JP4604251B2 - S-containing high strength fine grain steel precursor steel - Google Patents

S-containing high strength fine grain steel precursor steel Download PDF

Info

Publication number
JP4604251B2
JP4604251B2 JP2007191196A JP2007191196A JP4604251B2 JP 4604251 B2 JP4604251 B2 JP 4604251B2 JP 2007191196 A JP2007191196 A JP 2007191196A JP 2007191196 A JP2007191196 A JP 2007191196A JP 4604251 B2 JP4604251 B2 JP 4604251B2
Authority
JP
Japan
Prior art keywords
steel
less
sulfur
precursor
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007191196A
Other languages
Japanese (ja)
Other versions
JP2007332463A (en
Inventor
年裕 花村
佳之 古谷
三郎 松岡
史郎 鳥塚
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007191196A priority Critical patent/JP4604251B2/en
Publication of JP2007332463A publication Critical patent/JP2007332463A/en
Application granted granted Critical
Publication of JP4604251B2 publication Critical patent/JP4604251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

この出願の発明は高強度・高靱性を必要とする建築用鋼材、自動車用鋼材等に好適な超微細粒鋼を製造するのに最適な前駆鋼に関し、より詳しくは、加工温度550℃からAe1+50℃の温度範囲でひずみ加工により粒径をより微細化する為の高強度微細粒鋼前駆鋼に関するものである。 The invention of this application relates to a precursor steel that is optimal for producing ultrafine-grained steel suitable for building steel, automobile steel, and the like that require high strength and high toughness. More specifically, the processing temperature is from 550 ° C. to Ae1 + 50. The present invention relates to a high strength fine grain steel precursor steel for further refinement of grain size by strain processing in a temperature range of ° C.

普通鋼であるFe−C−Mn−Si系フェライト・パーライト鋼のフェライトを微細粒化することによって、S45CQT材料のような高強度合金鋼に匹敵する特性をもった鋼材を製造する方法が知られている(特許文献1)。このようなフェライト微細粒化法は、C(炭素)濃度を調整することによって、さらに自動車用部品にも適用できる高強度特性を有する鋼材とすることが期待されることから、高価な微量元素を使用しなくてもよく、しかも現在使用されている溶接・接合技術がそのまま使用できる等の利点を有し、リサイクル性にも優れた高強度鋼材として期待されている。
特開2000−309850号公報
There is known a method for producing a steel material having characteristics comparable to a high-strength alloy steel such as S45CQT material by finely pulverizing ferrite of Fe-C-Mn-Si ferrite / pearlite steel which is ordinary steel. (Patent Document 1). Such a ferrite fine graining method is expected to be a steel material having high strength characteristics that can be applied to automotive parts by adjusting the C (carbon) concentration. It is expected to be a high-strength steel material that does not need to be used and has the advantage that the welding / joining technology currently used can be used as it is, and is excellent in recyclability.
JP 2000-309850 A

しかしながら、このようなフェライト微細粒化における高強度化では、2つの点で問題がある。ひとつの問題は靱性の低下であり、特にシャルピー衝撃試験における上部棚エネルギーの低下が著しくなることであり、もうひとつの問題は高強度化に伴う切削性が低下することである。上部棚エネルギーの低下と切削性の低下の問題は部品加工にとっては実用上大きな問題となる。上部棚エネルギーの低下に対処する方法としては、ラメラ構造を発達させる方法が考えられる。このラメラ構造を発達させる方法とは、切欠に垂直方向に発達した層構造が存在する場合にはクラックの伝播が層構造により分断されるためクラック分断過程でクラック伝播のエネルギーが吸収されて上部棚エネルギーが増加するという認識に基づいている。 However, there are two problems in increasing the strength in such ferrite refinement. One problem is a decrease in toughness, particularly a decrease in the upper shelf energy in the Charpy impact test, and another problem is a decrease in the machinability associated with the increase in strength. The problem of lowering the upper shelf energy and lowering of the machinability is a large practical problem for parts processing. As a method of coping with the lowering of the upper shelf energy, a method of developing a lamellar structure can be considered. The method of developing this lamellar structure is that the crack propagation energy is absorbed during the crack splitting process when the layer structure that has developed vertically in the notch is present, and the crack propagation energy is absorbed. Based on the perception that energy will increase.

