WO2017141425A1 - Steel - Google Patents

Steel Download PDF

Info

Publication number
WO2017141425A1
WO2017141425A1 PCT/JP2016/054853 JP2016054853W WO2017141425A1 WO 2017141425 A1 WO2017141425 A1 WO 2017141425A1 JP 2016054853 W JP2016054853 W JP 2016054853W WO 2017141425 A1 WO2017141425 A1 WO 2017141425A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
content
quenching
less
tempering
Prior art date
Application number
PCT/JP2016/054853
Other languages
French (fr)
Japanese (ja)
Inventor
真也 寺本
真吾 山▲崎▼
門田 淳
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201680081304.2A priority Critical patent/CN108603259B/en
Priority to JP2017567914A priority patent/JP6590001B2/en
Priority to US16/071,283 priority patent/US20200165711A1/en
Priority to KR1020187022742A priority patent/KR102113045B1/en
Priority to PCT/JP2016/054853 priority patent/WO2017141425A1/en
Priority to EP16890566.9A priority patent/EP3418412B1/en
Publication of WO2017141425A1 publication Critical patent/WO2017141425A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to steel having high strength and excellent low temperature toughness after quenching and tempering.
  • Such a chain is manufactured by cutting a hot-rolled steel bar having a diameter of 50 mm or more into a predetermined length, forming it into an annular shape, and then flash-butt welding the butted end faces. In some cases, a stud is pressed into the center of the chain ring after flash butt welding. Thereafter, the chain is subjected to quenching and tempering treatment to impart high strength and toughness to the chain.
  • Examples of inventions for high strength and high toughness chain steel include, for example, Patent Documents 1 to 6 and the like.
  • Patent Documents 1 to 6 None of these documents is aimed at providing a chain having a tensile strength of 800 to 1000 MPa, and the case where the strength of the steel is set to 1200 MPa or more has not been studied.
  • chains have been required to have higher strength, but it is generally known that when steel materials are strengthened, the toughness of the steel materials decreases, thereby reducing the impact value of the steel materials.
  • the steel having the components presented in these documents is made to have a strength of 1200 MPa or more, the intended impact value cannot be obtained.
  • Japanese Laid-Open Patent Publication No. 58-22361 Japanese Unexamined Patent Publication No. 58-96856 Japanese Unexamined Patent Publication No. 59-159972 Japanese Unexamined Patent Publication No. 59-159969 Japanese Unexamined Patent Publication No. Sho 62-202052 Japanese Unexamined Patent Publication No. Sho 63-203752
  • An object of the present invention is to provide a steel having high strength and excellent low temperature toughness (particularly fracture toughness at low temperature) after quenching and tempering. Specifically, an object of the present invention is to provide a steel having a Charpy impact value at ⁇ 20 ° C. of 75 J / cm 2 or more when quenched and tempered so that the tensile strength is 1200 MPa or more. It is.
  • the gist of the present invention is as follows.
  • the steel according to one embodiment of the present invention is unit mass%, C: 0.08 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.50 to 3.00%.
  • Y (Al) / (N) (a)
  • Z (Mn) / (Ni) (b)
  • the symbols (Al), (N), (Mn), and (Ni) in the formula are the contents of the elements according to the symbols in the steel in unit mass%.
  • the steel described in (1) above is composed of Ca: 0.0005 to 0.0100%, Zr: 0.0005 to 0.0100%, and Mg: 0.0005 to 0.0100% in unit mass%. You may contain 1 or more types selected from a group.
  • a steel having a tensile strength of 1200 MPa or more and a Charpy impact value at ⁇ 20 ° C. of 75 J / cm 2 or more after quenching and tempering can be provided.
  • 3 is a graph showing the relationship between the Y value of steel and the impact value at ⁇ 20 ° C. of the steel after quenching and tempering.
  • 4 is a graph showing the relationship between the Z value of steel and the impact value at ⁇ 20 ° C. of the steel after quenching and tempering.
  • the inventor has made various studies in order to realize a steel having high strength and excellent low-temperature toughness, and has obtained the following knowledge.
  • the low temperature toughness of the steel is further improved by appropriately containing Al and N in addition to Ni. This is because the fine AlN formed from Al and N refines the crystal grains and promotes the effect of improving the low temperature toughness by Ni. In order to obtain this effect, it is necessary that the Al content is 0.025% or more and the N content is 0.0100% or more.
  • Y [Al] / [N]
  • the present inventors have found a steel capable of producing a structural component, particularly a chain, having high strength and high low temperature toughness.
  • the steel according to the present embodiment is a steel having an effect that the tensile strength after quenching and tempering is 1200 MPa or more and the Charpy impact value at ⁇ 20 ° C. is 75 J / cm 2 or more.
  • the impact value is not particularly limited.
  • the description explaining the mechanical properties such as strength and toughness relates to the steel according to the present embodiment after quenching and tempering.
  • the unit “%” of the content of the alloy element means mass%.
  • C 0.08 to 0.12% C is an important element that determines the strength of steel.
  • the lower limit of the C content is 0.08%.
  • the upper limit of the C content is 0.12%.
  • the upper limit of the C content is preferably 0.11%.
  • the lower limit of the C content is preferably 0.09%.
  • Si 0.05 to 0.50%
  • Si has an action as a deoxidizer as well as an action for securing the strength of steel.
  • Si content is set to 0.05 to 0.50%.
  • the upper limit of the Si content is preferably 0.40%, 0.30%, or 0.20%.
  • the lower limit of the Si content is preferably 0.06%, 0.07%, or 0.08%.
  • Mn 1.50 to 3.00%
  • Mn is an essential component for ensuring the required hardenability.
  • the lower limit value of the Mn content is 1.50%.
  • the upper limit value of the Mn content is preferably 2.90%, 2.80%, or 2.70%.
  • the lower limit of the Mn content is preferably 1.70%, 1.90%, or 2.00%.
  • P 0.040% or less
  • P is an impurity mixed in steel in the steel manufacturing process. However, if the P content exceeds 0.040%, the toughness of the steel is reduced to an allowable limit or more.
  • the content is limited to 0.040% or less.
  • the upper limit of the P content is preferably 0.030%, 0.025%, or 0.020%. Since the steel according to the present embodiment does not require P, the lower limit value of the P content is 0%, but considering the capacity of the refining equipment and the like, the lower limit value of the P content is 0.001%, 0 It may be 0.002% or 0.003%.
  • S 0.020% or less S, like P, is an impurity mixed in the steel in the steel manufacturing process. If the S content exceeds 0.020%, S contains a large amount of MnS in the steel. Forming and lowering the toughness of the steel. Therefore, the S content is limited to 0.020% or less.
  • the upper limit of the S content is preferably 0.015%, 0.012%, or 0.010%. Since the steel according to the present embodiment does not require S, the lower limit value of the S content is 0%, but considering the capacity of the refining equipment and the like, the lower limit value of the S content is 0.001%, 0 It may be 0.002% or 0.003%.
  • Cr 1.00-2.50% Cr has the effect of increasing the hardenability of the steel.
  • the lower limit value of the Cr content is 1.00%.
  • the upper limit of the Cr content is 2.50%.
  • the upper limit of the Cr content is preferably 2.40%, 2.30%, or 2.20%.
  • the lower limit of the Cr content is preferably 1.30%, 1.40%, or 1.50%.
  • Cu 0.01 to 0.50%
  • Cu is an effective element for improving the hardenability and corrosion resistance of the steel material.
  • the lower limit value of the Cu content is 0.01%.
  • the upper limit value of the Cu content is 0.50%.
  • the upper limit of the Cu content is preferably 0.40%, 0.30%, or 0.20%.
  • the lower limit of the Cu content is preferably 0.02%, 0.03%, or 0.05%.
  • Ni 0.75 to 1.60%
  • Ni is an extremely effective element for improving the toughness of steel, and is an essential element for increasing the toughness of the steel according to the present embodiment after quenching and tempering. If the Ni content is less than 0.75%, it is difficult to sufficiently exert its effect. On the other hand, when the Ni content is excessive, the amount of retained austenite increases, so the low temperature toughness is reduced. Therefore, the upper limit of the Ni content is 1.60%. The upper limit of the Ni content is preferably 1.50%, 1.35%, or 1.20%. The lower limit of the Ni content is preferably 0.80%, 0.85%, or 0.90%.
  • Mo 0.10 to 0.50%
  • Mo has the effect of improving the low temperature toughness of the steel.
  • Mo refines cementite, which is the starting point of destruction, and renders it harmless.
  • Mo refines the block size of the martensite structure and lowers the ductile brittle transition temperature of steel, thereby making it difficult for brittle fracture to occur even at low temperatures.
  • the Mo content is less than 0.10%, it is difficult to sufficiently exhibit the effect.
  • the Mo content exceeds 0.50%, the effect of improving toughness is saturated. Therefore, the Mo content is set to 0.10 to 0.50%.
  • the upper limit of the Mo content is preferably 0.47%, 0.45%, or 0.42%.
  • the lower limit of the Mo content is preferably 0.15%, 0.20%, or 0.25%.
  • Al 0.025 to 0.050%
  • Al has the action of adjusting the crystal grain size of the metal structure and making the metal structure finer when precipitated as AlN.
  • the Al content is set to 0.025 to 0.050%.
  • the upper limit of the Al content is preferably 0.045%, 0.042%, or 0.040%.
  • the lower limit of the Al content is preferably 0.027%, 0.029%, or 0.030%.
  • N 0.0100 to 0.0200% N binds to Al and has the effect of precipitating AlN effective for adjusting the crystal grain size of the metal structure. If the N content is less than 0.0100%, this effect is not sufficiently exhibited. On the other hand, when N is contained in steel exceeding 0.0200%, solid solution N will increase and the toughness of steel will fall. Therefore, the N content is set to 0.0100 to 0.0200%.
  • the upper limit of the N content is preferably 0.0180%, 0.0170%, or 0.0160%.
  • the lower limit of the N content is preferably 0.0110%, 0.0120%, or 0.0130%.
  • V 0.010% or less Ti: 0.010% or less Nb: 0.005% or less
  • the contents of V, Ti, and Nb are small. This is because VN, NbC and Ti (C, N) generated from V, Nb and Ti lower the low temperature toughness of the steel.
  • the inventors set the V content to 0.010% or less, the Ti content to 0.010% or less, and the Nb content to 0.005% or less. I found out that it was necessary.
  • the upper limit of the V content is preferably 0.009%, 0.007%, or 0.005%.
  • the upper limit of the Ti content is preferably 0.009%, 0.007%, or 0.005%.
  • the upper limit value of the Nb content is preferably 0.004%, 0.003%, or 0.002%.
  • the contents of V, Ti, and Nb are small, so the lower limit of the contents of V, Ti, and Nb is 0%.
  • the lower limit value of the V content may be set to 0.003%, 0.002%, or 0.001% in consideration of the capacity and economics of the refining equipment, and the lower limit value of the Ti content is set to 0.00. 003%, 0.002%, or 0.001%, and the lower limit of the Nb content may be 0.0010%, 0.0009%, or 0.0008%.
  • the steel according to this embodiment includes Ca, Zr, And Mg is not required. Therefore, the lower limit of the contents of Ca, Zr, and Mg is 0%. However, Ca, Zr, and Mg all form oxides and become crystallization nuclei of MnS, and have an effect of improving the impact value of steel by uniformly and finely dispersing MnS.
  • Ca may be contained in the steel in an amount of 0.0005% or more, 0.0010% or more, or 0.0015% or more
  • Zr may be contained in the steel in an amount of 0.0005% or more, 0.0010%.
  • Mg may be contained in steel in an amount of 0.0005% or more, 0.0010% or more, or 0.0015% or more.
  • the upper limit of each of Ca, Zr, and Mg is 0.0100% or less.
  • the upper limit value of Ca content is preferably 0.0090%, 0.0070%, or 0.0050%
  • the upper limit value of Zr content is preferably 0.0090%, 0.0070%, or 0.
  • the upper limit of the Mg content is preferably 0.0090%, 0.0070%, or 0.0050%.
  • Fe and impurities The remainder of the alloy component of the steel according to the present embodiment is composed of Fe and impurities. Impurities are components that are mixed due to various factors of raw materials such as ore or scrap, or manufacturing process when industrially manufacturing steel materials, and a range that does not adversely affect the steel according to the present embodiment. Means what is allowed.
  • Ratio of Al content to N content 2.6 or less
  • the ratio of Al content to N content is defined by the following formula a.
  • the symbol with parentheses indicates the content in unit mass% of the element according to the symbol.
  • AlN has the effect of refining crystal grains and improving the low temperature toughness of steel.
  • Y value ratio of Al content to N content in steel
  • the upper limit of the Y value is preferably 2.55, 2.50, or 2.45.
  • the lower limit value of the Y value is not particularly limited, but the Y value does not become less than 1.25 in consideration of the lower limit value of the Al content and the upper limit value of the N content described above.
  • the present inventors have obtained the above knowledge through experiments described below.
  • the inventors have all the features other than the Y value within the specified range of the steel according to the present embodiment, and various steels having different Y values are quenched and tempered under the following conditions, and then at a temperature of ⁇ 20 ° C.
  • a Charpy impact test was conducted. Quenching treatment: heating the steel to 900 ° C. and holding for 30 minutes, then water cooling / tempering treatment: heating the steel to 135 ° C. and holding for 30 minutes, then air cooling.
  • Ratio of Mn content to Ni content (Z value) 1.5 or more, 3.0 or less
  • the ratio of Mn content to Ni content (Z value) is as follows: Defined by equation b.
  • the symbol in parentheses indicates the content in unit mass% of the element related to the symbol.
  • Ni improves the low temperature toughness of steel.
  • the ratio (Z value) of the Mn content and the Ni content in the steel is less than 1.5
  • the amount of retained austenite increases and the low temperature toughness of the steel is impaired.
  • the Z value is more than 3.0
  • the solid solution Mn content with respect to the Ni content becomes excessive, the effect of improving the low temperature toughness by Ni is negated, the steel becomes brittle, and the low temperature toughness is lowered. Therefore, the Z value is 1.5 or more and 3.0 or less.
  • the upper limit of the Z value is preferably 2.9, 2.8, or 2.7.
  • the lower limit of the Z value is preferably 1.6, 1.7, or 1.8.
  • the present inventors have obtained the above knowledge through experiments described below.
  • the inventors have all the features other than the Z value within the specified range of the steel according to the present embodiment, and various steels having different Z values are quenched and tempered under the following conditions, and then at a temperature of ⁇ 20 ° C.
  • a Charpy impact test was conducted. Quenching treatment: heating the steel to 900 ° C. and holding it for 30 minutes, then water cooling / tempering treatment: heating the steel to 135 ° C. and holding it for 30 minutes, then air cooling.
  • the number density of AlN in steel, a particle size, a dispersed state, etc. change according to the conditions of the heat processing (for example, quenching tempering etc.) performed with respect to steel.
  • the contents of Al and N are controlled as described above, regardless of the state of AlN before quenching and tempering, during the quenching and tempering under conditions selected to make the tensile strength of steel 1200 MPa or more.
  • AlN functions effectively and improves the toughness of the steel.
  • the problem with the steel according to the present embodiment is that the Charpy impact value at ⁇ 20 ° C. of the steel is 75 J / cm 2 or more after the steel is heat-treated so that the tensile strength becomes 1200 MPa.
  • Control of the state of AlN is not required for solving the problem of the steel according to the present embodiment. Therefore, in the steel according to the present embodiment, the state of AlN is not particularly defined. As a result of the experiment, the present inventors have shown that when the steel is heated to 850 to 900 ° C., AlN is preferably precipitated regardless of the state of the steel before heating. It is estimated that.
  • the steel according to the present embodiment is quenched and tempered so that the tensile strength becomes 1200 MPa or more, the Charpy impact value at ⁇ 20 ° C. can be kept at 75 J / cm 2 or more. Therefore, the steel according to the present embodiment is particularly preferably used as a quenching steel.
  • the steel according to the present embodiment is subjected to a quenching process in which the steel is heated to 900 ° C. and held for 30 minutes and then cooled with water, and further tempered to be heated to 135 ° C. and held for 30 minutes, the tensile strength is 1200 MPa.
  • a steel having a Charpy impact value at ⁇ 20 ° C. of 75 J / cm 2 or more is obtained.
  • the steel according to the present embodiment after being heat-treated under this quenching and tempering condition has an average particle size of cementite of 0.05 ⁇ m or less, an average size of martensite blocks of 5.5 ⁇ m or less, and a residual austenite content. Is 5% or less.
  • the steel according to the present embodiment contains 0.08% or more of C, it has a tensile strength of 1200 MPa or more when heat-treated under this quenching and tempering condition. Normally, when the tensile strength of steel is 1200 MPa or more, low temperature toughness (particularly low temperature toughness) is impaired. However, the steel according to the present embodiment contains 0.025 to 0.050% Al, 0.0100 to 0.0200% N, and 0.10 to 0.50% Mo. Therefore, even when heat-treated under the quenching and tempering conditions, the martensite block and cementite are sufficiently refined and have high low temperature toughness.
  • the steel according to the present embodiment contains 0.75 to 1.60% Ni, it has high low temperature toughness even when heat-treated under the quenching and tempering conditions. Excessive amounts of Al and Ni may impair low-temperature toughness, but the steel according to this embodiment has a controlled ratio of Al content to N content and a ratio of Ni content to Mn content. Therefore, low temperature toughness is not impaired. Further, the steel according to the present embodiment is limited to V content of 0.010% or less, Ti content of 0.010% or less, and Nb content of 0.005% or less. Even when heat-treated under the conditions, precipitation of inclusions is suppressed and high low temperature toughness is achieved.
  • the quenching and tempering treatment according to the above-described conditions is merely an example of the use of steel according to the present embodiment.
  • the steel according to the present embodiment can be heat-treated under any conditions depending on the purpose.
  • the characteristics of the steel according to the present embodiment after the heat treatment based on the example of the quenching and tempering condition described above is not limited to the technical scope of the steel according to the present embodiment.
  • the problem with the steel according to this embodiment is that the Charpy impact value at ⁇ 20 ° C. is 75 J / cm 2 or more after heat treatment is performed so that the tensile strength is 1200 MPa or more.
  • the steel according to the present embodiment has high tensile strength and excellent low temperature toughness after quenching and tempering, when used as a material for a submarine oil drilling rig mooring chain or the like, a particularly excellent effect can be exhibited.
  • test pieces were prepared.
  • the tensile test was carried out at room temperature and at a speed of 20 mm / min in accordance with JIS Z 2241.
  • the Charpy impact test was performed at ⁇ 20 ° C. according to JIS Z 2242.
  • a 10 mm square sample was cut out from a 1 / 4D portion of the C cross section of the round steel bar after quenching and tempering, the sample cross section was corroded using a nital corrosive liquid, and the sample was magnified 5000 times using a scanning electron microscope. Five cross-sectional structure photographs were taken, and the average particle diameter of cementite contained in these photographs was determined by image analysis using Luzex (registered trademark), and this was used as the average particle diameter of cementite of the round bar steel.
  • the crystal orientation analysis was performed using the backscattered electron diffraction pattern, and the area weighted average equivalent circle diameter of the crystal grain surrounded by the large angle grain boundary having an orientation difference angle of 15 degrees or more obtained by this analysis It was set as the average particle diameter of the martensite block of the steel bar. Further, the amount of retained austenite of the round bar steel was measured by an X-ray diffraction method.
  • Table 1-1 show the chemical composition of the example steel and the comparative example steel
  • Table 2 shows the tensile strength of the example steel and the comparative example steel after quenching and tempering under the above-mentioned conditions.
  • the impact value, the average particle size of cementite, the average size of the martensite block, and the amount of retained austenite are shown.
  • values outside the specified range of the present invention are underlined.
  • Comparative Example No. 24 since the C content was insufficient, the necessary tensile strength could not be obtained after quenching and tempering. Comparative Example No. No. 25 was excessive in strength after quenching and tempering because the C content was excessive, and low temperature toughness was insufficient.
  • Comparative Example No. No. 26 had an excessive Si content
  • Comparative Example 27 had an excessive Mn content
  • Comparative Example 34 had an excessive Cr content. Since these excessive Si, Mn, and Cr lowered the toughness of the steel, the low temperature toughness of Comparative Examples 26, 27, and 34 was insufficient after quenching and tempering.
  • Comparative Example No. No. 35 lacks the Ni content, and the low temperature toughness improvement effect by Ni is small, so the low temperature toughness is insufficient.
  • Comparative Example No. No. 36 had a high Ni content, and the amount of retained austenite increased after quenching and tempering, so that low temperature toughness was insufficient after quenching and tempering.
  • Comparative Example No. No. 38 had insufficient Al content, so that a sufficient fine grain effect could not be obtained, the martensite structure (block size) became coarse after quenching and tempering, and low temperature toughness was insufficient.

