WO2017141756A1 - 感放射線性組成物及びパターン形成方法 - Google Patents

感放射線性組成物及びパターン形成方法 Download PDF

Info

Publication number
WO2017141756A1
WO2017141756A1 PCT/JP2017/004281 JP2017004281W WO2017141756A1 WO 2017141756 A1 WO2017141756 A1 WO 2017141756A1 JP 2017004281 W JP2017004281 W JP 2017004281W WO 2017141756 A1 WO2017141756 A1 WO 2017141756A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
acid
metal
sensitive composition
mass
Prior art date
Application number
PCT/JP2017/004281
Other languages
English (en)
French (fr)
Inventor
一樹 笠原
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020187023080A priority Critical patent/KR20180110671A/ko
Priority to JP2018500048A priority patent/JPWO2017141756A1/ja
Publication of WO2017141756A1 publication Critical patent/WO2017141756A1/ja
Priority to US16/104,163 priority patent/US20180356725A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor

Definitions

  • the present invention relates to a radiation-sensitive composition and a pattern forming method.
  • Common radiation-sensitive compositions used for fine processing by lithography are electromagnetic waves such as deep ultraviolet rays (for example, ArF excimer laser light, KrF excimer laser light, etc.), extreme ultraviolet rays (EUV), and charged particle beams such as electron beams.
  • An acid is generated in the exposed area by exposure such as the above, and a chemical reaction using this acid as a catalyst causes a difference in the dissolution rate in the developing solution between the exposed area and the unexposed area, thereby forming a pattern on the substrate.
  • the formed pattern can be used as a mask or the like in substrate processing.
  • Such radiation-sensitive compositions are required to improve resist performance as processing technology becomes finer.
  • the types of polymers, acid generators, and other components used in the composition, the molecular structure, and the like have been studied, and further their combinations have been studied in detail (Japanese Patent Laid-Open No. 11-125907, (See JP-A-8-146610 and JP-A-2000-298347).
  • pattern miniaturization has progressed to the level of 40 nm or less at present, but the radiation-sensitive composition is required to have higher resist performance, and in particular, a pattern with excellent resolution can be formed with high sensitivity. Is required.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a radiation-sensitive composition and a pattern forming method capable of forming a pattern having excellent resolution with high sensitivity.
  • the invention made in order to solve the above problems includes a particle mainly composed of a metal oxide (hereinafter also referred to as “[A] particle”) and a radiation sensitive base generator (hereinafter referred to as “[B] base generation”). And the content of the metal atoms with respect to the total of metal atoms and metalloid atoms in the composition is 50 atomic% or more.
  • Another invention made in order to solve the above problems includes a step of forming a film by applying the above-described radiation-sensitive composition to a substrate, a step of exposing the film, and the exposed film. And a developing process.
  • metal oxide refers to a compound containing at least a metal atom and an oxygen atom.
  • the “main component” is a component having the largest content, for example, a component having a content of 50% by mass or more.
  • Particle refers to a substance having an average particle diameter of, for example, 1 nm or more.
  • Semimetal atom refers to boron, silicon, germanium, arsenic, antimony and tellurium.
  • a pattern having excellent resolution can be formed with high sensitivity. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.
  • the radiation-sensitive composition contains [A] particles and [B] a base generator.
  • the said radiation sensitive composition may contain an organic solvent (henceforth "[C] solvent”) as a suitable component, and contains other arbitrary components in the range which does not impair the effect of this invention. Also good.
  • the content rate of the said metal atom with respect to the sum total of the metal atom and metalloid atom in the said radiation sensitive composition is 50 atomic% or more.
  • the radiation-sensitive composition contains [A] particles and [B] a base generator, and the content of the metal atom with respect to the total of metal atoms and metalloid atoms in the composition is not less than the lower limit. Thus, a pattern with excellent resolution can be formed with high sensitivity.
  • the reason why the radiation-sensitive composition has the above-described configuration provides the above-mentioned effect is not necessarily clear, but can be estimated as follows, for example. That is, in the film formed of the radiation-sensitive composition, the metal atoms contained in the [A] particles and the like absorb the exposure light in the exposed portion to generate secondary electrons, and the secondary electrons and the like work.
  • the base generator is decomposed to generate a base.
  • This base comprises a reaction that forms —OH from oxygen atoms bonded to metal atoms in the metal oxide that is the main component of [A] particles, and a dehydration condensation reaction that forms —O— from two —OH. Acts as a catalyst to promote Therefore, in the exposed portion of the film, the above-described two reactions similar to the sol-gel condensation reaction are promoted by the base, and a condensate in which a plurality of metal oxides are connected via —O— is formed. As a result, a contrast is formed in the dissolution rate with respect to the developer in the exposed and unexposed portions of the film.
  • the radiation-sensitive composition is superior to the conventional radiation-sensitive composition using a radiation-sensitive acid generator in terms of the efficiency of base generation by the secondary electrons, and the base is used as a catalyst.
  • This is considered to be excellent in sensitivity and resolution due to the excellent efficiency of the formation reaction of the condensate and the reason why the formed condensate is reasonably small.
  • the radiation-sensitive composition suppresses exposure light absorption by the metalloid atoms, and is based on the metal electrons described above. Since the generation of secondary electrons can be promoted, it is considered that the sensitivity and resolution are superior.
  • the content rate of the said metal atom with respect to the sum total of the metal atom and metalloid atom in the said radiation sensitive composition it is 50 atomic%, 70 atomic% is preferable, 90 atomic% is more preferable, 99 atomic% Is more preferable.
  • the content of the metal atom may be 100 atomic%.
  • [[A] particles] [A]
  • the particles are particles mainly composed of a metal oxide.
  • grains have a metal oxide as a main component, they also contribute to the improvement of the etching tolerance of the pattern formed from the said radiation sensitive composition.
  • the lower limit of the average particle diameter of [A] particles is preferably 1.1 nm.
  • the upper limit of the average particle diameter of the [A] particles is preferably 20 nm, more preferably 10 nm, still more preferably 3.0 nm, and particularly preferably 2.0 nm.
  • the “average particle diameter” refers to the harmonic average particle diameter based on the scattered light intensity measured by a DLS (Dynamic Light Scattering) method using a light scattering measurement apparatus.
  • Metal oxide examples of the metal atoms constituting the metal oxide that is the main component of the particles include Group 3 to Group 15 metal atoms. Of these, Group 4 metal atoms such as titanium, zirconium and hafnium, Group 5 metal atoms such as tantalum, Group 6 metal atoms such as chromium and tungsten, and Group 8 metals such as iron and ruthenium Atoms, group 9 metal atoms such as cobalt, group 10 metal atoms such as nickel, group 11 metal atoms such as copper, group 12 metal atoms such as zinc, aluminum, gallium, indium, thallium, etc.
  • Group 4 metal atoms such as titanium, zirconium and hafnium
  • Group 5 metal atoms such as tantalum
  • Group 6 metal atoms such as chromium and tungsten
  • Group 8 metals such as iron and ruthenium Atoms
  • group 9 metal atoms such as cobalt
  • group 10 metal atoms such as nickel
  • Group 13 metal atoms Group 14 metal atoms such as tin
  • Group 15 metal atoms such as bismuth, zirconium, hafnium, chromium, nickel, cobalt, tin, indium, titanium, ruthenium, tantalum. Tungsten, iron, copper, zinc, aluminum, gallium, thallium and bismuth are more preferred, zirconium, hafnium, zinc and indium But more preferable.
  • the metal oxide with the above-described metal atoms, the generation of secondary electrons by the [A] particles can be more effectively promoted, and the exposed portion and the unexposed portion of the film formed with the radiation-sensitive composition can be promoted. The contrast of the dissolution rate with respect to the developer at the exposed portion can be further improved.
  • grains contain it can be used individually by 1 type or in combination of 2 or more types.
  • the metal oxide may contain other atoms other than metal atoms and oxygen atoms.
  • the other atoms include semimetal atoms such as boron, germanium, antimony, and tellurium, carbon atoms, hydrogen atoms, nitrogen atoms, phosphorus atoms, sulfur atoms, and halogen atoms.
  • the content (mass%) of the metalloid atom in the metal oxide is usually smaller than the metal atom content.
  • the lower limit of the total content of metal atoms and oxygen atoms in the metal oxide is preferably 5% by mass, more preferably 10% by mass, and even more preferably 25% by mass.
  • the upper limit of the total content of metal atoms and oxygen atoms is preferably 99.9% by mass, more preferably 80% by mass, and even more preferably 70% by mass.
  • Examples of the metal oxide include metal oxides composed only of metal atoms and oxygen atoms, and metal oxides containing metal atoms and organic ligands.
  • Examples of the metal oxide containing a metal atom and an organic ligand include a compound containing a repeating structure of (metal atom-organic ligand-metal atom).
  • the ligand derived from [a] organic acid is preferable.
  • Examples of the ligand derived from an organic acid include an anion in which one or more protons are eliminated from the [a] organic acid.
  • organic acid refers to an organic compound that exhibits acidity
  • organic compound refers to a compound having at least one carbon atom.
  • [A] Particles contain a metal oxide containing a metal atom and a ligand derived from [a] an organic acid, whereby the sensitivity and resolution of the radiation-sensitive composition are further improved.
  • the reason why the radiation-sensitive composition has the above-described configuration provides the above-mentioned effect is not necessarily clear, but can be estimated as follows, for example. That is, it is thought that the ligand derived from [a] organic acid exists in the vicinity of the surface of [A] particle by interaction with a metal atom, thereby improving the solubility of [A] particle in the solvent.
  • the base generated from the [B] base generator in the exposed portion by exposure to radiation removes the ligand derived from the [a] organic acid from the [A] particles by a neutralization reaction or the like, and the [A] particles The solubility in the developer is reduced. Further, by removing the ligand derived from the [a] organic acid from the [A] particles, a reaction similar to the sol-gel reaction described above is promoted, and the solubility of the [A] particles in the developer is further reduced. To do. As a result, it is considered that the sensitivity of the radiation-sensitive composition is further improved.
  • the ligand derived from the organic acid controls the diffusion phenomenon in the film of the base generated from the base generator [B] in the exposed area, and suppresses an undesirable chemical reaction in the unexposed area. It is considered that the resolution of the radiation-sensitive composition is further improved.
  • the lower limit of the pKa of the organic acid is preferably 0, more preferably 1, more preferably 1.5, and particularly preferably 2.
  • the upper limit of the pKa is preferably 7, more preferably 6, more preferably 5.5, and particularly preferably 5.
  • the interaction between the ligand derived from the organic acid and the metal atom can be adjusted to a moderately weak one. The sensitivity and resolution of the radiation composition can be further improved.
  • the pKa of the [a] organic acid refers to the first acid dissociation constant, that is, the logarithmic value of the dissociation constant in the dissociation of the first proton.
  • the organic acid may be a low molecular compound or a high molecular compound, but a low molecular compound is preferable from the viewpoint of adjusting the interaction with the metal atom to a moderately weak one.
  • the low molecular compound means a compound having a molecular weight of 1,500 or less
  • the high molecular compound means a compound having a molecular weight of more than 1,500.
  • the lower limit of the molecular weight of the organic acid is preferably 50, more preferably 70.
  • the upper limit of the molecular weight is preferably 1,000, more preferably 500, still more preferably 400, and particularly preferably 300.
  • organic acid examples include carboxylic acid, sulfonic acid, sulfinic acid, organic phosphinic acid, organic phosphonic acid, phenols, enol, thiol, acid imide, oxime, sulfonamide and the like.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2-ethylhexanoic acid, oleic acid, acrylic acid, methacrylic acid, trans-2,3-dimethylacrylic acid, stearic acid, linoleic acid, linolenic acid, arachidonic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, iodobenzoic acid (eg 2-iodobenzoic acid, 3-iodobenzoic acid, 4-Iodobenzoic acid, etc.), monochloroacetic acid, dichloroacetic acid, o-toluic acid, m-toluic acid, p-toluic acid, trichloroacetic acid, trifluor
  • sulfonic acid examples include benzenesulfonic acid and p-toluenesulfonic acid.
  • sulfinic acid examples include benzenesulfinic acid and p-toluenesulfinic acid.
  • organic phosphinic acid examples include diethylphosphinic acid, methylphenylphosphinic acid, diphenylphosphinic acid and the like.
