WO2017141689A1 - Nanodiamond dispersion liquid, and production method therefor - Google Patents

Nanodiamond dispersion liquid, and production method therefor Download PDF

Info

Publication number
WO2017141689A1
WO2017141689A1 PCT/JP2017/003320 JP2017003320W WO2017141689A1 WO 2017141689 A1 WO2017141689 A1 WO 2017141689A1 JP 2017003320 W JP2017003320 W JP 2017003320W WO 2017141689 A1 WO2017141689 A1 WO 2017141689A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamond
compound
dispersion
dispersion liquid
weight
Prior art date
Application number
PCT/JP2017/003320
Other languages
French (fr)
Japanese (ja)
Inventor
木本訓弘
山本由紀
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2018500017A priority Critical patent/JP6902015B2/en
Publication of WO2017141689A1 publication Critical patent/WO2017141689A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to a method for producing a nanodiamond dispersion including a step of eluting and removing a metal component mixed in by pulverization using a pulverizer such as a bead mill.
  • a pulverizer such as a bead mill.
  • nanodiamonds In recent years, development of fine-grained diamond materials called nanodiamonds has been underway. For nanodiamonds, so-called single-digit nanodiamonds having a particle diameter of 10 nm or less may be required depending on applications. Techniques relating to such nanodiamond dispersions are described, for example, in Patent Document 1 and Patent Document 2 below.
  • the nanodiamond having a primary particle size of 10 nm or less exhibits high mechanical strength, high thermal conductivity, high refractive index, and the like.
  • fine particles such as nanodiamonds have a large proportion of surface atoms (particularly surface atoms that are coordinately unsaturated)
  • the sum of van der Waals forces that can act between surface atoms of adjacent particles is large. And is prone to aggregation.
  • a phenomenon called agglutination can occur, in which coulomb interaction between crystal planes of adjacent crystallites contributes and is very tightly assembled.
  • nanodiamond has such a unique property that crystallites or primary particles can interact in a superimposed manner as described above, the primary particles are highly dispersed in, for example, a solvent by dissociating the primary particles of nanodiamond. Creating a state is very difficult.
  • Nanodiamonds take the form of aggregates (secondary particles) in which primary particles are assembled by very strong interaction at the stage of being generated by detonation, for example.
  • a crushing process using a pulverizer such as a bead mill is often employed.
  • the bead mill is a machine for crushing and / or crushing using metal beads, and zirconia beads are mainly used as the metal beads.
  • a mill container having an inner wall coated with zirconia is used.
  • nanodiamonds are crushed using such a bead mill, it is a metal that is very difficult to separate and remove because it has a particle size of several tens of nm or less, which is derived from metal beads or a mill container. It was inevitable that the fine powder was mixed in the nanodiamond, and the problem was that the purity of the nanodiamond decreased due to the mixing of the metal fine powder.
  • an object of the present invention is to achieve a single-digit nanometer with a high purity, in which the amount of metal components mixed is extremely low, through a process of easily and efficiently removing metal fine powder of several tens of nm or less mixed in nanodiamonds by crushing treatment.
  • the object is to provide a method for producing a diamond dispersion.
  • the present inventors have found that the metal component mixed by subjecting the nanodiamond to the crushing process using a pulverizer is subjected to heat treatment of the nanodiamond mixed with the metal component together with sulfuric acid.
  • the metal component can be eluted in sulfuric acid, and the metal component can be efficiently removed from the nanodiamond by separating and removing the sulfuric acid eluted from the metal component. Since the nano-diamond from which the slag has been removed has already been crushed, it can be easily re-dispersed by mixing with a dispersion medium, even if it is agglomerated by the sulfuric acid treatment. It was found that a dispersion was obtained. The present invention has been completed based on these findings.
  • the present invention is a nanodiamond dispersion having a particle diameter D50 (median diameter) of 10 nm or less through the following steps, and the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound
  • a method for producing a nanodiamond dispersion in which a nanodiamond dispersion having a Zr, Al, Y, Fe, and Hf element conversion (weight) of 50 ppm or less of nanodiamond (weight) contained in the dispersion is obtained.
  • Step 1 Nano diamond is subjected to crushing treatment using a pulverizer
  • Step 2 A mixture of nano diamond and sulfuric acid after crushing treatment is subjected to heat treatment
  • Step 3 Sulfate radicals are removed from the mixture after the heat treatment
  • the present invention also provides the method for producing the nanodiamond dispersion liquid, wherein the nanodiamond subjected to step 1 is a detonation nanodiamond.
  • the present invention is also a dispersion of nanodiamond, wherein the nanodiamond in the dispersion has a particle diameter D50 (median diameter) of 10 nm or less, a Zr compound, an Al compound, a Y compound, an Fe compound, and an Hf compound.
  • a nanodiamond dispersion liquid in which the total content (converted to Zr, Al, Y, Fe, Hf elements; weight) is 50 ppm or less of the nanodiamond (weight) in the dispersion liquid is provided.
  • the present invention relates to the following.
  • the manufacturing method of the nano diamond dispersion liquid which obtains the nano diamond dispersion liquid which is 50 ppm or less of the nano diamond (weight) contained in a dispersion liquid.
  • Step 1 Nano diamond is subjected to pulverization using a pulverizer
  • Step 2 A mixture of nano diamond and sulfuric acid after pulverization is subjected to heat treatment
  • Step 3 Sulfate radicals are removed from the mixture after the heat treatment
  • the nanodiamond subjected to the crushing treatment is a nanodiamond dispersion having a pH of 8 or more (preferably 8 to 12, particularly preferably 9 to 11, more preferably 9.5 to 11.5).
  • a method for producing a diamond dispersion is
  • the neutralization treatment is a treatment in which a basic substance or an aqueous solution thereof is added until the pH of the nanodiamond dispersion becomes 12 or more to precipitate a sulfate radical as a salt, according to [12] or [13].
  • a method for producing a nanodiamond dispersion liquid is a treatment of repeatedly washing with water until the pH of the nanodiamond dispersion becomes 6 or more.
  • the neutralization treatment is a treatment in which a basic substance or an aqueous solution thereof is added until the pH of the nanodiamond dispersion becomes 12 or more to precipitate a sulfate radical as a salt, according to [12] or [13].
  • a dispersion of nanodiamond, the particle diameter D50 (median diameter) of nanodiamond in the dispersion being 10 nm or less, and the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound A nanodiamond dispersion in which the amount (Zr, Al, Y, Fe, Hf element conversion; weight) is 50 ppm or less of the nanodiamond (weight) in the dispersion.
  • the nanodiamond dispersion according to [15] wherein the nanodiamond in the nanodiamond dispersion has a zeta potential at pH 8 to 12 of ⁇ 60 to ⁇ 20 mV.
  • the nanodiamond dispersion liquid according to [15] or [16], wherein the dispersion medium for dispersing nanodiamond is water or an aqueous dispersion medium containing 50% by weight or more of water.
  • the Zr compound, the Al compound, the Y compound, the Fe compound, and the Hf compound each include a single metal.
  • the manufacturing method of the nanodiamond dispersion liquid of the present invention has the above-described configuration, the metal component is efficiently removed by a simple method, the amount of the metal component mixed is extremely low, and the nanodiamond dispersion liquid having excellent dispersibility, That is, a single-digit nanodiamond dispersion can be produced.
  • Nanodiamond has high mechanical strength, electrical insulation, excellent thermal conductivity, deodorizing effect, and antibacterial effect
  • the nanodiamond dispersion obtained by the production method of the present invention has the above characteristics. Since the nanodiamond is contained in a highly dispersed state, the above characteristics can be highly expressed. Therefore, it is suitably used as an abrasive, a conductivity imparting material, an insulating material, a deodorant, an antibacterial agent and the like.
  • the method for producing a nanodiamond dispersion of the present invention is a nanodiamond dispersion having a particle diameter D50 (median diameter) of 10 nm or less through the following steps: a Zr compound, an Al compound, a Y compound, an Fe compound, and Hf
  • a nanodiamond dispersion liquid in which the total content of compounds (in terms of Zr, Al, Y, Fe, Hf elements; weight) is 50 ppm or less of the nanodiamond (weight) contained in the dispersion liquid is obtained.
  • Step 1 Nano diamond is subjected to a crushing process using a pulverizer (hereinafter referred to as “crushing process step”).
  • Step 2 The mixture of nano diamond and sulfuric acid after the crushing treatment is subjected to a heat treatment (hereinafter, sometimes referred to as “sulfuric acid treatment step”).
  • Step 3 Remove sulfate radicals from the mixture after the heat treatment (hereinafter referred to as “sulfate radical removal step”).
  • step 1 (cracking treatment step) is produced, for example, through the following production step and purification step (including an acid treatment step, an oxidation treatment step, a pre-cracking treatment step, etc.).
  • Nanodiamonds can be produced, for example, by detonation.
  • the detonation method includes an air-cooled detonation method and a water-cooled detonation method.
  • the air-cooled detonation method is particularly preferable in that nanodiamonds having smaller primary particles can be obtained than the water-cooled detonation method.
  • the detonation may be performed in an air atmosphere, or may be performed in an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • the nanodiamond to be subjected to the crushing treatment in the above step 1 is preferably detonation nanodiamond, that is, nanodiamond produced by detonation, and more preferably air-cooled detonation nanodiamond, that is, air-cooled detonation. Is a nanodiamond produced by
  • a molded explosive with an electric detonator is installed inside a pressure-resistant container for detonation.
  • a metal container such as iron is used.
  • the volume of the container is, for example, 0.5 to 40 m 3 , preferably 2 to 30 m 3 .
  • RDX cyclotrimethylenetrinitroamine
  • TNT / RDX The weight ratio of TNT to RDX is, for example, in the range of 40/60 to 60/40.
  • the electric detonator is then detonated and the explosive is detonated in the container.
  • Detonation refers to an explosion associated with a chemical reaction in which the reaction flame surface moves at a speed exceeding the speed of sound.
  • crude nanodiamonds are generated by the action of the pressure and energy of the shock wave generated by the explosion, using carbon that is liberated due to partial incomplete combustion of the explosive used.
  • the crude nanodiamond obtained through the production process contains metal oxides such as Al, Fe, Co, Cr and Ni contained in the vessel used for the production reaction (for example, Fe 2 O 3 , Fe 3 O 4). , Co 2 O 3 , Co 3 O 4 , NiO, Ni 2 O 3, etc.) are included as metallic impurities, and the metallic impurities cause nano diamond adhesion.
  • by-products such as graphite may be included, and this graphite is derived from carbon that did not form nanodiamond crystals among the carbon released by partial incomplete combustion of the explosive used. This also causes nano diamond adhesion.
  • the purification process is a process for removing these impurities.
  • the acid treatment step is a step of removing the metallic impurities mixed in the crude nanodiamond obtained through the generation step, and an acid is added to the crude nanodiamond dispersion obtained by dispersing the crude nanodiamond in water.
  • the metal impurities are eluted by addition to the acid, and then the acid from which the metal impurities are eluted is separated and removed to remove the metal impurities.
  • a mineral acid is preferable, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, aqua regia and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the concentration of the acid used for the acid treatment is, for example, 1 to 50% by weight.
  • the acid treatment temperature is, for example, 70 to 150 ° C.
  • the acid treatment time is, for example, 0.1 to 24 hours.
  • the acid treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • decantation it is preferable to wash the solids (including nanodiamonds) with water, and it is particularly preferable to repeat the water washing until the pH of the precipitation solution reaches 2 to 3, for example.
  • the oxidation treatment step is a step of removing graphite (graphite) mixed in the crude nanodiamond obtained through the generation step, and a crude nanodiamond dispersion liquid obtained by dispersing the crude nanodiamond in water (preferably, The graphite is removed by causing an oxidizing agent to act on the nanodiamond dispersion obtained through the acid treatment step.
  • the oxidizing agent include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, and salts thereof. These can be used individually by 1 type or in combination of 2 or more types.
  • the concentration of the oxidizing agent used in the oxidation treatment is, for example, 3 to 50% by weight.
  • the amount of the oxidizing agent used in the oxidation treatment is, for example, 300 to 500 parts by weight with respect to 100 parts by weight of the rough nanodiamond subjected to the oxidation treatment.
  • the oxidation treatment temperature is, for example, 100 to 200 ° C.
  • the oxidation treatment time is, for example, 1 to 24 hours.
  • the oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • the oxidation treatment is preferably performed in the presence of an acid (particularly a mineral acid. Examples similar to the mineral acid used in the acid treatment step) can be performed from the viewpoint of improving the graphite removal efficiency.
  • the acid concentration is, for example, 5 to 80% by weight.
  • it is preferable to remove the supernatant for example, by decantation.
  • decantation it is preferable to wash the solid content (including the nanodiamond adherend) with water.
  • the supernatant liquid at the beginning of water washing is colored, it is preferable to repeat the water washing of the solid content until the supernatant liquid becomes transparent visually.
  • an alkali and hydrogen peroxide are reacted with the solution containing the nanodiamond adherend obtained through the oxidation treatment step.
  • the alkali include sodium hydroxide, ammonia, potassium hydroxide and the like.
  • the alkali concentration is preferably 0.1 to 10% by weight, more preferably 0.2 to 8% by weight, and still more preferably 0.5 to 5% by weight.
  • the concentration of hydrogen peroxide is preferably 1 to 15% by weight, more preferably 2 to 10% by weight, and still more preferably 4 to 8% by weight.
  • the temperature for carrying out the reaction is, for example, 40 to 95 ° C., and the reaction time is, for example, 0.5 to 5 hours.
  • the reaction can be performed under reduced pressure, normal pressure, or increased pressure. After the reaction, it is preferable to remove the supernatant by decantation.
  • the pH of the precipitate obtained by the above decantation it is preferable to adjust the pH of the precipitate obtained by the above decantation.
  • an acid for example, hydrochloric acid
  • the pH is adjusted to, for example, 2 to 3. Is preferred.
  • the pre-cracking treatment step next, it is preferable to perform water washing by a centrifugal sedimentation method on the solid content (including the nanodiamond adherend) in the precipitation liquid. More specifically, an operation for performing solid-liquid separation on the precipitate or suspension using a centrifuge, an operation for separating the precipitate from the supernatant, and then ultrapure water for the precipitate. It is preferable to carry out a series of processes including the operation of adding and suspending, for example, repeatedly. This washing with water is preferably carried out until the electrical conductivity per 1% by weight of the solid content of the dispersion becomes, for example, 20 ⁇ S / cm or less (preferably 15 ⁇ S / cm or less).
  • the dispersion after washing with water is preferably acidic, and its pH is, for example, in the range of 3.5 to 6.5, and preferably in the range of 4 to 6. Washing with water until the electrical conductivity value and pH value of the dispersion are within the above ranges is preferable in that it facilitates crushing of nanodiamonds (separation of primary particles from secondary particles) in the next step 1. .
  • the pH of the nanodiamond aggregate-containing dispersion is, for example, 8 or more (for example, 8 to 12), preferably 9 or more (for example, 9 to 11), more preferably 9.5 to 10.5.
  • the solid concentration (nanodiamond concentration) is preferably 2% by weight or more (for example, 2 to 15% by weight), more preferably 4% by weight from the viewpoint of obtaining a single-digit nanodiamond dispersion having a high concentration. % Or more (for example, 4 to 10% by weight).
  • Step 1 is, for example, a step of subjecting nanodiamond obtained by the above method (for example, nanodiamond in a nanodiamond aggregate-containing dispersion) to a pulverization process using a pulverizer.
  • nanodiamond obtained by the above method for example, nanodiamond in a nanodiamond aggregate-containing dispersion
  • pulverization process using a pulverizer.
  • detonation nanodiamonds take the form of aggregates (secondary particles) in which the primary particles are assembled with very strong interactions.
  • the primary particles of nanodiamond can be separated from the nanodiamond adherend (secondary particles) by subjecting to a crushing treatment.
  • the pulverizer examples include a bead mill, a ball mill, a jet mill, and an ultrasonic homogenizer.
  • a bead mill because nanodiamonds can be finely pulverized until, for example, the particle diameter D50 (median diameter) is 10 nm or less.
  • the bead mill is an apparatus having a configuration in which beads are filled in a mill container (or a crushing chamber) having a rotation shaft in the center. By rotating the rotation shaft, motion is given to the beads. The object is crushed by the strong shearing force generated by the movement.
  • the beads those of various materials (for example, zirconia, zirconia-silica ceramics, glass, alumina, steel, etc.) are known. Beads (zirconia beads) are preferably used. Further, as the bead mill, a mill vessel whose inner wall is coated with zirconia can be used.
  • the zirconia beads and zirconia coating are at least one selected from Zr compounds, Al compounds, Y compounds, Fe compounds, and Hf compounds (mainly ZrO 2 , Y 2 O 3 , Al 2 O 3 , HfO). 2 etc.) is included.
  • the zirconia-silica ceramic beads mainly contain ZrO 2 , Y 2 O 3 , SiO 2 , and Al 2 O 3 .
  • step 1 classification may be performed before applying to step 2 to remove coarse nanodiamond particles and the like.
  • the classification process can be performed using, for example, a centrifuge. By performing the classification treatment, a nanodiamond dispersion having a more uniform particle size distribution can be obtained.
  • the so-called zeta potential of the nanodiamond in the nanodiamond dispersion obtained through the above steps is preferably ⁇ 60 to ⁇ 20 mV, more preferably ⁇ 50 to ⁇ 30 mV.
  • the particle diameter D50 (median diameter) is, for example, 10 nm or less (preferably 8 nm or less, particularly preferably 6 nm or less).
  • Step 2 is a step of subjecting the mixture of nano-diamond and sulfuric acid after the crushing treatment obtained through Step 1 to a heat treatment.
  • Step 1 it is inevitable that a component derived from a pulverizer (a fine powder having a particle diameter D50 (median diameter) of, for example, 50 nm or less) is mixed into the nanodiamond by being subjected to a pulverization treatment using a pulverizer. .
  • a component derived from a pulverizer a fine powder having a particle diameter D50 (median diameter) of, for example, 50 nm or less
  • Total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound contained in nano diamond after pulverization treatment obtained through step 1 Is, for example, 3,000 ppm or more (for example, 3,000 to 15,000 ppm) of nanodiamond (weight). Therefore, in Steps 2 and 3, the components derived from the grinder mixed in Step 1 are removed.
  • the nanodiamond subjected to the sulfuric acid treatment step may be a nanodiamond dispersion or a nanodiamond dry powder.
  • the nanodiamond dispersion obtained through step 1 can be used as it is, and when the nanodiamond dry powder is subjected to this step, the nanodiamond dispersion is obtained through step 1.
  • the dried nanodiamond dispersion is subjected to a drying process (for example, spray drying using a spray dryer or evaporation to dryness using an evaporator) to prepare a dry powder and using it. Can do.
  • the sulfuric acid it is preferable to use one having a concentration of, for example, 50% by weight or more (preferably 55% by weight or more, particularly preferably 60% by weight or more).
  • the amount of sulfuric acid used is, for example, 2 volume times or more, preferably 10 volume times or more, particularly preferably 20 volume times or more of nanodiamond (solid content conversion). Use of sulfuric acid in the above range is preferable in that the components derived from the pulverizer can be efficiently removed.
  • the heat treatment temperature of the mixture of nanodiamond and sulfuric acid is, for example, 200 ° C. or higher (preferably 220 ° C. or higher, particularly preferably 240 ° C. or higher).
  • the heat treatment time is, for example, 5 minutes or longer (preferably 15 minutes or longer, particularly preferably 30 minutes or longer).
  • the heat treatment can be performed using, for example, a sand bath, a hot air dryer, a microwave reaction device, or the like.
  • the heat treatment can be performed under normal pressure or under pressure.
  • the components derived from the pulverizer are, for example, Zr compound, Al compound, Y compound, Fe compound, And at least one selected from Hf compounds (mainly ZrO 2 , Y 2 O 3 , Al 2 O 3 , HfO 2 ).
  • Hf compounds mainly ZrO 2 , Y 2 O 3 , Al 2 O 3 , HfO 2
  • components derived from the pulverizer are mainly ZrO 2 , Y 2 O 3 , SiO 2 , and Al 2 O 3 .
  • Step 3 is a step of removing sulfate radicals from the mixture after the sulfuric acid treatment. More specifically, in the sulfuric acid treatment in step 2, it is a step of separating and removing sulfate radicals produced by the dissolution of components derived from the pulverizer into sulfuric acid.
  • the sulfate radical includes unreacted sulfuric acid used in the sulfuric acid treatment step, sulfate ions, metal sulfate, and the like.
  • the method for separating and removing the sulfate radical is not particularly limited, and examples thereof include washing with water and neutralization. These can be performed singly or in combination of two or more.
  • a preferred example of the present invention is a method in which treatment is performed in the order of water washing, neutralization and water washing.
  • the solid content (including nanodiamonds) in the mixture after the sulfuric acid treatment is washed with water.
  • the water washing treatment is preferably performed while removing the supernatant by decantation or centrifugation, and the pH of the supernatant of the mixture after the sulfuric acid treatment is, for example, 6 or more (eg, 6 to 7), It is preferable to repeat the water washing process until it becomes 6.5 or more.
  • the neutralization treatment is performed by adding a basic substance or an aqueous solution thereof.
  • the sulfate radical can be precipitated as a salt by adding a basic substance or an aqueous solution thereof.
  • the basic substance include alkali metal compounds (for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal carbonates such as sodium bicarbonate).
  • alkali metal carboxylate such as sodium acetate and potassium acetate
  • sodium alkoxide such as sodium methoxide and sodium ethoxide
  • alkaline earth metal compound for example, alkaline earth such as magnesium hydroxide and calcium hydroxide
  • Metal hydroxides alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate
  • alkaline earth metal carboxylates such as magnesium acetate and calcium acetate
  • alkaline earth metal alkoxides such as magnesium ethoxide, etc.
  • the basic substance or an aqueous solution thereof it is preferable to add the basic substance or an aqueous solution thereof to a dispersion obtained by dispersing the precipitate obtained through the water washing treatment in water until the pH of the dispersion becomes 12 or more.
  • the water washing treatment is preferably performed again, and the water washing treatment is preferably performed while removing the supernatant by decantation or centrifugation.
  • the precipitate (nanodiamond slurry) obtained through the water washing-neutralization-water washing treatment is excellent in redispersibility, and is mixed with a dispersion medium to disperse to primary particles as if dissolved.
  • the nanodiamond dispersion liquid preferably the primary particles of nanodiamond are dispersed as colloidal particles
  • nanodiamond particle diameter D50 (median diameter) is 10 nm or less (preferably 8 nm or less, particularly preferably 6 nm or less) A dispersion) is obtained.
  • particle diameter D50 is a value that can be measured by a so-called dynamic light scattering method.
  • the nano-diamond obtained by crushing using a bead mill using zirconia beads as a pulverizer or a bead mill equipped with a mill container with an inner wall coated with zirconia is mixed with components derived from the pulverizer.
  • the components derived from the pulverizer can be removed by performing the above steps 1 to 3.
  • the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound in the nanodiamond dispersion obtained by mixing the precipitate obtained through the above steps 1 to 3 with a dispersion medium ( Zr, Al, Y, Fe, Hf element conversion; weight) is 50 ppm or less of nanodiamond (weight) contained in the dispersion, that is, according to the production method of the present invention, inclusion of components derived from a pulverizer A nanodiamond dispersion whose amount is below the detection limit is obtained.
  • the nanodiamond dispersion liquid of the present invention is a nanodiamond dispersion liquid, in which the nanodiamond particle diameter D50 (median diameter) in the dispersion liquid is 10 nm or less, and a Zr compound, Al compound, Y compound, Fe compound, And the total content of Hf compounds (in terms of Zr, Al, Y, Fe, Hf elements; weight) is, for example, 200 ppm or less (preferably 100 ppm or less, particularly preferably 50 ppm or less) of nanodiamond (weight) in the dispersion. .
  • the nanodiamond dispersion liquid of the present invention can be produced, for example, by the method for producing the nanodiamond dispersion liquid.
  • the nanodiamond contained in the nanodiamond dispersion is, for example, detonation nanodiamond (nanodiamond produced by detonation), preferably air-cooled detonation nanodiamond (nanodiamond produced by air-cooled detonation) ).
  • Air-cooled detonation nanodiamonds are preferred in that a nanodiamond dispersion having a smaller particle diameter D50 (median diameter) is obtained because primary particles tend to be smaller than water-cooled detonation nanodiamonds.
  • the dispersion medium contained in the nanodiamond dispersion liquid is a medium for appropriately dispersing nanodiamonds.
  • a solvent in which nanodiamonds can easily disperse examples thereof include water, methanol, ethanol, ethylene glycol, dimethyl sulfoxide, and N-methylpyrrolidone. These can be used alone or in combination of two or more.
  • the zeta potential of nanodiamond affects the dispersion stability of nanodiamond in the dispersion medium.
  • the zeta potential of the nanodiamond contained in the nanodiamond dispersion of the present invention at pH 8-12 is preferably ⁇ 60 to ⁇ 20 mV, more preferably ⁇ 50 to ⁇ 30 mV. Therefore, it is excellent in dispersibility and temporal dispersion stability.
  • the zeta potential of the nanodiamond contained in the nanodiamond dispersion is a value measured for nanodiamond in the nanodiamond dispersion having a nanodiamond concentration of 0.2% by weight at 25 ° C.
  • ultrapure water is used as the diluent.
  • the nanodiamond dispersion liquid of the present invention is a single-digit nanodiamond dispersion liquid with extremely low content of components derived from a pulverizer and excellent dispersion stability. Therefore, the characteristics of nanodiamond (high mechanical strength) , Electrical insulation, excellent thermal conductivity, deodorant effect, antibacterial effect), and can be suitably used as an abrasive, conductivity imparting material, insulating material, deodorant, antibacterial agent, etc. be able to.
  • the nanodiamond dispersion liquid of the present invention is added to a resin and used, the above-described excellent characteristics can be imparted to the resin by adding a small amount.
  • the pH was measured using a pH meter (trade name “Lacom Tester PH110” manufactured by Nikko Hansen Co., Ltd.).
  • Example 1 ⁇ Purification process> (Acid treatment process) 200 g of air-cooled detonation nano diamond cocoon (manufactured by Daicel Corporation) with a primary particle size of nano diamond of 4 to 6 nm was weighed, 2 L of 10 wt% hydrochloric acid aqueous solution was added, and heat-treated under reflux for 1 hour. Went. After cooling, it was washed with water until the pH of the precipitate became 2 by decantation, and the supernatant was removed as much as possible.
  • Acid treatment process 200 g of air-cooled detonation nano diamond cocoon (manufactured by Daicel Corporation) with a primary particle size of nano diamond of 4 to 6 nm was weighed, 2 L of 10 wt% hydrochloric acid aqueous solution was added, and heat-treated under reflux for 1 hour. Went. After cooling, it was washed with water until the pH of the precipitate became 2 by decantation, and the supernatant was removed as much as
  • pre-crushing treatment was performed. Specifically, first, 1 L of a 10 wt% aqueous sodium hydroxide solution and 1 L of a 30 wt% aqueous hydrogen peroxide solution are added to the precipitate obtained by decantation in the above-described oxidation treatment step to form a slurry. The slurry was heat-treated for 1 hour under reflux under normal pressure conditions. The heat treatment temperature was 50 to 105 ° C. After cooling, the supernatant was removed by decantation.
  • hydrochloric acid is added to the precipitate obtained by this decantation to adjust the pH of the precipitate to 2.5, and then the solid content (including the nanodiamond adherent) in this precipitate is centrifuged. Washed with water. Specifically, an operation for performing solid-liquid separation on the precipitate or suspension using a centrifuge, an operation for separating the precipitate from the supernatant, and then ultrapure water for the precipitate. A series of processes including the operation of adding and suspending was repeated until the electrical conductivity of the suspension reached 56 ⁇ S / cm when the solid content concentration (nanodiamond concentration) was adjusted to 6% by weight. It was. The pH of the solution after such washing with water was 4.3.
  • ⁇ Crushing process> Next, the crushing process was performed. Specifically, after adding a sodium hydroxide aqueous solution to 300 mL of the slurry (nanodiamond adherence-containing dispersion) obtained through the pre-crushing treatment step and adjusting the pH to 10, the beads mill dispersion was performed on the slurry. went.
  • the apparatus used was a bead mill RMB manufactured by Imex Corporation. After filling 300 mL of zirconia beads having a diameter of 0.03 mm as a crushing medium, 300 mL of slurry adjusted to pH 10 was added, and the peripheral speed was set to 8 m / s, and crushing was performed for 120 minutes.
  • ⁇ Classification process> The crushed liquid was collected, coarse particles were removed by classification operation by centrifugation, and a nanodiamond dispersion liquid was obtained.
  • the resulting nanodiamond dispersion has a solid content concentration of 5.8%, a particle diameter D50 (median diameter) of 4.3 nm, an electric conductivity of 680 ⁇ S / cm, a pH of 9.34, and the zeta potential of the nanodiamond is ⁇ It was 48 mV.
  • this nanodiamond dispersion was pulverized. Specifically, 100 mL of nanodiamond dispersion liquid was spray-dried. The apparatus used was a spray dryer type B-290 manufactured by Nippon Büch Corporation. This obtained nanodiamond powder (1). The metal component contained in the obtained nanodiamond powder (1) was subjected to ICP emission spectroscopic analysis. The results are shown in Table 1.
  • ⁇ Sulfuric acid treatment process 300 mg of nanodiamond powder (1) was weighed, and 10 mL of 64 wt% sulfuric acid was added thereto to obtain a mixture (1). The resulting mixture (1) was refluxed on a sand bath set at 250 ° C. 40 minutes.
  • the supernatant liquid was removed to obtain a black precipitate on which nanodiamonds had adhered.
  • the nanodiamond was dispersed so as to dissolve, and a nanodiamond dispersion (nanodiamond concentration: 1% by weight) was obtained.
  • the particle diameter D50 (median diameter) of the nanodiamond in the nanodiamond dispersion was 5.3 nm.
  • ICP emission spectroscopic analysis was performed on the metal component contained in the nanodiamond powder (2) obtained by evaporating and drying the water of the nanodiamond dispersion. The results are shown in Table 1.
  • the Zr element, Al element, Y element, Hf element, and Fe element content in the supernatant liquid (1) are all Zr element, Al element, Y element in the nanodiamond powder (1). Since the Zr element, Al element, Y element, Hf element, and Fe element were not detected from the nanodiamond powder (2), the above sulfuric acid The metal components (particularly, Zr compound, Al compound, Y compound, Hf compound, and Fe compound) derived from the bead mill using the zirconia beads contained in the nanodiamond powder (1) were removed by the treatment. I understood it.
  • nanodiamond content in the nanodiamond dispersion is determined by the precision balance of the weighed value of 3 to 5 g of the weighed dispersion and the dried product (powder) remaining after evaporation of water from the weighed dispersion by heating. Based on the weighed value, calculation was performed.
  • the particle diameter D50 (median diameter) of the nanodiamond contained in the nanodiamond dispersion is determined using a dynamic light scattering method (non-contact backscattering method) using an apparatus manufactured by Spectris (trade name “Zetasizer Nano ZS”). ).
  • Spectris trade name “Zetasizer Nano ZS”.
  • For the measurement sample use a nanodiamond dispersion obtained by diluting with ultrapure water so that the nanodiamond concentration is 0.5 to 2.0% by weight and then irradiating with an ultrasonic cleaner. did.
  • the zeta potential of the nanodiamond contained in the nanodiamond dispersion was measured by laser Doppler electrophoresis using an apparatus (trade name “Zetasizer Nano ZS”) manufactured by Spectris.
  • a nanodiamond dispersion obtained by diluting with ultrapure water so that the nanodiamond concentration was 0.2% by weight and then irradiating with an ultrasonic cleaner was used.
  • the pH of the nanodiamond dispersion subjected to the measurement was confirmed using a pH test paper (trade name “Three Band pH Test Paper”, manufactured by ASONE CORPORATION).
  • the method for producing a nanodiamond dispersion liquid of the present invention it is possible to easily and efficiently remove a metal component and produce a nanodiamond dispersion liquid having an extremely low mixing amount of the metal component and excellent dispersibility. it can.
  • the nanodiamond dispersion obtained by the production method of the present invention can highly express properties having high mechanical strength, electrical insulation, excellent thermal conductivity, deodorizing effect, antibacterial effect, It is suitably used as an abrasive, conductivity imparting material, insulating material, deodorant, antibacterial agent and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crushing And Grinding (AREA)