Abstract

Steel according to one aspect of the present invention contains, in unit mass %, C: 0.08-0.12%, Si: 0.05-0.50%, Mn: 1.50-3.00%, P: no more than 0.040%, S: no more than 0.020%, V: no more than 0.010%, Ti: no more than 0.010%, Nb: no more than 0.005%, Cr: 1.00-2.50%, Cu: 0.01-0.50%, Ni: 0.75-1.60%, Mo: 0.10-0.50%, Al: 0.025-0.050%, N: 0.0100-0.0200%, Ca: 0-0.0100%, Zr: 0-0.0100% and Mg: 0-0.0100%, with the remainder being made up of Fe and impurities. The ratio of Al content to N content does not exceed 2.6, and the ratio of the Mn content to Ni content falls within the range of 1.5-3.0.

Description

steel
 本発明は、焼入れ焼戻し後に、高強度を有し且つ低温靭性に優れる鋼に関するものである。 The present invention relates to steel having high strength and excellent low temperature toughness after quenching and tempering.
 近年、エネルギー事情の変化にともなって、新たなエネルギー資源を開発しようとの動きが世界の各地で活発化してきている。このような状況下にあって、陸上での開発資源が枯渇するにつれ、海底油田に注目が集まるようになり、石油掘削のリグを用いた開発が、大陸棚付近を中心とする広範囲な地域で行われるようになってきた。特に近年、深海で操業される海底石油掘削用リグに代表される海上構造物が増加しており、大型ハリケーンによる掘削リグへの被害を防止するために、掘削リグ係留用チェーンの高強度化が求められている。チェーンの破断は、リグの倒壊等の重大事故に直結する。重要課題である安全性確保のために、チェーンの高強度化及び高靭性化の両方が指向されてきている。具体的には、引張強さ1200MPa以上であり、かつ-20℃でのシャルピー衝撃値が75J/cm2以上であるチェーンが求められる。 In recent years, with the changing energy situation, movements to develop new energy resources have become active throughout the world. Under these circumstances, as the onshore development resources are depleted, attention has been focused on subsea oil fields, and development using oil drilling rigs has been conducted in a wide range of areas, mainly around the continental shelf. Has come to be done. Particularly in recent years, the number of offshore structures represented by subsea oil drilling rigs operating in the deep sea has increased. To prevent damage to drilling rigs caused by large hurricanes, the strength of drilling rig mooring chains has increased. It has been demanded. Chain breaks are directly linked to serious accidents such as rig collapses. In order to ensure safety, which is an important issue, both higher strength and higher toughness of chains have been directed. Specifically, a chain having a tensile strength of 1200 MPa or more and a Charpy impact value at −20 ° C. of 75 J / cm 2 or more is required.
 このようなチェーンは、φ50mm以上の熱間圧延棒鋼を所定長さに切断して、円環状に成形後、突き合わせられた端面をフラッシュバット溶接して製鎖される。フラッシュバット溶接後に、鎖環の中央にスタッドが圧入される場合もある。その後、チェーンに焼入れ焼戻し処理を施すことによって、高強度お及び高靭性をチェーンに付与する。 Such a chain is manufactured by cutting a hot-rolled steel bar having a diameter of 50 mm or more into a predetermined length, forming it into an annular shape, and then flash-butt welding the butted end faces. In some cases, a stud is pressed into the center of the chain ring after flash butt welding. Thereafter, the chain is subjected to quenching and tempering treatment to impart high strength and toughness to the chain.
 高強度高靭性チェーン用鋼の発明例として、例えば特許文献1~6等がある。しかしながら、いずれの文献も、引張強さが800~1000MPaであるチェーンの提供を目標としており、鋼の強度を1200MPa以上にした場合について検討されていない。近年では、さらなる高強度化がチェーンに求められているが、一般的に、鋼材を高強度化すると鋼材の靭性が低下し、これにより鋼材の衝撃値が低下することが知られている。これら文献で提示されている成分を有する鋼を1200MPa以上の強度にした場合、目的とする衝撃値を得ることができない。 Examples of inventions for high strength and high toughness chain steel include, for example, Patent Documents 1 to 6 and the like. However, none of these documents is aimed at providing a chain having a tensile strength of 800 to 1000 MPa, and the case where the strength of the steel is set to 1200 MPa or more has not been studied. In recent years, chains have been required to have higher strength, but it is generally known that when steel materials are strengthened, the toughness of the steel materials decreases, thereby reducing the impact value of the steel materials. When the steel having the components presented in these documents is made to have a strength of 1200 MPa or more, the intended impact value cannot be obtained.
日本国特開昭58-22361号公報Japanese Laid-Open Patent Publication No. 58-22361 日本国特開昭58-96856号公報Japanese Unexamined Patent Publication No. 58-96856 日本国特開昭59-159972号公報Japanese Unexamined Patent Publication No. 59-159972 日本国特開昭59-159969号公報Japanese Unexamined Patent Publication No. 59-159969 日本国特開昭62-202052号公報Japanese Unexamined Patent Publication No. Sho 62-202052 日本国特開昭63-203752号公報Japanese Unexamined Patent Publication No. Sho 63-203752
 本発明の課題は、焼入れ焼戻し後に高強度且つ低温靱性(特に低温での破壊靭性)に優れた鋼を提供することである。具体的には、本発明の課題は、引張強さが1200MPa以上となるように焼入れ焼戻しを行った場合に、-20℃でのシャルピー衝撃値が75J/cm以上となる鋼を提供することである。 An object of the present invention is to provide a steel having high strength and excellent low temperature toughness (particularly fracture toughness at low temperature) after quenching and tempering. Specifically, an object of the present invention is to provide a steel having a Charpy impact value at −20 ° C. of 75 J / cm 2 or more when quenched and tempered so that the tensile strength is 1200 MPa or more. It is.
 本発明の要旨は、次の通りである。 The gist of the present invention is as follows.
 (1)本発明の一態様に係る鋼は、単位質量%で、C:0.08~0.12%、Si:0.05~0.50%、Mn:1.50~3.00%、P:0.040%以下、S:0.020%以下、V:0.010%以下、Ti:0.010%以下、Nb:0.005%以下、Cr:1.00~2.50%、Cu:0.01~0.50%、Ni:0.75~1.60%、Mo:0.10~0.50%、Al:0.025~0.050%、N:0.0100~0.0200%、Ca:0~0.0100%、Zr:0~0.0100%、及びMg:0~0.0100%を含有し、残部がFeおよび不純物からなり、下記式aで定義するY値が2.6以下であり、下記式bで定義するZ値が1.5以上、3.0以下である。
Y=(Al)/(N)・・・(a)
Z=(Mn)/(Ni)・・・(b)
 式中の記号(Al)、(N)、(Mn)、及び(Ni)は、鋼中の各記号に係る元素の、単位質量%での含有量である。
 (2)
 上記(1)に記載の鋼は、単位質量%で、Ca:0.0005~0.0100%、Zr:0.0005~0.0100%、及びMg:0.0005~0.0100%からなる群から選択される1種以上を含有してもよい。
(1) The steel according to one embodiment of the present invention is unit mass%, C: 0.08 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.50 to 3.00%. P: 0.040% or less, S: 0.020% or less, V: 0.010% or less, Ti: 0.010% or less, Nb: 0.005% or less, Cr: 1.00 to 2.50 %, Cu: 0.01 to 0.50%, Ni: 0.75 to 1.60%, Mo: 0.10 to 0.50%, Al: 0.025 to 0.050%, N: 0.00. 0-100 to 0.0200%, Ca: 0 to 0.0100%, Zr: 0 to 0.0100%, and Mg: 0 to 0.0100%, with the balance being Fe and impurities, The defined Y value is 2.6 or less, and the Z value defined by the following formula b is 1.5 or more and 3.0 or less.
Y = (Al) / (N) (a)
Z = (Mn) / (Ni) (b)
The symbols (Al), (N), (Mn), and (Ni) in the formula are the contents of the elements according to the symbols in the steel in unit mass%.
(2)
The steel described in (1) above is composed of Ca: 0.0005 to 0.0100%, Zr: 0.0005 to 0.0100%, and Mg: 0.0005 to 0.0100% in unit mass%. You may contain 1 or more types selected from a group.
 本発明によれば、焼入れ焼戻し後に、引張強さ1200MPa以上であり、かつ-20℃でのシャルピー衝撃値が75J/cm以上である鋼を提供できる。 According to the present invention, a steel having a tensile strength of 1200 MPa or more and a Charpy impact value at −20 ° C. of 75 J / cm 2 or more after quenching and tempering can be provided.
鋼のY値と、焼入れ焼戻し後の鋼の-20℃での衝撃値との関係を示すグラフである。3 is a graph showing the relationship between the Y value of steel and the impact value at −20 ° C. of the steel after quenching and tempering. 鋼のZ値と、焼入れ焼戻し後の鋼の-20℃での衝撃値との関係を示すグラフである。4 is a graph showing the relationship between the Z value of steel and the impact value at −20 ° C. of the steel after quenching and tempering.
 本発明者は、高強度で、かつ低温靭性に優れた鋼を実現するために、種々研究を続けたところ、下記の知見を得た。 The inventor has made various studies in order to realize a steel having high strength and excellent low-temperature toughness, and has obtained the following knowledge.
 (A)破壊の起点となりうるセメンタイトの量を減らすためにC含有量を低減することは、鋼の低温靭性を改善するために有効である。しかしながら、焼入れ焼戻し後の鋼の引張強さを1200MPa以上とするためには、C含有量を0.08%未満にすることはできない。 (A) Reducing the C content to reduce the amount of cementite that can be the starting point of fracture is effective for improving the low temperature toughness of steel. However, in order to make the tensile strength of the steel after quenching and tempering 1200 MPa or more, the C content cannot be made less than 0.08%.
 (B)Niを鋼に含有させることで、鋼の低温靱性が向上する。しかしながら、この手段のみで鋼の低温靱性を十分に向上させることはできない。 (B) By incorporating Ni into the steel, the low temperature toughness of the steel is improved. However, this means alone cannot sufficiently improve the low temperature toughness of steel.
 (C)Niに加えて、Al及びNを適切に含有させることにより、鋼の低温靭性がさらに向上する。Al及びNから形成される微細AlNが、結晶粒を微細化し、Niによる低温靭性向上効果を促進するからである。この効果を得るためには、Al含有量を0.025%以上とし、N含有量を0.0100%以上とする必要がある。 (C) The low temperature toughness of the steel is further improved by appropriately containing Al and N in addition to Ni. This is because the fine AlN formed from Al and N refines the crystal grains and promotes the effect of improving the low temperature toughness by Ni. In order to obtain this effect, it is necessary that the Al content is 0.025% or more and the N content is 0.0100% or more.
 但し、Al含有量とN含有量との比Y(Y=[Al]/[N])を2.6以下にする必要がある。Yの値が2.6超である場合、鋼中のアルミナ系非金属介在物が増加し、かえって低温靭性を低下させる。 However, the ratio Y (Y = [Al] / [N]) between the Al content and the N content needs to be 2.6 or less. When the value of Y is more than 2.6, alumina-based nonmetallic inclusions in the steel increase, and instead the low temperature toughness is reduced.
 (D)さらに、鋼の低温靱性を十分に向上させるためには、Mn含有量とNi含有量との比Z(Z=[Mn]/[Ni])を1.5以上、3.0以下にする必要がある。Zの値が1.5未満である場合、残留オーステナイト量が増加し、Zの値が3.0超である場合、鋼中に固溶したMnの含有量が多くなる。いずれの場合であっても、鋼の低温靭性が不足する。すなわち、上述のようにNiは鋼の低温靱性を向上させる効果を有するが、Ni含有量が過剰である場合、Zが1.5未満となって低温靱性を損なうのである。 (D) Furthermore, in order to sufficiently improve the low temperature toughness of the steel, the ratio Z (Z = [Mn] / [Ni]) of the Mn content to the Ni content is 1.5 or more and 3.0 or less. It is necessary to. When the value of Z is less than 1.5, the amount of retained austenite increases. When the value of Z exceeds 3.0, the content of Mn dissolved in the steel increases. In either case, the low temperature toughness of the steel is insufficient. That is, as described above, Ni has the effect of improving the low temperature toughness of the steel, but if the Ni content is excessive, Z becomes less than 1.5 and the low temperature toughness is impaired.