  • organic phosphonic acid examples include methylphosphonic acid, ethylphosphonic acid, t-butylphosphonic acid, cyclohexylphosphonic acid, and phenylphosphonic acid.
  • phenols examples include monovalent phenols such as phenol, cresol, 2,6-xylenol and naphthol, divalent phenols such as catechol, resorcinol, hydroquinone and 1,2-naphthalenediol, pyrogallol, 2, And trivalent or higher phenols such as 3,6-naphthalenetriol.
  • monovalent phenols such as phenol, cresol, 2,6-xylenol and naphthol
  • divalent phenols such as catechol, resorcinol, hydroquinone and 1,2-naphthalenediol, pyrogallol, 2, And trivalent or higher phenols such as 3,6-naphthalenetriol.
  • Examples of the enol include 2-hydroxy-3-methyl-2-butene and 3-hydroxy-4-methyl-3-hexene.
  • Examples of the thiol include mercaptoethanol and mercaptopropanol.
  • the acid imide examples include carboxylic acid imides such as maleimide and succinimide, and sulfonic acid imides such as di (trifluoromethanesulfonic acid) imide and di (pentafluoroethanesulfonic acid) imide.
  • oxime examples include aldoximes such as benzaldoxime and salicylaldoxime, and ketoximes such as diethyl ketoxime, methyl ethyl ketoxime, and cyclohexanone oxime.
  • aldoximes such as benzaldoxime and salicylaldoxime
  • ketoximes such as diethyl ketoxime, methyl ethyl ketoxime, and cyclohexanone oxime.
  • sulfonamide examples include methylsulfonamide, ethylsulfonamide, benzenesulfonamide, and toluenesulfonamide.
  • the organic acid is preferably a carboxylic acid, more preferably a monocarboxylic acid, and more preferably methacrylic acid, benzoic acid and m-toluic acid from the viewpoint of further improving the sensitivity and resolution of the radiation-sensitive composition. Further preferred.
  • the metal oxide examples include a metal oxide containing a ligand derived from zirconium and methacrylic acid, a metal oxide containing a ligand derived from hafnium and benzoic acid, and a coordination derived from zinc and methacrylic acid.
  • a metal oxide containing a child, a metal oxide containing indium and a ligand derived from benzoic acid, and a metal oxide composed of zirconium and an oxygen atom are preferable.
  • the lower limit of the metal oxide content in the [A] particles is preferably 60% by mass, more preferably 80% by mass, and still more preferably 95% by mass. Moreover, 100 mass% may be sufficient as the content rate of the said metal oxide. By making the content rate of the said metal oxide more than the said minimum, the sensitivity and the resolution of the said radiation sensitive composition can be improved more.
  • grains may contain only 1 type of the said metal oxide, and may contain 2 or more types.
  • the lower limit of the number of metal atoms contained in the particles is preferably 2, and more preferably 4.
  • the upper limit of the number of metal atoms contained in the [A] particles is preferably 30, more preferably 10, and still more preferably 6.
  • the lower limit of the content of the ligand derived from the [a] organic acid in the [A] particle is preferably 1% by mass, 20 mass% is more preferable, 40 mass% is further more preferable, and 60 mass% is especially preferable.
  • an upper limit of the content rate of the ligand derived from [a] organic acid 95 mass% is preferable and 90 mass% is more preferable.
  • the solubility of the [A] particles in the developer can be adjusted to a more appropriate level. The sensitivity and resolution of the composition can be further improved.
  • grains may contain only 1 type of the ligand derived from [a] organic acid, and may contain it 2 or more types.
  • the lower limit of the content of [A] particles with respect to the total solid content in the composition is preferably 10% by mass, more preferably 50% by mass, still more preferably 70% by mass, and particularly preferably 85% by mass.
  • the upper limit of the content of [A] particles with respect to the total solid content in the composition is preferably 99% by mass, and more preferably 95% by mass.
  • the radiation-sensitive composition may contain only one type of [A] particles, or two or more types.
  • the “solid content” refers to a component obtained by removing the [C] solvent and inorganic solvent described later from the radiation-sensitive composition.
  • [A] Particles can be obtained, for example, by [b] a method of performing a hydrolytic condensation reaction on a metal-containing compound, or [b] a method of performing a ligand exchange reaction on a metal-containing compound.
  • the “hydrolysis condensation reaction” means that [b] the hydrolyzable group of the metal-containing compound is hydrolyzed to be converted to —OH, and the obtained two —OH are dehydrated and condensed to —O— Refers to the reaction in which is formed.
  • the metal-containing compound includes a metal compound (I) having a hydrolyzable group, a hydrolyzate of the metal compound (I) having a hydrolyzable group, and a hydrolysis of the metal compound (I) having a hydrolyzable group. It is a condensate or a combination thereof.
  • Metal compound (I) can be used individually by 1 type or in combination of 2 or more types.
  • hydrolyzable group examples include a halogen atom, an alkoxy group, and an acyloxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and a butoxy group.
  • acyloxy group examples include an acetoxy group, an ethylyloxy group, a propionyloxy group, an n-butyryloxy group, a t-butyryloxy group, a t-amylyloxy group, an n-hexane carbonyloxy group, and an n-octane carbonyloxy group. It is done.
  • an alkoxy group and an acyloxy group are preferable, and an isopropoxy group and an acetoxy group are more preferable.
  • the hydrolysis condensate of the metal compound (I) has a hydrolyzable group unless the effects of the present invention are impaired. It may be a hydrolysis-condensation product of the metal (I) having and a compound containing a metalloid atom. That is, the hydrolysis condensate of metal compound (I) may contain a metalloid atom within a range not impairing the effects of the present invention. Examples of the metalloid atom include boron, germanium, antimony, tellurium and the like.
  • the content rate of the metalloid atom in the hydrolysis condensate of metal compound (I) is usually less than 50 atomic% with respect to the total of metal atoms and metalloid atoms in the hydrolysis condensate.
  • As an upper limit of the content rate of the said half-metal atom 30 atomic% is preferable with respect to the sum total of the metal atom and half-metal atom in the said hydrolysis-condensation product, and 10 atomic% is more preferable.
  • Examples of the metal compound (I) include a compound represented by the following formula (1) (hereinafter also referred to as “metal compound (I-1)”).
  • metal compound (I-1) a compound represented by the following formula (1)
  • a stable metal oxide can be formed, and as a result, the sensitivity and resolution of the radiation-sensitive composition can be further improved.
  • M is a metal atom.
  • L is a ligand.
  • a is an integer of 0-2.
  • Y is a hydrolyzable group selected from a halogen atom, an alkoxy group and an acyloxy group.
  • b is an integer of 2 to 6.
  • a plurality of Y may be the same or different.
  • L is a ligand not corresponding to Y.
  • Examples of the metal atom represented by M include the same metal atoms as those exemplified as the metal atoms constituting the metal oxide contained in the [A] particles.
  • Examples of the ligand represented by L include a monodentate ligand and a polydentate ligand.
  • Examples of the monodentate ligand include a hydroxo ligand, a carboxy ligand, an amide ligand, an amine ligand, a nitro ligand, and ammonia.
  • amide ligand examples include unsubstituted amide ligand (NH 2 ), methylamide ligand (NHMe), dimethylamide ligand (NMe 2 ), diethylamide ligand (NEt 2 ), and dipropylamide. And a ligand (NPr 2 ).
  • amine ligand examples include trimethylamine ligand and triethylamine ligand.
  • polydentate ligand examples include hydroxy acid ester, ⁇ -diketone, ⁇ -keto ester, ⁇ -dicarboxylic acid ester, hydrocarbon having ⁇ bond, and diphosphine.
  • hydroxy acid ester examples include glycolic acid ester, lactic acid ester, 2-hydroxycyclohexane-1-carboxylic acid ester, and salicylic acid ester.
  • Examples of the ⁇ -diketone include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, and the like.
  • ⁇ -ketoester examples include acetoacetate ester, ⁇ -alkyl substituted acetoacetate ester, ⁇ -ketopentanoic acid ester, benzoyl acetate ester, 1,3-acetone dicarboxylic acid ester and the like.
  • Examples of the ⁇ -dicarboxylic acid ester include malonic acid diester, ⁇ -alkyl substituted malonic acid diester, ⁇ -cycloalkyl substituted malonic acid diester, ⁇ -aryl substituted malonic acid diester, and the like.
  • hydrocarbon having a ⁇ bond examples include chain olefins such as ethylene and propylene, cyclic olefins such as cyclopentene, cyclohexene and norbornene, chain dienes such as butadiene and isoprene, cyclopentadiene, methylcyclopentadiene, and pentamethylcyclopentadiene. And cyclic dienes such as cyclohexadiene and norbornadiene, and aromatic hydrocarbons such as benzene, toluene, xylene, hexamethylbenzene, naphthalene and indene.
  • chain olefins such as ethylene and propylene
  • cyclic olefins such as cyclopentene, cyclohexene and norbornene
  • chain dienes such as butadiene and isoprene
  • cyclopentadiene methylcyclopentadiene
  • diphosphine examples include 1,1-bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, and 2,2′-bis (diphenyl). Phosphino) -1,1′-binaphthyl, 1,1′-bis (diphenylphosphino) ferrocene and the like.
  • halogen atom, alkoxy group and acyloxy group represented by Y can be the same as those described for the hydrolyzable group.
  • B is preferably an integer of 2 to 4, more preferably 4.
  • the metal-containing compound is preferably a metal alkoxide that is neither hydrolyzed nor hydrolyzed and a metal acyloxide that is neither hydrolyzed nor hydrolyzed.
  • Metal-containing compounds include zirconium (IV) n-butoxide, zirconium (IV) n-propoxide, zirconium (IV) isopropoxide, hafnium (IV) ethoxide, indium (III) isopropoxide, hafnium ( IV) Isopropoxide, tantalum (V) ethoxide, tungsten (V) methoxide, tungsten (VI) ethoxide, iron chloride, zinc acetate dihydrate, titanium (VI) n-butoxide, titanium (IV) n-propoxide , Zirconium (VI) di-n-butoxide bis (2,4-pentanedionate), titanium (VI) tri-n-butoxide stearate, bis (cyclopentadienyl) hafnium dichloride, bis (cyclopentadienyl) Tungsten dichloride, diacetate [(S) ( ⁇ )-2,2′-bis (diphen)
  • Examples of a method for performing a hydrolysis-condensation reaction on a metal-containing compound include a method in which a [b] metal-containing compound is subjected to a hydrolysis-condensation reaction in a solvent containing water. In this case, you may add the other compound which has a hydrolysable group as needed.
  • the lower limit of the amount of water used for this hydrolysis-condensation reaction is preferably 0.2-fold mol, more preferably 1-fold mol, and 3-fold mol based on the hydrolyzable group of [b] metal-containing compound. Further preferred.
  • the upper limit of the amount of water is preferably 20 moles, more preferably 15 moles, and even more preferably 10 moles, relative to the hydrolyzable group of [b] metal-containing compound.
  • Examples of a method for performing a ligand exchange reaction on a metal-containing compound include a method of mixing [b] a metal-containing compound and [a] an organic acid.
  • the [a] organic acid and the [b] metal-containing compound may be mixed in a solvent or may be mixed without using a solvent.
  • the amount of the base added is, for example, from 1 part by mass to 200 parts by mass with respect to 100 parts by mass of the total amount of [b] metal-containing compound and [a] organic acid.
  • [A] When using [a] organic acid for the synthesis
  • the upper limit of the amount of [a] organic acid used is preferably 2,000 parts by weight, more preferably 1,000 parts by weight, and still more preferably 700 parts by weight with respect to 100 parts by weight of [b] metal-containing compound. 100 parts by mass is particularly preferable.
  • a compound that can be a multidentate ligand represented by L in the compound of the above formula (1) or a cross-linked ligand A compound that can be a ligand may be added.
  • the compound that can be a bridging ligand include compounds having a plurality of hydroxy groups, isocyanate groups, amino groups, ester groups, and amide groups.
  • the solvent used for the synthesis reaction of the particles is not particularly limited, and for example, the same solvent as exemplified as the [C] solvent described later can be used.
  • alcohol solvents, ether solvents, ester solvents and hydrocarbon solvents are preferable, alcohol solvents, ether solvents and ester solvents are more preferable, polyhydric alcohol partial ether solvents, monocarboxylic acids.
  • Ester solvents and cyclic ether solvents are more preferred, with propylene glycol monoethyl ether, ethyl acetate and tetrahydrofuran being particularly preferred.
  • the solvent used may be removed after the reaction, but the solvent is used as it is as the [C] solvent of the radiation-sensitive composition without being removed after the reaction. You can also
  • the lower limit of the temperature of the particle synthesis reaction is preferably 0 ° C, more preferably 10 ° C.
  • 150 degreeC is preferable and 100 degreeC is more preferable.
  • the lower limit of the synthesis reaction time of the particles is preferably 1 minute, more preferably 10 minutes, and even more preferably 1 hour.
  • the upper limit of the time is preferably 100 hours, more preferably 50 hours, and even more preferably 24 hours.
  • the base generator is a substance that generates a base due to secondary electrons or the like generated by [A] particles in the exposed portion. Since the solubility of the [A] particles in the developer is changed by the generated base, a pattern can be formed from the radiation-sensitive composition.
  • Examples of the base generator include complexes of transition metals such as cobalt (hereinafter also referred to as “transition metal complexes”), nitrobenzyl carbamates, ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl carbamates, acyloxy Examples include iminos.