Abstract

Provided is a method for producing a high-purity single-digit nanodiamond dispersion liquid having only a very small amount of contaminant metal components, through a step for simply and efficiently removing fine metal powder mixed with the nanodiamond. The nanodiamond dispersion liquid production method according to the present invention is for obtaining a nanodiamond dispersion liquid which has a particle size D50 (median size) of 10 nm or less, and in which the total content of a Zr compound, an Al compound, an Y compound, an Fe compound, and a Hf compound (in terms of elemental Zr, Al, Y, Fe, and Hf; weight) is 50 ppm or less of nanodiamond contained in the dispersion liquid (weight), through step 1 for subjecting nanodiamond to a pulverization treatment using a pulverizer, step 2 for subjecting a mixture of the nanodiamond after the pulverization treatment and sulfuric acid to a heat treatment, and step 3 for removing sulfate radicals from the mixture after the heat treatment.

Description

ナノダイヤモンド分散液、及びその製造方法Nanodiamond dispersion and method for producing the same
 本発明は、ビーズミル等の粉砕機を用いた解砕処理を施すことにより混入する金属成分を、硫酸に溶出させて除去する工程を含むナノダイヤモンド分散液の製造方法に関する。本願は、2016年2月17日に日本に出願した、特願2016-028004号の優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing a nanodiamond dispersion including a step of eluting and removing a metal component mixed in by pulverization using a pulverizer such as a bead mill. This application claims the priority of Japanese Patent Application No. 2016-028004 for which it applied to Japan on February 17, 2016, and uses the content here.
 近年、ナノダイヤモンドと呼称される微粒子状のダイヤモンド材料の開発が進められている。ナノダイヤモンドは、用途によっては、粒子径が10nm以下のいわゆる一桁ナノダイヤモンドが求められる場合がある。そのようなナノダイヤモンドの分散液に関する技術については、例えば下記の特許文献1、特許文献2等に記載されている。 In recent years, development of fine-grained diamond materials called nanodiamonds has been underway. For nanodiamonds, so-called single-digit nanodiamonds having a particle diameter of 10 nm or less may be required depending on applications. Techniques relating to such nanodiamond dispersions are described, for example, in Patent Document 1 and Patent Document 2 below.
特開2005-001983号公報Japanese Patent Laid-Open No. 2005-001983 特開2010-126669号公報JP 2010-126669 A
 一次粒子の粒子径が10nm以下であるナノダイヤモンドは、高い機械的強度や、高い熱伝導性、高い屈折率などを示す。しかし、ナノダイヤモンドのような微粒子は、表面原子(特に、配位的に不飽和である表面原子)の割合が大きいので、隣接粒子の表面原子間で作用し得るファンデルワールス力の総和が大きくなり、凝集(aggregation)しやすい。これに加えて、ナノダイヤモンドの場合、隣接結晶子の結晶面間クーロン相互作用が寄与して非常に強固に集成する凝着(agglutination)という現象が生じ得る。ナノダイヤモンドは、このように結晶子ないし一次粒子の間が重畳的に相互作用し得る特異な性質を有するため、ナノダイヤモンドの一次粒子間を解離させて当該一次粒子が例えば溶媒中で高分散した状態を創り出すことは、非常に困難である。 The nanodiamond having a primary particle size of 10 nm or less exhibits high mechanical strength, high thermal conductivity, high refractive index, and the like. However, since fine particles such as nanodiamonds have a large proportion of surface atoms (particularly surface atoms that are coordinately unsaturated), the sum of van der Waals forces that can act between surface atoms of adjacent particles is large. And is prone to aggregation. In addition to this, in the case of nanodiamonds, a phenomenon called agglutination can occur, in which coulomb interaction between crystal planes of adjacent crystallites contributes and is very tightly assembled. Since nanodiamond has such a unique property that crystallites or primary particles can interact in a superimposed manner as described above, the primary particles are highly dispersed in, for example, a solvent by dissociating the primary particles of nanodiamond. Creating a state is very difficult.
 ナノダイヤモンドは、例えば爆轟法により生成した段階において、一次粒子間が非常に強く相互作用して集成している凝着体(二次粒子)の形態をとる。そして、二次粒子から一次粒子への解砕には、ビーズミル等の粉砕機を用いた解砕処理が採用されることが多い。 Nanodiamonds take the form of aggregates (secondary particles) in which primary particles are assembled by very strong interaction at the stage of being generated by detonation, for example. For the crushing from the secondary particles to the primary particles, a crushing process using a pulverizer such as a bead mill is often employed.
 前記ビーズミルは金属ビーズを用いて粉砕及び/又は解砕する機械であり、金属ビーズとしては主にジルコニアビーズが用いられる。また、ミル容器として内壁がジルコニアコーティングされているものを使用する場合もある。このようなビーズミルを用いてナノダイヤモンドの解砕処理を行うと、金属ビーズやミル容器に由来する数10nm以下の、ナノダイヤモンドと同程度の粒子径を有するため分離・除去が非常に困難な金属微粉末がナノダイヤモンドに混入することは避けられず、金属微粉末の混入によりナノダイヤモンドの純度が低下することが問題であった。 The bead mill is a machine for crushing and / or crushing using metal beads, and zirconia beads are mainly used as the metal beads. In some cases, a mill container having an inner wall coated with zirconia is used. When nanodiamonds are crushed using such a bead mill, it is a metal that is very difficult to separate and remove because it has a particle size of several tens of nm or less, which is derived from metal beads or a mill container. It was inevitable that the fine powder was mixed in the nanodiamond, and the problem was that the purity of the nanodiamond decreased due to the mixing of the metal fine powder.
 従って、本発明の目的は、解砕処理によりナノダイヤモンドに混入する数10nm以下の金属微粉末を簡便且つ効率よく除去する工程を経て、金属成分の混入量が極めて低い、高純度の一桁ナノダイヤモンド分散液を製造する方法を提供することにある。 Accordingly, an object of the present invention is to achieve a single-digit nanometer with a high purity, in which the amount of metal components mixed is extremely low, through a process of easily and efficiently removing metal fine powder of several tens of nm or less mixed in nanodiamonds by crushing treatment. The object is to provide a method for producing a diamond dispersion.
 本発明者等は上記課題を解決するため鋭意検討した結果、ナノダイヤモンドを粉砕機を使用する解砕処理に付すことで混入した金属成分は、金属成分が混入したナノダイヤモンドを硫酸と共に加熱処理に付すことで、前記金属成分を硫酸中に溶出させることができ、金属成分が溶出した硫酸を分離・除去することで、ナノダイヤモンドから金属成分を効率よく除去することができること、前記方法によって金属成分が除去されたナノダイヤモンドは、既に一度解砕処理が施されているため、たとえ前記硫酸処理により凝着しても、分散媒と混合することで容易に再分散して、一桁ナノダイヤモンドの分散液が得られることを見いだした。本発明はこれらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the metal component mixed by subjecting the nanodiamond to the crushing process using a pulverizer is subjected to heat treatment of the nanodiamond mixed with the metal component together with sulfuric acid. The metal component can be eluted in sulfuric acid, and the metal component can be efficiently removed from the nanodiamond by separating and removing the sulfuric acid eluted from the metal component. Since the nano-diamond from which the slag has been removed has already been crushed, it can be easily re-dispersed by mixing with a dispersion medium, even if it is agglomerated by the sulfuric acid treatment. It was found that a dispersion was obtained. The present invention has been completed based on these findings.
 すなわち、本発明は、下記工程を経て、粒子径D50(メディアン径)が10nm以下のナノダイヤモンド分散液であって、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)が、分散液に含まれるナノダイヤモンド(重量)の50ppm以下であるナノダイヤモンド分散液を得る、ナノダイヤモンド分散液の製造方法を提供する。
工程1:ナノダイヤモンドを粉砕機を使用した解砕処理に付す
工程2:解砕処理後のナノダイヤモンドと硫酸の混合物を加熱処理に付す
工程3:加熱処理後の混合物から硫酸根を除去する
That is, the present invention is a nanodiamond dispersion having a particle diameter D50 (median diameter) of 10 nm or less through the following steps, and the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound ( Provided is a method for producing a nanodiamond dispersion, in which a nanodiamond dispersion having a Zr, Al, Y, Fe, and Hf element conversion (weight) of 50 ppm or less of nanodiamond (weight) contained in the dispersion is obtained.
Step 1: Nano diamond is subjected to crushing treatment using a pulverizer Step 2: A mixture of nano diamond and sulfuric acid after crushing treatment is subjected to heat treatment Step 3: Sulfate radicals are removed from the mixture after the heat treatment
 本発明は、また、工程1に付すナノダイヤモンドが、爆轟法ナノダイヤモンドである前記のナノダイヤモンド分散液の製造方法を提供する。 The present invention also provides the method for producing the nanodiamond dispersion liquid, wherein the nanodiamond subjected to step 1 is a detonation nanodiamond.
 本発明は、また、ナノダイヤモンドの分散液であって、分散液中のナノダイヤモンドの粒子径D50(メディアン径)が10nm以下であり、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)が分散液中のナノダイヤモンド(重量)の50ppm以下である、ナノダイヤモンド分散液を提供する。 The present invention is also a dispersion of nanodiamond, wherein the nanodiamond in the dispersion has a particle diameter D50 (median diameter) of 10 nm or less, a Zr compound, an Al compound, a Y compound, an Fe compound, and an Hf compound. A nanodiamond dispersion liquid in which the total content (converted to Zr, Al, Y, Fe, Hf elements; weight) is 50 ppm or less of the nanodiamond (weight) in the dispersion liquid is provided.
 すなわち、本発明は、以下に関する。
[1] 下記工程を経て、粒子径D50(メディアン径)が10nm以下のナノダイヤモンド分散液であって、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)が、分散液に含まれるナノダイヤモンド(重量)の50ppm以下であるナノダイヤモンド分散液を得る、ナノダイヤモンド分散液の製造方法。
工程1:ナノダイヤモンドを粉砕機を使用した解砕処理に付す
工程2:解砕処理後のナノダイヤモンドと硫酸の混合物を加熱処理に付す
工程3:加熱処理後の混合物から硫酸根を除去する
[2] 工程1に付すナノダイヤモンドが、爆轟法ナノダイヤモンドである、[1]に記載のナノダイヤモンド分散液の製造方法。
[3] 解砕処理に付すナノダイヤモンドが、pH8以上(好ましくは8~12、特に好ましくは9~11、更に好ましくは9.5~11.5)のナノダイヤモンド分散液である、[1]又は[2]に記載のナノダイヤモンド分散液の製造方法。
[4] 粉砕機としてビーズミルを使用する、[1]~[3]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[5] 粉砕機として金属ビーズを用いたビーズミルを使用する、[1]~[3]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[6] 粉砕機として、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物から選択される少なくとも1種を含む素材で形成されたビーズミルを使用する、[1]~[3]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[7] 粉砕機として、ジルコニアビーズを用いたビーズミル、又はミル容器内壁がジルコニアコーティングされているビーズミルを使用する、[1]~[3]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[8] 工程2における硫酸として、50重量%以上(好ましくは55重量%以上、特に好ましくは60重量%以上)の濃度の硫酸を使用する、[1]~[7]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[9] 硫酸の使用量が、ナノダイヤモンド(固形分換算)の2体積倍以上(好ましくは10体積倍以上、特に好ましくは20体積倍以上)である、[1]~[8]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[10] ナノダイヤモンドと硫酸の混合物を200℃以上(好ましくは220℃以上、特に好ましくは240℃以上)の温度で加熱処理する、[1]~[9]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[11] 硫酸根が、硫酸、硫酸イオン、及び金属の硫酸塩から選択される少なくとも1種である、[1]~[10]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[12] 硫酸根の除去を、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物から選択される少なくとも1種が溶出した硫酸を、水洗処理及び/又は中和処理により分離・除去することにより行う、[1]~[11]の何れか1つに記載のナノダイヤモンド分散液の製造方法。
[13] 水洗処理が、ナノダイヤモンド分散液のpHが6以上となるまで繰り返し水洗する処理である、[12]に記載のナノダイヤモンド分散液の製造方法。
[14] 中和処理が、ナノダイヤモンド分散液のpHが12以上となるまで塩基性物質又はその水溶液を添加して硫酸根を塩として析出させる処理である、[12]又は[13]に記載のナノダイヤモンド分散液の製造方法。
[15] ナノダイヤモンドの分散液であって、分散液中のナノダイヤモンドの粒子径D50(メディアン径)が10nm以下であり、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)が分散液中のナノダイヤモンド(重量)の50ppm以下である、ナノダイヤモンド分散液。
[16] ナノダイヤモンド分散液中のナノダイヤモンドのpH8~12におけるゼータ電位が-60~-20mVである、[15]に記載のナノダイヤモンド分散液。
[17] ナノダイヤモンドを分散する分散媒が、水又は水を50重量%以上含む水系分散媒である、[15]又は[16]に記載のナノダイヤモンド分散液。
That is, the present invention relates to the following.
[1] A nanodiamond dispersion having a particle diameter D50 (median diameter) of 10 nm or less through the following steps, and the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound (Zr, Al , Y, Fe, Hf element conversion; weight) The manufacturing method of the nano diamond dispersion liquid which obtains the nano diamond dispersion liquid which is 50 ppm or less of the nano diamond (weight) contained in a dispersion liquid.
Step 1: Nano diamond is subjected to pulverization using a pulverizer Step 2: A mixture of nano diamond and sulfuric acid after pulverization is subjected to heat treatment Step 3: Sulfate radicals are removed from the mixture after the heat treatment [ 2] The method for producing a nanodiamond dispersion liquid according to [1], wherein the nanodiamond to be subjected to step 1 is a detonation nanodiamond.
[3] The nanodiamond subjected to the crushing treatment is a nanodiamond dispersion having a pH of 8 or more (preferably 8 to 12, particularly preferably 9 to 11, more preferably 9.5 to 11.5). [1] Or the manufacturing method of the nano diamond dispersion liquid as described in [2].
[4] The method for producing a nanodiamond dispersion liquid according to any one of [1] to [3], wherein a bead mill is used as a pulverizer.
[5] The method for producing a nanodiamond dispersion liquid according to any one of [1] to [3], wherein a bead mill using metal beads is used as a pulverizer.
[6] As a pulverizer, a bead mill formed of a material containing at least one selected from Zr compounds, Al compounds, Y compounds, Fe compounds, and Hf compounds is used. Any of [1] to [3] The manufacturing method of the nano diamond dispersion liquid as described in any one.
[7] Production of nanodiamond dispersion liquid according to any one of [1] to [3], wherein a bead mill using zirconia beads or a bead mill coated with zirconia on the inner wall of the mill container is used as a pulverizer. Method.
[8] In any one of [1] to [7], sulfuric acid having a concentration of 50% by weight or more (preferably 55% by weight or more, particularly preferably 60% by weight or more) is used as sulfuric acid in Step 2. The manufacturing method of nano diamond dispersion liquid of description.
[9] Any one of [1] to [8], wherein the amount of sulfuric acid used is 2 times or more (preferably 10 times or more, particularly preferably 20 times or more) of nanodiamond (solid content conversion). The manufacturing method of the nano diamond dispersion liquid as described in one.