 (E)また、鋼の低温靱性を十分に向上させるためには、V、NbおよびTiの含有量を制限する必要がある。V、NbおよびTiから生成するVN、NbCおよびTi(C,N)は、鋼の低温靭性を低下させる。
 (F)さらに、鋼の低温靱性を十分に向上させるためには、Moを含有させる必要がある。Moは、低温靱性を低下させる原因となるセメンタイトを微細化し、無害化するからである。
(E) In order to sufficiently improve the low temperature toughness of the steel, it is necessary to limit the contents of V, Nb and Ti. VN, NbC and Ti (C, N) generated from V, Nb and Ti reduce the low temperature toughness of the steel.
(F) Furthermore, in order to sufficiently improve the low temperature toughness of steel, it is necessary to contain Mo. This is because Mo refines cementite that causes low temperature toughness to deteriorate and renders it harmless.
 以上の知見に基づき、本発明者らは、高い強度と高い低温靭性とを有する構造部品、特にチェーンを製造可能な鋼を見出した。以下に、本実施形態に係る鋼の具体的態様を説明する。なお、本実施形態に係る鋼は、焼入れ焼戻し後に引張強さが1200MPa以上且つ-20℃でのシャルピー衝撃値が75J/cm以上となる効果を有する鋼であるが、焼入れ焼戻し前の強度及び衝撃値は特に限定されない。以下、特に断りが無い限り、強度及び靱性等の機械的特性を説明する記載は、焼入れ焼戻し後の本実施形態に係る鋼に関する。 Based on the above findings, the present inventors have found a steel capable of producing a structural component, particularly a chain, having high strength and high low temperature toughness. Below, the specific aspect of steel which concerns on this embodiment is demonstrated. The steel according to the present embodiment is a steel having an effect that the tensile strength after quenching and tempering is 1200 MPa or more and the Charpy impact value at −20 ° C. is 75 J / cm 2 or more. The impact value is not particularly limited. Hereinafter, unless otherwise specified, the description explaining the mechanical properties such as strength and toughness relates to the steel according to the present embodiment after quenching and tempering.
 以下に、本実施形態に係る鋼の各合金元素の含有量の限定理由について説明する。合金元素の含有量の単位「%」は、質量%を意味する。 Hereinafter, the reasons for limiting the content of each alloy element of the steel according to the present embodiment will be described. The unit “%” of the content of the alloy element means mass%.
 C:0.08~0.12%
 Cは、鋼の強度を決める重要な元素である。焼入れ焼戻し後に1200MPa以上の引張強さを得るために、C含有量の下限は0.08%とする。一方、C含有量が過剰である場合、鋼が過度に高強度となって鋼の靱性が低下する。また、C含有量が過剰である場合、破壊の起点となるセメンタイトの量が増えて鋼の靭性が著しく低下する。従って、C含有量の上限を0.12%とする。C含有量の上限値は、好ましくは0.11%である。C含有量の下限値は、好ましくは0.09%である。
C: 0.08 to 0.12%
C is an important element that determines the strength of steel. In order to obtain a tensile strength of 1200 MPa or more after quenching and tempering, the lower limit of the C content is 0.08%. On the other hand, when the C content is excessive, the steel becomes excessively strong and the toughness of the steel decreases. On the other hand, if the C content is excessive, the amount of cementite that is the starting point of fracture increases, and the toughness of the steel is significantly reduced. Therefore, the upper limit of the C content is 0.12%. The upper limit of the C content is preferably 0.11%. The lower limit of the C content is preferably 0.09%.
 Si:0.05~0.50%
 Siは、鋼の強度を確保する作用とともに、脱酸剤としての作用をも有する。Si含有量が0.05%未満である場合、脱酸作用が十分に得られず、鋼中の非金属介在物が増加して、鋼の靭性を低下させる。一方、0.50%を超えてSiを含有させた場合、Siが鋼の靭性の低下を引き起こす。従って、Si含有量を0.05~0.50%とする。Si含有量の上限値は、好ましくは0.40%、0.30%、または0.20%である。Si含有量の下限値は、好ましくは0.06%、0.07%、または0.08%である。
Si: 0.05 to 0.50%
Si has an action as a deoxidizer as well as an action for securing the strength of steel. When the Si content is less than 0.05%, a sufficient deoxidation effect cannot be obtained, and the nonmetallic inclusions in the steel increase to lower the toughness of the steel. On the other hand, when Si is contained exceeding 0.50%, Si causes toughness reduction of steel. Therefore, the Si content is set to 0.05 to 0.50%. The upper limit of the Si content is preferably 0.40%, 0.30%, or 0.20%. The lower limit of the Si content is preferably 0.06%, 0.07%, or 0.08%.
 Mn:1.50~3.00%
 Mnは、必要とされる焼入れ性の確保のために必須の成分である。焼入れ焼戻し後の鋼の引張強度を1200MPa以上にするために十分な焼入れ性を確保するために、Mn含有量の下限値は1.50%とする。一方、Mn含有量が過剰である場合、鋼の靭性が低下するので、Mn含有量の上限値は3.00%とする。Mn含有量の上限値は、好ましくは2.90%、2.80%、または2.70%である。Mn含有量の下限値は、好ましくは1.70%、1.90%、または2.00%である。
Mn: 1.50 to 3.00%
Mn is an essential component for ensuring the required hardenability. In order to ensure sufficient hardenability to make the tensile strength of the steel after quenching and tempering 1200 MPa or more, the lower limit value of the Mn content is 1.50%. On the other hand, when the Mn content is excessive, the toughness of the steel decreases, so the upper limit value of the Mn content is 3.00%. The upper limit of the Mn content is preferably 2.90%, 2.80%, or 2.70%. The lower limit of the Mn content is preferably 1.70%, 1.90%, or 2.00%.
 P:0.040%以下
 Pは、鋼の製造工程で鋼に混入する不純物であるが、P含有量が0.040%を超えると、鋼の靭性を許容限以上に低下させるので、Pの含有量は0.040%以下に制限する。P含有量の上限値は、好ましくは、0.030%、0.025%、または0.020%である。本実施形態に係る鋼は、Pを必要としないので、P含有量の下限値は0%であるが、精錬設備の能力等を考慮すると、P含有量の下限値を0.001%、0.002%、または0.003%としてもよい。
P: 0.040% or less P is an impurity mixed in steel in the steel manufacturing process. However, if the P content exceeds 0.040%, the toughness of the steel is reduced to an allowable limit or more. The content is limited to 0.040% or less. The upper limit of the P content is preferably 0.030%, 0.025%, or 0.020%. Since the steel according to the present embodiment does not require P, the lower limit value of the P content is 0%, but considering the capacity of the refining equipment and the like, the lower limit value of the P content is 0.001%, 0 It may be 0.002% or 0.003%.
 S:0.020%以下
 Sは、Pと同様に、鋼の製造工程で鋼に混入する不純物であるが、S含有量が0.020%を超えると、Sが鋼中に多量のMnSを形成し、鋼の靭性を低下させる。従って、S含有量は0.020%以下に制限する。S含有量の上限値は、好ましくは、0.015%、0.012%、または0.010%である。本実施形態に係る鋼は、Sを必要としないので、S含有量の下限値は0%であるが、精錬設備の能力等を考慮すると、S含有量の下限値を0.001%、0.002%、または0.003%としてもよい。
S: 0.020% or less S, like P, is an impurity mixed in the steel in the steel manufacturing process. If the S content exceeds 0.020%, S contains a large amount of MnS in the steel. Forming and lowering the toughness of the steel. Therefore, the S content is limited to 0.020% or less. The upper limit of the S content is preferably 0.015%, 0.012%, or 0.010%. Since the steel according to the present embodiment does not require S, the lower limit value of the S content is 0%, but considering the capacity of the refining equipment and the like, the lower limit value of the S content is 0.001%, 0 It may be 0.002% or 0.003%.
 Cr:1.00~2.50%
 Crは、鋼の焼入れ性を増大させる作用がある。十分な焼入れ性を確保して、これにより焼入れ焼戻し後の鋼の引張強度を1200MPa以上にするために、Cr含有量の下限値は1.00%とする。一方、Cr含有量が過剰である場合、鋼の靭性が低下する。従って、Cr含有量の上限値は2.50%とする。Cr含有量の上限値は、好ましくは2.40%、2.30%、または2.20%である。Cr含有量の下限値は、好ましくは1.30%、1.40%、または1.50%である。
Cr: 1.00-2.50%
Cr has the effect of increasing the hardenability of the steel. In order to ensure sufficient hardenability and thereby make the tensile strength of the steel after quenching and tempering be 1200 MPa or more, the lower limit value of the Cr content is 1.00%. On the other hand, when the Cr content is excessive, the toughness of the steel decreases. Therefore, the upper limit of the Cr content is 2.50%. The upper limit of the Cr content is preferably 2.40%, 2.30%, or 2.20%. The lower limit of the Cr content is preferably 1.30%, 1.40%, or 1.50%.
 Cu:0.01~0.50%
 Cuは、鋼材の焼入れ性および耐食性の向上のために有効な元素である。焼入れ焼戻し後の鋼の引張強度を1200MPa以上にするために十分な焼入れ性、及び耐食性を確保するために、Cu含有量の下限値は0.01%とする。一方、Cu含有量が過剰である場合、鋼の靭性が低下する。従って、Cu含有量の上限値は0.50%とする。Cu含有量の上限値は、好ましくは0.40%、0.30%、または0.20%である。Cu含有量の下限値は、好ましくは0.02%、0.03%、または0.05%である。
Cu: 0.01 to 0.50%
Cu is an effective element for improving the hardenability and corrosion resistance of the steel material. In order to ensure sufficient hardenability and corrosion resistance to bring the tensile strength of the steel after quenching and tempering to 1200 MPa or more, the lower limit value of the Cu content is 0.01%. On the other hand, when the Cu content is excessive, the toughness of the steel decreases. Therefore, the upper limit value of the Cu content is 0.50%. The upper limit of the Cu content is preferably 0.40%, 0.30%, or 0.20%. The lower limit of the Cu content is preferably 0.02%, 0.03%, or 0.05%.
 Ni:0.75~1.60%
 Niは、鋼の靭性の向上のために極めて有効な元素であり、焼入れ焼戻し後の本実施形態に係る鋼の高靭性化のために必須の元素である。Ni含有量が0.75%未満では、その効果を十分に発揮させることが難しい。一方、Ni含有量が過剰である場合、残留オーステナイト量が増加するので、かえって低温靭性を低下させる。従って、Ni含有量の上限値は1.60%とする。Ni含有量の上限値は、好ましくは1.50%、1.35%、または1.20%である。Ni含有量の下限値は、好ましくは0.80%、0.85%、または0.90%である。
Ni: 0.75 to 1.60%
Ni is an extremely effective element for improving the toughness of steel, and is an essential element for increasing the toughness of the steel according to the present embodiment after quenching and tempering. If the Ni content is less than 0.75%, it is difficult to sufficiently exert its effect. On the other hand, when the Ni content is excessive, the amount of retained austenite increases, so the low temperature toughness is reduced. Therefore, the upper limit of the Ni content is 1.60%. The upper limit of the Ni content is preferably 1.50%, 1.35%, or 1.20%. The lower limit of the Ni content is preferably 0.80%, 0.85%, or 0.90%.
 Mo:0.10~0.50%