  • transition metal complexes such as cobalt (hereinafter also referred to as “transition metal complexes”), nitrobenzyl carbamates, ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl carbamates, acyloxy Examples include iminos.
  • transition metal complex examples include bromopentammonium cobalt perchlorate, bromopentamethylamine cobalt perchlorate, bromopentapropylamine cobalt perchlorate, hexaammonia cobalt perchlorate, and hexakis (methylamine). Examples thereof include cobalt perchlorate and hexakis (propylamine) cobalt perchlorate.
  • nitrobenzyl carbamates examples include [[(2-nitrobenzyl) oxy] carbonyl] methylamine, [[(2-nitrobenzyl) oxy] carbonyl] propylamine, and [[(2-nitrobenzyl) oxy] carbonyl.
  • Examples of the ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzylcarbamate include [[( ⁇ , ⁇ -dimethyl-3,5-dimethoxybenzyl) oxy] carbonyl] methylamine, [[( ⁇ , ⁇ -dimethyl).
  • acyloxyiminos examples include propionyl acetophenone oxime, propionyl benzophenone oxime, propionyl acetone oxime, butyryl acetophenone oxime, butyryl benzophenone oxime, butyryl acetone oxime, adipoyl acetophenone oxime, adipoyl benzophenone oxime, adipoyl Acetone oxime, acryloyl acetophenone oxime, acryloyl benzophenone oxime, acryloyl acetone oxime and the like can be mentioned.
  • Examples of the base generator include commercially available products such as WPBG series (manufactured by Wako Pure Chemical Industries, Ltd.) such as WPBG-018, WPBG-027, WPBG-140, WPBG-165, WPBG-266, and WPBG-300. It can also be used.
  • WPBG series manufactured by Wako Pure Chemical Industries, Ltd.
  • the base generator is preferably nitrobenzyl carbamates, more preferably 2-nitrophenylmethyl 4-hydroxypiperidine-1-carboxylate and 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate .
  • the upper limit of the content of [B] base generator in the total solid content is preferably 50% by mass, more preferably 30% by mass, and even more preferably 20% by mass. [B] By making content of a base generator into the said range, the sensitivity and resolution of the said radiation sensitive composition can be improved more.
  • the radiation-sensitive composition may contain one or more [B] base generators.
  • the [C] solvent which is a preferred component of the radiation-sensitive composition, is particularly a solvent that can dissolve or disperse at least the [A] particles, the [B] base generator, and an optional component contained as necessary. It is not limited. Moreover, the solvent used at the time of synthesize
  • the radiation-sensitive composition may contain only one type of [C] solvent, or may contain two or more types.
  • the radiation-sensitive composition may further contain an inorganic solvent such as water in addition to the [C] solvent. However, the coating property to the substrate, the solubility of [A] particles in the developer, and storage stability. From this point of view, it is preferable not to use the inorganic solvent as a main solvent. As an upper limit of content of the said inorganic solvent in the said radiation sensitive composition, 20 mass% is preferable and 10 mass% is more preferable.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • the alcohol solvent examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 2-propanol, 4-methyl-2-pentanol and n-hexanol, and fatty acids having 3 to 18 carbon atoms such as cyclohexanol.
  • Cyclic monoalcohol solvents polyhydric alcohol solvents having 2 to 18 carbon atoms such as 1,2-propylene glycol, polyhydric alcohol partial ethers having 3 to 19 carbon atoms such as propylene glycol monomethyl ether and propylene glycol monoethyl ether System solvents and the like.
  • ether solvent examples include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether and diheptyl ether, cyclic ether solvents such as tetrahydrofuran and tetrahydropyran, and diphenyl ether. And aromatic ring-containing ether solvents such as anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether and diheptyl ether, cyclic ether solvents such as tetrahydrofuran and tetrahydropyran, and diphenyl ether.
  • aromatic ring-containing ether solvents such as anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, and methyl-n-hexyl ketone.
  • Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone
  • cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone, 2,4-pentanedione, and acetonyl Examples include acetone and acetophenone.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, Examples thereof include chain amide solvents such as N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvent examples include monocarboxylic acid ester solvents such as ethyl acetate, n-butyl acetate and ethyl lactate, polyhydric alcohol carboxylate solvents such as propylene glycol acetate, and polyvalent alcohols such as propylene glycol monoethyl ether.
  • Alcohol partial ether carboxylate solvents, polycarboxylic acid diester solvents such as diethyl oxalate, lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone, carbonate systems such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate A solvent etc. are mentioned.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane, and aromatic hydrocarbons having 6 to 16 carbon atoms such as toluene, xylene and decahydronaphthalene. System solvents and the like.
  • ester solvents are preferable, polyhydric alcohol partial ether carboxylate solvents and polyhydric alcohol partial ether solvents are preferable, and propylene glycol monomethyl ether and propylene glycol monomethyl ether are more preferable.
  • the radiation-sensitive composition may contain other optional ingredients such as a compound that can be a ligand and a surfactant.
  • Compound that can be a ligand examples include a compound that can be a multidentate ligand or a bridging ligand (hereinafter also referred to as “compound (II)”). Examples of the compound (II) include the same compounds as those exemplified in the method for synthesizing [A] particles.
  • the said radiation sensitive composition contains compound (II), as an upper limit of content of compound (II) with respect to the total solid in the said radiation sensitive composition, 10 mass% is preferable, and 3 mass% is More preferred is 1% by mass.
  • the surfactant used in the radiation-sensitive composition is a component that exhibits an effect of improving applicability, striation, and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol Nonionic surfactants such as distearate are listed.
  • Examples of commercially available surfactants include KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the radiation-sensitive composition was obtained, for example, by mixing [A] particles, [B] base generator, and optionally other optional components such as [C] solvent in a predetermined ratio. It can be prepared by filtering the mixture through a membrane filter having a pore size of about 0.2 ⁇ m.
  • a [C] solvent as a minimum of solid content concentration of the said radiation sensitive composition, 0.1 mass% is preferable, 0.5 mass% is more preferable, 1 mass % Is more preferable, and 3% by mass is particularly preferable.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 15% by mass, and particularly preferably 7% by mass.
  • the pattern forming method includes a step of forming a film by coating the radiation-sensitive composition on a substrate (hereinafter also referred to as “coating step”) and a step of exposing the film (hereinafter referred to as “exposure step”). And a step of developing the exposed film (hereinafter also referred to as “developing step”).
  • coating step a step of forming a film by coating the radiation-sensitive composition on a substrate
  • exposure step a step of exposing the film
  • developing step a step of developing the exposed film
  • a film is formed by applying the radiation-sensitive composition to the substrate. Specifically, the radiation-sensitive composition is applied to one side of the substrate so that the resulting film has a desired thickness, and then pre-baked (PB) as necessary.
  • the film is formed by volatilizing the solvent or the like.
  • the method for applying the radiation-sensitive composition to the substrate is not particularly limited, and appropriate application means such as spin coating, cast coating, roll coating, etc. can be employed. Examples of the substrate include a silicon wafer and a wafer coated with aluminum.
  • an organic or inorganic antireflection film may be formed on the substrate in advance.
  • the lower limit of the average thickness of the film formed in this step is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, and particularly preferably 20 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, still more preferably 100 nm, and particularly preferably 70 nm.
  • the lower limit of the PB temperature is usually 60 ° C, and preferably 80 ° C.
  • the upper limit of the PB temperature is usually 140 ° C. and preferably 120 ° C.
  • the lower limit of the PB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PB time is usually 600 seconds, and preferably 300 seconds.
  • a protective film can be provided on the formed film, for example, in order to prevent the influence of basic impurities contained in the environmental atmosphere. Further, as described later, when immersion exposure is performed in the exposure step, an immersion protective film may be provided on the formed film in order to avoid direct contact between the immersion medium and the film.
  • the film obtained in the coating step is exposed.
  • the film is irradiated with radiation through a mask having a predetermined pattern.
  • radiation irradiation through an immersion medium such as water, that is, immersion exposure may be employed as necessary.
  • radiation to be exposed include visible rays, ultraviolet rays, far ultraviolet rays, EUV (wavelength 13.5 nm), electromagnetic waves such as X-rays and ⁇ rays, and charged particle beams such as electron rays and ⁇ rays.
  • EUV and an electron beam are preferable from the viewpoint of increasing secondary electrons generated from [A] particles that have absorbed radiation.
  • the exposed film is developed using a developer.
  • a developer include an alkaline aqueous solution and an organic solvent-containing solution.
  • an organic solvent-containing solution is preferable from the viewpoint of developability and the like.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, ethyl Dimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3 0.0] -5-nonene, and an alkaline aqueous solution in which at least one kind is dissolved.
  • TMAH tetramethylammonium hydroxide
  • the lower limit of the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass.
  • 20 mass% is preferable, 10 mass% is more preferable, and 5 mass% is further more preferable.
  • TMAH aqueous solution As the alkaline aqueous solution, a TMAH aqueous solution is preferable, and a 2.38% by mass TMAH aqueous solution is more preferable.
  • organic solvent in the organic solvent-containing liquid examples include the same organic solvents exemplified as the [C] solvent of the radiation-sensitive composition. Of these, alcohol solvents are preferred, aliphatic monoalcohol solvents are more preferred, and 2-propanol is even more preferred.
  • the lower limit of the content of the organic solvent in the organic solvent-containing liquid is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • a surfactant may be added to the developer as necessary.
  • a surfactant for example, an ionic or nonionic fluorine-based surfactant, a silicone-based surfactant, or the like can be used.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed on the substrate rotating at a constant speed (dynamic dispensing method), etc. Is mentioned.
  • the substrate after the development is preferably rinsed with a rinse liquid such as water or alcohol and then dried.
  • a rinse liquid such as water or alcohol
  • the rinsing method for example, a method of continuously discharging a rinsing liquid onto a substrate rotating at a constant speed (rotary coating method), a method of immersing the substrate in a tank filled with the rinsing liquid for a predetermined time (dip method) ), A method (spray method) of spraying a rinse liquid on the substrate surface, and the like.
  • Average particle size [A] The average particle size of the particles was determined by a DLS method using a light scattering measurement device (“Zetasizer Nano ZS” from Malvern).
  • [[A] particles] [A] particles were synthesized by the following method. [A] The [a] organic acid and [b] metal-containing compound used for the synthesis of the particles are shown below.
  • B-1 2-nitrophenylmethyl 4-hydroxypiperidine-1-carboxylate
  • B-2 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate
  • B′-1 N-hydroxynaphthalimide triflate
  • the metal atom content of the radiation-sensitive compositions (R-1) and (R-6) is 13 atomic%.
  • the content rate of the said metal atom is as follows. All the metal atoms contained in each radiation sensitive composition originate in [A] particle
  • sensitivity An exposure amount for forming a line-and-space pattern (1L1S) having a one-to-one line width composed of a line portion having a line width of 100 nm and a space portion having a spacing of 100 nm formed between adjacent line portions.
  • the optimum exposure dose was taken as the sensitivity ( ⁇ C / cm 2 ).
  • Sensitivity means that the smaller the value, the higher the sensitivity, and it can be evaluated that less than 70 ⁇ C / cm 2 is good and 70 ⁇ C / cm 2 or more is not good.
  • a radiation-sensitive composition that is 50 atomic% or more.
  • electron beam exposure is known to exhibit the same tendency as in EUV exposure. Therefore, even in the case of EUV exposure, the radiation-sensitive composition of the present invention has sensitivity and solution. It is presumed that the image quality is excellent.
  • a pattern having excellent resolution can be formed with high sensitivity. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本発明の感放射線性組成物は、金属酸化物を主成分とする粒子と、感放射線性塩基発生剤とを含有し、組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率が50原子%以上である。上記金属酸化物を構成する金属原子が、ジルコニウム、ハフニウム、クロム、ニッケル、コバルト、スズ、インジウム、チタン、ルテニウム、タンタル、タングステン、鉄、銅、亜鉛、アルミニウム、ガリウム、タリウム、ビスマス又はこれらの組み合わせを含むとよい。上記感放射線性塩基発生剤の組成物中の全固形分に対する含有量としては、0.5質量%以上50質量%以下が好ましい。上記粒子の平均粒子径としては、20nm以下が好ましい。本発明のパターン形成方法は、基板に上述の当該感放射線性組成物を塗工することで膜を形成する工程と、上記膜を露光する工程と、上記露光された膜を現像する工程とを備える。

