ポアが焼結体の外に吐き出される理想的な焼結が可能である。また、電磁波加熱は、急速に加熱しても焼結体自身の内部から自己発熱により加熱されるため、大型品でも温度分布が少なく、焼成において割れ難く、さらに、自己発熱により均一に加熱されるために、焼結体中の熱拡散を考慮する必要がなく、焼成時間を短くすることができ、結晶粒子の粒成長を抑制することが可能である。 On the other hand, in the case of self-heating by electromagnetic wave heating, the sintered body itself is heated from the inside, and sintering proceeds uniformly from the center of the sintered body in an open pore state, and the pores are discharged out of the sintered body. Ideal sintering is possible. In addition, since electromagnetic heating is heated by self-heating from the inside of the sintered body itself even if heated rapidly, the temperature distribution is small even in large-sized products, it is difficult to crack during firing, and it is heated uniformly by self-heating. Therefore, it is not necessary to consider the thermal diffusion in the sintered body, the firing time can be shortened, and the grain growth of crystal grains can be suppressed.
 しかし、電磁波加熱は、どのような材料にも適用できるものではなく、被加熱材料の電磁波吸収特性に依存する。電磁波吸収特性は、誘電損失が大きい物質ほど良く、誘電損失の小さい物質では電磁波を吸収せず、電磁波加熱ができない。誘電損失は個々の物質により決まるが、誘電損失には温度依存性があり、物質によっては温度により電磁波吸収特性が大きく異なり、酸化ニオブもその1つである。酸化ニオブは高温域では酸素欠損型構造が安定相となり、酸素欠損により物質内部の双極子が振動・回転・衝突・摩擦を引き起こしやすくなり、自己発熱によって加熱される。また、酸化ニオブは室温から600℃までは焼結が起きないため、上述したクローズドポアの生成は起きない。 However, electromagnetic heating is not applicable to any material and depends on the electromagnetic wave absorption characteristics of the material to be heated. The electromagnetic wave absorption characteristics are better for a material having a large dielectric loss, and a material having a small dielectric loss does not absorb the electromagnetic wave and cannot heat the electromagnetic wave. Although the dielectric loss is determined by each material, the dielectric loss is temperature-dependent, and depending on the material, the electromagnetic wave absorption characteristics vary greatly depending on the temperature, and niobium oxide is one of them. Niobium oxide has an oxygen-deficient structure at a high temperature, and the oxygen vacancy tends to cause vibration, rotation, collision, and friction of the dipole inside the material, and is heated by self-heating. Further, since niobium oxide does not sinter from room temperature to 600 ° C., the above-mentioned formation of closed pores does not occur.
 すなわち、室温から低温の範囲ではSiCなどの電磁波吸収がよく自己発熱し易い物質で外部加熱により焼成を行い、高温では酸化ニオブの自己発熱により加熱する方法を用いて焼成することが可能となる。高密度化に必要な十分な焼成温度であるにも関わらず、急速加熱と短い保持時間で、結晶粒子の成長を抑制し、高密度・高強度な焼結体を得ることができる。 That is, it is possible to perform baking by external heating with a substance that absorbs electromagnetic waves well, such as SiC, and easily self-heats in the range from room temperature to low temperature, and heats at a high temperature by heating by self-heating of niobium oxide. In spite of the sufficient firing temperature necessary for increasing the density, it is possible to obtain a sintered body having a high density and a high strength by suppressing the growth of crystal grains with rapid heating and a short holding time.
 本発明で用いる電磁波としてはマグネトロンまたはジャイロトロン等から発生する連続またはパルス状の2.45GHz等のマイクロ波、28GHz等のミリ波、またはサブミリ波が利用できる。電磁波の周波数の選択は、被焼成物の電磁波吸収特性から適切なものを選択することができるが、発振器のコスト等の経済性を考慮すると2.45GHzのマイクロ波が好ましい。 As electromagnetic waves used in the present invention, continuous or pulsed microwaves such as 2.45 GHz generated from magnetron or gyrotron, millimeter waves such as 28 GHz, or submillimeter waves can be used. As for the selection of the frequency of the electromagnetic wave, an appropriate one can be selected from the electromagnetic wave absorption characteristics of the object to be fired. However, in consideration of economics such as the cost of the oscillator, a microwave of 2.45 GHz is preferable.