[10] The nano according to any one of [1] to [9], wherein the mixture of nanodiamond and sulfuric acid is heat-treated at a temperature of 200 ° C. or higher (preferably 220 ° C. or higher, particularly preferably 240 ° C. or higher). A method for producing a diamond dispersion.
[11] The method for producing a nanodiamond dispersion liquid according to any one of [1] to [10], wherein the sulfate radical is at least one selected from sulfuric acid, sulfate ion, and metal sulfate.
[12] For removal of sulfate radicals, sulfuric acid eluted with at least one selected from Zr compounds, Al compounds, Y compounds, Fe compounds, and Hf compounds is separated and removed by water washing treatment and / or neutralization treatment. The method for producing a nanodiamond dispersion liquid according to any one of [1] to [11].
[13] The method for producing a nanodiamond dispersion according to [12], wherein the water-washing treatment is a treatment of repeatedly washing with water until the pH of the nanodiamond dispersion becomes 6 or more.
[14] The neutralization treatment is a treatment in which a basic substance or an aqueous solution thereof is added until the pH of the nanodiamond dispersion becomes 12 or more to precipitate a sulfate radical as a salt, according to [12] or [13]. A method for producing a nanodiamond dispersion liquid.
[15] A dispersion of nanodiamond, the particle diameter D50 (median diameter) of nanodiamond in the dispersion being 10 nm or less, and the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound A nanodiamond dispersion in which the amount (Zr, Al, Y, Fe, Hf element conversion; weight) is 50 ppm or less of the nanodiamond (weight) in the dispersion.
[16] The nanodiamond dispersion according to [15], wherein the nanodiamond in the nanodiamond dispersion has a zeta potential at pH 8 to 12 of −60 to −20 mV.
[17] The nanodiamond dispersion liquid according to [15] or [16], wherein the dispersion medium for dispersing nanodiamond is water or an aqueous dispersion medium containing 50% by weight or more of water.
 尚、本明細書では、Zr化合物、Al化合物、Y化合物、Fe化合物、Hf化合物には、それぞれ金属単体も含まれるものとする。 In this specification, the Zr compound, the Al compound, the Y compound, the Fe compound, and the Hf compound each include a single metal.
 本発明のナノダイヤモンド分散液の製造方法は上記構成を有するため、簡便な方法により、効率よく金属成分を除去して、金属成分の混入量が極めて低く、分散性に優れたナノダイヤモンド分散液、すなわち一桁ナノダイヤモンド分散液、を製造することができる。 Since the manufacturing method of the nanodiamond dispersion liquid of the present invention has the above-described configuration, the metal component is efficiently removed by a simple method, the amount of the metal component mixed is extremely low, and the nanodiamond dispersion liquid having excellent dispersibility, That is, a single-digit nanodiamond dispersion can be produced.
 また、ナノダイヤモンドは高い機械的強度、電気絶縁性、優れた熱伝導性、消臭効果、抗菌効果を有するものであり、本発明の製造方法により得られるナノダイヤモンド分散液は、前記特性を有するナノダイヤモンドを高分散した状態で含有するため、前記特性を高度に発現することができる。そのため、研磨材、導電性付与材、絶縁材料、消臭剤、抗菌剤等として好適に使用される。 Nanodiamond has high mechanical strength, electrical insulation, excellent thermal conductivity, deodorizing effect, and antibacterial effect, and the nanodiamond dispersion obtained by the production method of the present invention has the above characteristics. Since the nanodiamond is contained in a highly dispersed state, the above characteristics can be highly expressed. Therefore, it is suitably used as an abrasive, a conductivity imparting material, an insulating material, a deodorant, an antibacterial agent and the like.
 [ナノダイヤモンド分散液の製造方法]
 本発明のナノダイヤモンド分散液の製造方法は、下記工程を経て、粒子径D50(メディアン径)が10nm以下のナノダイヤモンド分散液であって、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)が、分散液に含まれるナノダイヤモンド(重量)の50ppm以下であるナノダイヤモンド分散液を得るものである。
工程1:ナノダイヤモンドを粉砕機を使用した解砕処理に付す(以後、「解砕処理工程」と称する場合がある)
工程2:解砕処理後のナノダイヤモンドと硫酸の混合物を加熱処理に付す(以後、「硫酸処理工程」と称する場合がある)
工程3:加熱処理後の混合物から硫酸根を除去する(以後、「硫酸根除去工程」と称する場合がある)
[Production method of nanodiamond dispersion]
The method for producing a nanodiamond dispersion of the present invention is a nanodiamond dispersion having a particle diameter D50 (median diameter) of 10 nm or less through the following steps: a Zr compound, an Al compound, a Y compound, an Fe compound, and Hf A nanodiamond dispersion liquid in which the total content of compounds (in terms of Zr, Al, Y, Fe, Hf elements; weight) is 50 ppm or less of the nanodiamond (weight) contained in the dispersion liquid is obtained.
Step 1: Nano diamond is subjected to a crushing process using a pulverizer (hereinafter referred to as “crushing process step”).
Step 2: The mixture of nano diamond and sulfuric acid after the crushing treatment is subjected to a heat treatment (hereinafter, sometimes referred to as “sulfuric acid treatment step”).
Step 3: Remove sulfate radicals from the mixture after the heat treatment (hereinafter referred to as “sulfate radical removal step”).
 工程1(解砕処理工程)に付すナノダイヤモンドは、例えば、下記生成工程及び精製工程(酸処理工程、酸化処理工程、解砕前処理工程等を含む)を経て製造される。 The nanodiamond to be subjected to step 1 (cracking treatment step) is produced, for example, through the following production step and purification step (including an acid treatment step, an oxidation treatment step, a pre-cracking treatment step, etc.).
 (生成工程)
 ナノダイヤモンドは、例えば爆轟法によって製造することができる。前記爆轟法には、空冷式爆轟法と水冷式爆轟法が含まれる。本発明においては、なかでも、空冷式爆轟法が水冷式爆轟法よりも一次粒子が小さいナノダイヤモンドを得ることができるうえで好ましい。尚、爆轟は大気雰囲気下で行っても良く、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下で行っても良い。従って、上記工程1の解砕処理に付すナノダイヤモンドは、爆轟法ナノダイヤモンド、すなわち爆轟法によって生成したナノダイヤモンドが好ましく、より好ましくは空冷式爆轟法ナノダイヤモンド、すなわち空冷式爆轟法によって生成したナノダイヤモンドである。
(Generation process)
Nanodiamonds can be produced, for example, by detonation. The detonation method includes an air-cooled detonation method and a water-cooled detonation method. In the present invention, the air-cooled detonation method is particularly preferable in that nanodiamonds having smaller primary particles can be obtained than the water-cooled detonation method. The detonation may be performed in an air atmosphere, or may be performed in an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere. Therefore, the nanodiamond to be subjected to the crushing treatment in the above step 1 is preferably detonation nanodiamond, that is, nanodiamond produced by detonation, and more preferably air-cooled detonation nanodiamond, that is, air-cooled detonation. Is a nanodiamond produced by
 爆轟法では、まず、成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置する。容器としては、例えば鉄製等の金属製容器が使用される。容器の容積は、例えば0.5~40m3であり、好ましくは2~30m3である。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物を使用することができる。TNTとRDXの重量比(TNT/RDX)は、例えば40/60~60/40の範囲である。 In the detonation method, first, a molded explosive with an electric detonator is installed inside a pressure-resistant container for detonation. As the container, for example, a metal container such as iron is used. The volume of the container is, for example, 0.5 to 40 m 3 , preferably 2 to 30 m 3 . As the explosive, a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine, ie hexogen (RDX), can be used. The weight ratio of TNT to RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40.
 生成工程では、次に、電気雷管を起爆させ、容器内で爆薬を爆轟させる。爆轟とは、化学反応に伴う爆発のうち反応の生じる火炎面が音速を超えた高速で移動するものをいう。爆轟の際、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素を原料として、爆発で生じた衝撃波の圧力とエネルギーの作用によって粗ナノダイヤモンドが生成する。 In the generation process, the electric detonator is then detonated and the explosive is detonated in the container. Detonation refers to an explosion associated with a chemical reaction in which the reaction flame surface moves at a speed exceeding the speed of sound. At the time of detonation, crude nanodiamonds are generated by the action of the pressure and energy of the shock wave generated by the explosion, using carbon that is liberated due to partial incomplete combustion of the explosive used.
 (精製工程)
 生成工程を経て得られた粗ナノダイヤモンドには、生成反応に用いた容器等に含まれるAl、Fe、Co、Cr、Ni等の金属の酸化物(例えば、Fe23、Fe34、Co23、Co34、NiO、Ni23等)が金属性不純物として含まれ、前記金属性不純物はナノダイヤモンドの凝着の原因となる。また、グラファイト等の副生物が含まれる場合もあり、このグラファイトは使用爆薬が部分的に不完全燃焼を起こして遊離した炭素のうちナノダイヤモンド結晶を形成しなかった炭素に由来するものであるが、これもナノダイヤモンドの凝着の原因となる。精製工程は、これらの不純物を除去する工程である。
(Purification process)
The crude nanodiamond obtained through the production process contains metal oxides such as Al, Fe, Co, Cr and Ni contained in the vessel used for the production reaction (for example, Fe 2 O 3 , Fe 3 O 4). , Co 2 O 3 , Co 3 O 4 , NiO, Ni 2 O 3, etc.) are included as metallic impurities, and the metallic impurities cause nano diamond adhesion. In addition, by-products such as graphite may be included, and this graphite is derived from carbon that did not form nanodiamond crystals among the carbon released by partial incomplete combustion of the explosive used. This also causes nano diamond adhesion. The purification process is a process for removing these impurities.
 (精製工程;酸処理工程)
 酸処理工程は、生成工程を経て得られた粗ナノダイヤモンドに混入する前記金属性不純物を除去する工程であり、前記粗ナノダイヤモンドを水中に分散して得られる粗ナノダイヤモンド分散液に、酸を添加して前記金属性不純物を酸に溶出させ、その後、金属性不純物が溶出した酸を分離・除去することで、金属性不純物を除去する。この酸処理に用いられる酸(特に、強酸)としては鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、王水等が挙げられる。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。酸処理に使用される酸の濃度は例えば1~50重量%である。酸処理温度は例えば70~150℃である。酸処理時間は例えば0.1~24時間である。また、酸処理は、減圧下、常圧下、または加圧下で行うことが可能である。金属性不純物が溶出した酸を分離・除去する方法としては、例えばデカンテーションにより行うことが好ましい。また、デカンテーションの際には、固形分(ナノダイヤモンドを含む)の水洗を行うことが好ましく、特に、沈殿液のpHが例えば2~3に至るまで、水洗を反復して行うことが好ましい。
(Purification step; acid treatment step)
The acid treatment step is a step of removing the metallic impurities mixed in the crude nanodiamond obtained through the generation step, and an acid is added to the crude nanodiamond dispersion obtained by dispersing the crude nanodiamond in water. The metal impurities are eluted by addition to the acid, and then the acid from which the metal impurities are eluted is separated and removed to remove the metal impurities. As the acid (particularly strong acid) used in the acid treatment, a mineral acid is preferable, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, aqua regia and the like. These can be used individually by 1 type or in combination of 2 or more types. The concentration of the acid used for the acid treatment is, for example, 1 to 50% by weight. The acid treatment temperature is, for example, 70 to 150 ° C. The acid treatment time is, for example, 0.1 to 24 hours. The acid treatment can be performed under reduced pressure, normal pressure, or increased pressure. As a method for separating and removing the acid from which the metallic impurities are eluted, it is preferable to carry out, for example, decantation. In decantation, it is preferable to wash the solids (including nanodiamonds) with water, and it is particularly preferable to repeat the water washing until the pH of the precipitation solution reaches 2 to 3, for example.
 (精製工程;酸化処理工程)
 酸化処理工程は、生成工程を経て得られた粗ナノダイヤモンドに混入するグラファイト(黒鉛)を除去する工程であり、前記粗ナノダイヤモンドを水中に分散して得られる粗ナノダイヤモンド分散液(好ましくは、上記酸処理工程を経て得られるナノダイヤモンド分散液)に酸化剤を作用させることによりグラファイトを除去する。前記酸化剤としては、例えば、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸、及びこれらの塩が挙げられる。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。酸化処理で使用される酸化剤の濃度は例えば3~50重量%である。酸化処理における酸化剤の使用量は、酸化処理に付される粗ナノダイヤモンド100重量部に対して例えば300~500重量部である。酸化処理温度は、例えば100~200℃である。酸化処理時間は例えば1~24時間である。酸化処理は、減圧下、常圧下、または加圧下で行うことが可能である。また、酸化処理は、グラファイトの除去効率向上の観点から、酸(特に、鉱酸。酸処理工程で使用の鉱酸と同様の例を挙げることができる)の共存下で行うことが好ましい。酸化処理に酸を用いる場合、酸の濃度は例えば5~80重量%である。このような酸化処理の後、例えばデカンテーションにより上澄みを除去することが好ましい。また、デカンテーションの際には、固形分(ナノダイヤモンド凝着体を含む)の水洗を行うことが好ましい。水洗当初の上澄み液は着色しているが、上澄み液が目視で透明になるまで、当該固形分の水洗を反復して行うことが好ましい。
(Purification process; oxidation process)
The oxidation treatment step is a step of removing graphite (graphite) mixed in the crude nanodiamond obtained through the generation step, and a crude nanodiamond dispersion liquid obtained by dispersing the crude nanodiamond in water (preferably, The graphite is removed by causing an oxidizing agent to act on the nanodiamond dispersion obtained through the acid treatment step. Examples of the oxidizing agent include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, and salts thereof. These can be used individually by 1 type or in combination of 2 or more types. The concentration of the oxidizing agent used in the oxidation treatment is, for example, 3 to 50% by weight. The amount of the oxidizing agent used in the oxidation treatment is, for example, 300 to 500 parts by weight with respect to 100 parts by weight of the rough nanodiamond subjected to the oxidation treatment. The oxidation treatment temperature is, for example, 100 to 200 ° C. The oxidation treatment time is, for example, 1 to 24 hours. The oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure. The oxidation treatment is preferably performed in the presence of an acid (particularly a mineral acid. Examples similar to the mineral acid used in the acid treatment step) can be performed from the viewpoint of improving the graphite removal efficiency. When an acid is used for the oxidation treatment, the acid concentration is, for example, 5 to 80% by weight. After such oxidation treatment, it is preferable to remove the supernatant, for example, by decantation. In decantation, it is preferable to wash the solid content (including the nanodiamond adherend) with water. Although the supernatant liquid at the beginning of water washing is colored, it is preferable to repeat the water washing of the solid content until the supernatant liquid becomes transparent visually.