また、もうひとつの問題である切削性の低下については、材料中に切削屑を細かく分断することができる硬質で破断容易な物性を有するPb(鉛)の粒子を鋼材中に分散させることが有効であると考えられている。ところが、Pbは人体に対して有毒であり、このような有害物質を使用することは制限されている。 As another problem, it is effective to disperse the Pb (lead) particles in the steel material, which have hard and easily breakable physical properties, which can finely cut the cutting waste into the material. It is considered to be. However, Pb is toxic to the human body, and the use of such harmful substances is restricted.

そこで、この出願の発明は、以上のとおりの事情に鑑み、フェライト微細粒化により高強度化を図るときの問題である靱性の低下と切削性の低下を抑制することのできる高強度超微細粒鋼前駆鋼を提供することを課題としている。 Therefore, in view of the circumstances as described above, the invention of this application is a high-strength ultrafine grain that can suppress a decrease in toughness and a decrease in machinability, which is a problem when increasing the strength by refining ferrite. It is an object to provide a steel precursor steel.

この出願の発明は、上記の課題を解決するものとして、第1には、加工温度550℃からAe1+50℃の温度範囲でひずみ加工を行うことにより、平均粒径3μm以下の微細粒組織を有する高強度微細粒鋼を製造するのに用いられる前駆鋼であって、平均粒径が10μm以下のフェライトとオーステナイト、パーライト、セメンタイト、およびマルテンサイトの少なくとも1種以上からなる組織を有し、C(炭素)が0.3〜0.5mass%とS(イオウ)が0.1〜0.3mass%、Si:0.8mass%以下、Mn:0.05〜3.0mass%を含有し、残部Fe及び不可避的不純物からなることを特徴とする前駆鋼を提供する。
In order to solve the above-mentioned problems, the invention of this application is as follows. First, by performing strain processing at a processing temperature range of 550 ° C. to Ae1 + 50 ° C., a high grain structure having an average particle size of 3 μm or less is obtained. It is a precursor steel used for producing a high- strength fine-grained steel, and has a structure composed of at least one of ferrite and austenite, pearlite, cementite, and martensite having an average particle diameter of 10 μm or less, and C (carbon ) 0.3 to 0.5 mass% and S (sulfur) 0.1 to 0.3 mass%, Si: 0.8 mass% or less, Mn: 0.05 to 3.0 mass%, the balance Fe and providing a precursor steel characterized by Rukoto such unavoidable impurities.

この出願の上記第1の発明によれば、靱性および切削性に優れ、建築材料および自動車用部品にも適用できる高強度特性を有する鋼材を得ることが出来た。 According to the first invention of this application, it was possible to obtain a steel material having excellent strength and machinability and having high strength characteristics applicable to building materials and automotive parts.

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。 The invention of this application has the features as described above, and an embodiment thereof will be described below.

上記のように、この出願の発明は、フェライト微細粒化法を利用した高強度超微細粒鋼について、靱性と切削性の低下を抑制したものであるが、靱性と切削性の低下を抑制するにはS(イオウ)の添加が有効であるとの知見に基づいている。 As described above, the invention of this application suppresses a decrease in toughness and machinability of a high-strength ultrafine-grained steel using a ferrite fine graining method, but suppresses a decrease in toughness and machinability. Is based on the finding that the addition of S (sulfur) is effective.

ただ、フェライト微細粒化法で超微細粒鋼を作製するには鋼材の成分に対応したα相領域の温度域において、塑性相当歪みを2.0程度加えることが要求されるが、S(イオウ)濃度が高い鋼材に、この方法を適用することは極めて厳しく、製造工程中にMnS(硫化マンガン)が発達した層に沿って生成するため破壊が起こるという問題が生じる。 However, in order to produce ultrafine-grained steel by the ferrite fine graining method, it is required to add a plastic equivalent strain of about 2.0 in the temperature range of the α phase region corresponding to the components of the steel material. ) It is extremely strict to apply this method to a steel material with a high concentration, and there arises a problem that destruction occurs because MnS (manganese sulfide) is formed along the layer in the manufacturing process.