Description

感放射線性組成物及びパターン形成方法
 本発明は、感放射線性組成物及びパターン形成方法に関する。
 リソグラフィーによる微細加工に用いられる一般的な感放射線性組成物は、遠紫外線(例えばArFエキシマレーザー光、KrFエキシマレーザー光等)、極端紫外線(EUV)等の電磁波や、電子線等の荷電粒子線などの露光により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部及び未露光部で現像液に対する溶解速度に差を生じさせ、基板上にパターンを形成する。形成されたパターンは、基板加工におけるマスク等として用いることができる。
 かかる感放射線性組成物には、加工技術の微細化に伴ってレジスト性能を向上させることが要求されている。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類、分子構造等が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。
特開平11-125907号公報 特開平8-146610号公報 特開2000-298347号公報
 これにより、現状、パターンの微細化は線幅40nm以下のレベルまで進展しているが、感放射線性組成物には、さらに高いレジスト性能が求められ、特に解像度に優れるパターンを高感度で形成できることが求められている。
 本発明は以上のような事情に基づいてなされたものであり、その目的は、解像度に優れるパターンを高感度で形成できる感放射線性組成物及びパターン形成方法を提供することにある。
 上記課題を解決するためになされた発明は、金属酸化物を主成分とする粒子(以下、「[A]粒子」ともいう)と、感放射線性塩基発生剤(以下、「[B]塩基発生剤」ともいう)とを含有し、組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率が50原子%以上である感放射線性組成物である。
 上記課題を解決するためになされた別の発明は、基板に上述の感放射線性組成物を塗工することにより膜を形成する工程と、上記膜を露光する工程と、上記露光された膜を現像する工程とを備えるパターン形成方法である。
 ここで、「金属酸化物」とは、少なくとも金属原子及び酸素原子を含む化合物をいう。「主成分」とは、最も含有量の多い成分であり、例えば含有量が50質量%以上の成分を指す。「粒子」とは、例えば平均粒子径が1nm以上の物質を指す。「半金属原子」とは、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルを指す。
 本発明の感放射線性組成物及びパターン形成方法によれば、解像度に優れるパターンを高感度で形成できる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
<感放射線性組成物>
 当該感放射線性組成物は、[A]粒子と[B]塩基発生剤とを含有する。当該感放射線性組成物は、好適成分として有機溶媒(以下、「[C]溶媒」ともいう)を含有してもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有してもよい。当該感放射線性組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率は、50原子%以上である。
 当該感放射線性組成物は、[A]粒子と[B]塩基発生剤とを含有し、かつ組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率が上記下限以上であることで、解像度に優れるパターンを高感度で形成できる。当該感放射線性組成物が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察できる。すなわち、当該感放射線性組成物により形成された膜では、露光部で[A]粒子等に含まれる金属原子が露光光を吸収して二次電子を生成し、この二次電子等の働きで[B]塩基発生剤が分解されて塩基が発生する。この塩基は、[A]粒子の主成分である金属酸化物中の金属原子に結合している酸素原子から-OHを形成する反応と、2つの-OHから-O-を形成する脱水縮合反応とを促進する触媒として働く。そのため、上記膜の露光部では、上記塩基によって、ゾルゲル縮合反応に類似した上述の2つの反応が促進され、複数の金属酸化物が-O-を介して繋がった縮合体が形成される。その結果、上記膜の露光部及び未露光部で現像液に対する溶解速度にコントラストが形成される。また、当該感放射線性組成物は、感放射線性酸発生剤を用いた従来の感放射線性組成物と比較し、上記二次電子による塩基の発生の効率に優れる点や、上記塩基を触媒とする縮合体の形成反応の効率に優れる点や、形成される上記縮合体が適度に小さい点等に起因し、感度及び解像性に優れると考えられる。さらに、当該感放射線性組成物は、金属原子及び半金属原子の合計に対する上記金属原子の含有率が上記下限以上であるため、半金属原子による露光光の吸収を抑制し、上述の金属電子による二次電子の生成を促進できるため、感度及び解像性により優れると考えられる。
 当該感放射線性組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率の下限としては、50原子%であり、70原子%が好ましく、90原子%がより好ましく、99原子%がさらに好ましい。上記金属原子の含有率を上記下限以上とすることで、[A]粒子等に含まれる金属原子による二次電子の生成をより効果的に促進することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。なお、上記金属原子の含有率は、100原子%であってもよい。
[[A]粒子]
 [A]粒子は、金属酸化物を主成分とする粒子である。なお、[A]粒子は、金属酸化物を主成分とするので、当該感放射線性組成物から形成されるパターンのエッチング耐性の向上にも寄与している。
 [A]粒子の平均粒子径の下限としては、1.1nmが好ましい。一方、[A]粒子の平均粒子径の上限としては、20nmが好ましく、10nmがより好ましく、3.0nmがさらに好ましく、2.0nmが特に好ましい。[A]粒子の平均粒子径を上記範囲とすることで、[A]粒子による二次電子の発生をより効果的に促進でき、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。ここで「平均粒子径」とは、光散乱測定装置を用いたDLS(Dynamic Light Scattering)法で測定される散乱光強度基準の調和平均粒子径をいう。
(金属酸化物)
 [A]粒子の主成分である金属酸化物を構成する金属原子としては、例えば第3族~第15族の金属原子などが挙げられる。これらのうち、チタン、ジルコニウム、ハフニウム等の第4族の金属原子、タンタル等の第5族の金属原子、クロム、タングステン等の第6族の金属原子、鉄、ルテニウム等の第8族の金属原子、コバルト等の第9族の金属原子、ニッケル等の第10族の金属原子、銅等の第11族の金属原子、亜鉛等の第12族の金属原子、アルミニウム、ガリウム、インジウム、タリウム等の第13族の金属原子、スズ等の第14族の金属原子、及びビスマス等の第15族の金属原子が好ましく、ジルコニウム、ハフニウム、クロム、ニッケル、コバルト、スズ、インジウム、チタン、ルテニウム、タンタル、タングステン、鉄、銅、亜鉛、アルミニウム、ガリウム、タリウム及びビスマスがより好ましく、ジルコニウム、ハフニウム、亜鉛及びインジウムがさらに好ましい。上記金属酸化物を上述の金属原子により構成することで、[A]粒子による二次電子の生成をより効果的に促進でき、また当該感放射線性組成物により形成される膜の露光部及び未露光部での現像液に対する溶解速度のコントラストをより向上できる。なお、[A]粒子の含む金属酸化物を構成する金属原子としては、1種単独で又は2種以上組み合わせて使用できる。
 上記金属酸化物は、金属原子及び酸素原子以外のその他の原子を含んでもよい。上記その他の原子としては、例えばホウ素、ゲルマニウム、アンチモン、テルル等の半金属原子や、炭素原子、水素原子、窒素原子、リン原子、硫黄原子、ハロゲン原子などが挙げられる。但し、上記金属酸化物が半金属原子を含む場合、上記金属酸化物における半金属原子の含有率(質量%)は、通常金属原子の含有率よりも小さい。
 上記金属酸化物における金属原子及び酸素原子の合計含有率の下限としては、5質量%が好ましく、10質量%がより好ましく、25質量%がさらに好ましい。一方、上記金属原子及び酸素原子の合計含有率の上限としては、99.9質量%が好ましく、80質量%がより好ましく、70質量%がさらに好ましい。上記金属原子及び酸素原子の合計含有率を上記範囲とすることで、[A]粒子による二次電子の発生をより効果的に促進でき、その結果、当該感放射線性組成物の感度をより向上できる。なお、上記金属原子及び酸素原子の合計含有率は、100質量%であってもよい。
 上記金属酸化物としては、金属原子及び酸素原子のみにより構成される金属酸化物や、金属原子及び有機配位子を含む金属酸化物等が挙げられる。この金属原子及び有機配位子を含む金属酸化物としては、例えば(金属原子-有機配位子-金属原子)の繰り返し構造を含む化合物等が挙げられる。上記有機配位子としては、[a]有機酸に由来する配位子が好ましい。[a]有機酸に由来する配位子としては、例えば[a]有機酸から1又は複数のプロトンが脱離したアニオン等が挙げられる。ここで、「有機酸」とは、酸性を示す有機化合物をいい、「有機化合物」とは、少なくとも1個の炭素原子を有する化合物をいう。
 [A]粒子が、金属原子と[a]有機酸に由来する配位子とを含む金属酸化物を含有することで、当該感放射線性組成物の感度及び解像性がより向上する。当該感放射線性組成物が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察できる。すなわち、[a]有機酸に由来する配位子は、金属原子との相互作用によって[A]粒子の表面付近に存在することで、[A]粒子の溶媒に対する溶解性を向上すると考えられる。一方、放射線の露光により露光部で[B]塩基発生剤から発生した塩基は、中和反応等によって[A]粒子から[a]有機酸に由来する配位子を除去し、[A]粒子の現像液に対する溶解性を低下させる。また、[A]粒子から[a]有機酸に由来する配位子が除去されることで、上述したゾルゲル反応に類似した反応が促進され、[A]粒子の現像液に対する溶解性がより低下する。これらの結果、当該感放射線性組成物の感度がより向上すると考えられる。また、[a]有機酸に由来する配位子は、露光部で[B]塩基発生剤から生じた塩基の膜中における拡散現象を制御し、未露光部における好ましくない化学反応を抑制することで当該感放射線性組成物の解像性をより向上すると考えられる。
 [a]有機酸のpKaの下限としては、0が好ましく、1がより好ましく、1.5がさらに好ましく、2が特に好ましい。一方、上記pKaの上限としては、7が好ましく、6がより好ましく、5.5がさらに好ましく、5が特に好ましい。[a]有機酸のpKaを上記範囲とすることで、[a]有機酸に由来する配位子と金属原子との相互作用を適度に弱いものに調整することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。ここで[a]有機酸が多価の酸である場合、[a]有機酸のpKaとは、第1酸解離定数、すなわち、1つめのプロトンの解離における解離定数の対数値をいう。
 [a]有機酸は、低分子化合物でもよく、高分子化合物でもよいが、金属原子との相互作用をより適度に弱いものに調整する観点から、低分子化合物が好ましい。ここで、低分子化合物とは、分子量が1,500以下の化合物をいい、高分子化合物とは、分子量が1,500超の化合物をいう。[a]有機酸の分子量の下限としては、50が好ましく、70がより好ましい。一方、上記分子量の上限としては、1,000が好ましく、500がより好ましく、400がさらに好ましく、300が特に好ましい。[a]有機酸の分子量を上記範囲とすることで、[A]粒子の現像液に対する溶解性をより適度なものに調整することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。
 [a]有機酸としては、例えばカルボン酸、スルホン酸、スルフィン酸、有機ホスフィン酸、有機ホスホン酸、フェノール類、エノール、チオール、酸イミド、オキシム、スルホンアミド等が挙げられる。
 上記カルボン酸としては、例えば
 ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、2-エチルヘキサン酸、オレイン酸、アクリル酸、メタクリル酸、trans-2,3-ジメチルアクリル酸、ステアリン酸、リノール酸、リノレン酸、アラキドン酸、サリチル酸、安息香酸、p-アミノ安息香酸、ヨード安息香酸(例えば2-ヨード安息香酸、3-ヨード安息香酸、4-ヨード安息香酸等)、モノクロロ酢酸、ジクロロ酢酸、o-トルイル酸、m-トルイル酸、p-トルイル酸、トリクロロ酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、没食子酸、シキミ酸等のモノカルボン酸、シュウ酸、マロン酸、マレイン酸、メチルマロン酸、フマル酸、アジピン酸、セバシン酸、フタル酸、酒石酸等のジカルボン酸、クエン酸等の3以上のカルボキシ基を有するカルボン酸などが挙げられる。
 上記スルホン酸としては、例えばベンゼンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 上記スルフィン酸としては、例えばベンゼンスルフィン酸、p-トルエンスルフィン酸等が挙げられる。
 上記有機ホスフィン酸としては、例えばジエチルホスフィン酸、メチルフェニルホスフィン酸、ジフェニルホスフィン酸等が挙げられる。
 上記有機ホスホン酸としては、例えばメチルホスホン酸、エチルホスホン酸、t-ブチルホスホン酸、シクロヘキシルホスホン酸、フェニルホスホン酸等が挙げられる。
 上記フェノール類としては、例えばフェノール、クレゾール、2,6-キシレノール、ナフトール等の1価のフェノール類、カテコール、レゾルシノール、ハイドロキノン、1,2-ナフタレンジオール等の2価のフェノール類、ピロガロール、2,3,6-ナフタレントリオール等の3価以上のフェノール類などが挙げられる。
 上記エノールとしては、例えば2-ヒドロキシ-3-メチル-2-ブテン、3-ヒドロキシ-4-メチル-3-ヘキセン等が挙げられる。
 上記チオールとしては、例えばメルカプトエタノール、メルカプトプロパノール等が挙げられる。
 上記酸イミドとしては、例えば
 マレイミド、コハク酸イミド等のカルボン酸イミド、ジ(トリフルオロメタンスルホン酸)イミド、ジ(ペンタフルオロエタンスルホン酸)イミド等のスルホン酸イミドなどが挙げられる。
 上記オキシムとしては、例えば
 ベンズアルドキシム、サリチルアルドキシム等のアルドキシム、ジエチルケトキシム、メチルエチルケトキシム、シクロヘキサノンオキシム等のケトキシムなどが挙げられる。
 上記スルホンアミドとしては、例えばメチルスルホンアミド、エチルスルホンアミド、ベンゼンスルホンアミド、トルエンスルホンアミド等が挙げられる。
 [a]有機酸としては、当該感放射線性組成物の感度及び解像性をより向上する観点から、カルボン酸が好ましく、モノカルボン酸がより好ましく、メタクリル酸、安息香酸及びm-トルイル酸がさらに好ましい。
 上記金属酸化物としては、ジルコニウムとメタクリル酸に由来する配位子とを含む金属酸化物、ハフニウムと安息香酸に由来する配位子とを含む金属酸化物、亜鉛とメタクリル酸に由来する配位子とを含む金属酸化物、インジウムと安息香酸に由来する配位子とを含む金属酸化物、並びにジルコニウム及び酸素原子により構成される金属酸化物が好ましい。
 [A]粒子における金属酸化物の含有率の下限としては、60質量%が好ましく、80質量%がより好ましく、95質量%がさらに好ましい。また、上記金属酸化物の含有率は、100質量%であってもよい。上記金属酸化物の含有率を上記下限以上とすることで、当該感放射線性組成物の感度及び解像性をより向上できる。但し、[A]粒子は、上記金属酸化物を1種のみ含有してもよく、2種以上含有してもよい。
 [A]粒子に含まれる金属原子の数の下限としては、2が好ましく、4がより好ましい。一方、[A]粒子に含まれる金属原子の数の上限としては、30が好ましく、10がより好ましく、6がさらに好ましい。[A]粒子に含まれる金属原子の数を上記範囲とすることで、当該感放射線性組成物の感度及び解像性をより向上できる。
 [A]粒子が[a]有機酸に由来する配位子を含む場合、[A]粒子における[a]有機酸に由来する配位子の含有率の下限としては、1質量%が好ましく、20質量%がより好ましく、40質量%がさらに好ましく、60質量%が特に好ましい。一方、[a]有機酸に由来する配位子の含有率の上限としては、95質量%が好ましく、90質量%がより好ましい。[a]有機酸に由来する配位子の含有率を上記範囲とすることで、[A]粒子の現像液に対する溶解性をさらに適度なものに調整することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。[A]粒子は、[a]有機酸に由来する配位子を1種のみ含有してもよく、2種以上含有してもよい。
 [A]粒子の組成物中の全固形分に対する含有量の下限としては、10質量%が好ましく、50質量%がより好ましく、70質量%がさらに好ましく、85質量%が特に好ましい。一方、[A]粒子の組成物中の全固形分に対する含有量の上限としては、99質量%が好ましく、95質量%がより好ましい。[A]粒子の含有量を上記範囲とすることで、当該感放射線性組成物の感度及び解像性をより向上できる。当該感放射線性組成物は、[A]粒子を1種のみ含有してもよく、2種以上含有してもよい。ここで「固形分」とは、当該感放射線性組成物から後述する[C]溶媒と無機溶媒とを除いた成分をいう。
[[A]粒子の合成方法]
 [A]粒子は、例えば[b]金属含有化合物に対して加水分解縮合反応を行う方法、[b]金属含有化合物に対して配位子交換反応を行う方法等により得ることができる。ここで「加水分解縮合反応」とは、[b]金属含有化合物が有する加水分解性基が加水分解して-OHに変換され、得られた2個の-OHが脱水縮合して-O-が形成される反応をいう。
[[b]金属含有化合物]
 [b]金属含有化合物は、加水分解性基を有する金属化合物(I)、加水分解性基を有する金属化合物(I)の加水分解物、加水分解性基を有する金属化合物(I)の加水分解縮合物又はこれらの組み合わせである。金属化合物(I)は、1種単独で又は2種以上組み合わせて使用できる。
 上記加水分解性基としては、例えばハロゲン原子、アルコキシ基、アシロキシ基等が挙げられる。
 上記ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 上記アルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、ブトキシ基等が挙げられる。
 上記アシロキシ基としては、例えばアセトキシ基、エチリルオキシ基、プロピオニルオキシ基、n-ブチリルオキシ基、t-ブチリルオキシ基、t-アミリルオキシ基、n-ヘキサンカルボニロキシ基、n-オクタンカルボニロキシ基等が挙げられる。
 上記加水分解性基としては、アルコキシ基及びアシロキシ基が好ましく、イソプロポキシ基及びアセトキシ基がより好ましい。
 [b]金属含有化合物が金属化合物(I)の加水分解縮合物である場合には、この金属化合物(I)の加水分解縮合物は、本発明の効果を損なわない限り、加水分解性基を有する金属(I)と半金属原子を含む化合物との加水分解縮合物であってもよい。すなわち、金属化合物(I)の加水分解縮合物には、本発明の効果を損なわない範囲内で半金属原子が含まれていてもよい。上記半金属原子としては、例えばホウ素、ゲルマニウム、アンチモン、テルル等が挙げられる。金属化合物(I)の加水分解縮合物における半金属原子の含有率は、この加水分解縮合物中の金属原子及び半金属原子の合計に対し、通常50原子%未満である。上記半金属原子の含有率の上限としては、上記加水分解縮合物中の金属原子及び半金属原子の合計に対し、30原子%が好ましく、10原子%がより好ましい。
 金属化合物(I)としては、例えば下記式(1)で表される化合物(以下、「金属化合物(I-1)」ともいう)等が挙げられる。このような金属化合物(I-1)を用いることで、安定な金属酸化物を形成でき、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Mは、金属原子である。Lは、配位子である。aは、0~2の整数である。aが2の場合、複数のLは同一でも異なっていてもよい。Yは、ハロゲン原子、アルコキシ基及びアシロキシ基から選ばれる加水分解性基である。bは、2~6の整数である。複数のYは同一でも異なっていてもよい。なお、LはYに該当しない配位子である。
 Mで表される金属原子としては、例えば[A]粒子の含む金属酸化物を構成する金属原子として例示したものと同様の金属原子等が挙げられる。
 Lで表される配位子としては、単座配位子及び多座配位子が挙げられる。
 上記単座配位子としては、例えばヒドロキソ配位子、カルボキシ配位子、アミド配位子、アミン配位子、ニトロ配位子、アンモニア等が挙げられる。
 上記アミド配位子としては、例えば無置換アミド配位子(NH)、メチルアミド配位子(NHMe)、ジメチルアミド配位子(NMe)、ジエチルアミド配位子(NEt)、ジプロピルアミド配位子(NPr)等が挙げられる。上記アミン配位子としては、例えばトリメチルアミン配位子、トリエチルアミン配位子等が挙げられる。
 上記多座配位子としては、例えばヒドロキシ酸エステル、β-ジケトン、β-ケトエステル、β-ジカルボン酸エステル、π結合を有する炭化水素、ジホスフィン等が挙げられる。
 上記ヒドロキシ酸エステルとしては、例えばグリコール酸エステル、乳酸エステル、2-ヒドロキシシクロヘキサン-1-カルボン酸エステル、サリチル酸エステル等が挙げられる。
 上記β-ジケトンとしては、例えば2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン等が挙げられる。
 上記β-ケトエステルとしては、例えばアセト酢酸エステル、α-アルキル置換アセト酢酸エステル、β-ケトペンタン酸エステル、ベンゾイル酢酸エステル、1,3-アセトンジカルボン酸エステル等が挙げられる。
 上記β-ジカルボン酸エステルとしては、例えばマロン酸ジエステル、α-アルキル置換マロン酸ジエステル、α-シクロアルキル置換マロン酸ジエステル、α-アリール置換マロン酸ジエステル等が挙げられる。
 上記π結合を有する炭化水素としては、例えば
 エチレン、プロピレン等の鎖状オレフィン、シクロペンテン、シクロヘキセン、ノルボルネン等の環状オレフィン、ブタジエン、イソプレン等の鎖状ジエン、シクロペンタジエン、メチルシクロペンタジエン、ペンタメチルシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン、ベンゼン、トルエン、キシレン、ヘキサメチルベンゼン、ナフタレン、インデン等の芳香族炭化水素などが挙げられる。
 上記ジホスフィンとしては、例えば1,1-ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン等が挙げられる。
 Yで表されるハロゲン原子、アルコキシ基及びアシロキシ基の例示及び好適なものとしては、上記加水分解性基において説明したものと同様とすることができる。
 bとしては、2~4の整数が好ましく、4がより好ましい。bを上記数値とすることで、[A]粒子における金属酸化物の含有率を高め、[A]粒子による二次電子の発生をより効果的に促進できる。その結果、当該感放射線性組成物の感度をより向上できる。
 [b]金属含有化合物としては、加水分解も加水分解縮合もしていない金属アルコキシド、及び加水分解も加水分解縮合もしていない金属アシロキシドが好ましい。
 [b]金属含有化合物としては、ジルコニウム(IV)n-ブトキシド、ジルコニウム(IV)n-プロポキシド、ジルコニウム(IV)イソプロポキシド、ハフニウム(IV)エトキシド、インジウム(III)イソプロポキシド、ハフニウム(IV)イソプロポキシド、タンタル(V)エトキシド、タングステン(V)メトキシド、タングステン(VI)エトキシド、塩化鉄、酢酸亜鉛二水和物、チタン(VI)n-ブトキシド、チタン(IV)n-プロポキシド、ジルコニウム(VI)ジn-ブトキシド・ビス(2,4-ペンタンジオナート)、チタン(VI)トリn-ブトキシド・ステアレート、ビス(シクロペンタジエニル)ハフニウムジクロリド、ビス(シクロペンタジエニル)タングステンジクロリド、ジアセタト[(S)-(-)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル]ルテニウム、ジクロロ[エチレンビス(ジフェニルホスフィン)]コバルト、チタンブトキシドオリゴマー、アミノプロピルトリメトキシチタン、アミノプロピルトリエトキシジルコニウム、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシジルコニウム、γ-グリシドキシプロピルトリメトキシジルコニウム、3-イソシアノプロピルトリメトキシジルコニウム、3-イソシアノプロピルトリエトキシジルコニウム、トリエトキシモノ(アセチルアセトナート)チタン、トリ-n-プロポキシモノ(アセチルアセトナート)チタン、トリ-i-プロポキシモノ(アセチルアセトナート)チタン、トリエトキシモノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシモノ(アセチルアセトナート)ジルコニウム、トリ-i-プロポキシモノ(アセチルアセトナート)ジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタン、ジn-ブトキシビス(アセチルアセトナート)チタン、ジn-ブトキシビス(アセチルアセトナート)ジルコニウム、トリ(3-メタクリロキシプロピル)メトキシジルコニウム、トリ(3-アクリロキシプロピル)メトキシジルコニウム等が挙げられる。これらの中で、ジルコニウム(IV)イソプロポキシド、ハフニウム(IV)イソプロポキシド、酢酸亜鉛二水和物及びインジウム(III)イソプロポキシドが好ましい。
 [b]金属含有化合物に対して加水分解縮合反応を行う方法としては、例えば水を含む溶媒中で[b]金属含有化合物を加水分解縮合反応させる方法等が挙げられる。この場合、必要に応じて加水分解性基を有する他の化合物を添加してもよい。この加水分解縮合反応に用いる水の量の下限としては、[b]金属含有化合物等が有する加水分解性基に対し、0.2倍モルが好ましく、1倍モルがより好ましく、3倍モルがさらに好ましい。上記水の量の上限としては、[b]金属含有化合物等が有する加水分解性基に対し、20倍モルが好ましく、15倍モルがより好ましく、10倍モルがさらに好ましい。加水分解縮合反応における水の量を上記範囲とすることで、得られる[A]粒子における金属酸化物の含有率を高めることができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。なお、上記加水分解縮合反応においては、溶媒に不可避的に混入する微量の水分でも反応を進行させることが可能なため、必ずしも溶媒中に積極的に水を添加する必要はない。
 [b]金属含有化合物に対して配位子交換反応を行う方法としては、例えば[b]金属含有化合物及び[a]有機酸を混合する方法等が挙げられる。この場合、[a]有機酸及び[b]金属含有化合物は、溶媒中で混合してもよく、溶媒を用いずに混合してもよい。また、上記混合では、必要に応じてトリエチルアミン等の塩基を添加してもよい。上記塩基の添加量としては、[b]金属含有化合物及び[a]有機酸の合計使用量100質量部に対し、例えば1質量部以上200質量部以下である。
 [A]粒子の合成に[a]有機酸を用いる場合、[a]有機酸の使用量の下限としては、[b]金属含有化合物100質量部に対し、10質量部が好ましく、30質量部がより好ましい。一方、[a]有機酸の使用量の上限としては、[b]金属含有化合物100質量部に対し、2,000質量部が好ましく、1,000質量部がより好ましく、700質量部がさらに好ましく、100質量部が特に好ましい。[a]有機酸の使用量を上記範囲とすることにより、得られる[A]粒子における[a]有機酸に由来する配位子の含有率を適度なものに調整することができ、その結果、当該感放射線性組成物の感度及び解像性をより向上できる。
 [A]粒子の合成反応の際、金属化合物(I)及び[a]有機酸以外にも、上記式(1)の化合物におけるLで表される多座配位子になり得る化合物や架橋配位子になり得る化合物等を添加してもよい。上記架橋配位子になり得る化合物としては、例えば複数個のヒドロキシ基、イソシアネート基、アミノ基、エステル基及びアミド基を有する化合物等が挙げられる。
 [A]粒子の合成反応に用いる溶媒としては、特に限定されず、例えば後述する[C]溶媒として例示するものと同様の溶媒を用いることができる。これらの中で、アルコール系溶媒、エーテル系溶媒、エステル系溶媒及び炭化水素系溶媒が好ましく、アルコール系溶媒、エーテル系溶媒及びエステル系溶媒がより好ましく、多価アルコール部分エーテル系溶媒、モノカルボン酸エステル系溶媒及び環状エーテル系溶媒がさらに好ましく、プロピレングリコールモノエチルエーテル、酢酸エチル及びテトラヒドロフランが特に好ましい。
 [A]粒子の合成反応に溶媒を用いる場合、使用した溶媒を反応後に除去してもよいが、反応後に除去することなく、上記溶媒をそのまま当該感放射線性組成物の[C]溶媒とすることもできる。
 [A]粒子の合成反応の温度の下限としては、0℃が好ましく、10℃がより好ましい。上記温度の上限としては、150℃が好ましく、100℃がより好ましい。
 [A]粒子の合成反応の時間の下限としては、1分が好ましく、10分がより好ましく、1時間がさらに好ましい。上記時間の上限としては、100時間が好ましく、50時間がより好ましく、24時間がさらに好ましい。
[[B]塩基発生剤]
 [B]塩基発生剤は、露光部で[A]粒子によって発生した二次電子等に起因して塩基を発生する物質である。この発生した塩基により、[A]粒子の現像液への溶解性が変化するため、当該感放射線性組成物からパターンを形成することができる。
 [B]塩基発生剤としては、例えばコバルト等の遷移金属の錯体(以下、「遷移金属錯体」ともいう)、ニトロベンジルカルバメート類、α,α-ジメチル-3,5-ジメトキシベンジルカルバメート類、アシルオキシイミノ類などを挙げることができる。
 上記遷移金属錯体としては、例えばブロモペンタアンモニアコバルト過塩素酸塩、ブロモペンタメチルアミンコバルト過塩素酸塩、ブロモペンタプロピルアミンコバルト過塩素酸塩、ヘキサアンモニアコバルト過塩素酸塩、ヘキサキス(メチルアミン)コバルト過塩素酸塩、ヘキサキス(プロピルアミン)コバルト過塩素酸塩等が挙げられる。
 上記ニトロベンジルカルバメート類としては、例えば[[(2-ニトロベンジル)オキシ]カルボニル]メチルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]プロピルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]ヘキシルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(2-ニトロベンジル)オキシ]カルボニル]アニリン、[[(2-ニトロベンジル)オキシ]カルボニル]ピペリジン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ピペラジン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]メチルアミン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]プロピルアミン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]ヘキシルアミン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]アニリン、[[(2,6-ジニトロベンジル)オキシ]カルボニル]ピペリジン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(2,6-ジニトロベンジル)オキシ]カルボニル]ピペラジン、2-ニトロフェニルメチル4-ヒドロキシピペリジン-1-カルボキシラート、2-ニトロフェニルメチル4-メタクリロイルオキシピペリジンー1-カルボキシラートなどが挙げられる。
 上記α,α-ジメチル-3,5-ジメトキシベンジルカルバメート類としては、例えば[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]メチルアミン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]プロピルアミン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ヘキシルアミン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]シクロヘキシルアミン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]アニリン、[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ピペリジン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ヘキサメチレンジアミン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]フェニレンジアミン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]トルエンジアミン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ジアミノジフェニルメタン、ビス[[(α,α-ジメチル-3,5-ジメトキシベンジル)オキシ]カルボニル]ピペラジンなどが挙げられる。
 上記アシルオキシイミノ類としては、例えばプロピオニルアセトフェノンオキシム、プロピオニルベンゾフェノンオキシム、プロピオニルアセトンオキシム、ブチリルアセトフェノンオキシム、ブチリルベンゾフェノンオキシム、ブチリルアセトンオキシム、アジポイルアセトフェノンオキシム、アジポイルベンゾフェノンオキシム、アジポイルアセトンオキシム、アクロイルアセトフェノンオキシム、アクロイルベンゾフェノンオキシム、アクロイルアセトンオキシム等が挙げられる。
 [B]塩基発生剤としては、上述した化合物以外に、例えば2-ニトロベンジルシクロヘキシルカルバメート、O-カルバモイルヒドロキシアミド、O-カルバモイルヒドロキシアミド、N,N-ジエチルカルバミン酸9-アントリルメチル、イミダゾール-1-カルボン酸1-(アントラキノン-2-イル)エチル、1,2-ジイソプロピル-3-〔ビス(ジメチルアミノ)メチレン〕グアニジウム2-(3-ベンゾイルフェニル)プロピオナート、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムn-ブチルトリフェニルボラート、(E)-1-ピペリジノ-3-(2-ヒドロキシフェニル)-2-プロペン-1-オン等を用いることもできる。
 [B]塩基発生剤としては、例えばWPBG-018、WPBG-027、WPBG-140、WPBG-165、WPBG-266、WPBG-300等のWPBGシリーズ(和光純薬工業社製)などの市販品を用いることもできる。
 [B]塩基発生剤としては、ニトロベンジルカルバメート類が好ましく、2-ニトロフェニルメチル4-ヒドロキシピペリジン-1-カルボキシラート、及び2-ニトロフェニルメチル4-メタクリロイルオキシピペリジン-1-カルボキシラートがより好ましい。
 当該感放射線性組成物における[B]塩基発生剤の組成物中の全固形分に対する含有量の下限としては、0.5質量%が好ましく、1質量%がより好ましく、3質量%がさらに好ましい。一方、[B]塩基発生剤の組成物中の全固形分に対する含有量の上限としては、50質量%が好ましく、30質量%がより好ましく、20質量%がさらに好ましい。[B]塩基発生剤の含有量を上記範囲とすることで、当該感放射線性組成物の感度及び解像性をより向上することができる。当該感放射線性組成物は、[B]塩基発生剤を1種又は2種以上含有してもよい。
[[C]溶媒]
 当該感放射線性組成物の好適成分である[C]溶媒は、少なくとも[A]粒子、[B]塩基発生剤及び必要に応じて含有される任意成分を溶解又は分散可能な溶媒であれば特に限定されない。また、[A]粒子を合成する際に用いた溶媒をそのまま[C]溶媒とすることもできる。当該感放射線性組成物は、[C]溶媒を1種のみ含有してもよく、2種以上含有してもよい。なお、当該感放射線性組成物は、[C]溶媒以外に水等の無機溶媒をさらに含有してもよいが、基板への塗布性、[A]粒子の現像液に対する溶解性、貯蔵安定性当などの観点から、上記無機溶媒を主溶媒としないことが好ましい。当該感放射線性組成物における上記無機溶媒の含有量の上限としては、20質量%が好ましく、10質量%がより好ましい。
 [C]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 上記アルコール系溶媒としては、例えば
 2-プロパノール、4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒、シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒、1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 上記エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒、テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒、ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 上記ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノンなどが挙げられる。
 上記アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 上記エステル系溶媒としては、例えば
 酢酸エチル、酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒、酢酸プロピレングリコール等の多価アルコールカルボキシレート系溶媒、酢酸プロピレングリコールモノエチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒、シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒、γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒などが挙げられる。
 上記炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒、トルエン、キシレン、デカヒドロナフタレン等の炭素数6~16の芳香族炭化水素系溶媒などが挙げられる。
 [C]溶媒としては、エステル系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒及び多価アルコール部分エーテル系溶媒が好ましく、酢酸プロピレングリコールモノメチルエーテル及びプロピレングリコールモノメチルエーテルがより好ましい。
[その他の任意成分]
 当該感放射線性組成物は、[A]~[C]成分以外にも、配位子となり得る化合物、界面活性剤等のその他の任意成分を含有してもよい。
[配位子となり得る化合物]
 当該感放射線性組成物に用いる上記配位子となり得る化合物としては、例えば多座配位子又は架橋配位子となり得る化合物(以下、「化合物(II)」ともいう)等が挙げられる。化合物(II)としては、例えば[A]粒子の合成方法において例示した化合物と同様のもの等が挙げられる。
 当該感放射線性組成物が化合物(II)を含有する場合、当該感放射線性組成物中の全固形分に対する化合物(II)の含有量の上限としては、10質量%が好ましく、3質量%がより好ましく、1質量%がさらに好ましい。
[界面活性剤]
 当該感放射線性組成物に用いる界面活性剤は、塗布性、ストリエーション等を改良する作用を示す成分である。上記界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤などが挙げられる。また、上記界面活性剤の市販品としては、例えばKP341(信越化学工業社製)、ポリフローNo.75、同No.95(以上、共栄社化学社製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社製)、メガファックF171、同F173(以上、DIC社製)、フロラードFC430、同FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子社製)などが挙げられる。