 以下、本発明の酸化ニオブ焼結体の製造方法について、工程毎に説明する。 Hereinafter, the manufacturing method of the niobium oxide sintered body of the present invention will be described for each step.
 (1)原料調整工程
 原料粉末は酸化ニオブ(V)粉末を用いる。原料粉末の純度は99.9%以上が好ましく、より好ましくは99.99%以上である。不純物が含まれると、焼成工程における異常粒成長の原因となる。
(1) Raw material adjustment process Niobium oxide (V) powder is used as the raw material powder. The purity of the raw material powder is preferably 99.9% or more, more preferably 99.99% or more. If impurities are included, it causes abnormal grain growth in the firing process.
 原料粉末は成形性の改善のため、圧密、粉砕や造粒処理することが好ましい。圧密、粉砕処理としては特に限定されるものではないが、ジルコニア、アルミナ、ナイロン樹脂等のボールやビーズを用いた乾式、湿式のメディア撹拌型ミルや機械撹拌式ミル等の方法が例示される。具体的には、ボールミル、ビーズミル、アトライタ、振動ミル、遊星ミル、ジェットミル、二軸遊星撹拌式混合機等が挙げられる。湿式法のボールミルやビーズミル、アトライタ、振動ミル、遊星ミル、ジェットミル等を用いる場合には、粉砕後のスラリーを乾燥する必要がある。この乾燥方法は特に限定されるものではないが、例えば、濾過乾燥、流動層乾燥、噴霧乾燥等が例示でき、乾燥と同時に造粒することもできる。 The raw material powder is preferably subjected to compaction, pulverization, and granulation for improving moldability. The consolidation and pulverization are not particularly limited, and examples thereof include dry and wet media stirring mills and mechanical stirring mills using balls and beads such as zirconia, alumina, and nylon resin. Specifically, a ball mill, a bead mill, an attritor, a vibration mill, a planetary mill, a jet mill, a biaxial planetary agitation mixer, and the like can be given. When a wet ball mill, bead mill, attritor, vibration mill, planetary mill, jet mill or the like is used, it is necessary to dry the pulverized slurry. Although this drying method is not specifically limited, For example, filtration drying, fluidized-bed drying, spray drying, etc. can be illustrated and it can granulate simultaneously with drying.
 最終的に得られる酸化ニオブ(V)粉末としては、BET比表面積が4~15m/gのものを使用することが好ましい。BET比表面積が4m/g未満であると焼結体密度が上がり難く、15m/gを超えると成形性が悪化し、凝集等により粉末の取り扱いも困難になる。なお、成形性を考慮して、ポリビニルアルコール、アクリル系ポリマー、メチルセルロース、ワックス類、オレイン酸等の成形助剤を原料粉末に添加しても良い。 The niobium (V) oxide powder finally obtained preferably has a BET specific surface area of 4 to 15 m 2 / g. When the BET specific surface area is less than 4 m 2 / g, the density of the sintered body is difficult to increase, and when it exceeds 15 m 2 / g, the formability is deteriorated and the handling of the powder becomes difficult due to aggregation or the like. In consideration of moldability, molding aids such as polyvinyl alcohol, acrylic polymer, methylcellulose, waxes, oleic acid and the like may be added to the raw material powder.
 (2)成形工程
 成形方法は、原料粉末を目的とした形状に成形できる成形方法を適宜選択することが可能であり、特に限定されるものではない。プレス成形法、鋳込み成形法、射出成形法等が例示できる。
(2) Molding process The molding method is not particularly limited, and a molding method capable of molding the raw material powder into a desired shape can be appropriately selected. Examples thereof include a press molding method, a casting molding method, and an injection molding method.
 成形圧力は成形体にクラック等の発生がなく、取り扱いが可能な強度を有する成形体であれば特に限定されるものではないが、成形密度は可能な限り高めた方が好ましい。そのために冷間静水圧プレス(CIP)成形等の方法を用いることも可能である。CIP圧力は充分な圧密効果を得るため1ton/cm以上が好ましく、さらに好ましくは2ton/cm以上、とりわけ好ましくは2~3ton/cmである。 The molding pressure is not particularly limited as long as it does not cause cracks in the molded body and has a strength that can be handled, but it is preferable to increase the molding density as much as possible. Therefore, it is also possible to use a method such as cold isostatic pressing (CIP) molding. CIP pressure is preferably for 1 ton / cm 2 or more to obtain a sufficient consolidation effect, more preferably 2 ton / cm 2 or more, especially preferably 2 ~ 3ton / cm 2.
 (3)焼成工程
 次に得られた成形体を電磁波焼成炉内に投入して焼成を行う。使用される焼成炉としては、バッチ式、連続式、外部加熱式とのハイブリット式等の種々の焼成炉を使用することができる。
(3) Firing step Next, the obtained molded body is put into an electromagnetic wave firing furnace and fired. As a firing furnace to be used, various firing furnaces such as a batch type, a continuous type, and a hybrid type with an external heating type can be used.
 電磁波による焼成の場合、成形体はセッターの上に置かれ、断熱材で囲まれる。この際、断熱材の内側に等温熱障壁を設置することも可能である。セッターや等温熱障壁の材質は焼成温度にて耐熱性や各材質の電磁波吸収特性を考慮して適宜選択すればよく、アルミナ、ムライト、ジルコニア、SiC等が挙げられる。セッターとしては特に低温で電磁波吸収がよいSiCが好ましい。 In the case of firing by electromagnetic waves, the molded body is placed on a setter and surrounded by a heat insulating material. In this case, an isothermal barrier can be installed inside the heat insulating material. The material of the setter and the isothermal barrier may be appropriately selected in consideration of the heat resistance at the firing temperature and the electromagnetic wave absorption characteristics of each material, and examples thereof include alumina, mullite, zirconia, and SiC. As the setter, SiC having good electromagnetic wave absorption at a low temperature is particularly preferable.
 被焼成物の昇温速度については特に限定されないが、高強度の焼結体を得るために、400~800℃/時間、好ましくは500~800℃/時間、より好ましくは600~800℃/時間とする。電磁波による焼成は自己発熱による加熱であるため、被焼成物内の温度分布が小さく、特に大型焼成物を速い昇温速度で加熱しても割れの発生が非常に少ない。なお水分やバインダーを含む成形体の場合、特に大型の成形体では水分やバインダー成分が揮発する際に、急激な体積膨張を伴うと成形体が割れることがある。このため、水分やバインダー成分が揮発している温度領域、例えば100~400℃の温度域においては昇温速度を20~100℃/時間とすることが好ましい。 There are no particular restrictions on the rate of temperature increase of the object to be fired, but in order to obtain a high-strength sintered body, 400 to 800 ° C./hour, preferably 500 to 800 ° C./hour, more preferably 600 to 800 ° C./hour. And Since firing by electromagnetic waves is heating by self-heating, the temperature distribution in the material to be fired is small, and even when a large-sized fired material is heated at a high temperature increase rate, the occurrence of cracks is very small. In the case of a molded body containing moisture and a binder, the molded body may be cracked if it is accompanied by a rapid volume expansion when the moisture and the binder component are volatilized particularly in a large molded body. For this reason, it is preferable to set the rate of temperature increase to 20 to 100 ° C./hour in a temperature range where moisture and binder components are volatilized, for example, in a temperature range of 100 to 400 ° C.
 焼成温度は、1320℃~1400℃とする。焼成温度での保持時間は1時間以内で十分であるが、焼成温度を1370~1400℃で行う場合は、保持時間は10~30分程度とすることが好ましい。また、降温速度は特に限定されず、焼結炉の容量、焼結体のサイズ及び形状、割れ易さなどを考慮して適宜決定することができる。 The firing temperature is 1320 ° C to 1400 ° C. The holding time at the baking temperature is sufficient within one hour, but when the baking temperature is 1370 to 1400 ° C., the holding time is preferably about 10 to 30 minutes. The temperature lowering rate is not particularly limited, and can be appropriately determined in consideration of the capacity of the sintering furnace, the size and shape of the sintered body, the ease of cracking, and the like.
 焼成時の雰囲気としては特に制限されないが、大気または酸素雰囲気とすることが好ましい。また、焼結体表面の色むらの抑制や焼結体の比抵抗を下げる目的で、焼成温度からの降温時に、窒素等の非酸化性雰囲気とすることも可能である。 Although the firing atmosphere is not particularly limited, it is preferably an air or oxygen atmosphere. Further, for the purpose of suppressing uneven color on the surface of the sintered body and lowering the specific resistance of the sintered body, it is possible to create a non-oxidizing atmosphere such as nitrogen when the temperature is lowered from the firing temperature.