そこで、この出願の発明では、フェライト微細粒化法において、S(イオウ)を添加する際に問題となる製造工程中の材料破壊を回避するとともに、靱性と切削性が優れた高強度超微細粒粒鋼を作製するために、S(イオウ)の添加量とフェライト微細粒鋼の平均粒径を熱処理条件を最適範囲に特定するものである。すなわち、S(イオウ)が0.01〜0.3mass%の範囲で添加されるとともに、加工温度550℃からAe1+50℃の温度範囲でひずみ加工を行う。 Therefore, in the invention of this application, in the ferrite fine granulation method, high strength ultrafine particles having excellent toughness and machinability while avoiding material destruction during the manufacturing process, which is a problem when adding S (sulfur). In order to produce a grain steel, the amount of S (sulfur) added and the average grain size of the ferrite fine grain steel are specified within the optimum range of the heat treatment conditions. That is, S (sulfur) is added in a range of 0.01 to 0.3 mass%, and strain processing is performed in a temperature range of 550 ° C. to Ae1 + 50 ° C.

この場合のひずみ加工においてはひずみ0.7以上とすることが好適である。 In strain processing in this case, it is preferable that the strain is 0.7 or more.

なお、化学組成においては、C(炭素)含有量0.1mass%以上で0.75mass%以下の範囲とすることはこの出願の発明においては好ましい。より好ましくは0.3%〜0.5%の範囲である。 In the chemical composition, it is preferable in the invention of this application that the C (carbon) content is in the range of 0.1 mass% to 0.75 mass%. More preferably, it is in the range of 0.3% to 0.5%.

S(イオウ)とC(炭素)以外の元素組成としては普通鋼の組成をベースとすることが
できる。たとえば、重量%として、
Si:0.8%以下
Mn:0.05〜3.0%
Al:0.1%以下
Cu:2.5%以下
Ni:3.0%以下
Ti:0.1%以下
Cr:3.0%以下
Mo:1.0%以下
W:0.5%以下
Nb:0.1%以下
V:0.1%以下
等を考慮することができる。
The elemental composition other than S (sulfur) and C (carbon) can be based on the composition of ordinary steel. For example, as weight percent,
Si: 0.8% or less Mn: 0.05 to 3.0%
Al: 0.1% or less Cu: 2.5% or less Ni: 3.0% or less Ti: 0.1% or less Cr: 3.0% or less Mo: 1.0% or less W: 0.5% or less Nb : 0.1% or less V: 0.1% or less can be considered.

ひずみ0.7以上の加工についての手段も様々に考慮されてよい。たとえば溝ロール加工、圧延、鍛造等が考慮される。 Various means for processing with a strain of 0.7 or more may be considered. For example, groove roll processing, rolling, forging, etc. are considered.

以下実施例を示し、さらに詳しくこの発明について説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

表1は実施例に使用した供試材の化学成分を示したものである。P1およびS1はC(炭素)がそれぞれ0.15mass%および0.45mass%含有されているが、S(イオウ)が含有されていない。また、F2、H5、H6、H7、H8、S2、S2XはC(炭素)が0.15mass%または0.45mass%含有されているとともにS(イオウ)が0.01〜0.1mass%の範囲で含有されているS(イオウ)添加超微細粒鋼を示している。 Table 1 shows the chemical components of the test materials used in the examples. P1 and S1 contain 0.15 mass% and 0.45 mass% of C (carbon), respectively, but do not contain S (sulfur). F2, H5, H6, H7, H8, S2, and S2X contain C (carbon) in a range of 0.15 mass% or 0.45 mass% and S (sulfur) in a range of 0.01 to 0.1 mass%. The S (sulfur) -added ultrafine-grained steel contained in is shown.