<感放射線性組成物の調製方法>
 当該感放射線性組成物は、例えば[A]粒子、[B]塩基発生剤、及び必要に応じて[C]溶媒等のその他の任意成分を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のメンブランフィルターでろ過することにより調製できる。当該感放射線性組成物が[C]溶媒を含有する場合、当該感放射線性組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、3質量%が特に好ましい。一方、上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、15質量%がさらに好ましく、7質量%が特に好ましい。
<パターン形成方法>
 当該パターン形成方法は、基板に当該感放射線性組成物を塗工することにより膜を形成する工程(以下、「塗工工程」ともいう)と、上記膜を露光する工程(以下、「露光工程」ともいう)と、上記露光された膜を現像する工程(以下、「現像工程」ともいう)とを備える。当該パターン形成方法によれば、上述の当該感放射線性組成物を用いているので、解像度に優れるパターンを高感度で形成できる。以下、各工程について説明する。
[塗工工程]
 本工程では、基板に当該感放射線性組成物を塗工することにより膜を形成する。具体的には、得られる膜が所望の厚さとなるように当該感放射線性組成物を基板の一方の面側に塗工した後、必要に応じてプレベーク(PB)によって当該感放射線性組成物の[C]溶媒等を揮発させることで膜を形成する。当該感放射線性組成物を基板に塗工する方法としては、特に限定されないが、例えば回転塗布、流延塗布、ロール塗布等の適宜の塗布手段を採用できる。上記基板としては、例えばシリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。なお、感放射線性組成物の潜在能力を最大限に引き出すため、有機系又は無機系の反射防止膜を基板上に予め形成しておいてもよい。
 本工程で形成する膜の平均厚さの下限としては、1nmが好ましく、5nmがより好ましく、10nmがさらに好ましく、20nmが特に好ましい。一方、上記平均厚さの上限としては、1,000nmが好ましく、200nmがより好ましく、100nmがさらに好ましく、70nmが特に好ましい。
 上記PB温度の下限としては、通常60℃であり、80℃が好ましい。上記PB温度の上限としては、通常140℃であり、120℃が好ましい。上記PB時間の下限としては、通常5秒であり、10秒が好ましい。上記PB時間の上限としては、通常600秒であり、300秒が好ましい。
 本工程では、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば形成した膜上に保護膜を設けることもできる。また、後述するように露光工程で液浸露光を行う場合は、液浸媒体と膜との直接的な接触を避けるため、形成した膜上に液浸用保護膜を設けてもよい。
[露光工程]
 本工程では、塗工工程により得られた上記膜を露光する。具体的には、例えば所定のパターンを有するマスクを介して上記膜に放射線を照射する。本工程では、必要に応じ、水等の液浸媒体を介した放射線の照射、つまり液浸露光を採用してもよい。露光する放射線としては、例えば可視光線、紫外線、遠紫外線、EUV(波長13.5nm)、X線、γ線等の電磁波や、電子線、α線等の荷電粒子線などが挙げられる。これらの中で、放射線を吸収した[A]粒子から発生する二次電子を増加させる観点から、EUV及び電子線が好ましい。
[現像工程]
 本工程では、現像液を用い、露光された膜を現像する。これにより、所定のネガ型のパターンが形成される。上記現像液としては、例えばアルカリ水溶液、有機溶媒含有液等が挙げられる。上記現像液としては、現像性等の観点から、有機溶媒含有液が好ましい。
 上記アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物のうち少なくとも1種を溶解させたアルカリ水溶液などが挙げられる。
 上記アルカリ水溶液におけるアルカリ性化合物の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有量の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましい。
 上記アルカリ水溶液としては、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 上記有機溶媒含有液中の有機溶媒としては、例えば当該感放射線性組成物の[C]溶媒として例示した有機溶媒と同様のもの等が挙げられる。これらの中で、アルコール系溶媒が好ましく、脂肪族モノアルコール系溶媒がより好ましく、2-プロパノールがさらに好ましい。
 上記有機溶媒含有液における有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。上記有機溶媒の含有量を上記範囲とすることで、露光部及び未露光部での現像液に対する溶解速度のコントラストをより向上できる。なお、上記有機溶媒含有液の有機溶媒以外の成分としては、例えば水、シリコーンオイル等が挙げられる。
 上記現像液には、必要に応じて界面活性剤を適当量添加してもよい。上記界面活性剤としては、例えばイオン性又は非イオン性のフッ素系界面活性剤、シリコーン系の界面活性剤等を用いることができる。
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
 上記現像後の基板は、水、アルコール等のリンス液を用いてリンスした後、乾燥させることが好ましい。上記リンスの方法としては、例えば一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等が挙げられる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例における物性値の測定方法を以下に示す。
[平均粒子径]
 [A]粒子の平均粒子径は、光散乱測定装置(Malvern社の「Zetasizer Nano ZS」)を用いたDLS法によって求めた。
[[A]粒子]
 以下の方法により、[A]粒子を合成した。[A]粒子の合成に用いた[a]有機酸及び[b]金属含有化合物を以下に示す。
[[a]有機酸]
 a-1:メタクリル酸(pKa:4.66)
 a-2:安息香酸(pKa:4.21)
[[b]金属含有化合物]
 b-1:テトラエトキシシラン
 b-2:ジルコニウム(IV)イソプロポキシド
 b-3:ハフニウム(IV)イソプロポキシド
 b-4:酢酸亜鉛二水和物
 b-5:インジウム(III)イソプロポキシド
[合成例1]
 上記化合物(b-1)1.3g及び(b-2)0.3gを(a-1)9.0gに溶解させ、この溶液を65℃で12時間加熱した。反応溶液を超純水及びアセトンで洗浄した後に乾燥させ、半金属原子と金属原子と有機酸に由来する配位子とを主に含む金属酸化物の粒子(A-1)を得た。この粒子(A-1)の平均粒子径は4.1nmであった。
[合成例2]
 上記化合物(a-1)18g及び(b-2)3gを混合し、65℃で21時間加熱した。反応溶液を超純水及びアセトンで洗浄した後に乾燥させ、金属原子と有機酸に由来する配位子とを主に含む金属酸化物の粒子(A-2)を得た。この粒子(A-2)の平均粒子径は2.1nmであった。
[合成例3]
 上記化合物(a-2)2.5g及び(b-3)1.5gをテトラヒドロフラン(THF)30.0gに溶解させ、65℃で21時間加熱した。反応溶液を超純水及びアセトンで洗浄した後に乾燥させ、金属原子と有機酸に由来する配位子とを主に含む金属酸化物の粒子(A-3)を得た。この粒子(A-3)の平均粒子径は、2.3nmであった。
[合成例4]
 上記化合物(a-1)1.9g及び(b-4)1.7gを酢酸エチル40.0gに溶解させた。この溶液に2.2mlのトリエチルアミンを滴下して65℃で2時間加熱した。反応溶液をヘキサンで洗浄した後に乾燥させ、金属原子と有機酸に由来する配位子とを主に含む金属酸化物の粒子(A-4)を得た。この粒子(A-4)の平均粒子径は1.6nmであった。
[合成例5]
 上記化合物(a-2)50mg及び(b-5)60mgをプロピレングリコールモノエチルエーテル3.7gに溶解させた。この溶液を室温で30分間反応させることで、金属原子と有機酸に由来する配位子とを主に含む金属酸化物の粒子(A-5)の分散液を得た。この粒子(A-5)の平均粒子径は1.9nmであった。
[合成例6]
 上記化合物(b-2)1gをテトラヒドロフラン(THF)に溶解した。この溶液に3.3mlのトリエチルアミンを滴下して65℃で4時間加熱した。反応溶液を超純水及びアセトンで洗浄した後に乾燥させ、金属原子及び酸素原子を主に含む金属酸化物の粒子(A-6)を得た。この粒子(A-6)の平均粒子径は3.5nmであった。
<感放射線性組成物の調製>
 感放射線性組成物の調製に用いた[B]塩基発生剤、[B’]酸発生剤及び[C]溶媒を以下に示す。
[[B]塩基発生剤及び[B’]酸発生剤]
 B-1:2-ニトロフェニルメチル4-ヒドロキシピペリジン-1-カルボキシラート
 B-2:2-ニトロフェニルメチル4-メタクリロイルオキシピペリジンー1-カルボキシラート
 B’-1:N-ヒドロキシナフタルイミドトリフレート
[[C]溶媒]
 C-1:酢酸プロピレングリコールモノメチルエーテル
 C-2:プロピレングリコールモノエチルエーテル
[比較例1]
 粒子(A-1)100質量部、酸発生剤としての(B’-1)5質量部、及び[C]溶媒としての(C-1)を混合し、固形分濃度5質量%の混合液とした。得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、比較例1の感放射線性組成物(R-1)を調製した。
[比較例2~6及び実施例1~5]
 下記表1に示す種類及び量の各成分を用いた以外は比較例1と同様に操作し、比較例2~6及び実施例1~5の感放射線性組成物(R-2)~(R-11)を調製した。なお、下記表1の「-」は、該当する成分を用いなかったことを示す。また、(A-5)の含有量は、固形分換算値である。さらに、感放射線性組成物(R-2)~(R-5)及び(R-7)~(R-11)の組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率は100原子%である。一方、感放射線性組成物(R-1)及び(R-6)の上記金属原子の含有率は13原子%である。なお、上記金属原子の含有率は、各感放射線性組成物に含まれる金属原子が全て[A]粒子に由来し、かつ[A]粒子の合成において[b]金属含有化合物に含まれる各金属原子が同じ割合で[A]粒子の形成に用いられたとする仮定に基づく推測値である。具体的には、[A]粒子の合成に用いた[b]金属含有化合物に含まれる金属原子及び半金属原子の原子数をR、[b]金属含有化合物に含まれる金属原子の原子数をRとしたときに、100×R/Rで求められる値である。
Figure JPOXMLDOC01-appb-T000002
<パターンの形成>
[比較例1~6及び実施例1~5]
 簡易スピンコーターで、シリコンウエハ上に上述の実施例1~5及び比較例1~6で調製した感放射線性組成物(R-1)~(R-11)をスピンコートした後、100℃、60秒間の条件でPBを行い、平均厚さ50nmの膜を形成した。次に、電子線描画装置(JEOL社の「JBX-9500FS」)を用いて上記膜を電子線で露光し、パターニングを行った。電子線の露光後、上記膜を2-プロパノールにより現像した後、乾燥させ、ネガ型パターンを形成した。
<評価>
 上記形成した各パターンを用い、下記に示す方法により感度及び限界解像度についての評価を行った。評価結果を表2に示す。
[感度]
 線幅100nmのライン部と、隣り合うライン部の間に形成される間隔100nmのスペース部とで構成される1対1の線幅のライン・アンド・スペースパターン(1L1S)を形成する露光量を最適露光量とし、この最適露光量を感度(μC/cm)とした。感度は、数値が小さいほど高感度であることを意味し、70μC/cm未満を良好、70μC/cm以上を良好でないと評価できる。
[限界解像度]
 各種線幅のライン・アンド・スペースパターン(1L1S)を作成し、1対1の線幅が保持されていたライン・アンド・スペースパターンの中でライン幅及びスペース幅の合計が最小であったパターンのハーフピッチを限界解像度(nm)とした。限界解像度は、数値が小さいほど解像度に優れることを意味し、55nm未満を良好、55nm以上を良好でないと評価できる。
Figure JPOXMLDOC01-appb-T000003
 表2の結果から、金属酸化物を主成分とする[A]粒子及び[B]塩基発生剤を含有し、かつ組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率を50原子%以上である感放射線組成物を用いることで、感度を維持しながら、微細パターンをより良好な解像度で形成できることが確認された。なお、一般的に電子線露光によればEUV露光の場合と同様の傾向を示すことが知られており、従って、EUV露光の場合においても、本発明の感放射線性組成物は、感度及び解像性に優れることが推測される。
 本発明の感放射線性組成物及びパターン形成方法によれば、解像度に優れるパターンを高感度で形成できる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。