 (精製工程;解砕前処理工程)
 酸化処理工程を経て得られたナノダイヤモンド凝着体を含有する溶液に、アルカリおよび過酸化水素を反応させる工程である。前記アルカリとしては、例えば、水酸化ナトリウム、アンモニア、水酸化カリウム等が挙げられる。アルカリの濃度は、好ましくは0.1~10重量%、より好ましくは0.2~8重量%、更に好ましくは0.5~5重量%である。過酸化水素の濃度は、好ましくは1~15重量%、より好ましくは2~10重量%、更に好ましくは4~8重量%である。前記反応を行う際の温度は例えば40~95℃であり、反応時間は例えば0.5~5時間である。また、前記反応は、減圧下、常圧下、または加圧下で行うことが可能である。反応後は、デカンテーションによって上澄みを除去することが好ましい。
(Purification step; pre-cracking treatment step)
In this step, an alkali and hydrogen peroxide are reacted with the solution containing the nanodiamond adherend obtained through the oxidation treatment step. Examples of the alkali include sodium hydroxide, ammonia, potassium hydroxide and the like. The alkali concentration is preferably 0.1 to 10% by weight, more preferably 0.2 to 8% by weight, and still more preferably 0.5 to 5% by weight. The concentration of hydrogen peroxide is preferably 1 to 15% by weight, more preferably 2 to 10% by weight, and still more preferably 4 to 8% by weight. The temperature for carrying out the reaction is, for example, 40 to 95 ° C., and the reaction time is, for example, 0.5 to 5 hours. The reaction can be performed under reduced pressure, normal pressure, or increased pressure. After the reaction, it is preferable to remove the supernatant by decantation.
 解砕前処理工程では、次に、上述のデカンテーションによって得られた沈殿液のpH調整を行うことが好ましく、例えば酸(例えば、塩酸)を添加してpHを例えば2~3に調整することが好ましい。 In the pre-cracking treatment step, it is preferable to adjust the pH of the precipitate obtained by the above decantation. For example, an acid (for example, hydrochloric acid) is added to adjust the pH to, for example, 2 to 3. Is preferred.
 解砕前処理工程では、次に、沈殿液中の固形分(ナノダイヤモンド凝着体を含む)について遠心沈降法による水洗を行うことが好ましい。より詳細には、遠心分離装置を使用して当該沈殿液ないし懸濁液について固液分離を行う操作、その後に沈殿物と上清液とを分ける操作、および、その後に沈殿物に超純水を加えて懸濁する操作を含む一連の過程を、例えば反復して、行うことが好ましい。この水洗は、分散液の固形分濃度1重量%あたりの電気伝導度が例えば20μS/cm以下(好ましくは、15μS/cm以下)となるまで行うことが好ましい。また、水洗後の分散液は酸性であることが好ましく、そのpHは例えば3.5~6.5の範囲、好ましくは4~6の範囲である。分散液の電気伝導度の値およびpHの値が上記範囲となるまで水洗することは、次の工程1におけるナノダイヤモンドの解砕(二次粒子から一次粒子の分離)が容易となる点で好ましい。 In the pre-cracking treatment step, next, it is preferable to perform water washing by a centrifugal sedimentation method on the solid content (including the nanodiamond adherend) in the precipitation liquid. More specifically, an operation for performing solid-liquid separation on the precipitate or suspension using a centrifuge, an operation for separating the precipitate from the supernatant, and then ultrapure water for the precipitate. It is preferable to carry out a series of processes including the operation of adding and suspending, for example, repeatedly. This washing with water is preferably carried out until the electrical conductivity per 1% by weight of the solid content of the dispersion becomes, for example, 20 μS / cm or less (preferably 15 μS / cm or less). The dispersion after washing with water is preferably acidic, and its pH is, for example, in the range of 3.5 to 6.5, and preferably in the range of 4 to 6. Washing with water until the electrical conductivity value and pH value of the dispersion are within the above ranges is preferable in that it facilitates crushing of nanodiamonds (separation of primary particles from secondary particles) in the next step 1. .
 解砕前処理工程では、次に、ナノダイヤモンド凝着体含有分散液のpHを調整することが好ましく、分散安定性の点から、ナノダイヤモンド凝着体含有分散液のpHを例えば8以上(例えば、8~12)、好ましくは9以上(例えば、9~11)、さらに好ましくは9.5~10.5に調整することが好ましい。また、固形分濃度(ナノダイヤモンドの濃度)は、高濃度のナノダイヤモンド一桁ナノ分散液を得るという観点から、2重量%以上(例えば、2~15重量%)が好ましく、より好ましくは4重量%以上(例えば、4~10重量%)である。 In the pre-crushing treatment step, it is then preferable to adjust the pH of the nanodiamond aggregate-containing dispersion. From the viewpoint of dispersion stability, the pH of the nanodiamond aggregate-containing dispersion is, for example, 8 or more (for example, 8 to 12), preferably 9 or more (for example, 9 to 11), more preferably 9.5 to 10.5. The solid concentration (nanodiamond concentration) is preferably 2% by weight or more (for example, 2 to 15% by weight), more preferably 4% by weight from the viewpoint of obtaining a single-digit nanodiamond dispersion having a high concentration. % Or more (for example, 4 to 10% by weight).
 [工程1:解砕処理工程]
 工程1は、例えば、上記方法により得られたナノダイヤモンド(例えば、ナノダイヤモンド凝着体含有分散液中のナノダイヤモンド)を、粉砕機を使用した解砕処理に付す工程である。上述の精製工程を経て精製された後であっても、例えば爆轟法ナノダイヤモンドは、一次粒子間が非常に強く相互作用して集成している凝着体(二次粒子)の形態をとるものであるが、解砕処理に付すことによりナノダイヤモンド凝着体(二次粒子)からナノダイヤモンドの一次粒子を分離することができる。
[Step 1: Crushing treatment step]
Step 1 is, for example, a step of subjecting nanodiamond obtained by the above method (for example, nanodiamond in a nanodiamond aggregate-containing dispersion) to a pulverization process using a pulverizer. Even after being purified through the above-described purification process, for example, detonation nanodiamonds take the form of aggregates (secondary particles) in which the primary particles are assembled with very strong interactions. However, the primary particles of nanodiamond can be separated from the nanodiamond adherend (secondary particles) by subjecting to a crushing treatment.
 前記粉砕機としては、例えば、ビーズミル、ボールミル、ジェットミル、超音波ホモジナイザー等を挙げることができる。本発明においては、なかでも、ナノダイヤモンドを、例えば粒子径D50(メディアン径)が10nm以下になるまで、微粉砕することができる点でビーズミルを使用することが好ましい。 Examples of the pulverizer include a bead mill, a ball mill, a jet mill, and an ultrasonic homogenizer. In the present invention, it is preferable to use a bead mill because nanodiamonds can be finely pulverized until, for example, the particle diameter D50 (median diameter) is 10 nm or less.
 ビーズミルは、中央に回転軸を備えたミル容器(若しくは、粉砕室)の中にビーズが充填された構成を有する装置であり、前記回転軸を回転させることによりビーズに運動が与えられ、ビーズの運動により生じる強力な剪断力により対象物が解砕される。前記ビーズとしては、種々の素材のもの(例えば、ジルコニア、ジルコニア・シリカ系セラミックス、ガラス、アルミナ、スチール等)が知られているが、解砕処理に伴う摩耗が極めて少ない点で、ジルコニア製のビーズ(ジルコニアビーズ)が好適に用いられる。また、ビーズミルとして、ミル容器の内壁がジルコニアコーティングされているものを使用することもできる。尚、ジルコニアビーズやジルコニアコーティングには、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物から選択される少なくとも1種(主に、ZrO2、Y23、Al23、HfO2等)が含まれる。また、ジルコニア・シリカ系セラミックスビーズには、主にZrO2、Y23、SiO2、Al23が含まれる。 The bead mill is an apparatus having a configuration in which beads are filled in a mill container (or a crushing chamber) having a rotation shaft in the center. By rotating the rotation shaft, motion is given to the beads. The object is crushed by the strong shearing force generated by the movement. As the beads, those of various materials (for example, zirconia, zirconia-silica ceramics, glass, alumina, steel, etc.) are known. Beads (zirconia beads) are preferably used. Further, as the bead mill, a mill vessel whose inner wall is coated with zirconia can be used. The zirconia beads and zirconia coating are at least one selected from Zr compounds, Al compounds, Y compounds, Fe compounds, and Hf compounds (mainly ZrO 2 , Y 2 O 3 , Al 2 O 3 , HfO). 2 etc.) is included. The zirconia-silica ceramic beads mainly contain ZrO 2 , Y 2 O 3 , SiO 2 , and Al 2 O 3 .
 工程1終了後、工程2に付す前に分級処理を行って、ナノダイヤモンド粗大粒子等を除去してもよい。分級処理は、例えば、遠心分離器等を用いて行うことができる。分級処理を施すことにより、より均一な粒度分布を有するナノダイヤモンド分散液が得られる。 After the completion of step 1, classification may be performed before applying to step 2 to remove coarse nanodiamond particles and the like. The classification process can be performed using, for example, a centrifuge. By performing the classification treatment, a nanodiamond dispersion having a more uniform particle size distribution can be obtained.
 上記工程を経て得られるナノダイヤモンド分散液中のナノダイヤモンドのいわゆるゼータ電位は、好ましくは-60~-20mVであり、より好ましくは-50~-30mVである。また、粒子径D50(メディアン径)は、例えば10nm以下(好ましくは8nm以下、特に好ましくは6nm以下)である。 The so-called zeta potential of the nanodiamond in the nanodiamond dispersion obtained through the above steps is preferably −60 to −20 mV, more preferably −50 to −30 mV. The particle diameter D50 (median diameter) is, for example, 10 nm or less (preferably 8 nm or less, particularly preferably 6 nm or less).
 [工程2:硫酸処理工程]
 工程2は、工程1を経て得られた解砕処理後のナノダイヤモンドと硫酸の混合物を加熱処理に付す工程である。工程1において、粉砕機を使用した解砕処理に付すことにより、ナノダイヤモンドに粉砕機由来の成分(粒子径D50(メディアン径)が、例えば50nm以下の微粉末)が混入することは避けられない。工程1を経て得られた解砕処理後のナノダイヤモンドに含まれるZr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)は、ナノダイヤモンド(重量)の例えば3,000ppm以上(例えば3,000~15,000ppm)である。そこで、工程2、3において、工程1で混入した粉砕機由来の成分の除去を行う。
[Step 2: Sulfuric acid treatment step]
Step 2 is a step of subjecting the mixture of nano-diamond and sulfuric acid after the crushing treatment obtained through Step 1 to a heat treatment. In Step 1, it is inevitable that a component derived from a pulverizer (a fine powder having a particle diameter D50 (median diameter) of, for example, 50 nm or less) is mixed into the nanodiamond by being subjected to a pulverization treatment using a pulverizer. . Total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound contained in nano diamond after pulverization treatment obtained through step 1 (in terms of Zr, Al, Y, Fe, Hf elements; weight) ) Is, for example, 3,000 ppm or more (for example, 3,000 to 15,000 ppm) of nanodiamond (weight). Therefore, in Steps 2 and 3, the components derived from the grinder mixed in Step 1 are removed.
 硫酸処理工程に付すナノダイヤモンドは、ナノダイヤモンド分散液であっても、ナノダイヤモンド乾燥粉体であっても良い。ナノダイヤモンド分散液を本工程に付す場合は、工程1を経て得られたナノダイヤモンド分散液をそのまま使用することができ、ナノダイヤモンド乾燥粉体を本工程に付す場合は、工程1を経て得られたナノダイヤモンド分散液を、乾燥処理(例えば、噴霧乾燥装置を使用して行う噴霧乾燥や、エバポレーターを使用して行う蒸発乾固)に付して乾燥粉体を調製し、それを使用することができる。 The nanodiamond subjected to the sulfuric acid treatment step may be a nanodiamond dispersion or a nanodiamond dry powder. When the nanodiamond dispersion is subjected to this step, the nanodiamond dispersion obtained through step 1 can be used as it is, and when the nanodiamond dry powder is subjected to this step, the nanodiamond dispersion is obtained through step 1. The dried nanodiamond dispersion is subjected to a drying process (for example, spray drying using a spray dryer or evaporation to dryness using an evaporator) to prepare a dry powder and using it. Can do.
 前記硫酸としては、濃度が例えば50重量%以上(好ましくは55重量%以上、特に好ましくは60重量%以上)のものを使用することが好ましい。 As the sulfuric acid, it is preferable to use one having a concentration of, for example, 50% by weight or more (preferably 55% by weight or more, particularly preferably 60% by weight or more).
 硫酸の使用量は、ナノダイヤモンド(固形分換算)の、例えば2体積倍以上、好ましくは10体積倍以上、特に好ましくは20体積倍以上である。硫酸を上記範囲で使用すると、効率よく粉砕機由来の成分を除去することができる点で好ましい。 The amount of sulfuric acid used is, for example, 2 volume times or more, preferably 10 volume times or more, particularly preferably 20 volume times or more of nanodiamond (solid content conversion). Use of sulfuric acid in the above range is preferable in that the components derived from the pulverizer can be efficiently removed.
 ナノダイヤモンドと硫酸の混合物の加熱処理温度は、例えば200℃以上(好ましくは220℃以上、特に好ましくは240℃以上)である。また、加熱処理時間は、例えば5分以上(好ましくは15分以上、特に好ましくは30分以上)である。本発明においては、特に、還流法による加熱処理を行うことが、硫酸濃度を一定に保持することができ、より効率よく粉砕機由来の成分を除去することができる点で好ましい。 The heat treatment temperature of the mixture of nanodiamond and sulfuric acid is, for example, 200 ° C. or higher (preferably 220 ° C. or higher, particularly preferably 240 ° C. or higher). The heat treatment time is, for example, 5 minutes or longer (preferably 15 minutes or longer, particularly preferably 30 minutes or longer). In the present invention, it is particularly preferable to perform the heat treatment by the reflux method in that the sulfuric acid concentration can be kept constant and the components derived from the pulverizer can be more efficiently removed.
 加熱処理は、例えば、サンドバス、熱風乾燥機、マイクロウェーブ反応装置等を使用して行うことができる。また、加熱処理は、常圧下、または加圧下で行うことが可能である。ナノダイヤモンドと硫酸の混合物を加熱処理に付すことにより、ナノダイヤモンドに混入した前記粉砕機由来の成分を硫酸中に溶出させることができる。例えば、粉砕機としてジルコニアビーズを用いたビーズミル、又はミル容器の内壁がジルコニアコーティングされているビーズミルを使用した場合の粉砕機由来の成分は、例えば、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物から選択される少なくとも1種(主に、ZrO2、Y23、Al23、HfO2)である。また、粉砕機としてジルコニア・シリカ系セラミックスビーズを用いたビーズミルを使用した場合の粉砕機由来の成分は、主にZrO2、Y23、SiO2、Al23である。 The heat treatment can be performed using, for example, a sand bath, a hot air dryer, a microwave reaction device, or the like. The heat treatment can be performed under normal pressure or under pressure. By subjecting the mixture of nanodiamond and sulfuric acid to a heat treatment, components derived from the pulverizer mixed in nanodiamond can be eluted in sulfuric acid. For example, when using a bead mill using zirconia beads as a pulverizer, or a bead mill in which the inner wall of the mill container is coated with zirconia, the components derived from the pulverizer are, for example, Zr compound, Al compound, Y compound, Fe compound, And at least one selected from Hf compounds (mainly ZrO 2 , Y 2 O 3 , Al 2 O 3 , HfO 2 ). In addition, when a bead mill using zirconia-silica ceramic beads is used as a pulverizer, components derived from the pulverizer are mainly ZrO 2 , Y 2 O 3 , SiO 2 , and Al 2 O 3 .
 [工程3:硫酸根除去工程]
 工程3は、硫酸処理後の混合物から硫酸根を除去する工程である。より詳細には、工程2における硫酸処理において、硫酸中に粉砕機由来の成分が溶出することにより生成した硫酸根を分離・除去する工程である。尚、前記硫酸根には、硫酸処理工程で使用した硫酸の未反応分、硫酸イオン、金属の硫酸塩等が含まれる。
[Step 3: Sulfate radical removal step]
Step 3 is a step of removing sulfate radicals from the mixture after the sulfuric acid treatment. More specifically, in the sulfuric acid treatment in step 2, it is a step of separating and removing sulfate radicals produced by the dissolution of components derived from the pulverizer into sulfuric acid. The sulfate radical includes unreacted sulfuric acid used in the sulfuric acid treatment step, sulfate ions, metal sulfate, and the like.
 硫酸根を分離・除去する方法としては、特に制限されることはないが、例えば、水洗、中和等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて行うことができる。本発明の好ましい一例としては、水洗-中和-水洗の順に処理を施す方法が挙げられる。 The method for separating and removing the sulfate radical is not particularly limited, and examples thereof include washing with water and neutralization. These can be performed singly or in combination of two or more. A preferred example of the present invention is a method in which treatment is performed in the order of water washing, neutralization and water washing.
 水洗処理では、硫酸処理後の混合物中の固形分(ナノダイヤモンドを含む)の水洗を行う。また、水洗処理は、デカンテーション又は遠心分離等により、上清液を除去しつつ行うことが好ましく、硫酸処理後の混合物の上清液のpHが、例えば6以上(例えば、6~7)、好ましくは6.5以上になるまで水洗処理を繰り返し行うことが好ましい。 In the water washing treatment, the solid content (including nanodiamonds) in the mixture after the sulfuric acid treatment is washed with water. The water washing treatment is preferably performed while removing the supernatant by decantation or centrifugation, and the pH of the supernatant of the mixture after the sulfuric acid treatment is, for example, 6 or more (eg, 6 to 7), It is preferable to repeat the water washing process until it becomes 6.5 or more.
 中和処理は、塩基性物質又はその水溶液を添加することにより行われる。塩基性物質又はその水溶液を添加することで、硫酸根を塩として析出させることができる。前記塩基性物質としては、例えば、アルカリ金属化合物(例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属カルボン酸塩;ナトリウムメトキシド、ナトリウムエトキシドなどのナトリウムアルコキシドなど)、アルカリ土類金属化合物(例えば、水酸化マグネシウム、水酸化カルシウムなどのアルカリ土類金属水酸化物;炭酸マグネシウム、炭酸カルシウムなどのアルカリ土類金属炭酸塩;酢酸マグネシウム、酢酸カルシウムなどのアルカリ土類金属カルボン酸塩;マグネシウムエトキシドなどのアルカリ土類金属アルコキシドなど)などを使用できる。 The neutralization treatment is performed by adding a basic substance or an aqueous solution thereof. The sulfate radical can be precipitated as a salt by adding a basic substance or an aqueous solution thereof. Examples of the basic substance include alkali metal compounds (for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal carbonates such as sodium bicarbonate). Hydrogen salt; alkali metal carboxylate such as sodium acetate and potassium acetate; sodium alkoxide such as sodium methoxide and sodium ethoxide), alkaline earth metal compound (for example, alkaline earth such as magnesium hydroxide and calcium hydroxide) Metal hydroxides; alkaline earth metal carbonates such as magnesium carbonate and calcium carbonate; alkaline earth metal carboxylates such as magnesium acetate and calcium acetate; alkaline earth metal alkoxides such as magnesium ethoxide, etc.) .
 本発明においては、水洗処理を経て得られた沈殿物を水に分散して得られる分散液に、前記塩基性物質又はその水溶液を、分散液のpHが12以上になるまで添加することが好ましい。 In the present invention, it is preferable to add the basic substance or an aqueous solution thereof to a dispersion obtained by dispersing the precipitate obtained through the water washing treatment in water until the pH of the dispersion becomes 12 or more. .
 中和処理後は、再び水洗処理を施すことが好ましく、水洗処理はデカンテーション又は遠心分離等により上清液を除去しつつ行うことが好ましい。本発明では、中和処理を経て得られたpHが12以上の分散液を、上清液のpHが例えば11~12(好ましくは10~11)になるまで、水洗処理を繰り返し行うことが好ましい。 After the neutralization treatment, the water washing treatment is preferably performed again, and the water washing treatment is preferably performed while removing the supernatant by decantation or centrifugation. In the present invention, it is preferable to repeatedly carry out the water washing treatment of the dispersion liquid obtained through the neutralization treatment until the pH of the supernatant becomes, for example, 11 to 12 (preferably 10 to 11). .
 前記水洗-中和-水洗処理を経て得られた沈殿物(ナノダイヤモンドスラリー)は再分散性に優れ、分散媒と混合することで、あたかも溶解するかのように一次粒子にまで分散して、含有するナノダイヤモンドの粒子径D50(メディアン径)が10nm以下(好ましくは8nm以下、特に好ましくは6nm以下)であるナノダイヤモンド分散液(好ましくは、ナノダイヤモンドの一次粒子がコロイド粒子として分散する黒色透明の分散液)が得られる。尚、本明細書において「粒子径D50」は、いわゆる動的光散乱法によって測定できる値である。 The precipitate (nanodiamond slurry) obtained through the water washing-neutralization-water washing treatment is excellent in redispersibility, and is mixed with a dispersion medium to disperse to primary particles as if dissolved. The nanodiamond dispersion liquid (preferably the primary particles of nanodiamond are dispersed as colloidal particles) whose nanodiamond particle diameter D50 (median diameter) is 10 nm or less (preferably 8 nm or less, particularly preferably 6 nm or less) A dispersion) is obtained. In this specification, “particle diameter D50” is a value that can be measured by a so-called dynamic light scattering method.
 例えば、粉砕機としてジルコニアビーズを使用したビーズミル、若しくは内壁がジルコニアコーティングされたミル容器を備えたビーズミルを使用して解砕処理を施して得られたナノダイヤモンドには、粉砕機由来の成分の混入が避けられないが、上記工程1~3に付すことにより粉砕機由来の成分を除去することができる。そのため、上記工程1~3を経て得られた沈殿物を分散媒と混合して得られるナノダイヤモンド分散液中における、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)は、分散液に含まれるナノダイヤモンド(重量)の50ppm以下である、すなわち、本発明の製造方法によれば、粉砕機由来の成分の含有量が検出限界以下である、ナノダイヤモンド分散液が得られる。 For example, the nano-diamond obtained by crushing using a bead mill using zirconia beads as a pulverizer or a bead mill equipped with a mill container with an inner wall coated with zirconia is mixed with components derived from the pulverizer. However, the components derived from the pulverizer can be removed by performing the above steps 1 to 3. Therefore, the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound in the nanodiamond dispersion obtained by mixing the precipitate obtained through the above steps 1 to 3 with a dispersion medium ( Zr, Al, Y, Fe, Hf element conversion; weight) is 50 ppm or less of nanodiamond (weight) contained in the dispersion, that is, according to the production method of the present invention, inclusion of components derived from a pulverizer A nanodiamond dispersion whose amount is below the detection limit is obtained.
 [ナノダイヤモンド分散液]
 本発明のナノダイヤモンド分散液は、ナノダイヤモンドの分散液であって、分散液中のナノダイヤモンドの粒子径D50(メディアン径)が10nm以下であり、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)が分散液中のナノダイヤモンド(重量)の例えば200ppm以下(好ましくは100ppm以下、特に好ましくは50ppm以下)である。本発明のナノダイヤモンド分散液は、例えば、上記ナノダイヤモンド分散液の製造方法により製造できる。
[Nanodiamond dispersion]
The nanodiamond dispersion liquid of the present invention is a nanodiamond dispersion liquid, in which the nanodiamond particle diameter D50 (median diameter) in the dispersion liquid is 10 nm or less, and a Zr compound, Al compound, Y compound, Fe compound, And the total content of Hf compounds (in terms of Zr, Al, Y, Fe, Hf elements; weight) is, for example, 200 ppm or less (preferably 100 ppm or less, particularly preferably 50 ppm or less) of nanodiamond (weight) in the dispersion. . The nanodiamond dispersion liquid of the present invention can be produced, for example, by the method for producing the nanodiamond dispersion liquid.
 ナノダイヤモンド分散液に含まれるナノダイヤモンドは、例えば爆轟法ナノダイヤモンド(爆轟法によって生成したナノダイヤモンド)であり、好ましくは空冷式爆轟法ナノダイヤモンド(空冷式爆轟法によって生成したナノダイヤモンド)である。空冷式爆轟法ナノダイヤモンドは、水冷式爆轟法ナノダイヤモンドよりも、一次粒子が小さい傾向にあるので、より小さな粒子径D50(メディアン径)を有するナノダイヤモンド分散液が得られる点で好ましい。 The nanodiamond contained in the nanodiamond dispersion is, for example, detonation nanodiamond (nanodiamond produced by detonation), preferably air-cooled detonation nanodiamond (nanodiamond produced by air-cooled detonation) ). Air-cooled detonation nanodiamonds are preferred in that a nanodiamond dispersion having a smaller particle diameter D50 (median diameter) is obtained because primary particles tend to be smaller than water-cooled detonation nanodiamonds.
 ナノダイヤモンド分散液に含まれる分散媒は、ナノダイヤモンドを適切に分散させるための媒体である。分散媒としては、ナノダイヤモンドが易分散性を示し得る溶媒を使用することが好ましく、例えば、水、メタノール、エタノール、エチレングリコール、ジメチルスルホキシド、N-メチルピロリドン等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。本発明においては、なかでも、ナノダイヤモンドの分散性に特に優れる点で、水、または、水を50重量%以上含む水系分散媒を使用することが好ましい。 The dispersion medium contained in the nanodiamond dispersion liquid is a medium for appropriately dispersing nanodiamonds. As the dispersion medium, it is preferable to use a solvent in which nanodiamonds can easily disperse, and examples thereof include water, methanol, ethanol, ethylene glycol, dimethyl sulfoxide, and N-methylpyrrolidone. These can be used alone or in combination of two or more. In the present invention, it is particularly preferable to use water or an aqueous dispersion medium containing 50% by weight or more of water because it is particularly excellent in dispersibility of nanodiamonds.
 ナノダイヤモンドのゼータ電位は、分散媒中でのナノダイヤモンドの分散安定性に影響を与えるものである。本発明のナノダイヤモンド分散液に含まれるナノダイヤモンドのpH8~12におけるゼータ電位は、好ましくは-60~-20mVであり、より好ましくは-50~-30mVである。そのため、分散性、及び経時分散安定性に優れる。尚、本明細書では、ナノダイヤモンド分散液に含まれるナノダイヤモンドのゼータ電位は、25℃において、ナノダイヤモンド濃度が0.2重量%のナノダイヤモンド分散液におけるナノダイヤモンドについて測定される値とする。ナノダイヤモンド濃度0.2重量%のナノダイヤモンド分散液の調製のためにナノダイヤモンド分散液の原液を希釈する必要がある場合には、希釈液として超純水を用いる。 The zeta potential of nanodiamond affects the dispersion stability of nanodiamond in the dispersion medium. The zeta potential of the nanodiamond contained in the nanodiamond dispersion of the present invention at pH 8-12 is preferably −60 to −20 mV, more preferably −50 to −30 mV. Therefore, it is excellent in dispersibility and temporal dispersion stability. In the present specification, the zeta potential of the nanodiamond contained in the nanodiamond dispersion is a value measured for nanodiamond in the nanodiamond dispersion having a nanodiamond concentration of 0.2% by weight at 25 ° C. When it is necessary to dilute the stock solution of the nanodiamond dispersion for the preparation of the nanodiamond dispersion having a nanodiamond concentration of 0.2% by weight, ultrapure water is used as the diluent.
 本発明のナノダイヤモンド分散液は、上述の通り、粉砕機由来の成分の含有量が極めて低く、分散安定性に優れた一桁ナノダイヤモンド分散液であるため、ナノダイヤモンドの特性(高い機械的強度、電気絶縁性、優れた熱伝導性、消臭効果、抗菌効果)を高度に発現することができ、研磨材、導電性付与材、絶縁材料、消臭剤、抗菌剤等として好適に使用することができる。例えば、本発明のナノダイヤモンド分散液を樹脂に添加して使用する場合は、少量の添加により前記の優れた特性を樹脂に付与することができる。 As described above, the nanodiamond dispersion liquid of the present invention is a single-digit nanodiamond dispersion liquid with extremely low content of components derived from a pulverizer and excellent dispersion stability. Therefore, the characteristics of nanodiamond (high mechanical strength) , Electrical insulation, excellent thermal conductivity, deodorant effect, antibacterial effect), and can be suitably used as an abrasive, conductivity imparting material, insulating material, deodorant, antibacterial agent, etc. be able to. For example, when the nanodiamond dispersion liquid of the present invention is added to a resin and used, the above-described excellent characteristics can be imparted to the resin by adding a small amount.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。尚、pHは、pH計(商品名「ラコムテスター PH110」、ニッコー・ハンセン(株)製)を使用して測定した。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The pH was measured using a pH meter (trade name “Lacom Tester PH110” manufactured by Nikko Hansen Co., Ltd.).
 実施例1
 <精製工程>
 (酸処理工程)
 ナノダイヤモンドの一次粒子径が4~6nmである空冷式爆轟法ナノダイヤモンド煤((株)ダイセル製)を200g秤量し、10重量%塩酸水溶液を2L加えた後、還流下で1時間加熱処理を行った。冷却後、デカンテーションにより、沈殿液のpHが2になるまで水洗を行い、上澄みをできるだけ除いた。
Example 1
<Purification process>
(Acid treatment process)
200 g of air-cooled detonation nano diamond cocoon (manufactured by Daicel Corporation) with a primary particle size of nano diamond of 4 to 6 nm was weighed, 2 L of 10 wt% hydrochloric acid aqueous solution was added, and heat-treated under reflux for 1 hour. Went. After cooling, it was washed with water until the pH of the precipitate became 2 by decantation, and the supernatant was removed as much as possible.
 (酸化処理工程)
 デカンテーションによって得られた沈殿液に、60重量%硫酸水溶液2L、及び50重量%クロム酸水溶液2Lを加えた後、還流下で5時間加熱処理を行った。冷却後、デカンテーションにより、上澄みの着色が消えるまで洗水洗を行い、上澄みをできるだけ除いた。得られた沈殿液中のナノダイヤモンド凝着体の粒子径D50(メディアン径)は2μmであった。
(Oxidation process)
After adding 2 L of 60 wt% sulfuric acid aqueous solution and 2 L of 50 wt% chromic acid aqueous solution to the precipitate obtained by decantation, heat treatment was performed under reflux for 5 hours. After cooling, washing was carried out by decantation until the coloring of the supernatant disappeared, and the supernatant was removed as much as possible. The particle diameter D50 (median diameter) of the nanodiamond aggregate in the obtained precipitation liquid was 2 μm.
 (解砕前処理工程)
 次に、解砕前処理を行った。具体的には、まず、上述の酸化処理工程におけるデカンテーションによって得られた沈殿液に、10重量%水酸化ナトリウム水溶液1Lと30重量%過酸化水素水溶液1Lとを加えてスラリーとした後、このスラリーに対し、常圧条件での還流下で1時間の加熱処理を行った。この加熱処理温度は50~105℃であった。冷却後、デカンテーションによって上澄みを除いた。次に、このデカンテーションによって得られた沈殿液に塩酸を加えて沈殿液のpHを2.5に調整した後、この沈殿液中の固形分(ナノダイヤモンド凝着体を含む)について遠心沈降法による水洗を行った。具体的には、遠心分離装置を使用して当該沈殿液ないし懸濁液について固液分離を行う操作、その後に沈殿物と上清液とを分ける操作、及び、その後に沈殿物に超純水を加えて懸濁する操作を含む一連の過程を、固形分濃度(ナノダイヤモンド濃度)を6重量%に調整したときの懸濁液の電気伝導度が56μS/cmとなるまで、反復して行った。このような水洗後の溶液のpHは4.3であった。
(Processing before crushing)