加工熱処理条件は基本的に2通りとした。第1の条件(A条件)はP1、S1、S2に用いられている方法であり、前処理として1100℃で1時間保持後に鍛造を加えて室温まで空冷し、更に1100℃に加熱して30分保持した後にWQを行なう。次に、650℃で1時間保持後に減面率85%の溝ロール圧延をして水冷し、超微細粒鋼を作製するものである。第2の条件(B条件)はF2、H5、H6、H7、H8に用いられている方法であり、前処理として、1100℃で1時間保持後に鍛造を加えて室温まで空冷する。次
に900℃で1時間保持後に空冷し、550℃になった時点で減面率93%の溝ロール圧延し、水冷して超微細粒鋼を作製するものである。なお、溝ロール圧延の途中にF2、H6、H8は割れが発生して製品ができなかった。図1は破断なく加工されたH7と、溝ロール加工中40mm口で縦割れ破断したH8の加工後の形状を示したものである。また、H8の製造条件である550℃溝ロール加工で加工中の割れが起こらない条件を見極めるため、表2の条件で、供試材SX2−1、SX2−2、SX2−3を製造した。
There were basically two types of thermomechanical treatment conditions. The first condition (A condition) is the method used for P1, S1, and S2. As a pretreatment, forging is performed after holding at 1100 ° C. for 1 hour, air cooling to room temperature, and further heating to 1100 ° C. to 30 After holding the minute, WQ is performed. Next, after holding at 650 ° C. for 1 hour, groove roll rolling with an area reduction rate of 85% is performed and water-cooled to produce ultrafine-grained steel. The second condition (Condition B) is a method used for F2, H5, H6, H7, and H8. As a pretreatment, after holding at 1100 ° C. for 1 hour, forging is performed and air cooling is performed to room temperature. Next, after holding at 900 ° C. for 1 hour, air cooling is performed, and when the temperature reaches 550 ° C., groove roll rolling with a reduction in area of 93% is performed and water cooling is performed to produce an ultrafine grained steel. In addition, F2, H6, and H8 were cracked during the groove roll rolling, and a product could not be produced. FIG. 1 shows the shape after processing of H7 processed without breakage and H8 which was broken vertically by a 40 mm opening during groove roll processing. Moreover, in order to determine the conditions under which cracking during processing does not occur in the 550 ° C. groove roll processing, which is a manufacturing condition of H8, specimen materials SX2-1, SX2-2, and SX2-3 were manufactured under the conditions shown in Table 2.

SX2−1については成功したが、SX2−2とSX2−3については加工中に縦割れが生じた。そのSX2−2の加工後の形状を図2に、またSX2−3の加工後の形状を図3にそれぞれ示す。両者とも棒の中心部から縦割れが起こり、完全に試料を2つに引き裂いているのが認められる。 Although SX2-1 was successful, SX2-2 and SX2-3 had vertical cracks during processing. The shape after processing of SX2-2 is shown in FIG. 2, and the shape after processing of SX2-3 is shown in FIG. In both cases, vertical cracks occurred from the center of the rod, and it was observed that the sample was completely torn into two.

図4はS1(比較材)、そして図5はS2(本発明材)の加工後の微視組織を示したものである。S1とS2はC(炭素)濃度が0.45%と同一であるが、S2はS(イオウ)が0.1%含有されていることにより微細なFe3 C粒子がよく多く、1μm以下のフェライト粒径が均一に分散していることが観察される。 FIG. 4 shows a microstructure after processing of S1 (comparative material) and FIG. 5 shows S2 (material of the present invention). S1 and S2 have the same C (carbon) concentration of 0.45%, but S2 contains 0.1% of S (sulfur) and is often fine Fe3 C particles. It is observed that the particle size is uniformly dispersed.

図6はS1(比較材)、図7はS2(本発明材)、図8はH5(参考材)、図9はH7(参考材)のそれぞれを用いて引っ張り試験で得られた応力−ひずみ曲線を示したものである。また、表3は鋼材の機械的特性を示したものである。
6 is S1 (comparative material), FIG. 7 is S2 (material of the present invention), FIG. 8 is H5 (reference material), and FIG. 9 is stress-strain obtained by tensile test using H7 (reference material). A curve is shown. Table 3 shows the mechanical properties of the steel materials.

P1およびS1はS(イオウ)無含有で、C(炭素)が0.15mass%および0.45mass%含有された比較材であるが、A条件で行なったS2(本発明材)はS(イオウ)が0.1mass%含有されているにもかかわらず、YS(降伏応力)、TS(引っ張り強度)、T.EI.(全伸び),U.EI.(均一伸び)の物性はC(炭素)量が同じ0.45%S(イオウ)無含有のもの(S1)と同レベルに維持されている。B条件で行なったH5、H7(参考材)はP1、S1に比較してUYSが572MPaから886MPa、また740MPaから986MPaと上昇している。延性は若干の低下が見られるが、これは加工温度が650℃から550℃に低下したことによるものと考えられる。 P1 and S1 are comparative materials containing no S (sulfur) and 0.15 mass% and 0.45 mass% of C (carbon), but S2 (material of the present invention) performed under the A condition is S (sulfur). ) Is contained in an amount of 0.1 mass%, YS (yield stress), TS (tensile strength), T. EI. (Total elongation), U.I. EI. The physical property of (uniform elongation) is maintained at the same level as that of 0.45% S (sulfur) -free (S1) having the same C (carbon) content. In H5 and H7 (reference materials) performed under the B condition, UYS increased from 572 MPa to 886 MPa and from 740 MPa to 986 MPa compared to P1 and S1. There is a slight decrease in ductility, but this is thought to be due to the processing temperature decreasing from 650 ° C to 550 ° C.