 Moは、鋼の低温靭性を向上させる効果がある。Moは、破壊の起点となるセメンタイトを微細化し、無害化する。また、Moは、マルテンサイト組織のブロックサイズを微細化し、鋼の延性脆性遷移温度を低下させ、これにより脆性破壊を低温でも生じにくくする。Mo含有量が0.10%未満である場合、その効果を十分に発揮させることが難しい。一方、Mo含有量が0.50%を超える場合、靭性向上効果が飽和する。従って、Moの含有量を0.10~0.50%とする。Mo含有量の上限値は、好ましくは0.47%、0.45%、または0.42%である。Mo含有量の下限値は、好ましくは0.15%、0.20%、または0.25%である。
Mo: 0.10 to 0.50%
Mo has the effect of improving the low temperature toughness of the steel. Mo refines cementite, which is the starting point of destruction, and renders it harmless. Moreover, Mo refines the block size of the martensite structure and lowers the ductile brittle transition temperature of steel, thereby making it difficult for brittle fracture to occur even at low temperatures. When the Mo content is less than 0.10%, it is difficult to sufficiently exhibit the effect. On the other hand, when the Mo content exceeds 0.50%, the effect of improving toughness is saturated. Therefore, the Mo content is set to 0.10 to 0.50%. The upper limit of the Mo content is preferably 0.47%, 0.45%, or 0.42%. The lower limit of the Mo content is preferably 0.15%, 0.20%, or 0.25%.
 Al:0.025~0.050%
 Alは、脱酸作用に加えて、AlNとして析出させた場合に金属組織の結晶粒度を調整し、金属組織を細粒化する作用がある。Al含有量が0.025%未満である場合、十分な細粒化効果を得ることができないので、鋼の靭性が低下する。一方、0.050%を超えてAlを鋼中に含有させると、AlNの析出量が飽和し、鋼中のアルミナ系非金属介在物が増加して鋼の靭性を低下させる。従って、Al含有量を0.025~0.050%とする。Al含有量の上限値は、好ましくは0.045%、0.042%、または0.040%である。Al含有量の下限値は、好ましくは0.027%、0.029%、または0.030%である。
Al: 0.025 to 0.050%
In addition to the deoxidizing action, Al has the action of adjusting the crystal grain size of the metal structure and making the metal structure finer when precipitated as AlN. When the Al content is less than 0.025%, a sufficient grain refining effect cannot be obtained, so that the toughness of steel is lowered. On the other hand, if Al exceeds 0.050%, the precipitation amount of AlN is saturated, and alumina-based nonmetallic inclusions in the steel increase to lower the toughness of the steel. Therefore, the Al content is set to 0.025 to 0.050%. The upper limit of the Al content is preferably 0.045%, 0.042%, or 0.040%. The lower limit of the Al content is preferably 0.027%, 0.029%, or 0.030%.
 N:0.0100~0.0200%
 Nは、Alと結合して、金属組織の結晶粒度の調整のために有効なAlNを析出させる作用がある。N含有量が0.0100%未満では、この作用が十分に発揮されない。一方、0.0200%を超えてNを鋼中に含有させると、固溶Nが増大し、鋼の靭性が低下する。従って、N含有量を0.0100~0.0200%とする。N含有量の上限値は、好ましくは0.0180%、0.0170%、または0.0160%である。N含有量の下限値は、好ましくは0.0110%、0.0120%、または0.0130%である。
N: 0.0100 to 0.0200%
N binds to Al and has the effect of precipitating AlN effective for adjusting the crystal grain size of the metal structure. If the N content is less than 0.0100%, this effect is not sufficiently exhibited. On the other hand, when N is contained in steel exceeding 0.0200%, solid solution N will increase and the toughness of steel will fall. Therefore, the N content is set to 0.0100 to 0.0200%. The upper limit of the N content is preferably 0.0180%, 0.0170%, or 0.0160%. The lower limit of the N content is preferably 0.0110%, 0.0120%, or 0.0130%.
 V:0.010%以下
 Ti:0.010%以下
 Nb:0.005%以下
 本実施形態に係る鋼において、V、Ti、及びNbの含有量は少ない方が好ましい。V、NbおよびTiから生成するVN、NbCおよびTi(C,N)は、鋼の低温靭性を低下させるからである。本発明者らは、鋼の低温靱性の低下を防ぐためには、V含有量を0.010%以下にし、Ti含有量を0.010%以下にし、Nb含有量を0.005%以下にする必要があることを知見した。V含有量の上限値は、好ましくは0.009%、0.007%、または0.005%である。Ti含有量の上限値は、好ましくは0.009%、0.007%、または0.005%である。Nb含有量の上限値は、好ましくは0.004%、0.003%、または0.002%である。
V: 0.010% or less Ti: 0.010% or less Nb: 0.005% or less In the steel according to the present embodiment, it is preferable that the contents of V, Ti, and Nb are small. This is because VN, NbC and Ti (C, N) generated from V, Nb and Ti lower the low temperature toughness of the steel. In order to prevent the low temperature toughness of the steel from being lowered, the inventors set the V content to 0.010% or less, the Ti content to 0.010% or less, and the Nb content to 0.005% or less. I found out that it was necessary. The upper limit of the V content is preferably 0.009%, 0.007%, or 0.005%. The upper limit of the Ti content is preferably 0.009%, 0.007%, or 0.005%. The upper limit value of the Nb content is preferably 0.004%, 0.003%, or 0.002%.
 本実施形態に係る鋼において、V、Ti、及びNbの含有量は少ない方が好ましいので、V、Ti、及びNbの含有量の下限値は0%である。しかしながら、これら元素が鋼に不純物として混入した場合、これら元素を完全に鋼から取り除くことは、費用対効果を考慮すると好ましくない場合がある。従って、精錬設備の能力及び経済性などを考慮して、V含有量の下限値を0.003%、0.002%、または0.001%としてもよく、Ti含有量の下限値を0.003%、0.002%、または0.001%としてもよく、Nb含有量の下限値を0.0010%、0.0009%、または0.0008%としてもよい。 In the steel according to this embodiment, it is preferable that the contents of V, Ti, and Nb are small, so the lower limit of the contents of V, Ti, and Nb is 0%. However, when these elements are mixed into the steel as impurities, it may not be preferable to completely remove these elements from the steel in view of cost effectiveness. Therefore, the lower limit value of the V content may be set to 0.003%, 0.002%, or 0.001% in consideration of the capacity and economics of the refining equipment, and the lower limit value of the Ti content is set to 0.00. 003%, 0.002%, or 0.001%, and the lower limit of the Nb content may be 0.0010%, 0.0009%, or 0.0008%.
 Ca:0~0.0100%、Zr:0~0.0100%、及びMg:0~0.0100%以下からなる群から選択される1種以上
 本実施形態に係る鋼は、Ca、Zr、及びMgを必要としない。従って、Ca、Zr、及びMgの含有量の下限値は0%である。しかしながら、Ca、Zr、及びMgはいずれも、酸化物を形成し、MnSの晶出核となり、MnSを均一微細分散させて鋼の衝撃値を向上させる効果がある。従って、任意元素として、Caを鋼中に0.0005%以上、0.0010%以上、または0.0015%以上含有させても良く、Zrを鋼中に0.0005%以上、0.0010%以上、または0.0015%以上含有させても良く、Mgを鋼中に0.0005%以上、0.0010%以上、または0.0015%以上含有させても良い。一方、Ca、Zr、及びMgそれぞれの含有量が0.0100%を超えると、過剰量の酸化物及び硫化物等の硬質介在物が生成し、鋼の靭性を低下させる。したがって、Ca、Zr、及びMgそれぞれの上限値は0.0100%以下とする。Ca含有量の上限値は、好ましくは0.0090%、0.0070%、又は0.0050%であり、Zr含有量の上限値は、好ましくは0.0090%、0.0070%、又は0.0050%であり、Mg含有量の上限値は、好ましくは0.0090%、0.0070%、又は0.0050%である。
One or more selected from the group consisting of Ca: 0 to 0.0100%, Zr: 0 to 0.0100%, and Mg: 0 to 0.0100% or less. The steel according to this embodiment includes Ca, Zr, And Mg is not required. Therefore, the lower limit of the contents of Ca, Zr, and Mg is 0%. However, Ca, Zr, and Mg all form oxides and become crystallization nuclei of MnS, and have an effect of improving the impact value of steel by uniformly and finely dispersing MnS. Therefore, as an optional element, Ca may be contained in the steel in an amount of 0.0005% or more, 0.0010% or more, or 0.0015% or more, and Zr may be contained in the steel in an amount of 0.0005% or more, 0.0010%. In addition, 0.0015% or more may be contained, and Mg may be contained in steel in an amount of 0.0005% or more, 0.0010% or more, or 0.0015% or more. On the other hand, when the content of each of Ca, Zr, and Mg exceeds 0.0100%, an excessive amount of hard inclusions such as oxides and sulfides are generated, and the toughness of the steel is lowered. Therefore, the upper limit of each of Ca, Zr, and Mg is 0.0100% or less. The upper limit value of Ca content is preferably 0.0090%, 0.0070%, or 0.0050%, and the upper limit value of Zr content is preferably 0.0090%, 0.0070%, or 0. The upper limit of the Mg content is preferably 0.0090%, 0.0070%, or 0.0050%.
 残部:Fe及び不純物
 本実施形態に係る鋼の合金成分の残部は、Fe及び不純物からなる。不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る鋼に悪影響を与えない範囲で許容されるものを意味する。
Remainder: Fe and impurities The remainder of the alloy component of the steel according to the present embodiment is composed of Fe and impurities. Impurities are components that are mixed due to various factors of raw materials such as ore or scrap, or manufacturing process when industrially manufacturing steel materials, and a range that does not adversely affect the steel according to the present embodiment. Means what is allowed.
 Al含有量とN含有量との比(Y値):2.6以下
 本実施形態に係る鋼において、Al含有量とN含有量との比(Y値)が、以下の式aによって定義される。
Y=(Al)/(N)……式a
 式aにおいて、括弧が付された記号は、その記号に係る元素の単位質量%での含有量を示す。
Ratio of Al content to N content (Y value): 2.6 or less In the steel according to the present embodiment, the ratio of Al content to N content (Y value) is defined by the following formula a. The
Y = (Al) / (N) …… Formula a
In the formula a, the symbol with parentheses indicates the content in unit mass% of the element according to the symbol.
 AlNは、結晶粒を微細化して鋼の低温靱性を向上させる効果がある。しかしながら、鋼中のAl含有量とN含有量との比(Y値)が2.6を超えると、鋼中のアルミナ系非金属介在物が増加し、鋼が脆化するので、かえって低温靭性が低下する。したがって、Y値を2.6以下とする。Y値の上限値は、好ましくは2.55、2.50、または2.45である。なお、Y値の下限値は特に限定されないが、上述されたAl含有量の下限値及びN含有量の上限値を考慮すると、Y値が1.25未満となることはない。 AlN has the effect of refining crystal grains and improving the low temperature toughness of steel. However, when the ratio of Al content to N content in steel (Y value) exceeds 2.6, alumina-based nonmetallic inclusions in steel increase and the steel becomes brittle. Decreases. Therefore, the Y value is set to 2.6 or less. The upper limit of the Y value is preferably 2.55, 2.50, or 2.45. The lower limit value of the Y value is not particularly limited, but the Y value does not become less than 1.25 in consideration of the lower limit value of the Al content and the upper limit value of the N content described above.
 本発明者らは、以下に説明する実験によって上述の知見を得た。本発明者らは、Y値以外の特徴が全て本実施形態に係る鋼の規定範囲内であり、Y値が異なる種々の鋼に、以下の条件で焼入れ焼戻しを行い、次いで温度-20℃でのシャルピー衝撃試験を行った。
・焼入れ処理:鋼を900℃に加熱して30分保持してから水冷
・焼戻し処理:鋼を135℃に加熱して30分保持してから空冷
 これにより本発明者らは、Y値と-20℃での衝撃値との関係を示すグラフ(図1)を得た。図1に示されるように、Y値が2.6を上回る鋼は、焼入れ焼戻し後に十分な低温靱性を有しなかった。
The present inventors have obtained the above knowledge through experiments described below. The inventors have all the features other than the Y value within the specified range of the steel according to the present embodiment, and various steels having different Y values are quenched and tempered under the following conditions, and then at a temperature of −20 ° C. A Charpy impact test was conducted.
Quenching treatment: heating the steel to 900 ° C. and holding for 30 minutes, then water cooling / tempering treatment: heating the steel to 135 ° C. and holding for 30 minutes, then air cooling. A graph (FIG. 1) showing the relationship with the impact value at 20 ° C. was obtained. As shown in FIG. 1, the steel having a Y value of greater than 2.6 did not have sufficient low temperature toughness after quenching and tempering.
 Mn含有量とNi含有量との比(Z値):1.5以上、3.0以下
 本実施形態に係る鋼において、Mn含有量とNi含有量との比(Z値)が、以下の式bによって定義される。
Z=(Mn)/(Ni)……式b
 式bにおいて、括弧が付された記号は、その記号に係る元素の単位質量%での含有量を示す。
Ratio of Mn content to Ni content (Z value): 1.5 or more, 3.0 or less In the steel according to this embodiment, the ratio of Mn content to Ni content (Z value) is as follows: Defined by equation b.
Z = (Mn) / (Ni) ...... Formula b
In the formula b, the symbol in parentheses indicates the content in unit mass% of the element related to the symbol.
 上述されたようにNiは、鋼の低温靭性を向上させる。しかしながら、Ni含有量が過剰であり、鋼中のMn含有量とNi含有量との比(Z値)が1.5未満である場合、残留オーステナイト量が増加し、鋼の低温靱性が損なわれる。また、Z値が3.0超である場合、Ni含有量に対する固溶Mn含有量が過剰となり、Niによる低温靱性向上効果が打ち消されて鋼が脆化し、低温靭性が低下する。したがって、Z値を1.5以上、3.0以下とする。Z値の上限値は、好ましくは2.9、2.8、又は2.7である。Z値の下限値は、好ましくは1.6、1.7、又は1.8である。 As described above, Ni improves the low temperature toughness of steel. However, when the Ni content is excessive and the ratio (Z value) of the Mn content and the Ni content in the steel is less than 1.5, the amount of retained austenite increases and the low temperature toughness of the steel is impaired. . Further, when the Z value is more than 3.0, the solid solution Mn content with respect to the Ni content becomes excessive, the effect of improving the low temperature toughness by Ni is negated, the steel becomes brittle, and the low temperature toughness is lowered. Therefore, the Z value is 1.5 or more and 3.0 or less. The upper limit of the Z value is preferably 2.9, 2.8, or 2.7. The lower limit of the Z value is preferably 1.6, 1.7, or 1.8.
 本発明者らは、以下に説明する実験によって上述の知見を得た。本発明者らは、Z値以外の特徴が全て本実施形態に係る鋼の規定範囲内であり、Z値が異なる種々の鋼に、以下の条件で焼入れ焼戻しを行い、次いで温度-20℃でのシャルピー衝撃試験を行った。
・焼入れ処理:鋼を900℃に加熱して30分保持してから水冷
・焼戻し処理:鋼を135℃に加熱して30分保持してから空冷
 これにより本発明者らは、Z値と-20℃での衝撃値との関係を示すグラフ(図2)を得た。図2に示されるように、Z値が1.5未満または3.0超である鋼は、焼入れ焼戻し後に十分な低温靱性を有しなかった。
The present inventors have obtained the above knowledge through experiments described below. The inventors have all the features other than the Z value within the specified range of the steel according to the present embodiment, and various steels having different Z values are quenched and tempered under the following conditions, and then at a temperature of −20 ° C. A Charpy impact test was conducted.
Quenching treatment: heating the steel to 900 ° C. and holding it for 30 minutes, then water cooling / tempering treatment: heating the steel to 135 ° C. and holding it for 30 minutes, then air cooling. A graph (FIG. 2) showing the relationship with the impact value at 20 ° C. was obtained. As shown in FIG. 2, steels with Z values less than 1.5 or greater than 3.0 did not have sufficient low temperature toughness after quenching and tempering.
 なお、鋼中のAlNの個数密度、粒径、及び分散状態などは、鋼に対して行われる熱処理(例えば焼入れ焼戻し等)の条件に応じて変化する。また、Al及びNの含有量を上述の如く制御した場合、焼入れ焼戻しの前のAlNの状態にかかわらず、鋼の引張強度を1200MPa以上にするために選択された条件下の焼入れ焼戻しの際にAlNが有効に機能して、鋼の靱性を向上させる。すなわち、本実施形態に係る鋼の課題は、引張強度が1200MPaとなるように鋼に熱処理を行った後に、鋼の-20℃でのシャルピー衝撃値を75J/cm以上とすることであるが、AlNの状態の制御は、本実施形態に係る鋼の課題の解決のために必要とされない。従って、本実施形態に係る鋼において、AlNの状態は特に規定されない。なお本発明者らは、実験の結果、鋼を850~900℃に加熱すると、加熱前の鋼の状態に関わらずAlNが好ましく析出し、この状態の鋼を冷却すると、AlNによって組織が好ましく微細化すると推定している。 In addition, the number density of AlN in steel, a particle size, a dispersed state, etc. change according to the conditions of the heat processing (for example, quenching tempering etc.) performed with respect to steel. Further, when the contents of Al and N are controlled as described above, regardless of the state of AlN before quenching and tempering, during the quenching and tempering under conditions selected to make the tensile strength of steel 1200 MPa or more. AlN functions effectively and improves the toughness of the steel. In other words, the problem with the steel according to the present embodiment is that the Charpy impact value at −20 ° C. of the steel is 75 J / cm 2 or more after the steel is heat-treated so that the tensile strength becomes 1200 MPa. Control of the state of AlN is not required for solving the problem of the steel according to the present embodiment. Therefore, in the steel according to the present embodiment, the state of AlN is not particularly defined. As a result of the experiment, the present inventors have shown that when the steel is heated to 850 to 900 ° C., AlN is preferably precipitated regardless of the state of the steel before heating. It is estimated that.
 本実施形態に係る鋼は、引張強度が1200MPa以上となるように焼入れ焼戻しされたとしても、-20℃でのシャルピー衝撃値を75J/cm以上に保つことができる。従って、本実施形態に係る鋼は、焼入れ用鋼として用いられることが特に好ましい。 Even when the steel according to the present embodiment is quenched and tempered so that the tensile strength becomes 1200 MPa or more, the Charpy impact value at −20 ° C. can be kept at 75 J / cm 2 or more. Therefore, the steel according to the present embodiment is particularly preferably used as a quenching steel.
 例えば、本実施形態に係る鋼に、900℃に加熱して30分保持してから水冷する焼入れ処理を行い、さらに135℃に加熱して30分保持する焼戻し処理を行えば、引張強度が1200MPa以上であり、且つ-20℃でのシャルピー衝撃値が75J/cm以上である鋼が得られる。この焼入れ焼戻し条件で熱処理された後の本実施形態に係る鋼は、セメンタイトの平均粒径が0.05μm以下であり、マルテンサイトブロックの平均サイズが5.5μm以下であり、残留オーステナイトの含有量が5%以下である。本実施形態に係る鋼は、0.08%以上のCを含有しているので、この焼入れ焼戻し条件で熱処理された場合、1200MPa以上の引張強度を有する。通常であれば、鋼の引張強度を1200MPa以上にした場合、低温靱性(特に低温靱性)が損なわれる。しかし、本実施形態に係る鋼は、0.025~0.050%のAlと、0.0100~0.0200%のNと、0.10~0.50%のMoとを含有しているので、この焼入れ焼戻し条件で熱処理された場合でも、マルテンサイトブロック及びセメンタイトが十分に微細化され、高い低温靱性を有する。また、本実施形態に係る鋼は、0.75~1.60%のNiを含有するので、この焼入れ焼戻し条件で熱処理された場合でも、高い低温靱性を有する。過剰量のAl及びNiは、低温靱性を損なうおそれがあるが、本実施形態に係る鋼は、Al含有量とN含有量との比率、及びNi含有量とMn含有量との比率が制御されているので、低温靱性が損なわれない。さらに、本実施形態に係る鋼は、V含有量が0.010%以下、Ti含有量が0.010%以下、及びNb含有量が0.005%以下に制限されているので、この焼入れ焼戻し条件で熱処理された場合でも、介在物の析出が抑制されて高い低温靱性を有する。 For example, if the steel according to the present embodiment is subjected to a quenching process in which the steel is heated to 900 ° C. and held for 30 minutes and then cooled with water, and further tempered to be heated to 135 ° C. and held for 30 minutes, the tensile strength is 1200 MPa. Thus, a steel having a Charpy impact value at −20 ° C. of 75 J / cm 2 or more is obtained. The steel according to the present embodiment after being heat-treated under this quenching and tempering condition has an average particle size of cementite of 0.05 μm or less, an average size of martensite blocks of 5.5 μm or less, and a residual austenite content. Is 5% or less. Since the steel according to the present embodiment contains 0.08% or more of C, it has a tensile strength of 1200 MPa or more when heat-treated under this quenching and tempering condition. Normally, when the tensile strength of steel is 1200 MPa or more, low temperature toughness (particularly low temperature toughness) is impaired. However, the steel according to the present embodiment contains 0.025 to 0.050% Al, 0.0100 to 0.0200% N, and 0.10 to 0.50% Mo. Therefore, even when heat-treated under the quenching and tempering conditions, the martensite block and cementite are sufficiently refined and have high low temperature toughness. Further, since the steel according to the present embodiment contains 0.75 to 1.60% Ni, it has high low temperature toughness even when heat-treated under the quenching and tempering conditions. Excessive amounts of Al and Ni may impair low-temperature toughness, but the steel according to this embodiment has a controlled ratio of Al content to N content and a ratio of Ni content to Mn content. Therefore, low temperature toughness is not impaired. Further, the steel according to the present embodiment is limited to V content of 0.010% or less, Ti content of 0.010% or less, and Nb content of 0.005% or less. Even when heat-treated under the conditions, precipitation of inclusions is suppressed and high low temperature toughness is achieved.
 なお、上述された条件に従った焼入れ焼戻し処理は、本実施形態に係る鋼の用途の一例に過ぎない。本実施形態に係る鋼には、目的に応じて、任意の条件の熱処理を行うことができる。また、上述された、焼入れ焼戻し条件の一例に基づく熱処理が行われた後の本実施形態に係る鋼の特徴は、本実施形態に係る鋼の技術的範囲を限定するものではない。本実施形態に係る鋼の課題は、引張強度が1200MPa以上となるように熱処理を行った後に、-20℃でのシャルピー衝撃値を75J/cm以上とすることである。この課題を解決するために、上述のように、化学成分、Al含有量とN含有量との比率、及びNi含有量とMn含有量との比率を制御することが必要とされる。しかし、それ以外の構成、例えば熱処理前のマルテンサイト、セメンタイト、及び残留オーステナイト等の制御は、本実施形態に係る鋼の課題の解決のために必要とされない。 Note that the quenching and tempering treatment according to the above-described conditions is merely an example of the use of steel according to the present embodiment. The steel according to the present embodiment can be heat-treated under any conditions depending on the purpose. Moreover, the characteristics of the steel according to the present embodiment after the heat treatment based on the example of the quenching and tempering condition described above is not limited to the technical scope of the steel according to the present embodiment. The problem with the steel according to this embodiment is that the Charpy impact value at −20 ° C. is 75 J / cm 2 or more after heat treatment is performed so that the tensile strength is 1200 MPa or more. In order to solve this problem, as described above, it is necessary to control the chemical component, the ratio between the Al content and the N content, and the ratio between the Ni content and the Mn content. However, other configurations, for example, control of martensite, cementite, retained austenite, etc. before heat treatment are not required for solving the problems of the steel according to the present embodiment.
 本実施形態に係る鋼は、焼入れ焼戻し後に高い引張強度及び優れた低温靭性を有するので、海底石油掘削リグ係留用チェーン等の材料として用いられた場合、特に優れた効果を発揮することができる。 Since the steel according to the present embodiment has high tensile strength and excellent low temperature toughness after quenching and tempering, when used as a material for a submarine oil drilling rig mooring chain or the like, a particularly excellent effect can be exhibited.
 本発明を実施例によって以下に詳述する。なお、これら実施例は本発明の技術的意義、効果を説明するためのものであり、本発明の範囲を限定するものではない。 The present invention will be described in detail below by examples. These examples are for explaining the technical significance and effects of the present invention, and do not limit the scope of the present invention.
 180kg真空溶解炉を用いて、表1に示す化学成分の鋼を溶製及び熱間鍛造して、直径86mmの丸棒鋼を得た。この丸棒鋼を切断し、900℃に加熱して30分保持し、その後水冷することによる焼入れ処理を行い、次に135℃に加熱して30分保持することによる焼戻し処理を行った。この焼入れ条件及び焼戻し条件は、本発明鋼を用いてチェーンを作成する際に推奨される熱処理条件と同じである。この丸棒鋼のC断面の1/4D部(丸棒鋼の表面から丸棒鋼の直径Dの約1/4の深さの領域)から、JIS14A号引張試験片3本と、JIS4号Vノッチシャルピー衝撃試験片4本とを作製した。引張試験は、JIS Z 2241に準拠して、常温で20mm/minの速度にて実施した。シャルピー衝撃試験は、JIS Z 2242に準拠して、-20℃で実施した。 Using a 180 kg vacuum melting furnace, steels having chemical components shown in Table 1 were melted and hot forged to obtain a round bar steel having a diameter of 86 mm. The round steel bar was cut, heated to 900 ° C. and held for 30 minutes, and then quenched by water cooling, and then tempered by heating to 135 ° C. and held for 30 minutes. These quenching conditions and tempering conditions are the same as the heat treatment conditions recommended when creating a chain using the steel of the present invention. Three JIS14A tensile specimens and JIS4 V notch Charpy impact from 1 / 4D part of the C section of this round steel bar (region from the surface of the round steel bar to a depth of about 1/4 of the diameter D of the round steel bar). Four test pieces were prepared. The tensile test was carried out at room temperature and at a speed of 20 mm / min in accordance with JIS Z 2241. The Charpy impact test was performed at −20 ° C. according to JIS Z 2242.
 さらに、焼入れ焼戻し後の丸棒鋼のC断面の1/4D部から10mm角のサンプルを切り出し、ナイタール腐食液を用いてサンプルの断面を腐食させ、走査型電子顕微鏡を用いて倍率5000倍でサンプルの断面の組織写真を5枚撮影し、これら写真に含まれるセメンタイトの平均粒径を、Luzex(登録商標)を用いた画像解析によって求め、これを丸棒鋼のセメンタイトの平均粒径とした。また、後方散乱電子線回折パターンを用いて結晶方位解析を行い、この解析で得られた、方位差角15度以上の大角粒界で囲まれた結晶粒の面積重み付け平均円相当径を、丸棒鋼のマルテンサイトブロックの平均粒径とした。さらに、丸棒鋼の残留オーステナイト量をX線回折法で測定した。 Further, a 10 mm square sample was cut out from a 1 / 4D portion of the C cross section of the round steel bar after quenching and tempering, the sample cross section was corroded using a nital corrosive liquid, and the sample was magnified 5000 times using a scanning electron microscope. Five cross-sectional structure photographs were taken, and the average particle diameter of cementite contained in these photographs was determined by image analysis using Luzex (registered trademark), and this was used as the average particle diameter of cementite of the round bar steel. In addition, the crystal orientation analysis was performed using the backscattered electron diffraction pattern, and the area weighted average equivalent circle diameter of the crystal grain surrounded by the large angle grain boundary having an orientation difference angle of 15 degrees or more obtained by this analysis It was set as the average particle diameter of the martensite block of the steel bar. Further, the amount of retained austenite of the round bar steel was measured by an X-ray diffraction method.
 上述の実験の結果を表1-1、表1-2、及び表2に示す。表1-1及び表1-2は、実施例鋼及び比較例鋼の化学成分を示し、表2は、上述の条件で焼入れ焼戻しされた後の実施例鋼及び比較例鋼の引張強さ、衝撃値、セメンタイトの平均粒径、マルテンサイトブロックの平均サイズ、及び残留オーステナイト量を示す。表1-2において、本発明の規定範囲外である値には下線が付されている。 The results of the above experiment are shown in Table 1-1, Table 1-2, and Table 2. Table 1-1 and Table 1-2 show the chemical composition of the example steel and the comparative example steel, and Table 2 shows the tensile strength of the example steel and the comparative example steel after quenching and tempering under the above-mentioned conditions. The impact value, the average particle size of cementite, the average size of the martensite block, and the amount of retained austenite are shown. In Table 1-2, values outside the specified range of the present invention are underlined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 化学成分が本発明の規定範囲内である鋼No.1~23の実施例は、上述の条件で焼入れ焼戻しした後に、引張強さ1200MPa以上であり、かつ-20℃でのシャルピー衝撃値が75J/cm以上であった。鋼No.1~23は、上述の条件で焼入れ焼戻しした後に、セメンタイト及びマルテンサイトブロックが微細化されており、且つ残留オーステナイト量が低減されていた。 Steel No. whose chemical composition is within the specified range of the present invention. In Examples 1 to 23, after quenching and tempering under the above conditions, the tensile strength was 1200 MPa or more, and the Charpy impact value at −20 ° C. was 75 J / cm 2 or more. Steel No. In Nos. 1 to 23, after quenching and tempering under the above-described conditions, cementite and martensite blocks were refined, and the amount of retained austenite was reduced.
 これに対して、比較例No.24は、Cの含有量が不足したので、焼入れ焼戻し後に、必要な引張強さが得られなかった。比較例No.25は、Cの含有量が過剰であったので、焼入れ焼戻し後に過度に高強度となり、低温靭性が不足した。 In contrast, Comparative Example No. In No. 24, since the C content was insufficient, the necessary tensile strength could not be obtained after quenching and tempering. Comparative Example No. No. 25 was excessive in strength after quenching and tempering because the C content was excessive, and low temperature toughness was insufficient.
 比較例No.26は、Siの含有量が過剰であり、比較例27はMnの含有量が過剰であり、比較例34はCrの含有量が過剰であった。これら過剰なSi、Mn、及びCrが鋼の靭性を低下させたので、焼入れ焼戻し後に、比較例26、27、及び34の低温靭性が不足した。 Comparative Example No. No. 26 had an excessive Si content, Comparative Example 27 had an excessive Mn content, and Comparative Example 34 had an excessive Cr content. Since these excessive Si, Mn, and Cr lowered the toughness of the steel, the low temperature toughness of Comparative Examples 26, 27, and 34 was insufficient after quenching and tempering.
 比較例No.28~33は、V、Ti、及びNbのうち1つ以上の含有量が過剰であったので、VN、NbCまたはTi(C,N)による析出強化によって鋼の靭性が低下し、焼入れ焼戻し後に比較例No.28~33の低温靭性が不足した。 Comparative Example No. In Nos. 28 to 33, since the content of one or more of V, Ti, and Nb was excessive, the toughness of the steel decreased due to precipitation strengthening by VN, NbC, or Ti (C, N), and after quenching and tempering Comparative Example No. The low temperature toughness of 28 to 33 was insufficient.
 比較例No.35はNiの含有量が不足しており、Niによる低温靭性向上効果が小さいため、低温靭性が不足した。一方、比較例No.36はNiの含有量が多く、焼入れ焼戻し後に残留オーステナイト量が増加したので、焼入れ焼戻し後に低温靭性が不足した。 Comparative Example No. No. 35 lacks the Ni content, and the low temperature toughness improvement effect by Ni is small, so the low temperature toughness is insufficient. On the other hand, Comparative Example No. No. 36 had a high Ni content, and the amount of retained austenite increased after quenching and tempering, so that low temperature toughness was insufficient after quenching and tempering.
 比較例No.37はMoの含有量が不足していたので、焼入れ焼戻し後に、破壊の起点となるセメンタイトが粗大になり、またマルテンサイト組織(ブロックサイズ)が粗大になったので、低温靭性が低かった。 Comparative Example No. In No. 37, the Mo content was insufficient, so that after quenching and tempering, cementite that became the starting point of fracture became coarse, and the martensite structure (block size) became coarse, so the low-temperature toughness was low.
 比較例No.38はAlの含有量が不足していたので、十分な細粒効果が得られず、焼入れ焼戻し後にマルテンサイト組織(ブロックサイズ)が粗大になり、低温靭性が不足した。 Comparative Example No. No. 38 had insufficient Al content, so that a sufficient fine grain effect could not be obtained, the martensite structure (block size) became coarse after quenching and tempering, and low temperature toughness was insufficient.
 比較例No.39は、Nの含有量が過剰であったので、焼入れ焼戻し後に、固溶N含有量の増大のため低温靭性が不足した。 Comparative Example No. In No. 39, since the N content was excessive, after quenching and tempering, the low temperature toughness was insufficient due to the increase in the solid solution N content.
 比較例No.40~42は、Ca、ZrまたはMgの含有量が過剰であったので、これら元素が鋼の靭性を低下させ、焼入れ焼戻し後に低温靭性が不足した。 Comparative Example No. In Nos. 40 to 42, since the Ca, Zr or Mg content was excessive, these elements lowered the toughness of the steel and the low temperature toughness was insufficient after quenching and tempering.
 比較例No.43~45、48、49は、各合金元素の含有量が規定範囲内であったが、Y値またはZ値が規定範囲を超えたため、かえって鋼が脆化し、焼入れ焼戻し後に低温靭性が不足した。 Comparative Example No. In Nos. 43 to 45, 48, and 49, the content of each alloy element was within the specified range, but because the Y value or Z value exceeded the specified range, the steel was embrittled and low temperature toughness was insufficient after quenching and tempering. .
 比較例No.46、47は、各合金元素の含有量が規定範囲内であったが、Y値が規定範囲を下回ったので、焼入れ焼戻し後に残留オーステナイト量が増加し、低温靭性が不足した。 Comparative Example No. In Nos. 46 and 47, the content of each alloy element was within the specified range, but since the Y value was below the specified range, the amount of retained austenite increased after quenching and tempering, and the low temperature toughness was insufficient.