Claims (8)

  1.  金属酸化物を主成分とする粒子と、
     感放射線性塩基発生剤と
     を含有し、
     組成物中の金属原子及び半金属原子の合計に対する上記金属原子の含有率が50原子%以上である感放射線性組成物。
  2.  上記金属酸化物を構成する金属原子が、ジルコニウム、ハフニウム、クロム、ニッケル、コバルト、スズ、インジウム、チタン、ルテニウム、タンタル、タングステン、鉄、銅、亜鉛、アルミニウム、ガリウム、タリウム、ビスマス又はこれらの組み合わせを含む請求項1に記載の感放射線性組成物。
  3.  上記感放射線性塩基発生剤の組成物中の全固形分に対する含有量が、0.5質量%以上50質量%以下である請求項1又は請求項2に記載の感放射線性組成物。
  4.  上記粒子の平均粒子径が20nm以下である請求項1、請求項2又は請求項3に記載の感放射線性組成物。
  5.  基板に請求項1から請求項4のいずれか1項に記載の感放射線性組成物を塗工することにより膜を形成する工程と、
     上記膜を露光する工程と、
     上記露光された膜を現像する工程と
     を備えるパターン形成方法。
  6.  上記現像工程で用いる現像液が有機溶媒含有液である請求項5に記載のパターン形成方法。
  7.  上記現像工程で用いる現像液がアルカリ水溶液である請求項5に記載のパターン形成方法。
  8.  上記露光工程で用いる放射線が、極端紫外線又は電子線である請求項5、請求項6又は請求項7に記載のパターン形成方法。
PCT/JP2017/004281 2016-02-19 2017-02-06 感放射線性組成物及びパターン形成方法 WO2017141756A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187023080A KR20180110671A (ko) 2016-02-19 2017-02-06 감방사선성 조성물 및 패턴 형성 방법
JP2018500048A JPWO2017141756A1 (ja) 2016-02-19 2017-02-06 感放射線性組成物及びパターン形成方法
US16/104,163 US20180356725A1 (en) 2016-02-19 2018-08-17 Radiation-sensitive composition and pattern-forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662297452P 2016-02-19 2016-02-19
US62/297,452 2016-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/104,163 Continuation US20180356725A1 (en) 2016-02-19 2018-08-17 Radiation-sensitive composition and pattern-forming method

Publications (1)

Publication Number Publication Date
WO2017141756A1 true WO2017141756A1 (ja) 2017-08-24

Family

ID=59625099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004281 WO2017141756A1 (ja) 2016-02-19 2017-02-06 感放射線性組成物及びパターン形成方法

Country Status (4)

Country Link
US (1) US20180356725A1 (ja)
JP (1) JPWO2017141756A1 (ja)
KR (1) KR20180110671A (ja)
WO (1) WO2017141756A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106167A1 (ja) * 2022-11-17 2024-05-23 三菱ケミカル株式会社 遷移金属クラスター化合物、感光性組成物及びパターン形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015584A (ja) * 2003-06-25 2005-01-20 Jsr Corp 感放射線性屈折率変化性組成物、パターン形成法および光学材料
JP2010243773A (ja) * 2009-04-06 2010-10-28 Sanyo Chem Ind Ltd 光塩基発生剤を含有する感光性組成物
JP2013025211A (ja) * 2011-07-25 2013-02-04 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
JP2014141550A (ja) * 2013-01-22 2014-08-07 Toyo Ink Sc Holdings Co Ltd 無機微粒子分散体、感光性組成物、および塗膜
JP2015193758A (ja) * 2014-03-31 2015-11-05 東洋インキScホールディングス株式会社 オーバーコート用感光性樹脂組成物、ならびにそれを用いた塗膜
WO2016088655A1 (ja) * 2014-12-02 2016-06-09 Jsr株式会社 フォトレジスト組成物及びその製造方法並びにレジストパターン形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015584A (ja) * 2003-06-25 2005-01-20 Jsr Corp 感放射線性屈折率変化性組成物、パターン形成法および光学材料
JP2010243773A (ja) * 2009-04-06 2010-10-28 Sanyo Chem Ind Ltd 光塩基発生剤を含有する感光性組成物
JP2013025211A (ja) * 2011-07-25 2013-02-04 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
JP2014141550A (ja) * 2013-01-22 2014-08-07 Toyo Ink Sc Holdings Co Ltd 無機微粒子分散体、感光性組成物、および塗膜
JP2015193758A (ja) * 2014-03-31 2015-11-05 東洋インキScホールディングス株式会社 オーバーコート用感光性樹脂組成物、ならびにそれを用いた塗膜
WO2016088655A1 (ja) * 2014-12-02 2016-06-09 Jsr株式会社 フォトレジスト組成物及びその製造方法並びにレジストパターン形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106167A1 (ja) * 2022-11-17 2024-05-23 三菱ケミカル株式会社 遷移金属クラスター化合物、感光性組成物及びパターン形成方法

Also Published As

Publication number Publication date
KR20180110671A (ko) 2018-10-10
JPWO2017141756A1 (ja) 2018-12-06
US20180356725A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6666564B2 (ja) 感放射線性組成物及びパターン形成方法
JP6572899B2 (ja) パターン形成方法
US10120277B2 (en) Radiation-sensitive composition and pattern-forming method
WO2018168221A1 (ja) 感放射線性組成物及びパターン形成方法
JP7327392B2 (ja) パターン形成方法及び感放射線性組成物
WO2018043506A1 (ja) 感放射線性組成物及びパターン形成方法
WO2017169440A1 (ja) 感放射線性組成物及びパターン形成方法
US10108088B2 (en) Radiation-sensitive composition and pattern-forming method
JP2018017780A (ja) 感放射線性組成物及びパターン形成方法
WO2016043198A1 (ja) パターン形成方法
US20190258161A1 (en) Radiation-sensitive composition and pattern-forming method
JP2018116160A (ja) 感放射線性組成物及びパターン形成方法
WO2017169288A1 (ja) 感放射線性組成物及びパターン形成方法
WO2017141756A1 (ja) 感放射線性組成物及びパターン形成方法
WO2019220878A1 (ja) 感放射線性組成物及びパターン形成方法
WO2021029422A1 (ja) 感放射線性組成物及びレジストパターン形成方法
JP2019144553A (ja) 感放射線性組成物及びパターン形成方法
JP7071660B2 (ja) 感放射線性組成物及びレジストパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187023080

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018500048

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753014

Country of ref document: EP

Kind code of ref document: A1