Next, pre-crushing treatment was performed. Specifically, first, 1 L of a 10 wt% aqueous sodium hydroxide solution and 1 L of a 30 wt% aqueous hydrogen peroxide solution are added to the precipitate obtained by decantation in the above-described oxidation treatment step to form a slurry. The slurry was heat-treated for 1 hour under reflux under normal pressure conditions. The heat treatment temperature was 50 to 105 ° C. After cooling, the supernatant was removed by decantation. Next, hydrochloric acid is added to the precipitate obtained by this decantation to adjust the pH of the precipitate to 2.5, and then the solid content (including the nanodiamond adherent) in this precipitate is centrifuged. Washed with water. Specifically, an operation for performing solid-liquid separation on the precipitate or suspension using a centrifuge, an operation for separating the precipitate from the supernatant, and then ultrapure water for the precipitate. A series of processes including the operation of adding and suspending was repeated until the electrical conductivity of the suspension reached 56 μS / cm when the solid content concentration (nanodiamond concentration) was adjusted to 6% by weight. It was. The pH of the solution after such washing with water was 4.3.
 <解砕処理工程>
 次に、解砕処理を行った。具体的には、解砕前処理工程を経て得られたスラリー(ナノダイヤモンド凝着体含有分散液)300mLに水酸化ナトリウム水溶液を加えてpHを10に調整した後、当該スラリーについて、ビーズミル分散を行った。装置は、アイメックス株式会社製ビーズミルRMBを使用した。解砕メディアである直径0.03mmのジルコニアビーズを300mL充填した後、pHを10に調整したスラリー300mLを加え、周速を8m/sに設定して120分間の解砕を行った。
<Crushing process>
Next, the crushing process was performed. Specifically, after adding a sodium hydroxide aqueous solution to 300 mL of the slurry (nanodiamond adherence-containing dispersion) obtained through the pre-crushing treatment step and adjusting the pH to 10, the beads mill dispersion was performed on the slurry. went. The apparatus used was a bead mill RMB manufactured by Imex Corporation. After filling 300 mL of zirconia beads having a diameter of 0.03 mm as a crushing medium, 300 mL of slurry adjusted to pH 10 was added, and the peripheral speed was set to 8 m / s, and crushing was performed for 120 minutes.
 <分級処理工程>
 解砕液を回収し、遠心分離による分級操作で粗大粒子を除去して、ナノダイヤモンド分散液を得た。得られたナノダイヤモンド分散液の固形分濃度は5.8%、粒子径D50(メディアン径)は4.3nm、電気伝導度は680μS/cm、pHは9.34、ナノダイヤモンドのゼータ電位は-48mVであった。
<Classification process>
The crushed liquid was collected, coarse particles were removed by classification operation by centrifugation, and a nanodiamond dispersion liquid was obtained. The resulting nanodiamond dispersion has a solid content concentration of 5.8%, a particle diameter D50 (median diameter) of 4.3 nm, an electric conductivity of 680 μS / cm, a pH of 9.34, and the zeta potential of the nanodiamond is − It was 48 mV.
 次に、このナノダイヤモンド分散液の粉末化を行った。具体的には、ナノダイヤモンド分散液100mLを噴霧乾燥した。装置は、日本ビュッヒ株式会社製スプレードライヤー B-290型を使用した。これにより、ナノダイヤモンド粉体(1)を得た。得られたナノダイヤモンド粉体(1)中に含まれる金属成分についてICP発光分光分析を行った。その結果を表1に示す。 Next, this nanodiamond dispersion was pulverized. Specifically, 100 mL of nanodiamond dispersion liquid was spray-dried. The apparatus used was a spray dryer type B-290 manufactured by Nippon Büch Corporation. This obtained nanodiamond powder (1). The metal component contained in the obtained nanodiamond powder (1) was subjected to ICP emission spectroscopic analysis. The results are shown in Table 1.
 <硫酸処理工程>
 ナノダイヤモンド粉体(1)を300mg秤量し、そこに、64重量%硫酸を10mL加えて混合物(1)を得、得られた混合物(1)について250℃に設定したサンドバス上で還流処理を40分間行った。
<Sulfuric acid treatment process>
300 mg of nanodiamond powder (1) was weighed, and 10 mL of 64 wt% sulfuric acid was added thereto to obtain a mixture (1). The resulting mixture (1) was refluxed on a sand bath set at 250 ° C. 40 minutes.
 <硫酸根除去工程>
 還流処理後の混合物(1)について、遠心分離装置を使用して遠心分離処理(遠心力;4,000×g、遠心時間;10分)を行い沈殿物(1)と上清液(1)に分け、上清液(1)中に含まれる金属成分についてICP発光分光分析を行った。その結果を表1に示す。なお、上清液(1)の分析結果は、ナノダイヤモンド粉体中の金属成分含有量へ換算した値を記載した。
<Sulfate radical removal process>
The mixture (1) after the reflux treatment is centrifuged using a centrifugal separator (centrifugal force: 4,000 × g, centrifugation time: 10 minutes), and the precipitate (1) and the supernatant (1) ICP emission spectroscopic analysis was performed on the metal components contained in the supernatant (1). The results are shown in Table 1. In addition, the analysis result of supernatant liquid (1) described the value converted into metal component content in nano diamond powder.
 次いで、得られた沈殿物(1)に30mLの超純水を加えて懸濁し、遠心分離装置を使用して2回目の遠心分離処理を行って固液分離を図った。遠心分離による固液分離後の沈殿物と上清液との分離、沈殿物に超純水を加えての懸濁、および更なる遠心分離処理という一連の過程を、遠心分離処理の上清液のpHが7になるまで反復して行って、ナノダイヤモンドが凝着した灰色の沈殿物を得た。 Next, 30 mL of ultrapure water was added to the resulting precipitate (1) to suspend it, and a second centrifugation process was performed using a centrifuge to achieve solid-liquid separation. Centrifugal separation of the precipitate and supernatant after solid-liquid separation, suspension by adding ultrapure water to the precipitate, and further centrifugation The process was repeated until the pH of the solution became 7 to obtain a gray precipitate on which nanodiamonds had adhered.
 得られた灰色の沈殿物に、3Nの水酸化ナトリウムを30mL加え、室温で1時間放置した後、遠心分離装置を使用して遠心分離処理(遠心力;4,000×g、遠心時間;10分)を行い沈殿物と上清液とを分けた後、得られた沈殿物に30mLの超純水を加えて懸濁し、遠心分離装置を使用して2回目の遠心分離処理を行って固液分離を図った。遠心分離による固液分離後の沈殿物と上清液との分離、沈殿物に超純水を加えての懸濁、および更なる遠心分離処理という一連の過程を、遠心分離処理の上清液のpHが10になるまで反復して行った。上清液を除去してナノダイヤモンドが凝着した黒色の沈殿物を得た。前記黒色の沈殿物に超純水を30mL加えたところ、溶解するようにナノダイヤモンドが分散して、ナノダイヤモンド分散液(ナノダイヤモンド濃度:1重量%)が得られた。ナノダイヤモンド分散液中のナノダイヤモンドの粒子径D50(メディアン径)は5.3nmであった。また、ナノダイヤモンド分散液の水分を蒸発乾固させて得られたナノダイヤモンド粉体(2)に含まれる金属成分についてICP発光分光分析を行った。その結果を表1に示す。 To the obtained gray precipitate, 30 mL of 3N sodium hydroxide was added and left at room temperature for 1 hour, followed by centrifugation using a centrifuge (centrifugal force; 4,000 × g, centrifugation time; 10 After separating the precipitate from the supernatant, 30 mL of ultrapure water is added to the resulting precipitate to suspend it, and a second centrifugation process is performed using a centrifuge. Liquid separation was attempted. Centrifugal separation of the precipitate and supernatant after solid-liquid separation, suspension by adding ultrapure water to the precipitate, and further centrifugation This was repeated until the pH of the solution became 10. The supernatant liquid was removed to obtain a black precipitate on which nanodiamonds had adhered. When 30 mL of ultrapure water was added to the black precipitate, the nanodiamond was dispersed so as to dissolve, and a nanodiamond dispersion (nanodiamond concentration: 1% by weight) was obtained. The particle diameter D50 (median diameter) of the nanodiamond in the nanodiamond dispersion was 5.3 nm. Further, ICP emission spectroscopic analysis was performed on the metal component contained in the nanodiamond powder (2) obtained by evaporating and drying the water of the nanodiamond dispersion. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、上清液(1)中のZr元素、Al元素、Y元素、Hf元素、及びFe元素含有量は、何れもナノダイヤモンド粉体(1)中のZr元素、Al元素、Y元素、Hf元素、及びFe元素含有量とほぼ同じ値であり、ナノダイヤモンド粉体(2)からはZr元素、Al元素、Y元素、Hf元素、及びFe元素は検出されなかったことから、上記硫酸処理により、ナノダイヤモンド粉体(1)中に含まれていたジルコニアビーズを用いたビーズミルに由来する金属成分(特に、Zr化合物、Al化合物、Y化合物、Hf化合物、及びFe化合物)が除かれたことがわかった。 From Table 1, the Zr element, Al element, Y element, Hf element, and Fe element content in the supernatant liquid (1) are all Zr element, Al element, Y element in the nanodiamond powder (1). Since the Zr element, Al element, Y element, Hf element, and Fe element were not detected from the nanodiamond powder (2), the above sulfuric acid The metal components (particularly, Zr compound, Al compound, Y compound, Hf compound, and Fe compound) derived from the bead mill using the zirconia beads contained in the nanodiamond powder (1) were removed by the treatment. I understood it.
 〈ナノダイヤモンド濃度〉
 ナノダイヤモンド分散液中のナノダイヤモンド含有量は、秤量した分散液3~5gの当該秤量値と、当該秤量分散液から加熱によって水分を蒸発させた後に残留する乾燥物(粉体)について精密天秤によって秤量した値とに基づき、算出した。
<Nanodiamond concentration>
The nanodiamond content in the nanodiamond dispersion is determined by the precision balance of the weighed value of 3 to 5 g of the weighed dispersion and the dried product (powder) remaining after evaporation of water from the weighed dispersion by heating. Based on the weighed value, calculation was performed.
 〈メディアン径〉
 ナノダイヤモンド分散液に含まれるナノダイヤモンドの粒子径D50(メディアン径)は、スペクトリス社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、動的光散乱法(非接触後方散乱法)によって測定した。測定試料には、ナノダイヤモンド濃度が0.5~2.0重量%となるように超純水で希釈した後に、超音波洗浄機による超音波照射を行って得られたナノダイヤモンド分散液を使用した。
<Median diameter>
The particle diameter D50 (median diameter) of the nanodiamond contained in the nanodiamond dispersion is determined using a dynamic light scattering method (non-contact backscattering method) using an apparatus manufactured by Spectris (trade name “Zetasizer Nano ZS”). ). For the measurement sample, use a nanodiamond dispersion obtained by diluting with ultrapure water so that the nanodiamond concentration is 0.5 to 2.0% by weight and then irradiating with an ultrasonic cleaner. did.
 〈ゼータ電位〉
 ナノダイヤモンド分散液に含まれるナノダイヤモンドのゼータ電位は、スペクトリス社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、レーザードップラー式電気泳動法によって測定した。測定試料には、ナノダイヤモンド濃度が0.2重量%となるように超純水で希釈した後に超音波洗浄機による超音波照射を行って得られたナノダイヤモンド分散液を使用した。また、測定に付されたナノダイヤモンド分散液のpHは、pH試験紙(商品名「スリーバンドpH試験紙」、アズワン株式会社製)を使用して確認した。
<Zeta potential>
The zeta potential of the nanodiamond contained in the nanodiamond dispersion was measured by laser Doppler electrophoresis using an apparatus (trade name “Zetasizer Nano ZS”) manufactured by Spectris. As a measurement sample, a nanodiamond dispersion obtained by diluting with ultrapure water so that the nanodiamond concentration was 0.2% by weight and then irradiating with an ultrasonic cleaner was used. In addition, the pH of the nanodiamond dispersion subjected to the measurement was confirmed using a pH test paper (trade name “Three Band pH Test Paper”, manufactured by ASONE CORPORATION).
 〈ICP発光分光分析法〉
 ナノダイヤモンド粉体(1)、(2)の場合は粉体100mgを測定試料として使用し、上清液(1)の場合は上清液1mLを超純水にて10mLに希釈したものを測定試料として使用した。
 前記測定試料を磁性るつぼに入れ、電気炉内にて乾式分解を行った。この乾式分解は、450℃で1時間の条件、これに続く550℃で1時間の条件、及びこれに続く650℃で1時間の条件の3段階で行った。このような乾式分解の後、磁性るつぼ内の残留物について、磁性るつぼに濃硫酸0.5mLを加えて蒸発乾固させた。そして、得られた乾固物を最終的に20mLの超純水に溶解させた。このようにして分析サンプルを調製した。
 この分析サンプルを、ICP発光分光分析装置(商品名「CIROS120」,リガク社製)によるICP発光分光分析に供した。本分析の検出下限値が50重量ppmとなるように前記分析サンプルを調製した。また、本分析では、検量線用標準溶液として、SPEX社製標準液(XSTC-22;混合標準液)、及び関東化学株式会社製原子吸光用標準液(Hf1000、Y1000、Zr1000)を使用し、分析サンプルの硫酸濃度と同濃度の硫酸水溶液にて適宜希釈調製して用いた。そして、本分析では、空のるつぼで同様に操作および分析して得られた測定値を、測定試料についての測定値から差し引き、測定試料中の金属成分濃度を求めた。
<ICP emission spectroscopy>
In the case of nanodiamond powder (1) and (2), 100 mg of powder was used as a measurement sample, and in the case of supernatant liquid (1), 1 mL of supernatant liquid diluted to 10 mL with ultrapure water was measured. Used as a sample.
The measurement sample was put in a magnetic crucible and subjected to dry decomposition in an electric furnace. This dry decomposition was carried out in three stages: 450 ° C. for 1 hour, followed by 550 ° C. for 1 hour, followed by 650 ° C. for 1 hour. After such dry decomposition, the residue in the magnetic crucible was evaporated to dryness by adding 0.5 mL of concentrated sulfuric acid to the magnetic crucible. Then, the obtained dried product was finally dissolved in 20 mL of ultrapure water. In this way, an analytical sample was prepared.
This analysis sample was subjected to ICP emission spectroscopic analysis using an ICP emission spectroscopic analyzer (trade name “CIROS120”, manufactured by Rigaku Corporation). The analysis sample was prepared so that the lower limit of detection of this analysis was 50 ppm by weight. In this analysis, SPEX standard solution (XSTC-22; mixed standard solution) and Kanto Chemical Co., Ltd. atomic absorption standard solution (Hf1000, Y1000, Zr1000) were used as the standard solution for the calibration curve. The sample was appropriately diluted and used in a sulfuric acid aqueous solution having the same concentration as the sulfuric acid concentration of the analysis sample. In this analysis, the measurement value obtained by operating and analyzing in the same manner with an empty crucible was subtracted from the measurement value for the measurement sample to obtain the metal component concentration in the measurement sample.
 本発明のナノダイヤモンド分散液の製造方法によれば、簡便に、且つ効率よく金属成分を除去して、金属成分の混入量が極めて低く、分散性に優れたナノダイヤモンド分散液を製造することができる。そして、本発明の製造方法により得られるナノダイヤモンド分散液は、高い機械的強度、電気絶縁性、優れた熱伝導性、消臭効果、抗菌効果を有する特性を高度に発現することができるため、研磨材、導電性付与材、絶縁材料、消臭剤、抗菌剤等として好適に使用される。 According to the method for producing a nanodiamond dispersion liquid of the present invention, it is possible to easily and efficiently remove a metal component and produce a nanodiamond dispersion liquid having an extremely low mixing amount of the metal component and excellent dispersibility. it can. And, the nanodiamond dispersion obtained by the production method of the present invention can highly express properties having high mechanical strength, electrical insulation, excellent thermal conductivity, deodorizing effect, antibacterial effect, It is suitably used as an abrasive, conductivity imparting material, insulating material, deodorant, antibacterial agent and the like.