Claims (2)

  1.  単位質量%で、
    C:0.08~0.12%、
    Si:0.05~0.50%、
    Mn:1.50~3.00%、
    P:0.040%以下、
    S:0.020%以下、
    V:0.010%以下、
    Ti:0.010%以下、
    Nb:0.005%以下、
    Cr:1.00~2.50%、
    Cu:0.01~0.50%、
    Ni:0.75~1.60%、
    Mo:0.10~0.50%、
    Al:0.025~0.050%、
    N:0.0100~0.0200%、
    Ca:0~0.0100%、
    Zr:0~0.0100%、及び
    Mg:0~0.0100%
    を含有し、残部がFeおよび不純物からなり、
     下記式aで定義するY値が2.6以下であり、
     下記式bで定義するZ値が1.5以上、3.0以下である
    ことを特徴とする鋼。
    Y=(Al)/(N)・・・(a)
    Z=(Mn)/(Ni)・・・(b)
     式中の記号(Al)、(N)、(Mn)、及び(Ni)は、鋼中の各記号に係る元素の、単位質量%での含有量である。
    In unit mass%
    C: 0.08 to 0.12%,
    Si: 0.05 to 0.50%,
    Mn: 1.50 to 3.00%,
    P: 0.040% or less,
    S: 0.020% or less,
    V: 0.010% or less,
    Ti: 0.010% or less,
    Nb: 0.005% or less,
    Cr: 1.00 to 2.50%,
    Cu: 0.01 to 0.50%,
    Ni: 0.75 to 1.60%,
    Mo: 0.10 to 0.50%,
    Al: 0.025 to 0.050%,
    N: 0.0100 to 0.0200%,
    Ca: 0 to 0.0100%,
    Zr: 0 to 0.0100% and Mg: 0 to 0.0100%
    And the balance consists of Fe and impurities,
    Y value defined by the following formula a is 2.6 or less,
    A steel having a Z value defined by the following formula b of 1.5 or more and 3.0 or less.
    Y = (Al) / (N) (a)
    Z = (Mn) / (Ni) (b)
    The symbols (Al), (N), (Mn), and (Ni) in the formula are the contents of the elements according to the symbols in the steel in unit mass%.
  2.  単位質量%で、
    Ca:0.0005~0.0100%、
    Zr:0.0005~0.0100%、及び
    Mg:0.0005~0.0100%
    からなる群から選択される1種以上を含有することを特徴とする請求項1に記載の鋼。
    In unit mass%
    Ca: 0.0005 to 0.0100%,
    Zr: 0.0005 to 0.0100% and Mg: 0.0005 to 0.0100%
    The steel according to claim 1, comprising at least one selected from the group consisting of:
PCT/JP2016/054853 2016-02-19 2016-02-19 Steel WO2017141425A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680081304.2A CN108603259B (en) 2016-02-19 2016-02-19 Steel having high strength and excellent low-temperature toughness after quenching and tempering
JP2017567914A JP6590001B2 (en) 2016-02-19 2016-02-19 steel
US16/071,283 US20200165711A1 (en) 2016-02-19 2016-02-19 Steel
KR1020187022742A KR102113045B1 (en) 2016-02-19 2016-02-19 River
PCT/JP2016/054853 WO2017141425A1 (en) 2016-02-19 2016-02-19 Steel
EP16890566.9A EP3418412B1 (en) 2016-02-19 2016-02-19 Steel useful as material for chains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054853 WO2017141425A1 (en) 2016-02-19 2016-02-19 Steel