 (4)ターゲット化工程
 得られた焼結体は、平面研削盤、円筒研削盤、旋盤、切断機、マシニングセンター等の機械加工機を用いて、板状、円状、円筒状等の所望の形状に研削加工する。さらに、必要に応じて無酸素銅やチタン等からなるバッキングプレート、バッキングチューブにインジウム半田等を用いて接合(ボンディング)することにより、本発明の焼結体をターゲット材としたスパッタリングターゲットを得ることができる。
(4) Targeting process The obtained sintered body is formed into a desired shape such as a plate shape, a circular shape, or a cylindrical shape by using a machining machine such as a surface grinder, a cylindrical grinder, a lathe, a cutting machine, or a machining center. To grind. Furthermore, a sputtering target using the sintered body of the present invention as a target material is obtained by bonding (bonding) a backing plate made of oxygen-free copper, titanium, or the like to the backing tube or backing tube using indium solder or the like as necessary. Can do.
 本発明によれば従来から知られた常圧焼結法を利用して焼結体を製造できるため、大型のターゲットを製造することが可能となる。平板型スパッタリングターゲットの場合、ターゲット面の面積1000cm以上の大型の焼結体を作製することができ、さらに複雑な形状である円筒型スパッタリングターゲットも作製することができる。 According to the present invention, since a sintered body can be manufactured using a conventionally known atmospheric pressure sintering method, a large target can be manufactured. In the case of a flat plate-type sputtering target, a large-sized sintered body having a target surface area of 1000 cm 2 or more can be produced, and a cylindrical sputtering target having a more complicated shape can also be produced.
 本発明の酸化ニオブ焼結体は高強度を有し、スパッタリングターゲットとして用いた場合、高出力下においても割れが無く、高い生産性を得ることが可能で、さらに大型や円筒形スパッタリングターゲットに利用することが可能である。 The niobium oxide sintered body of the present invention has high strength, and when used as a sputtering target, there is no cracking even under high output, and high productivity can be obtained. Furthermore, it is used for large-sized and cylindrical sputtering targets. Is possible.
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。なお、本実施例における各測定は以下のように行った。
(1)焼結体の密度
 焼結体の相対密度は、JIS R 1634に準拠して、アルキメデス法によりかさ密度を測定し、真密度で割って相対密度を求めた。焼結体の真密度は、4.542(g/cm)を用いた。
(2)X線回折試験
 鏡面研磨した焼結体試料の2θ=20~70°の範囲のX線回折パターンを測定した。
走査方法 :ステップスキャン法(FT法)
X線源  :CuKα
パワー  :40kV、40mA
ステップ幅:0.01°
(3)焼結体粒径
 鏡面研磨し、サーマルエッチング処理した焼結体試料を走査電子顕微鏡で観察し、得られた焼結体組織画像から直径法で焼結体粒径を測定した。少なくとも任意の3点以上を観察し、300個以上の粒子の測定を行った。
(サーマルエッチング条件)
温度 :900℃
時間 :30分
(走査電子顕微鏡の観察条件)
加速電圧 :10kV
(4)抗折強度
 JIS R 1601に準拠して測定した。
(抗折強度の測定条件)
試験方法  :3点曲げ試験
支点間距離 :30mm
試料サイズ :3×4×40mm
ヘッド速度 :0.5mm/分。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In addition, each measurement in a present Example was performed as follows.
(1) Density of Sintered Body The relative density of the sintered body was determined by measuring the bulk density by the Archimedes method in accordance with JIS R 1634 and dividing by the true density. The true density of the sintered body was 4.542 (g / cm 3 ).
(2) X-ray diffraction test An X-ray diffraction pattern in the range of 2θ = 20 to 70 ° of the mirror-polished sintered sample was measured.
Scanning method: Step scan method (FT method)
X-ray source: CuKα
Power: 40kV, 40mA
Step width: 0.01 °
(3) Sintered body particle size The sintered body sample which was mirror-polished and thermally etched was observed with a scanning electron microscope, and the sintered body particle diameter was measured by the diameter method from the obtained sintered body structure image. At least three arbitrary points were observed, and 300 or more particles were measured.