Claims (3)

  1.  下記工程を経て、粒子径D50(メディアン径)が10nm以下のナノダイヤモンド分散液であって、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)が、分散液に含まれるナノダイヤモンド(重量)の50ppm以下であるナノダイヤモンド分散液を得る、ナノダイヤモンド分散液の製造方法。
    工程1:ナノダイヤモンドを粉砕機を使用した解砕処理に付す
    工程2:解砕処理後のナノダイヤモンドと硫酸の混合物を加熱処理に付す
    工程3:加熱処理後の混合物から硫酸根を除去する
    Through the following steps, a nanodiamond dispersion liquid having a particle diameter D50 (median diameter) of 10 nm or less, the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound (Zr, Al, Y, A method for producing a nanodiamond dispersion, wherein a nanodiamond dispersion having an Fe, Hf element conversion (weight) of 50 ppm or less of nanodiamond (weight) contained in the dispersion is obtained.
    Step 1: Nano diamond is subjected to crushing treatment using a pulverizer Step 2: A mixture of nano diamond and sulfuric acid after crushing treatment is subjected to heat treatment Step 3: Sulfate radicals are removed from the mixture after the heat treatment
  2.  工程1に付すナノダイヤモンドが、爆轟法ナノダイヤモンドである請求項1に記載のナノダイヤモンド分散液の製造方法。 The method for producing a nanodiamond dispersion liquid according to claim 1, wherein the nanodiamond to be subjected to step 1 is detonation nanodiamond.
  3.  ナノダイヤモンドの分散液であって、分散液中のナノダイヤモンドの粒子径D50(メディアン径)が10nm以下であり、Zr化合物、Al化合物、Y化合物、Fe化合物、及びHf化合物の合計含有量(Zr、Al、Y、Fe、Hf元素換算;重量)が分散液中のナノダイヤモンド(重量)の50ppm以下である、ナノダイヤモンド分散液。 A nanodiamond dispersion, the nanodiamond particle diameter D50 (median diameter) in the dispersion is 10 nm or less, and the total content of Zr compound, Al compound, Y compound, Fe compound, and Hf compound (Zr , Al, Y, Fe, Hf element conversion; weight) is a nanodiamond dispersion liquid having 50 ppm or less of nanodiamond (weight) in the dispersion liquid.
PCT/JP2017/003320 2016-02-17 2017-01-31 Nanodiamond dispersion liquid, and production method therefor WO2017141689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018500017A JP6902015B2 (en) 2016-02-17 2017-01-31 Nanodiamond dispersion and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028004 2016-02-17
JP2016028004 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017141689A1 true WO2017141689A1 (en) 2017-08-24