Publications (1)

Publication Number Publication Date
WO2017141425A1 true WO2017141425A1 (en) 2017-08-24

Family

ID=59624857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054853 WO2017141425A1 (en) 2016-02-19 2016-02-19 Steel

Country Status (6)

Country Link
US (1) US20200165711A1 (en)
EP (1) EP3418412B1 (en)
JP (1) JP6590001B2 (en)
KR (1) KR102113045B1 (en)
CN (1) CN108603259B (en)
WO (1) WO2017141425A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007009517A1 (en) * 2005-07-19 2007-01-25 Rud Ketten Rieger & Dietz Gmbh U. Co. Kg High-strength steel chain for the low temperature range
JP2009114484A (en) * 2007-11-02 2009-05-28 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
EP2159296A1 (en) * 2007-04-13 2010-03-03 Sidenor Investigacion y Desarrollo, S.A. Hardened and tempered steel and method for producing parts of said steel
JP2010111936A (en) * 2008-11-10 2010-05-20 Sumitomo Metal Ind Ltd Steel and method of producing the same
JP2012149277A (en) * 2011-01-17 2012-08-09 Daido Steel Co Ltd Method for manufacturing steel for plastic molding die

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822361A (en) 1981-07-31 1983-02-09 Nippon Steel Corp High tensile steel excellent in flash butt weldability
SE430424B (en) 1981-11-24 1983-11-14 Uddeholms Ab Ketting
JPS59159972A (en) 1983-03-02 1984-09-10 Sumitomo Metal Ind Ltd Steel material for chain with high strength and toughness
JPS59159969A (en) 1983-03-03 1984-09-10 Sumitomo Metal Ind Ltd Steel material for chain with high strength and toughness
JPS62202052A (en) 1986-02-28 1987-09-05 Sumitomo Metal Ind Ltd Steel material for chain having high strength and high fracture toughness
JPS63203752A (en) 1987-02-18 1988-08-23 Sumitomo Metal Ind Ltd Steel material for chain having high strength and low yield ratio
JP2001073033A (en) * 1999-09-03 2001-03-21 Nisshin Steel Co Ltd Production of medium-high carbon steel sheet excellent in local ductility
JP3508715B2 (en) * 2000-10-20 2004-03-22 住友金属工業株式会社 High Cr steel slab and seamless steel pipe
JP4677714B2 (en) * 2003-05-15 2011-04-27 住友金属工業株式会社 Steel materials for bridges with excellent beach weather resistance and structures using the same
EP1683885B1 (en) * 2003-10-31 2013-05-29 JFE Steel Corporation High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
ATE359382T1 (en) * 2004-02-05 2007-05-15 Edelstahlwerke Suedwestfalen G STEEL FOR PRODUCING HIGH-STRENGTH COMPONENTS WITH OUTSTANDING LOW-TEMPERATURE TOUGHNESS AND USES OF SUCH A STEEL
JP4408386B2 (en) * 2004-04-19 2010-02-03 新日本製鐵株式会社 High-strength steel with fine grain structure
JP4381355B2 (en) * 2005-07-22 2009-12-09 新日本製鐵株式会社 Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
RU2455381C2 (en) * 2006-04-21 2012-07-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. High-strength alloys
JP5145793B2 (en) * 2007-06-29 2013-02-20 Jfeスチール株式会社 Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
KR101042434B1 (en) * 2007-10-29 2011-06-16 현대제철 주식회사 A cold rolledsteel sheet and method for manufacturing the same
KR101482258B1 (en) * 2007-12-26 2015-01-13 주식회사 포스코 Hot Rolled Steel Sheet Having Superior Hot Press Forming Property and High Tensile Strength, Formed Article Using the Steel Sheet and Method for Manufacturing the Steel Sheet and the Formed Article
CN103038383B (en) * 2010-07-28 2014-12-24 新日铁住金株式会社 Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and processes for producing these
CN102884212A (en) * 2010-10-06 2013-01-16 新日铁住金株式会社 Case hardened steel and method for producing the same
US9617624B2 (en) * 2011-04-27 2017-04-11 Nippon Steel Sumitomo Metal Corporation Steel sheet for hot stamping member and method of producing same
EP2690184B1 (en) * 2012-07-27 2020-09-02 ThyssenKrupp Steel Europe AG Produit plat en acier laminé à froid et son procédé de fabrication
CN103060678B (en) * 2012-12-25 2016-04-27 钢铁研究总院 A kind of warm-working nanometer austenite strengthens plasticising steel and preparation method thereof
EP2944417A4 (en) * 2013-01-11 2016-08-24 Kobe Steel Ltd Welded metal with excellent resistance to hydrogen embrittlement, and solid wire for submerged arc welding
JP6226542B2 (en) * 2013-03-22 2017-11-08 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007009517A1 (en) * 2005-07-19 2007-01-25 Rud Ketten Rieger & Dietz Gmbh U. Co. Kg High-strength steel chain for the low temperature range
EP2159296A1 (en) * 2007-04-13 2010-03-03 Sidenor Investigacion y Desarrollo, S.A. Hardened and tempered steel and method for producing parts of said steel
JP2009114484A (en) * 2007-11-02 2009-05-28 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2010111936A (en) * 2008-11-10 2010-05-20 Sumitomo Metal Ind Ltd Steel and method of producing the same
JP2012149277A (en) * 2011-01-17 2012-08-09 Daido Steel Co Ltd Method for manufacturing steel for plastic molding die

Also Published As

Publication number Publication date
US20200165711A1 (en) 2020-05-28
JPWO2017141425A1 (en) 2018-11-08
EP3418412A4 (en) 2019-08-21
KR20180099881A (en) 2018-09-05
CN108603259A (en) 2018-09-28
EP3418412A1 (en) 2018-12-26
KR102113045B1 (en) 2020-05-20
EP3418412B1 (en) 2021-04-07
JP6590001B2 (en) 2019-10-16
CN108603259B (en) 2020-11-06

Similar Documents

Publication Publication Date Title
JP4475440B1 (en) Seamless steel pipe and manufacturing method thereof
AU2014245635B2 (en) Abrasion resistant steel plate having excellent low-temperature toughness and method for manufacturing the same
KR102453321B1 (en) Austenitic wear-resistant steel sheet
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP2010059472A (en) Thick steel plate with low yield ratio and high toughness
JP7045459B2 (en) High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods
WO2017183719A1 (en) High tensile steel and marine structure
JP6590000B2 (en) steel
JP5692138B2 (en) High strength steel for super high heat input welding with excellent low temperature toughness in heat affected zone
JP2006124759A (en) Thick steel plate having excellent high heat input welded joint toughness
TWI589708B (en) Steel material for high heat input welding
JP7135465B2 (en) Wear-resistant thick steel plate
KR20240027879A (en) Cu-containing low alloy copper having excellent balance between strength and low-temperature toughness and method for producing same
TWI526545B (en) Steel material for welding
JP2017110249A (en) Sour resistant steel plate
JP6590001B2 (en) steel
CN110100026B (en) Thick steel plate having excellent low-temperature impact toughness and CTOD characteristics, and method for manufacturing same
WO2015093178A1 (en) Marine steel forging
JP5245202B2 (en) High strength welded structural steel with excellent high heat input weld HAZ toughness and method for producing the same
JP6447253B2 (en) High strength steel for welding
JP4604251B2 (en) S-containing high strength fine grain steel precursor steel
JP4032120B2 (en) S-containing high-strength fine-grained steel and method for producing the same
JP5126790B2 (en) Steel material excellent in fatigue crack growth resistance and method for producing the same
JP2002235143A (en) Weld metal and welded structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017567914

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187022742

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022742

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016890566

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016890566

Country of ref document: EP

Effective date: 20180919