(Thermal etching conditions)
Temperature: 900 ° C
Time: 30 minutes (observation conditions of scanning electron microscope)
Acceleration voltage: 10 kV
(4) Folding strength Measured according to JIS R 1601.
(Measurement conditions of bending strength)
Test method: 3-point bending test fulcrum distance: 30 mm
Sample size: 3 x 4 x 40 mm
Head speed: 0.5 mm / min.
 (実施例1)
 BET比表面積7.56m/gの酸化ニオブ(V)粉末を3ton/cmの圧力で冷間静水圧プレス(CIP)成形を行い、約390mm×770mm×12mmtの成形体を作製した。
(Example 1)
A niobium (V) oxide powder having a BET specific surface area of 7.56 m 2 / g was subjected to cold isostatic pressing (CIP) molding at a pressure of 3 ton / cm 2 to prepare a molded body of about 390 mm × 770 mm × 12 mmt.
 次にこの成形体をマイクロ波焼成炉(周波数=2.45GHz)でアルミナ製のセッターの上に設置して、SiC板ではさみ、以下の条件で焼成し、焼結体を得た。
(焼成条件)
 焼成炉  :マイクロ波炉
 昇温速度 :600℃/時間
 昇温雰囲気:大気雰囲気
 焼成温度 :1350℃
 焼成時間 :30分
焼結体サイズ323mm×637mm×10mmt(2057cm)のマイクロクラックのない焼結体が得られた。焼結体特性を表1に示す。
Next, this molded body was placed on an alumina setter in a microwave firing furnace (frequency = 2.45 GHz), sandwiched between SiC plates, and fired under the following conditions to obtain a sintered body.
(Baking conditions)
Firing furnace: Microwave furnace Heating rate: 600 ° C / hour Heating atmosphere: air atmosphere Firing temperature: 1350 ° C
Firing time: 30 minutes A sintered body having a size of 323 mm × 637 mm × 10 mmt (2057 cm 2 ) without microcracks was obtained. The sintered body characteristics are shown in Table 1.
 (実施例2~8)
 焼成条件を変更した以外は、実施例1と同様の方法で焼結体を作製した。焼結体の焼結体特性を表1に示す。
(Examples 2 to 8)
A sintered body was produced in the same manner as in Example 1 except that the firing conditions were changed. Table 1 shows the sintered body characteristics of the sintered body.
 (実施例9)
 成形体サイズを外径180mm×内径157mm×長さ300mmの円筒形状に変更した以外は、実施例1と同様の方法で焼結体を作製した。焼結体の焼結体特性を表1に示す。
Example 9
A sintered body was produced in the same manner as in Example 1 except that the size of the compact was changed to a cylindrical shape having an outer diameter of 180 mm, an inner diameter of 157 mm, and a length of 300 mm. Table 1 shows the sintered body characteristics of the sintered body.
 (実施例10)
 成形体サイズを約400×1300×12mmtとした以外は、実施例1と同様の方法で焼結体を作製した。焼結体サイズ331mm×1076mm×10mmt(3561cm)のマイクロクラックのない焼結体が得られた。焼結体の焼結体特性を表1に示す。
(Example 10)
A sintered body was produced in the same manner as in Example 1 except that the compact size was about 400 × 1300 × 12 mmt. A sintered body having a size of 331 mm × 1076 mm × 10 mmt (3561 cm 2 ) without microcracks was obtained. Table 1 shows the sintered body characteristics of the sintered body.
 (実施例11)
 成形体サイズを約250×600×12mmtとした以外は、実施例1と同様の方法で焼結体を作製した。焼結体サイズ207mm×497mm×10mmt(1029cm)のマイクロクラックのない焼結体が得られた。焼結体の焼結体特性を表1に示す。
(Example 11)
A sintered body was produced in the same manner as in Example 1 except that the compact size was about 250 × 600 × 12 mmt. A sintered body having a size of 207 mm × 497 mm × 10 mmt (1029 cm 2 ) having no microcracks was obtained. Table 1 shows the sintered body characteristics of the sintered body.
 (比較例1)
 焼成条件を下記に変更した以外は、実施例1と同様の方法で焼結体を作製した。焼結体の焼結体特性を表1に示す。
(焼成条件)
 焼成炉  :電気炉
 昇温速度 :100℃/時間
 昇温雰囲気:大気雰囲気
 焼成温度 :1400℃
 焼成時間 :180分。
(Comparative Example 1)
A sintered body was produced in the same manner as in Example 1 except that the firing conditions were changed to the following. Table 1 shows the sintered body characteristics of the sintered body.