Family

ID=59625731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003320 WO2017141689A1 (en) 2016-02-17 2017-01-31 Nanodiamond dispersion liquid, and production method therefor

Country Status (3)

Country Link
JP (1) JP6902015B2 (en)
TW (1) TW201800337A (en)
WO (1) WO2017141689A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029472A (en) * 2018-08-20 2020-02-27 株式会社ダイセル Slurry composition for polishing polycrystalline YAG
WO2020195999A1 (en) * 2019-03-26 2020-10-01 株式会社ダイセル Method for producing nanodiamonds doped with group 14 element, and method for purifying same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108584943A (en) * 2018-06-20 2018-09-28 成都天成鑫钻纳米科技股份有限公司 A kind of method of purification of Nano diamond
WO2022095707A1 (en) * 2020-11-05 2022-05-12 The University Of Hong Kong Efficient purification method for nanodiamonds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925110A (en) * 1995-07-10 1997-01-28 Ishizuka Kenkyusho:Kk Fine hydrophilic diamond particles and their production
JP2004238256A (en) * 2003-02-06 2004-08-26 Japan Science & Technology Agency Process for refining diamond particle, and high purity diamond particle
WO2008096854A1 (en) * 2007-02-09 2008-08-14 Hiroshi Ishizuka Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
JP2013056805A (en) * 2011-09-08 2013-03-28 Vision Development Co Ltd Magnetic diamond microparticle and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925110A (en) * 1995-07-10 1997-01-28 Ishizuka Kenkyusho:Kk Fine hydrophilic diamond particles and their production
JP2004238256A (en) * 2003-02-06 2004-08-26 Japan Science & Technology Agency Process for refining diamond particle, and high purity diamond particle
WO2008096854A1 (en) * 2007-02-09 2008-08-14 Hiroshi Ishizuka Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
JP2013056805A (en) * 2011-09-08 2013-03-28 Vision Development Co Ltd Magnetic diamond microparticle and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI MAKITA: "Purification of ultrafine grain diamond and its evaluation", NEW DIAMOND, vol. 12, no. 3, July 1996 (1996-07-01), pages 8 - 13 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029472A (en) * 2018-08-20 2020-02-27 株式会社ダイセル Slurry composition for polishing polycrystalline YAG
WO2020195999A1 (en) * 2019-03-26 2020-10-01 株式会社ダイセル Method for producing nanodiamonds doped with group 14 element, and method for purifying same

Also Published As

Publication number Publication date
JPWO2017141689A1 (en) 2018-12-06
TW201800337A (en) 2018-01-01
JP6902015B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
Ozawa et al. Preparation and behavior of brownish, clear nanodiamond colloids
WO2017141689A1 (en) Nanodiamond dispersion liquid, and production method therefor
EP3216758B1 (en) Suspension of nanodiamond aggregates and single-nano-sized nanodiamond dispersion
JP7053153B2 (en) Nanodiamond salted ultrasonic deagglomeration
RU2696439C2 (en) Nanodiamonds having acid functional group, and method for production thereof
US11046834B2 (en) Surface-modified nanodiamond, surface-modified nanodiamond dispersion liquid, and resin dispersion
JP6802967B2 (en) Surface-modified nanodiamond and nanodiamond dispersion
JP6927687B2 (en) Nanodiamond dispersion liquid manufacturing method and nanodiamond dispersion liquid
JP6887629B2 (en) Water Lubricant Composition and Water Lubrication System
WO2017203763A1 (en) Nano-diamond organic solvent dispersion production method and nano-diamond organic solvent dispersion
JP2017202940A (en) Nano diamond production method
JP2017001916A (en) Method for producing nanodiamond powder and the nanodiamond powder
JP6472715B2 (en) Nanodiamond dispersion and method for producing the same
JP2017075220A (en) Abrasive composition for CMP
JP6802077B2 (en) Manufacturing method of nanodiamond
JP6845085B2 (en) Nanodiamond manufacturing method
JP6484146B2 (en) Nanodiamond dispersion and nanodiamond
JP2017088449A (en) Nanodiamond-dispersed liquid and method for producing the same
CN107922746B (en) Resin composition
JP2010051887A (en) Method of manufacturing ultrafine particle powder
Lee et al. Effect of attrition milling on dispersion of onion like carbon in aqueous medium
AU2019250113A1 (en) Method of manufacturing nanodiamonds and nanodiamonds
JP2019151498A (en) Method for producing nanodiamond organic solvent dispersion
JP2020033237A (en) Method for preparing rare earth compound particles, rare earth oxide particles, and rare earth oxide particles-containing slurry
JP2013018662A (en) Method of producing flaky aluminum oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752952

Country of ref document: EP

Kind code of ref document: A1