図10はA条件で作製したシャルピー衝撃試験曲線であるが、比較材(S1)はC(炭素)の含有濃度が0.45%と高いため上部棚エネルギーが低い傾向が認められる。 FIG. 10 shows a Charpy impact test curve prepared under the condition A. However, since the comparative material (S1) has a high C (carbon) content concentration of 0.45%, the upper shelf energy tends to be low.

しかしながら、S2(本発明材)はS(イオウ)含有以外は同一の組成、同一の製造条件にもかかわらず、上部棚エネルギーが100Jレベルから200Jに飛躍的に増加しているのが認められる。図11はB条件で作製したシャルピー衝撃試験曲線であるが、比較材(P1、S1)は上部棚エネルギーが低い傾向が認められる。これに対して、本発明材は(H5、H7)は、S(イオウ)含有以外は同一の組成、同一の製造条件の場合、上部棚エネルギーが飛躍的に増加しているのが認められる。 However, it is recognized that S2 (the material of the present invention) dramatically increases the upper shelf energy from the 100J level to 200J despite the same composition and the same manufacturing conditions except for containing S (sulfur). FIG. 11 is a Charpy impact test curve produced under the B condition, and it is recognized that the comparative materials (P1, S1) tend to have lower upper shelf energy. On the other hand, in the case of the present invention material (H5, H7), the upper shelf energy is remarkably increased in the same composition and the same production conditions except for containing S (sulfur).

以上、詳しく説明したように、S(イオウ)を含有するこの出願の発明の高強度超微細粒鋼においては、細流化で強度を発言させ、S45C等のQT処理を必要とする合金鋼に匹敵する強度特性を有し、高い上部棚エネルギーを有する鋼材を実現する。さらに、この超微細粒鋼は、強度特性に加え、靱性と疲労特性も優れており、構造材料に必要な3大基
本特性を備えているという特徴も有する。このように、この出願の発明は、フェライト細粒化により高強度化を図る時の問題点である靱性の低下と切削性の低下を解決するため、超微細粒鋼にSを含有した鋼材を提供するものであり、その際、問題となる製造工程中の材料破断を回避する方法を提供するものである。
As described above in detail, in the high strength ultrafine grain steel of the invention of this application containing S (sulfur), the strength is expressed by trickling and is comparable to an alloy steel that requires QT treatment such as S45C. The steel material which has the intensity | strength characteristic to have and has a high upper shelf energy is implement | achieved. Furthermore, this ultrafine-grained steel is excellent in toughness and fatigue properties in addition to strength properties, and has the characteristics of having the three major basic properties necessary for structural materials. As described above, the invention of this application is to solve the problems of toughness and machinability, which are problems when increasing the strength by refining ferrite, in order to solve the deterioration of toughness and machinability. In this case, a method for avoiding material breakage during the manufacturing process, which is a problem, is provided.

もちろん、この出願の発明は以上の例に限定されるものではなく、詳細については様々な態様が可能である。 Of course, the invention of this application is not limited to the above examples, and various modes are possible for details.

H7鋼とH8鋼の加工後の形状を比較したものである。The shape after processing of H7 steel and H8 steel is compared. S2X−2の加工前後の形状を比較したものである。The shapes before and after the processing of S2X-2 are compared. S2X−3の加工前後の形状を比較したものである。The shapes before and after the processing of S2X-3 are compared. S1の微視組織を示したものである。It shows the microscopic tissue of S1. S2の微視組織を示したものである。It shows the microscopic tissue of S2. S1の応力−ひずみ曲線である。It is a stress-strain curve of S1. S2の応力−ひずみ曲線である。It is a stress-strain curve of S2. H5の応力−ひずみ曲線である。It is a stress-strain curve of H5. H7の応力−ひずみ曲線である。It is a stress-strain curve of H7. H条件で作製したシャルピー衝撃試験曲線である。It is the Charpy impact test curve produced on H conditions. L条件で作製したシャルピー衝撃試験曲線である。It is a Charpy impact test curve produced on L conditions.