(Baking conditions)
Firing furnace: Electric furnace Heating rate: 100 ° C / hour Heating atmosphere: air atmosphere Firing temperature: 1400 ° C
Firing time: 180 minutes.
 (比較例2~3)
 焼成条件を変更した以外は、比較例1と同様の方法で焼結体を作製した。焼結体の焼結体特性を表1に示す。
(Comparative Examples 2-3)
A sintered body was produced in the same manner as in Comparative Example 1 except that the firing conditions were changed. Table 1 shows the sintered body characteristics of the sintered body.
 (比較例4~7)
 焼成条件を変更した以外は、実施例1と同様の方法で焼結体を作製した。焼結体の焼結体特性を表1に示す。
(Comparative Examples 4 to 7)
A sintered body was produced in the same manner as in Example 1 except that the firing conditions were changed. Table 1 shows the sintered body characteristics of the sintered body.
 (比較例8)
 比較例1と同様の方法で作製した焼結体をアルミナセッターの上に設置して、熱間静水圧プレス(HIP)装置内に設置し、以下の条件でHIP処理を実施した。
(HIP処理条件)
 昇温速度 :100℃/時間
 昇温雰囲気:アルゴン雰囲気
 圧力   :2000気圧
 加熱温度 :1200℃
 加熱時間 :3時間
 降温速度 :100℃/時間
 降温雰囲気:アルゴン雰囲気
 X線回折による同定でNbO相が検出された。焼結体特性を表1に示す。
(Comparative Example 8)
A sintered body produced by the same method as in Comparative Example 1 was placed on an alumina setter, placed in a hot isostatic press (HIP) apparatus, and subjected to HIP treatment under the following conditions.
(HIP processing conditions)
Temperature rising rate: 100 ° C./hour Temperature rising atmosphere: Argon atmosphere Pressure: 2000 atmospheres Heating temperature: 1200 ° C.
Heating time: 3 hours Temperature decreasing rate: 100 ° C./hour Temperature decreasing atmosphere: Argon atmosphere NbO 2 phase was detected by identification by X-ray diffraction. The sintered body characteristics are shown in Table 1.
 (比較例9)
 焼成条件を変更した以外は、比較例8と同様の方法で焼結体を作製した。焼結体の焼結体特性を表1に示す。
(Comparative Example 9)
A sintered body was produced in the same manner as in Comparative Example 8 except that the firing conditions were changed. Table 1 shows the sintered body characteristics of the sintered body.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2016年2月18日に出願された日本特許出願2016-029316号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2016-029316 filed on Feb. 18, 2016 are cited here as disclosure of the specification of the present invention. Incorporated.
 本発明による酸化ニオブ焼結体は高強度を有し、スパッタリングターゲットとして用いた場合、高出力下においても割れが無く、高い生産性を得ることが可能で、さらに大型や円筒形スパッタリングターゲットに用いられることが期待される。 The niobium oxide sintered body according to the present invention has high strength, and when used as a sputtering target, there is no cracking even under high output, and high productivity can be obtained. Further, it is used for a large-sized or cylindrical sputtering target. Expected to be.

Claims (5)

  1.  焼結体密度が95%以上であり、焼結体粒径が5.5μm以下であり、X線回折でNbO相に帰属される酸化ニオブ(IV)が存在せず、抗折強度が100MPa以上であることを特徴とする酸化ニオブ焼結体。 The sintered body density is 95% or more, the sintered body particle size is 5.5 μm or less, niobium (IV) oxide attributed to the NbO 2 phase does not exist by X-ray diffraction, and the bending strength is 100 MPa. A niobium oxide sintered body characterized by the above.
  2.  形状が円筒形であることを特徴とする請求項1に記載の酸化ニオブ焼結体。 The niobium oxide sintered body according to claim 1, wherein the shape is cylindrical.
  3.  形状が平板形であり、ターゲット間の面積が1000cm以上であることを特徴とする請求項1に記載の酸化ニオブ焼結体。 The niobium oxide sintered body according to claim 1, wherein the niobium oxide sintered body has a flat plate shape and an area between the targets of 1000 cm 2 or more.
  4.  400℃/時間以上の昇温速度で焼成することを特徴とする請求項1~3に記載の酸化ニオブ焼結体の製造方法。 4. The method for producing a niobium oxide sintered body according to claim 1, wherein firing is performed at a temperature rising rate of 400 ° C./hour or more.
  5.  電磁波加熱を用いて焼成することを特徴とする請求項4に記載の酸化ニオブ焼結体の製造方法。 The method for producing a niobium oxide sintered body according to claim 4, wherein firing is performed using electromagnetic heating.
PCT/JP2017/005908 2016-02-18 2017-02-17 Oxide sintered body and production method for same WO2017142063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016029316A JP6705202B2 (en) 2016-02-18 2016-02-18 Oxide sintered body and manufacturing method thereof
JP2016-029316 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017142063A1 true WO2017142063A1 (en) 2017-08-24

Family

ID=59626037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005908 WO2017142063A1 (en) 2016-02-18 2017-02-17 Oxide sintered body and production method for same

Country Status (3)

Country Link
JP (1) JP6705202B2 (en)
TW (1) TW201800364A (en)
WO (1) WO2017142063A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338354A (en) * 2001-05-18 2002-11-27 Kyocera Corp Niobium oxide sintered compact, its manufacturing method and sputtering target using the same
JP2010248049A (en) * 2009-04-20 2010-11-04 Tosoh Corp Method for producing sintered compact for transparent electroconductive film
JP2016188164A (en) * 2015-03-30 2016-11-04 東ソー株式会社 Oxide sintered compact, and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338354A (en) * 2001-05-18 2002-11-27 Kyocera Corp Niobium oxide sintered compact, its manufacturing method and sputtering target using the same
JP2010248049A (en) * 2009-04-20 2010-11-04 Tosoh Corp Method for producing sintered compact for transparent electroconductive film
JP2016188164A (en) * 2015-03-30 2016-11-04 東ソー株式会社 Oxide sintered compact, and production method therefor

Also Published As

Publication number Publication date
TW201800364A (en) 2018-01-01
JP6705202B2 (en) 2020-06-03
JP2017145179A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5904056B2 (en) IGZO sintered body, manufacturing method thereof, and sputtering target
TW201410904A (en) Oxide sintered body, sputtering target, and method of manufacturing same
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
JP6724266B2 (en) Potassium sodium niobate sputtering target and manufacturing method thereof
EP1967608A1 (en) High density ceramic and cermet sputtering targets by microwave sintering
KR102115629B1 (en) Composite oxide sintered body and transparent conductive oxide film
JP5218032B2 (en) Method for producing sintered body for transparent conductive film
JP2013129545A (en) Igzo sintered body, method of manufacturing the same, and sputtering target
JP5998712B2 (en) IGZO sintered body, sputtering target, and oxide film
CN115321960B (en) Alumina ceramic and preparation method and application thereof
JP6582698B2 (en) Oxide sintered body and sputtering target
JP6705202B2 (en) Oxide sintered body and manufacturing method thereof
TWI711596B (en) Oxide sintered body, its manufacturing method and sputtering target
JP6070171B2 (en) IGZO sintered body and sputtering target
KR102404834B1 (en) Oxide sintered compact, method for producing same, and sputtering target
CN101255546A (en) High density ceramic and cermet sputtering targets by microwave sintering
JPWO2009069707A1 (en) Dielectric ceramics, manufacturing method thereof, and resonator
JP4835542B2 (en) Method for producing conductive ceramic sintered body
JP2022159633A (en) Igzo sintered body, manufacturing method thereof, and sputtering target
JP6492877B2 (en) Oxide sintered body and manufacturing method thereof
WO2021117829A1 (en) Plate-like silicon nitride-based sintered body and method for producing same
KR101021848B1 (en) METHOD OF FABRICATING A SPUTTERING TARGET OF ZnS COMPOSITE AND SPUTTERING TARGET OF ZnS COMPOSITE PREPARED THEREBY
JP5309975B2 (en) Sintered body for transparent conductive film, sputtering target and method for producing the same
JP4835541B2 (en) Manufacturing method of sintered ceramics
US6432353B1 (en) Method for producing oxide type ceramic sintered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753318

Country of ref document: EP

Kind code of ref document: A1