Claims (1)

加工温度550℃からAe1+50℃の温度範囲でひずみ加工を行うことにより、平均粒径3μm以下の微細粒組織を有する高強度微細粒鋼を製造するのに用いられる前駆鋼であって、平均粒径が10μm以下のフェライトとオーステナイト、パーライト、セメンタイト、およびマルテンサイトの少なくとも1種以上からなる組織を有し、C(炭素)が0.3〜0.5mass%とS(イオウ)が0.1〜0.3mass%、Si:0.8mass%以下、Mn:0.05〜3.0mass%を含有し、残部Fe及び不可避的不純物からなることを特徴とする前駆鋼。
Precursor steel used for producing high-strength fine-grained steel having a fine grain structure with an average grain size of 3 μm or less by performing strain processing in a temperature range of 550 ° C. to Ae1 + 50 ° C. Has a structure composed of at least one of ferrite and austenite, pearlite, cementite, and martensite having a size of 10 μm or less, C (carbon) is 0.3 to 0.5 mass%, and S (sulfur) is 0.1 to 0.1%. 0.3mass%, Si: 0.8mass% or less, Mn: contains 0.05~3.0mass%, the precursor steel characterized by Rukoto a balance of Fe and unavoidable impurities.
JP2007191196A 2007-07-23 2007-07-23 S-containing high strength fine grain steel precursor steel Expired - Fee Related JP4604251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191196A JP4604251B2 (en) 2007-07-23 2007-07-23 S-containing high strength fine grain steel precursor steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191196A JP4604251B2 (en) 2007-07-23 2007-07-23 S-containing high strength fine grain steel precursor steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003435978A Division JP4032120B2 (en) 2003-12-26 2003-12-26 S-containing high-strength fine-grained steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007332463A JP2007332463A (en) 2007-12-27
JP4604251B2 true JP4604251B2 (en) 2011-01-05

Family

ID=38932209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191196A Expired - Fee Related JP4604251B2 (en) 2007-07-23 2007-07-23 S-containing high strength fine grain steel precursor steel

Country Status (1)

Country Link
JP (1) JP4604251B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073035A (en) * 1999-08-31 2001-03-21 Natl Res Inst For Metals Production of steel having superfine structure
JP2003147482A (en) * 2001-11-14 2003-05-21 Nippon Steel Corp Non-heatteated high strength and high toughness forging, and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073035A (en) * 1999-08-31 2001-03-21 Natl Res Inst For Metals Production of steel having superfine structure
JP2003147482A (en) * 2001-11-14 2003-05-21 Nippon Steel Corp Non-heatteated high strength and high toughness forging, and production method therefor

Also Published As

Publication number Publication date
JP2007332463A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
CN110546290B (en) Austenitic wear-resistant steel plate
CN1060814C (en) Dual phase steel plate having good toughness and welding property
WO2010061882A1 (en) Seamless steel pipe and method for manufacturing same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
WO2015162939A1 (en) Thick steel plate and manufacturing method for same
CN111074148B (en) 800 MPa-level hot stamping axle housing steel and manufacturing method thereof
WO2013179934A1 (en) Steel wire for high-strength spring having exceptional coiling performance and hydrogen embrittlement resistance, and method for manufacturing same
RU2470085C1 (en) Steel for welded structure and method of its production
JP6875915B2 (en) High-strength steel plate and its manufacturing method
MX2014002896A (en) Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing.
WO2017208762A1 (en) High-strength steel sheet and method for producing same
JP2010159466A (en) High-tensile-strength steel material superior in fatigue characteristics and method for manufacturing the same
JP2013108129A (en) Rolled steel bar for hot forging
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
CN109477181B (en) High-strength steel sheet and method for producing same
JP5007930B2 (en) Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength
JP4396851B2 (en) High tensile steel with excellent plastic deformability after cold working and method for producing the same
JP5151693B2 (en) Manufacturing method of high-strength steel
JP2009013464A (en) Maraging steel for metal belt
JP2012025984A (en) High-carbon hot-rolled steel sheet having excellent fine blanking properties and method for producing the same
JP2010180424A (en) Steel material superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor
JP4604251B2 (en) S-containing high strength fine grain steel precursor steel
JP2012077371A (en) Rolled steel for hot forging, and method for production thereof
JP4032120B2 (en) S-containing high-strength fine-grained steel and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees